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ABSTRACT 

Physical fitness metrics were used to assess the health and development of 

California Yellowtail, Seriola dorsalis, in an aquaculture environment during two 

grow-out experiments.  The first experiment sought to evaluate the effects of a 

common aquaculture deformity (an improperly inflated swim bladder) that has 

been hypothesized to impact energy allocation, growth, and development. Metrics 

including metabolic rate, critical swimming speed, feed conversion ratio, and 

growth rate, were monitored over a 32-week period in three groups of California 

Yellowtail: wild-caught (“wild”), healthy hatchery-reared (“inflated”), and 

hatchery-reared with uninflated swim bladders (“uninflated”). At the start of the 

grow-out period, wild fish had a significantly lower standard metabolic rate (3.08 

± 0.23 mgO2 min-1 kg-1) than both the inflated and uninflated groups (5.60 ± 0.54 

and 6.45 ± 0.66 mgO2 min-1 kg-1, respectively), but this difference was not 

maintained over time. After a 32-week growout, inflated fish had significantly 

greater mass (758.6 ± 92.7 g vs. 671.1 ± 128.9 g wild, 636.1 ± 80.4 g uninflated) 

and girth (23.2 ± 1.1 cm vs. 21.6 ± 1.7 cm wild, 21.5 ± 1.2 cm uninflated) than the 

other two groups, while uninflated fish had significantly shorter BL (36.5 ± 1.9 

cm vs. 38.4 ± 2.7 cm wild, 39.6 ± 2.0 cm inflated). However, the wild fish had the 

most efficient feed conversion (1.41 vs. 1.49 inflated, 2.08 uninflated) and needed 

5.8% less feed than the inflated group, and 47.8% less feed than the uninflated 

group to gain equivalent mass.   

In addition to indicating that it wouldn’t be economical to rear yellowtail 

with uninflated swim bladders due to their poor growth rates and feed conversion 
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ratios, the results of this experiment revealed that there is room for improvement 

in the fitness of healthy aquaculture-reared yellowtail by potentially lowering 

their metabolic rate and feed conversion ratios. The subsequent experiment 

introduced exercise (which is typically lacking in aquaculture) as a means for 

improvement of fitness in hatchery-reared fish, and aimed to determine if a short 

duration of exercise could have lasting effects on the fitness of cultured 

yellowtail. Fish were forced to swim continuously against a flow in custom 

designed raceways for two, three, or four weeks, following which, metabolic rate, 

growth rate, and feed conversion were assessed over a 24-week grow-out period. 

Results showed that the duration of exercise may have an impact on standard 

metabolic rate immediately following exercise, with the exercised groups showing 

about a 9-15% reduction in metabolic rate. However, initial metabolic differences 

were not retained over time. Similarly, growth rates were stimulated by exercise, 

potentially because their lower standard metabolic rate reflected more efficient 

resource use and the ability to efficiently gain weight; however, the positive 

growth response also weakened with time. These results indicate that exercise 

could play an important role in the development of this species; however, the 

timing (e.g. yellowtail life stage and duration of exercise) and environmental 

variables (e.g. temperature and flow speed) likely play important roles in 

optimizing the response. 
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CHAPTER 1: INTRODUCTION 

Life history of Yellowtail 

Yellowtail is the common name for a group of carangid fishes in the genus 

Seriola that are found in subtropical waters around the world (Nakada, 2008). 

There are several species of Seriola, including the California Yellowtail S. 

dorsalis which is common to waters off the coast of California and Baja 

California, Mexico, but can range from southern Washington state to Mazatlán, 

Mexico (Baxter, 1960). Local Southern California stocks are mostly composed of 

yellowtail from central and northern Baja that move north in early spring before 

heading back south in late summer and fall (Baxter, 1960), although some reside 

off the California coast year-round. The species in this region was previously 

known as a subspecies of Seriola lalandi, but recent genetic work has shown 

significant distinction within the Seriola lalandi complex, and this population in 

the northeast Pacific was re-designated as Seriola dorsalis (Gill) (Martinez-

Takeshita et al., 2015).  

California Yellowtail are highly mobile fish, traveling greater distances 

earlier in life than at older ages (Baxter, 1960). They are opportunistic feeders and 

have a varied diet, eating small fish such as anchovy, mackerel, and sardine, along 

with pelagic red crab and squid (Baxter, 1960). As some of the larger fish in the 

Carangidae family, they can grow to 130-150 cm fork length and approximately 

40 kg (Baxter, 1960; Sala et al., 2003). These fish typically reach sexual maturity 

between 2-3 years old and are generally thought to live about 13-15 years 
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(Collins, 1973).  They have a fusiform body shape with a narrow caudal peduncle 

and deeply forked tail. Their streamlined shape reduces drag and makes them 

agile, fast swimmers. Yellowtail are commercially and recreationally important in 

California and Mexico, but California currently has no stock assessment or fishery 

management plan in place for this species (James, 2014), though basic catch 

limits exist in both California and Mexico.  

Aquaculture overview 

Aquaculture is a broad term used to refer to the raising and harvesting of 

aquatic organisms. Current commercial aquaculture includes finfishes, mollusks, 

crustaceans, and aquatic plants and algae, however finfish culture is most relevant 

to this thesis. As of 2014 there were 362 species of finfish being cultured, 

providing millions of jobs in nearly 200 countries around the world (FAO, 2016). 

Marine capture fishery production has been mostly stagnant since the 1980s, due 

to many stocks being fully fished, and this plateau in wild fisheries production has 

led to an increased reliance on aquaculture in recent years to supply the ever-

growing demand for fish to feed the growing global population (FAO, 2016).  

Aquaculture is largely used to produce fish for direct consumption, and since 

2012, aquaculture of finfish has grown from 44.2 million tonnes to 49.8 million 

tonnes, and represented nearly 50% of all aquaculture products in 2014 (FAO, 

2016). Additionally in 2014, production of farmed fish was greater than wild 

capture in 35 countries (FAO, 2016), underscoring its global importance. 

Aquaculture products are also used in fishmeal, fish oil, bait, pharmaceuticals, 
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and livestock feed, with the US being the largest importer of fish and fisheries 

products (FAO, 2014, 2016).   

Aquaculture of finfishes can take place in inland tanks or ponds, or in 

various types of ocean pens. Land-based tanks can either be recirculating 

aquaculture systems (RAS) or flow-through systems. In a contained inland 

aquaculture system, there are many factors to consider in order to maintain a 

healthy environment and healthy animals. These factors include: oxygen 

saturation, flow speed, photoperiod, ammonia concentration, food availability, 

food type, pH, temperature, and stocking density (Colt, 2006). The optimal 

parameters for growth are not only different between species but can also vary 

with life stage for a given species.  

Aquaculture of Seriola 

There are certain criteria for selecting suitable fish for aquaculture, 

including: marketability, food requirements, reproductive strategy, landing price, 

optimum growth temperature, and maximum size (Le François et al., 2002). 

Seriola species have been identified as a group with ideal characteristics for warm 

water aquaculture. Seriola have fast growth rates, reach a large maximum body 

size, demonstrate adaptability to hatchery production and pen culture, and provide 

high value sashimi products as well as premium fish fillets.  Several Seriola 

species are successfully cultured in many countries and have been spawned, 

hatched and reared successfully in captivity (Moran et al., 2007; Stuart and 

Drawbridge, 2013; Yang et al., 2016). However, in some countries, the 
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aquaculture cycle begins with capturing wild seed (young juveniles), which is less 

sustainable than producing captive seed, and can be a bottleneck in production, 

especially with declining availability of wild seed (Nakada, 2002, 2008). Recent 

research in larval rearing techniques had opened up opportunity for expanding 

Seriola aquaculture development (Stuart and Drawbridge, 2013); however, further 

research is needed to optimize the entire rearing process.  

Currently, Seriola spp. are cultured in the US, Chile, South-Africa, Japan 

and Australia. In Japan, yellowtail (mainly S. quinqueradiata) are cultured in net 

pens off the coast. These pens are typically 30 m x 30 m x 15 m and hold 25,000 

fish. The fish are fed formulated extruded pellets primarily made from sardines. 

There are complications with net pen culture largely due to inconsistency of 

conditions such as temperature. Higher-than-optimal temperature can lead to 

increased parasite activity (Nakada, 2002), and lower-than-optimal temperatures 

can lead to sub-optimal growth (Brown et al., 2011) and altered swimming 

characteristics (Palstra and Planas, 2011). Stocking density is also a concern in 

culture systems. Large, active fish like Seriola need sufficient space to exercise in 

order to build muscle, and often the stocking density in culture pens is too high to 

allow this behavior (Nakada, 2002).  In crowded systems, fish are forced to swim 

slower than their optimal swimming speed which can lead to the reallocation of 

energy (that would have been used for swimming) towards more aggressive, and 

potentially harmful, behaviors (Palstra and Planas, 2011).  

Seriola are highly active fish and thus require significant resources (e.g. 

food and oxygen) to maintain their higher metabolic rates compared to other 
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common aquaculture fishes such as salmonids. This equates to potentially greater 

investment in resources and infrastructure to properly rear Seriola; however, 

rearing practices (environmental parameters, equipment etc.) for optimal health 

and production aren’t fully understood yet. The increased dependence on 

aquaculture for food, potential need to adapt rearing protocols for active species, 

and the increasing interest in culturing Seriola, indicate a need for ongoing 

research to better understand Seriola growth and development in aquaculture. 

A common problem: uninflated swim bladders 

In addition to the challenges mentioned above, a very common issue with 

several aquaculture species is a failure to inflate the swim bladder during larval 

development. Since swim bladders are used by most fish species to regulate 

buoyancy, a fish with an uninflated bladder would likely need to expend more 

energy to maintain hydrostatic equilibrium, which could impact energy allocation 

toward growth (Bone et al., 1995; Brix, 2002; Steen, 1970). Inflation failure has 

been seen in as much as 80% of larvae from a given spawn of S. dorsalis (Kevin 

Stuart, personal communication), which is similar to that observed in some other 

species (see Woolley and Qin, 2010 for review), and with such high rates, this 

deformity could pose a significant problem for commercial production, as these 

fish are often assumed to be inferior. The prevalence of this deformity 

underscores the importance of further research on long-term growth and 

development of cultured species, which will be especially important for S. 

dorsalis as the culture of this species grows in popularity. 
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Fish musculature 

Knowledge of growth and development of fish reared in a culture setting 

is important for understanding growout duration and determining production 

capabilities. From a production standpoint, the most important growth is that of 

the musculature. The myotome of most fish contains two types of muscle, red 

myoglobin-rich slow-twitch muscle, and white fast-twitch muscle. In Seriola, red 

muscle is located just under the skin and atop the white muscle mass (which 

forms the bulk of the musculature) in a thin layer running along the mid-lateral 

aspect of the fish. Several characteristics distinguish each type of muscle, 

including: color, enzyme activity, function, mitochondrial content, and blood 

supply (Bone et al., 1978).  

