### Eastern Illinois University The Keep

### Masters Theses

Student Theses & Publications

2017

# Molecular Recognition Profiles of Molecular Cocrystals

Ian C. Tinsley *Eastern Illinois University* This research is a product of the graduate program in Chemistry at Eastern Illinois University. Find out more about the program.

#### **Recommended** Citation

Tinsley, Ian C., "Molecular Recognition Profiles of Molecular Cocrystals" (2017). *Masters Theses*. 2745. https://thekeep.eiu.edu/theses/2745

This is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact tabruns@eiu.edu.



FOR: Graduate Candidates Completing Theses in Partial Fulfillment of the Degree Graduate Faculty Advisors Directing the Theses

RE: Preservation, Reproduction, and Distribution of Thesis Research

Preserving, reproducing, and distributing thesis research is an important part of Booth Library's responsibility to provide access to scholarship. In order to further this goal, Booth Library makes all graduate theses completed as part of a degree program at Eastern Illinois University available for personal study, research, and other not-for-profit educational purposes. Under 17 U.S.C. § 108, the library may reproduce and distribute a copy without infringing on copyright; however, professional courtesy dictates that permission be requested from the author before doing so.

Your signatures affirm the following:

- The graduate candidate is the author of this thesis.
- The graduate candidate retains the copyright and intellectual property rights associated with the original research, creative activity, and intellectual or artistic content of the thesis.
- The graduate candidate certifies her/his compliance with federal copyright law (Title 17 of the U. S. Code) and her/his right to authorize reproduction and distribution of all copyrighted materials included in this thesis.
- The graduate candidate in consultation with the faculty advisor grants Booth Library the nonexclusive, perpetual right to make copies of the thesis freely and publicly available without restriction, by means of any current or successive technology, including by not limited to photocopying, microfilm, digitization, or internet.
- The graduate candidate acknowledges that by depositing her/his thesis with Booth Library, her/his work is available for viewing by the public and may be borrowed through the library's circulation and interlibrary loan departments, or accessed electronically.
- The graduate candidate waives the confidentiality provisions of the Family Educational Rights and Privacy Act (FERPA) (20 U. S. C. § 1232g; 34 CFR Part 99) with respect to the contents of the thesis and with respect to information concerning authorship of the thesis, including name and status as a student at Eastern Illinois University.

I have conferred with my graduate faculty advisor. My signature below indicates that I have read and agree with the above statements, and hereby give my permission to allow Booth Library to reproduce and distribute my thesis. My adviser's signature indicates concurrence to reproduce and distribute the thesis.

Graduate Candidate Signature

Faculty Adviser Signature

Printed Name

Printed Name

Chemistry

Graduate Degree Program

6-2-2017 Date

Please submit in duplicate.

## Molecular Recognition Profiles of Molecular Cocrystals

(TITLE)

ΒY

lan C. Tinsley

### THESIS

### SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

### Masters of Science

### IN THE GRADUATE SCHOOL, EASTERN ILLINOIS UNIVERSITY CHARLESTON, ILLINOIS

2017

YEAR

### I HEREBY RECOMMEND THAT THIS THESIS BE ACCEPTED AS FULFILLING THIS PART OF THE GRADUATE DEGREE CITED ABOVE

|                         | 611117   | _                                              |      |
|-------------------------|----------|------------------------------------------------|------|
| THESIS COMMITTEE CHAIR  | DATE     | DEPARTMENT/SCHOOL CHAIR<br>OR CHAIR'S DESIGNEE | DATE |
|                         | 5-31-17. |                                                |      |
| THESIS COMMITTEE MEMBER | DATE     | THESIS COMMITTEE MEMBER                        | DATE |
|                         | 5-3-1)   |                                                |      |
| THESIS COMMITTEE MEMBER | DATE     | THESIS COMMITTEE MEMBER                        | DATE |

#### Abstract

The manner in which molecules recognize each other holds critical importance to nearly every area of science. This significance stems from the key underpinning of molecular assembly to our most basic understanding of chemical processes. Whether these interactions relate to small-molecule catalytic transformations or complex physiological processes, the structural features responsible for molecular association play into the well-known adage that form follows *function* where material property arises from the collective structural features of the molecular components. Because the *form* of chemical systems is derived from a complex blend of covalent and non-bonded contacts, codifying each contributor has become essential for recognizing the functions and potential applications of materials. While considerable progress in this area has been realized by isolating and identifying molecular contacts and the structural details of their conditional exceptions, insight to the entire landscape of molecular associations remains an ongoing effort. This thesis explores the molecular recognition process from two uniquely different perspectives. The first is from cocrystalizing a variety of benzoic acids with the pharmaceutical agent sulfamethazine and the second area investigates how molecular shape controls quasiracemate formation.

Sulfamethazine is an active pharmaceutical ingredient (API) with a strong ability to form hydrogen bonds due to its donor and acceptor groups. The chemical structure of this API allows it to exist in more than one tautomer. The cocrystallization of this molecule with a coformer has the ability to influence which tautomer is present in the crystal structure. This thesis provides data that defines the relationship of coformer acidity to tautomer formation in sulfamethazine. A

T

total of eighteen cocrystals of sulfamethazine with benzoic acid derivatives were synthesized and the tautomeric form to coformer acidity was analyzed.

The cocrystallization of APIs is a classic example of molecular recognition between two or more compounds. Studies that seek to design these materials and others often focus on strong non-bonded contacts (e.g. hydrogen bonds) as a means to generate desired supramolecular architectures. Less well studied, but no less important to the overall molecular recognition process, are chemical features that produce less manageable motifs via ill-defined or weak contacts. <u>Molecular shape</u> is one such feature. This thesis exploits quasiracemates -i.e., near racemic materials – to probe the role molecular topology plays in the recognition process. A diverse set of diarylamide quasienantiomers that differ incrementally in substituent size and molecular framework has been prepared. Mixing of pairs of these quasienantiomers in the melt using video-assisted host stage microscopy provided a robust diagnostic tool for detecting new quasiracemic crystalline phases. Data retrieved using this virtual melting-point phase method not only draws considerable attention to the role of topological features to supramolecular assemblies, but also the structural boundaries of these co-crystalline systems. This investigation synthetically explores the broad structure space towards the identification of new isostructural building blocks and highlights important molecular relationships responsible for molecular recognition that may serve in the design of new functional materials.

II

### Acknowledgement

I would like to express my thanks to Dr. Kraig Wheeler for his guidance and support throughout my career at Eastern Illinois University. Dr. Wheeler had an infectious joy and adoration for research and the sciences which rubbed off on everyone around him. He had constant patience with students and was always available in a time of need. Dr. Wheeler was extremely perceptive to detail and has engraved its importance on me as a student and a researcher. I cannot thank him enough for his impact on my future.

I would like to thank my committee members, Drs. Mark McGuire, Radu Semeniuc, Daniel Sheeran and the Chemistry Departmental Graduate Coordinator Dr. Barbara Lawrence for their support and constant willingness to help me when needed. The office door to all these faculty members was always open and each were easily approachable. I must thank the Graduate School of Eastern Illinois University for allowing me the opportunity to continue my education. It provided me with countless memories that I will cherish forever. The Chemistry Department at Eastern Illinois University provided me the educational support and research experience in order to advance to Ph. D. program.

In addition, thank you to all the faculty members of the Chemistry Department for their academic contributions towards my degree. I thank the members of the Wheeler research group both past and present: Mikayla Grant, Emily Pinter, Jacqueline Spaniol, and Benjamin Wagner for their constant support and memories. I also wish to thank the National Science Foundation (DMR 1505717) for partial support of my thesis work. Last but not least; I would like to thank my family for their continuous support and motivation throughout my educational journey.

Ш

| ABS                                           | TRACT                                                                                                                                                                                                                                                                                    | <u> </u>                                     |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| <u>ACK</u>                                    | NOWLEDGEMENT                                                                                                                                                                                                                                                                             |                                              |
| <u>LIST</u>                                   | OF FIGURES                                                                                                                                                                                                                                                                               | VI                                           |
| <u>LIST</u>                                   | T OF TABLES                                                                                                                                                                                                                                                                              | XIV                                          |
| <u>LIST</u>                                   | T OF ABBREVIATIONS                                                                                                                                                                                                                                                                       | XV                                           |
| <u>CHA</u>                                    | APTER 1: INTRODUCTION                                                                                                                                                                                                                                                                    | 1                                            |
| 1.1<br>1.2                                    | Molecular Recognition<br>Importance of Molecular Chirality                                                                                                                                                                                                                               | 1<br>4                                       |
| 1.3                                           | 1.2.1 RACEMIC AND QUASIRACEMIC MIXTURES<br>ASSESSMENT OF MOLECULAR RECOGNITION AND NONCOVALENT INTERACTIONS<br>1.3.1 CRYSTAL STRUCTURES AND CRYSTAL FORMS                                                                                                                                | 9<br>10<br>11                                |
| 1.4                                           | 1.3.2 HOT-STAGE THERMOMICROSCOPY<br>THESIS OVERVIEW<br>1.4.1 SULFAMETHAZINE AS AN ACTIVE PHARMACEUTICAL INGREDIENT                                                                                                                                                                       | 13<br>14<br>15                               |
|                                               | 1.4.2 SULFAMETHAZINE AND COCRYSTALLIZATION WITH SUBSTITUTED BENZOIC A<br>1.4.3 MOLECULAR RECOGNITION BOUNDARIES OF DIARYLAMIDE QUASIRACEMATI                                                                                                                                             | ACIDS 16<br>ES 17                            |
| 1.5                                           | REFERENCES                                                                                                                                                                                                                                                                               | 23                                           |
| <u>CHA</u>                                    | APTER 2: EXPERIMENTAL                                                                                                                                                                                                                                                                    | 27                                           |
| 2.1<br>2.2<br>2.3<br>2.4<br>2.5<br>2.6<br>2.7 | PREPARATION OF SULFAMETHAZINE COCRYSTALS<br>SYNTHESIS OF (S)- AND (R)-N-(2-SUBSTITUTEDBENZOYL)METHYLBENZYLAMINE<br>HOT-STAGE MICROSCOPY<br>X-RAY CRYSTALLOGRAPHY – POWDER DIFFRACTION<br>X-RAY CRYSTALLOGRAPHY – SINGLE CRYSTAL DIFFRACTION<br><sup>1</sup> H NMR OVERLAYS<br>REFERENCES | 27<br>28<br>35<br>36<br>36<br>36<br>37<br>38 |
| <u>CH</u> A                                   | APTER 3: SUPRAMOLECULAR TENDENCIES OF SULFAMETHAZINE COCRY                                                                                                                                                                                                                               | <u>STALS</u><br>39                           |
| 3.1                                           | Sulfa Drug Development                                                                                                                                                                                                                                                                   | 39                                           |
| 3.2<br>3.3<br>3.4                             | SULFAMETHAZINE STRUCTURE AND TAUTOMERIZATION<br>STRUCTURAL TENDENCIES OF SULFAMETHAZINE AND BENZOIC ACIDS<br>REFERENCES                                                                                                                                                                  | 44<br>46<br>60                               |

### TABLE OF CONTENTS

### CHAPTER 4: MOLECULAR RECOGNITION BOUNDARIES OF DIARYLAMIDE QUASIRACEMATES

| 4.1  | OVERVIEW OF MOLECULAR RECOGNITION                              | 62 |
|------|----------------------------------------------------------------|----|
| 4.2  | CRYSTAL PACKING OF RACEMATES AND QUASIRACEMATES                | 63 |
| 4.3  | SUBSTITUENT SELECTION AND PROOF OF CONCEPT                     | 65 |
| 4.4  | ANALYZING THE MELT WITH POWDER X-RAY DIFFRACTION               | 68 |
| 4.5  | TOPOLOGICAL DIFFERENCES OF SUBSTITUENTS                        | 69 |
| 4.6  | ANALYZING THE MELT WITH NUCLEAR MAGNETIC RESONANCE             | 73 |
| 4.7  | INTRAMOLECULAR HYDROGEN BONDING OF SUBSTITUENTS                | 76 |
| 4.8  | IMPORTANCE OF QUASIRACEMATE FRAMEWORK AND SUBSTITUENT POSITION | 81 |
| 4.9  | MOLECULAR RECOGNITION PROFILES OF SAME HANDED QUASIENANTIOMERS | 85 |
| 4.10 | CONCLUSION                                                     | 86 |
| 4.11 | References                                                     | 89 |
|      |                                                                |    |
|      |                                                                |    |
| SUP  | PLEMENTAL INFORMATION                                          | 92 |

| S.1 | COCRYSTALS OF SULFAMETHAZINE                                    | 93  |
|-----|-----------------------------------------------------------------|-----|
| S.2 | HOT STAGE THERMOMICROSCOPY                                      | 209 |
| S.3 | X-RAY CRYSTALLOGRAPHY – POWDER DIFFRACTION                      | 234 |
| S.4 | X-RAY CRYSTALLOGRAPHY – SINGLE-CRYSTAL DIFFRACTION              | 238 |
| S.5 | <sup>1</sup> HNMR OVERLAYS                                      | 244 |
| S.6 | FUNCTIONAL GROUP AND CHEMICAL FRAMEWORK VOLUME AND SURFACE AREA |     |
|     | Comparisons                                                     | 246 |
| S.7 | REFERENCES                                                      | 248 |
|     |                                                                 |     |

### List of Figures

| Figure 1.1: Hydrogen Bonding of Nitrogenous Bases.                                | 3  |
|-----------------------------------------------------------------------------------|----|
| Figure 1.2: Molecular Recognition in Deoxyribonucleic Acid.                       | 3  |
| Figure 1.3: Enantiomers of Thalidomide.                                           | 5  |
| Figure 1.4: Stereoisomers of Labetalol.                                           | 7  |
| Figure 1.5: Stereoisomers of Ibuprofen.                                           | 8  |
| Figure 1.6: Types of Multicomponent Crystals.                                     | 11 |
| Figure 1.7: Forms of Sulfamethazine                                               | 15 |
| Figure 1.8: Substituted Benzoic Acids Utilized in Cocrystallization.              | 17 |
| Figure 1.9: Quasiracemic Structure of N-(2-Chloro)/                               |    |
| N-2-(Bromobenzoyl)methylbenzylamine.                                              | 19 |
| Figure 1.10: Diarylamide Molecular Frameworks Used in this Thesis Study.          | 19 |
| Figure 1.11: Functional Group Volumes and Surface Areas.                          | 20 |
| Figure 1.12: Kofler Contact Method.                                               | 21 |
| Figure 3.1: Domagk's Initial Sulfonamide Compounds for Antimicrobial Activity     | 40 |
| Testing.                                                                          |    |
| Figure 3.2: Metabolic Breakdown of Protonsil Red to Sulfanilamide.                | 41 |
| Figure 3.3: Molecular Structure of Folic Acid.                                    | 42 |
| Figure 3.4: Molecular Structure of <i>p</i> -Aminobenzoic Acid and Sulfanilamide. | 42 |
| Figure 3.5: Amidine Tautomer of Sulfamethazine.                                   | 43 |
| Figure 3.6: Forms of Sulfamethazine.                                              | 44 |
| Figure 3.7: Substituted Benzoic Acid Coformers.                                   | 46 |

| Figure 3.8: $R_2^2(8)$ Hydrogen Bonding Ring Pattern For Carboxylic Acids Described |    |
|-------------------------------------------------------------------------------------|----|
| by Etter.                                                                           | 46 |
| Figure 3.9: Crystal Structure of the Cocrystal of Sulfamethazine and                |    |
| p-Hydroxybenzoic Acid Showing Thermal Parameters (50% Thermal                       |    |
| Ellipsoids) and Hydrogen bonding.                                                   | 48 |
| Figure 3.10: Crystal Structure of the Cocrystal of Sulfamethazine and               |    |
| p-Hydroxybenzoic Acid Showing Thermal Parameters (50% Thermal                       |    |
| Ellipsoids) and Hydrogen Bonding Scheme.                                            | 48 |
| Figure 3.11: Crystal Structure of the Cocrystal of Sulfamethazine and               |    |
| p-Hydroxybenzoic Acid Showing Thermal Parameters (50% Thermal                       |    |
| Ellipsoids), $\pi$ - $\pi$ Stacking, and Hydrogen Bond Scheme.                      | 49 |
| Figure 3.12: Crystal Structure of the Cocrystal of Sulfamethazine and               |    |
| p-Methoxybenzoic Acid Showing Thermal Parameters (50% Thermal                       |    |
| Ellipsoids) and Hydrogen bonding.                                                   | 51 |
| Figure 3.13: Crystal Structure of the Cocrystal of Sulfamethazine and               |    |
| p-Methoxybenzoic Acid Showing Thermal Parameters (50% Thermal                       |    |
| Ellipsoids) and Supramolecular Assembly.                                            | 51 |
| Figure 3.14: Crystal Structure of Sulfamethazine and Benzoic Acid Showing           |    |
| Thermal Parameters (50% ellipsoids) and Labeling Scheme.                            | 54 |
| Figure 3.15: Plot Showing the Relationship between Benzoic Acid Strength and        |    |
| N3-O2 Hydrogen Bonding Distance.                                                    | 54 |
| Figure 3.16: Plot Showing Relationship between Benzoic Acid Strength and N2-O1      |    |
| Hydrogen Bonding Distance.                                                          | 55 |

.

| Figure 3.17: Plot Showing Relationship between Benzoic Acid Strength and C14-                             |    |
|-----------------------------------------------------------------------------------------------------------|----|
| N2 Bonding Distance.                                                                                      | 55 |
| Figure 3.18: Plot Showing Relationship between Benzoic Acid Strength and C14-                             |    |
| N3 Bonding Distance.                                                                                      | 56 |
| Figure 3.19: Crystal Structure of the Cocrystal of Sulfamethazine and                                     |    |
| p-Dimethylaminobenzoic Acid Showing Thermal Parameters (50%                                               |    |
| Thermal Ellipsoids).                                                                                      | 56 |
| Figure 3.20: Crystal Structure of the Cocrystal of Sulfamethazine and                                     |    |
| p-Dimethylaminobenzoic Acid Showing Thermal Parameters (50%                                               |    |
| Thermal Ellipsoids) and $\pi$ - $\pi$ Stacking.                                                           | 57 |
| Figure 4.1: Chiral Diarylamides Used in the Present Study.                                                | 63 |
| Figure 4.2: Crystal Packing Relationship between Racemic and Quasiracemic                                 |    |
| Compounds.                                                                                                | 63 |
| Figure 4.3: Melting Point Phase Diagrams of Idealized Racemic and Quasiracemic                            |    |
| Mixtures.                                                                                                 | 65 |
| Figure 4.4: Hot Stage Polarized Light Microscopy Using the A) (S)-Br (left) and                           |    |
| (R)-Br (right) B) (S)-Cl and (R)-Br C)(S)-I and (R)-Br Pairs Showing                                      |    |
| the Emergence of New Racemic and Quasiracemic Crystalline Phases.                                         | 66 |
| Figure 4.5: Powder XRD of $(S)$ -Cl/ $(R)$ -Br Quasiracemate and Related Components.                      | 68 |
| Figure 4.6: Hot Stage Microscopy Results from Combining Diarylamide A)                                    |    |
| Quasienantiomers B) Molecular Pairs with the Same Chirality [e.g. $(R)$ -                                 |    |
| X and ( <i>R</i> )-X'].                                                                                   | 70 |
| Figure 4.7: <sup>1</sup> H NMR Overlays of the S-CH <sub>3</sub> /R-CF <sub>3</sub> Quasiracemate System. | 73 |

| Figure 4.8: Crystal Structure of (S)-N-(2-methoxybenzoyl)methylbenzylamine         |    |
|------------------------------------------------------------------------------------|----|
| Showing Thermal Ellipsoids (50% Probability) and Intramolecular N-                 |    |
| H…O Hydrogen Bonding.                                                              | 75 |
| Figure 4.9: Overlay of 2-Substituted Diarylamides Showing the Conformational       |    |
| Difference of the Methoxy Framework (Pink).                                        | 75 |
| Figure 4.10: Search Criteria for Methoxy Group in CSD and Resulting Bonding        |    |
| Distances between "O" of Methoxy Functional Group and "N" of                       |    |
| Amide Functional Group.                                                            | 77 |
| Figure 4.11: Graphical Search Criteria of the CDS for 2-hydroxyarylamides.         | 77 |
| Figure 4.12: A CDS Search Showing O…N Intramolecular Bond Distances for            |    |
| 2-hydroxy Arylamides.                                                              | 79 |
| Figure 4.13: Results of CSD Search Showing Correlation of O…O Distance to          |    |
| O-H…O=C Hydrogen Bonding Angle.                                                    | 79 |
| Figure 4.14: Two Orientations for the Hydroxyl Group Observed from a CSD           |    |
| Search.                                                                            | 80 |
| Figure 4.15: Substitution Patterns and Chemical Frameworks of Previously           |    |
| Investigated Quasiracemic Systems.                                                 | 81 |
| Figure 4.16: Chemical Frameworks Showing meta and para Substituted                 |    |
| Diarylamides.                                                                      | 81 |
| Figure 4.17: Hot Stage Polarized Light Microscopy Using the A) (S)-2-Cl (left) and |    |
| (R)-3-Cl (right) B) (R)-4-Cl and (S)-3-Cl C) (S)-2-Cl and (R)-4-Cl                 |    |
| Pairs.                                                                             | 82 |

·

| Figure 4.18: Hot Stage Polarized Light Microscopy Using the A) (R)-2-Br (left) and          |     |
|---------------------------------------------------------------------------------------------|-----|
| (S)-3-Cl (right) B) (S)-3-Cl and (R)-4-Br C) (S)-4-Cl and (S)-2-Br                          |     |
| Pairs.                                                                                      | 83  |
| Figure 4.19: Hot stage polarized light microscopy using the A) $(R)$ -Cl (left) and $(R)$ - |     |
| Br (right) B) (R)-I/(R)-Br Pairs and Showing the Characteristics of                         |     |
| Solid Solution and Conglomerate Crystalline Phase Formation.                                | 85  |
| Figure S.1: Crystal Structure of the Cocrystal of Sulfamethazine and Benzoic Acid           |     |
| Showing Thermal Parameters (50% Thermal Ellipsoids) and Hydrogen                            |     |
| Bonding.                                                                                    | 93  |
| Figure S.2: Crystal Structure of the Cocrystal of Sulfamethazine and o-Nitrobenzoic         |     |
| Acid Showing Thermal Parameters (50% Thermal Ellipsoids) and                                |     |
| Hydrogen Bonding.                                                                           | 98  |
| Figure S.3: Crystal Structure of the Cocrystal of Sulfamethazine and <i>m</i> -Nitrobenzoic |     |
| Acid Showing Thermal Parameters (50% Thermal Ellipsoids) and                                |     |
| Hydrogen Bonding.                                                                           | 103 |
| Figure S.4: Crystal Structure of the Cocrystal of Sulfamethazine and p-Nitrobenzoic         |     |
| Acid Showing Thermal Parameters (50% Thermal Ellipsoids) and                                |     |
| Hydrogen Bonding.                                                                           | 112 |
| Figure S.5: Crystal Structure of the Cocrystal of Sulfamethazine and                        |     |
| o-Methylbenzoic Acid Showing Thermal Parameters (50% Thermal                                |     |
| Ellipsoids) and Hydrogen Bonding.                                                           | 120 |

| Figure S.6: Crystal Structure of the Cocrystal of Sulfamethazine and    |     |
|-------------------------------------------------------------------------|-----|
| m-Methylbenzoic Acid Showing Thermal Parameters (50% Thermal            |     |
| Ellipsoids) and Hydrogen Bonding.                                       | 125 |
| Figure S.7: Crystal Structure of the Cocrystal of Sulfamethazine and    |     |
| p-Methylbenzoic Acid Showing Thermal Parameters (50% Thermal            |     |
| Ellipsoids) and Hydrogen Bonding.                                       | 130 |
| Figure S.8: Crystal Structure of the Cocrystal of Sulfamethazine and o- |     |
| Fluorobenzoic Acid Showing Thermal Parameters (50% Thermal              |     |
| Ellipsoids) and Hydrogen Bonding.                                       | 135 |
| Figure S.9: Crystal Structure of the Cocrystal of Sulfamethazine and m- |     |
| Fluorobenzoic Acid Showing Thermal Parameters (50% Thermal              |     |
| Ellipsoids) and Hydrogen Bonding.                                       | 142 |
| Figure S.10: Crystal Structure of the Cocrystal of Sulfamethazine and   |     |
| p-Fluorobenzoic Acid Showing Thermal Parameters (50% Thermal            |     |
| Ellipsoids) and Hydrogen Bonding.                                       | 148 |
| Figure S.11: Crystal Structure of the Cocrystal of Sulfamethazine and   |     |
| m-Chlorobenzoic Acid Showing Thermal Parameters (50% Thermal            |     |
| Ellipsoids) and Hydrogen Bonding.                                       | 156 |
| Figure S.12: Crystal Structure of the Cocrystal of Sulfamethazine and   |     |
| p-Chlorobenzoic Acid Showing Thermal Parameters (50% Thermal            |     |
| Ellipsoids) and Hydrogen Bonding.                                       | 161 |

| Figure S.13: Crystal Structure of the Cocrystal of Sulfamethazine and            |     |
|----------------------------------------------------------------------------------|-----|
| m-Methoxybenzoic Acid Showing Thermal Parameters (50% Thermal                    |     |
| Ellipsoids) and Hydrogen Bonding.                                                | 171 |
| Figure S.14: Crystal Structure of the Cocrystal of Sulfamethazine and            |     |
| p-Methoxybenzoic Acid Showing Thermal Parameters (50% Thermal                    |     |
| Ellipsoids) and Hydrogen Bonding.                                                | 179 |
| Figure S.15: Crystal Structure of the Cocrystal of Sulfamethazine and            |     |
| p-Hydroxybenzoic Acid Showing Thermal Parameters (50% Thermal                    |     |
| Ellipsoids) and Hydrogen Bonding.                                                | 185 |
| Figure S.16: Crystal Structure of the Cocrystal of Sulfamethazine and <i>p</i> - |     |
| Ethylbenzoic Acid Showing Thermal Parameters (50% Thermal                        |     |
| Ellipsoids) and Hydrogen Bonding.                                                | 191 |
| Figure S.17: Crystal Structure of the Cocrystal of Sulfamethazine and            |     |
| p-Dimethylaminobenzoic Acid Showing Thermal Parameters (50%                      |     |
| Thermal Ellipsoids) and Hydrogen Bonding.                                        | 197 |
| Figure S.18: Crystal Structure of the Cocrystal of Sulfamethazine and            |     |
| o-Acetyloxybenzoic Acid Showing Thermal Parameters (50% Thermal                  |     |
| Ellipsoids) and Hydrogen Bonding.                                                | 203 |
| Figure S.19: Powder XRD of (S)-CH <sub>3</sub> /(R)-Br Quasiracemate and Related |     |
| Components.                                                                      | 234 |
| Figure S.20: Powder XRD of (S)-Br/(R)-CF <sub>3</sub> Quasiracemate and Related  |     |
| Components.                                                                      | 235 |

·

| Figure S.21: Powder XRD of $(S)$ -Cl/ $(R)$ -NO <sub>2</sub> Quasiracemate and Related                     |     |  |
|------------------------------------------------------------------------------------------------------------|-----|--|
| Components.                                                                                                | 236 |  |
| Figure S.22: Powder XRD of $(S)$ -Cl/ $(R)$ -I Quasiracemate and Related Components.                       | 237 |  |
| Figure S.23: Crystal Structure of N-(2-Fluoro)/N-2-(benzoyl)methylbenzylamine                              |     |  |
| Quasiracemate Showing Thermal Parameters (50% Thermal Ellipsoids).                                         | 238 |  |
| Figure S.24: Crystal Structure of N-(2-Trifluoro)/                                                         |     |  |
| N-2-(Nitrobenzoyl)methylbenzylamine Quasiracemate Showing                                                  |     |  |
| Thermal Parameters (50% Thermal Ellipsoids).                                                               | 238 |  |
| Figure S.25: Crystal Structure of N-(2-Trifluoro)/                                                         |     |  |
| N-2-(Methylbenzoyl)methylbenzylamine Quasiracemate Showing                                                 |     |  |
| Thermal Parameters (50% Thermal Ellipsoids).                                                               | 239 |  |
| Figure S.26: Crystal Structure of <i>N</i> -(2-Nitro)/                                                     |     |  |
| N-2-(Bromobenzoyl)methylbenzylamine Quasiracemate Showing                                                  |     |  |
| Thermal Parameters (50% Thermal Ellipsoids).                                                               | 239 |  |
| Figure S.27: Crystal Structure of N-(2-Trifluoro)/                                                         |     |  |
| N-2-(Iodobenzoyl)methylbenzylamine Quasiracemate Showing                                                   |     |  |
| Thermal Parameters (50% Thermal Ellipsoids).                                                               | 240 |  |
| Figure S.28: <sup>1</sup> H NMR Overlays of the S-Cl/R-Br Quasiracemate System.                            | 244 |  |
| Figure S.29: <sup>1</sup> H NMR Overlays of the S-NO <sub>2</sub> /R-CF <sub>3</sub> Quasiracemate System. | 244 |  |
| Figure S.30: <sup>1</sup> H NMR Overlays of the S-Br/R-CF <sub>3</sub> Quasiracemate System.               | 245 |  |
| Figure S.21: <sup>1</sup> H NMR Overlays of the S-Cl/R-I Quasiracemate System.                             | 245 |  |

### List of Tables

•

.

| Table 3.1: Melting Point of Coformers and Sulfamethazine Cocrystals.          | 47  |
|-------------------------------------------------------------------------------|-----|
| Table S1: Hot-Stage Images of Racemic and Quasiracemic Pairs.                 | 209 |
| Table S2: Hot Stage Images of Same Handed Homochiral Diarylamide Derivatives. | 222 |
| Table S3: Crystallographic Data for Diarylamide Quasiracemates.               | 241 |
| Table S4: Hydrogen Bond Parameters for Diarylamide Quasiracemate Structures.  | 243 |
| Table S5: Functional Group Volume Comparison.                                 | 246 |
| Table S6: Diarylamide Molecular Volume Comparison.                            | 246 |
| Table S7: Functional Group Surface Area Comparison.                           | 247 |
| Table S8: Diarylamide Surface Area Comparison.                                | 247 |

•

.

•

### List of Abbreviations

.

| <i>F</i> (000)   | The effective number of electrons in the crystal unit cell contributing to X-ray diffraction                            |
|------------------|-------------------------------------------------------------------------------------------------------------------------|
| D <sub>x</sub>   | Crystal density                                                                                                         |
| V                | Volume of a unit cell.                                                                                                  |
| Ζ                | Number of molecules per unit cell.                                                                                      |
| R <sub>int</sub> | The residual electron density for symmetry-equivalent reflections used to calculate average diffraction intensities     |
| w                | Refinement weighting scheme as defined by :                                                                             |
|                  | $w = q / [\sigma^2 (F_0^2) + (aP)^2 + bP + d + e \sin \theta]$                                                          |
| S                | The least-squares of goodness-of-fit parameter after the final cycle of least squares                                   |
| $\Delta  ho$     | The largest ratio of the final least-squares parameter shift divided<br>by the final standard uncertainty               |
| $R/R^2$ w (obs)  | Residual Indices calculated for all observed reflections $>2\sigma$ .                                                   |
| $R/R^2$ w (all)  | Residual Indices calculated for al reflections.                                                                         |
| μ(ΜοΚα)          | The absorption coefficient as calculated from the atomic content of the cell, the density and the radiation wavelength. |
| NMR              | Nuclear Magnetic Resonance                                                                                              |
| API              | Active Pharmaceutical Ingredient                                                                                        |
| CSD              | Cambridge Structural Database                                                                                           |
| $G_D^A(r)$       | Graph Set Notation                                                                                                      |
|                  | (G) Pattern Designation                                                                                                 |
|                  | (R) Ring                                                                                                                |
|                  | (C) Chain                                                                                                               |
|                  | (A) Number of Acceptor Atoms                                                                                            |
|                  | (D) Number of Donor Atoms                                                                                               |
|                  | (r) Degree (Number of Atoms Involved in Pattern)                                                                        |

#### **Chapter 1: Introduction**

### **1.1 Molecular Recognition**

Molecular recognition can be best described as the ability of molecules to recognize one another that often results from specific molecular interaction features. A variety of materials in all fields of science undergo molecular association and transformations that involve molecular recognition. These types of interactions are commonly defined as non-covalent interactions involving two or more chemical components. Such close contacts may include hydrogen bonding,  $\pi$ - $\pi$  stacking, metal coordination, and halogen bonding. An understanding of molecular recognition is vital to the development of next generation materials that display advanced chemical functions. As stated by Feyman, when we have some control of the arrangement of things on a molecular scale, we will get an enormously greater range of possible properties that substances can have.<sup>1</sup> This idea directly extends to the field of *Crystal Engineering* where the focus is to organize and control the arrangement of molecules in crystalline materials for the optimization of a property to perform a specific function.<sup>2</sup> The activity of pharmaceutical materials relies on similar molecule ... molecule interactions that in turn carries over to the molecular recognition process associated with active sites. Molecular recognition processes are far reaching and have played a role in such seminal science discoveries as the structure of deoxyribonucleic acid (DNA).<sup>3</sup> The structure of DNA contains several types of molecular associations such as hydrogen bonding and  $\pi$ - $\pi$ stacking. The nucleotide bases found in DNA effectively organize with complementary bases via hydrogen bonds. E. Chargaff is largely credited with determining the number of purines and pyrimidines in different species by examining and tabulating the

differences in concentration. Chargaff's investigations helped to establish the composition of DNA from equal numbers of purines and pyrimidines and also the association of adenine with thymine and guanine with cytosine. This discovery is now known as Chargaff's rule.<sup>4,5</sup> When analyzing the structures of purines and pyrimidines one can clearly see how recognition occurs through hydrogen bonding (Figure 1.1).<sup>6</sup> The chemical structures shown in Figure 1 demonstrate how adenine and thymine form two hydrogen bonds while guanine and cytosine form three hydrogen bonds. This type of recognition serves as the primary interactions that occurs in the structure originally proposed by Watson and Crick.<sup>3</sup> In addition to hydrogen bonding,  $\pi$ - $\pi$  stacking provides a necessary stabilization effect that is critical to the helical nature of the DNA structure (Figure 1.2).<sup>7</sup> It is worth noting that the complex blend of molecular associations found in DNA offer important insight to the unique functions of this important material. The non-covalent interactions observed in DNA are also found in a variety of other types of biological and chemical processes including protein folding and multi-protein systems such as enzyme receptor interactions.<sup>8</sup>



Figure 1.1: Hydrogen Bonding of Nitrogenous Bases.



