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Restored forested wetlands reduce N loads in surface discharge through plant uptake and 

denitrification. While removal of reactive N reduces impact on receiving waters, it is 

unclear whether enhanced denitrification also enhances emissions of the “greenhouse” 

gas N2O, thus compromising the water-quality benefits of restoration. This study 

compares denitrification rates and N2O:N2 emission ratios from Sharkey clay soil in a 

mature bottomland forest to those from an adjacent cultivated site in the lower 

Mississippi Alluvial Valley.  Potential denitrification of forested soil was 2.4 times of 

cultivated soil. Using intact soil cores, denitrification rates of forested soil were 5.2, 6.6 

and 2.0 times those of cultivated soil at 70%, 85% and 100% WFPS, respectively.  When 

NO3 was added, N2O emissions from forested soil were 2.2  times those of cultivated soil 

at 70% WFPS. At 85% and 100% WFPS, N2O emissions were not significantly different 

despite much greater denitrification rates in the forested soil because N2O:N2 emission 

ratios declined more rapidly in forested soil as WFPS increased. These findings suggest 

that restoration of forested wetlands to reduce NO3 in surface discharge will not 

contribute significantly to the atmospheric burden of N2O.  
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 1 

ABSTRACT 2 

Restored forested wetlands reduce N loads in surface discharge through plant uptake and 3 

denitrification. While removal of reactive N reduces impact on receiving waters, it is 4 

unclear whether enhanced denitrification also enhances emissions of the “greenhouse” 5 

gas N2O, thus compromising the water-quality benefits of restoration. This study 6 

compares denitrification rates and N2O:N2 emission ratios from Sharkey clay soil in a 7 

mature bottomland forest to those from an adjacent cultivated site in the lower 8 

Mississippi Alluvial Valley.  Potential denitrification of forested soil was 2.4 times of 9 

cultivated soil. Using intact soil cores, denitrification rates of forested soil were 5.2, 6.6 10 

and 2.0 times those of cultivated soil at 70%, 85% and 100% WFPS, respectively.  When 11 

NO3 was added, N2O emissions from forested soil were 2.2  times those of cultivated soil 12 

at 70% WFPS. At 85% and 100% WFPS, N2O emissions were not significantly different 13 

despite much greater denitrification rates in the forested soil because N2O:N2 emission 14 

ratios declined more rapidly in forested soil as WFPS increased. These findings suggest 15 

that restoration of forested wetlands to reduce NO3 in surface discharge will not 16 

contribute significantly to the atmospheric burden of N2O.  17 

 18 

Abreviations: LMV, Lower Mississippi Alluvial Valley; PDA, potential denitrification 19 

assay; WFPS, water-filled pore space 20 

21 
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Introduction 1 
 2 
 Seasonally flooded lower elevation clay alluvium lands in agricultural watersheds 3 

within the Lower Mississippi River Valley (LMV) are typically bottomland hardwood 4 

forests. The Sharky soil series (very-fine, smectitic, thermic, Vertic Haplaquepts) is one 5 

of the major soil types in the LMV, an area historically developed under bottomland 6 

hardwood forests.  This very poorly drained, very slowly permeable soil formed in clayey 7 

alluvium of the Mississippi River (Fisk, 1951). About 78% of  native bottomland 8 

hardwood forest has been cleared in the LMV since European colonization (MacDonald 9 

et al. 1979) primarily for agricultural purposes. Because of the exceptionally poor natural 10 

drainage of Sharky and similar clay alluvium soils, it is generally necessary to ditch and 11 

drain  these areas after clearing in preparation for crop production.  These fields are used 12 

mainly for soybean, rice, corn, wheat, cotton, grain sorghum and pecan orchards (NRCS, 13 

1959, 2003).  14 

 Conversion of forested wetlands to agricultural lands in the LMV altered the 15 

natural role of this ecosystem from potential sinks for NO3 and sediments to potential 16 

sources leading to water quality problems (Mitsch et al. 2001). Drainage and cropping of 17 

Sharky and similar soils over decades is likely to have altered their potential for 18 

denitrification compared to Sharky soil maintained under bottomland hardwood forests 19 

