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Abstract

The periodic KdV equation ut = uxxx + βuux arises from a Hamiltonian system with

infinite-dimensional phase space L2(T). Bourgain has shown that there exists a Gibbs

probability measure ν on balls {φ : ‖φ‖2
L2 ≤ N} in the phase space such that the Cauchy

problem for KdV is well posed on the support of ν, and ν is invariant under the KdV

flow. This paper shows that ν satisfies a logarithmic Sobolev inequality. The stationary

points of the Hamiltonian on spheres are found in terms of elliptic functions, and they

are shown to be linearly stable. The paper also presents logarithmic Sobolev inequalities

for the modified periodic KdV equation and the cubic nonlinear Schrödinger equation, for

small values of N .

Résumé

L’equation KdV périodic ut = uxxx + βuux résulte d’un systéme hamiltonian avec des

espaces infinis phase dimensions L2(T). Bourgain a montré qu’il existe une mesure de

probabilité de Gibbs ν sure les billes {φ : ‖φ‖2
L2 ≤ N} dans l’espace des phases telles que

le probléme Cauchy pour KdV est bein posé sur le support de ν et ν est invariant sous le flux

de KdV. Ce document montre que ν satisfait á une inégalité de Sobolev logarithmique. Les

points fixes de l’hamiltonian sur les spheres sont trouvées en termes de fonctions elliptiques,

et qu’ll est demonstré qu’elles soient linéairement stable. Le document présents également

les inegalités de Sobolev logarithmique pour l’equation KdV modifée et les cubes nonlinear

Schrödinger, put les petit valeurs de N .
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1 Introduction

In this paper, we are concerned with solutions of the KdV equation which are periodic in the

space variable and typical in the sense that they form the support of an invariant measure

on an infinite-dimensional phase space. Specifically, we consider u : T × (0,∞) → R such

that u( , t) ∈ L2(T) for each t > 0, then we introduce the Hamiltonian

H(u) =
1

2

∫

T

(∂u

∂x
(x, t)

)2 dx

2π
− β

6

∫

T

u(x, t)3
dx

2π
. (1.1)

Here β is the reciprocal of temperature, and without loss of generality, we assume through-

out that β > 0. The canonical equation of motion is

∂u

∂t
=

∂

∂x

δH

δu
, (1.2)

which gives the Korteweg–de Vries equation

∂u

∂t
= −∂

3u

∂x3
− βu

∂u

∂x
. (1.3)

Given a solution of (1.3) that is suitably differentiable, one can easily verify that
∫

T
u(x, t)2dx/(2π)

and H(u) are invariant with respect to time. In order to ensure that the Gibbs measure

can be normalized, we work on bounded subsets of L2(T). Hence we introduce the particle

number N < ∞, the ball

BN =
{

φ ∈ L2(T) :

∫

T

φ(x)2
dx

2π
≤ N

}

(1.4)

with indicator function IBN
and the Gibbs measure

νβN (dφ) = ZN (β)−1IBN
(φ)e−H(φ)

∏

eix∈T

dφ(x) (1.5)

where the normalizing constant ZN (β) is so chosen as to give a probability measure.

Definition. The modified canonical ensemble is the probability space (BN , ν
β
N ) that has

particle number N at inverse temperature β.

The canonical ensemble would be a probability measure on the sphere SN = {φ ∈ L2(T) :

‖φ‖2
L2 = N}, but this is technically difficult to deal with, so we prefer the modified canon-

ical ensemble. However, in section 3 we consider the Hamiltonian on the sphere and show

that the stationary points of H on SN are given by elliptic functions.

There are various means for introducing Gibbs measures on infinite-dimensional phase

spaces. In [8], Lebowitz, Rose and Speer constructed an invariant measure for the nonlinear
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Schrödinger equation on the line, and investigated the stability of the ground state. Using

purely probabilistic arguments, McKean and Vaninsky gave an alternative construction

[14].