Figure 1.2: Molecular Recognition in Deoxyribonucleic Acid.

#### **1.2 Importance of Molecular Chirality**

As described in the preceding discussion, the fundamental structure of chemical compounds directly influences the properties of the materials that they make up. Pharmaceutical materials offer an important example of this area of science where the structure and organization of the building blocks greatly impact the physical and chemical properties of these materials.<sup>9</sup> The ability to control chemical properties such as solubility, toxicity, and lipophilicity are important ongoing themes with the development of pharmaceuticals that ultimately determines the marketability of targeted drugs. This same insight to the chemical structure also helps investigators determine the most suitable route for the formulation and delivery of potential therapeutic agents. Typical delivery methods include topical, oral, sublingual, inhalation, and injection. A clear view of the complete structural landscape of a pharmaceutical compound is thus vital when determining or producing specific structure-activity relationships. Molecular chirality – *i.e.* the handedness of molecules – and its use in pharmaceutical agents provides an important structural feature that can greatly effect physiochemical activity.<sup>9</sup>

In 1848, while working with sodium ammonium tartrate, Louis Pasteur showed for the first time that left and right-handed crystals could be isolated through spontaneous mechanical separation.<sup>10</sup> Though the importance of molecular chirality was not immediately understood by the science community, this molecular feature now provides a critical component of many science disciplines. For instance, the pharmaceutical industry now adopts molecular chirality as a key molecular feature into the design of many drug formulations. One indication of this importance is that 56% of drugs on the market today display chirality with 88% of the remaining compounds existing as racemic mixtures.<sup>10</sup> Despite stereoisomers containing the same molecular formula and differing

only in the spatial arrangement of their atoms to produce molecular handedness, such compounds as applied pharmaceuticals formulations can exhibit very different properties. By exchanging one enantiomer for another the result can be a drastic difference in the pharmacology, pharmacokinetics, and pharmacodynamics of the material. Adverse side effects can develop by changing molecular chirality or by combining equimolar amounts of enantiomers to give racemic mixtures. One potential outcome from administering racemic mixtures includes elevated activity of one of the enantiomers as compared to the other stereoisomer. These enantiomeric compounds are known as the eutomer, more biologically active, and the distomer, less biologically active.<sup>10</sup> The activity of racemic mixtures does not always present a physiological drawback since enantiomers may exhibit similar pharmaceutical properties. Some racemic mixtures contain an inactive distomer that is effectively converted via enzymatic action to the needed eutomer.<sup>10</sup> Thalidomide, Labetalol, and Ibuprofen offer examples of pharmaceutical agents where the stereochemical features of the compounds effect activity, and where the activity of the enantiomers differ drastically.



Figure 1.3: Enantiomers of Thalidomide.

The first synthetic investigations of thalidomide occurred in 1954 at the pharmaceutical company Chemie Grunenthal GmBH. Initial testing of thalidomide showed that this potential therapeutic exhibited antihistamine properties as well as performing well as a sedative.<sup>11</sup> The drug was considered safe for mild sedation and introduced to the commercial market in 1957. By 1960 the drug was introduced to 20 different countries, but soon after several alarming side effects emerged prompting further investigations into its activity. By 1961 it was found that women exposed to thalidomide during their first trimester of pregnancy to combat morning sickness were in jeopardy of giving birth to children with defects. This discovery by Frances Kelsey, an FDA physician, prevented the introduction of the drug to the United States market.<sup>12</sup> These developments prompted the removal of the drug from the global market and by 1962 a complete removal occurred. The abnormalities observed during pregnancy included shortening and loss of limbs, but also these side effects extended to deformation of ears, eyes, and hearts of the children. The adverse impact of thalidomide to society was significant with nearly 10,000 cases of victims suffering from birth complications. The critical challenge of thalidomide's story is that drug administration occurred as the racemic form; a direct result from the single chiral center of the compound resulting in two enantiomers (Figure 1.3).<sup>11</sup> After the initial tragedy of thalidomide, more in-depth studies determined the origin of these birth defects. The teratogenic enantiomer, (S)thalidomide, was the cause of abnormal development during pregnancy, while the Renantiomer provided beneficial therapeutic properties. Simply dispensing this isomer was hindered because of the challenges associated with solubility. The superior solubility of the racemic mixture as compared to its enantiopure components limited the availability of this therapeutic as a single enantiomer. In addition, administering only the R form did not alleviate the problem of teratogenicity since the drug can undergo an *in vivo* racemization *via* a bidirectional chiral inversion process.<sup>10-12</sup> The tragedy of thalidomide has been long

lasting with its effects still prevalent today. Many problems associated with this drug could have been prevented through a clear understanding of the relationship between thalidomide's molecular structure and the physicochemical activity of the therapeutic. Today, thalidomide has been developed as an effective treatment for leprosy and Myeloma.<sup>12</sup> This progress is the direct result of the science community's well-defined assessment of thalidomide's chemical structure, activity, and mechanistic action.



Figure 1.4: Stereoisomers of Labetalol.

Like thalidomide, Labetalol is another example of a pharmaceutical agent that exists with multiple stereoisomers. However, unlike thalidomide, labetalol contains two chiral carbon atoms that translates to four different stereoisomers (Figure 1.4).<sup>13</sup> Thalidomide offers an example were the properties of the stereoisomers are significantly different. The impact of labetalol's four stereoisomers is more subtle and relates to the location of activity. A full understanding of the structure activity relationship should occur prior to the introduction of a pharmaceutical compound to the general public. Labetalol shows both alpha and beta adrenergic properties that can be utilized as a treatment of high blood pressure and as an antihypertensive. The *R*,*R* isomer of labetalol behaves as a beta-blocker, but expresses little alpha-blocking activity. By changing the

first chiral center to give the *S*,*R* isomer, the beta-blocking activity vanishes and high alpha blocking activity develops. The two remaining isomers, *S*,*S* and *R*,*S* are inactive. When prescribing labetalol the drug will often be administered as mixture of the *R*,*R* and *S*,*R* diastereomers in order for both alpha and beta blocking to occur.<sup>13</sup> The case of labetalol and its four isomers further solidifies the importance of understanding structures of compounds as it plays a role in their activity and selectivity.



Figure 1.5: Stereoisomers of Ibuprofen.

Ibuprofen is a known nonsteroidal anti-inflammatory drug (NSAID) that inhibits cyclooxygenase 1 (COX 1). Ibuprofen, like the two previous examples, thalidomide and labetalol, contains a chiral carbon resulting in two stereoisomers (Figure 1.5). Ibuprofen is marketed as a racemic mixture, but its activity is largely dependent on the *S* isomer.<sup>10</sup> The *S* isomer is 100 times more effective as an inhibitor of COX1 than the *R*-isomer. The anti-inflammatory and analgesic properties of ibuprofen leads to its common use. Despite only one isomer being active, the compound undergoes a unidirectional inversion mediated by enzymatic action to give inversion of the *R* isomer to the *S* isomer. During this process only the *R* isomer can undergo this chemical change.<sup>10</sup> In the case of ibuprofen, neither of the isomers cause extreme or detrimental side effects similar to thalidomide nor is additional activity observed at multiple active sites. Ibuprofen provides

an example in which a beneficial inversion process occurs that results in an inactive form of a drug, R-isomer, becoming active, S-isomer, through the enzymatic activity.<sup>10</sup>

Thalidomide, Labetalol, and Ibuprofen highlight the importance of stereochemistry in the pharmaceutical industry. In the cases of Thalidomide and Labetalol the use of the wrong enantiomer can result in side effects ranging from birth defects to a lack of therapeutic activity. An understanding of structure activity relationships does not only apply to pharmaceuticals, but applies to nearly all functional materials. The control and optimization of properties to give a desired performance level is strongly dependent on an intimate understanding of the structure activity relationship of compounds and materials. Without a full understanding of molecular recognition, the ability to predict the activity of a specific material may not occur. This thesis explores the molecular recognition processes by use of racemic and quasiracemic materials, where molecular shape is exploited as a structural feature to understand the formation of supramolecular architectures.

#### **1.2.1 Racemic and Quasiracemic Mixtures**

The ability of two molecular components to organize together in a crystal – *i.e.* a cocrystal - is dependent on the complementary features of the components for recognition to occur. The driving force for assembling the components of a cocrystalline system often relates to formation of such interactions as hydrogen bonds,  $\pi$  stacking, and metal coordination. Although less well studied, the topological features of the cocrystalline molecules can also have a drastic effect on molecular recognition. The analogy of the lock and key mechanism that corresponds to enzyme receptors speaks to the importance of the magnitude and profile of matching shapes to the molecular recognition process. For example, if the key is too large it will not fit in the lock and if the key is too small, it

will not release the lock. Investigations of molecular crystals most often focus on noncovalent interactions such as hydrogen bonding largely because such contacts can be quantified via various parameters (e.g. bond distances and angles). Though molecular shape is widely recognized as a key determinant in crystal organization, studies that focus on this structural feature are rare.<sup>14–18</sup> One such reason for the lack of attention to molecular shape is related to the challenge of quantifing molecular and functional group topology. Perhaps one approach to classify molecular shape is by use of the work of Gavezzotti from the 1980s.<sup>19,20</sup> Gavezzoti described the volume and surface of various functional groups. Though not a direct indicator of molecular shape this information has proven useful when comparing the spatial features of two or more substituents or chemical frameworks.

### **1.3 Assessment of Molecular Recognition and Noncovalent Interactions**

The assessment and determination of molecular recognition profiles can occur through a variety of techniques. X-ray crystallography is a non-destructive technique that provides critical information about the three-dimensional structure of chemical compounds. In addition to determining the fundamental aspects of chemical structure, Xray diffraction patterns collected from crystallographic studies give insight to the contents of the crystal lattice such as non-covalent interactions and the symmetry that defines these molecular associations. By determining the molecular packing in crystals the properties that arise from these arrangements can also be identified.<sup>21</sup> A crystal can be defined as an ordered three-dimensional array of atoms, ions, or molecules within a solid. Some compounds, such as active pharmaceutical ingredients (APIs), can form more than one type of crystal structure. These crystal structures are known as polymorphs.<sup>22,23</sup> The term polymorph was first introduced by Mitscherlich in 1820<sup>24</sup>, but the definition has changed slightly with more recent modifications. The original and frequently accepted definition of polymorphism, coined by McCrone, is *a solid crystalline phase of a given compound resulting from the possibility of at least two different arrangements of the molecules of that compound in the solid state*.<sup>25</sup> The technique of crystallography often looks at structures that do not contain only one component but contains an additional component.

### 1.3.1 Crystal Structures and Crystal Forms



Figure 1.6: Types of Multicomponent Crystals.<sup>26</sup>

Some examples of compounds that frequently exist in polymorphic forms are APIs. For a drug to reach the market it must first undergo a variety of tests that include a formulation process. One solid form or polymorph must be selected for this process and is largely dependent on the properties of that crystalline phase. Many potential challenges associated with pharmaceuticals formulations include solubility, density, toxicity, and lipophilicity. One such way to reach the desired material properties is by administering an amorphous form or a multi-component form consisting molecular salts or cocrystals (Figure 1.6).<sup>26</sup> Developing a language that effectively describes multicomponent crystals has been a topic of much recent debate.<sup>22,23,27</sup> As of 2011, the United States Food and Drug Administration (FDA) recommended a classification system for APIs; however, this attempt was not adequate for describing all formulations.<sup>22,23</sup>

Multicomponent crystals are a system in which two or more chemically different components are present in the crystal lattice. These components may include ions, solvents, or coformers (Figure 1.6). When one of the components of a multicomponent crystal contains a nonzero formal charge, it is known as an ion. Components that are liquid while at room temperature are solvents. A residue that is neither a liquid nor a charged component of the crystal is considered a coformer.<sup>23</sup> While multicomponent crystals containing APIs can exist in several polymorphic forms, they may also include salts, solvates/hydrates, or cocrystals. The benefit of multicomponent crystals is that material properties may be engineered by combining targeted components. This approach has been shown to be effective at increasing the overall usefulness of a therapeutic agent.<sup>23</sup> Multicomponent crystals fall under three classes of compounds: salts, solvates, and cocrystals. A salt, is a crystal system composed of at least two ions. Solvates include crystalline phases that incorporate solvent as well as a coformer or at least two ions. The final class of multicomponent crystalline systems is a cocrystal which contains a crystal with a coformer in addition to another coformer or at least two ions. The classification of multicomponent crystals can be further divided into seven subclasses -i.e. true solvates, true salts, true cocrystals, salt solvates, cocrystal solvates, cocrystal salt, and cocrystal salt solvates.<sup>23</sup> Prior to analyzing crystals with the use of X-

ray diffraction other techniques may be utilized. The qualitative technique, hot-stage microscopy, helps to investigate molecular recognition without subjecting materials to experiments with uncontrollable variables such as single crystal growth.<sup>28</sup> This technique allows for the preparation of cocrystals by melting two coformers together with one another.<sup>29</sup> In addition to looking at molecular recognition and the ability of two substances to form cocrystals, this technique has a long history in describing the solid states of active pharmaceutical ingredients.

### 1.3.2 Hot-Stage Thermomicoscopy

The technique of thermomicroscopy was developed by the early work of Otto Lehman, Ludwig and Adelheid Kofler, and Maria Kunhert Brandstatter.<sup>30</sup> This analytical technique allows the thermal characterization of a material's physical properties. The equipment consists of a temperature controlled hot stage equipped with a microscope and video capture. Some physical properties observed include physical and chemical decomposition as well as phase transitions.<sup>31</sup> A benefit from using this technique centers on its effective use with assessing the thermal properties of binary mixtures. With the use of known starting materials, one can determine the ratios of the starting components in new crystalline phases based on the melting temperature of mixture.<sup>28</sup> The work reported by Lehman highlighted that heating an organic compound leads to a unique thermal signature characteristic of the material. Work performed by Ludwig and Adelheid Kofler further helped in the identification of organic materials characteristics through analysis utilizing this technique.<sup>30</sup> During these early years, the available instrumentation for hot stage work was quite primitive that ultimately led to significant advances in instrumentation. The Kofler hot stage was one such piece of equipment developed by L. and A. Kofler to perform their experiments. This method utilized by the Koflers was later

termed the *contact method* by McCrone.<sup>31</sup> This method provides information on the formation of new crystalline phases as well as eutectic mixture formation. In addition to new crystalline phases being formed during the heating and cooling stages of this method, cocrystal screening of binary systems can occur rapidly. Maria Kunhert Brandstatter focused her work on organic compounds that would have a specific medical benefit. Today, the pharmaceutical industry utilizes hot-stage microscopy for the solid-state characterization of drugs. This is not limited to one crystal type but allows for the analysis of multiple polymorphs as well as solvates and hydrates.<sup>30</sup> Hot stage microscopy has been coined as *one of the oldest and simplest methods suitable for screen purposes*.<sup>31</sup> Today this technique continues to be used as a cocrystallization screening diagnostic tool. Through the study of cocrystallization of two or more molecules, one can determine the ability of molecules to recognize one another. One type of active pharmaceutical ingredient commonly studied in cocrystallization is the sulfonamide drugs.<sup>32</sup>

### **1.4 Thesis Overview**

This thesis builds on previous work and the current understanding of the factors that affect the molecular recognition profiles of cocrystalline organic materials. This work primarily focuses on two areas with the first examining a family of benzoic acid and sulfamethazine cocrystalline systems. Important structural trends emerge from this study by combining sulfamethazine and a collection of benzoic acids that vary in structure and position of a pendant substituent. The second area studies the structural boundary of molecular shape to the molecular recognition process. This investigation more specifically aims to determine the role of topology to the molecular recognition process. While the shape space of molecules is known to contribute to crystal packing

and the recognition process in general, investigating this structural feature has attracted little attention. Efforts in these areas provide comprehensive investigations that highlight families of structurally related compounds and their role in the molecular recognition process.

### 1.4.1 Sulfamethazine as an Active Pharmaceutical Ingredient



Figure 1.7: Forms of Sulfamethazine.

Sulfa drugs were developed as antimicrobial agents with uses in both veterinary and human applications. The core structure of sulfa drugs contains a sulfonamide group that often promotes a blend of hydrogen bond interactions. The outcome from hydrogen bond stabilization is that sulfa drugs readily assembly with secondary molecules (coformers) via complementary hydrogen-bond groups.<sup>32</sup> In addition to existing in more than one polymorph, some drugs in this family are capable of at least two tautomeric forms, an amidine or an imidine. One such example of a sulfa drug capable of existing in more than one tautomer is sulfamethazine (Figure 1.7)<sup>33</sup>, also reported under the names sulfadimidine and sulfadimethylpyridine.<sup>34</sup> The complexity of molecular assembly of sulfamethazine largely relates to the assortment of functions groups capable of hydrogen bonding. The amine and sulfonamide substituents provide three acidic NH protons. In addition to these donor groups there are also five acceptor regions capable of hydrogenbonding. These regions include the amine, two oxygen atoms of the sulfonamide group, and two hetrocyclic nitrogen atoms present in the pyrimidine ring.<sup>34</sup> Surprisingly, despite sulfamethazine containing many of the same structural elements as other sulfa drugs, only one polymorph is known to date.<sup>35</sup> Depending on the structural features of the coformer assembled with sulfamethazine, these secondary molecules can greatly effect which tautomer is present. Sulfamethazine has been shown to form cocrystals with carboxylic acids, amides, saccharin, theophylline, and other molecular components.<sup>33,34,36–39</sup> In each case cocrystallization of sulfamethazine with these active pharmaceutical ingredients leads to the formation of  $R_2^2(8)$  hydrogen-bonded rings as previously defined by Etter.<sup>40,41</sup> This motif is identified by a ring (R) of eight atoms with two acceptor and two donor atoms assembling the pattern.

### 1.4.2 Sulfamethazine and cocrystallization with substituted Benzoic Acids

Many studies have explored the cocrystallization ability of sulfamethazine. While these investigations contribute to our current understanding of sulfamethazine's structural chemistry, no literature reports have attempted to correlate tautomer formation to the acidity of the coformer.<sup>29,32–35,37,39</sup> Additionally, sulfamethazine has been shown to hydrogen bond with carboxylic acids and more specifically benzoic acids, but these studies seem to be isolated investigations with each reporting a limited number of crystal structures.<sup>29,32,34,36,38,39</sup> This investigation moves beyond these previous reports and examines a substantial set of sulfamethazine benzoic acid cocrystalline systems. This is accomplished by introducing to the project benzoic acids that systematically differ in functional group composition and location. This design strategy allows for a wide array of substituents with electron donating and withdrawing groups that in turn, results in

range of pKa values for the coformers. The strength of these donating and withdrawing properties affect hydrogen bond ability and the overall assembly of the cocrystalline mottifs.<sup>42</sup>



Figure 1.8: Substituted Benzoic Acids Utilized in Cocrystallization.

The cocrystallization of sulfamethazine occurred using various substituted benzoic acids (Figure 1.8). This study aimed to look at the molecular recognition process between this API and various benzoic acids in order to determine when each specific tautomer will occur in a cocrystal. The benzoic acids used in this study provided a range of acid strengths resulting in the formation of two different tautomers. Controlling which tautomer forms plays a large role in activity and location of activity as shown in the previously discussed pharmaceutical examples. This ability of sulfamethazine to cocrystallize in various tautomers suggests that optimization of specific properties may occur during a formulation process.

### 1.4.3 Molecular recognition boundaries of diarylamide quasiracemates

The design of functional materials depends on a clear understanding of all factors responsible for the molecular assembly process. Although the design of functional

materials has advanced in the past few decades to give new materials of current importance, the construction of engineered supramolecular structures still remains at a primitive level.<sup>8</sup> Structural organization of solids is controlled through the interactions occurring within the solid including hydrogen bonding, electrostatic interactions, and  $\pi$ - $\pi$ stacking. The role and magnitude these interactions play determine the organization of these solids. Another such interaction recognized as a factor in organization is topology. Although this property is accepted as a factor in crystal organization the studies involving size and shape are often limited.<sup>14</sup>

Previous investigations in the Wheeler Lab have focused on synthesizing and combining pairs of isosteric compounds to form quasiracemic structures. Quasiracemates, or quasiracemic compounds, consist of 1:1 ratio of two chemically unique components of opposite handedness (*i.e.*, *R*-X/S-X'). Studies in the area most often maximize success by combing structurally similar components. These studies have led to important discoveries and a deeper understanding of quasiracemic materials; even so, several critical questions still remain such as the comprehensive role of molecular shape to the molecular recognition process. Unlike other investigations in the field of supramolecular chemistry that focus on non-covalent interactions, our investigations focus on how molecular topology influences crystal packing.<sup>14–18</sup> The lack of clearly defined descriptors of molecular shape has limited the development of research programs in this area. Molecular volume and surface area calculations offer one approach to quantify the shape space of molecules .<sup>19,20</sup> A variety of quasiracemic scaffolds have been utilized to investigate molecular recognition and the formation of quasiracemic structures.<sup>16–18</sup> Despite previous studies, a defined structural boundary for quasiracemate formation has
yet to occur. Developing an understanding of the role topology plays in recognition processes coupled with other interactions would help in the design and development of new materials with a range of applications from biological functions to novel solids.<sup>43</sup>



Figure 1.9: Quasiracemic Structure of N-(2-Chloro)/N-2-(Bromobenzoyl)methylbenzylamine.



Figure 1.10: Diarylamide Molecular Frameworks Used in this Thesis Study.

|     |                 | Group                    | Group Surface          |
|-----|-----------------|--------------------------|------------------------|
|     |                 | Volume (Å <sup>3</sup> ) | Area (Å <sup>2</sup> ) |
| X = | н               | 5.9                      | 6.8                    |
|     | F               | 7.8                      | 12.1                   |
|     | CI              | 19.6                     | 29.0                   |
|     | CN              | 21.0                     | 32.2                   |
|     | CH <sub>3</sub> | 23.3                     | 33.4                   |
|     | NO <sub>2</sub> | 23.2                     | 37.0                   |
|     | Br              | 27.6                     | 37.1                   |
|     | CF <sub>3</sub> | 28.9                     | 37.3                   |
|     | OCH:            | 32.6                     | 40.1                   |
|     | 1               | 34.6                     | 45.0                   |
|     | $C_6H_5$        | 82.9                     | 94.9                   |

Figure 1.11: Functional Group Volumes and Surface Areas.<sup>19,20</sup>

The focus of this project lies with determining the influence of molecular shape to how molecules recognize each other. This investigation builds on a previously reported diarylamide quasiracemic material and extends this success to a family of diarylamides suitable for determining the structural boundaries of quasiracemate formation (Figure 1.9).<sup>15</sup> This study exploits the symmetry preference found in crystalline racemic compounds. It has been shown that 92% of racemic crystal structures form inversion related motifs.<sup>18</sup> This strong structural proclivity of racemates to form centrosymmetric assemblies also extends to quasiracemates such as that shown in Figure 1.9. This program aims to provide insight to the role topology plays in the recognition process through ortho-substituted diarylamide quasiracemic enantiomers. This study takes the molecular scaffold shown in Figure 1.10, both (R) and (S) enantiomers, and modifies the strategy to include a variety of substituents that vary in size and shape (Figure 1.11). The molecular volumes and surface areas of these diarylamide derivatives are provided in Figure 1.11.<sup>19,20</sup> These substituents differ incrementally in shape and size and increase the overall volume and surface area of the structure.

Previous experiments in the Wheeler Lab have utilized quasiracemic materials for studying molecular topology and its influence in generating supramolecular structures. Through these studies, it has been identified that quasiracemic structures organize in 1:1 ratios with one another of each handed component. These structures organize in a predictable manner, much like that of their racemic counterparts, with a pseudo-inversion center. Unlike racemates, these structures do not contain a true inversion center due to each handed molecule being chemically unique.<sup>14–18</sup>



Figure 1.12: Kofler Contact Method.

A family of compounds was synthesized from starting components varying in pendant substituent resulting in twenty-two compounds in total. The synthesis of these products occurred in a parallel fashion and chemical connectivity was determined via proton (<sup>1</sup>H) nuclear magnetic resonance (NMR) and carbon (<sup>13</sup>C) NMR. In order to purify and isolate the products, slow evaporation recrystallization techniques were used. Identification of the molecular recognition process occurred through hot-stage thermomicroscopy and the Kofler contact method (Figure 1.12). Racemic compounds were used as models to ensure this technique would apply to quasiracemic enantiomers. Under a controlled thermal environment, each compound was melted, and allowed to mix with another of opposite handedness, to determine whether the two compounds would form a new crystalline phase.<sup>30,31</sup>

The contact method provided a visual phase diagram in which the identification of a new crystalline phase occurred through the presence of two eutectic points while identification of a conglomerate occurred through the presence of a single eutectic point. The presence of two eutectic points and a new crystalline phase suggested that a recognition process occurred and that the compounds associated with one another. The presence of a new crystalline phase resulted in further analysis of the solid through <sup>1</sup>H NMR, <sup>13</sup>C NMR, powder X-ray diffraction, and single crystal X-ray diffraction. Diffraction techniques provide information for the structural determination of these quasiracemic structures. Some quasienantiomeric pairs were unable to grow viable single crystals to be analyzed resulting in the need for powder X-ray diffraction. Powder X-ray diffraction provided the molecular fingerprint of the quasiracemic compound allowing for differentiation from the starting materials.

The thermal processing of these synthesized diarylamide starting materials resulted in virtual phase diagrams and molecular association profiles for each of the one hundred and ten experiments that were completed. This information provides a structural landscape of the effects of topology that vary incrementally in size and shape on this molecular scaffold. This analysis will result in defined shape space boundary for these diarylamide derivatives.

22

#### **1.5 References**

- Balzani, Vincenzo; Credi, Alberto; Venturi, M. Molecular Devices and Machines: Concepts and Perspectives for the Nanoworld; WILEY-VCH: Federal Republic of Germany, 2008.
- (2) Tiekink, E. R. T. Chem. Commun. 2014, 50 (76), 11079–11082.
- (3) Watson, J. D.; Crick, F. H. C. *Nature*. 1953, pp 737–738.
- (4) Chargaff, E. *Experientia* **1950**, *6*, 201–209.
- (5) Chargaff, E.; Lipshitz, R. J. Am. Chem. Soc. 1953, 75 (15), 3658-3661.
- (6) Genetics, C. for R. What is DNA?
   http://www.councilforresponsiblegenetics.org/geneticprivacy/DNA\_sci\_1.html (accessed Jan 1, 2017).
- Krylov, A. Open-shell Species: A Challenge to Electronic Structure Theory http://chem.usc.edu/faculty/Krylov.html (accessed Jan 1, 2017).
- (8) Gellman, S. Chem. Rev. 1997, 97 (5), 1231–1232.
- (9) Datta, S.; Grant, D. J. W. Nat. Rev. Drug Discov. 2004, 3 (1), 42–57.
- (10) Nguyen, L. A.; He, H.; Pham-Huy, C. Int. J. Biomed. Sci. 2006, 2 (2), 85-100.
- (11) Eriksson, T.; Björkman, S.; Höglund, P. Eur. J. Clin. Pharmacol. 2001, 57 (5), 365–376.
- (12) Vargesson, N. Birth Defects Res. Part C Embryo Today Rev. 2015, 105 (2), 140–156.
- Gold, E. H.; Chang, W.; Cohen, M.; Baum, T.; Ehrreich, S.; Johnson, G.; Prioli,
   N.; Sybertz, E. J. J. Med. Chem. 1982, 25 (11), 1363–1370.
- (14) Fomulu, S. L.; Hendi, M. S.; Davis, R. E.; Wheeler, K. A. Cryst. Growth Des.

**2002**, *2* (6), 637–644.

- (15) Fomulu, S. L.; Hendi, M. S.; Davis, R. E.; Wheeler, K. A. Cryst. Growth Des.
  2002, 2 (6), 645–651.
- (16) Hendi, M. S.; Hooter, P.; Davis, R. E.; Lynch, V. M.; Wheeler, K. A. Cryst.
   Growth Des. 2004, 4 (1), 95–101.
- (17) Breen, M. E.; Tameze, S. L.; Dougherty, W. G.; Kassel, W. S.; Wheeler, K. A.
   *Cryst. Growth Des.* 2008, 8 (10), 3863–3870.
- (18) Lineberry, A. M.; Benjamin, E. T.; Davis, R. E.; Kassel, W. S.; Wheeler, K. A.
   *Cryst. Growth Des.* 2008, 8 (2), 612–619.
- (19) Gavezzotti, A. J. Am. Chem. Soc. 1983, 105 (16), 5220–5225.
- (20) Gavezzotti, A. J. Am. Chem. Soc. 1985, 107 (4), 962–967.
- (21) Smyth, M. S.; Martin, J. H. J. Clin. Pathol. Mol. Pathol. 2000, 53 (1), 8-14.
- (22) Aitipamula, S.; Banerjee, R.; Bansal, A. K.; Biradha, K.; Cheney, M. L.; Choudhury, A. R.; Desiraju, G. R.; Dikundwar, A. G.; Dubey, R.; Duggirala, N.; Ghogale, P. P.; Ghosh, S.; Goswami, P. K.; Goud, N. R.; Jetti, R. R. K. R.; Karpinski, P.; Kaushik, P.; Kumar, D.; Kumar, V.; Moulton, B.; Mukherjee, A.; Mukherjee, G.; Myerson, A. S.; Puri, V.; Ramanan, A.; Rajamannar, T.; Reddy, C. M.; Rodriguez-Hornedo, N.; Rogers, R. D.; Row, T. N. G.; Sanphui, P.; Shan, N.; Shete, G.; Singh, A.; Sun, C. C.; Swift, J. A.; Thaimattam, R.; Thakur, T. S.; Thaper, R. K.; Thomas, S. P.; Tothadi, S.; Vangala, V. R.; Variankaval, N.; Vishweshwar, P.; Weyna, D. R.; Zaworotko, M. J. *Cryst. Growth Des.* 2012, *12* (5), 2147–2152.
- (23) Grothe, E.; Meekes, H.; Vlieg, E.; Ter Horst, J. H.; De Gelder, R. Cryst. Growth

Des. 2016, 16 (6), 3237–3243.

- (24) Desiraju, G. R. Cryst. Growth Des. 2008, 8 (1), 3–5.
- W. C. McCrone, in Polymorphism in Physics and Chemistry of the Organic Solid State; Fox,D.; Labes, M. M.; Weissberger, A., Eds. Wiley Interscience: New York, 1965; Vol. II, pp. 726.
- (26) Schultheiss, N.; Newman, A. Cryst. Growth Des. 2009, 9 (6), 2950–2967.
- (27) Patrick Stahly, G. Cryst. Growth Des. 2009, 9 (10), 4212–4229.
- Berry, D. J.; Seaton, C. C.; Clegg, W.; Harrington, R. W.; Coles, S. J.; Horton, P. N.; Hursthouse, M. B.; Storey, R.; Jones, W.; Friščić, T.; Blagden, N. Cryst. Growth Des. 2008, 8 (5), 1697–1712.
- (29) Lu, J.; Li, Y. P.; Wang, J.; Li, Z.; Rohani, S.; Ching, C. B. J. Cryst. Growth 2011, 335 (1), 110–114.
- (30) Vitez, I. M.; Newman, A. W.; Davidovich, M.; Kiesnowski, C. *Thermochim. Acta* 1998, 324 (1-2), 187–196.
- (31) Lekšić, E.; Pavlović, G.; Meštrović, E. Cryst. Growth Des. 2012, 12 (4), 1847–
   1858.
- (32) Caira, M. R. Mol. Pharm. 2007, 4 (3), 310-316.
- (33) Fu, X.; Li, J.; Wang, L.; Wu, B.; Xu, X.; Deng, Z.; Zhang, H. RSC Adv. 2016, 6
  (31), 26474–26478.
- (34) Ghosh, S.; Bag, P. P.; Reddy, C. M. Cryst. Growth Des. 2011, 11 (8), 3489–3503.
- (35) Maury, L.; Rambaud, J.; Pauvert, B.; Lasserre, Y.; Bergé, G.; Audran, M. J.
   *Pharm. Sci.* 1985, 74 (4), 422–426.
- (36) Adsmond, D. A.; Grant, D. J. W. J. Pharm. Sci. 2001, 90 (12), 2058–2077.

- (37) Lu, Jie; Rohani, S. J. Pharm. Sci. 2010, 99 (9), 4042–4047.
- (38) Caira, M. R.; Nassimbeni, L. R.; Wildervanck, A. F. J. Chem. Soc. Perkin Trans. 2
  1995, No. 12, 2213–2216.
- (39) Patel, U.; Haridas, M.; Singh, T. P. Acta Crystallogr. Sect. C Cryst. Struct.
   Commun. 1988, 44 (7), 1264–1267.
- (40) Etter, M. C.; MacDonald, J. C.; Bernstein, J. Acta Crystallogr. Sect. B 1990, 46
  (2), 256–262.
- (41) Etter, M. C. Acc. Chem. Res. 1990, 23 (4), 120-126.
- (42) Seaton, C. C.; Chadwick, K.; Sadiq, G.; Guo, K.; Davey, R. J. Cryst. Growth Des.
  2010, 10 (2), 726–733.
- (43) Desiraju, G. R. J. Chem. Sci. 2010, 122 (5), 667–675.

### **Chapter 2: Experimental Details**

**General Considerations**. All chemicals and solvents were purchased from the Aldrich Chemical Co. or Acros Chemicals and used as received without further purification unless stated otherwise. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectral data were recorded with a 400 MHz Bruker Avance spectrometer using TopSpin v.3.2. They were referenced using the solvent residual signal as internal standard. The chemical shift values are expressed as  $\delta$ values (ppm) and the value of coupling constants (*J*) in Hertz (Hz). The following abbreviations were used for signal multiplicities: s, singlet; d, doublet; dd, doublet of doublets; t, triplet; q, quartet; m, multiplet; and br, broad. Melting point data were determined using a Melt-Temp apparatus and are uncorrected. The 2-substituted diarylamide derivatives for this study were prepared using a previously reported method starting from either the carboxylic acid or acid chloride.<sup>1</sup> The following general procedure, as described for (*R*)-N-(2-fluorobenzoyl)methylbenzylamine, was used to generate the homologous series of diarylamides.

