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Abstract

The periodic KdV equation u; = ugy, + fuu, arises from a Hamiltonian system with
infinite-dimensional phase space L?(T). Bourgain has shown that there exists a Gibbs
probability measure v on balls {¢ : ||¢[|2. < N} in the phase space such that the Cauchy
problem for KdV is well posed on the support of v, and v is invariant under the KdV
flow. This paper shows that v satisfies a logarithmic Sobolev inequality. The stationary
points of the Hamiltonian on spheres are found in terms of elliptic functions, and they
are shown to be linearly stable. The paper also presents logarithmic Sobolev inequalities
for the modified periodic KAV equation and the cubic nonlinear Schrodinger equation, for

small values of N.

Résumé

L’equation KdV périodic u; = gz + Buu, résulte d'un systéme hamiltonian avec des
espaces infinis phase dimensions L?(T). Bourgain a montré qu’il existe une mesure de
probabilité de Gibbs v sure les billes {¢ : [|¢||3. < N} dans I'espace des phases telles que
le probléme Cauchy pour KdV est bein posé sur le support de v et v est invariant sous le flux
de KdV. Ce document montre que v satisfait & une inégalité de Sobolev logarithmique. Les
points fixes de 'hamiltonian sur les spheres sont trouvées en termes de fonctions elliptiques,
et qu’ll est demonstré qu’elles soient linéairement stable. Le document présents également
les inegalités de Sobolev logarithmique pour I'equation KdV modifée et les cubes nonlinear
Schrodinger, put les petit valeurs de N.
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1 Introduction

In this paper, we are concerned with solutions of the KdV equation which are periodic in the
space variable and typical in the sense that they form the support of an invariant measure
on an infinite-dimensional phase space. Specifically, we consider u : T x (0,00) — R such
that u(,t) € L?(T) for each t > 0, then we introduce the Hamiltonian

H(u) = %/T(%(x,wf;l—i —g Tu(x,t)?’;l—: (1.1)

Here (3 is the reciprocal of temperature, and without loss of generality, we assume through-

out that 3 > 0. The canonical equation of motion is

ou 0 0H
e 1.2
ot Ox du’ (1.2)
which gives the Korteweg—de Vries equation
ou 03u ou
= Bu—. 1.
o~ o Mou (1:3)

Given a solution of (1.3) that is suitably differentiable, one can easily verify that [ u(x,t)?dz/(27)|
and H(u) are invariant with respect to time. In order to ensure that the Gibbs measure

can be normalized, we work on bounded subsets of L?(T). Hence we introduce the particle
number N < oo, the ball

d
By = {gb € L%(T) : / o(z)2 2L < N} (1.4)
T 27
with indicator function I, and the Gibbs measure
v (d9) = Zn(8) sy (9)e " ] dola) (1.5)
etzeT

where the normalizing constant Zx () is so chosen as to give a probability measure.

Definition. The modified canonical ensemble is the probability space (B, V]ﬁv) that has

particle number N at inverse temperature [3.

The canonical ensemble would be a probability measure on the sphere Sy = {¢ € L?(T) :
|¢]|3. = N}, but this is technically difficult to deal with, so we prefer the modified canon-
ical ensemble. However, in section 3 we consider the Hamiltonian on the sphere and show
that the stationary points of H on Sy are given by elliptic functions.

There are various means for introducing Gibbs measures on infinite-dimensional phase

spaces. In [8], Lebowitz, Rose and Speer constructed an invariant measure for the nonlinear
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Schrédinger equation on the line, and investigated the stability of the ground state. Using
purely probabilistic arguments, McKean and Vaninsky gave an alternative construction
[14].

Here we construct the measure via random Fourier series. We write ¢(z) ~ %ao +
Z;‘;l(aj cos jx + bj sin jz), and regard (a;,b;) as an 2 sequence of coordinates for ¢ €
L*(T). Let (v;)32_., be mutually independent standard Gaussian random variables on
some probability space (Q2,P), and let W be the probability measure on L?(T) that is
induced by

—1 . [e%¢] .
sin jx cos jx
we o) =+ D, v ; + e (1.6)
j=—o00 j=1

namely Brownian loop. Then Qy = {w € Q : %Z;i—oo;j;éO 7]2/]'2 < N} maps into By,

and we can introduce the Gibbs measure as
Ié] -1 B sdx
v (d6) = Zn(B) Moy @) exp( 5 | 6u(@) T W(dsu). (1.7)
T T

