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Noise-induced escape from a quasi-hyperbolic attractor in the Lorenz system is inves-
tigated via an analysis of the distributions of both the escape trajectories and the cor-
responding realizations of the random force. It is shown that a unique escape path
exists, and that it consists of three parts with noise playing a different role in each. It is
found that the mechanism of the escape from a quasi-hyperbolic attractor differs from
that of escape from a non-hyperbolic attractor. The possibility of calculating the escape
probability is discussed.

Keywords: Noise-induced escape, quasi-hyperbolic attractor, non-equilibrium fluctua-
tions, prehistory probability distribution

1. Introduction

One of the longstanding unsolved problems in the theory of fluctuations is that of
noise-induced escape from a chaotic attractor [1–3]. Chaotic systems are widespread
in nature, and the study of their dynamics in the presence of noise is a topic of broad
interdisciplinary interest whose potential applications include e.g. stabilization of
the voltage standard [4] and laser systems [5], neuron dynamics [6], macromolecular
transport in biological cells [7], and the control of migration in multistable systems
[8–10].

The difficulty in solving the fluctuational escape problem stems largely from the
fact that systems possessing strange attractors are far from thermal equilibrium:
no general methods are available for estimation of the escape probabilities in such
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systems. Furthermore, the application of asymptotic methods, e.g. WKB-like ap-
proximations [11] for solution of the Fokker-Planck equation, requires the definition
of the generally unknown boundary conditions and relies on the existence of the
so-called most probable escape path which needs to be justified in each particular
case.

It has recently been shown, however, that fluctuational dynamics can be inves-
tigated directly through measurements of the so-called prehistory probability distri-
bution [12–15], so that it has become possible to use analogue and digital methods
to examine situations where the use of analytic methods still remains problematic.
In this paper we apply this technique to the investigation of noise-induced escape
from a quasi-hyperbolic attractor.

The essence of the prehistory technique lies in the idea that, when the system
moves to a given remote state, it does so along an optimal path under the ac-
tion of a large fluctuation [16]. The dynamical variables of the system and of the
fluctuational force are recorded simultaneously, and the corresponding prehistory
distributions are built [12–15]. This allows one to define the optimal escape path,
and the corresponding optimal fluctuational force as maxima of prehistory distri-
butions. With a knowledge of the escape path and the corresponding force, we can
hope to calculate the escape probability in the Lorenz system analytically and to
develop ways of controlling (and perhaps exploiting) large fluctuations [10, 15, 17]
in chaotic systems.

The efficiency of this experimental approach, based on the prehistory distribu-
tion, was demonstrated earlier for noise-induced escape from a non-hyperbolic [18]
chaotic attractor in a non-autonomous nonlinear oscillator [10, 19]. Here we inves-
tigate a noise-induced escape from a quasi-hyperbolic [18] chaotic attractor in the
Lorenz system, and thus address and answer the question: how does the mecha-
nism of escape from a chaotic attractor depend on the structure of the attractor?
In doing so, we confirm the applicability of our experimental approach [12–14] to
a wider class of complex systems and we demonstrate that it provides the insight
necessary for the application of analytical methods.

2. The Model and Results

The Lorenz system [20, 21] is of interest because it describes e.g. convective fluid
dynamics, as well as the single mode laser [1, 22]:

q̇1 = σ(q2 − q1), q̇2 = rq1 − q2 − q1q3, q̇3 = q1q2 − bq3 + ξ(t)
〈ξ(t)〉 = 0, 〈ξ(t)ξ(0)〉 = Dδ(t); (1)

here q1, q2, q3 are dynamical variables, and σ, r, b are parameters. For simplicity let
us consider the noise source to act through the third equation only. This does not
destroy the mirror symmetry of the system, which is invariant under the change
of variables (q1, q2, q3) → (−q1,−q2, q3). The situation when noise affects all three
variables is more complicated for the analysis. First of all the dimension of the
extended phase space is increased substantially and secondly adding noise to the
first two equations lifts degeneracy of the optimal escape path. This situation,
however, may be of importance in the context of analysis of the laser dynamics and
will be considered elsewhere.
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For σ = 10, b = 8/3, r = 24.08, the system (1) has three attractors [21]: two
stable points P1 and P2, and the Lorenz attractor (Fig. 1(a)). Stable manifolds
of the saddle cycles L1 and L2 surround the stable points and they constitute
boundaries between the chaotic and regular regimes in this region of phase space.
The chaotic Lorenz attractor consists of non-trivial hyperbolic sets, the separatrixes
Γ1 and Γ2 and the saddle point O [23].