(Hunter et al. 2001). Moreover, N fertilizer use in agricultural watersheds with reduced 20 

denitrification potential may partly enhance their contribution of biologically available N 21 

to receiving water bodies (Breitenbeck et al. 1980, Baggs et al. 2002). Application of N 22 

fertilizer results in accumulation of NO3 in surface soil that is subject to run-off during 23 
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rainfall, storm events and irrigation. NO3 run-off from croplands, if not denitrified, can 1 

reach water bodies and subsequently contribute to eutrophication (Mitsch et al. 2001). 2 

 Restoration of marginally productive, low-lying agricultural fields to bottomland 3 

forests has become a highly recommended practice in the LMV (Mitsch et al 2001).  A 4 

number of conservation programs such as the Conservation Reserve program, Wetland 5 

Reserve program and conservation buffer programs sponsored by the Natural Resource 6 

Conservation Service (NRCS) and other federal and state programs have been established 7 

to offset the costs of restoration to landowners (Allen et al. 2001).  Restoration of 8 

bottomland forests, especially the restoration of riparian zones along streams and rivers, 9 

can reduce the impact of nearby agricultural production on surface water quality by 10 

entrapping eroded sediments and plant nutrients (Sanders et al. 2001).  Forested 11 

bottomlands can also intercept flow and accelerate denitrification of NO3 in agricultural 12 

runoff prior to discharge into receiving water bodies. An additional advantage of 13 

bottomland restoration is the ability of these systems to sequester atmospheric CO2 into 14 

stable organic forms (Turner et al. 1995).  There is growing interest in subsidizing the 15 

restoration of bottomlands in the LMV by marketing carbon credits to power generators 16 

and other facilities releasing CO2 from fossil fuel consumption. Because restored 17 

bottomland forests enhance denitrification, the possibility that they will also enhance the 18 

atmospheric burden of N2O,  a greenhouse gas, remains a principal uncertainty in 19 

establishing their carbon credit value.  20 

The end products of denitrification are N2O and N2 gas, which are emitted to the 21 

atmosphere (Weier et al. 1993, Dalal et al. 2003, and Sexstone et al. 1985). The emission 22 

ratio of N2O:N2 is affected by soil moisture, NO3 concentration, pH, available carbon 23 
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(Groffman et al. 1988, Sahrawat and Kenney 1986, Weitz et al. 2001) and soil 1 

management (Khalil et al. 2002, Simek et al. 2004).   While restoration of forested 2 

wetlands is very likely to enhance the extent of denitrification, the impact on N2O: N2 3 

emission ratio is more difficult to predict on the basis of soil management,  different 4 

hydrologic regimes and NO3 loading. An increased N2O:N2 emission ratio can 5 

compromise the benefits of restoration because N2O is a potent greenhouse gas that has 6 

an atmospheric radiative forcing 320 times more than that of CO2 (Granli and Bockman, 7 

1994, Tilsner et al. 2003). Increasing the atmospheric burden of N2O poses an additional 8 

threat because of the capacity of this gas to catalyze stratospheric ozone depletion.  9 

Mitsch et al. (1999) speculated that restoration projects will not significantly affect the 10 

atmospheric burden of N2O. The validity of this observation is dependent not only on the 11 

extent of land restored, but changes in the rates of denitrification and N2O:N2 emission 12 

ratio as a result of different restoration techniques. Even so, the N2O emission remains 13 

important when assessing the overall value of riparian restoration in the current efforts to 14 

market greenhouse gas emission credits.   15 

 The primary objective of this study was to compare N2O:N2 emission ratios from 16 

soils under row crop cultivation and under mature bottomland hardwood forest collected 17 

from adjacent sites occupying similar positions in the landscape.  Soil water content and 18 

NO3 concentration can influence N2O:N2 emission ratio as well as denitrification rate,  19 

and therefore emissions were compared under NO3 amendment and  a range of water 20 

contents ranging from 70% water-filled pore space (WFPS) to saturation. Because of 21 

extensive acreage of Sharky soil within the LMV and its extensive use for crop 22 

production, sites containing Sharky soil were selected for this study.   23 
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Materials and methods 1 