Bourgain [3] shows that there exists Zxn(8) > 0 such that I/]BV is a Radon probability

measure on the closed subset By of L?(T). Further, the Cauchy initial value problem

{ Ut = —Uggx — ﬁuux

u(z,0) = ¢(z) (18)

is locally well posed on the support of I/]BV; more precisely, for each § > 0, there exists
7(0) > 0 and a compact set Ky such that u]ﬂv(K(;) > 1 — 0 and such that for all ¢ € Kj
there exists a unique solution u(z,t) to (1.7) for ¢ € [0,7(0)]. Existence of the invariant
measure I/IBV implies that the local solution extends to a global solution for almost all
initial data with respect to I/]ﬁv. We should expect the long term behaviour of solutions to
consist of a solitary travelling wave coupled with fluctuations, as described by the invariant
measure. The main result of this paper is a logarithmic Sobolev inequality which shows

that such a space of solutions is stable.

Definition. Suppose that F': By — R is Gateaux differentiable, so that for all ¢ inside
By, there exists VF(¢) € L?(T) such that

(VF(6), )2 = lim L8+ W) = F(9)

t—0+ t (1.9)

for all 1 € L2. Suppose further that the limit exists uniformly on {¢) € L? : [|3| 1> = 1};
then F'is Fréchet differentiable.



Let H'/? = {¢(x) = ZZ;O;k:_OO ape’tr Z?;O;k:_oo\kHakP < oo}, and let G :
L?(T) — L?(T) be the operator

G = log ———— -~ E . 1.10
§Z5($) /’]; Og |ezm o ely‘ ¢<y) 27_‘_ kyéo;k:_ |]{j‘ (& ( )
Then

(G, ) gz = (1, @) 2. (1.11)

We write 6F(¢) = G(VF(¢)), and observe that || 0F ()| 2 < ||[VF(¢)] 2.

Definition (Logarithmic Sobolev inequality). Say that a probability measure vy on By

satisfies the logarithmic Sobolev inequality with constant a > 0 if

| Ferios(Per [ Fa)dao <t [ F@Reyde) 112)

N

for all Fréchet differentiable functions F' € L2(By; v ) such that |§F| > € L2(By;vn).
Theorem 1. For all 3, N > 0 the measure I/IBV satisfies the logarithmic Sobolev inequality
with

a=2"1 exp(—C’ﬂ5/2N9/4)

some absolute constant C > 0.

In section 2 we prove Theorem 1 and deduce a concentration inequality concerning
Lipschitz functions on the Bpy. This shows that certain random variables are tightly
concentrated around their mean values, just as a Gaussian random variable is concentrated
close to its mean. McKean [12] considered the Laplace operator on the infinite dimensional
sphere S°°(y/00) and showed how one can interpret this as the sum of uncoupled Ornstein—
Uhlenbeck operators in infinitely many variables. In section 3, we consider stability of the
stationary points of the Hamiltonian restricted to spheres. Analysis of the stationary
points reduces to classical spectral theory of Lamé’s equation, and we are able to identify
stationary points as elliptic functions.

In section 4, we consider the Gibbs measure associated with the modified periodic KAV
equation, and obtain a logarithmic Sobolev inequality when N3 is small and positive. We

apply a similar analysis to the periodic cubic Schrodinger equation in section 5.

2 Logarithmic Sobolev inequalities

As in Parseval’s identity, there is a unitary map ¢ — L?(T)

(ao; G, bp) ooy — ag + Z \/§(ak cos kx + by sin kx); (2.1)
k=1
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under this correspondence, F' : By — R may be identified with f : Oy — R and

VF corresponds to (880{ , abafﬂ )32~ To see this, we consider ¥ (x) = Y72, V2(cy, cos kx +
J

dj sin kx) and observe that

o\ _N\~(Of of
(V[ (e di) i) e = ;(8—%% + 8—[)kdkz) (2.2)
while p
(VE, )2 = / (VFME%, (2.3)

and we can recover the Fourier coefficients of VF. Further, the Gibbs measure VIBV may be

expressed in terms of the Fourier components as

oo

ZN(ﬁ)_lexp<§/r<(ao+\/_Z ajcosjx + b; SlIlj:E — Z as ~|—b2>

=1

XI[O7N} <CL(2) —+ i(a? + b2 ) daO H j da]db (24)
j=1

For notational simplicity, we write a_; = b; for j = 1,2,..., and assume that 0 < 8 <
V3/(4mv/N). We introduce the potential