The last fact can be illustrated (Fig. 1(b)) by the existence of two trajectories T1

and T2 (found by variation of the initial conditions on the attractor). These trajec-
tories lie in the very close (∝ 10−6) vicinity of the stable manifold Ws of the saddle
point O. Accordingly they follow this manifold to pass nearby the point O. After
that they approach to the saddle cycles L1 and L2 following the separatrixes Γ1 and
Γ2 that define the boundary of the chaotic attractor [23]. Numerical studies have
shown that the probability of the noise-free system passing near the separatrixes
or the cycles L1 and L2 is exponentially small. In fact, in the noise-free system
no trajectories can be found approaching a close vicinity of the cycles L1 and L2

along the separatrixes on any reasonable timescale of observation (a few weeks in
our case).

However, by adding a very weak noise to the system (D = 0.001) one can induce
transitions to the states P1 and P2, so that the Lorenz attractor becomes metastable.

To investigate noise-induced escape from the Lorenz attractor we have carried
out numerical simulations implementing a high-speed pseudo-random generator [24]
for the increment ∆q3. We build the prehistory distributions both for the escape
trajectories and for the corresponding realizations of random force. For definiteness,
we examine escape to the stable point P1.
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Fig 1. (a) The structure of phase space of the Lorenz system. A trajectory of the Lorenz attractor
is shown by thin solid line, the separatrixes Γ1 and Γ2 are shown by dashed lines, one of the escape
trajectories is shown by points. (b) 10 escape trajectories obtained by numerical simulation of (1)
are shown by the grey lines. The trajectories T1 and T2 are shown by points, the cycles L1 and
L2 are shown by circles. The stable manifold Ws of the saddle point O is shown by the fan of thin
solid lines.

Ten escape trajectories obtained by numerical simulations are shown in Fig. 1(b).
They approach the saddle point O closely in two narrow bunches that emerge from
the attractor. The tube shown is slightly dispersed near point O and, moving along
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Fig 2. (a) The averaged fluctuational force p3 after low-pass filtration and (b) the coordinate q3

of optimal escape trajectory are shown. The three stages of escape are indicated by the numbers
1–3 by the corresponding double-headed arrows.

the separatrix Γ2, it falls onto the unstable manifold of the saddle cycle L1 in the
vicinity of point C. The existence of two bunches of trajectories, leading from the
points S to the point A, is a consequence of the symmetry of the Lorenz system:
it allows us to consider only one of these bunches leading to the point A, without
loss of generality. Note that there are several ways to approach point S within a
chaotic attractor.

Analysis of the prehistory distribution of the escape trajectories shows that there
is well-defined maximum in their distribution. Therefore we can define the optimal
path by ensemble-averaging the escape trajectories. The optimal fluctuational force
can be obtained by averaging the corresponding realizations of the random force.
Fig. 2 shows the coordinate q3 of the optimal path and the value p3 of the averaged
fluctuational force as functions of time during the escape process.

The results obtained suggest the following scenario of escape from the Lorenz
attractor. The escape path consists of three main parts (Fig. 2(b)): (i) the deter-
ministic part from the point S to the point A; (ii) a part corresponding to fast
fluctuation-assisted motion along the separatrixes from the point A to the point C;
and (iii) slow diffusion from the point C to overcome the deterministic drift on the
unstable manifold of the saddle cycle L1 and to cross L1. It is important to note
that noise plays a different role during each part of the escape.

In the first part (from the point S to the point A) the trajectory moves on
the chaotic attractor. This path can be observed in the absence of noise, and
the presence of noise results merely in a small diffusion of trajectories around the
escape path. The fluctuational force (Fig. 2(a)) is equal to zero in this part. The
probability ρ1 to find the system in a small (of order

√
D) region near point A

is practically independent of the presence of noise, and it defines the frequency of
the escape attempts. The independence of ρ1 on noise intensity confirms the well-
known result [3, 25] that the structure of the Lorenz attractor does not change in
the presence of fluctuations.

The second part corresponds to motion along the manifolds of the saddle point
O: (i) the stable two-dimensional manifold Ws and (ii) the one-dimensional unstable
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manifold Γ2. The distribution of escape trajectories has a finite width near the point
A. If the noise is switched off at this point, then the trajectories will diverge from
the manifolds Ws and Γ1 and, consequently, from the escape path. Under the action
of fluctuations the trajectories remain in the vicinity of the manifolds and fall onto
unstable manifolds of the saddle cycle L1 near the point C. The fluctuational force
corresponding to motion from point A to point C is different from zero and has a
well defined shape (Fig. 2(a)). The time variation of the fluctuational force during
this part of the escape trajectory is strongly correlated with the time dependence
of coordinate q3, and the action of the fluctuational force is always such that it
pushes the system towards the separatrix. Note that the second part of the escape
path can be observed, at least in principle, for the noise-free system if the system
trajectory falls to within a very small vicinity (of order 10−6) of the trajectories T1

or T2. As pointed out above, however, the probability of such events occurring in
practice is effectively zero, and none were observed on the few-weeks time scale of
our experiments.