Field sites  2 

 Two adjacent sites occupying similar positions on the landscape were located in 3 

the Beasley Agricultural Watershed in the Yazoo Delta region of northwestern 4 

Mississippi.  One site consisted of a mature riparian zone of bottomland hardwood forest 5 

dominated by American elm (Ulmus Americana), oaks (Quercus spp.), red maple (Acer 6 

ruburum), hackberry (Celtis leavigata) and green ash (Fraxinus pensylvanica). The 7 

adjacent site had been cleared and ditched more than 20 years previously for cultivation 8 

of soybeans (Glycine max (L.) Merr.) and occasional other crops.  These near-level sites 9 

are within the floodplain of Sunflower River, a tributary of Mississippi River, and drain 10 

into Beasley Lake, an oxbow occluded from the Sunflower River.   Sharkey is the 11 

predominant soil series throughout the lower elevations of this region.  This fine-textured 12 

soil is high in montmorillonite clay, very poorly drained and very slowly permeable.  13 

Selected physio-chemical properties of the soil within the sampling sites are shown in 14 

Table 1.   15 

Soil sampling 16 

In July 2002, soil samples (0-10 cm) were collected from eight sampling sites 17 

located within the forested zone and the adjacent cultivated area for the determination of 18 

potential denitrification assay (PDA).  In July 2003, 15 sampling sites were randomly 19 

selected within each of the ecosystems. At each sampling site, two intact soil cores of (5 20 

cm dia. x 10 cm height) were collected in plastic liners (5 cm dia. x 15 cm height) using a 21 

slide hammer core sampler (AMS Inc., American Falls, ID).  Liners were capped on each 22 

end to create columns with an average 101 cm-2 of headspace above the soil core surface. 23 
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The columns were put on ice for transport to the laboratory.   Bulk soil samples (0-10 cm) 1 

were also collected from each site for destructive determination of soil moisture, pH, 2 

particle size distribution, and concentrations of soluble N (NO3
-), soluble organic C, total 3 

organic C, and total N.   Additional intact soil cores (5 cm dia. X 10 cm) were collected at 4 

each site using rings fitted in the AMS core sampler for determination of bulk density, 5 

total porosity and WFPS. Bulk density of the moist cores was calculated by dividing 6 

initial volume by the mass determined gravimetrically after oven-drying for 48 h (105 7 

°C).  Total porosity was determined by the displacement caused by dispersal of field-8 

moist soil cores in water andadjusted for initial soil moisture content. Water-filled 9 

porosity was calculated as the difference between total porosity and moisture content, 10 

assuming a water density of 1 g cm-3.   11 

Potential Denitrification Assay (PDA) 12 

 PDA analyses (Tiedje, 1982) were performed to compare denitrification potential 13 

in a similar soil type from adjacent forested and cultivated sites.  Soil samples were 14 

homogenized by hand and 10 g (field-moist) weighed into each of six 150-mL glass 15 

serum bottles.  Three were amended with 15 mL NO3 solution (10 mg NO3 L-1) and five 16 

mL deionized water. Twenty mL of deionized water was added to the other three bottles. 17 

All bottles were fitted with airtight septum caps and purged with oxygen-free N2 gas for 18 

20 minutes to induce anaerobic conditions. About 15% of the headspace was replaced 19 

with acetylene (C2H2) to block the enzymatic reduction of N2O to N2 gas during 20 

denitrification.  Prior to use, C2H2 was purified by bubbling through 1 M CuCl3 solution. 21 

The bottles were wrapped in aluminum foil and placed on a reciprocating Eberbach 22 

shaker for continuous shaking at low speed and room temperature (22-25 oC).  Headspace 23 
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samples were collected after 2, 4 and 6 h incubation using a syringe and transferred to 1 

Vacutainers for analysis of N2O concentration using a Tremetric 9001 gas chromatograph 2 

fitted with a Porapak Q column and equipped with an electron capture detector (ECD).  3 

N2O concentration of the headspace samples was determined using a standard calibration 4 

curve and total N2O production rate (ug N2O-N g-1 h-1) was calculated after making 5 

adjustment for dissolved N2O using the Bunsen absorption coefficient.  6 

Determination of denitrification and N2O emission rates 7 

 One column from each sample pair was used to measure total denitrification by 8 

the acetylene-blockage technique (Tiedje, 1982).  Percent WFPS of the soil cores were 9 

determined (Linn et al. 1984) and paired cores were randomly assigned to various 10 

treatments, by addition of dilute NO3 solution to deliver 15 µg NO3-N g-1 soil. To ensure 11 

even distribution of water and NO3 solution, they were added by multiple injections using 12 

a syringe fitted with a 16 gauge x 10 cm needle.  Initial WFPS were 70%, 85% and 13 