52\/5 ap = . .. dx

a2 1 3
Ao § : 20 2 2 2 ’
V(a b) ? + 5 J ((Zj + bj) - 6 T<ﬁ + j_l((lj Cos Jx + bj Sln]iﬂ)) % (25)

j=1

Lemma 2. Suppose that 0 < 8v/N < v/3/(32n) and that F € L2(By;v5) has VF

defined on By with |[VF| 2 € L?(By; VN) Then V is uniformly convex on By and has a

unique minimum at the origin. Moreover, u]ﬂv satisfies the logarithmic Sobolev inequality

(1.12) with o = 1/2.

Proof. First we scale the variables to z; = ja; and y; = jb;, so that

Qn = {(ag; a;, bj) € (? :a3+Z(a§+b§) < N} (2.6)

=1

is transformed to the ellipsoid
EN — {(xo,%,yg Xy +Z .’13 +yg /.] <N}
7j=1
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Let G : Ey — Qu be the diagonal map G : ((zg,yx))e, — ((xx/k,yx/k))7>,, with
left inverse D : ((ak,br))?2, = ((kag, kbi))5>, so that DG = I. We then introduce
W:Ey — R by W(x) =V(G(x)).

To verify Bakry and Emery’s criterion [1] for the logarithmic Sobolev inequality, we

need to show that the Hessian matrix of W satisfies

1
Hess W > 5] (2.7)
and hence that wﬁ = (n(B) "t exp(—W(x)) dz satisfies the logarithmic Sobolev inequality
| atarros(s@?/ [ gak) <1 [ Ivglast. (28)
EN EN

Now G induces I/Zﬂv from wg; so with g = f o G we have Vg = ((Vf) o G)(VG) where VG
is represented by the diagonal matrix (1/k)?2 ;. The condition (2.7) is equivalent to

_ 2
HessV = | "5y, O §D (2.9)

8aj8bk 8bj8bk

9%V o*v
8aj8ak 8aj 8bk ]'

Let D be the diagonal matrix (j) with respect to the Fourier basis and let

02 2 G 3d
Ujk: aajaak \/_ / — 4+ Z ayp COS KI‘ —+ be Sln€$)> %
= 2\/5/ COS j T COS kx(a—o + f:(ag cos {x + by sinﬁm)) du (2.10)
T V2 — 2
The matrix that represents afzaak is
2 T2 1 Yjk
D? — Blo] = 5D +8D<I 88[ k])D (2.11)
where D? > I and by the Cauchy-Schwarz inequality
i V€5 Mk
j,k=1 gk
fj cosgx N cos kx > dx
=2V2 Z Z <\/§—|—Z agcosﬂx—kbgsmﬁa:))z—(zw)
T
0+1

where by the Cauchy—Schwarz inequality

> . : oo 9 o
IO I S I EL 3 219

Jj=1 Jj=1 Jj=1
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and

ap > . 2dx
— + fr+b 1 — < N. 2.14
/r<\/§ ;((MGOS T + bysin x)) 5r = ( )
Hence we have
D? - Bloy] > (1/2)D% (2.15)

. . . . . 2 . .
similar estimates apply to the sine terms when we consider aff(ryhc, and to the mixed sine
J
9%V

and cosine term which arise in 5° o Hence W is uniformly convex and thus satisfies
Bakry and Emery’s criterion, so w]ﬁv satisfies the logarithmic Sobolev inequality (2.8), and

hence V]ﬁv satisfies (2.6)

O

Proof of Theorem 1. We need to extend the logarithmic Sobolev inequality to a typical
pair N, > 0, possibly at the expense of a worse constant. So we choose K > 45V N +
1, and split ¢ € L?(T) into the tail ¢x(z) = D ki k[ > K are™™® and the head hy(x) =
Dok lk|<K are’™™ of the series. We note that for ¢ € By, the components satisfy ||hx /oo <
(2K + 1)Y/2NY2 and [ ¢k (2)%dz/(27) < N; hence by some simple estimates