It is generally accepted that at low swimming speeds, red fibers are 

engaged, while white fibers are active at high speeds and only for short bursts. 

This is supported by histochemical analysis that has shown higher levels of 

oxidative enzymes in red muscle (Ogata and Mori, 1964) which uses aerobic 

metabolism to power routine activity, whereas white muscle respires 

anaerobically, through use of glycogen, to power fast twitch responses at high 

speeds. At intermediate speeds, the involvement of different muscle types is 

highly variable and species-dependent (Bone et al., 1978). Johnston and Moon 

(1979) found that Coalfish (Pollachius virens) engaged white muscle fibers at 

speeds as low as 0.8-2.0 lengths s-1 which was considered a sustainable speed for 

the fish tested. Additionally, Johnston and Moon (1980) used electromyography 

to show that red and white muscles are used in sustained swimming in Brook 
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Trout (Salvelinus fontinalis) and similar results were found at intermediate 

swimming speeds for Rainbow Trout (Salmo gairdneri) (Hudson, 1973). This 

suggests that there is some overlap in the function of red and white muscles and 

that both anaerobic and aerobic pathways may be used to power sustained 

swimming.  

 Muscle growth in fish is a function of hyperplasia (increase in cell 

number, muscle fiber recruitment) and hypertrophy (increase in cell diameter and 

subsequent muscle fiber diameter). Both of these processes can be influenced by 

environmental factors such as diet/nutrition, exercise, light cycle, and temperature 

(Johnston, 1999).  White muscle growth is especially important in aquaculture, as 

it is the final product for species such as S. dorsalis that are produced most often 

for direct human consumption. This thesis attempts to assess growth of S. dorsalis 

and further enhance it through sustained exercise.  

Recent Seriola research 

Recent work done by Wegner et al. (in review) used several established 

swimming and metabolic measurements to compare fitness of aquaculture-reared 

and wild-caught S. dorsalis in order to evaluate the effects of captive rearing and 

determine areas for improvement. This work found that juvenile hatchery-reared 

yellowtail are less physically fit than juvenile wild-caught yellowtail, having a 

significantly higher standard metabolic rate (7.36 ± 2.28 vs. 3.97 ± 1.62 mgO2   

kg-1 min-1), significantly slower mean maximum sustainable swimming speed 

(4.16 ± 0.62 vs 4.80 ± 0.52 BL s-1), and reduced aerobic scope (9.16 ± 3.40 vs. 
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15.77 ± 5.78 mgO2 kg-1 min-1; Wegner, in review). Reduced fitness of hatchery 

fish as compared to wild-caught conspecifics has been seen in several other 

culture species such as Gilthead Sea Bream (Sparus aurata (Basaran et al., 

2007)),  Rainbow Trout (Salmo gairdneri (Duthie, 1987)), Atlantic Salmon 

(Salmo salar (Hammenstig et al., 2014; McDonald et al., 1998; Shustov and 

Shchurov, 1988)), and Brown Trout (Salmo trutta (Pedersen et al., 2008)). This 

inferiority in fitness could translate to less efficient resource use, leading to 

greater costs to rear fish to market size.  

Sustained exercise has been shown to be a promising non-genetic, non-

hormonal means of improving several aspects of fitness (e.g., growth, feed 

conversion, and potentially swimming performance) and some work in this area 

has examined Seriola species. Brown et al. (2011) found that S. lalandi, had 3% 

greater mass and improved swimming efficiency as measured immediately 

following 28 days of sustained exercise. Fingerling S. quinqueradiata were up to 

34% larger and had improved feed efficiency as a result of 28 days of sustained 

exercise (Yogata and Oku, 2000). Most recently, Palstra et al. (2015) found a 11% 

improvement in mass and more efficient feed conversion in S. lalandi exercised 

for a mere 18 days at optimal swimming speeds. Though exercise has been shown 

to produce positive benefits in several Seriola species, the magnitude of the 

response varies due to differences in methodology (e.g. swimming velocity and 

duration, temperature, and feeding regime). Peters (2009) conducted some of the 

only work to specifically examine effects of exercise on S. doralis and found that 

fish that experiences sustained exercised for 34 days at 60% of their critical 
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swimming speed, were approximately 15% larger than the unexercised control 

group and had a significantly higher maximum sustainable swimming speeds. 

These results show promising benefits of exercise for S. dorsalis; however, many 

factors relating to exercise, for example duration needed to elicit a positive 

response and how long any benefits last, are still unknown. Understanding the 

response to exercise will help to determine optimal exercise parameters for the 

greatest benefit and subsequent best-practices for growout of this species.  

Metrics and goals of this thesis 

 In the two studies that comprise this thesis, several metrics of swimming 

and metabolic performance were measured and compared across groups in order 

to better understand (1) the effect of swim bladder uninflation on growth and 

development and how fitness of hatchery-reared fish compares to that of wild 

conspecifics, and (2) the effect of exercise duration on growth, feed conversion 

ratio, and metabolic performance of healthy hatchery-reared fish. These metrics 

included: critical swimming speed, optimal swimming speed, cost of transport, 

aerobic scope, metabolic rate, growth rate, and feed conversion ratio. These 

measures are important for creating optimal rearing parameters based on a sound 

understanding of the physiology and development of S. dorsalis.  
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CHAPTER 2: SWIM BLADDER STUDY 

Introduction  

Yellowtails, or amberjacks, are coastal pelagic carangid fishes, belonging 

to the genus Seriola, found in tropical and subtropical waters around the world. 

Seriola spp. have been identified as a group with ideal characteristics for 

aquaculture, demonstrating adaptability to hatchery production and pen culture. 

Their fast growth to market size, and high value sashimi products as well as 

premium fish fillets make them attractive candidates for further aquaculture 

development. In some countries, the aquaculture cycle for Seriola begins with 

capturing wild seed. However, because of regional availability and a general 

declining trend in catch numbers (Nakada, 2002, 2008), the use of wild seed is 

often seen as a bottleneck to commercial production and is thus thought to be less 

sustainable than producing captive seed. While recent research in larval rearing 

techniques has led to improvements in captive-bred larval quality and 

survivorship (Moran et al., 2007; Stuart and Drawbridge, 2013; Yang et al., 

2016), further research is needed to understand and optimize hatchery production. 

This study examines the California Yellowtail, Seriola dorsalis, which is 

common to waters of the Northeast Pacific, and can range from southern 

Washington State to Mazatlán, Mexico (Baxter, 1960). This species was 

previously thought to be a subspecies of Seriola lalandi, but recent research has 

shown significant genetic and meristic distinction that justified its separation 

within the Seriola complex (Martinez-Takeshita et al., 2015).  Any effect that 

these differences may have on growth and development of S. dorsalis is not well 
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understood and could potentially require adaptation of production practices 

currently used for other Seriola species. Previous larval research has 

demonstrated that S. dorsalis can been spawned, hatched and reared successfully 

in captivity (Stuart and Drawbridge, 2013), eliminating the need for wild seed, 

which are not readily available for this species. Though larval research of S. 

dorsalis has made great strides, additional research is needed, particularly in 

assessing and minimizing the impact of deformities common to hatcheries.  

A significant challenge to the aquaculture of many finfish species is the 

failure of fish to inflate their swim bladder during larval development. This 

deformity can affect large portions of post-larval fish and is a significant problem 

with many cultured species including Gilthead Seabream (Sparus auratus 

(Prestinicola et al., 2014)), European Seabass (Dicentrarchus labrax (Chatain, 

1989)), Walleye (Stizostedion vitreum (Marty et al., 1995)), Striped Trumpeter 

(Latris lineata (Trotter et al., 2001)), Southern Bluefin Tuna (Thunnus maccoyii 

(Woolley et al., 2013)), and Yellowtail Kingfish (Seriola lalandi (Woolley et al., 

2014)). Current larval rearing methods for S. dorsalis can result in up to 80% of a 

given spawn with uninflated swim bladders (Kevin Stuart, personal 

communication), which is similar to what has been seen in other species (see 

Woolley and Qin, 2010 for review). Since swim bladders are used by most fish 

species to regulate buoyancy, a fish with an uninflated bladder would likely need 

to expend more energy to maintain hydrostatic equilibrium, which could impact 

energy allocation toward growth (Bone et al., 1995; Brix, 2002; Steen, 1970).  
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Like many other important aquaculture species, Seriola spp. are 

physoclists as adults, but transient physostomes as larvae, and must gulp air at the 

surface to inflate their swim bladders before the pneumatic duct connecting the 

swim bladder to the esophagus closes. In S. lalandi, swim bladder inflation takes 

place from 2-5 days post hatch, (Woolley and Qin, 2013), which is consistent with 

observations for S. dorsalis (Stuart and Drawbridge, 2013), leaving a narrow 

window of time for inflation. While the etiology of inflation failure is not entirely 

understood, it is often attributed to a number of variables, including stocking 

density, lighting, feed type/composition, and tank flow dynamics, that potentially 

inhibit or discourage fish from gulping air at the surface. These uninflated fish are 

often assumed to be inferior, and are typically sacrificed at a young age, resulting 

in large losses of potential product (Woolley and Qin, 2010). As such, the failure 

of bladder inflation can pose a significant barrier to the commercial production. 

Several studies have reported reduced growth in larvae with uninflated 

swim bladders (Battaglene and Talbot, 1992; Chatain, 1989; Czesny et al., 2005; 

Hashimoto et al., 2012; Jacquemond, 2004b; Kindschi and Barrows, 1993) 

however, the magnitude of the response is variable. Some species, such as the 

European Perch (Perca fluviatilis), that demonstrated reduced growth in the larval 

stage due to swim bladder uninflation, were able to inflate their swim bladder 

later in development and differences in growth progressively disappeared 

(Jacquemond, 2004a). Moreover, swim bladder inflation only stunted the growth 

of Pacific Bluefin Tuna (Thunnus orientalis) up to 30 dph, after which there was 

no significant difference in size of fish with and without inflated swim bladders 
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(Kurata et al., 2015). The effect of swim bladder uninflation on growth and 

development of fish species is thus complex and varied, and despite the 

prevalence of this deformity, research on long-term growth and development is 

still needed for most species to inform hatcheries of the value of rearing these 

fish.   

This study uses a number of recently established swimming and metabolic 

metrics for S. dorsalis (Wegner et al., in review) to examine the effects of swim 

bladder inflation on yellowtail health, fitness, and development. Specifically, 

hatchery-reared fish with inflated and uninflated swim-bladders were compared to 

wild-caught S. dorsalis in terms of critical swimming speed, standard metabolic 

rate, cost of transport, and aerobic scope. In addition, somatic growth and feed 

conversion were monitored and compared between these three groups over a 32-

week growout period.  