100%. Emissions from cores adjusted to 85% and 100% with NO3 solution were 14 

compared to those adjusted to similar WFPS with deionized water (all treatments were 15 

performed in triplicates).  16 

 After addition of NO3 or water and WFPS adjustments, the cores were capped 17 

tight at both ends. One column from each sample pair was injected with 10 mL of 18 

purified C2H2 in small aliquots at the interface between the soil core and liner using a 19 

syringe fitted with a 16 gauge x 10 cm needle.  An additional 10 mL of C2H2 was injected 20 

into the headspace after the tubes were sealed with airtight caps fitted with septum to 21 

allow periodic sampling of the headspace atmosphere. Addition of C2H2 to one column 22 

from each pair was used to determine total denitrification and N2O:N2 emission based on 23 
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the difference of N2O emitted by the paired cores. The columns were incubated for 72 1 

hours and gas samples were collected daily from the headspaces for N2O and CO2 2 

determination. Gas samples were stored in Vacutainers® until GC analysis described 3 

above.  4 

Soluble organic carbon  5 

 Soluble organic carbon (SOC) of the soil samples was determined using the 6 

technique described by Mahdun (1986).  The samples were analyzed using a Shimadzu 7 

TOC Analyzer for SOC concentration. The SOC values for the duplicate samples were 8 

averaged and reported as SOC in mg g-1 of oven-dried soil. 9 

Total soil carbon, total nitrogen and nitrate 10 

 Total soil carbon (C) and nitrogen (N) were determined using a Shimadzu CNS 11 

Analyzer. Soil samples were oven dried, pulverized and thoroughly homogenized.  A 12 

sub-sample of about 35 mg was weighed into a tin capsule for automated analysis. Total 13 

soil carbon and nitrogen are reported in Mt ha-1 oven-dried soil. Soil NO3 was determined 14 

using 2M KCl soil extracts and a Lachat Flow Injection Analysis instrument. These 15 

values are reported as mg NO3-N kg-1soil. 16 

Statistical analysis 17 

 Denitrification rates and N2O:N2 emission ratio of forested and cultivated soil was 18 

tested for significant differences (Fisher’s LSD at alpha of 0.05) at different WFPS using 19 

the pooled error from ANOVA (SAS Inc. 1998). Effects of ecotype and NO3 additions on 20 

PDA and denitrification rates were also compared by ANOVA (SAS Inc. 1998). 21 

 Results 22 
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Potential denitrification assay (PDA) of forested soil averaged 1.42 ug N g-1 h-1 1 

dry soil, whereas the PDA of cultivated soil was significantly less (0.62 ug N g-1 h-1 dry 2 

soil). When no NO3 was added, total denitrification rates were similar and averaged 0.67 3 

and 0.84 ug N g-1 h-1 in forested and cultivated soils respectively (Figure 1). Addition of 4 

NO3 caused a 129% increase in denitrification rate in forested soil, but had no significant 5 

impact on denitrification in cultivated soil. The response to added NO3 is reflected in the 6 

amounts of total and mineralizable C found in soil of the two ecosystems (Table 1). 7 

Mineralizable carbon averaged 122 and 29 ug CO2 g-1 h-1 dry soil in the forested and 8 

cultivated soils respectively. 9 

 Denitrification rates of the soil cores collected from both forest and cultivated 10 

sites showed an increase with increase in soil WFPS from 70% to 100% (Table 2).  Mean 11 

denitrification rates in NO3 amended forest soil increased from  0.89 mg N m-2 h-1 at 70% 12 

WFPS to 2.04 mg N  m-2 h-1 at 100% WFPS. The corresponding increases in cultivated 13 

soil were from 0. 17 to 1.02 mg N m-2 ·h-1. Denitrification rates of forested soil amended 14 

with NO3 were significantly higher than that of cultivated soil at 70% and 85% WFPS (p 15 

<0.05). At 100% WFPS, the average denitrification rate of the forested soil with NO3 16 

addition was 2.04 mg N m-2 h-1, much higher than the corresponding rate of cultivated 17 

soil (1.02 mg N m-2 h-1). 18 

Addition of NO3 led to a marked increase in denitrification rate in forested soil, 19 

but had a lesser effect on denitrification rate in cultivated soil. NO3 amended forest soil at 20 