‘[F(gb(:ﬂ)?’ — ¢K(x)3);l—i = )/F(3¢>K(ar)2h;<(x) + 30K (x)hg (x)? + hK(os):)’)—?T
< TB(2K +1)3/2N3/2, (2.16)

We replace the original potential V' by

a2 1 2
Vic(a, :?0 52 b2 b \/_/ Z (ajcosjx +b; SlH]ZE’)) Z_j;’ (2.17)

j=K+1

which is a bounded perturbation of V' on By and satisfies
IV = Villoo < TB(2K +1)3/2N3/2, (2.18)

The matrix [vj]; k:|j|,|x|>K that arises from Vi via (2.5) involves only high frequency

components and satisfies

A

C

= 1\2 462N 1
, SAPN (;ﬁ) SE-12 1 (2.19)

by the choice of K. By Lemma 2, Vi is uniformly convex and the corresponding Gibbs

measure satisfies a logarithmic Sobolev inequality with constant independent of N and (.
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Since V' is a bounded perturbation of Vi, the Holley—Stroock lemma [7] shows that

the Gibbs measure associated with V' also satisfies the logarithmic Sobolev inequality

| Forios(Prs [ Faf)ias) < 1o [ 16F@) A o).
By By By

(2.20)
for come universal constant C.

O

Corollary 2. Let F' : By — R be a Lipschitz function such that |F(¢)—F ()| < ||¢—|| 2
for all ¢, € By; suppose further that fBN F(gb)yjﬁv(d(ﬁ) = 0. Then

/ exp(tF(¢))u1ﬂv(d¢)Sexp(ecﬁ5/2N9/4t2) (t € R). (2.21)
Bn

On the probability space (By, V]ﬁv), the random variable F' has mean zero and takes values

that are tightly concentrated about its mean value.

Proof. Let P, be the orthogonal projection onto span{e; : 1 < j < n}, where (e;) is some
orthonormal basis of L?(T). Then F o P, is Lipschitz continuous on a finite-dimensional
subspace, and hence Féchet differentiable almost everywhere by Rademacher’s theorem.
We observe that

[6F(Pad)lz < IIVF(Pag) 12 < 1 (2.22)

since F' and P, are Lipschitz. Since F' o P, — F uniformly on compact sets as n — oo, it
suffices by Fatou’s lemma to prove (2.21) for F' o P, and then let n — oo.
The inequality then follows from Theorem 1 by the general theory of functional in-

equalities, as in [16]; here we give a brief argument. Let

J(t) = /B F D (dg) (2.23)

which defines an analytic function of ¢ such that J(0) = 1 and J'(0) = 0. Further, the

logarithmic Sobolev inequality gives

() = [P (o)
BN
< J(t)log J (1) + %J(t) (t > 0) (2.24)

which integrates to the inequality

J(t) < exp<£>. (2.25)
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Remark. We leave it as an open problem to determine whether Vf, satisfies (1.9) with a

constant independent of N for given .

3 Stationary points of the Hamiltonian on spheres

The Hamiltonian H(¢) is unbounded above and below for ¢ € L?(T); however, we can

consider the minimal energy constrained to the spheres in L?(T):

EN:inf{H(¢):A¢(x)QZ—i: L (3.1)

Korteweg and de Vries introduced a travelling wave solution u(z,t) = v(x — ct) of
Ut + Ugrr + Puu, = 0 which is periodic and is commonly known as the cnoidal wave.
We recover this solution below. Subject to some reservations, Drazin [5] showed that the
cnoidal wave is linearly stable with respect to any infinitesimal perturbation.

We recall Jacobi’s sinus amplitudinus of modulus & is sn(z | k) = sint where

v df
= / . (3.2)
0 V1—k2sin?6
For 0 < k < 1, let K(k) be the complete elliptic integral
/2 dt
K= [ ; (33
0 V1—k2sin®t

next let K'(k) = K(v/1 — k2); then sn(z | k)? has real period K and complex period 2iK”.
For ¢ > 0, the standard form of Lamé’s equation is

(— 5+ 0+ DRz [ 1) 8(2) = p(2). (3.4)

The spectrum of (3.4) is determined by a sequence A\g < A1 < Aog < A3 < \gy < ...,
which is infinite except for £ = 1,2,.... Typically op = U324[A2j, A2j+1] gives the Bloch
spectrum, so that for u € op there exists a bounded solution to (3.4); whereas for p €
(—o0, Ag) U U;o;o()\Qj+1, A2j+2) all nontrivial solutions of (3.4) are unbounded, and we say
that p belongs to an interval of instability. In the special case of £ = 1,2,..., there are
only £+ 1 intervals of instability, namely (A2j41,A2i42) (j =0,...,4 —1) and (—o0, Ag).
See [11].