Methods 

Fish Collection and Sorting 

 Hatchery-bred California Yellowtail, S. dorsalis, were produced by 

Hubbs-SeaWorld Research Institute (HSWRI, San Diego, CA) from wild-

captured broodstock and transferred to the experimental aquarium facility at the 

Southwest Fisheries Science Center (SWFSC, La Jolla, CA) at approximately 75 

days post hatch. Prior to transfer, fish were sorted into two groups, one group with 

fully functional and inflated swim bladders (“inflated”), and a second group with 

non-functional, uninflated swim bladders (“uninflated”). Sorting was done by 
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mildly anaesthetizing the fish using MS-222 (tricane methanesulphonate, 75 mg 

L-1) and placing them in a hypersaline solution (50 ppt). Positively buoyant fish 

were determined to have properly inflated swim bladders, while negatively 

buoyant fish were determined to have uninflated swim bladders (Woolley and 

Qin, 2010). Fish were allowed to recover from transfer stress for approximately 

one week before experimentation began, at which point they had resumed normal 

eating and swimming behavior for several days. Wild juvenile California 

Yellowtail associated with drifting kelp off the coast of San Diego, CA were 

captured by hook and line and transported to the experimental aquarium at the 

SWFSC. These fish were held in captivity for up to seven weeks before 

experimentation began to allow sufficient time for recovery from capture and 

transition to a commercial pellet feed. All transport, husbandry, and 

experimentation were done according to the SWFSC Institutional Animal Care 

and Use Committee protocol #SW1401. 

Yellowtail Growout and Feed Conversion 

A 32-week growout period was used to examine potential differences in 

somatic growth between experimental groups (wild n=39, inflated n=40, 

uninflated n=40). Each group was housed in separate oval tanks (304 x 154 x 80 

cm, volume = 3.34 m3) supplied with ~23 L min-1 of flow-through filtered 

seawater drawn from the end of the Scripps Institution of Oceanography pier. 

Water temperature (18.00 – 18.13°C) and dissolved oxygen levels were kept 

consistent between tanks, and the lack of directional flow (e.g., spray/flow bars 

were not used) allowed for more spontaneous swimming activity in each tank.  



 

17 

 

Somatic measurements [total length or body length (BL), fork length (FL), body 

mass, and girth] were taken for all fish from each group at the start of the growout 

period (“Initial”), and again after 32 weeks (“Final”) by lightly anaesthetizing 

yellowtail with MS-222 (80 mg L-1). Condition factor (CF) for each fish was 

calculated using:  

                  CF= (M/BL3) x 100        (1) 

During growout all fish were fed commercial pellets for yellowtail 

(EWOS, Surrey, BC, Canada) two to four times daily, six days a week. For the 

first eight weeks, each group was fed 5% body mass day-1 in pellets; however, as 

the fish easily consumed this amount, the feeding regime was amended for the 

remaining 24 weeks to hand feed to satiation as to not limit growth. Feed 

conversion ratio (FCR) was calculated for this 24-week period using:  

                        FCR =
total dry feed consumed (g)

total weight gained (g)
                                     (2) 

Swim Tunnel Trials 

In order to examine potential differences in swimming and metabolic 

fitness between groups, several yellowtail fitness metrics were measured through 

incremental velocity tests using variable-speed Brett-style swim tunnel 

respirometers (Loligo Systems, Viborg, Denmark). This was done at two points 

during the growout period using randomly selected fish from each group that were 

fasted for 20 to 24 hours. Fish were tested at 64.3 ± 18.1 g and 18.2 ± 1.6 cm BL 

(Size A, mean ± standard deviation: wild n=8, inflated n=6, uninflated n=7) using 
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a 5.4 L respirometer with a 30 x 7.5 x 7.5 cm working section, and again 

approximately four months later when fish were 415.26 ± 57.97 g and 32.31 ± 

1.50 cm BL (Size B: wild n=8, inflated n=7, uninflated n=8) using a 29.6 L 

respirometer with a 55 x 14 x 14 cm working section. Testing was restricted to 

sizes where fish could comfortably fit in the working section and successfully 

complete the swimming regime. The median time in captivity for the wild fish at 

Size A was 71 days, and at Size B was 185 days.  

The swim tunnel respirometer was submerged in a buffer tank supplied 

with filtered seawater at approximately 18 °C, consistent with the growout 

temperature, and water flow into and out of the tunnel was controlled by manual 

valves. Fish were acclimated in the swim tunnel at a low flow speed (typically 

under 40 cm s-1) for at least one hour before incremental velocity testing began. 

The acclimation period started once the fish was swimming steadily with a regular 

gait. Following the acclimation period, fish were forced to swim against a 

calibrated flow speed for 30 minutes, after which the flow speed was raised by 5-

10 cm s-1. This procedure was repeated until the fish fatigued, which was 

indicated by resting against the back fence of the working section and the inability 

to swim forward when encouraged through visual cues.  

Following each trial, swimming speed was adjusted for the solid blocking 

effect of both the cylindrical vane wheel flow meter probe (Höntzsch Gmbh, 

Waiblingen, Germany) used to calibrate the swim tunnel, and for the size-specific 

blocking effect of each fish. To account for the flow meter blocking effect, the 

following equation was used:  
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   𝐴1𝑉1 = 𝐴2𝑉2                                  (3) 

where A1 is the cross-sectional area of the flume (cm2) minus the cross-sectional 

area of the flow meter (cm2), V1 is the velocity as measured by the flow meter (cm 

s-1), A2 is the cross-sectional area of the flume without the flow meter present 

(cm2), and V2 is the true velocity without the flow meter blocking effect (cm s-1). 

The solid blocking effect of each fish was accounted for using the Bell and 

Terhune equation (1970 ):  

𝜖s= 𝜏𝜆 (
𝐴O

𝐴T
)

3

2
           (4) 

where ϵs is the fractional error caused by the blocking effect, τ is the factor for the 

flume cross-sectional shape (0.8), and λ is the shape coefficient for the object [in 

this case a streamlined object coefficient of 0.5 multiplied by the (BL (cm) ÷ fish 

thickness (cm))]. Fish thickness (diameter) was calculated as G/π where G is 

girth. AO is the maximum cross-sectional area of the fish (πr2), and AT is the cross-

sectional area of the flume (cm2). This error coefficient was then used to find the 

true flow speeds experienced by the fish (VF) using: 

𝑉𝐹 = 𝑉𝑇(1 + 𝜖𝑠)                        (5) 

where VT is the flow speed in the empty flume (cm s-1), and ϵs is the fractional 

error as calculated above. Following all flow speed adjustments, critical 

swimming speed (Ucrit, cm s-1) was determined for each fish based on Brett’s 

(1964) equation:  



 

20 

 

 𝑈crit = 𝑈i + ( 
𝑡f

𝑡i
×  𝑈ii)                                      (6) 

where Ui is the highest speed sustained for a full 30-minute increment (cm s-1), tf 

is the time swam at the fatigue velocity in minutes, ti is the prescribed time 

interval for each velocity increment (30 minutes), and Uii is the last incremental 

velocity step increase (cm s-1).  

Respirometry and Metabolic Performance 

Oxygen consumption data were recorded for each fish in the respirometer 

while swimming at each 30-minute velocity step using a Fibox 3 fiber optic 

oxygen transmitter (PreSens Precision Sensing GmbH, Regensburg, Germany). 

Approximately two minutes after each step-wise increase in speed, the 

respirometer was sealed and the oxygen level (as % air saturation) was recorded 

every five seconds using PreSense software version PST3v602. Oxygen saturation 

within the respirometer was not allowed to drop below 80% before the system 

was manually flushed and brought back to full saturation, at which point oxygen 

measurements were repeated if time allowed. The recorded decrease in oxygen 

saturation was used to calculate the metabolic rate (MO2
) at each swimming speed. 

If multiple oxygen traces were completed during a given speed, they were 

averaged to find the mean oxygen consumption at that speed.  

At the conclusion of each swim tunnel trial, the fish was removed from the 

working section, and the chamber was resealed for a measurement of background 

respiration, which was then subtracted from the fish’s calculated MO2
. Each fish 
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was then lightly anaesthetized using MS-222 (80 mg l-1) to measure size (BL, FL, 

mass, and girth), and then temporarily placed in a holding tank, separate from the 

growout tanks, to ensure it was not repeatedly tested in the swim tunnel at a given 

size point (Size A or Size B). Once all respirometry measurements were 

completed at a given size for all three groups, fish were placed back in their 

original tanks for continued growout.    

The mean water temperature for all swim tunnel trials was 18.17 ± 0.30 

°C; however, temperature ranged from 16.94 -19.38 °C, so for direct comparison 

between groups metabolic data were adjusted for temperature using the equation:  

(MO2
)2 = (MO2

)1 𝑄10

(
𝑇2−𝑇1

10
)
                                  (7) 

where T2 is the desired temperature (18.0 °C), T1 is the measured temperature 

(°C), (MO2
)2 is the oxygen consumption (mgO2 min-1) at T2, (MO2

)1 is the oxygen 

consumption at T1, and Q10 = 2 (Pirozzi and Booth, 2009). In addition, metabolic 

data for each fish were scaled to a common body mass (65 g at Size A and 410 g 

at Size B) using mass0.80 (Brett and Groves, 1979) for more direct comparison 

between groups. 

For each fish, MO2 
was plotted against swimming speed, which typically 

resulted in a checkmark-shaped curve (common for pelagic fishes), with increased 

oxygen consumption at low swimming speeds representing the added energetic 

cost needed to maintain hydrostatic equilibrium at these inefficient velocities 

(Webb, 1998). MO2
 values at low speeds that were higher than the vertex of the 

curve were therefore excluded (Sepulveda et al., 2003) before the aggregate data 
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were used to generate regressions for MO2
 in relation to swimming speed for each 

group (inflated, uninflated, wild) at each size measured (Size A, B).  Regression 

relationships between oxygen consumption and swimming speed were determined 

using a bootstrap analysis in which 10,000 exponential regression replicates were 

created from aggregate data for each group at each size using RStudio (v1.0.143). 

Bootstrap regressions were then extrapolated to a swimming speed of 0 cm s-1 and 

averaged to estimate standard metabolic rates (SMR) for each group and size. 

Aerobic scope for each group and size was determined using individual fish data 

to estimate SMR and then subtracting it from the highest metabolic rate recorded 

for that fish.   

 To understand metabolic costs associated with level of swimming activity, 

MO2 
data from individual fish were used to calculate the cost of transport (COT, 

mgO2 kg-1 m-1) at each swimming speed using the equation:   

 COT= MO2
 / U            (8) 

where U is the swimming speed (m min-1). COT was graphed against swimming 

speed with the lowest point (vertex) of the polynomial regression curve 

representing the optimal swimming speed (Uopt) at which the cost of transport is 

lowest. The vertex, or Uopt, was found by taking the derivative of the polynomial 

regression for each fish, setting it equal to zero, and solving for ‘x’.  The Uopt was 

then used to find the lowest value of COT by plugging the calculated ‘x’ back into 

the original polynomial equation. The result, or min COT, for each individual fish 

was then used to compare across groups.   