85% and 100 %WFPS resulted in average denitrification rates of 3.28 and 2.04 mg N m-2 21 

h-1 respectively (Table 2). These rates were 4.3 and 1.5 times those observed in cores at 22 

85% and 100% WFPS without added NO3.  In contrast, NO3 amendment of cultivated 23 
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soil did not lead to significantly greater denitrification at 85% and 100% WFPS. These 1 

findings are similar to those found in PDA analysis. 2 

Overall mean N2O: N2 emission ratios decreased with increasing WFPS and were 3 

greater in cultivated soil than in forested soil (Figure 2). In forested soil,  the N2O:N2 4 

ratio decreased from 0.28 to 0.11 as WFPS increased from 70% to 100% WFPS. WFPS 5 

greater than 70% led to a marked decrease (p <0.05) in the N2O:N2 emission ratio of 6 

forested soil both with and without NO3 additions.  In cultivated soil, the N2O:N2 7 

emission ratio decreased from 0.64 to 0.39 as WFPS increased from 70% to 100%. At 8 

70% and 85% WFPS, the N2O:N2 emission ratio of cultivated soil was similar with and 9 

without NO3 amendment, while at 100% WFPS ratio of the NO3 amended cores was 10 

double the corresponding ratio of unamended cores.  11 

To compare the potential contribution of these ecotypes to the atmospheric burden 12 

of N2O, the net N2O emission rate was calculated on an area basis assuming a microbially 13 

active soil depth of 10 cm. In forested soil, N2O emission rates were 0.25, 0.40 and 0.22 14 

mg N  m-2 h-1 at 70% WFPS,  85% WFPS, and 100% WFPS, respectively, when amended 15 

with NO3 (Table 2). The corresponding emissions from cultivated soil were 0.11, 0.32 16 

and 40 mg N m-2 h-1  at 70%, 85%  and 100% WFPS, respectively,  from NO3 amended 17 

soil (Table 2). These findings indicate that the contribution of N2O from forested and 18 

cultivated soil were similar at higher moisture contents,  but that the forest soil emitted 19 

significantly greater amount of N2O at 70% WFPS (p <0.05).   20 

 The distribution of clay and silt was similar in forested and cultivated soils (Table 21 

1), though significant differences in a number of soil properties were observed.  These 22 
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differences in adjacent soils were likely due to differences in land use over the past 1 

decades.   The forested soil was more acidic (pH 5.4) than the cultivated soil (pH 6.1).    2 

Perhaps the most notable differences between the soils of these two ecosystems were the 3 

substantially greater organic matter and porosity of soils under forest.   Soil organic C in 4 

forested soil was 37 g kg-1 dry soil, more than twice that of the cultivated soil (16 g kg-1 5 

soil).   Higher soil organic matter contributed to improved soil structure and greater 6 

porosity.  Soil bulk densities in forested soil averaged 0.84 g cm-3, nearly 40%  less than 7 

those of cultivated soils (1.20 g cm-3).  Total porosities in the forested and cultivated soils 8 

averaged 0.68  and 0.54 cm3 cm-3, respectively.      9 

 The amounts of NO3 available to support denitrification were similar in both 10 

ecosystems (Table 1), although the amount of total soil N in the forested soil (3.3 g kg-1 ) 11 

was more than twice that of the cultivated soil (1.6 g kg-1).  The ratio of C to N was 12 

slightly greater in the forested soil, suggesting a somewhat greater pool of readily 13 

degradable organic carbon. Aerobic incubation showed that the amounts of mineralizable 14 

C in the forested soil averaged 4.2 times those in the cultivated soil and this substrate 15 

undoubtedly contributed to greater denitrification activity observed in the forested soil 16 

(Burford and Bremner, 1975; Singh et al. 1988; and Weier, et al. 1993).   It is noteworthy 17 

that despite differences in total and mineralizable C,  the amounts of water-soluble 18 

organic carbon (SOC) in the forested and cultivated soil were similar (152 and 137 µg 19 