Theorem 3. (i) Let ¢ € C?(T;R) be a stationary point for the energy

m6) = [ #arsE =5 | o5t =5 [ otr G (35)
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Then ¢ satisties the differential equation

#'(x) + S () + Ao(a) = 0 (3.6

so either ¢ is constant or an elliptic function.
(ii) For 3 > 0, the energy Hy on Ey has a local minimum at ¢ = —v/'N.
(iii) Let ¢ be the elliptic function

5(f1 ‘

6(w) = 1 = (fr = f2) [sn (|| 22

)} (3.7)

for suitable real constants fs < fo < f1 and ¢(x1) = f1. Let (—oo, Ag] be the zeroth order

interval of instability of Lamé’s equation

y"(z) + Bo(x)y(z) + Ay(x) = 0. (3.8)

Then for A < A\g the energy H) has a local minimum at ¢; whereas for A\ > \q the stationary

point is neither a local maximum nor a local minimum.

Proof. (i) We suppose that 5 > 0. One can easily expand H(¢+11)) as a cubic polynomial

in t and examine the conditions that ensure that ¢ = 0 gives a local minimum. The equation

5(%* = 0 reduces to the differential equation (3.6) which has constant solutions ¢ = 0 (which
does not belong to Ex) and ¢ = —2)\/3, and a non-constant solution satisfying

1 A

2@ + 2o + Jola) = C (39

with C some constant. This equation has periodic solutions if and only if 52 < 3\3/(2C);

equivalently, for such constants there exist real roots f3 < fo < f1 such that

g A g
—6¢3—§¢2+C:—g(¢—f1)(¢—f2)(¢—f3)~ (3.10)
To find these roots, we introduce z = 1/¢, which satisfies the cubic 22 —\z/(2C)—3/(6C) =
0 with discriminant

N 2 3.11
D= 516cs * T (3:11)

so by writing re? = 3/(12C) + iv/—D, we have
— =2r'/3cos =, 1 :27“1/3008@, 1 :2r1/3cosw, (3.12)

1 2 f3 3
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for some choice of the polar angle. To convert to the standard form (3.4) of Lamé’s

equation, we introduce

fl_f2

R ) = B(f— fa), v =cos o, (3.13)
fl_f3

3

where 0 < k£ < 1 and ¢ > 0, and by some trigonometry deduce that

k2 = ZAAVA Sl (3.14)
V3/2 =3y — /1 —72

which is an algebraic function of the parameters. Using the definition (3.2), one can show

that the solution of (3.9) is given by

o) = fi— (— B fsn (I ) (3.15)

where ¢ is 2m-periodic provided that

B(fi—f3)

= 2K (k). (3.16)

(ii) For any stationary point ¢, we have

2 €T 3 €T
S [Wer -0+ ss@we) e - 5 [ e, @

Hy(¢ +t) = Hx(9) + 5

First we deal with the constant stationary points. Note that ¢ = —v/N gives a local
minimum for Hy with A\ = $v/N/2 and Hy(—vN) = —BN?3/2/12. The other constant
solution ¢ = v/N has A = —3v/N and Hy(v/N) = BN3/2/12.

(iii) Next we take ¢ from (3.9), so that

ﬁ 27 dt 27 dt

HA(Cf)):—g ; ¢(t)3%—>\ ; ¢(t)2%+0- (3.18)

To determine when this is a local minimum, we consider a nontrivial solution the equation
y"(z) + Bo(x)y(x) + Ay(z) =0, (3.19)

which is the linearization of (3.6), and re recognise this as a form of Lamé’s equation.

First suppose that y has only finitely many zeros on R; then by Hamel’s theorem [10]

[ 0@ - 0+ poete) g 20 (3.20)
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holds for all 27 periodic and continuously differentiable functions 1. Let Ao be the supre-
mum of such A. For A < Ag we have strict inequality for in (3.20) all nonzero v, so Hy has
a local minimum at ¢.