 

23 

 

Statistical Analysis 

  Metrics of growth, swimming performance, and aerobic scope were 

determined as means ± standard deviation from individual fish data and potential 

differences between inflated, uninflated, and wild yellowtail were compared 

statistically using a single factor ANOVA, followed by a Tukey post-hoc test if   

P ≤ 0.05. Bootstrapped regression equations of MO2
 in relation to swimming 

speed were used to test for significant differences in the metabolism of different 

groups at different swimming speeds. Significant differences in the metabolism 

between groups was confirmed if less than 5% of the replicate regressions 

intersected within the range of swimming speeds being compared. 

Results  

Growth and Feed Conversion 

At the start of the study, fish body mass (44.3 ± 12.4 g), FL (14.9 ± 1.4 

cm), and girth (8.5 ± 0.9 cm) did not differ significantly between groups; 

however, the wild fish had significantly longer BL than the inflated fish (16.6 ± 

2.4 cm vs. 15.7 ± 0.7 cm respectively), and a significantly lower condition factor 

than both other groups (0.94 ±0.08 vs. 1.10 ±0.07 inflated, 1.09 ± 0.08 

uninflated).  After a 32-week growout, inflated fish had significantly greater mass 

(758.6 ± 92.7 g vs. 671.1 ± 128.9 g wild, 636.1 ± 80.4 g uninflated) and girth 

(23.2 ± 1.1 cm vs. 21.6 ± 1.7 cm wild, 21.5 ± 1.2 cm uninflated) than the other 

two groups, while uninflated fish had significantly shorter BL (36.5 ± 1.9 cm vs. 

38.4 ± 2.7 cm wild, 39.6 ± 2.0 cm inflated), and significantly higher condition 
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factor (1.76 ±0.15 vs. 1.18 ± 0.12 wild, 1.22 ± 0.09 inflated; Figure 1.1). Wild 

fish had the most efficient FCR (1.41 vs. 1.49 inflated, 2.08 uninflated) and 

needed 5.8% less feed than the inflated group, and 47.8% less feed than the 

uninflated group to gain equivalent mass.  

Swimming and Metabolic Performance 

Swimming and metabolic performance data are shown in Tables 1.1 and 

1.2 respectively.  Critical swimming speed was not significantly different between 

any of the groups at either Size A or Size B (Table 1.1). The wild fish had a 

significantly lower SMR than both other groups at Size A (3.08 ± 0.23 vs. 5.60 ± 

0.54 inflated, 6.45 ± 0.66 mgO2 kg-1 min-1 uninflated), but there was not a 

significant difference in SMR between groups at Size B (Table 1.2). Figure 1.2 

shows aggregate metabolic curves for each group over a range of swimming 

speeds. At Size A (Figure 1.2 A), wild fish had significantly lower metabolic rates 

that the uninflated fish for swimming speeds up to 5.7 BL s-1 and the inflated fish 

up to 5.0 BL s-1. Inflated fish had significantly lower metabolic rates than the 

uninflated fish for swimming speeds from 2.5-5.3 BL s-1. Although the initial 

significant difference in SMR between groups was not maintained for the 

approximate four months of growout between Size A and B, the uninflated fish 

had significantly higher metabolic rates than the inflated fish from 2.3-4.5 BL s-1, 

and the wild fish from 1.3 to 4.3 BL s-1 at Size B (Figure 1.2 B). There was no 

significant difference in the aerobic scope between groups at either Size A or Size 

B (Table 1.2).  
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Aggregate COT data is shown for Size A and Size B in Figure 1.3 and is 

intended for visual comparison only, as any significance was determined from 

individual fish data. Although Uopt was not significantly different between groups 

at Size A, the wild fish had a significantly lower min COT than either other group 

at this size (0.24 ± 0.04 vs. 0.31 ± 0.03 inflated, 0.35 ± 0.04 mgO2 kg-1 m-1 

uninflated). At Size B, wild fish had a significantly lower Uopt than the uninflated 

fish (2.64 ± 0.43 vs. 3.23 ± 0.27 BL s-1); however, there was no significant 

difference in min COT between any groups at Size B (Table 1.1).  
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Table 1.1. Metrics of swimming performance for cultured S. dorsalis with 

properly inflated and uninflated swim bladders compared to wild-caught 

yellowtail. Values are group means ± standard deviation. * Indicates significant 

difference of one group from the other two. ** Used to indicate significant 

difference between two groups.   
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Group 

Ucrit  

Size A 

(BL s-1) 

Ucrit  

Size B 
(BL s-1) 

Uopt  

Size A 
(BL s-1) 

Uopt  

Size B 

(BL s-1) 

 

Min COT 

 Size A 
(mgO2 kg-1 m-1) 

 

Min COT 

Size B 
(mgO2 kg-1 m-1) 

Wild 5.24 ± 0.62 4.31 ± 0.35 3.52 ± 0.20 2.64 ± 0.43** 0.24 ± 0.04* 0.16 ± 0.03 

Inflated 5.38 ± 0.80 4.42 ± 0.32 3.49 ± 0.74 2.99 ± 0.43 0.31 ± 0.03 0.16 ± 0.03 

Uninflated 5.20 ± 0.53 4.35 ± 0.58 3.99 ± 0.46 3.23 ± 0.27** 0.35 ± 0.04 0.19 ±0.04 
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Table 1.2. Metrics of metabolic performance for aquaculture-reared S. dorsalis 

with properly inflated and uninflated swim bladders compared to wild-caught 

yellowtail. Mean standard metabolic rates (SMR) were adjusted to a temperature 

of 18°C using a Q10= 2, and standardized to 65 g at Size A, and to 410 g at Size B 

using mass0.80. Values are group means ± standard deviation. *Indicates 

significant difference of one group from the other two.  
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Group 

SMR  

Size A  
(mgO2 kg-1 min-1) 

SMR  

Size B 
(mgO2 kg-1 min-1) 

Aerobic Scope 

Size A 
(mgO2 kg-1 min-1) 

Aerobic Scope  

Size B  
(mgO2 kg-1 min-1) 

Wild 3.08 ± 0.23* 2.95 ± 0.22 21.06 ± 4.26 13.49 ± 3.03 

Inflated 5.60 ± 0.54 3.08 ± 0.38 18.46 ± 3.43 16.33 ± 2.57 

Uninflated 6.45 ± 0.66 3.67 ± 0.50 18.61 ± 4.71 17.23 ± 4.13 
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Figure 1.1. Comparison of (A) body mass, (B) body length, (C) girth and (D) 

condition factor of all groups at the start (initial) and end (final) of a 32-week 

growout period. Statistical significance is only shown between groups within each 

time point. *Indicates significant difference of one group from the other two.  

**Used to indicate significant difference between two groups.   
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Figure 1.2. Metabolic rate (MO2
) at various swimming speeds for wild fish 

(dotted line), inflated fish (grey line), and uninflated fish (black line) at (A) Size 

A (65 g) and approximately four months later at (B) Size B (410 g). For A, wild 

n=8, inflated n=6, uninflated n=7. For B, wild n=8, inflated n=7, uninflated n=8. 
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Figure 1.3. Cost of transport (COT) at (A) Size A (65 g) and approximately four 

months later at (B) Size B (410 g) for wild fish (dotted line), inflated fish (grey 

line), and uninflated fish (black line). For A, wild n=8, inflated n=6, uninflated 

n=7. For B, wild n=8, inflated n=7, uninflated n=8. 
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Discussion  

Physiological metrics used to evaluate the growth and development of           

S. dorsalis demonstrated that cultured yellowtail without properly inflated swim 

bladders have reduced fitness (e.g., higher metabolic rates for a range of 

swimming speeds, slower growth, and higher FCR) compared to cultured fish 

with properly inflated swim bladders as well as wild-caught controls. When 

comparing the fitness of inflated fish to that of wild conspecifics, results indicate 

that there is still room for targeted improvement in the fitness of inflated fish, 

such as lowering FCR through improving SMR. Although the wild fish 

demonstrated more favorable fitness in the key areas mentioned, the fitness 

advantage was lost over time indicating that aquaculture rearing conditions used 

in this study were suboptimal for fish fitness. 

The uninflated fish used in this study were negatively buoyant and denser than 

the other groups (1.06 g cm-3 vs. 1.02 g cm-3), which required them to swim at 

faster speeds in order to generate lift and maintain hydrostatic equilibrium. This 

was especially apparent during swim tunnel testing in which the uninflated fish 

had a much harder time swimming at low speeds than the other two groups, 

resulting in a lack of metabolic data less than 2 BL s-1. The observed difficulty in 

swimming at these low speeds is consistent with the need for negatively buoyant 

fish to maintain minimum speeds of 1-3 BL s-1 to avoid sinking (Brix, 2002; 

Pelster, 1997), and the shallow depth of the respirometer often necessitated even 

faster speeds to prevent the fish from brushing or dragging along the bottom due 

to their steep swimming angle needed to generate lift. This need to swim quickly 
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to maintain hydrostatic lift without the buoyancy aid of a swim bladder was 

further supported by observations of this group continuously swimming faster 

than the other groups in the growout tanks. These faster swimming speeds lead to 

higher energetic costs (Fig. 1) and were likely the primary contributor to the 

higher FCR observed for the uninflated fish during growout. Although 

maintaining faster swimming speeds is energetically costly, it may have helped 

the uninflated fish retain some aspect of fitness, including the ability to reach 

critical swimming speeds comparable to those achieved by wild and inflated fish.  

In addition to increased energetic demands due to constantly swimming at 

a faster speed, uninflated fish also showed differences in the relationship between 

oxygen consumption and swimming speed. Although the SMR of uninflated fish 

was not significantly different from that of the inflated fish at either size, the 

uninflated fish did have higher oxygen consumption than the inflated fish for 

swimming speeds between 2.5 and 5.3 BL s-1 at Size A and from 2.3 to 4.5 BL s-1 

at Size B indicating they were less efficient swimmers over that range of speeds. 

This increased energy demand from more laborious swimming, likely necessitates 

increased food consumption without a concomitant increase in growth, further 

contributing to the less efficient FCR observed. Less efficient energy allocation 

seems to also lead to slower growth, resulting in significantly shorter FL and TL 

which contributed to a significantly higher condition factor as compared to the 

other groups. This is consistent with larval studies reporting reduced growth in 

several species of fish with uninflated swim bladders (Battaglene and Talbot, 

1992; Chatain, 1989; Czesny et al., 2005; Hashimoto et al., 2012; Jacquemond, 
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2004b; Kindschi and Barrows, 1993) and confirmed the reduced growth and 

physiological effects over a longer period of time that previous studies. In 

addition to slower growth, failure to inflate the swim bladder has been linked to 

spinal deformation, such as lordosis, in several species (Chatain, 1994; 

Jacquemond, 2004a; Woolley et al., 2014), and mild to severe lordosis was 

externally visible in 40% (14 of 35) of the uninflated fish examined at the end of 

the 32-week growout in this study. This resultant skeletal deformity may further 

affect their swimming performance, and cause subsequent developmental issues 

that lead to less favorable growout.  