### 2.1 Preparation of Sulfamethazine Cocrystals

Crystalline materials prepared for this study were grown in solution using equimolar amounts of sulfamethazine and the benzoic acid derivative. These mixtures were dissolved in a solvent system consisting of 1:1 CH<sub>3</sub>CN:MeOH. The solution was left partially covered and allowed to evaporate slowly at room temperature until crystals appeared typically after 2-4 days. Crystallographic assessment was carried out as

27

described in section 2.5 with full crystal structure details provided in section S1 of the Supplementary Information.

### 2.2 Synthesis of (S)- and (R)-N-(2-substitutedbenzoyl)methylbenzylamine

(*R*)-N-(2-Fluorobenzoyl)methylbenzylamine f(r) (*R*)-N-(2-Fluorobenzoyl)methylbenzylamine To a nitrogen purged 100-mL round-bottom flask containing a stir bar and 2-fluorobenzoic acid (0.8469 g, 6.00 mmol) at 0°C was added 2.2 mL of thionyl chloride (30.0 mmol). The reaction mixture was allowed to warm to room temperature and then refluxed for 2.5 hours to give a homogeneous yellow solution. Excess thionyl chloride was removed by washing the mixture with 15 mL of hexanes and the mixture was reduced using a mechanical diffusion pump to give a yellow solution. Without further purification, the acid chloride was treated with (*R*)-(+)- $\alpha$ -methylbenzylamine (1.7993 g, 14.8 mmol) dissolved in 5 mL dichloromethane and stirred overnight at room temperature. The reaction mixture was then extracted in succession with 25 mL H<sub>2</sub>O, 10 mL saturated NaHCO<sub>3</sub>, 10 mL 4 M HCl, and 10 mL H<sub>2</sub>O. The organic layer was dried using anhydrous magnesium sulfate and reduced under *vacuo* to give a solid colorless product (0.6413 g, 43.93% yield).

X-ray quality crystals were obtained *via* slow evaporation at room temperature using a 1:1 hexanes:dichloromethane solution.

Melting point 108-110°C.

<sup>1</sup>H NMR (400 MHz, acetone- $d_6$ ):  $\delta$  8.80 (br s, 1H, N-H), 7.57-7.24 (m, 9H, C<sub>Ar</sub>-H), 5.12 (dq, J = 6.4 and 6.6 Hz, 1H, C<sub>sp3</sub>-H), 1.43 (d, J = 6.4 Hz, 3H, CH<sub>3</sub>)

<sup>13</sup>C NMR (100 MHz, acetone-*d*<sub>6</sub>): δ 163.1, 160.2-157.8 (d, *J* = 247.1 Hz), 144.6, 132.1-132.0 (d, *J* = 8.2 Hz), 129.9. 128.3, 126.7, 126.0, 124.8-124.6 (d, *J* = 15.3 Hz), 124.4-124.3 (d, *J* = 15.1 Hz), 116.1-115.9 (d, *J* = 21.9 Hz), 48.6, 22.5.

(S)-N-(2-Fluorobenzoyl)methylbenzylamineMelting point 108-110°C, 85.89% yield. $<sup>1</sup>H NMR (400 MHz, acetone-d<sub>6</sub>): <math>\delta$  7.81-7.19 (m, 10H, N-H, C<sub>Ar</sub>-H), 5.32 (dq, J = 7.1 and 7.2 Hz, 1H, C<sub>sp3</sub>-H), 1.58 (d, J = 7.1 Hz, 3H, CH<sub>3</sub>). <sup>13</sup>C NMR (100 MHz, acetone-d<sub>6</sub>):  $\delta$  162.6, 161.2-158.8(d, J = 246.3 Hz), 144.4, 132.6-132.5 (d, J = 8.7 Hz), 130.8, 128.4, 126.8, 126.1, 124.5-124.4 (d, J = 3.4 Hz), 123.7-123.6 (d, J = 13.9 Hz), 116.0-115.8 (d, J = 23.3 Hz), 49.2, 21.8.

(R)-N-(2-Chlorobenzoyl)methylbenzylamine (R)-N-(2-Chlorobenzoyl)methylbenzylamineMelting point 110-112°C, 68.25% yield.
<sup>1</sup>H NMR (400 MHz, acetone-d<sub>6</sub>):  $\delta$  7.92 (br s, 1H, N-H), 7.52-7.24 (m, 9H, C<sub>Ar</sub>-H), 5.29
(dq, J = 7.1 and 7.1 Hz, 1H, C<sub>sp3</sub>-H), 1.57 (d, J = 7.1 Hz, 3H, CH<sub>3</sub>)
<sup>13</sup>C NMR (100 MHz, acetone-d<sub>6</sub>):  $\delta$  165.5, 144.4, 137.3, 130.6, 130.5, 129.7, 129.0,
128.3, 126.9, 126.8, 126.2, 49.0, 21.7.

(S)-N-(2-Chlorobenzoyl)methylbenzylamine Previously prepared by S. Fomulu with spectroscopic data provided in reference 1.

Melting point 110-112°C

(*R*)-N-(2-Cyanobenzoyl)methylbenzylamine (*R*)-N-(2-Cyanobenzoyl)methylbenzylamine Melting point 138-140°C, 84.11% yield. <sup>1</sup>H NMR (400 MHz, acetone-*d*<sub>6</sub>):  $\delta$  8.28 (br s, 1H, N-H), 7.87-7.22 (m, 9H, C<sub>Ar</sub>-H), 5.31 (dq, *J* = 7.1 and 7.1 Hz, 1H, C<sub>sp3</sub>-H), 1.59 (d, *J* = 7.1 Hz, 3H, CH<sub>3</sub>). <sup>13</sup>C NMR (100 MHz, acetone-*d*<sub>6</sub>):  $\delta$  164.5, 144.1, 139.6, 133.9, 132.6, 130.7 128.4, 126.9, 126.2, 122.9, 117.3, 111.1, 49.2, 21.5.

(*S*)-N-(2-Cyanobenzoyl)methylbenzylamine Melting point 138-140°C, 34.58% yield. <sup>1</sup>H NMR (400 MHz, acetone- $d_6$ ):  $\delta$  8.23 (br s, 1H, N-H), 7.87-7.24 (m, 9H, C<sub>Ar</sub>-H), 5.31 (dq, J = 7.1 and 7.1 Hz, 1H, C<sub>sp3</sub>-H), 1.59 (d, J = 7.0 Hz, 3H, CH<sub>3</sub>). <sup>13</sup>C NMR (100 MHz, acetone- $d_6$ ):  $\delta$  164.6, 144.1, 139.6, 133.9, 132.6, 130.7 128.4, 126.9, 126.3, 122.5, 117.3, 111.1, 49.3, 21.6.

(*R*)-N-(2-Methylbenzoyl)methylbenzylamine Melting point 110-112°C, 53.24% yield. <sup>1</sup>H NMR (400 MHz, acetone-*d*<sub>6</sub>):  $\delta$  7.82 (br s, 1H, N-H), 7.50-7.12 (m, 9H, C<sub>Ar</sub>-H), 5.29 (dq, *J* = 7.0 and 7.3 Hz, 1H, C<sub>sp3</sub>-H), 2.36 (s, 3H, CH<sub>3</sub>), 1.56 (d, *J* = 7.0 Hz, 3H, CH<sub>3</sub>). <sup>13</sup>C NMR (100 MHz, acetone-*d*<sub>6</sub>):  $\delta$  168.5, 144.9, 137.4, 135.7, 130.4, 129.2, 128.3, 126.9, 126.7, 126.2, 125.4, 48.7, 21.8, 19.0. (*S*)-N-(2-Methylbenzoyl)methylbenzylamine  $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ Melting point 110-112°C, 89.23% yield. <sup>1</sup>H NMR (400 MHz, acetone- $d_6$ ):  $\delta$  7.77 (br s, 1H, N-H), 7.50-7.17 (m, 9H, C<sub>Ar</sub>-H), 5.30 (dq, J = 7.5 and 7.5 Hz, 1H, C<sub>sp3</sub>-H), 2.36 (s, 3H, CH<sub>3</sub>), 1.56 (d, J = 7.5 Hz, 3H, CH<sub>3</sub>). <sup>13</sup>C NMR (100 MHz, acetone- $d_6$ ):  $\delta$  168.3, 144.8, 137.4, 135.7, 130.4, 129.2, 128.3, 126.9, 126.7, 126.2, 125.4, 48.6, 21.7, 18.9.

(R)-N-(2-Nitrobenzoyl)methylbenzylamine  $Melting point 168-171^{\circ}C, 30.44\% yield.$ <sup>1</sup>H NMR (400 MHz, acetone-d<sub>6</sub>):  $\delta$  8.17 (br s, 1H, N-H), 8.03-7.25 (m, 9H, C<sub>Ar</sub>-H), 5.28 (dq, J = 7.0 and 7.2 Hz, 1H, C<sub>sp3</sub>-H), 1.58 (d, J = 7.0 Hz, 3H, CH<sub>3</sub>). <sup>13</sup>C NMR (100 MHz, acetone-d<sub>6</sub>):  $\delta$  164.9, 147.4, 144.0, 142.2, 133.3, 130.4, 129.0, 128.3, 126.9, 126.2, 124.0, 49.0, 21.4.

(S)-N-(2-Nitrobenzoyl)methylbenzylamineMelting point 168-171°C, 82.78% yield.

<sup>1</sup>H NMR (400 MHz, acetone- $d_6$ ):  $\delta$  8.19(br s, 1H, N-H), 8.03-7.25 (m, 9H, C<sub>Ar</sub>-H), 5.28 (q, J = 7.0 and 7.2 Hz, 1H, C<sub>sp3</sub>-H), 1.58 (d, J = 7.0 Hz, 3H, CH<sub>3</sub>).

<sup>13</sup>C NMR (100 MHz, acetone-*d*<sub>6</sub>): δ 164.9, 148.0, 147.4, 144.0, 133.3, 130.4, 129.0,

128.3, 126.9, 126.3, 124.0, 49.0, 21.4.



in reference 1.

Melting point 117-121°C



## (S)-N-(2-Bromobenzoyl)methylbenzylamine

Previously prepared by S. Fomulu with spectroscopic data provided

in reference 1.

Melting point 117-121°C

$$(R)-N-(2-Trifluorobenzoyl)methylbenzylamine$$
  
Melting point 140-143°C, 64.71% yield.

<sup>1</sup>H NMR (400 MHz, acetone-*d*<sub>6</sub>): δ 8.00 (br s, 1H, N-H), 7.77-7.25 (m, 9H, C<sub>Ar</sub>-H), 5.29

 $(q, J = 7.0 \text{ and } 7.0 \text{ Hz}, 1\text{H}, C_{sp3}\text{-H}), 1.56 (d, J = 7.0 \text{ Hz}, 3\text{H}, C\text{H}_3)$ 

<sup>13</sup>C NMR (100 MHz, acetone-*d*<sub>6</sub>): δ 166.3, 144.2, 137.0, 132.1, 129.4, 128.5, 128.3,

126.9, 126.2, 126.1, 125.4, 122.7, 49.0, 21.5.



<sup>1</sup>H NMR (400 MHz, acetone- $d_6$ ):  $\delta$  8.00 (br s, 1H, N-H), 7.77-7.25 (m, 9H, C<sub>Ar</sub>-H), 5.30 (q, J = 7.0 and 7.0 Hz, 1H, C<sub>sp3</sub>-H), 1.56 (d, J=7.0 Hz, 3H, CH<sub>3</sub>).

<sup>13</sup>C NMR (100 MHz, acetone-*d*<sub>6</sub>): δ 166.3, 144.2, 137.0, 132.1, 129.4, 128.5, 128.3,

127.2, 126.9, 126.2, 125.4, 122.7, 48.6, 21.5.

(*R*)-N-(2-Methoxybenzoyl)methylbenzylamine Melting point 78-81°C, 86.85% yield.

<sup>1</sup>H NMR (400 MHz, acetone- $d_6$ ):  $\delta$  8.34 (br s, 1H, N-H), 8.06-7.05 (m, 9H, C<sub>Ar</sub>-H), 5.32 (dq, J = 7.0 and 7.5 Hz, 1H, C<sub>sp3</sub>-H), 4.00 (s, 3H, O-CH<sub>3</sub>), 1.56 (d, J = 7.0 Hz, 3H, CH<sub>3</sub>). <sup>13</sup>C NMR (100 MHz, acetone- $d_6$ ):  $\delta$  163.8, 157.7, 144.8, 132.5, 131.5, 128.4, 126.8, 126.0, 122.4, 120.8, 111.9, 55.7, 48.9, 22.2.

(S)-N-(2-Methoxybenzoyl)methylbenzylamine Melting point 78-81°C, 75.82% yield.

<sup>1</sup>H NMR (400 MHz, acetone- $d_6$ ):  $\delta$  8.42 (br d, J=6.72, N-H), 8.18-7.06 (m, 9H, C<sub>Ar</sub>-H), 5.40 (dq, J = 7.0 and 7.1 Hz, 1H, C<sub>sp3</sub>-H), 3.93 (s, 3H, O-CH<sub>3</sub>), 1.61 (d, J = 7.0 Hz, 3H, CH<sub>3</sub>).

<sup>13</sup>C NMR (100 MHz, acetone-*d*<sub>6</sub>): δ 163.7, 157.7, 144.8, 132.5, 131.5, 128.4, 126.8, 126.1, 122.4, 120.8, 111.8, 55.6, 48.9, 22.2.

(*R*)-N-(2-Iodobenzoyl)methylbenzylamine Melting point 137-140°C, 66.17% yield. <sup>1</sup>H NMR (400 MHz, acetone-*d*<sub>6</sub>):  $\delta$  7.88-7.14 (m, 10H, N-H, C<sub>Ar</sub>-H), 5.28 (dq, *J* = 7.0 and 7.5 Hz, 1H, C<sub>sp3</sub>-H), 1.59 (d, *J* = 7.0 Hz, 3H, CH<sub>3</sub>). <sup>13</sup>C NMR (100 MHz, acetone-*d*<sub>6</sub>):  $\delta$  167.9, 144.1, 143.4, 139.4, 132.5, 130.4, 127.9, 127.8, 126.7, 126.3, 92.3, 48.8, 21.5. (S)-N-(2-Iodobenzoyl)methylbenzylamine Melting point 137-140°C, 42.20% yield. <sup>1</sup>H NMR (400 MHz, acetone-d<sub>6</sub>): δ 7.88-7.16 (m, 10H, N-H, C<sub>Ar</sub>-H), 5.28 (dq, J=7.0 and 7.1 Hz, 1H), 1.59 (d, J=7.0, 3H, CH<sub>3</sub>).

<sup>13</sup>C NMR (100 MHz, acetone- $d_6$ ):  $\delta$  168.0, 144.2, 143.5, 139.5, 132.6, 130.5, 128.3,

128.0, 126.8, 126.3, 92.3, 48.9, 21.6.

(*R*)-N-(2-Phenylbenzoyl)methylbenzylamine Further purification of (*R*)-C<sub>6</sub>H<sub>5</sub> was achieved by washing the sample with hexanes. Melting point 110-114°C, 63.24% yield. <sup>1</sup>H NMR (400 MHz, acetone- $d_6$ ):  $\delta$  7.52-7.16 (m, 13H, C<sub>Ar</sub>-H), 5.07 (dq, *J* = 7.0 and 7.5 Hz, 1H, C<sub>sp3</sub>-H), 1.27 (d, *J* = 7.0 Hz, 3H, CH<sub>3</sub>). <sup>13</sup>C NMR (100 MHz, acetone- $d_6$ ):  $\delta$  168.2, 144.2, 140.6, 139.6, 137.5, 129.8, 129.3, 128.7, 128.1, 128.0, 127.2, 127.0, 126.5, 126.1, 48.6, 21.3, 13.4.

(S)-N-(2-Phenylbenzoyl)methylbenzylamine  $further purification of (S)-C_6H_5$  was achieved by washing the sample with hexanes. Melting point 110-114°C, 19.78% yield. <sup>1</sup>H NMR (400 MHz, acetone- $d_6$ ):  $\delta$  7.52-7.16 (m, 13H, C<sub>Ar</sub>-H), 5.07 (dq, J = 7.0 and 7.2 Hz, 1H, C<sub>sp3</sub>-H), 1.27 (d, J = 7.0 Hz, 3H, CH<sub>3</sub>). <sup>13</sup>C NMR (100 MHz, acetone- $d_6$ ):  $\delta$  168.2, 144.2, 140.7, 139.6, 137.5, 129.8, 129.3,

128.7, 128.2, 128.0, 127.2, 127.0, 126.6, 126.1, 48.6, 21.3, 13.4.

(*R*)-N-(Benzoyl)methylbenzylamine Melting point 132-136°C, 68.38% yield.

<sup>1</sup>H NMR (400 MHz, acetone- $d_6$ ):  $\delta$  7.80-7.75 (m, 2H, C<sub>Ar</sub>-H), 7.53-7.26 (m, 8H, C<sub>Ar</sub>-H), 5.35 (dq, J = 6.9 and 7.1 Hz, 1H, C<sub>sp3</sub>-H), 1.62 (d, J = 7.1 Hz, 3H, CH<sub>3</sub>). <sup>13</sup>C NMR (100 MHz, acetone- $d_6$ ):  $\delta$  168.2, 141.6, 134.6, 131.5, 128.8, 128.6, 127.5, 126.9, 126.3, 48.2, 21.7.

(S)-N-(Benzoyl)methylbenzylamine Melting point 132-136°C, 70.03% yield. <sup>1</sup>H NMR (400 MHz, acetone- $d_6$ ):  $\delta$  7.81-7.76 (m, 2H, C<sub>Ar</sub>-H), 7.53-7.25 (m, 8H, C<sub>Ar</sub>-H), 5.34 (dq, J = 7.0 and 7.1 Hz, 1H, C<sub>sp3</sub>-H), 1.62 (d, J = 7.1 Hz, 3H, CH<sub>3</sub>). <sup>13</sup>C NMR (100 MHz, acetone- $d_6$ ):  $\delta$  168.2, 141.5, 134.6, 131.3, 128.7, 128.5, 127.5, 126.9, 126.3, 48.4, 21.7.

#### 2.3 Hot-Stage Microscopy

The hot-stage microscopy experiments were performed using an optical polarizing microscope (*Olympus SZX10*) equipped with an *Instec HCS 302* hot-stage connected to an *Instec mK2000* temperature controller. Micrographs were collected under a range of magnifications (3.0-6.3x) using an attached video camera. The hot-stage was controlled by the WINDV software package (V1.0.120820). Pairs of diarylamide components were analyzed for cocrystallization behavior. Samples were prepared using standard glass microscope slides and cover slips. The higher melting point component was delivered first by heating the sample to the melting point temperature drawing the

35

sample under the cover slip. Upon cooling, the lower melting point component was then delivered in a similar fashion to create a contact interface between the two samples. These bimolecular samples were heated at a ramp rate of 2-5°C/min until complete melting of the sample occurred. All combinations (11 racemates and 55 quasiracemates) were processed using the video-assisted hot stage technique. Complete sets of hot-stage micrographs are included in section S2 of the Supplementary Information.

## 2.4 X-ray Crystallography - Powder Diffraction

Powder X-ray diffraction data were collected on a Bruker APEX II CCD diffractometer using phi and omega scans with graphite monochromatic Cu Mo  $K\alpha$  ( $\lambda =$  1.54178 Å) radiation. Data sets were collected at a detector distance of 15 cm using 4 Phi scans with 10° increments in 2 $\theta$  (-20°  $\rightarrow$  -50°) and omega (170°  $\rightarrow$  140°). The images were integrated using the APEX II XRD<sup>2</sup> plugin. Overlays of powder X-ray diffraction patterns are provided in section S3 of the Supplementary Information.

## 2.5 X-ray Crystallography – Single Crystal Diffraction

Crystallographic details for each diarylamide quasiracemate are summarized in Table S1. X-ray data were collected on a Bruker APEX II CCD diffractometer using phi and omega scans with graphite monochromatic Cu Mo  $K\alpha$  ( $\lambda = 1.54178$  Å) radiation. Data sets were corrected for Lorentz and polarization effects as well as absorption. The criterion for observed reflections is  $I > 2\sigma(I)$ . Lattice parameters were determined from leastsquares analysis and reflection data. Empirical absorption corrections were applied using SADABS.<sup>2</sup> Structures were solved by direct methods and refined by full-matrix leastsquares analysis on  $F^2$  using X-SEED<sup>3</sup> equipped with SHELXS<sup>4</sup>. All non-hydrogen atoms were refined anisotropically by full-matrix least-squares on  $F^2$  using the SHELX<sup>4</sup> program. H atoms (for OH and NH) were located in difference Fourier synthesis and refined isotropically with independent O/N-H distances or restrained to 0.85(2) Å. The remaining H atoms were included in idealized geometric positions with  $U_{iso}=1.2U_{eq}$  of the atom to which they were attached ( $U_{iso}=1.5U_{eq}$  for methyl groups). Molecular configurations were compared to both the known chirality of the methylbenzylamine and estimated Flack parameters<sup>5</sup> and where applicable, atomic coordinates were inverted to achieve correct structural configurations. Crystallographic details are provided in section S4 of the Supplementary Information.

# 2.6 <sup>1</sup>H NMR Overlays

<sup>1</sup>H-NMR (acetone-*d*<sub>6</sub>) spectra collected on quasiracemic samples were retrieved from the melt. Overlays of <sup>1</sup>HNMR are provided in the Supplementary Information in section S5.

## 2.7 References

- S. L. Fomulu, M. S. Hendi, R. E. Davis and K. A. Wheeler, *Cryst. Growth Des.*, 2002, 2, 637.
- G. M. Sheldrick, SADABS and TWINABS—Program for Area Detector Absorption Corrections, University of Göttingen, Göttingen, Germany, 2010.
- 3) L. J. Barbour, J. Supramol. Chem., 2001, 1, 189.
- 4) G. M. Sheldrick, Acta Crystallogr., Sect. A: Fundam. Crystallogr., 2008, 64, 112.
- 5) H. D. Flack, Acta Crystallogr., 1983, 39, 876-881.

### **Chapter Three: Supramolecular Tendencies of Sulfamethazine Cocrystals**

### **3.1 Sulfa Drug Development**

Often in battles such as war, injuries and wounds worsen from bacterial infection. In early conflicts, such as World War I, a lack of modern medicine often lead to increased mortality rates because of the inability to effectively treat wounds and the onset of serious conditions such as gangrene. Despite the best efforts by doctors and surgeons in the field many injuries sustained in the field resulted in amputations or even death. With the advance of wound care technology, wartime causality rates due to bacterial infections nearly disappeared. Gerhard Domagk is generally credited with advancing treatments for infectious diseases that are embraced by modern medicine today.<sup>1</sup> Though now largely overlooked, Domagk's contributions to the field of antibiotics were significant and based on his service in the German Army during World War I. It was at that time he gained critical experience with wound care and the struggles involved with bacterial infection. Following Domgak's time in the military he later pursued and graduated from medical school where his investigations in medicine formally began.<sup>1</sup>

The idea of treating bacterial infections and diseases with the use of synthetic chemicals was a focal point of the Friedrich Bayer Company, a division of IG Farben, in the late 1920s. Following his recruitment, Domagk began working with the Bayer Company in 1927 and focused his efforts on the production of new pharmaceutical drugs. The thrust of Domagk's investigations examined the pharmacology of synthetic drugs using both animals and in vitro studies with a particular emphasis on the extremely contagious strain of Streptococcus, *Streptococcus hemolyticus*.<sup>1</sup>

39



Figure 3.1: Domagk's Initial Sulfonamide Compounds for Antimicrobial Activity Testing.

The Bayer Company's initial investigations to obtain antibacterial agents were mostly unsuccessful, however, their efforts eventually resulted in several positive outcomes. While working on a sulfur containing azo dye in 1932, Domagk found this material lacked activity against bacteria in vitro, but was successful in protecting mice. Based on these results further synthetic methods optimized the activity of this dye (Figure 3.1). By 1936, the dye, at that time named Protonsil Red, was utilized as an effective treatment for streptococcus in humans.<sup>1</sup>

One of the first uses of Protonsil Red could be defined as unethical, but proved to be of importance in the investigations of its antimicrobial activity. Due to a pinprick Domagk's daughter, had become extremely sick. Through some simple investigation, Domagk was able to determine that her illness was due to a streptococcal infection. Based on his research in the laboratory and the conclusion that the illness derived from the streptococcus bacteria, Domagk tested the experimental dye on his daughter to determine its effectiveness against bacteria in humans. Though this treatment may have been questionable due to a lack pf previous human trials, it resulted in a quick and effective recovery.<sup>2</sup>



Figure 3.2: Metabolic Breakdown of Protonsil Red to Sulfanilamide

Understanding the antimicrobial activity seen in the dye did not occur immediately, but through further investigations evidence suggested that Protonsil Red underwent enzymatic activation in the body resulting in the production of sulfanilamide (Figure 3.2). The conclusion that production of sulfanilamide occurred through a metabolic process helped to explain the initial results that Domagk obtained. In vitro studies suggested that the dye lacked an observable antimicrobial activity, but in living specimen, mice, antimicrobial activity occurred.<sup>2</sup> Building on the discovery of sulfanilamide's antimicrobial activity chemists began developing this newly found therapeutic by synthesizing derivatives that eliminated side effects while at the same time increased drug potency. From the initial discovery in 1935, by 1946 more than 5,000 different variants of sulfa drugs were synthesized.<sup>1,2</sup> The most effective compounds prepared occurred through the modification of the single hydrogen atom located on the SO<sub>2</sub>NH<sub>2</sub> group (Figure 3.2). The synthesized derivatives of sulfanilamide became known as a new family of drugs, the sulfadrugs.<sup>2</sup> At the time of their synthesis, the activity of

41

the sulfa drugs was not completely understood, but their development played a vital role during World War II in fighting the bacterial infections that plagued injuries in prior wars.



Figure 3.3: Folic Acid.



Figure 3.4: p-Aminobenzoic Acid and Sulfanilamide.

Today, the factors responsible for the activity of these drugs are known more completely. The enzymatic activity of these drugs is influenced by their molecular topology and the resulting ability to inhibit folic acid production. The production of folic acid (Figure 3.3) by bacteria occurs in bacterial cells by using *p*-aminobenzoic acid.<sup>3,4</sup> When viewing the structure of folic acid, one can see the similarity of *p*-aminobenzoic acid (Figure 3.4) to the portion highlighted in Figure 3.3. The topologies of *p*aminobenzoic acid and sulfanilamide are remarkably similar to one another. When measuring the steric properties of these two molecules their size varies only by 3% from one another (Figure 3.4). The similar topologies of these two molecules results in the inability of bacteria to distinguish between sulfanilamide and *p*-aminobenzoic acid that ultimately leads to bacterial death from a lack of folic acid production. These drugs are effective for human consumption due to folic acid being absorbed through food intake and it is not produced in our bodies.<sup>2,3,5</sup> Despite the effectiveness of the sulfa drugs, their use today has decreased significantly due in part to their long-lasting side effects and the development of antibiotic resistant bacteria. Perhaps more importantly is that the investigation of new sulfa antibiotics is largely an area not being explored by the pharmaceutical industry due to other therapeutics showing higher activity with less side effects. Despite lower use rates of these drugs, their study is no less important as their ability to cocrystallize provides insight in to how coformers can be utilized to optimize the properties of a pharmaceutical. Herein we aim to determine the structural variations that occur within sulfamethazine, a sulfa drug, through the cocrystallization with various substituted benzoic acids.



Figure 3.5: Amidine Tautomer of Sulfamethazine.



Figure 3.6: Forms of Sulfamethazine.

#### 3.2 Sulfamethazine Structure and Tautomerization

Sulfamethazine, also known as sulfadimidine or sulfadimethylpyrimidine (Figure 3.5), is a sulfa drug that is used in both human and veterinary medicine for the treatment of bacterial diseases.<sup>6</sup> The structure of sulfamethazine is of particular interest in cocrystallization studies because the pendant functional groups allow for the construction of multiple hydrogen bond interactions. Three acidic protons and five possible acceptor groups provides opportunities for the construction of both intramolecular and intermolecular contacts. The acidic hydrogen atoms present in the structure of sulfamethazine are associated with amine  $(NH_2)$  and the sulfonamide (NH). The acceptor groups are located on the sulfoxy oxygen atoms (SO), the amine (NH<sub>2</sub>), and the two nitrogen atoms found on the pyrimidine ring. Given the strong tendency of these groups to form hydrogen bonds, it is not surprising that sulfamethazine is capable of forming cocrystals with a variety of secondary molecules (coformers). The importance of using coformers is that while the chemical properties of these multicomponent materials can be effectively altered, the pharmacology of the sulfa drug remains intact.<sup>6</sup> Though these investigations commonly cocrystallize the API with benzoic acids and benzamides, there

has been no report on the systematic use of changing coformer acidity to the observed hydrogen bond patterns of the pharmaceutical.<sup>4,6–13</sup>

Despite the strong possibility for variations in hydrogen bonding, sulfamethazine is only known to exist in one polymorphic form.<sup>11</sup> The ability for a pharmaceutical to crystallize as polymorphs is known to have an effect on the chemical properties and bioavailability of the therapeutic agent.<sup>14,15</sup> Due to the presence of the sulfonamide and pyrimidyl groups in the structure of sulfamethazine there is a distinct possibility for tautomerization to occur (Figure 3.6).<sup>6,10,4</sup> Tautomers are isomeric structures that differ in the placement one hydrogen atom and organization of  $\pi$  elections.<sup>16</sup> The amidine tautomer can be found in the top left of Figure 3.6 while the imidine tautomer is found in the top right. The two remaining tautomers are ions formed from protonation or deprotonation processes. Tautomerization has been shown to be common in compounds containing pyrimidine rings and sulfonamides.<sup>16,17</sup> The ability to control tautomer formation through cocrystallization can greatly impact properties such as lipophilicity, solubility, and bioavailability. The use of coformers has been shown to effect properties of APIs. It has been stated that many molecules of commercial importance are capable of cocrystalizing, but the selection of coformers is of critical importance.<sup>18-21</sup>

45



Figure 3.7: Substituted Benzoic Acid Coformers.



*Figure 3.8:* R<sub>2</sub><sup>2</sup>(8) *Hydrogen Bonding Ring Pattern For Carboxylic Acids Described by Etter.*<sup>22,23</sup>

### 3.3 Structural Tendencies of Sulfamethazine and Benzoic Acids

Here we report the investigation of the relationship between coformer acidity and the tautomer form of the active pharmaceutical ingredient, sulfamethazine. We hypothesized that tautomer formation is largely dependent on the acidity of the coformer present in the cocrystallization process. Utilizing single substituted benzoic acids (Figure 3.7), a pKa ranging from 2-5 was obtained for this cocrystallization study. The cocrystallization of these coformers and this active pharmaceutical ingredient resulted in the formation of intermolecular contacts in the shape of a rings,  $R_2^2(8)$ , as described by Etter (Figure 3.8).<sup>22,23</sup>

|                                     | Acid | Tautomer | Coformer   | Cocrystal  |
|-------------------------------------|------|----------|------------|------------|
| Coformer                            | pK₄  | Formed   | Melting    | Melting    |
|                                     | · -  |          | Point (°C) | Point (°C) |
| Benzoic Acid                        | 4.19 | Amidine  | 121-122    | 216-222    |
| o-Nitrobenzoic acid                 | 2.16 | Amidine  | 147-148    | 166-168    |
| <i>m</i> -Nitrobenzoic acid         | 3.47 | Amidine  | 140-141    | 201-204    |
| <i>p</i> -Nitrobenzoic acid         | 3.41 | Amidine  | 236-238    | 207-209    |
| o-Methylbenzoic acid                | 3.91 | Amidine  | 104-105    | 158-162    |
| <i>m</i> -Methylbenzoic acid        | 4.27 | Amidine  | 110-112    | 163-165    |
| <i>p</i> -Methylbenzoic acid        | 4.35 | Amidine  | 180-181    | 208-210    |
| o-Fluorobenzoic acid                | 3.27 | Amidine  | 122-125    | 187-196    |
| <i>m</i> -Fluorobenzoic acid        | 3.86 | Amidine  | 122-125    | 200-204    |
| <i>p</i> -Fluorobenzoic acid        | 4.14 | Amidine  | 182-184    | 215-222    |
| <i>m</i> -Chlorobenzoic acid        | 3.83 | Amidine  | 92-94      | 173-175    |
| <i>p</i> -Chlorobenzoic acid        | 3.97 | Amidine  | 242-244    | 205-208    |
| <i>m</i> -Methoxybenzoic acid       | 4.09 | Amidine  | 182-184    | 193-196    |
| <i>p</i> -Methoxybenzoic acid       | 4.47 | Imidine  | 184-186    | 174-178    |
| <i>p</i> -Hydroxybenzoic acid       | 4.57 | Imidine  | 213-215    | 219-221    |
| <i>p</i> -Ethylbenzoic acid         | 4.35 | Amidine  | 105-107    | 195-198    |
| <i>p</i> -Dimethylaminobenzoic acid | 4.98 | Amidine  | 241-244    | 179-183    |
| o-Acetyloxybenzoic acid             | 3.49 | Amidine  | 132-135    | 138-142    |
| (Aspirin)                           |      |          |            |            |

Table 3.1: Melting Point of Coformers and Sulfamethazine Cocrystals

A total of 18 sulfamethazine crystallizations were performed using benzoic acid and benzoic acid derivatives to determine the role acidity plays in controlling which tautomer of sulfamethazine is present. To first ensure that the crystals obtained were not starting materials, their melting points were compared to those reported in the literature for sulfamethazine, 198-200°C, and the coformer of the crystal (Table 3.1). Further investigations were performed to determine the identity of the tautomer occurred using single-crystal X-ray diffraction. Of the 18 cocrystal systems surveyed, only two contained the imidine tautomer (*p*-hydroxy and *p*-methoxybenzoic acid).



Figure 3.9: Crystal Structure of the Cocrystal of Sulfamethazine and p-Hydroxybenzoic Acid Showing Thermal Parameters (50% Thermal Ellipsoids) and Hydrogen Bonding.



Figure 3.10: Crystal Structure of the Cocrystal of Sulfamethazine and p-Hydroxybenzoic Acid Showing Thermal Parameters (50% Thermal Ellipsoids) and Hydrogen Bonding Scheme.