Suppose contrariwise that y has infinitely many zeros; so by Hamel’s theorem there
exists 1 such that

| @@r - 0+ o)) o <0 (3.21)
hence H) does not have a local minimum at ¢. In particular, this happens when A > \q.
O
4 The modified periodic KdV equation
Lebowitz, Rose and Speer [8,9] considered Hamiltonians
1) =5 | @5~ s [ le@lrg (4.1

and showed that there exists a Gibbs measure with potential H,(¢) on {¢ € L?(T) :
|¢]|2. < N} as in (1.6) for 8, N > 0 and 2 < p < 6, but not for p > 6. When 8 < 0, the
Hamiltonian is non focusing and the problem of normalizing the probability measures is
easy to address.

Their analysis of the case p = 4 showed that for small 3 > 0, the constant solution
was stable; whereas for large 8 > 0, the soliton solution was stable. In this section we
strengthen their result by showing that for p = 4 the modified canonical ensemble satisfies
a logarithmic Sobolev inequality when BN is small. The case p = 4 corresponds to the
modified KdV equation

o 93¢

()
R R 2_ —
ot T TP 5

so the result suggests that at low temperatures, solutions of the mKdV equation are most

0, (4.2)

likely to occur near to the ground state.
With this Hamiltonian and § > 0, we introduce the Gibbs measure

v (de) = Zn(B) Mgy (@)@ [ do(x). (4.3)

eiz cT
Theorem 4. There exists C' > 0 such that for 0 < N < C the Gibbs measure Vf, satisfies
the logarithmic Sobolev inequality with o = 1/2.

Proof. This is similar to the proof of Lemma 2. To simplify notation, we consider the

Hamiltonian

H(a,) = 712_:1 n%a? — 2 /s <n§_:1 @y, COS n0> o (4.5)
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on By = {(a,) € (?(R) : >.°7 a2 < N} which has essentially the same properties as

n=1"n

the true Hamiltonian in the Fourier components. The corresponding Hessian matrix has

entries ,
0°H Y > 2 df
m = (Sjgj — B/I‘(ngz:l Q. COS n@) COS]Q COS 60%, (46)

and we deduce that

oo 2 . o0 e > €. 0
Z 83;2 57—? = Z{f - ﬁ/ (Zan cosnﬁ)zz ) CO.SJQ Z fgczsw%, (4.7)
0 J =1 T Y =/ =1

Ji =1

where by the Cauchy—Schwarz inequality

L6 cos N2 o= 1
(Z57) =X pXd ()
j=1 j=1"7 j=1
hence
ZO0PH 6 TN
da;0ay jl = 2 ij (4.9)
=1 "1 j=1

and Bakry and Emery’s condition is satisfied. The logarithmic Sobolev inequality follows.
O

Remark. The author has not succeeded in proving a logarithmic Sobolev inequality for
p =4 and N large due to the lack of a suitable substitute for (2.14).
5. Periodic solutions of the cubic nonlinear Schrodinger equation

The Hamiltonian

1

H=3 /T((Q’)2 +(P)?) dx + g /T(Q2 + P?)’ d (5.1)

gives the canonical equations of motion
0 -1]19[Q]_ & [Q 2, p2y | @
0 58] g | B re@ e[ (52)
which give the cubic Schrodinger equation for u = P + iQ)
—iuy = —Uge + Blul?u (5.3)

over the circle. Again we take 8 > 0, which gives the focusing case. The appropriate

number operator is represented by
1

N = 3 /T(P2 + Q%)dz,
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which is invariant under the flow, and we introduce By = {u = P+1iQ : fT(P2 +Q?)dx <

N}. As discussed in [15], one can normalize the measure

v (du) = Zn(8) " exp(—H (u))Ip, (u) [] du(z) (5.4)

zeT

so that it gives a probability measure on By. Bourgain has shown that Vf, is invariant

under the flow associated with the cubic Schrédinger equation; see [4, p.124]

Theorem 5. There exists C' > 0 such that for all 0 < SN < 1/2 the Gibbs measure V]ﬂv

satisfies the logarithmic Sobolev inequality with o = 1/2.
Proof. This follows the proof of Lemma 2 and Theorem 4 closely, hence is omitted.

O
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