Clear differences in fitness between the wild and inflated fish in this study 

were evidenced by the lower SMR at Size A and more efficient feed conversion 

of the wild group. Similar disparities in fitness between wild-caught and hatchery-

reared conspecifics have been previously reported for S. dorsalis (Wegner et al., 

in review) and are a common challenge in aquaculture for a range of species 

(Basaran et al., 2007; Duthie, 1987; Hammenstig et al., 2014; McDonald et al., 

1998; Pedersen et al., 2008; Shustov and Shchurov, 1988). Wegner et al. found 

that hatchery yellowtail, produced by HSWRI, had a significantly lower critical 

swimming speed, higher standard metabolic rate, and smaller aerobic scope in 

comparison to wild-caught fish; however, in the current study there was no 

significant difference in critical swimming speed or aerobic scope between 

groups. These differences in results could be attributed to improvements in larval 

husbandry practices that have led to better survival, hardiness, and enhanced 



 

39 

 

fitness of the 2015 hatchery cohort used in this study compared to the 2012 cohort 

used in Wegner et al. (Kevin Stuart, personal communication).  

Although changes to larval production protocols for S. dorsalis have 

shown positive effects on the fitness of hatchery fish, the results from this study 

shed light on areas in which improvement is still needed. Although the inflated 

fish had a significantly greater final body mass and girth, they had a poorer feed 

conversion than the wild fish. Their superior growth performance could be 

attributed to greater food consumption with the inflated fish eating 28.2% more 

food than the wild fish, however they only gained 21.2% more mass. This resulted 

in a higher feed conversion ratio in the inflated fish of 1.49 vs. 1.41 for wild fish, 

equating to more food necessary to gain equivalent mass. The better efficiency of 

the wild fish may have been a result of a lower SMR, and significantly lower 

minimum cost of transport when they were initially brought into captivity (Size 

A). This suggests that improving metabolic fitness in aquaculture-reared fish may 

be beneficial for feed efficiency, and since aquaculture feed is the largest 

operational expense for commercial farms, improved feed conversion could have 

major financial implications that make this an important area for further 

investigation and optimization. 

 The degradation of fitness observed in the wild fish over time likely 

indicates inefficiency in the rearing and growout process used in this study, which 

means there is opportunity to improve rearing protocols to extend fitness benefits 

and potentially produce more efficient and healthier fish. In the wild, fish may 

encounter strong current regimes in addition to needing to search for prey and 
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avoid predators, activities that likely help to improve and maintain fitness that fish 

do not experience in captivity. Removing wild fish from a more active 

environment seems to contribute to their reduced fitness advantage at Size B after 

4 months in captivity, and suggests a need for exercise for this species in 

aquaculture. Research involving sustained exercise has shown positive effects on 

growth (Davison and Goldspink, 1977; Ibarz et al., 2011; Palstra et al., 2015; 

Totland et al., 1987; Walker and Emerson, 1978), and behavior (Adams et al., 

1995; Christiansen and Jobling, 1990; East and Magnan, 1987) of several species, 

although a majority of work in this area has focused on salmonids, and more 

research is needed on other active species such as S. dorsalis. The limited work on 

Seriola spp. suggests improved growth and feed conversion associated with 

exercise training (Brown et al., 2011; Palstra et al., 2015; Peters, 2009; Yogata 

and Oku, 2000); however, it is not known if and for how long these benefits 

persist once exercise is completed. The duration of beneficial responses could be 

critical for determining at what point exercise should be introduced in the rearing 

process and how much exercise is necessary to elicit a lasting response. Further 

research on protocols that could improve and prolong periods of metabolic fitness 

could greatly benefit commercial producers of S. dorsalis and like species.  

Conclusions 

While fish with uninflated swim bladders were comparable to the other 

groups in some metrics of fitness, such as critical swimming speed, their need to 

swim at higher speeds in growout tanks, slower growth, and poor FCR call into 

question the sustainability of rearing fish with this deformity. These measures of 
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growth and growth efficiency, in addition to visible deformities (e.g. lordosis) that 

would likely reduce market price, indicate that uninflated fish are not economical 

to rear for commercial production. In addition, this study suggests the fitness of 

inflated fish could be improved through lowering their standard metabolic rates 

which could in turn improve feed conversion. This could potentially be achieved 

through exercise, as limited prior research on S. dorsalis has shown promising 

links between sustained exercise and improved feed conversion, which has 

significant implications for commercial production. Although wild fish proved to 

be more fit in key areas as demonstrated by their lower FCR and SMR, their 

fitness advantage was not retained with time in captivity, illuminating the need for 

more effective rearing protocols that can enhance fitness and improve 

development.  
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CHAPTER 3: EXERCISE STUDY 

Introduction 

The carangid genus Seriola is composed of active, fast growing fishes that are 

targets for continued aquaculture development due to their adaptability to a 

culture environment and high market value (Nakada, 2008). Several Seriola 

species are farmed globally (e.g., S. quinqueradiata in Japan and Korea;              

S. dumerili in Japan, the Mediterranean and Vietnam; and S. lalandi in Southern 

Australia and New Zealand) and there is a push for development of S. dorsalis in 

US waters. S. dorsalis was recently distinguished as a unique species from          

S. lalandi (Martinez-Takeshita et al., 2015), and is well adapted to its cool 

regional habitat that can range from Mazatlán, Mexico to Southern Washington 

State (Baxter, 1960). While captive rearing of S. lalandi has been occurring in 

some countries for over 70 years (Nakada, 2008), rearing S. dorsalis in captivity 

is a nascent industry, and differences in the genetic and physiological makeup of 

S. dorsalis may influence growth and development in significant ways. This 

underscores the need for further research in order to craft species-specific rearing 

protocols.  

Recent work has found that hatchery-reared S. dorsalis have reduced 

fitness in comparison to wild-caught conspecifics (See Chapter 2; Wegner et al., 

in review), which is consistent with findings for several other aquaculture species 

(Basaran et al., 2007; Duthie, 1987; Hammenstig et al., 2014; McDonald et al., 

1998; Pedersen et al., 2008; Shustov and Shchurov, 1988). Metrics of 
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physiological fitness such as metabolic rate, critical swimming speed, growth rate, 

and feed conversion, are important for understanding fish health and 

development, and can help identify areas for targeted, species-specific 

improvements in aquaculture. Results from previous studies using such metrics, 

indicate that although hatchery-reared S. dorsalis grow well in land-based culture 

(see Chapter 2), they can have higher standard metabolic rates, slower critical 

swimming speeds (Wegner et al., in review), and less efficient feed conversion 

ratios (see Chapter 2) than wild-caught counterparts. Such reduced fitness and 

efficiency could have significant negative impacts on production when scaled up 

to a commercial level.  

One possibility for improving the fitness of hatchery-reared S. dorsalis is 

through the use of sustained exercise training, which is a promising non-invasive 

and non-hormonal treatment that has been shown in other fish species to stimulate 

growth (Brown et al., 2011; Christiansen et al., 1989; Davison and Goldspink, 

1977; Palstra et al., 2015; Totland et al., 1987; Yogata and Oku, 2000), improve 

feed conversion (Christiansen et al., 1992; Davison and Goldspink, 1977; East 

and Magnan, 1987; Jørgensen and Jobling, 1993; Yogata and Oku, 2000), reduce 

aggressive behavior (Adams et al., 1995; Christiansen and Jobling, 1990; 

Jørgensen and Jobling, 1993), and potentially affect metabolism (Bagatto et al., 

2001; Brown et al., 2011; Skov et al., 2011).  However, the presence and 

magnitude of most responses appear to be species-specific, and dependent on the 

intensity and duration of exercise, the life stage of the fish, and environmental 

conditions such as temperature. The majority of previous work has generally used 
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periods of sustained exercise on the order of four weeks to several months (Brown 

et al., 2011; Herbert et al., 2011; Totland et al., 1987). However, recent work on 

S. lalandi by Palstra et al. (2015) showed that a mere 18-day exercise regime 

resulted in enhanced growth and feed conversion comparable to longer exercise 

studies, but it remains generally unknown if such short durations of sustained 

swimming can regularly elicit such benefits. It is also poorly understood for how 

long any benefits persist post-exercise since most previous work has only 

examined responses immediately following completion of the exercise training. 

Of the limited work evaluating the persistence of beneficial changes, Young and 

Cech Jr. (1994) found that young-of-the-year Striped Bass (Morone saxatilis) 

exercised at 1.5-2.4 BL s-1 for 60 days, remained significantly larger than the 

control group for the entire 56-day post-exercise growout period examined.   

In addition to a limited understanding of the duration of exercise needed to 

elicit growth and health benefits and the persistence of such benefits post 

exercise, other factors such as the life stage, or timing of exercise within the 

rearing process, has potential to affect the magnitude of the growth response. 

Phenotype can be influenced by the interaction of environmental factors and a 

fish’s genotype, and sensitivity to environmental stimuli changes throughout 

development (Rezende et al., 2005; Spicer and Burggren, 2003). During early 

ontogeny, muscle development occurs so rapidly that some changes become 

irreversible (Johnston, 2006; Rezende et al., 2005) and there may be opportunity 

to create a lasting response in the musculature via exercise if it is introduced early 

in the rearing process. Changes to the musculature, such as stimulated 
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hypertrophy and a potential increase in hyperplasia in response to exercise could 

result in better growth (see Johnston 1999, and Davison 1997 for review), but the 

optimal developmental stage for introducing exercise is still uncertain. 

This study seeks to assess the duration of exercise necessary to elicit a 

positive growth and physiological response in S. dorsalis, and evaluate the 

persistence of that response, through tracking the fitness of fish subjected to 

exercise of equal intensity but varying duration. S. dorsalis used in this study 

were thus exercised continuously for two, three, or four weeks in custom-built 

raceways designed to encourage sustained exercise, and then removed for a 24-

week growout period during which several metrics of physical fitness were 

monitored in comparison to non-exercised controls. In addition, exercise was 

introduced at an early life stage (approx. 4 g and 7 cm TL) in comparison to 

previous work done with larger S. lalandi (Brown et al., 2011; Palstra et al., 

2015). Improving fitness of hatchery-reared S. dorsalis through exercise could not 

only benefit the health and wellbeing of the fish, but also inform more cost-

effective growout procedures and enhance production through accelerated growth 

and more efficient feed conversion.  