Figure 3.11: Crystal Structure of the Cocrystal of Sulfamethazine and p-Hydroxybenzoic Acid Showing Thermal Parameters (50% Thermal Ellipsoids),  $\pi$ - $\pi$  Stacking, and Hydrogen Bond Scheme.

The two crystal structures containing the imidine tautomer are of particular interest because of the lack of examples reported in the literature. The cocrystal of sulfamethazine and *p*-hydroxybenzoic acid (Figures 3.9 - 11) had previously been reported.<sup>6</sup> One can observe the presence of the imidine tautomer as well as a  $R_2^2(8)$  hydrogen bond motif involving the carboxylic acid and 2-aminopyrimidine fragment. In addition to this interaction, a  $R_2^2(16)$  hydrogen bond pattern is also observed between two adjacent inversion related sulfamethazine molecules. Due to the presence of the imidine tautomer, bond lengths between C14-N3 and C14-N2 should have distinct distances corresponding to single and double bond lengths of 1.28 and 1.47 Å, respectively (atom labels shown in Figure 3.9).<sup>24</sup> Analyzing the distances of the C14-N3 and C14-N2 bonds resulted in bond lengths of 1.370 and 1.355 Å, respectively. The bond length between C14-N2 suggests the formation of a double bond and the presence of a single bond between C14-N3. This bonding pattern directly relates to the expected structure of the imidine tautomer (Figure 3.6). In addition to the intermolecular contact involving the carboxylic acid with the sulfonamide nitrogen and the nitrogen of the pyrimidine ring, the hydroxyl group located in the para position also forms a hydrogen bond to N1 of sulfamethazine. This hydrogen bond pattern is shown in Figure 3.10 and extends to neighboring motifs to give a cyclic tetramer. In addition to these hydrogen bonding motifs the packing of this crystal structure involves  $\pi$ - $\pi$  stacking using the aromatic rings of sulfamethazine (Figure 3.11). This intermolecular contact occurs at a centroid ... centroid distance of 3.770 Å and an interplanar distance of 3.232 Å for sulfamethazine aromatic groups related by centers of inversion. These combined intermolecular contacts provide a driving force for cocrystal formation that help to stabilize the imidine tautomer.<sup>6</sup>



Figure 3.12: Crystal Structure of the Cocrystal of Sulfamethazine and p-Methoxybenzoic Acid Showing Thermal Parameters (50% Thermal Ellipsoids) and Hydrogen Bonding.



Figure 3.13: Crystal Structure of the Cocrystal of Sulfamethazine and p-Methoxybenzoic Acid Showing Thermal Parameters (50% Thermal Ellipsoids) and Supramolecular Assembly.

When comparing the cocrystal structure of *p*-methoxybenzoic acid determined for this thesis work to that of the previously discussed cocrystal structure containing *p*-hydroxybenzoic acid, it is clear they have similar crystal packing patterns with a few

distinct differences (Figure 3.12 and 3.13). This structure contains the same  $R_2^2(8)$ , N2-H32-O2 and N3-H31-O1, hydrogen bonding found in the previous structure, but by replacing the hydroxyl substituent with a methoxy group, the result is the lack of hydrogen bonding at this site. Despite the absence of hydrogen bonding with the methoxy group of the benzoic acid, other molecular associations occur such as a N1-H···O4 C (8) hydrogen-bonded chain that links neighboring sulfamethazine molecules. This intermolecular contact results in a new hydrogen bonding motif that when combined with the  $R_2^2(8)$  contact forms a supramolecular macrocycle consisting of four sulfamethazine and four *p*-methoxybenzoic acid components (Figure 3.13). The overall morphologies of of the *p*-hydroxybenzoic acid (cyclic tetramer) and *p*-methoxybenzoic acid (cyclic octamer) cocrystals are similar. One interesting aspect of the p-methoxybenzoic acid structure is related to the assembly of adjacent benzoic acids. These molecules serve as a molecular linker for the sulfamethazine components. Though not formally associated by strong hydrogen bonds, these benzoic acid components assemble by use of complementary shapes and close packing directed by inversion symmetry (Figure 3.13). The bridges do not participate in  $\pi$  -  $\pi$  stacking since the closest intermolecular contact is 6.320 Å away. This is also true for the aromatic rings of sulfamethazine. As previously discussed, the imidine tautomer results in differing lengths for the C14-N3 and C14-N2 amidine tautomer bonds and should result in distances consistent with C-N and C=N bonds. The C14-N3 bond length was measured and found to be 1.359 Å, while the C14-N2 bond was 1.356 Å. Though the C14-N2 bond is slightly shorter than the C14-N3 bond, these distances are shorter than that expected for a C-N bond, but longer than a C=N bond. This finding suggests that resonance stabilization impacts the bond

parameters observed in the crystal structure and is due to a mixture of tautomeric forms present in the structure.

Sulfamethazine is not the only sulfa drug capable of existing in more than one tautomeric form. Adsmond and co-workers have shown that a majority of sulfa drugs exist in the amidine tautomer; even so, there are several reported as imidine structures.<sup>4</sup> Their search of the Cambridge Structural Database (CSD) revealed that 39 sulfonamide structures form C (8), N1-H30B-O4, chains. Five of these crystal structures exist with the sulfamethazine component in the amidine tautomeric form. This trend was supported by data generated during this thesis work as 16 of the 18 structures display the amidine tautomer. Additional investigations utilizing the CSD have aimed to determine the preference of the amino and imino tautomer for the API moxonidine. The imino tautomer of moxonidine was found to be lower in energy than the amine tautomer, differing in energy by 5.74 kcal mol<sup>-1.16</sup> Interestingly, the tautomer that predominates with moxonidine does not correspond to the dominant tautomer found in sulfamethazine. From the analysis of 180 crystal structures containing (imidazole)imidazolidine-N-alkyl(aryl) fragments, it was found that tautomer stability was dependent on the environment, intraand intermolecular contacts, and conjugation.<sup>16</sup>



Figure 3.14: Crystal Structure of Sulfamethazine and Benzoic Acid Showing Thermal Parameters (50% ellipsoids) and Labeling Scheme.



Figure 3.15: Plot Showing the Relationship between Benzoic Acid Strength and N3-O2 Hydrogen Bonding Distance.


Figure 3.16: Plot Showing Relationship between Benzoic Acid Strength and N2-O1 Hydrogen Bonding Distance.



Figure 3.17: Plot Showing Relationship between Benzoic Acid Strength and C14-N2 Bonding Distance.



Figure 3.18: Plot Showing Relationship between Benzoic Acid Strength and C14-N3 Bonding Distance.



Figure 3.19: Crystal Structure of the Cocrystal of Sulfamethazine and p-Dimethylaminobenzoic Acid Showing Thermal Parameters (50% Thermal Ellipsoids).



Figure 3.20: Crystal Structure of the Cocrystal of Sulfamethazine and p-Dimethylaminobenzoic Acid Showing Thermal Parameters (50% Thermal Ellipsoids) and  $\pi - \pi$  Stacking.

As previously stated, sulfamethazine shows a preference for the amidine tautomer as evidenced by previous studies and data reported in this thesis work.<sup>4</sup> In order to understand how the benzoic acid affects the tautomeric structure of sulfamethazine, an investigation directed at studying a sizable collection of cocrystalline structures was performed. The benzoic acids selected for this investigation are shown in Table 3.1 and differ in substitution pattern (e.g. ortho, meta, para) and functional group properties. By including this diverse set of 18 benzoic acid coformers, the structural landscape from cocrystallizing these components with sulfamethazine should offer important insight to the structural trends of these bimolecular systems. In addition to understanding the conditions that favor amidine or imidine tautomer formation, this study is also interested in the supramolecular patterns and intermolecular contacts that emerge from investigating sets of related crystal structures Similar to the imidine tautomer found in the structures containing 4-hydroxy and 4-methoxy benzoic acids, the amidine tautomer was assessed using the N2-H31…O1, N3…H32-O2, C14-N2, and C14-N3 bond lengths (Figure 3.14). This data clearly showed how the acidity of the benzoic acid coformers effects the molecular structure of sulfamethazine. When first analyzing the  $R_2^2(8)$  hydrogen bonding motif, a clear relationship between the coformer acidity and sulfamethazine was observed. The N3…H32-O2 contact showed shorter hydrogen bonding distances for more acidic benzoic acids and longer bonds for benzoic acids with lower acidity (Figure 3.15). A similar relationship was found when looking at the other portion of this hydrogen bonding motif. The N2-H31…O1 hydrogen bond showed a similar correlation of intermolecular contact length and benzoic acid acidity (Figure 3.16).

The amidine/imidine tautomerization process is dependent on the placement of electrons, in the form of a double bond, as well as a hydrogen atom. In order to determine the role of the benzoic acid on this process, it is helpful to compare the adjacent C14-N2 and C14-N3 bonds. In the presence of a strongly acidic benzoic acid, the length of the C14-N2 bond was found to be the longest, while this length shortened as the acidity of the benzoic acid decreased (Figure 3.17). A similar relationship occurred through the analysis of the C14-N3 bond. Short bonding distances were found with highly acidic benzoic acids while this bond lengthened as the acidity decreased (Figure 3.18). Inspection of Figures 3.15-18 shows the function of benzoic acid acidity to amidine/imidine tautomer formation that is underscored by assessment of the hydrogen bond and aminopyrimide bond parameters. Two of the least acidic benzoic acids used in this study were the *p*-methoxy (pK<sub>a</sub> = 4.47) and *p*-hydroxybenzoic (pK<sub>a</sub> = 4.57) acids.

Both of these coformers produce the imidine tautomer which follows the trend seen with bond lengthening and shortening with acidity. One exception to this structural trend was the structure of *p*-dimethylaminobenzoic Acid (pK<sub>a</sub> = 4.98) (Figure 3.19 and 3.20). Despite an elevated pK<sub>a</sub> value, the predominant driving forces responsible for crystal packing is  $\pi - \pi$  stacking (centroid…centroid, 3.683 Å; interplanar distance, 3.477 Å) and the carboxyl…pyrimidyl  $R_2^2(8)$  hydrogen bond (Figure 3.20). Unlike the structures of the hydroxyl and methoxy derivatives that are stabilized by additional hydrogen bonding, this structure does not contain hydrogen bonding that involves the dimethyl amine group. Other literature reports support the idea that imidine tautomer formation most likely occurs from the use of less acidic coformers with the greatest attention given to benzamide cocrystalline systems.

This study has shown a general structural relationship between acidity of the benzoic acid conformer and tautomer formation. While component acidity and the formation of  $R_2^2(8)$  hydrogen bonds linking the benzoic acid and sulfamethazine are important, they are not the only factors responsible cocrystal formation. The reported crystal structures are also stabilized by additional intra- and intermolecular contact. It was seen in two cases that the imidine tautomer was stabilized by additional hydrogen bonding of the coformer as well as the sulfamethazine molecule. The structure of the *p*-dimethylaminobenzoic acid cocrystal exists in the amidine form despite an elevated pK<sub>a</sub> and supports the idea that additional contacts are required for the stabilization of the imidine tautomer. Further investigations are needed in order to fully understand the complex interplay of molecular features responsible for amidine/imidine tautomer formation and their role when placed in competitive hydrogen bond environments.

#### **3.4 References**

- (1) Bentley, R. J. Ind. Microbiol. Biotechnol. 2009, 36 (6), 775–786.
- Le Couteur, P.; Burreson, J. Napoleon's Buttons: 17 Molecules that Changed History; Jeremy P. Tarcher/Putnam: New York, 2003.
- (3) Brown, G. J. Biol. Chem. 1962, 237 (2), 536–540.
- (4) Adsmond, D. A.; Grant, D. J. W. J. Pharm. Sci. 2001, 90 (12), 2058–2077.
- (5) Bermingham, A.; Derrick, J. P. *BioEssays* **2002**, *24* (7), 637–648.
- (6) Ghosh, S.; Bag, P. P.; Reddy, C. M. Cryst. Growth Des. 2011, 11 (8), 3489–3503.
- (7) Lu, Jie; Rohani, S. J. Pharm. Sci. 2010, 99 (9), 4042–4047.
- (8) Caira, M. R. Mol. Pharm. 2007, 4 (3), 310–316.
- (9) Caira, M. R.; Nassimbeni, L. R.; Wildervanck, A. F. J. Chem. Soc. Perkin Trans. 2
   1995, No. 12, 2213–2216.
- (10) Fu, X.; Li, J.; Wang, L.; Wu, B.; Xu, X.; Deng, Z.; Zhang, H. RSC Adv. 2016, 6
  (31), 26474–26478.
- Maury, L.; Rambaud, J.; Pauvert, B.; Lasserre, Y.; Bergé, G.; Audran, M. J.
   *Pharm. Sci.* 1985, 74 (4), 422–426.
- (12) Patel, U.; Haridas, M.; Singh, T. P. Acta Crystallogr. Sect. C Cryst. Struct.
   Commun. 1988, 44 (7), 1264–1267.
- (13) Ucaciu, R. L.; Onescu, C. I.; Ildervanck, A. W.; Aira, M. R. C. Anal. Sci. 2008, 24, 87–88.
- (14) Lu, J.; Rohani, S. Curr. Med. Chem. 2009, 16 (7), 884–905.
- (15) Haleblian, J. K.; Borka, L. Acta Pharm. Jugosl. 1990, 40, 71-94.
- (16) Babu Nanubolu, J.; Sridhar, B.; Ravikumar, K. CrystEngComm 2014, 16 (46), 10602–10617.

- (17) Yanachkov, I. B.; Wright, G. E. J. Org. Chem 1994, 59 (22), 6739-6743.
- (18) Datta, S.; Grant, D. J. W. Nat. Rev. Drug Discov. 2004, 3 (1), 42–57.
- (19) Patrick Stahly, G. Cryst. Growth Des. 2009, 9 (10), 4212–4229.
- (20) Tiekink, E. R. T. Chem. Commun. 2014, 50 (76), 11079–11082.
- (21) Int, J.; Life, P. Int. J. Pharm. Life Sci. 2015, 6 (3), 4324–4333.
- (22) Etter, M. C.; MacDonald, J. C.; Bernstein, J. Acta Crystallogr. Sect. B 1990, 46
  (2), 256–262.
- (23) Etter, M. C. Acc. Chem. Res. 1990, 23 (4), 120-126.
- (24) Kiralj, R.; Ferreira, M. M. C. J. Chem. Inf. Comput. Sci. 2003, 43 (3), 787-809.

## Chapter Four: Molecular Recognition Boundaries of Diarylamide Quasiracemates

### 4.1 Overview of Molecular Recognition

The manner in which molecules recognize each other holds critical importance to nearly every area of science.<sup>1-3</sup> This significance stems from the key underpinning of molecular assembly to our most basic understanding of chemical processes. Whether these interactions relate to small molecule catalytic transformations or complex physiological processes, the structural features responsible for molecular association play into the well-known adage that form follows function where material property arises from the collective structural features of the molecular components.<sup>4,5</sup> Because the *form* of chemical systems is derived from a complex blend of covalent and non-bonded contacts, codifying each contributor has become essential for recognizing the functions and potential applications of materials.<sup>6-8</sup> While considerable progress in this area has been realized by isolating and identifying molecular contacts and the structural details of their conditional exceptions, insight to the entire landscape of molecular associations remains an ongoing effort. Some of this challenge rests with chemical features that produce less manageable motifs via ill-defined or weak contacts. Molecular shape is one such feature. Although generally recognized as an important contributor to molecular assembly, the systematic use of topological features as a design element for supramolecular synthesis remains a relatively unexplored area.<sup>9-11</sup> The lack of direct attention to molecular shape largely relates to the intractable nature of this structural feature. To date, virtual screening based on molecular shape similarity has been widely used in drug discovery<sup>12</sup>;

however, surprisingly, no practically useful set of parameters or experiments for probing supramolecular synthesis via topological features exist.

|              |                               | Group<br>Volume (Å <sup>3</sup> ) | Group Surface<br>Area (A <sup>2</sup> ) |
|--------------|-------------------------------|-----------------------------------|-----------------------------------------|
|              | X = H                         | 5.9                               | 6.8                                     |
|              | F                             | 7.8                               | 12.1                                    |
|              | CI                            | 19.6                              | 29.0                                    |
| $\bigvee$    | CN                            | 21.0                              | 32.2                                    |
|              | CH <sub>3</sub>               | 22.3                              | 33.4                                    |
| 0 NH         | NO <sub>2</sub>               | 23.2                              | 37.0                                    |
|              | Br                            | 27.6                              | 37.1                                    |
| X            | CF <sub>3</sub>               | 28.9                              | 37.3                                    |
| Í Y          | OCH                           | 32.6                              | 40.1                                    |
|              | 1                             | 34.6                              | 45.0                                    |
| $\checkmark$ | C <sub>6</sub> H <sub>5</sub> | 82.9                              | 94.9                                    |

Figure 4.1: Chiral diarylamides Used in the Present Study.



Figure 4.2: Crystal Packing Relationship between Racemic and Quasiracemic Compounds.

# 4.2 Crystal Packing of Racemates and Quasiracemates

Here we report the systematic investigation of the relationship between molecular shape and molecular recognition. We find that an understanding can be effectively achieved by mapping the shape space of quasiracemate fractional crystallization using structurally simple chiral diarylamides precursors (Figure 4.1). Quasiracemates – pairs of chemically distinct molecules of opposite handedness [*e.g.*, (*R*)-X and (*S*)-X')<sup>13</sup> – without exception, cocrystallize with component alignment that mimic the centrosymmetric patterns observed in their analogous racemic counterparts (Figure 4.2).<sup>9,10,14</sup>

This thermodynamic preference provides a key entry point for this thesis study since the complementary shapes of the quasienantiomeric building blocks serve as the primary driving force for these assemblies. The tendency for racemic molecules to assemble with inversion symmetry occurs approximately 92 percent of the time.<sup>15</sup> Such a notion is supported by the diversity of molecular architectures and functional groups represented by the collection of racemic and quasiracemic crystal structures. Using this approach, this program probes the role of molecular shape to the recognition process by surveying the cocrystallization behavior of pairs of quasienantiomeric compounds. It should also be noted that non-bonded contacts (*e.g.*, hydrogen bonds), while often important to the overall molecular recognition process, cannot explain the crystal growth events of racemates or quasiracemates from this study since comparable stabilization may be achieved from homomeric [(*R*)-X…(*R*)-X] or heteromeric [(*S*)-X…(*R*)-X or (*S*)-X…(*R*)-X'] contacts.

Moving beyond the current collection of known quasiracemic systems where component selection often follows pairs of closely related quasienantiomers, our investigation examined a topologically diverse set of related compounds to understand the structural boundaries of quasiracemate formation. A homologous family of R and Sdiarylamides that differ incrementally in the size and shape of the pendant substituents was selected for this study – a total of 22 compounds (Figure 4.1). The collection of 2substituted components range from X = H to  $C_6H_5$  with the topological features of these groups approximated using their volumes and surface areas.<sup>16,17</sup>

## 4.3 Substituent Selection and Proof of Concept

The substituents selected and utilized in this study systematically differ in both volume and surface area. In addition to substituent size, the electronic properties of the groups, electron donating and withdrawing abilities, were also considered when selecting the library of compounds for this investigation. Though some substituents included are capable of undergoing non-covalent intra- and intermolecular interactions, the overall strategy of substituent selection targeted groups that minimized such interactions. By excluding groups that have a high likelihood of forming contacts (e.g. CO<sub>2</sub>H and OH), the current program offers greater opportunities to define the boundaries of molecular topology to the organization of quasiracemic materials.



Figure 4.3: Melting Point Phase Diagrams of Idealized Racemic and Quasiracemic Mixtures.



Figure 4.4: Hot Stage Polarized Light Microscopy Using the A) (S)-Br (left) and (R)-Br (right), B) (S)-Cl and (R)-Br and C) (S)-I and (R)-Br Pairs Showing the Emergence of New Racemic and Quasiracemic Crystalline Phases.

To exclude the challenges that arise from solvent-assisted crystal growth processes, cocrystallization of pairs of quasienantiomers was pursued from the melt using the Kofler contact fusion method.<sup>18-20</sup> A utility of this technique draws attention to the formation of new crystalline phases during the heating cycle as indicated by the emergence of melting regions (eutectic regions) in the viewing area. In the case of racemic and quasiracemic mixtures, distinguishing between the various modes of crystallization is possible given the unique thermal signature of each phase (Figure 4.3). For example, the thermal signature of racemic and quasiracemic materials should give way to two eutectic points. This arises since the affinity of enantiomers (or quasienantiomers) is greater for molecules of opposite handedness than for the same enantiomer. By contrast, the molecular components of racemic conglomerates have a greater affinity for the same enantiomer, whereas racemic solid solutions have no significant preference for the same enantiomer or the opposite one. The result is that conglomerates and solid solutions give one and no eutectic points, respectively. Figure 4.4A demonstrates the proof-of-concept of this method as applied to the  $(\pm)$ -*N*-(2-bromobenzoyl)methylbenzylamine system. The first snapshot indicates the two racemic components [(*S*)-Br (left), (*R*)-Br (right)] with a distinct interface between the crystalline phases. Video recording with increasing temperature provided an opportunity to view the thermal behaviour of cocrystallization in real-time. The onset of melting of the (*S*)-Br and (*R*)-Br adducts occurs at 112°C with the emergence of the racemic phase at the component interface (Figure 4.4A, center and right micrographs). The identity of this racemic phase was further supported by comparing its X-ray powder pattern to those calculated from the known crystal structures of (*S*)-Br and ( $\pm$ )-Br.<sup>21</sup>

The success of this method as applied to racemic Br suggests that the strategy could also be amenable to probing the molecular recognition profiles of quasiracemic systems. Similar to enantiomers (*S*)-Br and (*R*)-Br, quasienantiomers (*S*)-Cl and (*R*)-Br were thermally processed with video capture using the hot stage technique. Several micrographs of this process are provided in Figure 4.4B with results showing the onset of melting near 113°C for both the (*S*)-Cl (left) and (*R*)-Br (right) components. The complete thermal signature of this process offers an important glimpse into the molecular assembly of this material and highlights the formation of the (*S*)-Cl/(*R*)-Br quasiracemic phase at the interface region.



Figure 4.5: Powder XRD of (S)-Cl/(R)-Br Quasiracemate and Related Components.

## 4.4 Analysing the Melt with Powder X-Ray Diffraction

In addition to utilizing Kofler's contact method, applying the technique of powder X-ray diffraction (PXRD) to this study provided an opportunity to compare the newly obtained crystalline phases from the melt to those simulated using reported crystal structures. The utility of this technique rests with how subtle variations in chemical and crystal structures translate to noticeable differences in the PXRD patterns (Figure 4.5). A comparison of the calculated (±)-bromine powder pattern (purple) determined from the previously reported crystal structure<sup>21</sup> to that of the experimentally derived PXRD data (lime green) shows a close match. The most intense peaks in the purple and lime green

powder patterns can be found at the 2 $\theta$  values of 10.9, 11.8, 15.2, 18.1, 20.2, 22.2, 24.2, 28.9, and 35.9°. The (S)-Cl/(R)-Br quasiracemic phase (navy blue) obtained from the melt was also analysed using powder X-ray diffraction and evaluated in comparison to the calculated powder pattern (royal blue) in Figure 4.5. Like that of the bromine racemate, the Cl/Br quasiracemate showed intense peaks similar to that of the calculated values. Peaks were observed at  $2\theta = 11.0$ , 11.7, 15.6, 17.9, 20.4, 22.4, 24.9, and 27.3°. The similarity between the calculated data and the pattern obtained from the melt supports the formation of this quasiracemic phase using the hot stage microscopy technique. Furthermore, results from these two focused studies show that thermomicroscopy can be used as a viable tool to explore the role topology plays in molecular recognition.

## **4.5 Topological Differences of Substituents**

The appearance of the Cl/Br diarylamide quasiracemic phase was largely anticipated given the crystal structure was previously reported.<sup>21</sup> Furthermore, combining quasienantiomers that differ in Cl and Br substitutions has provided a common theme for other quasiracemate studies.<sup>9,21-23</sup> Though similar in topological features (spherical), a change from Cl to Br represents a 41% increase in substituent volume and an overall increase in diarylamide framework volume of 3%. Evidently, the structural difference imposed by the Cl and Br substituents does not present a sufficient deterrent to quasiracemate formation. Even so, we wondered if expanding the margin of shape space using the Cl/I pair would also achieve similar molecular recognition. The absence of reports featuring Cl/I quasiracemates, significantly different volumes (77% increase for Cl/I and 6% when considering the entire diarylamide framework), and our lack of success

with growing single crystals of (S)-I/(R)-Cl *via* solution methods initially suggested that the spatial difference of this substituent pair was beyond the structural boundary for quasiracemate formation. However, pursuing recognition behaviour of the (S)-I/(R)-Cl quasienantiomeric pair from the melt yielded key insight to the recognition profile of this system. Inspection of Figure 4.4C reveals a small, but distinct quasiracemic phase appearing at the boundary of the starting materials. This result, like that for the (S)-Cl/(R)-Br quasiracemic phase, underscores the importance of the recognition profile of quasienantiomers in forming quasiracemates from the melt.



Figure 4.6: Hot Stage Microscopy Results from Combining Diarylamide A) Quasienantiomers and B) Molecular Pairs with the Same Chirality [e.g. (R)-X and (R)-X'].

Considering the success of the (S)-Cl/(R)-Br and (S)-L/(R)-Cl systems, could our hot stage approach be broadly applied as a diagnostic tool for mapping the shape space of quasiracemate assemblies? The collection of diarylamides selected for this study differ incrementally in size and shape and provided 55 unique bimolecular combinations (Figures 4.1 and 6A). Thermally processing all possible sets as before and tabulating these results provided a comprehensive view of the topological landscape for this diarylamide family. It is initially worth noting that heating each enantiomeric pair

resulted in, without exception, the growth of racemic phases where similar shapes of opposing chirality influence crystal formation. Such a structural bias during the heating stage is significant and indicates the relative thermodynamic stability of the racemic phase compared to that of the starting components. This same structural preference should also apply to the formation of the diarylamide quasiracemates. The remaining entries in Figure 4.6A correspond to the thermal signatures of each quasienantiomeric pair. This data is provided in the Supplementary Information (S2) and offers critical insight to those systems where quasiracemic phases form, but also highlights unsuccessful instances as indicated by the appearance of a single eutectic region. Several important trends emerge from this data. Combining (S)-H and (R)-F diarylamides produced a quasiracemic phase, but conglomerates form from thermal processing other building blocks in the series, presumably owing to a greater difference in the spatial properties of the functional group. It is not surprising the Cl/Br, Cl/CH<sub>3</sub>, Br/CH<sub>3</sub>,  $NO_2/CH_3$  pairs gave new quasiracemic phases since these sets are topologically similar and have been successfully used with other quasiracemic systems.<sup>9,15,21,22,24</sup> Of interest are also pairs that result in quasiracemates, but are less prevalent in the literature or consist of significantly different shape spaces (e.g. Cl/I, CN/CF3).

The crystal structures of several (*R*)-X and (*S*)-X' quasienantiomeric pairs that showed quasiracemate formation using the Kofler contact method were pursued. Of particular interest are diarylamide quasiracemic phases containing the trifluoromethyl functional group (Figure 4.6A) such as the NO<sub>2</sub>/CF<sub>3</sub>, CH<sub>3</sub>/CF<sub>3</sub>, and CF<sub>3</sub>/I systems. The significance of these materials is that quasiracemates containing the trifluoromethyl functional group are unknown in the literature. In addition, unlike the Cl/Br combination,

each of the NO<sub>2</sub> (trigonal planar)  $CH_3$ , (tetrahedral), and I (spherical) groups paired with  $CF_3$  correspond to significantly different shapes. The use of the NO<sub>2</sub>/CF<sub>3</sub>

quasienantiomers represents a 25% increase in substituent volume and an overall increase in diarylamide framework volume of 2%. Similar to that of the Cl/Br quasiracemate, the CH<sub>3</sub>/CF<sub>3</sub> quasiracemate contain functional groups with nearly identical topologies. Also, the increase in substituent volume (and structural framework) from CH<sub>3</sub> to CF<sub>3</sub> represents a 30% (3%) increase and that for CF<sub>3</sub>/I is 20% (2%). Though the use of group volume information offers a quantitative method for the comparison of substituents and for the prediction of quasiracemate formation, this metric does not provide a direct measure of molecular shape. For example, while the CH<sub>3</sub> (22.3 Å<sup>3</sup>) and NO<sub>2</sub> (23.2 Å<sup>3</sup>) groups have similar volumes their shapes are very different. Though beyond the scope of the current study, mathematical descriptors that allow for easy evaluation of molecular shape are needed to understand the spatial relationship of the groups depicted in Figure 4.6A.

It is worth noting that the phenyl group included in this study provides an important benchmark for quasiracemate assessment. The large substituent volume (96.0 Å<sup>3</sup>) and surface area (94.9 Å<sup>2</sup>) of the C<sub>6</sub>H<sub>5</sub> group should result in conglomerate formation when combined the H  $\rightarrow$  I substituted quasienantiomers. The hot stage micrographs found in the Supplementary Information (S2) corresponding to the phenyl enantiomer clearly show the lack of quasiracemate formation and suggest the spatial properties of phenyl and the other substituents are too great for molecular recognition to occur.



Figure 4.7: <sup>1</sup>HNMR Overlays of the S-CH<sub>3</sub>/R-CF<sub>3</sub> Quasiracemate System.

# 4.6 Analysing the Melt with Nuclear Magnetic Resonance

Since the formation of new crystalline phases does not necessarily signify quasiracemate formation, additional information was also retrieved for several sets of these thermally processed systems. Data retrieved from Nuclear Magnetic Resonance (NMR) studies were utilized to determine the ratios of quasienantiomeric components for several new crystalline phases formed from the melt. This was possible since each quasienantiomer has a unique spectral signature. One such example was the (S)-CH<sub>3</sub>/(R)-CF<sub>3</sub> quasiracemic system (Figure 4.7). When comparing the spectral data of the starting components to that of the quasiracemate, one can visually differentiate the signals that correspond to each starting material found in the final quasiracemic product. When comparing the aromatic regions of the starting components to that of the quasiracemate both aromatic regions begin at 7.77 ppm, but the aromatic region corresponding to (S)-Methyl terminates at 7.17 ppm while the (R)-trifluoromethyl region ends at 7.25 ppm. When comparing the quasiracemate to these regions the aromatic region contains a signal that span 7.77-7.17 ppm. This spectral information supports the quasiracemate phase contains both starting components. More definitive is the signal found at 2.36 ppm (s, 3H,  $CH_3$ ). This peak is indicative of the 2-methyl substituent that is not found in the (R)-N-(2trifluorobenzoyl)methylbenzylamine component. Peak integrations of this quasiracemic spectral data also helped to determine the 1:1 ratio of these two starting components. The techniques of NMR and powder X-ray diffraction (PXRD) data were also applied to the Cl/Br, CH<sub>3</sub>/CF<sub>3</sub>, NO<sub>2</sub>/CF<sub>3</sub>, Br/CF<sub>3</sub>, and Cl/I pairs and crystal structures were determined or retrieved from the extant database for the H/F, Cl/Br, NO<sub>2</sub>/CF<sub>3</sub>, NO<sub>2</sub>/Br, CH<sub>3</sub>/CF<sub>3</sub>, and CF<sub>3</sub>/I quasiracemates. This data is found in the Supplementary Information (S3-5). This collective information offers key support for the assignment of the quasiracemic phases generated from these hot stage experiments. Additionally, the crystal structures confirmed the role of approximate inversion symmetry (Figure 4.2) in these systems and in several cases provided calculated PXRD patterns for comparison with the hot stage samples. These structures are found in the Supplementary Information (S4). Attempts to grow crystals of other quasiracemic systems using various crystallization techniques and

solvent systems were unsuccessful presumably due to the non-complementary shape features of the components. Other methods for their assessment could be utilized including nuclear magnetic resonance (NMR) and powder X-ray diffraction as previously stated.



Figure 4.8: Crystal Structure of (S)-N-(2-methoxybenzoyl)methylbenzylamine Showing Thermal Ellipsoids (50% Probability) and Intramolecular N-H…O Hydrogen Bond.



Figure 4.9: Overlay of 2-Substituted Diarylamides Showing the Conformational Difference of the Methoxy Framework (Pink).

### 4.7 Intramolecular Hydrogen Bonding of Substituents

One outlier found in this study was the OCH<sub>3</sub> substituted diarylamide derivative where molecular assembly with the second component only occurs with its enantiomer (Figure 4.8). The only successful cocrystallization occurs with the racemate and suggests the likelihood of this derivative to also form new quasiracemic phases similar to the patterns observed with the other the entries provided in Figure 4.1. Even so, the distinct hot stage signatures corresponding to OCH<sub>3</sub> paired with other quasienantiomers support conglomerate formation likely due to the conformational features of the OCH<sub>3</sub> adduct. Unlike other crystal structures of 2-substituted diarylamides, the structure of (S)-OCH<sub>3</sub> is stabilized by an intramolecular N-H···OCH3 contact (N···O, 2.669(3) Å; N-H···O,  $139(3)^{\circ}$ ). This interaction controls the conformation, and thus topological features of (S)-OCH<sub>3</sub> as indicated by a significantly smaller N-C(=O)- $C_{Ar}$ - $C_{Ar}$  torsion angle (18.4°) compared to other 2-substituted diarylamides (47.5 – 79.9°) (Figure 4.9). N-C(=O)-C<sub>Ar</sub>-CAr torsion angles were retrieved from the Cambridge Structural Database (CSD, Version 1.19) entries LUNPOZ, LUNPOZ01, LUNPUF, LUNQAM, LUNQEQ, LUNQIU and crystal structures of quasiracemates NO<sub>2</sub>/CF<sub>3</sub>, NO<sub>2</sub>/Br, CH<sub>3</sub>/CF<sub>3</sub>, and CF<sub>3</sub>/I.<sup>25</sup> The diarylamide framework with this substituent is unique in comparison to the other entries in Figure 4.6A since the OCH<sub>3</sub> group is capable of forming an intramolecular hydrogen bond. This non-bonded contact changed the outcome of the hot stage experiments by limiting rotation around the amide bond. In the other systems, this same amide torsion angle is likely controlled by crystal packing. The influence of the intramolecular N-H…OCH<sub>3</sub> contact results in the OCH<sub>3</sub> quasienantiomer no longer having a complementary shape to the other quasienantiomers.