Here we construct the measure via random Fourier series. We write φ(x) ∼ 1
2
a0 +

∑∞
j=1(aj cos jx + bj sin jx), and regard (aj , bj) as an `2 sequence of coordinates for φ ∈

L2(T). Let (γj)
∞
j=−∞ be mutually independent standard Gaussian random variables on

some probability space (Ω,P), and let W be the probability measure on L2(T) that is

induced by

ω 7→ φω(x) = γ0 +

−1
∑

j=−∞

γj
sin jx

j
+

∞
∑

j=1

γj
cos jx

j
, (1.6)

namely Brownian loop. Then ΩN = {ω ∈ Ω : 1
2

∑∞
j=−∞;j 6=0 γ

2
j /j

2 ≤ N} maps into BN ,

and we can introduce the Gibbs measure as

νβN (dφ) = ZN (β)−1IΩN
(ω) exp

(β

6

∫

T

φω(x)3
dx

2π

)

W (dφω). (1.7)

Bourgain [3] shows that there exists ZN (β) > 0 such that νβN is a Radon probability

measure on the closed subset BN of L2(T). Further, the Cauchy initial value problem

{

ut = −uxxx − βuux
u(x, 0) = φ(x)

(1.8)

is locally well posed on the support of νβN ; more precisely, for each δ > 0, there exists

τ(δ) > 0 and a compact set Kδ such that νβN (Kδ) > 1 − δ and such that for all φ ∈ Kδ

there exists a unique solution u(x, t) to (1.7) for t ∈ [0, τ(δ)]. Existence of the invariant

measure νβN implies that the local solution extends to a global solution for almost all

initial data with respect to νβN . We should expect the long term behaviour of solutions to

consist of a solitary travelling wave coupled with fluctuations, as described by the invariant

measure. The main result of this paper is a logarithmic Sobolev inequality which shows

that such a space of solutions is stable.

Definition. Suppose that F : BN → R is Gâteaux differentiable, so that for all φ inside

BN , there exists ∇F (φ) ∈ L2(T) such that

〈∇F (φ), ψ〉L2 = lim
t→0+

F (φ+ tψ) − F (φ)

t
(1.9)

for all ψ ∈ L2. Suppose further that the limit exists uniformly on {ψ ∈ L2 : ‖ψ‖L2 = 1};
then F is Fréchet differentiable.
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Let Ḣ1/2 = {φ(x) =
∑∞
k 6=0;k=−∞ ake

ikx :
∑∞
k 6=0;k=−∞ |k||ak|2 < ∞}, and let G :

L2(T) → L2(T) be the operator

Gφ(x) =

∫

T

log
1

|eix − eiy| φ(y)
dy

2π
∼

∞
∑

k 6=0;k=−∞

φ̂(k)

|k| e
ikx. (1.10)

Then

〈Gψ, φ〉Ḣ1/2 = 〈ψ, φ〉L2. (1.11)

We write δF (φ) = G(∇F (φ)), and observe that ‖δF (φ)‖L2 ≤ ‖∇F (φ)‖L2 .

Definition (Logarithmic Sobolev inequality). Say that a probability measure νN on BN

satisfies the logarithmic Sobolev inequality with constant α > 0 if
∫

BN

F (φ)2 log
(

F (φ)2/

∫

BN

F 2dνN

)

νβN (dφ) ≤ 2

α

∫

BN

‖δF (φ)‖2
L2νN (dφ) (1.12)

for all Fréchet differentiable functions F ∈ L2(BN ; νβN ) such that ‖δF‖L2 ∈ L2(BN ; νN ).

Theorem 1. For all β,N > 0 the measure νβN satisfies the logarithmic Sobolev inequality

with

α = 2−1 exp
(

−Cβ5/2N9/4
)

some absolute constant C > 0.

In section 2 we prove Theorem 1 and deduce a concentration inequality concerning

Lipschitz functions on the BN . This shows that certain random variables are tightly

concentrated around their mean values, just as a Gaussian random variable is concentrated

close to its mean. McKean [12] considered the Laplace operator on the infinite dimensional

sphere S∞(
√∞) and showed how one can interpret this as the sum of uncoupled Ornstein–

Uhlenbeck operators in infinitely many variables. In section 3, we consider stability of the

stationary points of the Hamiltonian restricted to spheres. Analysis of the stationary

points reduces to classical spectral theory of Lamé’s equation, and we are able to identify

stationary points as elliptic functions.

In section 4, we consider the Gibbs measure associated with the modified periodic KdV

equation, and obtain a logarithmic Sobolev inequality when Nβ is small and positive. We

apply a similar analysis to the periodic cubic Schrödinger equation in section 5.