Methods 

Experimental Fish 

Aquaculture-reared California Yellowtail, S. dorsalis, produced by Hubbs-

SeaWorld Research Institute (HSWRI, San Diego, CA), were transferred to the 

experimental aquarium facility at the Southwest Fisheries Science Center 
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(SWFSC, La Jolla, CA) at approximately 45 days post hatch. Fish were allowed 

to recover from transfer stress for a minimum of one week before any 

experimentation began, at which point they had resumed normal eating and 

swimming behavior for several days. All experimentation was done according to 

the SWFSC Institutional Animal Care and Use Committee approved protocol 

#SW1602. 

Exercise Protocol  

In order to get a better understanding of the duration of exercise necessary 

to elicit a positive growth and physiological response, three exercise regimes were 

employed in comparison to a non-exercised control group. Exercised fish swam 

continuously for two weeks (2W), three weeks (3W), or four weeks (4W) in 

custom designed raceways (Figure 2.1 and Figure 2.2; Oceans Design, Colorado 

Springs, CO) that consisted of a linear working section (165 x 20 x 23 cm) with a 

clear acrylic side wall, to allow observation of swimming behavior. Raceways 

were placed on a metal frame above a sump that contained four 100-micron bag 

filters to collect solids. A 3-phase induction motor (Teco Westinghouse Motor 

Company, Round Rock, TX) circulated water between each sump and the 

corresponding raceway, and a Matala filter pad and flow straighteners at the front 

of the working section helped to streamline water flow that traveled to the 

standpipe at the opposite end. Mesh fencing at the front and back of the working 

section kept the fish contained and prevented fish from traveling down into the 

sump. Individual motors and interchangeable stand pipes allowed for 

manipulation of flow speed and water volume of each raceway. All tanks and 
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equipment were supplied with flow-through filtered seawater drawn from the end 

of the Scripps Institution of Oceanography pier in La Jolla, CA and supplied at a 

rate of approximately 15 L min-1 to each raceway. Water temperature in all 

raceways was maintained at 22.5 ± 0.5 °C.  

At the start of the experiments, fish were lightly anaesthetized using MS-

222 (tricane methanesulphonate, 80 mg L-1) and a representative subset of 

experimental fish (n=98) were measured for body length (BL, = total length, 7.05 

± 0.71 cm, mean ± standard deviation), fork length (FL, 6.39 ± 0.68 cm), and 

body mass (4.35 ± 1.26 g), before all fish were evenly distributed into three 

raceways (n=145 each raceway), and a control tank (n=145). Fish were placed in 

the raceways with the lowest flow allowed by the pumps (under approximately 4 

BL s-1) that was gradually increased over several hours to a speed of 61.6 ± 3.2 

cm s-1 (around 8.7 BL s-1). This speed was determined based on work by Palstra et 

al (2015) and Schwebel et al. (see Chapter 2) that used cost of transport to 

determine optimal swimming speed (Uopt) for S. lalandi and S. dorsalis 

respectively. Flow was checked daily using a cylindrical vane wheel flow meter 

probe (Höntzsch Gmbh, Waiblingen, Germany) and was adjusted accordingly to 

maintain optimal speed for a given body length as the fish grew. Once exercise 

was complete, fish were removed from the raceways and placed in separate oval 

growout tanks that were identical to the control tank (304 x 154 x 80 cm, 

volume= 3.34 m3).  

 



 

48 

 

Growth and Feed Conversion 

A 24-week growout period was used to evaluate the effect of exercise 

duration on growth over time. Somatic measurements (BL, FL, and mass) were 

taken at the start of growout before exercise began and again after two weeks, 

three weeks and four weeks had elapsed (when each exercise regime was 

completed), and then every two weeks thereafter until the end of the six-month 

growout period (14 time-points total). For each measurement, a subset of 30 fish 

from each treatment group were randomly selected, anaesthetized and measured. 

Following measurements, fish recovered quickly and generally resumed normal 

swimming and feeding behavior within a few hours. In addition to using somatic 

measurements to evaluate growth, condition factor (CF) for each fish was 

calculated using:  

CF= (M/BL3) x 100         (1) 

where M is fish mass (g) and BL is total length in (cm).  

Water temperature (22.1 ± 0.3°C) and other parameters (e.g., dissolved 

oxygen, stocking density, and water quality) were monitored daily and kept 

consistent between growout tanks. Water was supplied to each tank at a rate of 

approximately 23 L min-1, and spray bars were used to created directional flow.  

Fish were initially fed Otohime marine fish larval and weaning feed 

(Marubeni Nisshin Feed Co., Ltd, Tokyo, Japan) for approximately 11 weeks 

before transitioning to EWOS commercial pellets (EWOS, Surrey, BC, Canada) 

for the remainder of the growout. Fish were hand fed to satiation three to five 
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times daily seven days a week during the exercise period (first four weeks of 

experimentation), and six days a week thereafter. Feed conversion ratio (FCR) 

was calculated from the 20 weeks of data collected after all exercise was complete 

using:  

FCR =
total dry feed consumed (g)

total weight gained (g)
                                                (2) 

Feed consumption data collected during exercise could not be included in FCR 

calculations due to high flow speeds causing an unmeasurable amount of feed to 

pass by the fish during feedings.  

Respirometry 

In order to compare the effect of exercise on metabolic performance, 

respirometry was conducted on each group at three sizes during the growout 

period. For all respirometry trials, fish were randomly selected from each group 

(2W, 3W, 4W, and control; n=8 for each group at each size point), and fasted for 

approximately 24 hours before testing began. The first respirometry trials were 

conducted within the week following completion of exercise (Size A), and as such 

were staggered as fish completed either two weeks, three weeks, or four weeks of 

continuous exercise. During testing the 2W group was 32.1 ± 11.0 g and 13.7 ± 

1.4 cm BL, the 3W group was 53.9 ± 13.2 g and 16.1 ± 1.3 cm BL, and the 4W 

group was 87.7 ± 12.2 g and 18.9 ± 0.9 cm BL. Respirometry of control fish was 

interspersed with testing of the exercised groups (41.1 ± 18.3 g and 14.9 ±2.2 cm 

BL). Subsequent respirometry was conducted when fish were 204.3 ± 53.8 g and 

25.1 ± 2.0 cm BL (Size B), and again when fish were 409.1 ± 62.0 g and 31.9 ± 
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1.4 cm BL (Size C). Trials at Size A were done using a 5.4 L variable speed Brett-

style swim tunnel respirometer with a 30 x 7.5 x 7.5 cm working section, while 

testing at Size B and Size C used a 29.6 L respirometer with a 55 x 14 x 14 cm 

working section (Loligo Systems, Viborg, Denmark). Testing was limited to sizes 

where fish could comfortably fit in the working section of the swim tunnel and 

successfully complete the swimming regime. 

Both respirometers used were of the same design and supplied with 

filtered seawater at approximately 22 °C, consistent with the rearing temperature. 

The respirometers were submerged in buffer tanks of seawater and the inflows 

and outflows were controlled with manual valves. Prior to experimentation, water 

flow velocity within the swim tunnel was calibrated with a cylindrical vane wheel 

flow meter probe as described in Chapter 2. Fish were acclimated to the 

respirometer for a minimum of one hour at a low flow speed (typically under 40 

cm s-1), and acclimation began once the fish was swimming steadily with a 

regular gait. Following acclimation, fish were made to swim against a 

predetermined flow speed and the system was sealed to measure oxygen level (as 

% air saturation) using a Fibox 3 fiber optic oxygen transmitter and temperature 

probe (PreSens Precision Sensing GmbH, Regensburg, Germany). Saturation was 

logged every five seconds using PreSense software version PST3v602. The fish 

was allowed to draw the oxygen saturation down from 100% to 80% before the 

system was flushed with fresh seawater and the flow speed was raised by 10 cm  

s-1. Approximately two minutes after an increase in speed, the respirometer was 

sealed and this process was repeated for a minimum of eight swimming speeds. If 
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time allowed, some measurements were duplicated at a given swimming speed, 

and in this case the resulting traces were averaged to find the mean metabolic rate 

(MO2
) at that speed. After each swimming trial was concluded, the fish was 

removed, and the respirometer was resealed to measure background respiration, 

which was subtracted from the fish’s calculated MO2
. Fish were then sacrificed 

using an overdose of MS-222 (800 mg L-1), and measured [BL, FL, body mass, 

and girth]. 

Following experimentation, swimming speed was corrected for the solid 

blocking effect of both the flow meter used for calibration, and for the effect of 

each fish in the chamber according to the methods described in Chapter 2. Mean 

water temperature for all trials was 22.1 ± 0.3 °C; however, temperature ranged 

from 20.8 to 23.4 °C, so for direct comparison between groups, metabolic data 

were corrected to a temperature of 22.0 °C using Q10=2 (Pirozzi and Booth, 

2009).  

For each fish, oxygen consumption was plotted against swimming speed, 

and the resulting graph showed a check mark shaped curve (characteristic of 

many pelagic fishes), due to increased energy costs associated with maintaining 

hydrostatic equilibrium at low speeds (Webb, 1998). Data points from the low 

swimming speeds that were higher than the vertex of the curve were therefore 

removed before group data was combined (Sepulveda et al., 2003). In order to be 

directly comparable within a size point, metabolic data for each fish were scaled 

to a body mass of 55 g at Size A, 205 g at Size B, and 410 g at Size C using 

mass0.80 (Brett and Groves, 1979).   
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Statistical Analysis 

  Somatic measurements and condition factor at each sampling point were 

compared statistically across groups using a single factor ANOVA, followed by a 

Tukey post-hoc test if P ≤ 0.05. Data are presented as the mean ± standard 

deviation.  

In addition, growth (in body lengths) for each group was analyzed using a 

von Bertalanffy growth model (VBGM) based on the equation:  

Lt = L∞ *(1- e-K*(t – t
0
))                                           (3) 

in which Lt is length-at-age, L∞ is the asymptotic length, K is the Brody growth 

coefficient, and t0 is the age where length is 0 (Ricker, 1975). We used model 

selection (Burnham and Anderson, 2002) to evaluate whether L∞, K, or t0 varied 

among treatments.  Specifically, we established a set of 8 a priori models in 

which each variable was either static or variable among treatments (Table 2.1).  

Residuals of the full model (L∞, K, or t0) indicated that assumptions of normality 

were met. Model fit was assessed based on maximum likelihood using Akaike’s 

information criterion (AIC) scores.  In cases where AIC scores differed by 2 or 

less and models were nested (i.e., contained common variables), ANOVAs were 

used to determine if the models differed.  If the ANOVA p-value was greater than 

0.05 we considered the models to be equivalent and parsimoniously regarded the 

one with fewest parameters as the best-fit model (Ogle, 2013). VBGM were 

created and evaluated using the FSA (Ogle 2017), FSAdata (Ogle 2017), and 

nlstools (Baty et al., 2015) packages in R version 3.3.2 (R Core Development 
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Team 2016).  As the best model had one variable that varied among treatments 

(K; see Results), we used Welch modified two-sample t-tests based on summary 

statistics (i.e., slope and se estimates) to evaluate which treatments differed from 

one another using the R package BSDA (Arnholt, 2012). 