The third and final part of the escape trajectory corresponds to motion on the
two-dimensional unstable manifold of the saddle cycle L1. The escape trajectories
fall to the unstable manifold, and then cross the cycle L1 under the action of
fluctuations. After crossing, the trajectories relax to the stable point P1. In the
absence of fluctuations the trajectory will spiral very slowly inwards from the saddle
cycle L1. The velocity of slow (averaged over a period) drift is defined by the
largest multiplier of the saddle cycle L1, which is equal to µ1 = 1.028. Because
the deterministic drift of the system away from the saddle cycle L1 is very slow,
it can be overcome by the diffusion of the system across the cycle. However, only
those components of the noise that oscillate in anti-phase with the coordinate q3 can
contribute to the crossing of the limit cycle (recall that the noise acts only on the q3

component of our system, so that it is only the oscillations of the fluctuational force
in anti-phase with q3 that can push the system towards the limit cycle). This fact
is reflected in the long anti-phase oscillations of the fluctuational force in Fig. 2(a).
Obviously, this part of the escape processes relies entirely on the action of noise.

The long time interval over which the third part of the escape process occurs
suggests that the coupling between this part and the two earlier parts is only prob-
abilistic, and that there is no dynamical coupling between them.

3. Conclusion

We conclude that, for a quasi-hyperbolic attractor, there exists a unique optimal
escape path. The role of fluctuations is two-fold. First, they deliver the system to
a seldom-visited region in the neighborhood of the saddle cycle L1. And secondly
they induce the system to cross the saddle cycle L1. The escape path consists of
three parts (Fig. 2(b)). The motion during the first part is deterministic, but it is
governed by a non-zero fluctuational force during the second and third parts of the
escape process. Therefore the escape probability can at least in principle be found
as a product of probabilities of sequential transitions ρ1, ρ2 and ρ3. Here ρ1 is the
probability to find the system in some specific region in the vicinity of trajectories
T1 or T2 in the absence of noise, ρ2 is the probability of a transition from the point
A to a given region on the two-dimensional manifold of the saddle cycle L1, and ρ3
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is the probability of crossing the saddle cycle L1.
The probability ρ1 can be found as a probability measure of the Lorenz attractor

in the absence of noise. ρ2 is defined by the dynamics of the system in the deter-
ministic flow near the separatrix in the presence of fluctuations. The motion takes
place during a finite time interval, and the role of fluctuations is to push the system
as close as possible towards the separatrix. The probability ρ3 is determined by
the stochastic dynamics of the system on the two-dimensional unstable manifold of
the saddle cycle. The analysis of ρ3 can be reduced to an analysis of the stochastic
dynamics of the slowly varying amplitude of oscillations near L1. In this approxi-
mation one has to find the probability of a Brownian particle crossing a potential
barrier that is set initially in the close vicinity of the potential maximum.

The theoretical analysis of the probabilities ρ2 and ρ3 will be considered later
in a paper to be published elsewhere.

Finally, we emphasize that our observations of a unique optimal escape path and
the corresponding optimal fluctuational force, based on experimental measurements
of the prehistory probability distribution [12], pave the way for further theoretical
analysis of the stability of the Lorenz attractor in the presence of fluctuations, and
of fluctuational dynamics within a chaotic attractor.

Acknowledgements

We are very grateful to M.I. Dykman and V.N. Smelyanskiy for their continuing
interest in our work and many valuable discussions of results. The research was
supported by the Engineering and Physical Sciences Research Council (UK) and by
Award No. REC-006 of the U.S. Civilian Research & Development Foundation for
the Independent States of the Former Soviet Union (CRDF).

4. References

References

[1] R. Graham, Macroscopic potentials, bifurcation and noise in dissipative systems, in
Noise in Nonlinear Dynamical Systems vol. 1, eds. F. Moss and P.V.E. McClintock,
Cambridge University Press, Cambridge (1989) 225–278.

[2] V.S. Anishchenko, A.B. Neiman. Structure and properties of chaos in presence of
noise, Nonlinear Dynamics of Structures, eds. R.Z. Sagdeev, U. Frich, S.S. Moiseev
and N. Ekorkin, World Scientific, Singapore (1991) 21–48.

[3] R. Graham, A. Hamm and T. Tel, Nonequilibrium potentials for dynamical systems
with fractal attractors or repellers, Phys. Rev. Lett. 66 (1991) 3089–3092.

[4] R.L. Kautz, Noise, chaos, and the Josephson standard, Rep. Prog. Phys. 59 (1996)
935–992.