2 Logarithmic Sobolev inequalities

As in Parseval’s identity, there is a unitary map `2 → L2(T)

(a0; an, bn)
∞
n=1 7→ a0 +

∞
∑

k=1

√
2(ak cos kx+ bk sin kx); (2.1)
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under this correspondence, F : BN → R may be identified with f : ΩN → R and

∇F corresponds to ( ∂f∂aj
, ∂f
∂bj+1

)∞j=0. To see this, we consider ψ(x) =
∑∞
k=1

√
2(ck cos kx +

dk sin kx) and observe that

〈∇f, (ck, dk)∞k=1〉`2 =

∞
∑

k=1

( ∂f

∂ak
ck +

∂f

∂bk
dk

)

(2.2)

while

〈∇F, ψ〉L2 =

∫

(∇F )ψ̄
dx

2π
, (2.3)

and we can recover the Fourier coefficients of ∇F . Further, the Gibbs measure νβN may be

expressed in terms of the Fourier components as

ZN (β)−1 exp
(β

6

∫

T

(

(

a0 +
√

2
∞
∑

j=1

(aj cos jx+ bj sin jx)
)3 dx

2π
− a2

0 −
∞
∑

j=1

j2(a2
j + b2j )

)

×I[0,N ]

(

a2
0 +

∞
∑

j=1

(a2
j + b2j)

) da0√
2π

∞
∏

j=1

j2dajdbj
2π

. (2.4)

For notational simplicity, we write a−j = bj for j = 1, 2, . . ., and assume that 0 < β <√
3/(4π

√
N). We introduce the potential

V (a, b) =
a2
0

2
+

1

2

∞
∑

j=1

j2(a2
j + b2j) −

β2
√

2

6

∫

T

( a0√
2

+
∞
∑

j=1

(aj cos jx+ bj sin jx)
)3 dx

2π
. (2.5)

Lemma 2. Suppose that 0 < β
√
N ≤

√
3/(32π) and that F ∈ L2(BN ; νβN ) has ∇F

defined on BN with ‖∇F‖L2 ∈ L2(BN ; νβN ). Then V is uniformly convex on BN and has a

unique minimum at the origin. Moreover, νβN satisfies the logarithmic Sobolev inequality

(1.12) with α = 1/2.

Proof. First we scale the variables to xj = jaj and yj = jbj, so that

ΩN = {(a0; aj, bj) ∈ `2 : a2
0 +

∞
∑

j=1

(a2
j + b2j) ≤ N} (2.6)

is transformed to the ellipsoid

EN = {(x0;xj, yj) : x2
0 +

∞
∑

j=1

(x2
j + y2

j )/j
2 ≤ N}.
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Let G : EN → ΩN be the diagonal map G : ((xk, yk))
∞
k=1 7→ ((xk/k, yk/k))

∞
k=1, with

left inverse D : ((ak, bk))
∞
k=1 = ((kak, kbk))

∞
k=1 so that DG = I. We then introduce

W : EN → R by W (x) = V (G(x)).

To verify Bakry and Emery’s criterion [1] for the logarithmic Sobolev inequality, we

need to show that the Hessian matrix of W satisfies

HessW ≥ 1

2
I (2.7)

and hence that ωβN = ζN (β)−1 exp(−W (x)) dx satisfies the logarithmic Sobolev inequality

∫

EN

g(x)2 log
(

g(x)2/

∫

g2dωβN

)

≤ 4

∫

EN

‖∇g‖2
`2dω

β
N . (2.8)

Now G induces νβN from ωβN ; so with g = f ◦G we have ∇g = ((∇f) ◦G)(∇G) where ∇G
is represented by the diagonal matrix (1/k)∞k=1. The condition (2.7) is equivalent to

HessV =

[

∂2V
∂aj∂ak

∂2V
∂aj∂bk

∂2V
∂aj∂bk

∂2V
∂bj∂bk

]

≥ 1

2
D2 (2.9)

Let D be the diagonal matrix (j) with respect to the Fourier basis and let

vjk =
∂2

∂aj∂ak

2
√

2

6

∫

T

( a0√
2

+
∞
∑

`=1

(a` cos `x+ b` sin `x)
)3 dx

2π

= 2
√

2

∫

T

cos jx cos kx
( a0√

2
+

∞
∑

`=1

(a` cos `x+ b` sin `x)
)dx

2π
(2.10)

The matrix that represents ∂2V
∂aj∂ak

is

D2 − β[vjk] =
7

8
D2 +

1

8
D

(

I − 8β
[vjk
jk

]

)