Figure 4.10: Search Criteria for Methoxy Group in CSD and Resulting Bonding Distances between "O" of Methoxy Functional Group and "N" of Amide Functional Group.

A search utilizing the CSD for 2-methoxy arylamides resulted in 21 entries using the search query found in Figure 4.10. The N…O bond distances were plotted with the data clustered between 2.60 – 2.70 Å (Figure 4.10). This collection of structural information correlated well with our OCH<sub>3</sub> entry where this same interaction is 2.669(3) Å. This data supports the notion that 2-methoxy diarylamides have a propensity to form intramolecular hydrogen bonds that ultimately control the conformational features of the molecules.



Figure 4.11: Graphical search criteria of the CSD for 2-hydroxyarylamides.

The results obtained from this search as well as those collected from our hot stage experiments helped to inform the selection process of substituents as the research program progressed. The inability of the methoxy substituent to form new crystalline phases provided evidence that functional groups capable of intramolecular interactions would likely not promote the formation of quasiracemic phases. One such example of a functional group capable of forming an intramolecular hydrogen bond is an alcohol group (Figure 4.11). Like the  $OCH_3$  derivative, OH can form intramolecular contacts, but can also serve as a hydrogen bond donor group. For this reason, groups known to form strong hydrogen bonds such as NH<sub>2</sub> and CO<sub>2</sub>H were excluded from this study. A search of the CSD for 2-hydroxy arylamides (Figure 4.11) resulted in 50 entries. The observed orientation of the hydroxyl groups show that additional intramolecular contacts similar to the methoxy adducts is very likely. While investigating the CSD, it was also found that the orientation of the OH substituent has a drastic effect on the formation of intermolecular non-covalent contacts. Analyzing the results of the search in the CSD shows that the formation of a hydrogen bond dictates the orientation of the alcohol group.



Figure 4.12: A CSD Search Showing O…N Intramolecular Bond Distances for 2-HydroxyArylamides.



Figure 4.13: Results of CSD Search Showing Correlation of  $O \cdots O$  Distance to  $O-H \cdots O=C$  Hydrogen Bonding Angle.



Figure 4.14: Two Orientations for the Hydroxyl Group Observed from a CSD Search.

The two distinct clusters of entries shown in Figure 4.12 support the idea that intramolecular hydrogen bond formation controls the orientation of the functional group. Twenty-seven entries were found with  $O \cdots N$  distances near 2.6 Å and were in close proximity for hydrogen bond formation to occur while entries at distances greater than 4.0 Å were not involved in intramolecular contacts with the nitrogen of the amide. The remaining 23 entries found as a result of our search contained  $O \cdots O$  distances near 2.5 Å. These findings correlated to hydrogen bonding between the alcohol (-OH) and carbonyl (O=C) with a hydrogen bonding angle of approximately 150° (Figure 4.13). The two orientations of this functional group found from the CSD search are depicted in Figure 4.14. Orientation parallel to the carbonyl results in an OH…O hydrogen bond while the other orientation results in an O…HN hydrogen bond. The two orientations of the hydroxyl group are related by a rotation around the single bond between the carbonyl carbon of the amide and the benzene ring. This rotation directly influences intramolecular hydrogen bond formation.



Figure 4.15: Substitution Patterns and Chemical Frameworks of Previously Investigated Quasiracemic Systems.



Figure 4.16: Chemical Frameworks Showing meta and para Substituted Diarylamides.

### 4.8 Importance of Quasiracemate Framework and Substituent Position

Previous investigations of quasiracemic materials have utilized ortho substituted frameworks to generate the desired cocrystalline materials (Figure 4.15).<sup>22</sup> Several of these prior studies also examined meta and para substituted frameworks (Figure 4.15).<sup>26-27</sup> Molecular scaffolds containing hydrogen bond donor and/or acceptor groups are able to influence formation of intra- and intermolecular contacts. Previous investigations in to quasiracemic systems utilizing this scaffold placed the substituents in the para position.<sup>26</sup> However, unlike the current study of ortho substituted arylamides, analogous systems with groups located in the para position are incapable of forming intramolecular contacts with the amide group. The investigation of quasiracemic materials have also utilized substituents placed in the meta position, but this scaffold utilizes oxygen in the backbone

of the scaffold (Figure 4.15).<sup>27</sup> Each of these quasiracemate studies utilized pairs of quasienantiomers with the same substitution pattern – *i.e.*, ortho, meta, or para positions. In an attempt to further define the structural boundaries of molecular recognition for these diarylamide quasiracemic materials, several preliminary investigations showed the results from pairing quasienantiomers that differ in substitution pattern [e.g. 2-(*S*)-X···3-(*R*)-X or 3-(*S*)-X···4-(*R*)-X']. Probing systems in this manner resulted in ortho/meta, otho/para, and meta/para combinations of substituent positions (Figure 4.16).



Topologically dissimilar quasiracemates with the same substituent





Topologically dissimilar quasiracemates with the differing substituents

Figure 4.18: Hot Stage Polarized Light Microscopy Using the A) (R)-2-Br (left) and (S)-3-Cl (right), B) (S)-3-Cl and (R)-4-Br and C) (S)-4-Cl and (S)-2-Br Pairs.

Initial investigations into these quasiracemic systems began by using the same molecular scaffold with differing substitution patterns; e.g. (-)-*N*-(2-chlorobenzoyl)methylbenzylamine and (+)-*N*-(3-chlorobenzoyl)methylbenzylamine system (Figure 4.17). In addition to looking at materials with the same substituent at different positions, preliminary studies compared systems in which both the functional group identity and position on the scaffold are different. The results of these investigations are provided in Figures 4.17 and 4.18. When comparing the thermal signatures of these hot stage investigations, clear observations are able to be made. In

systems containing both 2-substituted 3-substituted quasienantiomers (Figure 4.17A and 4.18A) a conglomerate is formed with these two components suggesting a lack of molecular recognition. In this case, loading the starting materials on the glass slide with the aid of heat and then cooling the system did not result in contact of the two crystalline phases as with other quasienantiomeric pairs in this study. Rather, these materials formed an amorphous region at the contact interface suggesting these materials are wholly incapable of cocrystal formation. Processing the remaining systems shown in Figures 4.17B-C and 4.18B-C in a similar manner resulted in distinct interfaces between the two crystalline phases. The interface between these two quasienantiomeric components suggests that no recognition occurred and a conglomerate formed. As heat is applied to these systems one can observe the clear development of a single eutectic point. Such thermal behaviour corresponds to a phase diagram of a quasiracemic conglomerate (Figure 4.3).

The inability of the above quasienantiomeric systems to form a new crystalline phase results from the contrasting molecular shapes of the components. Pairing building blocks that differ in substitution pattern evidently provides too large of a spatial variation for quasiracemate formation to occur. The lack of observed recognition extends to molecular pairs constructed using chemically same or different functional groups. Unlike quasienantiomeric systems containing molecular framework with the same substitution patterns, these investigations attempted to determine if a new quasiracemic phase would form between frameworks in which the positioning of the substituent changes. By referring to Figures 4.1 and 4.16, one can see how changing the substituent position greatly modifies the overall shape of the molecules. While this aspect of our hot stage

studies did not produce quasiracemate phases, the outcomes are critical to understanding the structural boundaries of the shape spaces that produce molecular associations. In the context of complementary molecular shapes, pairing components of opposite chirality that differ in substitution patterns exceeds the topological limit needed for cocrystallization to occur with these systems.



Figure 4.19: Hot Stage Polarized Light Microscopy Using the A) (R)-Cl (left) and(R)-Br (right) and B) (R)-I/(R)-Br Pairs and Showing the Characteristics of Solid Solution and Conglomerate Crystalline Phase Formation.

### 4.9 Molecular Recognition Profiles of Same Handed Quasienantiomers

As shown, the attraction between pairs of quasienantiomers results from their complementary topologies and the thermodynamic consequence of constructing approximate inversion related motifs. Close packing arrangements achieved from these near inversion symmetry motifs are significant and provide sufficient incentive for quasiracemate formation. Even so, what would be the impact by exchanging the handedness of one component of a quasiracemate to give (R)-X and (R)-X' pair [or (S)-X and (*S*)-*X*<sup>'</sup>] and then assessed using the hot stage method? If the pairs were altogether incompatible, then a thermal signature corresponding to a conglomerate should result. However, if comparable affinities of the (*R*)-X or (*R*)-X' molecules exist for the same compound and the other component then the hot stage event will reflect that of a solid solution. Figure 4.19 shows the results from thermally processing the (*R*)-Cl/(*R*)-Br and (*R*)-I/(*R*)-Cl systems. The lack of eutectic region for (*R*)-Cl/(*R*)-Br (Figure 4.19A, solid solution), but its presence in (*R*)-I/(*R*)-Cl (Figure 4.19B, conglomerate) clearly shows the variation with these thermal signatures. Figure 4.6B provides the hot stage results from processing the entire diarylamide family using pairs of components of the same chirality. Interestingly, only five of these entries - H/F, Cl/CH<sub>3</sub> Cl/NO<sub>2</sub>, Cl/Br, and NO<sub>2</sub>/Br exhibit solid solution behaviour. Because the structural principles that govern quasiracemic materials do not apply with these systems, hot stage results from (*R*)-X/(*R*)-X' binary mixtures offer a subtler assessment tool of molecular topology.

## 4.10 Conclusion

In summary, we have developed experimental methods for assessing the structural boundary of molecular shape to molecular recognition. This strategy probes the complementary spatial features of a sizable family of diarylamide (R)-X/(S)-X' and (R)-X/(R)-X' pairs *via* hot stage microscopy. The aim of this study established the boundaries of quasiracemate formation. Within this study, the role of topology was defined and its role in molecular recognition highlighted. Compounds capable of undergoing intramolecular interactions resulted in a change of molecular shape and inhibited the formation of new crystalline phases from the melt as shown by our methoxy substituted

system. Results from our study with this substituent influenced the selection of additional compounds included in the library of compounds. One such substituent originally intended to be added to the library of compounds was the hydroxyl (-OH) group. Though the hydroxyl group has a surface area (19.3 Å<sup>2</sup>) and volume (12.6 Å<sup>3</sup>) incrementally different from the values reported for fluorine to chlorine, its potential role in intra- and intermolecular hydrogen bonding would obstruct quasiracemate formation.<sup>16,17</sup> A search of the CSD provided information related to the structural conformations of related materials. This exercise showed that hydroxyl groups placed in the ortho position results in the formation of intramolecular hydrogen bonds (Figure 4.14). The ability to form intramolecular contacts with donor/acceptor groups as part of the molecular framework changes the overall topology of the molecule resulting in a lack of molecular association with other quasienantiomers.

The importance of complementary shape was further reinforced by changing the substituent position in this study (Figure 4.16). The results of this study were found in Figure 4.17 and 4.18 in which the thermal behaviour of these systems showed that of a conglomerate system and no observable molecular recognition occurred between the components. Further investigations may contribute to the current understanding of the boundaries of quasiracemate formation by exploring the complete library of meta and para substituted diarylamide frameworks. Such results may prove important since such systems would lack intramolecular hydrogen bonds present in the current study. Moving beyond these systems, the use of multiple substituents attached to the aromatic ring may also prove useful for understanding the impact of systematically changing pendant substituents to molecular recognition.

Without access to effective methods for evaluating molecular shape, this study represents a step forward in determining the role of topology features to molecules assembly. This investigation highlighted the importance of topology in molecular recognition processes. These processes range from small-molecule catalytic transformations to protein-protein interactions in a substrate enzyme complex.<sup>28</sup> Through the use of Kofler's Contact Method a systematic investigation to determine structural boundaries of quasiracemate formation was able to occur. The phenyl substituted system was used as a baseline in this study in which no recognition would occur. A more definitive structural boundary of quasiracemate formation may be defined for each substituent through the addition of other functional groups to the scaffold in this study. The role of topology was exploited and the effect of changing the substituent topology was clearly shown with our methoxy substituted entry. The ability to form intramolecular contacts resulted in an overall change in the topology of the system and impeded the molecular recognition process. The current ability to approximate molecular shape and volume has limitations and new methods must be developed in order to more accurately describe the shape of molecules as previously discussed. Our current ability to approximate volumes does not include a descriptor to shape as shown with the nitro and methyl functional groups. This investigation is an initial step in understanding the role of topology in crystal packing and has been featured in a recent 2017, Chemical *Communications* article.<sup>29</sup> Further investigations must occur for a more complete understanding of this role. Despite this non-covalent interaction being less studied than its counterparts, it is no less important in how molecules recognize one another.

### 4.11 References

- (1) E. Persch, O. Dumele and F. Diederich, Angew. Chem, Int. Ed. 2015, 54, 3290.
- (2) E. Mattia and S. Otto, *Nat. Nanotechnol.* **2015**, *10*, 111–119.
- (3) J.-M. Lehn, Angew. Chem., Int. Ed. 2013, 52, 2836.
- (4) R. Merindola and A. Walther, *Chem. Soc. Rev.* 2017, DOI: 10.1039/C6CS00738D.
- (5) J.-M. Lehn, Angew. Chem., Int. Ed. 1990, 29, 1304.
- (6) T. S. Thakur, R. Dubey and G. R. Desiraju, *IUCrJ*. 2015, *2*, 159.
- (7) G. R. Desiraju, J. Am. Chem. Soc. 2013, 135, 9952.
- (8) D. B. Varshey, J. R. G. Sander, T. Friščić and L. R. MacGillivray in Supramolecular Chemistry: From Molecules to Nanomaterials, ed. J. W. Steed and P. A. Gale, John Wiley & Sons, Chichester, 2012, vol. 1, p 10-24.
- (9) J. M. Spaniol and K. A. Wheeler, *RSC Adv.* **2016**, *6*, 64921.
- (10) Q. Zhang and D. P. Curran, Chem. Eur. J. 2005, 11, 4866.
- R. E. Davis, J. K. Whitesell, M.-S. Wong and N. –L. Chang, in *Perspectives in Supramolecular Chemistry: The Crystal as a Supramolecular Entity*, ed. G. R. Desiraju, John Wiley & Sons, Chichester, 1996, vol. 2, chpt. 3.
- A. Nicholls, G. B. McGaughey, R. P. Sheridan, A. C. Good, G. Warren, M.
  Mathieu, S. W. Muchmore, S. P. Brown, J. A. Grant, J. A. Haigh, N. Nevins,
  A. N. Jain and B. Kelley, *J. Med. Chem.* 2010, 53, 3862.
- (13) A. Fredga, Bull. Soc. Chim. Fr. 1973, 1, 173.
- (14) S. P. Kelley, L. Fábián and C. P. Brock, Acta Crystallogr., Sect. B: Struct. Sci.
  2011, B67, 79.

- (15) M. S. Hendi, P. Hooter, R. E. Davis, V. M. Lynch and K. A. Wheeler, *Cryst. Growth Des.* 2004, 4, 95.
- (16) A. Gavezzotti, J. Am. Chem. Soc. 1985, 107, 962.
- (17) A. Gavezzotti, J. Am. Chem. Soc. 1983, 105, 5220.
- (18) A. Lemmerer, J. Bernstein, U. J. Griesser, V. Kahlenberg, D. M. Tobbens, S. H. Lapidus, P. W. Stephens and C. Esterhuysen, *Chem. Eur. J.* 2011, 17, 13445.
- (19) D. J. Berry, C. C. Seaton, W. Clegg, R. W. Harrington, S. J. Coles, P. N.
   Horton, M. B. Hursthouse, R. Storey, W. Jones, T. Friščić and N. Blagden,
   *Cryst. Growth Des.* 2008, 8, 1697.
- (20) L. Kofler and A. Kofler, *Thermal Micromethods for the Study of Organic Compounds and Their Mixtures; Wagner*: Innsbrook, 1952; translated by McCrone, W. C. McCrone Research Institute, Chicago, 1980.
- (21) S. L. Fomulu, M. S. Hendi, R. E. Davis and K. A. Wheeler, Cryst. Growth Des. 2005, 5, 727.
- (22) A. M. Lineberry, E. T. Benjamin, R. E. Davis, W. S. Kassel and K. A. Wheeler Cryst. Growth Des. 2008, 8, 612.
- (23) F. Toda, K. Tanaka, H. Miyamoto, H. Koshima, I. Miyahara and K. Hirotsu, J. Chem. Soc., Perkin Trans. 2, 1997, 1877.
- (24) J. T. Cross, N. A. Rossi, M. Serafin and K. A. Wheeler, *CrystEngComm.* 2014, 16, 7251.
(25) The Cambridge Structural Database

C. R. Groom, I. J. Bruno, M. P. Lightfoot and S. C. Ward, Acta Cryst. 2016, *B72*, 171-179.

- (26) Hendi, M. S.; Hooter, P.; Davis, R. E.; Lynch, V. N.; Wheeler, K. A. Cryst. Growth Des. 2004, 4 (1), 95-101.
- (27) Breen, M. E.; Tameze, S. L.; Dougherty, W.G.; Kassel, W. S.; Wheeler, K. A.
   *Cryst. Growth Des.* 2008, 8 (2), 3863-3870.
- (28) Coleman, R. G.; Sharp, K. A. J. Chem. Inf. Model. 2010, 50, 589-603.
- (29) Tinsley, I. C.; Spaniol, J. M.; Wheeler, K. A. Chem. Commun. 2017, 53 (33), 4601–4604.

## **Supplementary Information**

.

•

-

| Table of Contents                                                                       | Page |
|-----------------------------------------------------------------------------------------|------|
| <b>S1</b> - Cocrystals of Sulfamethazine                                                | 93   |
| <b>S2</b> - Hot Stage Thermomicroscopy                                                  | 209  |
| <b>S3</b> - X-ray Crystallography – Powder Diffraction                                  | 234  |
| S4 - X-ray Crystallography – Single-Crystal Diffraction                                 | 238  |
| <b>S5</b> - <sup>1</sup> H NMR Overlays                                                 | 244  |
| <b>S6</b> - Functional Group and Chemical Framework Volume and Surface Area Comparisons | 246  |
| <b>S7</b> – References                                                                  | 248  |

## S1. Cocrystals of Sulfamethazine



Figure S.1: Crystal Structure of the Cocrystal of Sulfamethazine and Benzoic Acid Showing Thermal Parameters (50% Thermal Ellipsoids) and Hydrogen Bonding.

| Crystal data                                                    |                                                |
|-----------------------------------------------------------------|------------------------------------------------|
| C <sub>19</sub> H <sub>20</sub> N <sub>4</sub> O <sub>4</sub> S | $D_{\rm x} = 1.386 {\rm ~Mg} {\rm ~m}^{-3}$    |
| $M_r = 400.45$                                                  | Melting point: 489-495 K                       |
| Orthorhombic, Pbca                                              | Cu K $\alpha$ radiation, $\lambda = 1.54178$ Å |
| a = 9.6808 (4)  Å                                               | Cell parameters from 9967 reflections          |
| <i>b</i> = 15.6559 (7) Å                                        | $\theta = 2.8 - 68.2^{\circ}$                  |
| <i>c</i> = 25.3269 (11) Å                                       | $\mu = 1.79 \text{ mm}^{-1}$                   |
| V = 3838.6 (3) Å <sup>3</sup>                                   | <i>T</i> = 100 K                               |
| Z = 8                                                           | Blocks/Plates, colourless                      |
| F(000) = 1680                                                   | $0.40 \times 0.24 \times 0.24$ mm              |

| Bruker APEXII CCD<br>diffractometer               | 3513 independent reflections                                              |
|---------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube          | 3247 reflections with $I > 2\sigma(I)$                                    |
| Detector resolution: 8.33 pixels mm <sup>-1</sup> | $R_{\rm int} = 0.049$                                                     |
| phi and ω scans                                   | $\theta_{\text{max}} = 68.2^{\circ}, \ \theta_{\text{min}} = 3.5^{\circ}$ |
| Absorption correction: multi-scan                 | h = -11 11                                                                |
| SADABS2014/7, Bruker AXS                          | n = 11  11                                                                |
| $T_{\min} = 0.640, \ T_{\max} = 0.753$            | k = -18 18                                                                |
| 54728 measured reflections                        | l = -30  30                                                               |

-

# Refinement

| Refinement on $F^2$             |                                                                                     |
|---------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Hydrogen site location: mixed                                                       |
| $R[F^2 > 2\sigma(F^2)] = 0.031$ | H atoms treated by a mixture of independent and constrained refinement              |
| $wR(F^2) = 0.084$               | $w = 1/[\sigma^2(F_o^2) + (0.0376P)^2 + 2.7022P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| <i>S</i> = 1.07                 | $(\Delta/\sigma)_{\rm max} = 0.001$                                                 |
| 3513 reflections                | $\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$                           |
| 271 parameters                  | $\Delta \rho_{\rm min} = -0.43 \ e \ {\rm \AA}^{-3}$                                |
| 4 restraints                    | Extinction correction: none                                                         |
| 0 constraints                   |                                                                                     |

| Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å <sup>2</sup> ) |              |              |             |                               |
|---------------------------------------------------------------------------------------------------------------|--------------|--------------|-------------|-------------------------------|
|                                                                                                               | x            | v            | Ζ           | $U_{\rm iso}$ */ $U_{\rm eq}$ |
| S1                                                                                                            | 0.34937 (4)  | 0.48543 (2)  | 0.34325 (2) | 0.01544 (11)                  |
| 01                                                                                                            | 0.28955 (12) | 0.37770 (7)  | 0.47690 (4) | 0.0254 (3)                    |
| O2                                                                                                            | 0.47629 (12) | 0.36057 (7)  | 0.52793 (4) | 0.0225 (2)                    |
| H32                                                                                                           | 0.517 (3)    | 0.3845 (15)  | 0.5020 (8)  | 0.062 (8)*                    |
| 03                                                                                                            | 0.20724 (11) | 0.47422 (7)  | 0.35829 (4) | 0.0199 (2)                    |
| 04                                                                                                            | 0.40224 (11) | 0.43144 (7)  | 0.30213 (4) | 0.0207 (2)                    |
| Nl                                                                                                            | 0.42642 (18) | 0.84446 (9)  | 0.28043 (6) | 0.0338 (4)                    |
| H30A                                                                                                          | 0.4847 (19)  | 0.8604 (12)  | 0.2579 (7)  | 0.032 (5)*                    |
| H30B                                                                                                          | 0.379 (2)    | 0.8843 (11)  | 0.2975 (7)  | 0.032 (5)*                    |
| N2                                                                                                            | 0.43169 (13) | 0.46710 (8)  | 0.39891 (5) | 0.0170 (3)                    |
| H31                                                                                                           | 0.3839 (19)  | 0.4425 (12)  | 0.4230 (7)  | 0.034 (5)*                    |
| N3                                                                                                            | 0.62053 (13) | 0.44154 (8)  | 0.45161 (5) | 0.0171 (3)                    |
| N4                                                                                                            | 0.64793 (13) | 0.49792 (8)  | 0.36457 (5) | 0.0172 (3)                    |
| C1                                                                                                            | 0.34461 (16) | 0.35113 (9)  | 0.51747 (6) | 0.0194 (3)                    |
| C2                                                                                                            | 0.26427 (16) | 0.30532 (9)  | 0.55888 (6) | 0.0187 (3)                    |
| C3                                                                                                            | 0.32589 (17) | 0.27620 (10) | 0.60510 (6) | 0.0232 (3)                    |
| H3                                                                                                            | 0.4221       | 0.2841       | 0.6107      | 0.028*                        |
| C4                                                                                                            | 0.24552 (19) | 0.23531 (10) | 0.64303 (6) | 0.0267 (4)                    |
| H4                                                                                                            | 0.2872       | 0.2145       | 0.6744      | 0.032*                        |
| C5                                                                                                            | 0.10513 (18) | 0.22497 (10) | 0.63513 (6) | 0.0247 (4)                    |
| Н5                                                                                                            | 0.0505       | 0.1979       | 0.6614      | 0.030*                        |
| C6                                                                                                            | 0.04380 (17) | 0.25402 (10) | 0.58891 (6) | 0.0238 (3)                    |
| H6                                                                                                            | -0.0526      | 0.2468       | 0.5836      | 0.029*                        |
| C7                                                                                                            | 0.12334 (17) | 0.29344 (10) | 0.55076 (6) | 0.0221 (3)                    |
| H7                                                                                                            | 0.0818       | 0.3125       | 0.5189      | 0.026*                        |

94

| C8   | 0.40984 (17) | 0.76154 (10) | 0.29461 (6) | 0.0214 (3) |
|------|--------------|--------------|-------------|------------|
| C9   | 0.30990 (17) | 0.73869 (10) | 0.33243 (6) | 0.0233 (3) |
| H9   | 0.2535       | 0.7816       | 0.3478      | 0.028*     |
| C10  | 0.29299 (16) | 0.65463 (10) | 0.34741 (6) | 0.0200 (3) |
| H10  | 0.2245       | 0.6398       | 0.3727      | 0.024*     |
| C11  | 0.37659 (15) | 0.59142 (9)  | 0.32540 (6) | 0.0161 (3) |
| C12  | 0.47611 (16) | 0.61271 (10) | 0.28796 (6) | 0.0173 (3) |
| H12  | 0.5333       | 0.5696       | 0.2732      | 0.021*     |
| C13  | 0.49154 (16) | 0.69659 (10) | 0.27231 (6) | 0.0192 (3) |
| H13  | 0.5581       | 0.7106       | 0.2462      | 0.023*     |
| C14  | 0.57371 (15) | 0.46886 (9)  | 0.40478 (6) | 0.0154 (3) |
| C15  | 0.86838 (17) | 0.53290 (11) | 0.32639 (6) | 0.0235 (3) |
| H15A | 0.8522       | 0.4976       | 0.2950      | 0.035*     |
| H15B | 0.9667       | 0.5314       | 0.3355      | 0.035*     |
| H15C | 0.8407       | 0.5919       | 0.3190      | 0.035*     |
| C16  | 0.78544 (15) | 0.49901 (9)  | 0.37146 (6) | 0.0181 (3) |
| C17  | 0.84506 (16) | 0.47044 (10) | 0.41807 (6) | 0.0203 (3) |
| H17  | 0.9425       | 0.4704       | 0.4225      | 0.024*     |
| C18  | 0.75894 (16) | 0.44206 (9)  | 0.45793 (6) | 0.0185 (3) |
| C19  | 0.81233 (17) | 0.41122 (11) | 0.51013 (6) | 0.0246 (3) |
| H19A | 0.7744       | 0.4468       | 0.5385      | 0.037*     |
| H19B | 0.9134       | 0.4149       | 0.5105      | 0.037*     |
| H19C | 0.7841       | 0.3518       | 0.5156      | 0.037*     |
|      |              |              |             |            |

.

## Atomic displacement parameters (Å<sup>2</sup>)

|            | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$      | $U^{13}$      | $U^{23}$     |
|------------|--------------|--------------|--------------|---------------|---------------|--------------|
| <b>S</b> 1 | 0.01596 (19) | 0.01455 (19) | 0.01581 (19) | -0.00025 (13) | -0.00155 (13) | 0.00020 (13) |
| 01         | 0.0241 (6)   | 0.0313 (6)   | 0.0208 (6)   | -0.0030 (5)   | -0.0002 (5)   | 0.0078 (5)   |
| 02         | 0.0219 (6)   | 0.0258 (6)   | 0.0198 (5)   | -0.0032(5)    | 0.0019 (4)    | 0.0039 (5)   |
| 03         | 0.0167 (5)   | 0.0194 (5)   | 0.0236 (6)   | -0.0015 (4)   | -0.0016 (4)   | 0.0021 (4)   |
| 04         | 0.0256 (6)   | 0.0179 (5)   | 0.0185 (5)   | 0.0009 (4)    | -0.0015 (4)   | -0.0021 (4)  |
| Nl         | 0.0455 (10)  | 0.0182 (7)   | 0.0376 (9)   | 0.0031 (7)    | 0.0234 (7)    | 0.0053 (6)   |
| N2         | 0.0155 (6)   | 0.0198 (6)   | 0.0156 (6)   | -0.0004 (5)   | 0.0007 (5)    | 0.0038 (5)   |
| N3         | 0.0200 (6)   | 0.0162 (6)   | 0.0152 (6)   | 0.0008 (5)    | -0.0014 (5)   | -0.0005 (5)  |
| N4         | 0.0180 (6)   | 0.0156 (6)   | 0.0180 (7)   | 0.0013 (5)    | 0.0010 (5)    | 0.0000 (5)   |
| Cl         | 0.0241 (8)   | 0.0151 (7)   | 0.0188 (8)   | 0.0009 (6)    | 0.0019 (6)    | -0.0026 (6)  |
| C2         | 0.0243 (8)   | 0.0133 (7)   | 0.0186 (7)   | -0.0004 (6)   | 0.0030 (6)    | -0.0017 (6)  |
| C3         | 0.0256 (8)   | 0.0222 (8)   | 0.0216 (8)   | -0.0041 (7)   | -0.0002 (6)   | -0.0005 (6)  |
| C4         | 0.0370 (10)  | 0.0247 (8)   | 0.0183 (8)   | -0.0068 (7)   | -0.0012 (7)   | 0.0020 (6)   |
| C5         | 0.0330 (9)   | 0.0195 (8)   | 0.0215 (8)   | -0.0075 (7)   | 0.0086 (7)    | -0.0033 (6)  |
| C6         | 0.0227 (8)   | 0.0208 (8)   | 0.0279 (8)   | -0.0023 (6)   | 0.0057 (7)    | -0.0026 (6)  |
| C7         | 0.0258 (8)   | 0.0192 (8)   | 0.0211 (8)   | 0.0025 (6)    | 0.0013 (6)    | -0.0002 (6)  |
| C8         | 0.0249 (8)   | 0.0185 (8)   | 0.0208 (8)   | 0.0001 (6)    | 0.0020 (6)    | 0.0019 (6)   |
| C9         | 0.0267 (8)   | 0.0183 (8)   | 0.0249 (8)   | 0.0058 (7)    | 0.0073 (7)    | 0.0010 (6)   |
| C10        | 0.0201 (8)   | 0.0213 (8)   | 0.0187 (7)   | 0.0013 (6)    | 0.0037 (6)    | 0.0029 (6)   |
| C11        | 0.0185 (7)   | 0.0151 (7)   | 0.0148 (7)   | 0.0002 (6)    | -0.0025 (6)   | 0.0013 (5)   |
| C12        | 0.0183 (7)   | 0.0197 (7)   | 0.0141 (7)   | 0.0014 (6)    | -0.0013 (6)   | -0.0018 (6)  |
| C13        | 0.0208 (8)   | 0.0223 (8)   | 0.0145 (7)   | -0.0015 (6)   | 0.0019 (6)    | 0.0002 (6)   |
| C14        | 0.0170 (7)   | 0.0121 (6)   | 0.0171 (7)   | 0.0002 (6)    | 0.0000 (6)    | -0.0015 (5)  |
| C15        | 0.0205 (8)   | 0.0251 (8)   | 0.0248 (8)   | 0.0002 (7)    | 0.0041 (6)    | 0.0033 (7)   |
| C16        | 0.0180 (8)   | 0.0148 (7)   | 0.0217 (8)   | 0.0001 (6)    | 0.0017 (6)    | -0.0029 (6)  |
| C17        | 0.0167 (7)   | 0.0208 (8)   | 0.0235 (8)   | 0.0011 (6)    | -0.0014 (6)   | -0.0027 (6)  |
| C18        | 0.0213 (7)   | 0.0157 (7)   | 0.0184(7)    | 0.0023 (6)    | -0.0031 (6)   | -0.0034 (6)  |
| C19        | 0.0230 (8)   | 0.0295 (8)   | 0.0213 (8)   | 0.0050 (7)    | -0.0051 (6)   | -0.0001 (7)  |