SOC g-1, respectively).   The ratio of mineralizable carbon to SOC in forest soil was 3.8 20 

times that of cultivated soils, suggesting that the quality of SOC in the forested soil was 21 

more suitable for use by denitrifying microorganisms.    22 
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 Moisture contents of soil samples collected through out the year showed that the 1 

percentage of WFPS in the forested soil averaged 79% whereas the WFPS in the 2 

cultivated soil averaged only 50% (Table 3).    Moisture contents and  WFPS % were  3 

lower in summer than at other seasons.   Moisture contents, expressed as WFPS %, were 4 

similar in samples collected in spring, fall and winter and averaged 84% and 55%, 5 

respectively, in forested and cultivated soils.    6 

 7 

 8 

Discussion 9 

 Land use resulted in differences in the physiochemical attributes of a heavy, 10 

alluvial clay soil (Sharkey) that influenced its capacity to denitrify.  Wetter soil 11 

conditions, increased soil porosity, and higher amounts soil organic C reserves in the 12 

forested ecosystem lead to a greater capacity to retain and denitrify NO3
- in runoff from 13 

nearby cultivated fields. This conclusion is supported by  PDA analyses (Fig.1) and 14 

incubations of intact soil cores (Table 2), which showed that soil from mature bottomland 15 

forests possesses a greater potential to denitrify than a similar cultivated soil occupying a 16 

similar position on the landscape.   17 

When soils from each ecosystem were amended with NO3
- and incubated as 18 

slurries under anaerobic conditions, the potential denitrification rates in forested samples 19 

averaged nearly 2 ½ times those in samples from adjacent cultivated areas (Fig. 1).  20 

When no NO3
- was added, denitrification rates were similar for the two ecosystems.  21 

Addition of NO3
- caused a marked increase in denitrification rate in forested soil but did 22 

not cause a similar response in cultivated soil.  These findings indicate that potential 23 



 14

denitrification rate in the forested ecosystem is limited by NO3
-, and by other factors, 1 

most probably C substrate availability, in the cultivated system.    2 

Experiments using intact soil cores showed that in addition to land use and NO3 3 

concentration, WFPS % (Table 3) influenced  not only the rate of denitrification but also 4 

the  ratio of N2O to N2 emitted (Figure 2).  Denitrification rates in cores of forested soil 5 

averaged 2.66 mg N m-2 h-1 when amended with 15 mg N kg-1 as NO3 and were 3.5 times 6 

greater than the corresponding rates in cultivated soil.  It is noteworthy that even though 7 

unamended cores from both ecosystems contained low amounts of NO3 (average 3.4 mg 8 

N kg-1), denitrification rates at moisture contents of 85% and 100% WFPS averaged 1.06 9 

and 0.88 mg N m-2 h-1 in forested and cultivated soils, respectively.  In the cultivated 10 

system, water content typically remains below that where denitrification rates can be 11 

maintained (Table 3).  The moisture content of the forested soil, however, remains above 12 

80% WFPS throughout the year except in summer.  At the denitrification rates observed, 13 

the amount of soil NO3 present in upper 15 cm of forested soil represents less than a 161 14 

hour supply, and therefore soil NO3- must be continually replenished through runoff or 15 

mineralization and nitrification to maintain the denitrification rates and soil NO3 levels 16 

observed in unamended cores.    17 

  In the forested systems, denitrification rates at 85% and 100% WFPS were 3.7 18 

and 2.3 times, respectively, those observed at 70%. Addition of NO3 increased 19 

denitrication rates in forested soils by 4.2 and 1.5 times at 85% and 100% WFPS, 20 

respectively, and supports the conclusion that denitrification rates in that system are 21 

limited by NO3 rather than C availability.  In the cultivated systems, denitrification rates 22 

at 85% and 100% WFPS were 2.8 and 6.0 times greater, respectively, than at 70%.  23 
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Unlike the forested system, addition of NO3 did not lead to a significant increase in 1 

denitrification rates at higher moisture contents.    2 

Whereas denitrification rates increased with increasing WFPS, the ratios of N2O 3 

to N2 decreased from 0.28 to 0.11 in forested soils and from 0. 64 to 0. 39 in cultivated 4 

soils as WFPS increased from 70% to 100%.   At lower WFPS%, the higher ratios of 5 

N2O to N2 observed may have been augmented by the production of N2O by nitrifying 6 

rather than denitrifying populations (Blackmer et al, 1980).  At high WFPS %, the 7 

diffusion of O2 into the soil is reduced, promoting conditions favorable for denitrification.  8 