D (2.11)

where D2 ≥ I and by the Cauchy–Schwarz inequality

∞
∑

j,k=1

vjkξjηk
jk

= 2
√

2

∫

T

∞
∑

j=1

ξj cos jx

j

∞
∑

k=1

ηk cos kx

k

( a0√
2

+

∞
∑

`+1

(

a` cos `x+ b` sin `x
)

)dx

2π
(2.12)

where by the Cauchy–Schwarz inequality

(

∞
∑

j=1

ξj cos jx

j

)2

≤
∞
∑

j=1

1

j2

∞
∑

j=1

ξ2j ≤ π2

6

∞
∑

j=1

ξ2j (2.13)
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and
∫

T

( a0√
2

+

∞
∑

`+1

(

a` cos `x+ b` sin `x
)

)2 dx

2π
≤ N. (2.14)

Hence we have

D2 − β[vjk] ≥ (1/2)D2; (2.15)

similar estimates apply to the sine terms when we consider ∂2V
∂bj∂bk

, and to the mixed sine

and cosine term which arise in ∂2V
∂aj∂bk

. Hence W is uniformly convex and thus satisfies

Bakry and Emery’s criterion, so ωβN satisfies the logarithmic Sobolev inequality (2.8), and

hence νβN satisfies (2.6)

Proof of Theorem 1. We need to extend the logarithmic Sobolev inequality to a typical

pair N, β > 0, possibly at the expense of a worse constant. So we choose K > 4β
√
N +

1, and split φ ∈ L2(T) into the tail φK(x) =
∑

k:|k|≥K ake
ikx and the head hK(x) =

∑

k:|k|≤K ake
ikx of the series. We note that for φ ∈ BN , the components satisfy ‖hK‖∞ ≤

(2K + 1)1/2N1/2 and
∫

φK(x)2dx/(2π) ≤ N ; hence by some simple estimates

∣

∣

∣

∫

T

(

φ(x)3 − φK(x)3
)dx

2π

∣

∣

∣
=

∣

∣

∣

∫

T

(

3φK(x)2hK(x) + 3φK(x)hK(x)2 + hK(x)3
)dx

2π

∣

∣

∣

≤ 7β(2K + 1)3/2N3/2. (2.16)

We replace the original potential V by

VK(a, b) =
a2
0

2
+

1

2

∞
∑

j=1

j2(a2
j + b2j) −

β2
√

2

6

∫

T

(

∞
∑

j=K+1

(aj cos jx+ bj sin jx)
)3 dx

2π
, (2.17)

which is a bounded perturbation of V on BN and satisfies

‖V − VK‖∞ ≤ 7β(2K + 1)3/2N3/2. (2.18)

The matrix [vjk]j,k:|j|,|k|≥K that arises from VK via (2.5) involves only high frequency

components and satisfies

β2
∥

∥

∥

[vjk
jk

]
∥

∥

∥

2

c2
≤ 4β2N

(

∞
∑

k=K

1

k2

)2

≤ 4β2N

(K − 1)2
≤ 1

4
(2.19)

by the choice of K. By Lemma 2, VK is uniformly convex and the corresponding Gibbs

measure satisfies a logarithmic Sobolev inequality with constant independent of N and β.
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Since V is a bounded perturbation of VK , the Holley–Stroock lemma [7] shows that

the Gibbs measure associated with V also satisfies the logarithmic Sobolev inequality

∫

BN

F (φ)2 log
(

F (φ)2/

∫

BN

F 2dνβN

)

νβN (dφ) ≤ 4 exp(Cβ5/2N9/4)

∫

BN

‖δF (φ)‖2
L2ν

β
N (dφ).

(2.20)

for come universal constant C.

Corollary 2. Let F : BN → R be a Lipschitz function such that |F (φ)−F (ψ)| ≤ ‖φ−ψ‖L2

for all φ, ψ ∈ BN ; suppose further that
∫

BN
F (φ)νβN (dφ) = 0. Then

∫

BN

exp(tF (φ))νβN (dφ) ≤ exp
(

eCβ
5/2N9/4

t2
)

(t ∈ R). (2.21)

On the probability space (BN , ν
β
N ), the random variable F has mean zero and takes values

that are tightly concentrated about its mean value.

Proof. Let Pn be the orthogonal projection onto span{ej : 1 ≤ j ≤ n}, where (ej) is some

orthonormal basis of L2(T). Then F ◦ Pn is Lipschitz continuous on a finite-dimensional

subspace, and hence Féchet differentiable almost everywhere by Rademacher’s theorem.