## Geometric parameters (Å, °)

| S1—O4               | 1.4356 (11) | C6—C7         | 1.381 (2)                             |
|---------------------|-------------|---------------|---------------------------------------|
| S1—O3               | 1.4384 (11) | С6—Н6         | 0.9500                                |
| S1—N2               | 1.6446 (12) | С7—Н7         | 0.9500                                |
| S1-C11              | 1.7399 (15) | C8—C13        | 1.407 (2)                             |
| 01—C1               | 1.2300 (19) | C8—C9         | 1.408 (2)                             |
| 02—C1               | 1.310 (2)   | C9—C10        | 1.379 (2)                             |
| O2—H32              | 0.855 (17)  | С9—Н9         | 0.9500                                |
| N1-C8               | 1.357 (2)   | C10-C11       | 1.395 (2)                             |
| N1—H30A             | 0.841 (15)  | C10—H10       | 0.9500                                |
| N1—H30B             | 0.888 (15)  | C11—C12       | 1.392 (2)                             |
| N2-C14              | 1.383 (2)   | C12—C13       | 1.380 (2)                             |
| N2—H31              | 0.857 (15)  | C12—H12       | 0.9500                                |
| N3-C14              | 1.3397 (19) | C13—H13       | 0.9500                                |
| N3-C18              | 1.350 (2)   | C15—C16       | 1.493 (2)                             |
| N4-C14              | 1.3267 (19) | C15—H15A      | 0.9800                                |
| N4—C16              | 1.343 (2)   | C15—H15B      | 0.9800                                |
| C1—C2               | 1.490 (2)   | C15—H15C      | 0.9800                                |
| C2—C3               | 1.391 (2)   | C16—C17       | 1.388 (2)                             |
| C2—C7               | 1.392 (2)   | C17—C18       | 1.382 (2)                             |
| C3—C4               | 1.392 (2)   | C17—H17       | 0.9500                                |
| С3—Н3               | 0.9500      | C18—C19       | 1.499 (2)                             |
| C4—C5               | 1.383 (3)   | C19—H19A      | 0.9800                                |
| C4—H4               | 0.9500      | C19H19B       | 0.9800                                |
| C5—C6               | 1.389 (2)   | C19—H19C      | 0.9800                                |
| С5—Н5               | 0.9500      |               |                                       |
| O4—S1—O3            | 117.47 (7)  | C10—C9—C8     | 120.74 (14)                           |
| O4—S1—N2            | 110.26 (6)  | С10—С9—Н9     | 119.6                                 |
| O3—S1—N2            | 102.43 (6)  | С8—С9-—Н9     | 119.6                                 |
| 04—S1—C11           | 108.60 (7)  | C9—C10—C11    | 119.88 (14)                           |
| 03—S1—C11           | 109.27 (7)  | C9-C10-H10    | 120.1                                 |
| N2-S1-C11           | 108.40 (7)  | C11-C10-H10   | 120.1                                 |
| C1—O2—H32           | 110.2 (18)  | C12—C11—C10   | 120.26 (14)                           |
| C8—N1—H30A          | 122.9 (14)  | C12—C11—S1    | 120.67 (11)                           |
| C8—N1—H30B          | 118.8 (13)  | C10-C11-S1    | 119.01 (11)                           |
| H30A—N1—H30B        | 118.2 (19)  | C13—C12—C11   | 119.90 (14)                           |
| C14—N2—S1           | 124.78 (11) | C13—C12—H12   | 120.1                                 |
| C14—N2—H31          | 118.0 (14)  | C11—C12—H12   | 120.1                                 |
| S1—N2—H31           | 115.3 (14)  | C12—C13—C8    | 120.78 (14)                           |
| C14—N3—C18          | 116.04 (13) | C12—C13—H13   | 119.6                                 |
| C14—N4—C16          | 116.20 (13) | C8—C13—H13    | 119.6                                 |
| 01—C1—O2            | 123.52 (14) | N4—C14—N3     | 127.29 (14)                           |
| 01—C1—C2            | 121.65 (14) | N4—C14—N2     | 117.55 (13)                           |
| O2-C1-C2            | 114.83 (13) | N3-C14-N2     | 115.15 (13)                           |
| C3—C2—C7            | 120.07 (14) | C16-C15-H15A  | 109.5                                 |
| C3—C2—C1            | 121.77 (14) | C16—C15—H15B  | 109.5                                 |
| C7—C2—C1            | 118.15 (14) | H15A—C15—H15B | 109.5                                 |
| C2—C3—C4            | 119.46 (15) | C16—C15—H15C  | 109.5                                 |
| С2—С3—Н3            | 120.3       | H15A—C15—H15C | 109.5                                 |
| C4—C3—H3            | 120.3       | H15B—C15—H15C | 109.5                                 |
| $C_{5}-C_{4}-C_{3}$ | 120.21 (16) | N4—C16—C17    | 121.25 (14)                           |
| C5-C4-H4            | 119.9       | N4—C16—C15    | 115.99 (14)                           |
| C3—C4—H4            | 119.9       | C17—C16—C15   | 122.76 (14)                           |
| C4—C5—C6            | 120.22 (15) | C18—C17—C16   | 118.27 (14)                           |
|                     |             |               | · · · · · · · · · · · · · · · · · · · |

| C4—C5—H5       | 119.9        | C18—C17—H17     | 120.9        |
|----------------|--------------|-----------------|--------------|
| C6—C5—H5       | 119.9        | C16—C17—H17     | 120.9        |
| C7—C6—C5       | 119.84 (15)  | N3-C18-C17      | 120.94 (14)  |
| С7—С6—Н6       | 120.1        | N3-C18-C19      | 116.41 (14)  |
| С5—С6—Н6       | 120.1        | C17—C18—C19     | 122.64 (14)  |
| C6—C7—C2       | 120.17 (15)  | C18—C19—H19A    | 109.5        |
| С6—С7—Н7       | 119.9        | C18—C19—H19B    | 109.5        |
| С2—С7—Н7       | 119.9        | H19A—C19—H19B   | 109.5        |
| N1-C8-C13      | 121.27 (15)  | C18—C19—H19C    | 109.5        |
| N1-C8-C9       | 120.31 (15)  | H19A—C19—H19C   | 109.5        |
| С13—С8—С9      | 118.42 (14)  | H19B—C19—H19C   | 109.5        |
| O4—S1—N2—C14   | 53.14 (14)   | O4—S1—C11—C10   | 156.47 (12)  |
| O3—S1—N2—C14   | 178.94 (12)  | O3—S1—C11—C10   | 27.18 (14)   |
| C11—S1—N2—C14  | -65.63 (14)  | N2-S1-C11-C10   | -83.72 (13)  |
| O1—C1—C2—C3    | -179.15 (14) | C10-C11-C12-C13 | -0.4 (2)     |
| O2—C1—C2—C3    | 0.7 (2)      | S1—C11—C12—C13  | 176.72 (11)  |
| 01—C1—C2—C7    | -0.4 (2)     | C11—C12—C13—C8  | 1.4 (2)      |
| O2—C1—C2—C7    | 179.50 (13)  | N1—C8—C13—C12   | 178.41 (16)  |
| C7—C2—C3—C4    | -0.1 (2)     | C9—C8—C13—C12   | -1.4 (2)     |
| C1—C2—C3—C4    | 178.67 (14)  | C16—N4—C14—N3   | 0.9 (2)      |
| C2—C3—C4—C5    | -1.0 (2)     | C16—N4—C14—N2   | 179.89 (13)  |
| C3—C4—C5—C6    | 1.1 (2)      | C18—N3—C14—N4   | -1.6 (2)     |
| C4—C5—C6—C7    | -0.1 (2)     | C18—N3—-C14—N2  | 179.43 (13)  |
| C5—C6—C7—C2    | -1.0 (2)     | S1—N2—C14—N4    | 9.04 (19)    |
| C3—C2—C7—C6    | 1.1 (2)      | S1—N2—C14—N3    | -171.85 (10) |
| C1—C2—C7—C6    | -177.70 (14) | C14—N4—C16—C17  | 0.5 (2)      |
| N1-C8-C9-C10   | -179.49 (17) | C14—N4—C16—C15  | -179.18 (13) |
| C13—C8—C9—C10  | 0.3 (2)      | N4—C16—C17—C18  | -1.2 (2)     |
| C8—C9—C10—C11  | 0.7 (2)      | C15—C16—C17—C18 | 178.53 (14)  |
| C9—C10—C11—C12 | 0.7 (2)      | C14—N3—C18—C17  | 0.8 (2)      |
| C9—C10—C11—S1  | -177.84 (13) | C14—N3—C18—C19  | -179.73 (13) |
| O4—S1—C11—C12  | -20.70 (14)  | C16-C17-C18-N3  | 0.5 (2)      |
| O3—S1—C11—C12  | -150.00 (12) | C16—C17—C18—C19 | -178.99 (14) |
| N2—S1—C11—C12  | 99.11 (13)   |                 |              |
|                |              |                 |              |

Hydrogen-bond geometry (Å, °)

| D—H···A                        | D—H      | $\mathbf{H} \cdots \mathbf{A}$ | $D \cdots A$ | D—H··· $A$ |
|--------------------------------|----------|--------------------------------|--------------|------------|
| N1—H30 $A$ ····O4 <sup>i</sup> | 0.84 (2) | 2.18 (2)                       | 2.9964 (18)  | 164 (2)    |
| N1                             | 0.89 (2) | 2.25 (2)                       | 3.1127 (19)  | 165 (2)    |
| N2—H31…O1                      | 0.86 (2) | 1.93 (2)                       | 2.7847 (16)  | 174 (2)    |
| O2H32…N3                       | 0.86 (2) | 1.85 (2)                       | 2.7006 (16)  | 173 (3)    |
|                                |          |                                |              |            |

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+1/2; (ii) -*x*+1/2, *y*+1/2, *z*.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles nd torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.



Figure S.2: Crystal Structure of the Cocrystal of Sulfamethazine and o-Nitrobenzoic Acid Showing Thermal Parameters (50% Thermal Ellipsoids) and Hydrogen Bonding.

### Crystal data

 $C_{12}H_{14}N_4O_2S \cdot C_7H_5NO_4$   $M_r = 445.45$ Orthorhombic, *Pna2*<sub>1</sub> a = 14.2344 (7) Å b = 7.9707 (4) Å c = 18.9829 (9) Å  $V = 2153.76 (18) \text{ Å}^3$  Z = 4F(000) = 928

 $D_x = 1.374 \text{ Mg m}^{-3}$ Melting point: 439-441 K Cu K\alpha radiation,  $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9905 reflections  $\theta = 4.7-68.3^{\circ}$  $\mu = 1.74 \text{ mm}^{-1}$ T = 100 KPlates, colourless  $0.33 \times 0.29 \times 0.06 \text{ mm}$ 

| Radiation source: fine-focus sealed tube<br>Detector resolution: 8.33 pixels mm <sup>-1</sup><br>phi and $\omega$ scans<br>Absorption correction: multi-scan<br>SADABS2014/7, Bruker AXS<br>$T_{min} = 0.622, T_{max} = 0.753$ | 3737 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.041$<br>$\theta_{max} = 68.2^{\circ}, \ \theta_{min} = 4.7^{\circ}$<br>h = -15 17<br>k = -9 9  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 24432 measured reflections                                                                                                                                                                                                     | l = -22 21                                                                                                                                            |
| Refinement                                                                                                                                                                                                                     |                                                                                                                                                       |
| Refinement on $F^2$                                                                                                                                                                                                            | Hydrogen site location: mixed                                                                                                                         |
| Least-squares matrix: full                                                                                                                                                                                                     | H atoms treated by a mixture of independent and constrained refinement                                                                                |
| $R[F^2 > 2\sigma(F^2)] = 0.031$                                                                                                                                                                                                | $w = 1/[\sigma^2(F_o^2) + (0.0512P)^2 + 0.3396P]$<br>where $P = (F_o^2 + 2F_c^2)/3$                                                                   |
| $wR(F^2) = 0.081$                                                                                                                                                                                                              | $(\Delta/\sigma)_{\rm max} < 0.001$                                                                                                                   |
| S = 1.09                                                                                                                                                                                                                       | $\Delta \rho_{\rm max} = 0.31 \ {\rm e} \ {\rm \AA}^{-3}$                                                                                             |
| 3865 reflections                                                                                                                                                                                                               | $\Delta \rho_{\rm min} = -0.22 \ {\rm e} \ {\rm \AA}^{-3}$                                                                                            |
| 298 parameters                                                                                                                                                                                                                 | Extinction correction: none                                                                                                                           |
| 2 restraints                                                                                                                                                                                                                   | Absolute structure: Flack x determined using 1692<br>quotients $[(I+)-(I-)]/[(I+)+(I-)]$ (Parsons, Flack and<br>Wagner Acta Cryst B69 (2013) 249-259) |
| 0 constraints                                                                                                                                                                                                                  | Absolute structure parameter: 0.028 (7)                                                                                                               |

<u>Fractional atomic coordinates and isotropic or equivalent isotropic displacement</u> parameters  $(Å^2)$ 

| -          |              |             |              |                             |
|------------|--------------|-------------|--------------|-----------------------------|
|            | x            | у           | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
| <b>S</b> 1 | 0.94985 (4)  | 0.52343 (7) | 1.00022 (4)  | 0.01658 (16)                |
| 01         | 0.78700 (15) | 0.3833 (3)  | 0.84647 (12) | 0.0319 (5)                  |
| O2         | 0.79961 (16) | 0.5570 (3)  | 0.75464 (11) | 0.0281 (5)                  |
| 03         | 0.85657 (14) | 0.4967 (2)  | 1.02650 (11) | 0.0217 (4)                  |
| O4         | 1.00603 (14) | 0.6517 (2)  | 1.03167 (10) | 0.0213 (4)                  |
| O5         | 0.6893 (2)   | 0.5272 (6)  | 0.59377 (18) | 0.0834 (13)                 |
| H31        | 0.885 (3)    | 0.524 (4)   | 0.9025 (18)  | 0.020 (9)*                  |
| H30B       | 1.135 (2)    | -0.195 (5)  | 0.996 (2)    | 0.026 (9)*                  |
| H30A       | 1.215 (3)    | -0.111 (5)  | 1.013 (2)    | 0.037 (11)*                 |
| H32        | 0.861 (3)    | 0.581 (5)   | 0.774 (2)    | 0.046 (11)*                 |
| O6         | 0.7759 (2)   | 0.3349 (4)  | 0.63996 (14) | 0.0502 (7)                  |
| N1         | 1.16057 (19) | -0.1106 (3) | 0.99839 (18) | 0.0305 (6)                  |
| N2         | 0.93053 (17) | 0.5749 (3)  | 0.91648 (12) | 0.0195 (5)                  |
| N3         | 0.97302 (17) | 0.6112 (3)  | 0.80024 (13) | 0.0221 (5)                  |
| N4         | 1.09057 (17) | 0.5907 (3)  | 0.89001 (12) | 0.0209 (5)                  |
| N5         | 0.7060 (2)   | 0.4230 (4)  | 0.63854 (15) | 0.0382 (7)                  |
| C1         | 0.7562 (2)   | 0.4429 (4)  | 0.79232 (15) | 0.0237 (6)                  |
| C2         | 0.6611 (2)   | 0.3959 (3)  | 0.76502 (15) | 0.0230 (6)                  |
| C3         | 0.6353 (2)   | 0.3989 (4)  | 0.69389 (15) | 0.0252 (6)                  |
| C4         | 0.5444 (2)   | 0.3687 (4)  | 0.67207 (16) | 0.0291 (7)                  |
| H4         | 0.5288       | 0.3726      | 0.6235       | 0.035*                      |
| C5         | 0.4763 (2)   | 0.3327 (4)  | 0.72186 (18) | 0.0321 (7)                  |
| H5         | 0.4132       | 0.3129      | 0.7077       | 0.039*                      |
|            |              |             |              |                             |

| C6   | 0.5004(2)    | 0.3258(4)  | 0 70220 (17) | 0.0250 (8) |
|------|--------------|------------|--------------|------------|
|      | 0.3004 (2)   | 0.3230 (4) | 0.79230(17)  | 0.0339 (8) |
|      | 0.4338       | 0.2998     | 0.8204       | 0.043*     |
| C/   | 0.5923 (2)   | 0.3565 (4) | 0.81381 (16) | 0.0305 (7) |
| H7   | 0.6079       | 0.3503     | 0.8624       | 0.037*     |
| C8   | 1.11096 (19) | 0.0347 (3) | 1.00072 (17) | 0.0215 (5) |
| C9   | 1.0138 (2)   | 0.0374 (3) | 0.98506 (14) | 0.0208 (6) |
| H9   | 0.9821       | -0.0642    | 0.9742       | 0.025*     |
| C10  | 0.9651 (2)   | 0.1869 (3) | 0.98549 (13) | 0.0196 (6) |
| H10  | 0.8997       | 0.1880     | 0.9753       | 0.023*     |
| C11  | 1.01151 (18) | 0.3359 (3) | 1.00078 (15) | 0.0177 (5) |
| C12  | 1.10718 (19) | 0.3365 (3) | 1.01694 (13) | 0.0188 (5) |
| H12  | 1.1384       | 0.4388     | 1.0274       | 0.023*     |
| C13  | 1.15590 (19) | 0.1869 (3) | 1.01760 (14) | 0.0201 (6) |
| H13  | 1.2207       | 0.1865     | 1.0296       | 0.024*     |
| C14  | 1.0025 (2)   | 0.5929 (3) | 0.86709 (14) | 0.0193 (6) |
| C15  | 1.2568 (2)   | 0.5906 (4) | 0.86552 (18) | 0.0336 (7) |
| H15A | 1.2664       | 0.6672     | 0.9052       | 0.050*     |
| H15B | 1.2997       | 0.6203     | 0.8271       | 0.050*     |
| H15C | 1.2692       | 0.4752     | 0.8807       | 0.050*     |
| C16  | 1.1578 (2)   | 0.6041 (4) | 0.84039 (16) | 0.0247 (6) |
| C17  | 1.1345 (2)   | 0.6277 (4) | 0.76975 (16) | 0.0289 (7) |
| H17  | 1.1821       | 0.6416     | 0.7351       | 0.035*     |
| C18  | 1.0407 (2)   | 0.6304 (4) | 0.75123 (16) | 0.0263 (6) |
| C19  | 1.0083 (2)   | 0.6521 (4) | 0.67663 (16) | 0.0344 (7) |
| H19A | 0.9820       | 0.5461     | 0.6594       | 0.052*     |
| H19B | 1.0617       | 0.6848     | 0.6471       | 0.052*     |
| H19C | 0.9600       | 0.7396     | 0.6747       | 0.052*     |

.

# Atomic displacement parameters (Å<sup>2</sup>)

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| S1  | 0.0150 (3)  | 0.0179 (3)  | 0.0168 (3)  | 0.0008 (2)   | -0.0001 (3)  | 0.0001 (3)   |
| 01  | 0.0269 (12) | 0.0415 (12) | 0.0274 (11) | -0.0078 (9)  | -0.0078 (9)  | 0.0082 (9)   |
| O2  | 0.0215 (12) | 0.0351 (11) | 0.0277 (11) | -0.0054 (9)  | -0.0063(9)   | 0.0058 (9)   |
| O3  | 0.0166 (10) | 0.0254 (9)  | 0.0230 (9)  | 0.0024 (7)   | 0.0031 (8)   | 0.0014 (8)   |
| O4  | 0.0219 (11) | 0.0208 (9)  | 0.0212 (9)  | 0.0019 (7)   | -0.0016 (8)  | -0.0018 (8)  |
| O5  | 0.0333 (18) | 0.163 (4)   | 0.054 (2)   | -0.0089 (19) | -0.0061 (14) | 0.067 (2)    |
| O6  | 0.0383 (15) | 0.0707 (18) | 0.0416 (15) | 0.0055 (13)  | 0.0116 (11)  | -0.0172 (13) |
| N1  | 0.0182 (13) | 0.0183 (11) | 0.0552 (17) | -0.0020 (9)  | -0.0052 (14) | -0.0003 (13) |
| N2  | 0.0154 (13) | 0.0223 (11) | 0.0207 (12) | -0.0018 (9)  | -0.0027 (10) | 0.0003 (9)   |
| N3  | 0.0220 (13) | 0.0238 (11) | 0.0205 (12) | -0.0037 (9)  | -0.0022 (10) | 0.0003 (10)  |
| N4  | 0.0178 (13) | 0.0222 (11) | 0.0228 (12) | -0.0023 (9)  | -0.0013 (9)  | 0.0006 (9)   |
| N5  | 0.0231 (15) | 0.070 (2)   | 0.0216 (13) | -0.0034 (14) | -0.0025 (11) | 0.0040 (14)  |
| C1  | 0.0238 (16) | 0.0242 (13) | 0.0231 (15) | 0.0018 (11)  | -0.0015 (12) | -0.0037 (11) |
| C2  | 0.0215 (15) | 0.0240 (14) | 0.0236 (15) | 0.0012 (11)  | -0.0020 (11) | -0.0023 (11) |
| C3  | 0.0232 (16) | 0.0292 (15) | 0.0232 (15) | -0.0014 (12) | -0.0003 (12) | 0.0000 (12)  |
| C4  | 0.0292 (18) | 0.0344 (16) | 0.0236 (16) | -0.0032 (13) | -0.0061 (12) | -0.0035 (13) |
| C5  | 0.0204 (17) | 0.0400 (17) | 0.0358 (17) | -0.0050 (13) | -0.0044 (13) | -0.0033 (14) |
| C6  | 0.0269 (18) | 0.0508 (19) | 0.0300 (18) | -0.0087 (15) | 0.0052 (13)  | -0.0011 (15) |
| C7  | 0.0263 (17) | 0.0426 (17) | 0.0226 (15) | -0.0037 (13) | -0.0010 (12) | -0.0032 (13) |
| C8  | 0.0195 (13) | 0.0216 (11) | 0.0233 (12) | 0.0010 (10)  | 0.0018 (13)  | 0.0022 (12)  |
| C9  | 0.0203 (14) | 0.0190 (12) | 0.0231 (16) | -0.0051 (10) | -0.0006 (10) | 0.0010 (10)  |
| C10 | 0.0154 (13) | 0.0250 (13) | 0.0183 (14) | -0.0020 (10) | -0.0006 (9)  | 0.0002 (11)  |
| C11 | 0.0188 (13) | 0.0181 (11) | 0.0163 (11) | 0.0013 (9)   | -0.0006 (11) | 0.0010 (11)  |

| C12<br>C13<br>C14<br>C15<br>C16<br>C17<br>C18 | 0.0147 (13)<br>0.0154 (13)<br>0.0222 (15)<br>0.0222 (17)<br>0.0231 (15)<br>0.0262 (17)<br>0.0303 (17) | 0.0210 (12)<br>0.0240 (13)<br>0.0168 (12)<br>0.0435 (18)<br>0.0226 (13)<br>0.0360 (16)<br>0.0279 (15) | 0.0207 (13)<br>0.0211 (14)<br>0.0188 (14)<br>0.0351 (18)<br>0.0284 (15)<br>0.0244 (15)<br>0.0206 (15) | -0.0017 (10)<br>-0.0001 (10)<br>-0.0029 (13)<br>-0.0035 (11)<br>-0.0068 (13)<br>-0.0063 (12) | -0.0013 (10)<br>-0.0019 (10)<br>-0.0006 (10)<br>0.0024 (13)<br>0.0034 (12)<br>0.0058 (12)<br>0.0013 (12) | -0.0007 (10)<br>0.0005 (10)<br>0.0015 (10)<br>0.0020 (15)<br>-0.0004 (11)<br>-0.0009 (13)<br>0.0004 (12) |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| C18<br>C19                                    | 0.0303 (17)<br>0.0336 (19)                                                                            | 0.0279 (15)<br>0.049 (2)                                                                              | 0.0206 (15)<br>0.0207 (16)                                                                            | -0.0063(12)<br>-0.0099(15)                                                                   | 0.0013 (12)<br>-0.0010 (13)                                                                              | 0.0004 (12)<br>0.0026 (14)                                                                               |
|                                               | . ,                                                                                                   | • /                                                                                                   | · · · ·                                                                                               | · · ·                                                                                        | · · ·                                                                                                    | · · ·                                                                                                    |

# Geometric parameters (Å, °)

| S104         | 1.429 (2)   | С5—Н5       | 0.9500      |
|--------------|-------------|-------------|-------------|
| S1—O3        | 1.434 (2)   | C6—C7       | 1.392 (5)   |
| S1—N2        | 1.665 (2)   | С6—Н6       | 0.9500      |
| S1-C11       | 1.733 (2)   | С7—Н7       | 0.9500      |
| 01—C1        | 1.214 (4)   | C8—C13      | 1.408 (4)   |
| O2C1         | 1.311 (4)   | C8—C9       | 1.414 (4)   |
| O2—H32       | 0.97 (4)    | C9—C10      | 1.379 (4)   |
| O5—N5        | 1.212 (4)   | С9—Н9       | 0.9500      |
| O6—N5        | 1.218 (4)   | C10-C11     | 1.390 (4)   |
| N1-C8        | 1.357 (4)   | C10—H10     | 0.9500      |
| N1—H30B      | 0.77 (4)    | C11-C12     | 1.396 (4)   |
| N1—H30A      | 0.83 (4)    | C12C13      | 1.380 (4)   |
| N2C14        | 1.396 (4)   | C12—H12     | 0.9500      |
| N2—H31       | 0.81 (4)    | С13—Н13     | 0.9500      |
| N3—C14       | 1.344 (4)   | C15C16      | 1.491 (5)   |
| N3—C18       | 1.348 (4)   | C15—H15A    | 0.9800      |
| N4—C14       | 1.327 (4)   | C15—H15B    | 0.9800      |
| N4C16        | 1.347 (4)   | C15—H15C    | 0.9800      |
| N5—C3        | 1.468 (4)   | C16C17      | 1.394 (4)   |
| C1—C2        | 1.497 (4)   | C17—C18     | 1.381 (5)   |
| C2—C7        | 1.385 (4)   | C17—H17     | 0.9500      |
| C2—C3        | 1.400 (4)   | C18—C19     | 1.499 (4)   |
| C3—C4        | 1.379 (4)   | C19—H19A    | 0.9800      |
| C4—C5        | 1.384 (5)   | C19—H19B    | 0.9800      |
| C4—H4        | 0.9500      | C19—H19C    | 0.9800      |
| C5—C6        | 1.382 (5)   |             |             |
| 04           | 118.62 (12) | C13C8C9     | 118.6 (2)   |
| O4—S1N2      | 108.36 (12) | C10—C9—C8   | 120.2 (2)   |
| O3—S1—N2     | 102.46 (12) | С10—С9—Н9   | 119.9       |
| 04—S1-—C11   | 109.34 (12) | С8С9-Н9     | 119.9       |
| 03—S1—C11    | 109.80 (12) | C9—C10—C11  | 120.0 (3)   |
| N2—S1—C11    | 107.59 (13) | C9—C10—H10  | 120.0       |
| C1—O2—H32    | 111 (2)     | C11-C10-H10 | 120.0       |
| C8—N1—H30B   | 120 (3)     | C10C11C12   | 120.8 (2)   |
| C8—N1—H30A   | 119 (3)     | C10C11S1    | 119.7 (2)   |
| H30B—N1—H30A | 118 (4)     | C12C11S1    | 119.50 (19) |
| C14N2S1      | 123.1 (2)   | C13—C12—C11 | 119.3 (2)   |
| C14—N2-—H31  | 115 (2)     | C13C12H12   | 120.3       |
| S1-N2-H31    | 109 (2)     | C11C12-H12  | 120.3       |
| C14—N3—C18   | 116.2 (2)   | C12—C13—C8  | 120.9 (2)   |
| C14—N4—C16   | 116.2 (2)   | C12-C13-H13 | 119.5       |
| O5—N5—O6     | 124.8 (3)   | C8—C13—H13  | 119.5       |
| O5—N5—C3     | 117.2 (3)   | N4C14N3     | 127.3 (3)   |

| O6—N5—C3                                                                                                                                         | 118.0 (3)         | N4—C14—N2                    | 118.1 (2)           |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------|---------------------|
| O1—C1—O2                                                                                                                                         | 124.3 (3)         | N3—C14—N2                    | 114.6 (3)           |
| O1—C1—C2                                                                                                                                         | 121.4 (3)         | C16—C15—H15A                 | 109.5               |
| O2—C1—C2                                                                                                                                         | 114.2 (2)         | C16—C15—H15B                 | 109.5               |
| C7—C2—C3                                                                                                                                         | 117.6 (3)         | H15A—C15—H15B                | 109.5               |
| C7—C2—C1                                                                                                                                         | 117.7 (3)         | C16—C15—H15C                 | 109.5               |
| C3—C2—C1                                                                                                                                         | 124.6 (3)         | H15A—C15—H15C                | 109.5               |
| C4-C3-C2                                                                                                                                         | 122.2 (3)         | H15B-C15-H15C                | 109 5               |
| C4—C3—N5                                                                                                                                         | 116.8 (3)         | N4—C16—C17                   | 121.0 (3)           |
| C2-C3-N5                                                                                                                                         | 120.8 (3)         | N4-C16-C15                   | 1162(3)             |
| $C_{3}$ — $C_{4}$ — $C_{5}$                                                                                                                      | 119.2 (3)         | $C_{17}$ $-C_{16}$ $-C_{15}$ | 122.8(3)            |
| C3—C4—H4                                                                                                                                         | 120.4             | C18 - C17 - C16              | 1185(3)             |
| C5-C4-H4                                                                                                                                         | 120.1             | C18 - C17 - H17              | 120.8               |
| C6-C5-C4                                                                                                                                         | 1197(3)           | C16-C17-H17                  | 120.0               |
| С6—С5—Н5                                                                                                                                         | 120.2             | $N_{3}$ C18 C17              | 120.0<br>120.9(3)   |
| C4 - C5 - H5                                                                                                                                     | 120.2             | $N_{3}$ $C_{18}$ $C_{19}$    | 120.9(3)<br>1164(3) |
| $C_{5} - C_{6} - C_{7}$                                                                                                                          | 120.2<br>120.7(3) | $C_{17}$ $C_{18}$ $C_{19}$   | 1227(3)             |
| $C_{5} = C_{6} = C_{7}$                                                                                                                          | 120.7 (5)         | C17 - C10 - C19              | 122.7 (3)           |
| $C_{7}$ $C_{6}$ $H_{6}$                                                                                                                          | 119.7             | C18 C10 H10R                 | 109.5               |
| $C_{1} = C_{0} = 110$                                                                                                                            | 119.7             | $U_{10} = C_{10} = H_{10} B$ | 109.5               |
| $C_2 - C_7 - C_0$                                                                                                                                | 120.0(3)          | C18 $C10$ $H10C$             | 109.5               |
| $C_2 - C_7 - H_7$                                                                                                                                | 119.7             |                              | 109.5               |
| $C_0 - C_7 - H_7$                                                                                                                                | 119.7<br>120.4(2) | HI9A - C19 - H19C            | 109.5               |
| $N1 = C_0 = C_1 C_1 C_1 C_1 C_1 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2 C_2$ | 120.4(3)          | HI9B-CI9-HI9C                | 109.5               |
| $NI = C_0 = C_9$                                                                                                                                 | 121.0(3)          | C0 C10 C11 S1                | 170.2(2)            |
| 04 - 51 - N2 - C14                                                                                                                               | 01.0(2)           | $C_{9}$                      | 1/9.3(2)            |
| 03-31-N2-014                                                                                                                                     | -1/2.0(2)         | 04 - 51 - C11 - C10          | 10/./(2)            |
| C11 = S1 = N2 = C14                                                                                                                              | -30.3(2)          | 03 = 31 = 011 = 010          | 33.9(3)             |
| 01 - C1 - C2 - C7                                                                                                                                | 31.7(4)           | $N_2 = S_1 = C_1 = C_1 O_1$  | -74.8(3)            |
| 02C1C2C7                                                                                                                                         | -145.4(3)         | 04 - 81 - C11 - C12          | -12.0(3)            |
| 01 - C1 - C2 - C3                                                                                                                                | -152.3(3)         | 03 = S1 = C11 = C12          | -143.8(2)           |
| 02 - C1 - C2 - C3                                                                                                                                | 30.5 (4)          | $N_2 = S_1 = C_1 = C_{12}$   | 105.5 (2)           |
| C/-C2-C3-C4                                                                                                                                      | 1.8 (5)           | C10—C11—C12—C13              | 0.1 (4)             |
| CI - C2 - C3 - C4                                                                                                                                | -174.1 (3)        | SI_CII_CI2_CI3               | 179.7 (2)           |
| C/_C2_C3_N5                                                                                                                                      | -173.9(3)         | CI1—CI2—CI3—C8               | 1.4 (4)             |
| C1—C2—C3—N5                                                                                                                                      | 10.2 (5)          | NI-C8-C13-C12                | 177.0 (3)           |
| 05—N5—C3—C4                                                                                                                                      | 52.6 (5)          | C9—C8—C13—C12                | -1.9 (4)            |
| 06—N5—C3—C4                                                                                                                                      | -125.7 (3)        | C16—N4—C14—N3                | -1.8 (4)            |
| 05—N5—C3—C2                                                                                                                                      | -131.5 (4)        | C16—N4—C14—N2                | 178.4 (2)           |
| 06—N5—C3—C2                                                                                                                                      | 50.2 (5)          | C18—N3—C14—N4                | -0.5(4)             |
| C2—C3—C4—C5                                                                                                                                      | -0.6 (5)          | C18—N3—C14—N2                | 179.4 (2)           |
| N5-C3-C4-C5                                                                                                                                      | 175.2 (3)         | SI—N2—C14—N4                 | -9.2 (3)            |
| C3—C4—C5—C6                                                                                                                                      | -0.7(5)           | S1—N2—C14—N3                 | 170.94 (19)         |
| C4—C5—C6—C7                                                                                                                                      | 0.7 (5)           | CI4—N4—CI6—CI7               | 3.2 (4)             |
| C3—C2—C7—C6                                                                                                                                      | -1.8 (4)          | C14—N4—C16—C15               | -176.2 (3)          |
| C1—C2—C7—C6                                                                                                                                      | 174.5 (3)         | N4-C16-C17-C18               | -2.5 (5)            |
| C5—C6—C7—C2                                                                                                                                      | 0.5 (5)           | C15—C16—C17—C18              | 176.8 (3)           |
| N1-C8-C9-C10                                                                                                                                     | -177.9 (3)        | C14—N3—C18—C17               | 1.2 (4)             |
| C13—C8—C9—C10                                                                                                                                    | 0.9 (4)           | C14—N3—C18—C19               | -179.6 (3)          |
| C8—C9—C10—C11                                                                                                                                    | 0.5 (4)           | C16—C17—C18—N3               | 0.2 (5)             |
| C9—C10—C11—C12                                                                                                                                   | -1.0 (4)          | C16—C17—C18—C19              | -179.0 (3)          |
|                                                                                                                                                  |                   |                              |                     |

<u>Hydrogen-bond geometry (Å, °)</u>

*D*—H···*A* 

 $\mathbf{H} \cdots \mathbf{A}$ 

D—H

-

 $D \cdots A$   $D - H \cdots A$ 

•



Figure S.3: Crystal Structure of the Cocrystal of Sulfamethazine and m-Nitrobenzoic Acid Showing Thermal Parameters (50% Thermal Ellipsoids) and Hydrogen Bonding.