Increased WFPS also reduces the diffusion of N2O from the soil, increasing the 9 

probability that this gas will be subsequently reduced to N2 by active denitrifier 10 

populations.  It is not surprising, then, that numerous studies have observed an increase in 11 

denitrification rate and decrease in N2O:N2  as WFPS % increases  (Weitz et al. 2001, 12 

Klein et al. 1996, Hunter et al. 2001, Weier et al. 1993, Sexstone et al. 1988, and Mosier 13 

et al. 1981). 14 

Few studies have assessed the effects of cultivation on the extent or products of 15 

denitrification.  Linn and Doran (1984) compared the effects of tillage systems on 16 

emissions of N2O and CO2 from agricultural soils at various %WFPS.   While those 17 

studies did not measure the extent of denitrification, they showed that N2O emissions 18 

from soils collected from no-till systems averaged 9.4 times those of ‘plowed’ soils.  19 

These differences were attributed largely to differences in %WFPS that averaged 62% 20 

under no till and 44% with tillage.   In the current study, soil water contents of samples 21 

collected at various times in 2002-2003 averaged 79% WFPS in forested soils and 50% in 22 

cultivated soils, suggesting that denitrification in bottomland hardwoods remains active 23 
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throughout most of the year whereas drained, cultivated soil remain aerated and 1 

denitrification is likely to occur only after periods of intense rainfall.    2 

The significantly greater ratios of N2O to N2 evolved from cultivated soil were 3 

undoubtedly due to several factors and their interactions.  A number of marked 4 

differences in physicochemical properties were evident between cultivated and forested 5 

soil, including soil pH, bulk density, porosity and organic matter content.  Soil pH in the 6 

forested soil (pH 5.4) was significantly less than in the cultivated soil (pH 6.1).  Gaskell 7 

et al. (1981) reported that the ratio of N2O to N2 evolved during denitrification increases 8 

sharply as soil pH decreases, but this relationship is not supported by the data in Fig. 1 9 

showing higher N2O:N2 evolution from the soil with higher pH.  The greater amounts of 10 

available organic substrate in the forested soil may have been the overriding factor 11 

influencing N2O: N2 ratios by supporting more complete reduction during denitrification 12 

(Weier et al. 1993, Tilsner et al. 2003, and Vinther, 1984).   13 

Despite lower ratios of N2O:N2, higher denitrification rates in the forested soil 14 

resulted in somewhat larger emissions of N2O at the lower moisture content (70% 15 

WFPS).   Differences in emissions of N2O from intact soil cores at 85% and 100% WFPS 16 

from forested areas were not statistically different than those from cultivated areas. While 17 

the denitrification rates observed indicate that at least some flooded pores were 18 

sufficiently reduced at 70% WFPS in both soils to support denitrifying activity, the 19 

forested soil contained a greater volume of air-filled pores because of its higher total 20 

porosity.  At 70% WFPS, for example, the forested soil cores contained 0.20 cm3 cm-3 21 

air-filled pores, whereas the cultivated soil contained only 0.16 cm3 cm-3. This difference 22 

in air volume may have facilitated more rapid gaseous diffusion at lower WFPS, reducing 23 
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the possibility of subsequent reduction of N2O to N2.  It is also possible that the greater 1 

volume of air-filled pores at low WFPS and the substantially larger amounts of 2 

mineralizable organic matter in the forested soil led to more extensive N mineralization 3 

and release of N2O during nitrification.  At saturation (100% WFPS), N2O emissions 4 

tended to be greater from cultivated soil, though these differences were below statistical 5 

significance (p > 0.05).   6 

When no NO3
- was added, N2O emissions from the forested soil averaged 10.5 kg 7 

N2O-N ha-1 yr-1. Addition of 15 mg NO3
- -N kg-1 resulted in average emissions of 25.4 kg 8 

N2O-N ha-1 yr-1, and were within the range of 24-30  kg N2O-N ha-1 yr-1 reported for other 9 

riparian wetlands (Walker et al. 2002; Hefting et al., 2003).   N2O emissions from the 10 

cultivated area averaged 24.2 and 19.3 kg N2O-N ha-1 yr-1 with and without the addition 11 

of NO3
-, respectively.  The finding that addition of NO3

- invariably led to an increase in 12 

total denitrification as well as N2O production at all water contents but did not 13 

significantly alter the ratio of N2O to N2 evolved suggests denitrification rather than 14 

nitrification plays a principal role in N2O production in these soils.   15 

The higher amounts of soil organic matter observed in forested areas support the 16 

general conclusion that restoration of bottomland hardwoods not only results in an 17 

increased capacity to denitrify, but also increases sequestration of atmospheric C both as 18 

stable soil humus as well as standing biomass. The organic C content of the forested soil 19 