We observe that

‖δF (Pnφ)‖L2 ≤ ‖∇F (Pnφ)‖L2 ≤ 1 (2.22)

since F and Pn are Lipschitz. Since F ◦ Pn → F uniformly on compact sets as n→ ∞, it

suffices by Fatou’s lemma to prove (2.21) for F ◦ Pn and then let n→ ∞.

The inequality then follows from Theorem 1 by the general theory of functional in-

equalities, as in [16]; here we give a brief argument. Let

J(t) =

∫

BN

etF (φ)νβN (dφ) (2.23)

which defines an analytic function of t such that J(0) = 1 and J ′(0) = 0. Further, the

logarithmic Sobolev inequality gives

tJ ′(t) =

∫

BN

tF (φ)etF (φ)νβN (dφ)

≤ J(t) logJ(t) +
t2

2α
J(t) (t > 0) (2.24)

which integrates to the inequality

J(t) ≤ exp
( t2

2α

)

. (2.25)
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Remark. We leave it as an open problem to determine whether νβN satisfies (1.9) with a

constant independent of N for given β.

3 Stationary points of the Hamiltonian on spheres

The Hamiltonian H(φ) is unbounded above and below for φ ∈ L2(T); however, we can

consider the minimal energy constrained to the spheres in L2(T):

EN = inf
{

H(φ) :

∫

T

φ(x)2
dx

2π
= N

}

. (3.1)

Korteweg and de Vries introduced a travelling wave solution u(x, t) = v(x − ct) of

ut + uxxx + βuux = 0 which is periodic and is commonly known as the cnoidal wave.

We recover this solution below. Subject to some reservations, Drazin [5] showed that the

cnoidal wave is linearly stable with respect to any infinitesimal perturbation.

We recall Jacobi’s sinus amplitudinus of modulus k is sn(x | k) = sinψ where

x =

∫ ψ

0

dθ
√

1 − k2 sin2 θ
. (3.2)

For 0 < k < 1, let K(k) be the complete elliptic integral

K(k) =

∫ π/2

0

dt
√

1 − k2 sin2 t
; (3.3)

next let K ′(k) = K(
√

1 − k2); then sn(z | k)2 has real period K and complex period 2iK ′.

For ` > 0, the standard form of Lamé’s equation is

(

− d2

dz2
+ `(`+ 1)k2sn(z | k)2

)

Φ(z) = µΦ(z). (3.4)

The spectrum of (3.4) is determined by a sequence λ0 < λ1 ≤ λ2 < λ3 ≤ λ4 < . . . ,

which is infinite except for ` = 1, 2, . . .. Typically σB = ∪∞
j=0[λ2j, λ2j+1] gives the Bloch

spectrum, so that for µ ∈ σB there exists a bounded solution to (3.4); whereas for µ ∈
(−∞, λ0)∪

⋃∞
j=0(λ2j+1, λ2j+2) all nontrivial solutions of (3.4) are unbounded, and we say

that µ belongs to an interval of instability. In the special case of ` = 1, 2, . . . , there are

only `+ 1 intervals of instability, namely (λ2j+1, λ2j+2) (j = 0, . . . , j − 1) and (−∞, λ0).

See [11].

Theorem 3. (i) Let φ ∈ C2(T;R) be a stationary point for the energy

Hλ(φ) =
1

2

∫

T

φ′(x)2
dx

2π
− β

6

∫

T

φ(x)3
dx

2π
− λ

2

∫

T

φ(x)2
dx

2π
. (3.5)
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Then φ satisfies the differential equation

φ′′(x) +
β

2
φ(x)2 + λφ(x) = 0 (3.6)

so either φ is constant or an elliptic function.

(ii) For β > 0, the energy Hλ on EN has a local minimum at φ = −
√
N .

(iii) Let φ be the elliptic function

φ(x) = f1 − (f1 − f2)
[

sn
(

√

β(f1 − f3)

12
(x1 − x)

∣

∣

∣

√

f1 − f2
f1 − f3

)]2

(3.7)

for suitable real constants f3 < f2 < f1 and φ(x1) = f1. Let (−∞, λ0] be the zeroth order

interval of instability of Lamé’s equation

y′′(x) + βφ(x)y(x) + λy(x) = 0. (3.8)

Then for λ < λ0 the energyHλ has a local minimum at φ; whereas for λ > λ0 the stationary

point is neither a local maximum nor a local minimum.