### Crystal data

 $C_{12}H_{14}N_4O_2S \cdot C_{12}H_{13}N_4O_2S \cdot C_7H_5NO_4 \cdot C_7H_4NO_4$   $M_r = 445.45$ Triclinic, P a = 11.1257 (8) Å b = 12.9928 (10) Å c = 13.9550 (9) Å  $\alpha = 93.079 (4)^{\circ}$   $\beta = 93.582 (4)^{\circ}$  $\gamma = 91.728 (5)^{\circ}$ 

 $D_x = 1.473 \text{ Mg m}^{-3}$ Melting point: 474-477 K Cu K $\alpha$  radiation,  $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9958 reflections  $\theta = 3.2-68.4^{\circ}$  $\mu = 1.87 \text{ mm}^{-1}$ T = 100 K

### Crystal data

 $C_{12}H_{14}N_4O_2S\!\cdot\!C_{12}H_{13}N_4O_2S\!\cdot\!C_7H_5NO_4\!\cdot\!C_7H_4NO_4$  $M_r = 445.45$ Triclinic, P  $D_{\rm x} = 1.473 {\rm Mg} {\rm m}^{-3}$ *a* = 11.1257 (8) Å Melting point: 474-477 K *b* = 12.9928 (10) Å Cu K $\alpha$  radiation,  $\lambda = 1.54178$  Å *c* = 13.9550 (9) Å Cell parameters from 9958 reflections  $\alpha = 93.079 \ (4)^{\circ}$  $\theta = 3.2 - 68.4^{\circ}$  $\mu=1.87\ mm^{-1}$  $\beta = 93.582 \ (4)^{\circ}$  $\gamma = 91.728 (5)^{\circ}$ T = 100 KPlates, colourless V = 2009.3 (2) Å<sup>3</sup> Z = 4 $0.36 \times 0.09 \times 0.08 \text{ mm}$ F(000) = 928

#### Data collection

| Radiation source: fine-focused sealed tube        | 5182 reflections with $I > 2\sigma(I)$                                    |
|---------------------------------------------------|---------------------------------------------------------------------------|
| Detector resolution: 8.33 pixels mm <sup>-1</sup> | $R_{\rm int} = ?$                                                         |
| $\varphi$ and $\omega$ scans                      | $\theta_{\text{max}} = 68.2^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$ |
| Absorption correction: multi-scan                 | h = -13 13                                                                |
| SADABS2014/7, Bruker AXS                          | n = 13 15                                                                 |
| $T_{\min} = 0.572, \ T_{\max} = 0.753$            | k = -15 15                                                                |
| 7199 measured reflections                         | l = 0  16                                                                 |

#### Refinement

| Refinement on $F^2$             | Secondary atom site location: ?                                                     |
|---------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Hydrogen site location: mixed                                                       |
| $R[F^2 > 2\sigma(F^2)] = 0.063$ | H atoms treated by a mixture of independent and constrained refinement              |
| $wR(F^2)=0.158$                 | $w = 1/[\sigma^2(F_o^2) + (0.0534P)^2 + 4.7677P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| S = 1.05                        | $(\Delta/\sigma)_{\rm max} = 0.006$                                                 |
| 7199 reflections                | $\Delta \rho_{max} = 0.64 \text{ e} \text{ Å}^{-3}$                                 |
| 589 parameters                  | $\Delta  ho_{ m min} = -0.45 \  m e \  m \AA^{-3}$                                  |
| 6 restraints                    | Extinction correction: none                                                         |
| ? constraints                   | Extinction coefficient: ?                                                           |
| Primary atom site location: ?   |                                                                                     |
|                                 |                                                                                     |

| Fractional | atomic              | coordinates | and | isotro | pic or | equiva | lent | isotropi | c disp | lacen | nent |
|------------|---------------------|-------------|-----|--------|--------|--------|------|----------|--------|-------|------|
| parameters | s (Å <sup>2</sup> ) |             |     |        |        | _      |      |          | _      |       |      |

|      | x            | у            | Z            | $U_{ m iso}$ */ $U_{ m eq}$ |
|------|--------------|--------------|--------------|-----------------------------|
| S1   | 0.10838 (7)  | 0.58279 (6)  | 0.70341 (5)  | 0.02174 (18)                |
| S2   | 0.11221 (7)  | 0.07055 (6)  | 0.80799 (5)  | 0.02098 (17)                |
| 01A  | 0.40894 (19) | 0.62524 (18) | 0.85338 (15) | 0.0251 (5)                  |
| O2A  | 0.5710 (2)   | 0.65004 (18) | 0.76849 (15) | 0.0270 (6)                  |
| H32A | 0.518 (3)    | 0.646 (4)    | 0.7205 (18)  | 0.098 (19)*                 |

| O3A         | 0.09971 (19)               | 0.60254 (18)               | 0.80533 (16)               | 0.0274 (5)  |
|-------------|----------------------------|----------------------------|----------------------------|-------------|
| O4A         | 0.0781 (2)                 | 0.48192 (17)               | 0.66191 (16)               | 0.0264 (5)  |
| O5A         | 0.4685 (2)                 | 0.5964 (2)                 | 1,19931 (17)               | 0.0377(7)   |
| O6A         | 0.6467(2)                  | 0.6143(2)                  | 1.27086 (17)               | 0.0437(7)   |
| O2B         | 0.57344 (19)               | 0 13288 (19)               | 0.79312(15)                | 0.0279(6)   |
| 01B         | 0.41323(19)                | 0.12138(19)                | 0.68768(15)                | 0.0283(6)   |
| O3B         | 0.10326(19)                | 0.07928(18)                | 0.00700(15)<br>0.70565(16) | 0.0262(0)   |
| 03D<br>04B  | 0.10320(19)<br>0.08834(10) | -0.02717(17)               | 0.70505(10)<br>0.84653(15) | 0.0202(5)   |
| O5B         | 0.08034(19)<br>0.4868(2)   | 0.02717(17)<br>0.10545(10) | 0.04033(13)<br>0.34541(16) | 0.0233(3)   |
| 05D<br>06B  | 0.7000(2)                  | 0.105+5(19)                | 0.34341(10)<br>0.20770(16) | 0.0303(0)   |
|             | 0.0073(2)                  | 0.1230(2)                  | 0.29770(10)                | 0.0303(0)   |
|             | -0.1818(3)                 | 0.8803(2)                  | 0.4992 (2)                 | 0.0346 (8)  |
| HSUA        | -0.1/4(3)                  | 0.9484 (14)                | 0.525 (2)                  | 0.030 (10)* |
| H30B        | -0.185(4)                  | 0.887 (3)                  | 0.4378 (12)                | 0.050 (12)* |
| N2A         | 0.2515 (2)                 | 0.6125 (2)                 | 0.69006 (18)               | 0.0237 (6)  |
| HJIA        | 0.292 (3)                  | 0.623 (3)                  | 0.7431 (15)                | 0.053 (13)* |
| N3A         | 0.4265 (2)                 | 0.6338 (2)                 | 0.61281 (18)               | 0.0203 (6)  |
| N4A         | 0.2404 (2)                 | 0.5850 (2)                 | 0.52403 (18)               | 0.0215 (6)  |
| N5A         | 0.5966 (2)                 | 0.1192 (2)                 | 0.36129 (19)               | 0.0254 (7)  |
| N1B         | -0.2049 (3)                | 0.3742 (2)                 | 0.9833 (2)                 | 0.0280 (7)  |
| H30C        | -0.206 (3)                 | 0.378 (3)                  | 1.0442 (11)                | 0.038 (11)* |
| H30D        | -0.208 (4)                 | 0.4330 (15)                | 0.958 (2)                  | 0.052 (13)* |
| N2B         | 0.2544 (2)                 | 0.1086 (2)                 | 0.83717 (18)               | 0.0205 (6)  |
| N3B         | 0.4302 (2)                 | 0.1230 (2)                 | 0.93368 (17)               | 0.0189 (6)  |
| N4B         | 0.2410 (2)                 | 0.0961 (2)                 | 1.00219 (18)               | 0.0204 (6)  |
| N5B         | 0.5781 (3)                 | 0.6088 (2)                 | 1.19868 (19)               | 0.0290 (7)  |
| C1A         | 0.5185 (3)                 | 0.6353 (2)                 | 0.8485 (2)                 | 0.0208(7)   |
| C2A         | 0.6025 (3)                 | 0.6311 (2)                 | 0.9353 (2)                 | 0.0211 (7)  |
| C3A         | 0.7267(3)                  | 0.6384(3)                  | 0.9303(2)                  | 0 0246 (8)  |
| H3A         | 0 7602                     | 0.6468                     | 0.8701                     | 0.030*      |
| C4A         | 0.8023 (3)                 | 0.6337(3)                  | 1,0132(2)                  | 0.0267 (8)  |
| H4A         | 0.8872                     | 0.6383                     | 1.0192 (2)                 | 0.032*      |
| C5A         | 0.0072<br>0.7547 (3)       | 0.6223 (3)                 | 1.0001<br>1.1015(2)        | 0.032       |
| U5A         | 0.8057                     | 0.6180                     | 1.1013 (2)                 | 0.0205 (0)  |
|             | 0.6304(3)                  | 0.6173(2)                  | 1.1002                     | 0.032       |
|             | 0.0507(3)                  | 0.0175(2)                  | 1.1074(2)                  | 0.0235(7)   |
|             | 0.3324 (3)                 | 0.0208 (2)                 | 1.0234 (2)                 | 0.0220(7)   |
|             | 0.4070<br>0.1005 (2)       | 0.0103<br>0.9172 (2)       | 1.0270                     | 0.027       |
|             | -0.1093(3)                 | 0.8173(3)                  | 0.3442(2)                  | 0.0234(7)   |
| C9A         | -0.0935(3)                 | 0.7194 (3)                 | 0.3020 (2)                 | 0.0228 (7)  |
| H9A<br>Cloa | -0.1288                    | 0.7018                     | 0.4393                     | 0.02/*      |
| CIUA        | -0.0275(3)                 | 0.6479 (3)                 | 0.5495 (2)                 | 0.0231(7)   |
| HIUA        | -0.01//                    | 0.5814                     | 0.5198                     | 0.028*      |
| CIIA        | 0.0254 (3)                 | 0.6/32(2)                  | 0.6418(2)                  | 0.0202 (7)  |
| CI2A        | 0.0114 (3)                 | 0.7709 (3)                 | 0.6851 (2)                 | 0.0235 (7)  |
| HI2A        | 0.0467                     | 0.7881                     | 0.7479                     | 0.028*      |
| CI3A        | -0.0538 (3)                | 0.8424 (3)                 | 0.6366 (2)                 | 0.0251 (8)  |
| HI3A        | -0.0614                    | 0.9095                     | 0.6656                     | 0.030*      |
| Cl4A        | 0.3075 (3)                 | 0.6091 (2)                 | 0.6045 (2)                 | 0.0202 (7)  |
| C15A        | 0.2235 (3)                 | 0.5607 (3)                 | 0.3508 (2)                 | 0.0304 (9)  |
| H15A        | 0.2011                     | 0.4869                     | 0.3468                     | 0.046*      |
| H15B        | 0.2697                     | 0.5769                     | 0.2957                     | 0.046*      |
| H15C        | 0.1504                     | 0.6009                     | 0.3501                     | 0.046*      |
| C16A        | 0.2984 (3)                 | 0.5868 (3)                 | 0.4418 (2)                 | 0.0242 (7)  |
| C17A        | 0.4207 (3)                 | 0.6121 (3)                 | 0.4427 (2)                 | 0.0235 (7)  |
| H17A        | 0.4605                     | 0.6132                     | 0.3845                     | 0.028*      |
| C18A        | 0.4826 (3)                 | 0.6354 (2)                 | 0.5298 (2)                 | 0.0230 (7)  |
|             |                            |                            |                            |             |

•

| 0.6141 (3)  | 0.6660 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5374 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0285 (8)                                           |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 0.6236      | 0.7408                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.043*                                               |
| 0.6497      | 0.6468                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.4768                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.043*                                               |
| 0.6549      | 0.6306                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5899                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.043*                                               |
| 0.5222 (3)  | 0.1278 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.7058 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0219 (7)                                           |
| 0.6089 (3)  | 0.1314 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.6288 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0206 (7)                                           |
| 0.7329 (3)  | 0.1475 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.6509(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0251 (8)                                           |
| 0.7636      | 0.1540                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.7161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.030*                                               |
| 0.8108 (3)  | 0.1541 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5774 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0278 (8)                                           |
| 0.8948      | 0.1654                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5925                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.033*                                               |
| 0.7669 (3)  | 0.1444 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.4823 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0253 (8)                                           |
| 0.8196      | 0.1488                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.4317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.030*                                               |
| 0.6440 (3)  | 0.1279 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.4629 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0223 (7)                                           |
| 0.5647 (3)  | 0.1210(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.5334 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0212 (7)                                           |
| 0.4810      | 0.1093                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.025*                                               |
| -0.1280 (3) | 0.3056 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9441 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0214 (7)                                           |
| -0.0823 (3) | 0.3202 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.8544 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0230(7)                                            |
| -0.1021     | 0.3803                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.8217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.028*                                               |
| -0.0093 (3) | 0.2495 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.8126 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0226 (7)                                           |
| 0.0209      | 0.2605                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.7516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.027*                                               |
| 0.0202 (3)  | 0.1607 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.8610(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0197 (7)                                           |
| -0.0232 (3) | 0.1464 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9512 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0202 (7)                                           |
| -0.0023     | 0.0869                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9844                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.024*                                               |
| -0.0958 (3) | 0.2174 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9924 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0227 (7)                                           |
| -0.1246     | 0.2069                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.027*                                               |
| 0.3095 (3)  | 0.1085 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9286 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0194 (7)                                           |
| 0.6211 (3)  | 0.1446 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0284 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0222 (7)                                           |
| 0.6578      | 0.0981                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9818                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.033*                                               |
| 0.6537      | 0.1320                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0935                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.033*                                               |
| 0.6393      | 0.2163                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.033*                                               |
| 0.4877 (3)  | 0.1253 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0218 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0182 (7)                                           |
| 0.4228 (3)  | 0.1115 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.1025 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0202 (7)                                           |
| 0.4626      | 0.1113                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.1648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.024*                                               |
| 0.2995 (3)  | 0.0982 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0899 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0215 (7)                                           |
| 0.2233 (3)  | 0.0849 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.1730 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0303 (8)                                           |
| 0.1465      | 0.1185                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.1611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.046*                                               |
| 0.2653      | 0.1163                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.2317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.046*                                               |
| 0.2081      | 0.0112                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.1808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.046*                                               |
|             | 0.6141 (3)<br>0.6236<br>0.6497<br>0.6549<br>0.5222 (3)<br>0.6089 (3)<br>0.7329 (3)<br>0.7329 (3)<br>0.7636<br>0.8108 (3)<br>0.8948<br>0.7669 (3)<br>0.8196<br>0.6440 (3)<br>0.5647 (3)<br>0.4810<br>-0.1280 (3)<br>-0.0823 (3)<br>-0.0232 (3)<br>-0.0232 (3)<br>-0.0232 (3)<br>-0.0232 (3)<br>-0.0232 (3)<br>-0.0238 (3)<br>-0.1246<br>0.3095 (3)<br>0.6578<br>0.6537<br>0.6393<br>0.4877 (3)<br>0.4228 (3)<br>0.4228 (3)<br>0.2233 (3)<br>0.1465<br>0.2653<br>0.2081 | 0.6141(3) $0.6660(3)$ $0.6236$ $0.7408$ $0.6497$ $0.6468$ $0.6549$ $0.6306$ $0.5222(3)$ $0.1278(2)$ $0.6089(3)$ $0.1314(2)$ $0.7329(3)$ $0.1475(3)$ $0.7636$ $0.1540$ $0.8108(3)$ $0.1541(3)$ $0.8948$ $0.1654$ $0.7669(3)$ $0.1444(3)$ $0.8196$ $0.1488$ $0.6440(3)$ $0.1279(2)$ $0.5647(3)$ $0.1210(2)$ $0.4810$ $0.1093$ $-0.1280(3)$ $0.3056(2)$ $-0.0823(3)$ $0.3202(3)$ $-0.1021$ $0.3803$ $-0.0093(3)$ $0.2495(3)$ $0.0202(3)$ $0.1607(2)$ $-0.0232(3)$ $0.1464(2)$ $-0.0958(3)$ $0.2174(3)$ $-0.1246$ $0.2069$ $0.3095(3)$ $0.1253(2)$ $0.6578$ $0.0981$ $0.6537$ $0.1320$ $0.6393$ $0.2163$ $0.4877(3)$ $0.1253(2)$ $0.4228(3)$ $0.1115(2)$ $0.4626$ $0.1113$ $0.2995(3)$ $0.0982(2)$ $0.2233(3)$ $0.0849(3)$ $0.1465$ $0.1185$ $0.2653$ $0.1163$ $0.2081$ $0.0112$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

# Atomic displacement parameters (Å<sup>2</sup>)

.

|            | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$    |
|------------|-------------|-------------|-------------|--------------|--------------|-------------|
| <b>S</b> 1 | 0.0197 (3)  | 0.0269 (4)  | 0.0186 (4)  | 0.0000 (3)   | -0.0007 (3)  | 0.0039 (3)  |
| S2         | 0.0195 (3)  | 0.0262 (4)  | 0.0170 (3)  | -0.0018 (3)  | 0.0006 (3)   | 0.0009 (3)  |
| O1A        | 0.0196 (10) | 0.0349 (13) | 0.0205 (11) | 0.0019 (9)   | -0.0009 (9)  | 0.0004 (10) |
| O2A        | 0.0262 (11) | 0.0363 (13) | 0.0183 (11) | -0.0013 (10) | -0.0018 (9)  | 0.0047 (10) |
| O3A        | 0.0236 (11) | 0.0377 (13) | 0.0212 (11) | 0.0005 (10)  | 0.0000 (9)   | 0.0067 (10) |
| O4A        | 0.0270 (11) | 0.0241 (12) | 0.0277 (12) | -0.0010 (9)  | -0.0029 (9)  | 0.0049 (10) |
| O5A        | 0.0320 (13) | 0.0546 (17) | 0.0274 (13) | 0.0037 (12)  | 0.0051 (11)  | 0.0041 (12) |
| O6A        | 0.0517 (16) | 0.0597 (18) | 0.0182 (12) | 0.0026 (14)  | -0.0101 (11) | 0.0020 (12) |
| O2B        | 0.0248 (11) | 0.0422 (14) | 0.0166 (11) | -0.0047 (10) | 0.0005 (9)   | 0.0043 (10) |
| O1B        | 0.0235 (11) | 0.0447 (14) | 0.0174 (11) | 0.0027 (10)  | 0.0009 (9)   | 0.0075 (10) |
| O3B        | 0.0225 (11) | 0.0336 (13) | 0.0217 (11) | -0.0016 (10) | -0.0026 (9)  | 0.0007 (10) |
| O4B        | 0.0268 (11) | 0.0263 (12) | 0.0234 (11) | -0.0023 (10) | 0.0040 (9)   | 0.0017 (10) |

| O5B   | 0.0284 (12) | 0.0383 (14) | 0.0236 (12) | -0.0007 (10) | -0.0022 (10) | 0.0023 (11)  |
|-------|-------------|-------------|-------------|--------------|--------------|--------------|
| O6B   | 0.0412 (14) | 0.0504 (16) | 0.0190 (11) | -0.0021(12)  | 0.0094 (10)  | 0.0039 (11)  |
| N1A   | 0.0499 (18) | 0.0327(17)  | 0.0227 (15) | 0.0182 (14)  | 0.0033 (13)  | 0.0057 (13)  |
| N2A   | 0.0213 (13) | 0.0326 (16) | 0.0162 (13) | -0.0009(11)  | -0.0033(11)  | -0.0007(12)  |
| N3A   | 0.0200 (12) | 0.0234 (14) | 0.0176 (12) | 0.0020 (11)  | -0.0019(10)  | 0.0041 (11)  |
| N4A   | 0.0223 (13) | 0.0247 (14) | 0.0175 (12) | 0.0023(11)   | -0.0016(10)  | 0.0041 (11)  |
| N5A   | 0.0327 (15) | 0.0248 (15) | 0.0191 (13) | -0.0020(12)  | 0.0032 (12)  | 0.0044 (11)  |
| N1B   | 0.0308 (14) | 0.0297 (16) | 0.0243 (14) | 0.0072 (12)  | 0.0020(12)   | 0.0040 (13)  |
| N2B   | 0.0186(12)  | 0.0271 (14) | 0.0155 (12) | 0.0018 (11)  | -0.0027(10)  | 0.0032 (11)  |
| N3B   | 0.0199 (12) | 0.0205 (13) | 0.0169 (12) | 0.0000 (10)  | 0.0030 (10)  | 0.0033 (11)  |
| N4B   | 0.0200 (12) | 0.0239 (14) | 0.0181 (12) | 0.0031 (11)  | 0.0028 (10)  | 0.0034 (11)  |
| N5B   | 0.0405 (16) | 0.0269 (15) | 0.0195 (14) | 0.0023 (13)  | -0.0002(12)  | 0.0032(12)   |
| C1A   | 0.0253 (15) | 0.0184 (16) | 0.0181 (15) | -0.0019(12)  | -0.0023(13)  | 0.0020 (13)  |
| C2A   | 0.0244 (15) | 0.0195 (16) | 0.0189 (15) | -0.0005 (13) | -0.0043 (12) | 0.0024 (13)  |
| C3A   | 0.0290 (16) | 0.0238(17)  | 0.0205 (16) | -0.0054 (14) | -0.0016 (13) | 0.0029 (14)  |
| C4A   | 0.0232 (16) | 0.0252 (18) | 0.0305 (18) | -0.0053 (13) | -0.0067 (14) | 0.0024 (15)  |
| C5A   | 0.0279 (16) | 0.0269 (18) | 0.0233 (16) | -0.0040(14)  | -0.0066(13)  | 0.0041 (14)  |
| C6A   | 0.0306 (16) | 0.0220 (16) | 0.0173 (15) | -0.0019(13)  | -0.0003(13)  | 0.0043 (13)  |
| C7A   | 0.0220 (15) | 0.0227 (16) | 0.0230 (16) | 0.0007 (13)  | -0.0021(13)  | 0.0048 (13)  |
| C8A   | 0.0242 (15) | 0.0272(17)  | 0.0199 (15) | -0.0024(13)  | 0.0080 (13)  | 0.0068 (13)  |
| C9A   | 0.0195 (15) | 0.0305 (18) | 0.0181 (15) | -0.0006 (13) | -0.0009(12)  | 0.0028 (14)  |
| C10A  | 0.0194 (15) | 0.0248(17)  | 0.0248 (16) | -0.0008(13)  | -0.0003(13)  | 0.0005 (14)  |
| C11A  | 0.0183 (14) | 0.0217(16)  | 0.0206 (15) | -0.0019(12)  | 0.0052 (12)  | -0.0005(13)  |
| C12A  | 0.0197 (14) | 0.0318 (18) | 0.0189 (15) | -0.0050 (13) | 0.0027(12)   | 0.0011 (14)  |
| C13 A | 0.0255 (15) | 0.0260 (17) | 0.0245 (16) | -0.0005 (13) | 0.0077 (13)  | 0.0030 (14)  |
| C14A  | 0.0235 (15) | 0.0210 (16) | 0.0162 (14) | 0.0020 (12)  | 0.0013 (12)  | 0.0024 (13)  |
| C15A  | 0.0303 (17) | 0.043 (2)   | 0.0170 (16) | 0.0008 (16)  | -0.0023(14)  | 0.0032 (15)  |
| C16A  | 0.0284 (16) | 0.0247 (17) | 0.0200 (15) | 0.0053 (13)  | -0.0011(13)  | 0.0066 (13)  |
| C17A  | 0.0241 (15) | 0.0259 (17) | 0.0213 (16) | 0.0041 (13)  | 0.0025 (13)  | 0.0052 (13)  |
| C18A  | 0.0259 (16) | 0.0189 (16) | 0.0248 (16) | 0.0051 (13)  | 0.0023 (13)  | 0.0034 (13)  |
| C19A  | 0.0257 (16) | 0.037 (2)   | 0.0235 (16) | -0.0002(15)  | 0.0048 (13)  | 0.0037 (15)  |
| C1B   | 0.0250 (15) | 0.0231 (17) | 0.0179 (15) | -0.0004 (13) | 0.0012 (12)  | 0.0047 (13)  |
| C2B   | 0.0248 (15) | 0.0150 (15) | 0.0222 (15) | -0.0009(12)  | 0.0016 (13)  | 0.0044 (13)  |
| C3B   | 0.0264 (16) | 0.0271 (18) | 0.0214 (16) | -0.0039 (14) | 0.0002 (13)  | 0.0007 (14)  |
| C4B   | 0.0219 (15) | 0.0344 (19) | 0.0272 (17) | -0.0044 (14) | 0.0007 (13)  | 0.0069 (15)  |
| C5B   | 0.0252 (16) | 0.0260 (17) | 0.0257 (16) | -0.0005 (13) | 0.0068 (13)  | 0.0062 (14)  |
| C6B   | 0.0295 (16) | 0.0186 (16) | 0.0188 (15) | -0.0015 (13) | 0.0013 (13)  | 0.0031 (13)  |
| C7B   | 0.0206 (14) | 0.0182 (15) | 0.0256 (16) | 0.0010 (12)  | 0.0028 (13)  | 0.0070 (13)  |
| C8B   | 0.0180 (14) | 0.0244 (17) | 0.0209 (15) | -0.0033 (13) | -0.0037 (12) | -0.0009 (13) |
| C9B   | 0.0215 (15) | 0.0267 (17) | 0.0204 (15) | 0.0009 (13)  | -0.0052 (13) | 0.0062 (13)  |
| C10B  | 0.0218 (15) | 0.0293 (18) | 0.0159 (14) | -0.0028 (13) | -0.0035 (12) | 0.0009 (13)  |
| C11B  | 0.0183 (14) | 0.0221 (16) | 0.0180 (15) | -0.0025 (12) | -0.0023 (12) | -0.0003 (13) |
| C12B  | 0.0175 (14) | 0.0256 (17) | 0.0175 (14) | -0.0013 (12) | -0.0025 (12) | 0.0056 (13)  |
| C13B  | 0.0198 (15) | 0.0293 (17) | 0.0191 (15) | -0.0026 (13) | 0.0010 (12)  | 0.0050 (14)  |
| C14B  | 0.0210 (14) | 0.0199 (16) | 0.0171 (14) | 0.0008 (12)  | 0.0009 (12)  | -0.0001 (13) |
| C15B  | 0.0224 (15) | 0.0247 (17) | 0.0195 (15) | -0.0008 (13) | 0.0012 (13)  | 0.0021 (13)  |
| C16B  | 0.0188 (14) | 0.0175 (15) | 0.0179 (14) | 0.0021 (12)  | -0.0025 (12) | 0.0003 (12)  |
| C17B  | 0.0251 (15) | 0.0216 (16) | 0.0136 (14) | 0.0005 (13)  | -0.0019 (12) | 0.0023 (12)  |
| C18B  | 0.0286 (16) | 0.0245 (16) | 0.0121 (14) | 0.0029 (13)  | 0.0020 (12)  | 0.0064 (13)  |
| C19B  | 0.0283 (17) | 0.045 (2)   | 0.0197 (16) | 0.0038 (15)  | 0.0059 (13)  | 0.0108 (15)  |
|       |             | 0           |             |              |              |              |

## Geometric parameters (Å, °)

| S104A  | 1.426 (2) | C9A—H9A   | 0.9500    |
|--------|-----------|-----------|-----------|
| S103A  | 1.441 (2) | C10A—C11A | 1.401 (4) |
| S1—N2A | 1.652 (3) | C10A—H10A | 0.9500    |

| S1—C11A              | 1.746 (3)                 | C11A—C12A           | 1.393 (5) |
|----------------------|---------------------------|---------------------|-----------|
| S2-04B               | 1 429 (2)                 | C12A - C13A         | 1 377 (5) |
| \$2-03B              | 1.125(2)<br>1.436(2)      | C12A - H12A         | 0.9500    |
| S2—N2B               | 1.662 (3)                 | C13A—H13A           | 0.9500    |
| \$2-C11B             | 1.002(3)<br>1 744(3)      | C15A - C16A         | 1 492 (4) |
| 01A - C1A            | 1.711(3)<br>1.228(4)      | C15A - H15A         | 0.9800    |
| $O_{2A} = C_{1A}$    | 1.220(4)<br>1 313 ( $4$ ) | C15A - H15B         | 0.9800    |
| $O_2 A = C_1 A$      | 1.515(4)                  |                     | 0.9800    |
| $O_{2A}$ $M_{5B}$    | 1.227(4)                  | $C_{16A} - C_{17A}$ | 1 380 (1) |
| OSA-INSB<br>OGA NISB | 1.227 (+)<br>1.222 (4)    | C17A $C18A$         | 1.309(+)  |
| OOA - NJB            | 1.222(4)                  | C17A = U17A         | 1.374(4)  |
|                      | 1.310 (4)                 | $CI/A = \Pi I/A$    | 0.9300    |
|                      | 1.222 (4)                 |                     | 1.301 (4) |
| OSB—NSA              | 1.234 (3)                 | CIQA HIQD           | 0.9800    |
| U6B—N5A              | 1.228 (3)                 | CI9A—HI9B           | 0.9800    |
| NIA-C8A              | 1.3/6 (4)                 | CI9A—HI9C           | 0.9800    |
| NIA—H30A             | 0.861 (16)                | CIB-C2B             | 1.489 (4) |
| N1A—H30B             | 0.855 (16)                | C2B—C/B             | 1.388 (4) |
| N2A—C14A             | 1.380 (4)                 | C2B—C3B             | 1.403 (4) |
| N2A—H31A             | 0.846 (17)                | C3B—C4B             | 1.388 (5) |
| N3A—C18A             | 1.351 (4)                 | C3B—H3B             | 0.9500    |
| N3A—C14A             | 1.349 (4)                 | C4B—C5B             | 1.383 (5) |
| N4A—C14A             | 1.327 (4)                 | C4B—H4B             | 0.9500    |
| N4A—C16A             | 1.352 (4)                 | C5B—C6B             | 1.385 (4) |
| N5A—C6B              | 1.479 (4)                 | C5B—H5B             | 0.9500    |
| N1B—C8B              | 1.369 (4)                 | C6B—C7B             | 1.367 (4) |
| N1B—H30C             | 0.851 (15)                | С7В—Н7В             | 0.9500    |
| N1B—H30D             | 0.861 (17)                | C8B—C9B             | 1.401 (4) |
| N2B—C14B             | 1.381 (4)                 | C8B—C13B            | 1.405 (4) |
| N3B—C14B             | 1.347 (4)                 | C9B—C10B            | 1.375 (5) |
| N3B—C16B             | 1.349 (4)                 | C9B—H9B             | 0.9500    |
| N4B—C14B             | 1.331 (4)                 | C10B—C11B           | 1.404 (4) |
| N4B—C18B             | 1.348 (4)                 | C10B—H10B           | 0.9500    |
| N5B—C6A              | 1.479 (4)                 | C11B—C12B           | 1.397 (4) |
| C1A—C2A              | 1.488 (4)                 | C12B—C13B           | 1.371 (4) |
| C2A—C3A              | 1.388 (4)                 | C12B—H12B           | 0.9500    |
| C2A—C7A              | 1.392 (4)                 | C13B—H13B           | 0.9500    |
| C3A—C4A              | 1.393 (4)                 | C15B—C16B           | 1.494 (4) |
| СЗА—НЗА              | 0.9500                    | C15B—H15D           | 0.9800    |
| C4A—C5A              | 1.384 (5)                 | C15B—H15E           | 0.9800    |
| C4A—H4A              | 0.9500                    | C15B—H15F           | 0.9800    |
| C5A—C6A              | 1.386 (5)                 | C16B—C17B           | 1.392 (4) |
| C5A—H5A              | 0.9500                    | C17B—C18B           | 1.377 (4) |
| C6A—C7A              | 1.385 (4)                 | C17B—H17B           | 0.9500    |
| C7A—H7A              | 0.9500                    | C18BC19B            | 1.494 (4) |
| C8A—C9A              | 1.394 (5)                 | C19B—H19D           | 0.9800    |
| C8A—C13A             | 1.412 (4)                 | C19B—H19E           | 0.9800    |
| C9A—C10A             | 1.374 (4)                 | C19B—H19F           | 0.9800    |
| O4A—S1—O3A           | 118.93 (14)               | H15B-C15A-H15C      | 109.5     |
| O4A—S1—N2A           | 110.26 (14)               | N4A—C16A—C17A       | 121.5 (3) |
| O3A—S1—N2A           | 102.13 (13)               | N4A-C16A-C15A       | 116.2 (3) |
| O4A—S1—C11A          | 109.50 (14)               | C17A—C16A—C15A      | 122.3 (3) |
| O3A—S1—C11A          | 109.07 (14)               | C18A—C17A—C16A      | 118.4 (3) |
| N2A—S1—C11A          | 106.05 (14)               | C18A—C17A—H17A      | 120.8     |
| O4B—S2—O3B           | 119.46 (14)               | C16A—C17A—H17A      | 120.8     |
| O4B—S2—N2B           | 109.61 (13)               | N3A—C18A—C17A       | 121.1 (3) |

.