Scaled metabolic data were compared by performing a bootstrap analysis 

in RStudio in which 10,000 exponential regression replicates of the relationship 

between oxygen consumption and swimming speed were created for each group. 

Each regression line was then extrapolated to a swimming speed of 0 cm s-1 and 

results for each group were averaged to calculate the SMR. Significance was 

determined if less than 5% of resultant regressions lines overlapped at a 

swimming speed of zero. 
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Table 2.1. Description of a priori models used to evaluate the variables (L∞, t0, K) 

for the best fit of the von Bertalanffy growth model.   
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No.  Model Name Description 

1 fitCom All varables are the same across groups (constant) 

2 fit1LK 
Both the K and L∞ parameters vary across group but 

t0 is constant  

3 fit1KT 
Both the t0 and K parameters vary across groups and 

L∞ is kept constant  

4 fit1LT 
Both the t0 and L∞ parameters vary across groups 

and K is kept constant  

5 fit 2T 
Only t0 varies across groups, both K and L∞ 

parameters kept constant  

6 fit2K Only K varies across groups, t0 and L∞ kept constant 

7 fit 2L 
Only L∞ varies across groups, both t0 and K 

parameters kept constant 

8 fitGen All parameters vary across groups  
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Figure 2.1. Side view (A) and top view (B) of custom-built raceways designed 

for sustained exercise training.  
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Figure 2.2. Juvenile California Yellowtail (S. dorsalis) swimming in custom-built 

raceways designed to encourage sustained exercise. 
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Results 

Growth and Feed Conversion 

At the start of the study fish were 4.35 ± 1.26 g and 7.05 ± 0.71 cm BL. 

Figure 2.3 shows the percent difference in mass of each exercised group from the 

control over the course of the 24-week growout period. Group 4W had 

approximately 35% greater mass than the control group immediately following 

exercise at week four (reflecting a 37% growth improvement over the control 

group), and retained a significantly larger mass for twelve weeks post exercise. 

The 2W and 3W groups had significantly larger mass than the control group from 

6-8 weeks post-exercise, and from 6-12 weeks post-exercise respectively. 

However, there was a clear declining trend in this growth advantage for all 

exercised groups during the growout period (Figure 2.3), and there were no 

significant differences in mass between any groups beyond the sixteenth week of 

growout. Although the final somatic parameters after the 24-week growout were 

not significantly different (Table 2.2), the exercised groups (2W, 3W and 4W) 

had 5.3%, 8.3%, and 8.7% greater mass than the control group, respectively. 

Fork length data compared using von Bertalanffy growth models are 

shown in Figure 4. The general model, the model with variable L and K, and the 

models with just variable L or K had AIC values that were separated by less than 

2 (Table 2.3).  There was no support for models that did not include either 

variable L or variable K.  ANOVAs indicated that there were no differences 

between the general and variable K models (F = 1.9, p = 0.7) or between variable 

K and variable K and L models (F = 2.4, p = 0.7).  There was, however, a 
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difference between the model with variable L, and variable K and L (F = 2.6 ,      

p = 0.05), suggesting that the model with variable K and L better described the 

data than the one with just variable L.  Based on the principle of parsimony, we 

considered the variable K model to best fit the data (model 6, Table 2.3). Model 

parameter comparisons using t-tests revealed that the 4W group had a 

significantly higher K than the control and 2W groups, but did not differ 

significantly from the 3W group. Model parameters are summarized in Table 2.4 

and t-tests in Table 2.5. 

Although the nature of FCR data did not allow for the testing of statistical 

differences between groups (FCR estimates were based on group feed and growth 

rates; individual fish growth and feed consumption were not tracked), FCR 

showed little variance between groups. FCR was 1.16 for the 2W group, 1.17 for 

the 3W group, 1.19 for the 4W group, and 1.20 for the control group (Table 2.2).  

Metabolic Data 

 SMRs for each exercised group at each of the three measured sizes 

(adjusted to a temperature of 22 °C) are summarized in Table 2.6. There were no 

significant differences in SMR between any of the groups for Size A or Size B; 

however, the 2W group had a significantly higher SMR at Size C (Figure 2.5). 

Although not statistically significant, the SMRs at Size A for 2W (5.05 ± 0.83 

mgO2 kg-1 min-1), 3W (4.96 ± 0.61 mgO2 kg-1 min-1), and 4W (4.78 ± 0.64 mgO2 

kg-1 min-1) were 9.6%, 11.3%, and 14.5% lower than the control (5.59 ± 0.30 

mgO2 kg-1 min-1), respectively.  
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Table 2.2. Final somatic measurements and FCR for each experimental group at 

the end of the 24-week growout period. At the start of experimentation, fish were 

6.39 ± 0.68 cm FL, 7.05 ± 0.71 cm BL, 4.35 ± 1.26 g, and had a CF of 1.20 ± 

0.07. 
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Fork Length 

(cm) 

Body Length 

(cm) Mass (g) 

Condition 

Factor FCR 

Control 35.41 ± 1.95 39.72 ± 2.19 745.67 ± 150.11 1.17 ± 0.09 1.20 

2W 35.32 ± 2.66 39.72 ± 3.08 784.97 ± 221.81 1.22 ± 0.11 1.16 

3W 35.79 ± 2.10 40.24 ± 2.42 807.20 ± 190.95 1.22 ± 0.09 1.17 

4W 35.82 ± 1.69 40.25 ± 1.94 810.30 ± 128.22 1.23 ±0.06 1.19 
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Table 2.3.  Model selection results for von Bertalanffy analysis of the effect of 

exercise on growth of the total length of California Yellowtail (Seriola dorsalis). 

The chosen best-fit model based on ANOVA results and the principle of 

parsimony indicated in bold. 
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Candidate model Model No.  AIC ∆ AIC  

fit1LK 2 6624.731 0 

fit2K 6 6625.824 1.093 

fitGen 8 6626.113 1.382 

fit2L 7 6626.446 1.715 
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Table 2.4. Estimates of von Bertalanffy growth model parameters for S. dorsalis 

subjected to continuous exercise (2W, 3W, 4W) compared to a non-exercised 

control group. Standard error (σ) included for each parameter. *Used to indicate 

that 4W was significantly greater than the Control and 2W, but no other 

significant differences were found.  
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  L∞ σL∞ t0 σt0 K σK 

Control 40.95 0.22 39.36 0.24 0.01107 0.000155 

2W 40.95 0.22 39.36 0.24 0.01111 0.000156 

3W 40.95 0.22 39.36 0.24 0.01129  0.000160 

4W 40.95 0.22 39.36 0.24 0 .01156* 0.000165 
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Table 2.5. Results of Welch two-sample t-tests comparing values of K from the 

best fit-model results among treatment groups (Control, 2W, 3W, and 4W).   
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Groups Compared t p 

4W vs. control 2.15 0.03 

4W vs. 2W 1.98 0.048 

4W vs. 3W 1.16 0.25 

3W vs. control 0.99 0.32 

3W vs. 2W 0.82 0.41 

2W vs. control 0.17 0.87 



 

70 

 

 

 

 

 

 

 

Table 2.6. Standard metabolic rate for S. dorsalis subjected to continuous 

exercise (2W, 3W, 4W) compared to a non-exercised control group at three 

different sizes. For direct comparison between groups, SMR data for individual 

fish were adjusted to a temperature of 22 °C using Q10=2, and scaled to 55 g at 

Size A, 205 g at Size B, and 410 g at Size C using mass0.80. Significant difference 

indicated in bold.  
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SMR Size A 

(mgO2 kg-1 min-1) 

SMR Size B 

(mgO2 kg-1 min-1) 

SMR Size C 

(mgO2 kg-1 min-1) 

Control  5.59 ± 0.30 3.22 ± 0.38  2.00 ± 0.18 

2W 5.05 ± 0.83 3.70 ± 0.41  3.36 ± 0.40  

3W 4.96 ± 0.61 3.74 ± 0.29  2.02 ± 0.17  

4W 4.78 ± 0.64 3.02 ± 0.24  2.13 ± 0.21 
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Figure 2.3. The percent difference in mass between each exercised group and the 

control over the 24-week growout period. * Indicates significant difference of that 

group from the control.  ** Used to indicate significant difference of that group 

from all other groups. 
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Figure 2.4. Results of the von Bertalanffy growth model fit to fork length data of 

each experimental group (n=30 for each group at each time point).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

75 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Control 

FLt= 40.95*(1-exp (-0.01107(t - 39.36))) 
 

Age (days) 

F
o

rk
 L

e
n

g
th

 (
c
m

) 

2W 

FLt= 40.95*(1-exp (-0.01111(t - 39.36))) 
 

3W 

FLt= 40.95*(1-exp (-0.01129(t - 39.36))) 
 

4W 

FLt= 40.95*(1-exp (-0.01156(t - 39.36))) 
 



 

76 

 

 

 

 

 

 

 

 

Figure 2.5. Mean standard metabolic rate (SMR) for three exercised groups (2W, 

3W, and 4W) and a control measured at three points during growout (Size A: 

immediately post-exercise; Size B: approximately six weeks post-exercise; Size 

C: approximately 12 weeks post-post exercise). For direct comparison between 

groups, SMR data for individual fish were adjusted to a temperature of 22 °C 

using Q10=2, and scaled to 55 g at Size A, 205 g at Size B, and 410 g at Size C 

using mass0.80.  
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Discussion 

S. dorsalis that swam continuously for two, three, or four weeks at optimal 

speeds showed improved growth when measured immediately following exercise 

training, and the group that had the most favorable response (4W) retained their 

statistically significant growth advantage for 12 weeks post exercise. 

Additionally, it appears that training provided a slight metabolic advantage to the 

exercised groups, with SMRs being approximately 10-15% lower than the 

controls, but this initial advantage did not persist over the growout period and the 

exercised groups showed less than a 5% improvement in FCR. 

The observed growth response in the current study measured immediately 

following each exercise regime was similar in magnitude to those observed in 

previous studies on S. dorsalis and other Seriola species (Table 2.7), with the 2W, 

3W and 4W fish having approximately 11%, 15%, and 38% increases in growth 

respectively compared to the controls measured at the same time points. These 

increases fall within the range observed by Brown et al. (2011) with 10% greater 

growth of S. lalandi subjected to six weeks of exercise at flows of 0.75 BL s-1, 

and Palstra et al. (2015) with a 46% increase in growth for S. lalandi exercised for 

18 days at optimal speed (2.46 BL s-1), resulting in the exercised fish being 

approximately 11% larger than the non-exercised controls (Table 2.7). 