Proof. (i) We suppose that β > 0. One can easily expandHλ(φ+tψ) as a cubic polynomial

in t and examine the conditions that ensure that t = 0 gives a local minimum. The equation
δHλ

δφ = 0 reduces to the differential equation (3.6) which has constant solutions φ = 0 (which

does not belong to EN ) and φ = −2λ/β, and a non-constant solution satisfying

1

2
φ′(x)2 +

β

6
φ(x)3 +

λ

2
φ(x)2 = C (3.9)

with C some constant. This equation has periodic solutions if and only if β2 < 3λ3/(2C);

equivalently, for such constants there exist real roots f3 < f2 < f1 such that

−β
6
φ3 − λ

2
φ2 + C = −β

6
(φ− f1)(φ− f2)(φ− f3). (3.10)

To find these roots, we introduce z = 1/φ, which satisfies the cubic z3−λz/(2C)−β/(6C) =

0 with discriminant

D =
−λ3

216C3
+

β2

144C2
; (3.11)

so by writing reiθ = β/(12C) + i
√
−D, we have

1

f1
= 2r1/3 cos

θ

3
,

1

f2
= 2r1/3 cos

θ + 2π

3
,

1

f3
= 2r1/3 cos

θ + 4π

3
, (3.12)
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for some choice of the polar angle. To convert to the standard form (3.4) of Lamé’s

equation, we introduce

k =

√

f1 − f2
f1 − f3

, k2`(`+ 1) = β(f1 − f3), γ = cos
θ

3
, (3.13)

where 0 < k < 1 and ` > 0, and by some trigonometry deduce that

k2 =
2γ

√

1 − γ2

√
3/2 −

√
3γ2 − γ

√

1 − γ2
, (3.14)

which is an algebraic function of the parameters. Using the definition (3.2), one can show

that the solution of (3.9) is given by

φ(x) = f1 − (f1 − f2)
[

sn
(

√

β(f1 − f3)

12
(x1 − x)

∣

∣

∣
k
)]2

; (3.15)

where φ is 2π-periodic provided that

2π

√

β(f1 − f3)

12
= 2K(k). (3.16)

(ii) For any stationary point φ, we have

Hλ(φ+ tψ) = Hλ(φ) +
t2

2

∫

T

(

ψ′(x)2 − (λ+ βφ(x))ψ(x)2
)dx

2π
− βt3

6

∫

T

ψ(x)3
dx

2π
. (3.17)

First we deal with the constant stationary points. Note that φ = −
√
N gives a local

minimum for Hλ with λ = β
√
N/2 and Hλ(−

√
N) = −βN3/2/12. The other constant

solution φ =
√
N has λ = −β

√
N and Hλ(

√
N) = βN3/2/12.

(iii) Next we take φ from (3.9), so that

Hλ(φ) = −β
3

∫ 2π

0

φ(t)3
dt

2π
− λ

∫ 2π

0

φ(t)2
dt

2π
+ C. (3.18)

To determine when this is a local minimum, we consider a nontrivial solution the equation

y′′(x) + βφ(x)y(x) + λy(x) = 0, (3.19)

which is the linearization of (3.6), and re recognise this as a form of Lamé’s equation.

First suppose that y has only finitely many zeros on R; then by Hamel’s theorem [10]

∫

T

(

ψ′(x)2 − (λ+ βφ(x))ψ(x)2
)dx

2π
≥ 0 (3.20)
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holds for all 2π periodic and continuously differentiable functions ψ. Let λ0 be the supre-

mum of such λ. For λ < λ0 we have strict inequality for in (3.20) all nonzero ψ, so Hλ has

a local minimum at φ.

Suppose contrariwise that y has infinitely many zeros; so by Hamel’s theorem there

exists ψ such that
∫

T

(

ψ′(x)2 − (λ+ βφ(x))ψ(x)2
)dx

2π
< 0; (3.21)

hence Hλ does not have a local minimum at φ. In particular, this happens when λ > λ0.

4 The modified periodic KdV equation

Lebowitz, Rose and Speer [8,9] considered Hamiltonians

Hp(φ) =
1

2

∫

T

φ′(x)2
dx

2π
− β

p(p− 1)

∫

T

|φ(x)|p dx
2π

(4.1)

and showed that there exists a Gibbs measure with potential Hp(φ) on {φ ∈ L2(T) :

‖φ‖2
L2 ≤ N} as in (1.6) for β,N > 0 and 2 ≤ p < 6, but not for p > 6. When β < 0, the

Hamiltonian is non focusing and the problem of normalizing the probability measures is

easy to address.

