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Abstract� Noise�induced escape from a quasi�attractor� and from the Lorenz attractor
with non�fractal boundaries� are compared through measurements of optimal paths� It
has been found that� for both types of attractor� there exists a most probable �optimal�
escape trajectory� the prehistory of the escape being de�ned by the structure of the
chaotic attractor� For a quasi�attractor the escape process is realized via several steps�
which include transitions between low�period saddle cycles co�existing in the system
phase space� The prehistory of escape from the Lorenz attractor is de�ned by stable
and unstable manifolds of the saddle center point� and the escape itself consists of
crossing the saddle cycle surrounding one of the stable point�attractors�

A major unsolved problem in the theory of �uctuations is that of noise�induced
escape from a chaotic attractor ���� Chaotic systems are widespread in nature� and
the study of their dynamics in the presence of �uctuations is both of fundamen�
tal interest� and also of importance in relation to a range of applications� e�g� to
stabilization of the voltage standard �	�� neuron dynamics �
�� and laser systems ����
The di�culty of solving the �uctuational escape problem stems largely from the

fact that the dynamics of the system during large noise�induced deviations from
deterministic chaotic trajectories remains obscure� In particular� it has been unclear
whether or not there exists a unique optimal path along which escape from a chaotic
attractor takes place� Theoretical predictions of the character of the optimal path
distribution near a chaotic attractor do not yet exist�
It has been established that �uctuational dynamics can be investigated directly

through measurements of the so�called prehistory probability distribution of �uctu�
ations ����� making it possible to examine situations for which the use of analytic
methods still remains problematic� We have applied this technique to experimental
investigations of noise�induced escape from a quasi�attractor and from the Lorenz
attractor�
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The essence of the prehistory technique is the idea that� when the system moves
to a given remote state� it does so along an optimal path under the action of a large
�uctuation ���� The dynamical variables of the system and of the �uctuational force
are recorded simultaneously� and ensemble�averages are built of the trajectories and
the noise history ���� It allows one to de�ne both the optimal path itself and also
the optimal �uctuational force inducing the escape� As a result we can evaluate the
escape probability as a function of noise intensity� and we can hope to develop ways
of controlling �and perhaps exploiting� large �uctuations ������ This experimental
approach has already facilitated studies of the symmetry of optimal paths and of
the singularities in their distribution ������
The mathematical variant of this experimental method is the Hamiltonian ap�

proach to the asymptotic expansion of the Fokker�Plank equation to determine an
optimal trajectory ����� Use of the Hamiltonian formalism to investigate escape
from a chaotic attractor requires prior answers to the questions� does a unique op�
timal escape path exist� and where must we take the initial state� from whence the
optimal path starts� It is necessary to provide initial information about the escape
process from a chaotic attractor in order to develop the theory� The experimental
approach �� allows us to de�ne an optimal path� and it provides initial insight into
the application of analytic methods�
We have chosen for investigation two systems having di�erent types of attractor�

a quasi�attractor and a quasi�hyperbolic attractor� The �rst system is a nonlinear
oscillator forced by an external periodic signal and white noise�
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It is one that is met in many applications� and it has been studied theoretically
over a wide range of parameters ����� A chaotic attractor appears in this system
via a cascade of period�doubling bifurcations� so it is a quasi�attractor ��	�� We
have chosen parameters �� � �	�� �� � �	���� � � �� � � �� �f � �	�� h � �	�
�
for which a limit cycle and a chaotic attractor coexist�
The phase portraits of the stable limit cycle and chaotic attractor� and their

basins of attraction� are shown in Fig� �� The saddle cycle U and its manifolds
form a boundary between the quasi�attractor and the limit cycle� In the presence
of noise there is a �nite probability of noise�induced escape from the chaotic at�
tractor� If we had a stable limit cycle instead of a quasi�attractor then� in the
context of the Hamiltonian approach ����� the following escape scenario might be
expected� Escape should in general occur along a unique� most probable� escape
path connecting two limit cycles and crossing the unstable cycle U � Because the
basin of attraction of the chaotic attractor is bounded by the saddle cycle U � the
situation near it remains qualitatively the same� and therefore a unique optimal
path is to be expected in this region� However� the situation arising near a chaotic
attractor is unknown� the simplest scenario might be that the optimal path smears
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FIGURE �� �a� The phase portrait of a chaotic attractor �solid line�� the limit cycle �dot�dashed

line� and the saddle cycle U �dashed line�� �b� The white and hatched regions correspond to

the basins of attraction of the quasi�attractor �small dots� and the limit cycle St �diamond�

for Poincar	e cross�section with �f t 
 � �mod���� The saddle cycles U and S are shown by

�lled circles and triangles respectively� The intersections of the actual escape trajectory with the

Poincar	e cross�section are indicated by the square�

out near the boundary of the chaotic attractor� and that no unique escape path
exists in this region�

Our statistical analysis of real �uctuational trajectories resolves the question
immediately� Fig� 	 provides a representation of the distribution of �uctuational
paths� There is a single path connecting the chaotic attractor with the stable cycle
and passing through the unstable cycle U � This path remains single back to the
boundary of the chaotic attractor� where it divides into several paths� They all
merge to form an optimal path running on the saddle cycle of period 
 �S
�� which
does not belong to the quasi�attractor� Thus escape to the cycle S
 may occur
along several paths� We have found that these paths are de�ned by saddle cycles
built into the structure of the quasi�attractor and that there is a unique optimal
�in sense of minimal �uctuational action� path� which starts from the saddle cycle
of period  �S� �Fig� 	�a���

Based on this scenario� the escape probability may be evaluated as the product
of the probability of staying on the unstable cycle and the probability of subsequent
transitions� from the saddle cycles embedded in the chaotic attractor to the cycle
S
� and from the cycle S
 to the cycle U � In other words� the problem of escape
from a quasi�attractor has been reduced to the problem of transitions between a
limited number of saddle cycles� The Hamiltonian formalism ���� may therefore
now be applied to investigate escape from a quasi�attractor�

We have also measured the �external� optimal �uctuational force inducing the
escape� It can be related ���� to the momentum of a Hamiltonian auxiliary system�
an inference that has been veri�ed experimentally ���� We can expect a similar result
for chaotic attractors given that� as we have shown� there exists a unique optimal
escape path� As seen �Fig� 
�b�� the optimal force is composed of two distinct
sections corresponding to escape to the cycles S
 and U respectively� it tends to
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FIGURE �� �a� The probability distribution of �uctuational paths ph�x�� t� built up by ensem�

ble�averaging escape trajectories� The darker colour corresponds to a larger probability� The

saddle cycles S�� S and U are shown by the symbols ���� ��� and ��� respectively� �b� The

optimal force is shown both before �grey line� and after �full curve� passage through a low�pass

�lter�

zero once the cycle U has been attained�
We next consider �uctuational escape from the Lorenz attractor
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which is a quasi�hyperbolic attractor consisting of unstable sets only� This system
��
���� is of interest because it describes e�g� convective �uid dynamics� as well
as the single mode laser ������ For simplicty we consider the noise source to act
through the third equation only�
For 
 � ��� b � ��
� r � 	�	��� the system �	� has three attractors ����� the

stable points P� and P� and the Lorenz attractor �Fig� 
�a��� The stable manifolds
of the saddle cycles L� and L� surround the stable points and they constitute
boundaries between the chaotic and regular regimes in this region of phase space�
The Lorenz attractor consists of an aggregate of integral curves going from the
cycle L� to L� and back� the saddle point O� and its separatrices �� and ��� Note
that the probability of trajectories passing near the separatrices and the cycles L�

and L� is practically zero for the noise�free system� Like the problem of escape
from a quasi�attractor� there is no theoretical prediction for �uctuational escape
from the Lorenz attractor�
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FIGURE �� �a� The structure of phase space of the Lorenz system� One from escape trajectories

is shown by points� �b� The optimal escape trajectory �solid line� and the averaged �uctuational

force �dashed line� are shown�

We have investigated the problem by use of numerical simulation and the method
of analysis described above in the relation to escape from a quasi�attractor� For
de�niteness� we consider escape to the stable point P�� The measured optimal
escape trajectory and corresponding optimal force are shown in Fig� 
�
The optimal escape trajectory starts from the stable manifold of the saddle point

O� Under the action of a �uctuation an escape trajectory tends to point O along the
stable manifold� Then� without reaching the saddle point O� the optimal trajectory
departs from it again� following a path close to the separatrix ��� falling into the
neighborhood of the saddle cycle L�� In the absence of an external force� the
trajectory has to go away from the cycle L� slowly untwisting� The �uctuations
induce a crossing through the saddle cycle� and then the trajectory relaxes to the
stable point P�� We can therefore split the escape process to two parts� �uctuational
and relaxational� Practically all of the �uctuational part belongs to the Lorenz
attractor and itself consists of two stages� �rst� the �uctuational force throws
the trajectory close to the cycle L�� secondly� this cycle is crossed� also through
the action of a �uctuation� The �rst stage is de�ned by the manifold of saddle
point O� and the time�dependence of the �uctuational force is similar to that of
the coordinate x� �Fig� 
�b��� During the second stage� the �uctuations have a
component which oscillates in anti�phase to the coordinate x�� The trajectory of
the noise�free system departs from the cycle L� very slowly� so that the �uctuational
force inducing the crossing through the cycle may start to act at any time during
this long interval� The smoothed �uctuational force itself therefore consists of a
long oscillating function�
Thus� the �uctuational part of the escape trajectory from the Lorenz attractor

lies on the attractor itself� The role of the �uctuations lies in the delivery of the
trajectory to a seldom�visited area in the neighborhood of the saddle cycle L�� and



then in inducing a crossing to L�� To estimate the escape probability� therefore� it
would su�ce to build the quasi�potential of the noisy Lorenz attractor�
In summary� we have found that� for both a quasi�attractor and a quasi�

hyperbolic attractor� a unique optimal escape path exists� We have obtained the
optimal force inducing escape from both types of chaotic attractor� As a next step�
we will check the possibility of optimal control of escape� using the optimal force
found in numerical simulations�
The main results were obtained through the experimental de�nition of optimal

paths� thus showing that this experimental approach is a powerful instrument for
the investigation of noise�induced escape from complex attractors� Our studies of
the escape process o�er the possibility of a theoretical evaluation of �uctuation�
al escape from a chaotic attractor within the framework of the well�established
Hamiltonaian approach �����
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