[5] Nonlinear Dynamics and Spatial Complexity in Optical Systems, eds. R.G. Harrison,
J.S. Uppal and P. Osborne (SUSSP/Institute of Physics, Bristol, 1993); E. Arimondo,
D. Hennequin, P. Glorieux, Noisy dynamics in optically bistable systems, in Noise in
Nonlinear Dynamical Systems vol. 3, eds. F. Moss and P.V.E. McClintock, Cambridge
University Press, Cambridge (1989) 119–158.

[6] P. Faure and H. Korn, A nonrandom dynamic component in the synaptic noise of
a central neuron, Proc. Natl. Acad. Sci. USA 94 (1997) 6506–6511; H.A. Braun, K.
Schafer, K. Voigt, R. Peters, F. Bretschneider, X. Pei, L. Wilkens, F. Moss, Low-



V.S. Anishchenko, I.A. Khovanov, N.A. Khovanova

dimensional dynamics in sensory biology .1. Thermally sensitive electroreceptors of
the catfish, J. Comp. Neursc. 4 (1997) 335–347.

[7] R.D. Astumian and I. Derenyi, Fluctuation driven transport and models of molecular
motors and pumps, Eur. Biophys. J. with Biophys. Lett. 27 (1998) 474–489.

[8] E.A. Jackson, The OPLC control methods for entrainment, model-resonance, and
migration actions on multiple-attractor systems, Chaos 7 (1997) 550–559.

[9] B. Hubinger, R. Doerner, W. Martienssen, M. Herdering, R. Pitka, and U. Dressler
Controlling chaos experimentally in systems exhibiting large effective Lyapunov expo-
nents, Phys. Rev. E 50 (1994) 932–948.

[10] I.A. Khovanov, D.G. Luchinsky, R. Mannella and P.V.E. McClintock, Fluctuations
and the energy-optimal control of chaos, Phys. Rev. Lett. 85 (2000) 2100–2103.

[11] M.I. Freidlin and A.D. Wentzel, Random Perturbations in Dynamical Systems,
Springer, New-York (1984).

[12] M.I. Dykman, P.V.E. McClintock, V.N. Smelyanski, N.D. Stein and N.G. Stocks, Op-
timal paths and the prehistory problem for large fluctuations in noise-driven systems,
Phys. Rev. Lett. 68 (1992) 2718–2721.

[13] M.I. Dykman, D.G. Luchinsky, P.V.E. McClintock, and V.N. Smelyanskiy, Corrals
and critical behavior of the distribution of fluctuational paths, Phys. Rev. Lett. 77
(1996) 5229–5232.

[14] D.G. Luchinsky and P.V.E. McClintock, Irreversibility of classical fluctuations studied
in analogue electrical circuits, Nature 389 (1997) 463–466.

[15] D.G. Luchinsky, P.V.E. McClintock and M.I. Dykman, Analogue studies of nonlinear
systems, Rep. Prog. Phys. 61 (1998) 889–997.

[16] L. Onsager and S. Machlup, Fluctuations and irreversible processes, Phys. Rev. 91
(1953) 1505–1512.

[17] V.N. Smelyanskiy and M.I. Dykman, Optimal control of large fluctuations, Phys. Rev.
E 55 (1997) 2516–2521.

[18] V. Anishchenko and G. Strelkova, Irregular attractors, Discrete Dynamics in Nature
and Society 2 (1998) 53–72.

[19] D.G. Luchinskiy and I.A. Khovanov Fluctuation-induced escape from the basin of
attraction of a quasiattractor, JETP Lett. 69 (1999) 825–830.

[20] E.N. Lorenz Deterministic nonperiodic flow, J. Atmos. Sci. 20 (1963) 130–141.

[21] C. Sparrow, Lorenz Equations: Bifurcations, Chaos and Strange Attractors, Applied
Mathematical Sciences vol.41, Springer-Verlag, New-York (1982).

[22] H. Haken, Analogy between higher instabilities in fluids and lasers, Phys. Lett. A 53
(1975) 77–78.

[23] V.S. Afraimovich, V.V. Bykov and L.P. Shilnikov, On attracting structurally unstable
limit sets of Lorenz attractor type (in Russian), Tr.y Mos. Mat. Obs. 44 (1982) 150–
212.

[24] G. Marsaglia and W.-W. Tsang, A fast, easily implemented method for sampling from
decreasing or symmetric unimodal density-functions, SIAM J. Sci. Stat. Comput. 5
(1984) 349–359.

[25] Ya.I. Kifer, On small random perturbations of diffeomorphisms, Uspekhi matematich-
eskikh nauk 29 (1974) 173-174.

[26] R.S. Maier and D.L. Stein, Limiting exit location distributions in the stochastic exit
problem, SIAM J. Appl. Math. 57 (1997) 752–790.

[27] V.N. Smelyanskiy, M.I. Dykman and R.S. Maier, Topological features of large fluctu-
ations to the interior of a limit cycle, Phys. Rev. E 55 (1997) 2369–2391.