Additionally, Peters et al. (2009) found that S. dorsalis exercised at 60% of their 

critical swimming speed for 34 days, had a 17% increase in growth. Several other 

species have demonstrated improvement in growth of a similar magnitude (10-

40%) when measured immediately following exercise training (see Davison 1997 
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for review) including Arctic Charr (Salvelinus alpinus (Christiansen et al., 1989)), 

Atlantic Salmon (Salmo salar ((Totland et al., 1987)), Brook Trout (Salvelinus 

fontinalis (Leon, 1986)), and Striped Bass (Morone saxatilis (Young and Cech Jr, 

1993b); however, the effect of exercise on growth appears to be influenced by the 

exercise regime, including intensity and duration of exercise. Additionally, 

differences in the diet, temperature, species, and size of fish being tested, make it 

difficult in many instances for direct comparison of the growth response between 

studies.  

In this study, the 4W group demonstrated the most persistent growth 

response to sustained exercise, retaining a significantly larger mass than the 

controls for 12 weeks (84 days) post exercise. Additionally, the 3W and 2W 

groups were significantly larger than the controls from 6-12 weeks post exercise, 

and 6-8 weeks post exercise, respectively. These results indicate that a longer 

duration of exercise training may have a more lasting effect on growth.  However, 

regardless of amount of exercise, the magnitude of the initial growth advantage 

diminished over time and the exercised fish were only 5-9 % larger than the 

controls (a non-significant difference) at the end of the 24 week growout period 

(Figure 2.3). The cause for this decrease in size advantage is unclear, but some of 

the observed variance in the data between growth measurements could be due to 

the large size range of the individuals within each group, in tandem with only 

measuring a subsample of fish from each group at each time point, reducing the 

ability to determine statistical differences in size between groups. However, this 

variance would not explain the apparent declining trend in size advantage of the 
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exercised fish seen in Figure 2.3. It may be possible that the shape and size of the 

growout tanks disproportionately affected the larger exercised fish, limiting their 

growth. Although equal fish densities and environmental parameters were 

maintained across tanks, the relatively narrow oval shape of the tanks may have 

made maneuvering slightly more difficult for larger fish and could have impacted 

swimming efficiency and energy costs, which could also explain why there was 

not a substantial improvement in the FCR of the exercised groups. Future work 

should thus consider repeating these experiments with larger round growout tanks 

(or oceanic pens) to determine if tank or pen size and shape may affect the 

persistence and magnitude of the growth response over time. The only other study 

known to the author to examine persistence of a growth response to exercise, 

showed improvements lasting at least 56 days post-conditioning in young-of-the-

year Striped Bass (growth measurements were not conducted beyond that point) 

(Young and Cech Jr, 1994). Additional work is needed to better understand the 

long-term effect of sustained exercise on growth.  

 In the von Bertalanffy model, the Brody growth coefficient (K), is 

indicative of how fast the fish approaches their asymptotic average maximum 

length (L∞). The AIC scores suggest that the best model fit is one in which the L∞ 

parameter does not vary across groups, but the K parameter does. A significantly 

larger K, as seen in group 4W, indicates that those fish were approaching L∞ the 

fastest. Understanding these growth dynamics could be advantageous for 

producers in determining time to market size, but being that the model only 
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represents growth for approximately the first 220 days of life, it could be further 

refined with an even longer growout period.  

 Feed conversion did not appear to be strongly affected by exercise training 

in this study. Previous work has shown improved FCR after sustained exercise for 

several species, including Yellowtail Kingfish (Seriola lalandi (Palstra et al., 

2015)), the Japanese Amberjack (Seriola quinqueradiata (Yogata et al. 2000)) 

Gilthead Seabream (Sparus aurata L. (Ibarz et al., 2011)), and Atlantic Salmon 

(Salmo salar (Herbert et al., 2011)), but limited or even a negative effects for 

other species (Castro et al., 2011; Jørgensen and Jobling, 1993; Li et al., 2013; 

Totland et al., 1987). Studies involving Seriola, have shown large variability in 

FCRs of exercised fish, from 0.62 (Yogata et al. 2000) to 1.89 (Brown et al. 2011) 

with the FCRs of the exercised fish in the current study (1.16-1.19) falling within 

that range. In those same studies, reductions in FCR of exercised fish as compared 

to a control, have varied greatly from 8-32% (see Table 2.7 for comparison of 

Seriola spp.). FCR is a difficult metric to compare between studies since it is 

influenced by several factors including fish size, species, and temperature, which 

often vary. For example, Árnason et al. (2009) found that in general, feed 

conversion ratio was lower (more efficient) for smaller sized Turbot 

(Schophthalmus maximus) at a given temperature than larger Turbot, and also that 

the optimal temperature for a low FCR changed with fish size. Furthermore, they 

found that optimal temperature for FCR was different than the optimal 

temperature for growth, and the relationship of these two variables changed with 

fish size. In contrast, Handeland et al (2008) found that as Atlantic Salmon grew, 
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feed conversion efficiency (the inverse of FCR) generally increased, meaning the 

fish became more efficient at larger sizes, although the magnitude of the response 

was also related to temperature. FCR is thus dependent on complex interactions 

between the fish and its environment, and further studies examining FCR in S. 

dorsalis and how it relates to other variables (e.g., temperature, salinity, exercise, 

and growth) are necessary for a better understanding of these dynamics and their 

implications for rearing this species in aquaculture.  

In addition to exercise, temperature, and fish size, feeding regime and feed 

type may also influence FCR and the growth response to exercise. Leon (1986) 

found that exercised Brook Trout that were fed an equal percentage of body 

weight as the non-exercised control group had an FCR of 1.49, which was lower 

than the exercised group fed to satiation (1.54) and the control (1.58). However, 

the exercised group fed to satiation grew faster and had a significantly greater 

final mass than the unsatiated exercised fish, which showed no difference in 

growth from the non-exercised controls (Leon, 1986). As all fish in the current 

study were fed to satiation, our positive growth response and minimally lower 

FCRs are consistent with these findings, however it would be of interest to 

include an unsatiated exercised group in future studies of S. dorsalis to further 

examine this response.  

  The lower SMRs of the 2W, 3W, and 4W groups (9.6%, 11.3%, and 

14.5% lower respectively) measured in the week post-exercise were not 

significantly different from the control, but may have contributed toward the 

enhanced growth observed following exercise. Similar results were seen in 
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exercised S. lalandi from Brown et al. (2011) that had approximately 7% lower 

SMRs than non-exercised controls, and although the difference was not 

significant, a growth improvement of similar magnitude (10%) was observed 

Specifically, having reduced energy needs for basic metabolic functions can free 

up energy for other functions such as growth (Fry, 1947; Warren and Davis, 

1967). However, any metabolic advantage seen for the exercised fish in the 

current study did not seem to be retained post exercise, and this seems to parallel 

the trend of decreasing metabolic fitness observed for the wild-caught fish in 

Chapter 2 as they were retained in captivity. If enhanced metabolic fitness could 

be maintained for a longer duration, it may have a larger effect on FCR and 

growth over time. 

Results of the physiological metrics used in the current study also allow for 

comparison with previous work to gauge potential effects of improvements in 

rearing techniques on fitness of hatchery-produced S. dorsalis. Table 2.8 shows a 

comparison of SMR data for several studies using S. dorsalis produced by Hubbs-

SeaWorld Research Institute, which is currently developing culture-rearing 

methods for this species (Stuart and Drawbridge, 2013). Improvements in larval 

rearing techniques implemented over the past several years appear to have led to 

better baseline metabolic fitness of hatchery fish, specifically demonstrated by the 

approximately 46% decrease in SMR from 2012 to 2016 (Table 2.8). As 

discussed in Chapter 2, wild-fish became less metabolically fit with time in a 

captive environment, which is evidenced by the SMRs of wild-caught fish at three 

stages of captivity in Table 2.8. However, even wild-fish held in captivity for 
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eight months had SMRs 21% lower than the most fit hatchery cohort, indicating 

there is still room for further progress in lowering SMRs to reach the level of 

wild-caught conspecifics, which could further improve feed conversion and 

growth in captivity.  

More research on specific rearing conditions for optimal development is 

needed for S. dorsalis, and future studies should examine the role of exercise by 

introducing regimes of varying duration and intensity at different, or even 

multiple life stages. Although positive growth and FCR results have been seen in 

Seriola at larger body sizes (Table 2.7), changes to the musculature in the larval 

stage are often irreversible (Johnston, 2006) so introducing fitness even earlier in 

development than in the current study could have longer lasting effects. Further 

research should determine optimal life stage for introducing exercise that leads to 

sustained periods of fitness and superior growth that could have significant 

commercial implications. It would also be important to determine the type of 

muscle growth and development that occurs during exercise training, as the white 

muscle is the final product of commercial aquaculture. Although several studies 

have observed white muscle growth in response to sustained exercise training 

(Totland et al., 1987; Young and Cech Jr, 1993a, 1993b), this has not been 

specifically examined in S. dorsalis.  

Conclusions 

 This study showed that the duration of exercise training effects the 

magnitude and persistence of the growth response, but has little influence on feed 



 

85 

 

conversion of S. dorsalis fed to satiation. Although not significant, a reduction in 

SMR by approximately 10-15% measured immediately following sustained 

exercise points to potential for optimal exercise conditions to affect metabolism, 

which may in turn improve growth. Further research is needed to understand the 

interplay between variables involved in crafting an optimal exercise regime (such 

as duration and intensity of exercise, temperature, fish size, life stage, and feeding 

regime), and the subsequent effects on the growth and physiological response of 

S. dorsalis reared in aquaculture. The potential benefits of exercise training to 

metabolism, growth, feed conversion and muscle morphology, could have 

significant commercial implications that warrant further investigation and analysis 

for this species of interest.  
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Table 2.7. Comparison of sustained exercise regimes and subsequent growth and 

FCR responses for Seriola as measured immediately following exercise. 

 

 



 

87 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

88 

 

 

 

 

 

 

 

 

Table 2.8. SMRs of three hatchery-reared cohorts provided by HSWRI compared 

to a wild “standard.”  For direct comparison, all SMRs were adjusted to a 

temperature of 18 °C using Q10=2, and scaled to 65 g using mass0.80 (adjusted 

SMR). 
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Cohort  

 Adjusted 

SMR  
(mgO2 kg-1 min-1) 

Reported SMR 
(mgO2 kg-1 min-1) 

Mass 
(g) 

Temp 
(°C) Source 

Hatchery 2012 7.67 7.36 80 18 Wegner et al. (in review) 

Hatchery 2015 5.60 5.60 65 18 Chapter 2 

Hatchery 2016 5.41 5.59 55 22 current study 

Wild 2015  
  (< 1 month in captivity) 3.08 3.08 65 18 Chapter 2 

Wild 2012 
  (2-4 months in captivity) 4.14 3.97 80 18 Wegner et al. (in review) 

Wild 2015   
  (~8 months in captivity) 4.27 2.95 415 18 Chapter 2 
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