(37.7 g C kg-1) was more than twice that of the cultivated soil (16.4 g C kg-1).  While the 20 

bulk density of the surface soil in the forested soil was substantially less than that of the 21 

cultivated soil, the forested system nevertheless contained 1.6 times more soil organic 22 

carbon in the upper 10 cm.  Extrapolating to a hectare basis, the forested soil contained 23 
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32,400 kg C ha-1 in the surface 10 cm or 12,700 kg ha-1 more C  sequestered as organic 1 

matter than  in the cultivated system.  The sequestration of organic C invariably results in 2 

the sequestration of N in organic forms.  Despite the higher denitrification rates in the 3 

forested system, the surface 10 cm of soil contained 2,838 kg N ha-1, or 918 kg N ha-1 4 

more than in the cultivated soil.     5 

 In summary, the results of these experiments indicate that denitrifying activity is 6 

more persistent and rapid in forested bottomland soil than in similar cultivated soil. Even 7 

so,  N2O emissions resulting from the restoration of bottomland forests are likely to be 8 

similar to that of similar cultivated soil due to a reduced ratio of N2O to N2 evolved from 9 

forested soil at water contents that support high rates of denitrification.    10 
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Table 1. Physiochemical properties of forested and cultivated Sharky soil (± standard 
error of the mean). 
 
Soil property Units Forested soil Cultivated soil 
Bulk density  g cm-3 0.86 ± 0.03 1.20 ± 0.01 
Total pore space  cm3 cm-3 0.68 ± 0.01 0.54 ± 0.00 
Clay  g/100 g 53 51 
Silt  g/100g 45 46 
pH  5.4 6.1 
Organic carbon  g kg-1 37.7 ± 3.2 16.4 ± 0.8 
Total N  g kg-1 3.3 ± 0.2 1.6 ± 0.1 
C:N   11.4 10.3 
Soluble organic C mg kg-1 152 ± 14 137 ± 11 
Mineralizable organic C mg CO2 m-2 h-1 122 ± 34 29 ± 2.1 
Organic  C (0-15 cm)  Mt ha-1 324 197 
Total N (0-15 cm)  Mt ha-1 28 19 
NO3   mg kg-1 3.30 ± .25 3.5 ±.27 
 
+
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Table 2. Denitrification and net N2O emission rates of forested and cultivated Sharky soil  

 †WFPS, water-filled pore space. 
 ‡*, significant difference (p<0.05) between ecotypes using pooled variance T-test; ns, differences not 
significant   
 
 
 
 
 
 
 
 
 
 
Table 3. Seasonal percent water filled pores spaces of forested and cultivated soil 
Ecotype Spring  Summer  Fall  Winter  
 --------------------------------- % WFPS -------------------------------------- 
Forest soil 86 64 81 84 
Cultivated soil 56 34 55 54 
 
 
 

Denitrification rate 
 mg N m-2 h-1) 

N2O emission rate 
mg N m-2 h-1 

WFPS† NO3
-
 added 

15 µg N g-1 
 Forested Cultivated Diff.‡ Forested Cultivated  Diff. ‡ 

70%  
 

+ 0.89 0.17 * 0.25 0.11 * 

85 %  
 

+ 3.28 0.49 * 0.40 0.32 ns 

85 %  
 

- 0.77 0.27 ns 0.09 0.15 ns 

100 %  
 

+ 2.04 1.02 ns 0.22 0.40 ns 

100 %  
 

- 1.35 1.49 ns 0.15 0.29 ns 
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Figure 1.  Denitrification potential of forested wetland and cultivated soil Error bars 
represent standard error of the mean (p=0.05).  
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Figure 2. Ratio of N2O to N2 evolved from forested  and cultivated  soil adjusted to 
various WFPS with or without the addition of added NO3

-. Error bars represent standard 
error of the mean (p=0.05). 
 
 
 