Their analysis of the case p = 4 showed that for small β > 0, the constant solution

was stable; whereas for large β > 0, the soliton solution was stable. In this section we

strengthen their result by showing that for p = 4 the modified canonical ensemble satisfies

a logarithmic Sobolev inequality when βN is small. The case p = 4 corresponds to the

modified KdV equation
∂φ

∂t
+
∂3φ

∂θ3
+ βφ2 ∂φ

∂θ
= 0, (4.2)

so the result suggests that at low temperatures, solutions of the mKdV equation are most

likely to occur near to the ground state.

With this Hamiltonian and β > 0, we introduce the Gibbs measure

νβN (dφ) = ZN (β)−1IBN
(φ)e−H4(φ)

∏

eix∈T

dφ(x). (4.3)

Theorem 4. There exists C > 0 such that for 0 < βN < C the Gibbs measure νβN satisfies

the logarithmic Sobolev inequality with α = 1/2.

Proof. This is similar to the proof of Lemma 2. To simplify notation, we consider the

Hamiltonian

H(an) =

∞
∑

n=1

n2a2
n − β

12

∫

T

(

∞
∑

n=1

an cosnθ
)4 dθ

2π
(4.5)

12



on BN = {(an) ∈ `2(R) :
∑∞
n=1 a

2
n ≤ N} which has essentially the same properties as

the true Hamiltonian in the Fourier components. The corresponding Hessian matrix has

entries
∂2H

∂aj∂a`
= δj`j

2 − β

∫

T

(

∞
∑

n=1

an cosnθ
)2

cos jθ cos `θ
dθ

2π
, (4.6)

and we deduce that

∞
∑

j,`=1

∂2H

∂aj∂a`

ξjξ`
j`

=
∞
∑

j=1

ξ2j − β

∫

T

(

∞
∑

j=1

an cosnθ
)2 ∞

∑

j=1

ξj cos jθ

j

∞
∑

`=1

ξ` cos `θ

`

dθ

2π
, (4.7)

where by the Cauchy–Schwarz inequality

(

∞
∑

j=1

ξj cos jθ

j

)2

≤
∞
∑

j=1

1

j2

∞
∑

j=1

ξ2j ; (4.8)

hence
∞
∑

j,`=1

∂2H

∂aj∂a`

ξjξ`
j`

≥ 1

2

∞
∑

j=1

ξ2j (4.9)

and Bakry and Emery’s condition is satisfied. The logarithmic Sobolev inequality follows.

Remark. The author has not succeeded in proving a logarithmic Sobolev inequality for

p = 4 and Nβ large due to the lack of a suitable substitute for (2.14).

5. Periodic solutions of the cubic nonlinear Schrödinger equation

The Hamiltonian

H =
1

2

∫

T

(

(Q′)2 + (P ′)2
)

dx+
β

4

∫

T

(

Q2 + P 2
)2
dx (5.1)

gives the canonical equations of motion

[

0 −1
1 0

]

∂

∂t

[

Q
P

]

= − ∂2

∂x2

[

Q
P

]

+ β(Q2 + P 2)

[

Q
P

]

(5.2)

which give the cubic Schrödinger equation for u = P + iQ

−iut = −uxx + β|u|2u (5.3)

over the circle. Again we take β > 0, which gives the focusing case. The appropriate

number operator is represented by

N =
1

2

∫

T

(

P 2 +Q2
)

dx,

13



which is invariant under the flow, and we introduce BN = {u = P + iQ :
∫

T
(P 2 +Q2)dx ≤

N}. As discussed in [15], one can normalize the measure

νβN (du) = ZN (β)−1 exp
(

−H(u)
)

IBN
(u)

∏

x∈T

du(x) (5.4)

so that it gives a probability measure on BN . Bourgain has shown that νβN is invariant

under the flow associated with the cubic Schrödinger equation; see [4, p.124]

Theorem 5. There exists C > 0 such that for all 0 < βN < 1/2 the Gibbs measure νβN
satisfies the logarithmic Sobolev inequality with α = 1/2.

Proof. This follows the proof of Lemma 2 and Theorem 4 closely, hence is omitted.
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