•

| O3B—S2—N2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 102.28 (13)          | N3A—C18A—C19A                                  | 116.8 (3)            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------|----------------------|
| O4B—S2—C11B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 108.36 (14)          | C17A—C18A—C19A                                 | 122.0 (3)            |
| O3B—S2—C11B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.01 (14)          | C18A—C19A—H19A                                 | 109.5                |
| N2B—S2—C11B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 107.48 (14)          | C18A—C19A—H19B                                 | 109.5                |
| C1A—O2A—H32A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 110 (2)              | H19A—C19A—H19B                                 | 109.5                |
| C8A—N1A—H30A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 114 (2)              | C18A—C19A—H19C                                 | 109.5                |
| C8A—N1A—H30B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119 (3)              | H19A—C19A—H19C                                 | 109.5                |
| H30A—N1A—H30B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 111 (3)              | H19B—C19A—H19C                                 | 109.5                |
| C14A—N2A—S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 126.1 (2)            | O1B-C1B-O2B                                    | 123.9 (3)            |
| C14A—N2A—H31A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 121 (2)              | O1B—C1B—C2B                                    | 122.1 (3)            |
| S1—N2A—H31A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 113 (2)              | O2B—C1B—C2B                                    | 114.0 (3)            |
| C18A—N3A—C14A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 116.2 (3)            | C7B—C2B—C3B                                    | 119.8 (3)            |
| C14A—N4A—C16A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 115.8 (3)            | C7B—C2B—C1B                                    | 118.9 (3)            |
| O6B—N5A—O5B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 123.6 (3)            | C3B—C2B—C1B                                    | 121.4 (3)            |
| O6B—N5A—C6B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 118.9 (3)            | C4B—C3B—C2B                                    | 119.9 (3)            |
| O5B—N5A—C6B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 117.5 (3)            | C4B—C3B—H3B                                    | 120.1                |
| C8B—N1B—H30C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 117 (3)              | C2B—C3B—H3B                                    | 120.1                |
| C8B—N1B—H30D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 116 (3)              | C5B—C4B—C3B                                    | 120.4 (3)            |
| H30C—N1B—H30D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 114 (3)              | C5B—C4B—H4B                                    | 119.8                |
| C14B = N2B = S2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1247(2)              | C3B-C4B-H4B                                    | 119.8                |
| C14B N3B $C16B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1171(3)              | C4B-C5B-C6B                                    | 118.3 (3)            |
| C14B $N4B$ $C18B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1160(3)              | C4B-C5B-H5B                                    | 120.8                |
| O6A = N5B = O5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1242(3)              | C6B-C5B-H5B                                    | 120.8                |
| O6A - N5B - C6A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 121.2(3)<br>1181(3)  | C7B-C6B-C5B                                    | 122.9(3)             |
| 05A - N5B - C6A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1177(3)              | C7B-C6B-N5A                                    | 1122.9(3)            |
| OIA - CIA - O2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 123 9 (3)            | C5B-C6B-N5A                                    | 118.7(3)             |
| O1A - C1A - C2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 123.9(3)<br>121.4(3) | C6B = C7B = C2B                                | 118.1(3)             |
| $O_{2}^{2}$ $O_{2$ | 121.7(3)<br>1147(3)  | C6B = C7B = H7B                                | 120.6                |
| $C_{3A}$ $C_{2A}$ $C_{7A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1204(3)              | C2B-C7B-H7B                                    | 120.6                |
| $C_{3A} = C_{2A} = C_{1A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.4(3)<br>1220(3)  | $\frac{1}{10000000000000000000000000000000000$ | 120.0<br>1210(3)     |
| $C_{7A} = C_{7A} = C_{1A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122.0(3)<br>117.6(3) | NIB_C8B_C13B                                   | 121.0(3)<br>1204(3)  |
| $C_{A} = C_{A} = C_{A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 117.0(3)<br>120.2(3) | C9B = C8B = C13B                               | 1186(3)              |
| $C_{2A} = C_{3A} = C_{4A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110.0                | C10B-C9B-C8B                                   | 1214(3)              |
| $C_{2A} = C_{3A} = H_{3A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110.0                | C10B - C9B - H9B                               | 110 3                |
| $C_{A} = C_{A} = C_{A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120 5 (3)            | $C_{8B}$                                       | 119.3                |
| $C_{A} = C_{A} = C_{A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120.5 (5)            | C0B - C10B - C11B                              | 110.3 (3)            |
| $C_{3A} = C_{4A} = \Pi_{4A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119.0                | COB CIOB HIOB                                  | 120.3                |
| $C_{A} C_{A} C_{A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 117.0 (3)            | $C_{11B} C_{10B} H_{10B}$                      | 120.3                |
| C6A C5A U5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1210                 | C12B-C11B-C10B                                 | 110.7(3)             |
| $C_{4A} C_{5A} H_{5A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 121.0                | C12B-C11B-C10B                                 | 119.7(3)<br>120.9(2) |
| $C_{A} = C_{A} = C_{A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 121.0<br>123.2(3)    | C10B - C11B - S2                               | 120.9(2)<br>1104(2)  |
| $C_{A} = C_{A} = C_{A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 123.2(3)<br>1186(3)  | C13B-C12B-C11B                                 | 119.4(2)<br>120.6(3) |
| C7A C6A N5B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 118.0(3)<br>118.2(3) | C13B-C12B-H12B                                 | 110 7                |
| C/A = COA = N3B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110.2(3)<br>117.8(3) | C11B-C12B-H12B                                 | 119.7                |
| COA - C7A - C2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 117.8 (5)            | C12B $C12B$ $C12B$ $C12B$                      | 120.3 (3)            |
| COA = C7A = H7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 121.1                | C12B - C13B - C0B                              | 110.8                |
| $C_{A}$ $C_{A}$ $C_{A}$ $C_{A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 121.1<br>121.0(2)    | $C_{12}D - C_{13}D - H_{13}D$                  | 110.8                |
| NIA = C8A = C12A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 121.0(3)             | NAD CIAD N2D                                   | 117.0<br>126.4(2)    |
| NIA - C8A - C13A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120.3(3)             | N4D—C14D—N3D<br>N4D—C14D—N3D                   | 120.4(3)             |
| C9A - C8A - C13A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 118.4 (3)            | N4D - C14D - N2D                               | 116.3(3)             |
| CIUA—CYA—C8A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 121.1 (3)            | N3B - U14B - N2B                               | 113.1 (3)            |
| СТОА—СУА—НУА                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119.4                | CIOB-CISB-HISD                                 | 109.3                |
| С8А—С9А—Н9А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.4                | UIOB-UIOB-HIDE                                 | 109.5                |
| C9A—C10A—C11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 119.8 (3)            | HISD—CISB—HISE                                 | 109.5                |
| C9A—C10A—H10A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120.1                | CI0B—CI5B—HI5F                                 | 109.5                |
| C11A—C10A—H10A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120.1                | H15D—C15B—H15F                                 | 109.5                |

-

| C12A—C11A—C10A                                       | 120.0 (3)           | H15E—C15B—H15F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.5                                   |
|------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| C12A—C11A—S1                                         | 119.6 (2)           | N3B—C16B—C17B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120.2 (3)                               |
| C10A—C11A—S1                                         | 120.3 (2)           | N3B—C16B—C15B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 117.5 (3)                               |
| C13A—C12A—C11A                                       | 119.7 (3)           | C17B—C16B—C15B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 122.4(3)                                |
| C13A—C12A—H12A                                       | 120.1               | C18B—C17B—C16B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 118.3 (3)                               |
| C11A—C12A—H12A                                       | 120.1               | C18B-C17B-H17B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120.8                                   |
| C12A—C13A—C8A                                        | 120 9 (3)           | C16B— $C17B$ — $H17B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 120.8                                   |
| C12A— $C13A$ — $H13A$                                | 119.6               | N4B— $C18B$ — $C17B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 120.0<br>122.1(3)                       |
| C8A - C13A - H13A                                    | 119.6               | N4B— $C18B$ — $C19B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 122.1(3)<br>1164(3)                     |
| N4A - C14A - N3A                                     | 1271(3)             | C17B-C18B-C19B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1216(3)                                 |
| N4A - C14A - N2A                                     | 127.1(3)<br>1180(3) | C18B $C19B$ $H19D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100 5                                   |
| $N_{3A} = C_{1AA} = N_{2A}$                          | 110.0(3)<br>1140(3) | C18B $C10B$ $H10E$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.5                                   |
| $C_{16A} = C_{15A} = H_{15A}$                        | 100 5               | $U_{10}$ $C_{10}$ $U_{10}$ $U$ | 109.5                                   |
| C16A - C15A - H15R                                   | 109.5               | C18B - C10B - H10F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.5                                   |
| $H_{15A}$ $C_{15A}$ $H_{15B}$                        | 109.5               | HIOD CLOB HIOF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.5                                   |
| $C_{16A} = C_{15A} = H_{15C}$                        | 109.5               | U10E C10B U10E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.5                                   |
| $H_{15A} = C_{15A} = H_{15C}$                        | 109.5               | 1119E—C19B—11191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 109.5                                   |
| III3A—CI3A—III3C                                     | 109.5               | C14A = N3A = C18A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |
| O4A—S1—N2A—C14A                                      | 54.0 (3)            | C14A = N5A = C18A = C18A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 178.1 (3)                               |
|                                                      |                     | C19A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |
| O3A—S1—N2A—C14A                                      | -178.7 (3)          | N3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1 (5)                                 |
|                                                      |                     | C16A $C17A$ $C18A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |
| C11A—S1—N2A—C14A                                     | -64.5 (3)           | C10A - C17A - C18A - C18A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -178.5 (3)                              |
| OAB S2 N2B C1AB                                      | -485(3)             | OIR CIR COR COR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -4.0(5)                                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | -1762(3)            | O1B - C1B - C2B - C7B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{1}{176} \frac{6}{6} \frac{3}{2}$ |
| $C_{11B} = S_2 = N_{2B} = C_{14B}$                   | 601(3)              | $O_{2}B = C_{1}B = C_{2}B = C_{3}B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 170.0(3)                                |
| 014 - 014 - 024 - 034                                | 1775(3)             | $O_{1B}$ $C_{1B}$ $C_{2B}$ $C_{3B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -4.9(4)                                 |
| $O^2 - C^1 A - C^2 A - C^3 A$                        | -23(4)              | C7B $C2B$ $C3B$ $C4B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (-7)(-7)                                |
| 01A - C1A - C2A - C7A                                | -34(5)              | C1B C2B C3B C4B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1778(3)                                |
| $O_{A}$ $C_{A}$ $C_{A}$ $C_{A}$ $C_{A}$ $C_{A}$      | 176.8 (3)           | C1B = C2B = C3B = C4B = C5B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.3(5)                                 |
| C7A - C2A - C3A - C4A                                | 170.0(5)<br>1 2 (5) | $C_{3B}$ $C_{4B}$ $C_{5B}$ $C_{6B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.1(5)                                 |
| C1A - C2A - C3A - C4A                                | -1797(3)            | C4B— $C5B$ — $C6B$ — $C7B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1(5)                                  |
| $C^2A - C^3A - C^4A - C^5A$                          | -0.4(5)             | C4B— $C5B$ — $C6B$ — $N5A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1790(3)                                 |
| $C_{2A} = C_{4A} = C_{5A} = C_{6A}$                  | -0.9(5)             | O6B - N5A - C6B - C7B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 179.0(3)<br>179.8(3)                    |
| C4A = C5A = C6A = C7A                                | 15(5)               | O5B $N5A$ $C6B$ $C7B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -04(4)                                  |
| C4A = C5A = C6A = N5B                                | -1779(3)            | O6B - N5A - C6B - C5B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.4(4)                                  |
| O6A = N5B = C6A = C5A                                | 54(5)               | O5B $N5A$ $C6B$ $C5B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1794(3)                                |
| 05A = N5B = C6A = C5A                                | -1744(3)            | C5B - C6B - C7B - C7B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 03(5)                                   |
| O6A = N5B = C6A = C7A                                | -1740(3)            | N5A - C6B - C7B - C2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -178.6(3)                               |
| 05A - N5B - C6A - C7A                                | 6 2 (4)             | C3B - C2B - C7B - C6B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.7(5)                                 |
| $C_{5A}$ $C_{6A}$ $C_{7A}$ $C_{2A}$                  | -0.7(5)             | C1B $C2B$ $C7B$ $C6B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 177.8(3)                                |
| N5B-C6A-C7A-C2A                                      | 1787(3)             | N1B - C8B - C9B - C10B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1771(3)                                |
| $C_{3A}$ $C_{2A}$ $C_{7A}$ $C_{6A}$                  | -0.7(5)             | $C_{13B} - C_{8B} - C_{9B} - C_{10B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.3 (5)                                 |
| C1A - C2A - C7A - C6A                                | -179.8(3)           | C8B-C9B-C10B-C11B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.1(5)                                 |
| N1A - C8A - C9A - C10A                               | -175.9(3)           | C9B-C10B-C11B-C12B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1.0(4)                                 |
| C13A—C8A—C9A—C10A                                    | 1.5 (5)             | C9B—C10B—C11B—S2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 179.7 (2)                               |
| C8A—C9A—C10A—C11A                                    | -0.3(5)             | O4B - S2 - C11B - C12B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25.0 (3)                                |
| C9A—C10A—C11A—C12A                                   | -0.2(5)             | O3B—S2—C11B—C12B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 156.5 (2)                               |
| C9A—C10A—C11A—S1                                     | 179.4 (2)           | N2B = S2 = C11B = C12B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -93.4(3)                                |
| 04A— $S1$ — $C11A$ — $C12A$                          | 160.7 (2)           | O4B—S2—C11B—C10B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -155.7 (2)                              |
| O3A—S1—C11A—C12A                                     | 29.0 (3)            | O3B—S2—C11B—C10B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -24.2(3)                                |
| N2A - S1 - C11A - C12A                               | -80.3 (3)           | N2B— $S2$ — $C11B$ — $C10B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 85.9 (3)                                |
| 04A = S1 = C11A = C10A                               | -18.9 (3)           | C10B—C11B—C12B—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9 (4)                                 |
|                                                      |                     | C13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 170.0 (*)                               |
| 03A—SI—C11A—C10A                                     | -150.7 (2)          | S2—C11B—C12B—C13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -179.8 (2)                              |

| N2A—S1—C11A—C10A        | 100.0 (3)  | C11B—C12B—C13B—C8B      | 0.3 (5)    |
|-------------------------|------------|-------------------------|------------|
| C10A—C11A—C12A—<br>C13A | -0.4 (5)   | N1B-C8B-C13B-C12B       | 177.0 (3)  |
| S1—C11A—C12A—C13A       | 179.9 (2)  | C9B—C8B—C13B—C12B       | -1.3 (5)   |
| C11A—C12A—C13A—C8A      | 1.7 (5)    | C18B—N4B—C14B—N3B       | -0.2 (5)   |
| N1A—C8A—C13A—C12A       | 175.2 (3)  | C18B—N4B—C14B—N2B       | -179.0 (3) |
| C9A—C8A—C13A—C12A       | -2.1 (5)   | C16B—N3B—C14B—N4B       | 0.0 (5)    |
| C16A—N4A—C14A—N3A       | -0.9 (5)   | C16B—N3B—C14B—N2B       | 178.8 (3)  |
| C16A—N4A—C14A—N2A       | 177.4 (3)  | S2—N2B—C14B—N4B         | -13.4 (4)  |
| C18A—N3A—C14A—N4A       | 1.0 (5)    | S2—N2B—C14B—N3B         | 167.7 (2)  |
| C18A—N3A—C14A—N2A       | -177.3 (3) | C14BN3B-C16B-C17B       | 0.9 (4)    |
| S1—N2A—C14A—N4A         | 3.7 (4)    | C14B—N3B—C16B—C15B      | -178.1 (3) |
| S1—N2A—C14A—N3A         | -177.8 (2) | N3B—C16B—C17B—C18B      | -1.5 (5)   |
| C14AN4AC16A<br>C17A     | 0.3 (5)    | C15B—C16B—C17B—<br>C18B | 177.5 (3)  |
| C14A—N4A—C16A—<br>C15A  | -179.5 (3) | C14B—N4B—C18B—C17B      | -0.4 (5)   |
| N4A—C16A—C17A—<br>C18A  | 0.0 (5)    | C14B—N4B—C18B—C19B      | 179.7 (3)  |
| C15A—C16A—C17A—<br>C18A | 179.8 (3)  | C16B—C17B—C18B—N4B      | 1.3 (5)    |
| C14A—N3A—C18A—<br>C17A  | -0.6 (4)   | C16B—C17B—C18B—<br>C19B | -178.8 (3) |

Hydrogen-bond geometry (Å, °)

| D—H···A                                                                    | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H···A |  |  |  |
|----------------------------------------------------------------------------|-------------|--------------|--------------|---------|--|--|--|
| $N1A - H30B - O3B^{i}$                                                     | 0.86 (2)    | 2.31 (2)     | 3.091 (4)    | 152 (4) |  |  |  |
| N1 <i>B</i> —H30 <i>C</i> ···O3 <i>A</i> <sup>ii</sup>                     | 0.85 (2)    | 2.34 (2)     | 3.101 (4)    | 149 (3) |  |  |  |
| N2A—H31A…O1A                                                               | 0.85 (2)    | 1.95 (2)     | 2.781 (3)    | 167 (4) |  |  |  |
| O2 <i>A</i> —H32 <i>A</i> ⋯N3 <i>A</i>                                     | 0.86 (2)    | 1.76 (2)     | 2.616 (3)    | 172 (4) |  |  |  |
| Symmetry codes: (i) $-x$ , $-y+1$ , $-z+1$ ; (ii) $-x$ , $-y+1$ , $-z+2$ . |             |              |              |         |  |  |  |

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

.

| S1—N2A—C14A—N3A               | -177.8 (2) | N3B-C16B-C17B-C18B      | -1.5 (5)   |  |  |  |  |
|-------------------------------|------------|-------------------------|------------|--|--|--|--|
| C14A—N4A—C16A—<br>C17A        | 0.3 (5)    | C15B—C16B—C17B—<br>C18B | 177.5 (3)  |  |  |  |  |
| C14A—N4A—C16A—<br>C15A        | -179.5 (3) | C14B—N4B—C18B—C17B      | -0.4 (5)   |  |  |  |  |
| N4A—C16A—C17A—<br>C18A        | 0.0 (5)    | C14B-N4B-C18B-C19B      | 179.7 (3)  |  |  |  |  |
| C15A—C16A—C17A—<br>C18A       | 179.8 (3)  | C16BC17B-C18B-N4B       | 1.3 (5)    |  |  |  |  |
| C14A—N3A—C18A—<br>C17A        | -0.6 (4)   | C16B—C17B—C18B—<br>C19B | -178.8 (3) |  |  |  |  |
| Hydrogen-bond geometry (Å, °) |            |                         |            |  |  |  |  |

| $D - H \cdots A$                                                           | D—H      | H···A    | $D \cdots A$ | D—H…A   |  |  |
|----------------------------------------------------------------------------|----------|----------|--------------|---------|--|--|
| N1 <i>A</i> —H30 <i>B</i> ···O3 <i>B</i> <sup>i</sup>                      | 0.86(2)  | 2.31 (2) | 3.091 (4)    | 152 (4) |  |  |
| N1 <i>B</i> —H30 <i>C</i> ···O3 <i>A</i> <sup>ii</sup>                     | 0.85 (2) | 2.34 (2) | 3.101 (4)    | 149 (3) |  |  |
| N2A—H31A…O1A                                                               | 0.85 (2) | 1.95 (2) | 2.781 (3)    | 167 (4) |  |  |
| O2A—H32A…N3A                                                               | 0.86(2)  | 1.76 (2) | 2.616 (3)    | 172 (4) |  |  |
| Symmetry codes: (i) $-x$ , $-y+1$ , $-z+1$ ; (ii) $-x$ , $-y+1$ , $-z+2$ . |          |          |              |         |  |  |

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.



Figure S.4: Crystal Structure of the Cocrystal of Sulfamethazine and p-Nitrobenzoic Acid Showing Thermal Parameters (50% Thermal Ellipsoids) and Hydrogen Bonding.

Crystal data  $C_{12}H_{14}N_4O_2S \cdot C_7H_5NO_4$  $M_r = 445.45$ 

# Refinement

| Refinement on $F^2$             |                                                                                     |
|---------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Hydrogen site location: mixed                                                       |
| $R[F^2 > 2\sigma(F^2)] = 0.053$ | H atoms treated by a mixture of independent and constrained refinement              |
| $wR(F^2) = 0.136$               | $w = 1/[\sigma^2(F_o^2) + (0.0602P)^2 + 0.0756P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| <i>S</i> = 1.02                 | $(\Delta/\sigma)_{\rm max} < 0.001$                                                 |
| 7240 reflections                | $\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$                           |
| 595 parameters                  | $\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$                          |
| 8 restraints                    | Extinction correction: none                                                         |
| 0 constraints                   |                                                                                     |

| Fractional | l atomic            | coordinates | and | isotropi | c or | equiva | lent | isotropic | displa | acement |
|------------|---------------------|-------------|-----|----------|------|--------|------|-----------|--------|---------|
| parameter  | s (Å <sup>2</sup> ) |             |     | -        |      |        |      |           |        |         |

|      | x            | у            | Ζ             | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|------|--------------|--------------|---------------|-------------------------------|
| S1   | 0.31286 (10) | 0.68243 (6)  | 0.26743 (4)   | 0.0224 (2)                    |
| O3A  | 0.3546 (3)   | 0.78173 (16) | 0.24695 (12)  | 0.0265 (5)                    |
| N4A  | 0.1863 (4)   | 0.5347 (2)   | 0.38181 (15)  | 0.0288 (7)                    |
| O4A  | 0.1679 (3)   | 0.62923 (17) | 0.23415 (12)  | 0.0258 (5)                    |
| N3A  | 0.3459 (3)   | 0.6329 (2)   | 0.47574 (15)  | 0.0259 (6)                    |
| N2A  | 0.2971 (4)   | 0.6943 (2)   | 0.35936 (15)  | 0.0233 (6)                    |
| H31A | 0.362 (5)    | 0.743 (2)    | 0.380 (2)     | 0.071 (16)*                   |
| C10A | 0.6318 (4)   | 0.6584 (2)   | 0.28031 (18)  | 0.0244 (7)                    |
| H10A | 0.6445       | 0.7200       | 0.3061        | 0.029*                        |
| C25  | 0.5911 (4)   | 0.4784 (2)   | 0.20485 (18)  | 0.0251 (7)                    |
| H25  | 0.5774       | 0.4171       | 0.1786        | 0.030*                        |
| C8A  | 0.7485 (4)   | 0.5187 (2)   | 0.23076 (18)  | 0.0252 (7)                    |
| C14A | 0.2740 (4)   | 0.6156 (2)   | 0.40654 (18)  | 0.0238 (7)                    |
| C13A | 0.4584 (4)   | 0.5260 (2)   | 0.21693 (17)  | 0.0244 (7)                    |
| H13A | 0.3533       | 0.4972       | 0.1999        | 0.029*                        |
| N1A  | 0.8813 (4)   | 0.4710 (2)   | 0.22156 (18)  | 0.0318 (7)                    |
| H30A | 0.975 (3)    | 0.500 (3)    | 0.232 (2)     | 0.037 (12)*                   |
| H30B | 0.877 (5)    | 0.420 (2)    | 0.1944 (19)   | 0.042 (12)*                   |
| C11A | 0.4772 (4)   | 0.6170 (2)   | 0.25431 (17)  | 0.0228 (7)                    |
| C9A  | 0.7654 (4)   | 0.6104 (2)   | 0.26876 (19)  | 0.0252 (7)                    |
| H9A  | 0.8700       | 0.6391       | 0.2865        | 0.030*                        |
| C16A | 0.3231 (4)   | 0.5608 (3)   | 0.52535 (19)  | 0.0294 (8)                    |
| C18A | 0.1646 (5)   | 0.4622 (3)   | 0.43138 (19)  | 0.0316 (8)                    |
| C17A | 0.2324 (5)   | 0.4738 (3)   | 0.5040 (2)    | 0.0348 (9)                    |
| H17A | 0.2164       | 0.4227       | 0.5386        | 0.042*                        |
| C15A | 0.4010 (5)   | 0.5799 (3)   | 0.60249 (19)  | 0.0362 (9)                    |
| H15A | 0.5121       | 0.6115       | 0.5987        | 0.054*                        |
| H15B | 0.4039       | 0.5181       | 0.6282        | 0.054*                        |
| H15C | 0.3381       | 0.6227       | 0.6310        | 0.054*                        |
| C19A | 0.0680 (6)   | 0.3704 (3)   | 0.4031 (2)    | 0.0463 (11)                   |
| H19A | 0.0035       | 0.3835       | 0.3578        | 0.069*                        |
| H19B | 0.0045       | 0.3452       | 0.4417        | 0.069*                        |
| H19C | 0.1415       | 0.3219       | 0.3911        | 0.069*                        |
| S2   | 0.07016 (10) | 0.20503 (6)  | 0.21325 (4)   | 0.0244 (2)                    |
| O3B  | 0.1874 (3)   | 0.15073 (17) | 0.24991 (12)  | 0.0280 (6)                    |
| N3B  | 0.0615 (3)   | 0.18954 (19) | -0.00353 (14) | 0.0213 (6)                    |

| N34B        | -0.0590 (3)          | 0.30249 (19)           | 0.07464 (15)               | 0.0220 (6)             |
|-------------|----------------------|------------------------|----------------------------|------------------------|
| O2A         | 0.5542 (3)           | 0.78286 (19)           | 0.52323 (14)               | 0.0357 (6)             |
| H32A        | 0.492 (5)            | 0.733 (2)              | 0.504 (2)                  | 0.065 (16)*            |
| O4B         | 0.0788 (3)           | 0.30693 (17)           | 0.22815 (12)               | 0.0272 (5)             |
| N2B         | 0.0950 (3)           | 0.1840 (2)             | 0.12404 (15)               | 0.0241 (6)             |
| H31B        | 0.137 (5)            | 0.131 (2)              | 0.115 (2)                  | 0.057 (14)*            |
| O1A         | 0.5238 (3)           | 0.85150 (18)           | 0.41155 (13)               | 0.0338 (6)             |
| O6A         | 1.0702 (3)           | 1.1703 (2)             | 0.66044 (15)               | 0.0466 (7)             |
| O5A         | 1.0428 (4)           | 1.2476 (2)             | 0.55789 (15)               | 0.0492 (8)             |
| C18B        | -0.1084(4)           | 0.3468 (2)             | 0.01249 (18)               | 0.0223(7)              |
| N1B         | -0.5752(4)           | 0.0046 (2)             | 0.27207 (18)               | 0.0337(7)              |
| H30D        | -0.590(4)            | -0.0581(14)            | 0.268 (2)                  | 0.030(11)*             |
| H30C        | -0.655(4)            | 0.038 (3)              | 0.273(2)                   | 0.060 (15)*            |
| C14B        | 0.0267(4)            | 0.2285(2)              | 0.273(2)                   | 0.0199(7)              |
| C17B        | -0.0732(4)           | 0.3149(2)              | -0.05858(18)               | 0.0199(7)<br>0.0248(7) |
| H17B        | -0.1059              | 0.3481                 | -0.1019                    | 0.0210(7)              |
| C11B        | -0.1222(4)           | 0.1479(2)              | 0.23141(17)                | 0.020<br>0.0240(7)     |
| C8B         | -0.4274(4)           | 0.0519(3)              | 0.25111(17)<br>0.25820(17) | 0.0210(7)<br>0.0246(7) |
| C13B        | -0.4012(4)           | 0.0517(3)<br>0.1536(3) | 0.25054(18)                | 0.0270(7)              |
| H13B        | -0.4882              | 0.1990 (9)             | 0.25954 (18)               | 0.0279 (8)             |
|             | 0.4002<br>0 5835 (4) | 0.1504                 | 0.2099<br>0.47521(10)      | 0.033                  |
| COR         | -0.2050(4)           | -0.0018(3)             | 0.77521(19)                | 0.0270(8)              |
| LOB         | -0.3121              | -0.0710                | 0.24409 (18)               | 0.0209 (8)             |
| 113D<br>C2A | 0.5121               | 0.0710                 | 0.2439<br>0 50694 (19)     | $0.032^{\circ}$        |
| N5A         | 0.0909(4)            | 0.9307(3)<br>1 1762(2) | 0.50004(10)                | 0.0200(6)              |
| NJA<br>C12B | -0.2500(4)           | 1.1703(2)<br>0.2015(2) | 0.39029(17)<br>0.24611(18) | 0.0318(7)              |
|             | -0.2309(4)           | 0.2013 (3)             | 0.24011(10)                | 0.0202(6)              |
|             | -0.2330              | 0.2700                 | 0.2409                     | 0.031                  |
|             | 0.7234 (4)           | 1.0210 (3)             | 0.40008 (19)               | 0.0266 (6)             |
|             | 0.0711               | 1.0239                 | 0.41/8                     | $0.033^{*}$            |
|             | 0.0102(4)            | 0.2341(2)              | -0.00319(18)               | 0.0232(7)              |
| CJA         | 0.9017(4)            | 1.0929(2)              | 0.30388(19)<br>0.32048(19) | 0.0239(8)              |
|             | -0.1403 (4)          | 0.0400 (3)             | 0.23046 (16)               | 0.0230 (8)             |
| CIOD        | -0.0387              | 0.0102                 | 0.2204                     | 0.031*                 |
|             | -0.1994 (4)          | 0.4330 (3)             | 0.02332 (19)               | 0.0282 (8)             |
| HI9D        | -0.2923              | 0.4149                 | 0.0343                     | 0.042*                 |
| HI9E        | -0.2382              | 0.4546                 | -0.0254                    | 0.042*                 |
| HI9F        | -0.12/4              | 0.4860                 | 0.0489                     | 0.042*                 |
| COA         | 0.8248 (4)           | 1.1008 (3)             | 0.49482 (19)               | 0.0314 (8)             |
| H6A         | 0.8408               | 1.1592                 | 0.46/6                     | 0.038*                 |
|             | 0.0468 (4)           | 0.1922 (3)             | -0.14024 (18)              | 0.0279 (8)             |
|             | 0.1545               | 0.1093                 | -0.13/0                    | 0.042*                 |
| HIJE        | 0.0447               | 0.2420                 | -0.1/80                    | 0.042*                 |
| HISF        | -0.0351              | 0.13/3                 | -0.1546                    | 0.042*                 |
| C3A         | 0.7754 (4)           | 0.9319 (3)             | 0.57632 (19)               | 0.0296 (8)             |
| HJA         | 0.7573               | 0.8/43                 | 0.6043                     | 0.035*                 |
| C4A         | 0.8802 (4)           | 1.0100 (3)             | 0.605//(19)                | 0.0303 (8)             |
| H4A         | 0.9355               | 1.0066                 | 0.6533                     | 0.036*                 |
| O2B         | 0.2121 (3)           | 0.03128 (17)           | -0.02982 (12)              | 0.0259 (5)             |
| H32B        | 0.159 (6)            | 0.080 (3)              | -0.018(3)                  | 0.087 (19)*            |
| OIB         | 0.2151 (3)           | 0.01007 (17)           | 0.09437 (12)               | 0.0288 (6)             |
| O6B         | 0.6436 (3)           | -0.36537 (18)          | -0.06644 (13)              | 0.0335 (6)             |
| O5B         | 0.6630 (3)           | -0.37401 (18)          | 0.05452 (14)               | 0.0369 (6)             |
| C2B         | 0.3518 (4)           | -0.0957 (2)            | 0.01966 (17)               | 0.0212 (7)             |
| N5B         | 0.6176 (3)           | -0.3364 (2)            | -0.00318 (16)              | 0.0266 (7)             |
| C3B         | 0.4047 (4)           | -0.1425 (2)            | 0.08291 (18)               | 0.0244 (7)             |

•

| H3B | 0.3794     | -0.1207     | 0.1314        | 0.029*     |
|-----|------------|-------------|---------------|------------|
| C5B | 0.5287 (4) | -0.2504 (2) | 0.00488 (18)  | 0.0216 (7) |
| C4B | 0.4937 (4) | -0.2206 (2) | 0.07553 (18)  | 0.0245 (7) |
| H4B | 0.5299     | -0.2530     | 0.1185        | 0.029*     |
| C6B | 0.4799 (4) | -0.2040 (2) | -0.05954 (18) | 0.0246 (7) |
| H6B | 0.5073     | -0.2256     | -0.1077       | 0.029*     |
| ClB | 0.2532 (4) | -0.0132 (2) | 0.03155 (18)  | 0.0233 (7) |
| C7B | 0.3907 (4) | -0.1258 (2) | -0.05167 (18) | 0.0227 (7) |
| H7B | 0.3562     | -0.0928     | -0.0947       | 0.027*     |
|     |            |             |               |            |

### Atomic displacement parameters (Å<sup>2</sup>)

|      | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|------|-------------|-------------|-------------|--------------|--------------|--------------|
| S1   | 0.0240 (4)  | 0.0289 (5)  | 0.0144 (4)  | 0.0022 (3)   | 0.0015 (3)   | 0.0038 (3)   |
| O3A  | 0.0333 (14) | 0.0248 (13) | 0.0214 (12) | 0.0022 (11)  | 0.0018 (10)  | 0.0057 (9)   |
| N4A  | 0.0389 (18) | 0.0263 (16) | 0.0198 (15) | -0.0032 (14) | 0.0037 (13)  | 0.0010 (12)  |
| O4A  | 0.0229 (13) | 0.0347 (14) | 0.0191 (12) | 0.0012 (10)  | -0.0021(9)   | 0.0021 (10)  |
| N3A  | 0.0307 (17) | 0.0313 (16) | 0.0155 (14) | 0.0007 (13)  | 0.0039 (12)  | 0.0062 (12)  |
| N2A  | 0.0287 (16) | 0.0257 (16) | 0.0151 (14) | -0.0002 (13) | 0.0036 (12)  | 0.0025 (12)  |
| C10A | 0.0265 (19) | 0.0247 (18) | 0.0209 (18) | -0.0022(15)  | 0.0018 (14)  | 0.0019 (13)  |
| C25  | 0.0282 (19) | 0.0256 (18) | 0.0215 (18) | 0.0037 (15)  | -0.0007 (14) | 0.0008 (14)  |
| C8A  | 0.0254 (19) | 0.0301 (19) | 0.0204 (17) | 0.0020 (15)  | 0.0040 (14)  | 0.0052 (14)  |
| C14A | 0.0204 (18) | 0.0308 (19) | 0.0205 (18) | 0.0019 (15)  | 0.0058 (14)  | 0.0021 (14)  |
| C13A | 0.0234 (18) | 0.0294 (19) | 0.0191 (17) | -0.0025 (15) | -0.0017 (14) | 0.0039 (14)  |
| N1A  | 0.0236 (18) | 0.0335 (19) | 0.0379 (19) | 0.0033 (15)  | 0.0006 (14)  | -0.0054(15)  |
| C11A | 0.0248 (18) | 0.0297 (19) | 0.0138 (16) | 0.0010 (15)  | 0.0028 (13)  | 0.0044 (13)  |
| C9A  | 0.0209 (18) | 0.0284 (19) | 0.0257 (18) | -0.0017 (15) | 0.0031 (14)  | 0.0037 (14)  |
| C16A | 0.035 (2)   | 0.034 (2)   | 0.0198 (18) | 0.0003 (16)  | 0.0036 (15)  | 0.0041 (15)  |
| C18A | 0.044 (2)   | 0.030 (2)   | 0.0200 (18) | -0.0044 (17) | 0.0072 (16)  | 0.0028 (15)  |
| C17A | 0.049 (2)   | 0.031 (2)   | 0.0231 (19) | -0.0045 (18) | 0.0022 (17)  | 0.0070 (15)  |
| C15A | 0.048 (2)   | 0.038 (2)   | 0.0199 (19) | -0.0092 (18) | -0.0009 (17) | 0.0096 (15)  |
| C19A | 0.077 (3)   | 0.036 (2)   | 0.022 (2)   | -0.012 (2)   | 0.001 (2)    | 0.0062 (16)  |
| S2   | 0.0262 (5)  | 0.0316 (5)  | 0.0162 (4)  | 0.0064 (4)   | 0.0020 (3)   | 0.0017 (3)   |
| O3B  | 0.0300 (14) | 0.0355 (14) | 0.0198 (12) | 0.0104 (11)  | -0.0008 (10) | 0.0031 (10)  |
| N3B  | 0.0222 (15) | 0.0250 (15) | 0.0173 (14) | 0.0035 (12)  | 0.0049 (11)  | 0.0032 (11)  |
| N34B | 0.0212 (15) | 0.0226 (15) | 0.0231 (15) | 0.0045 (12)  | 0.0036 (11)  | 0.0043 (11)  |
| O2A  | 0.0445 (17) | 0.0335 (15) | 0.0252 (14) | -0.0114 (13) | -0.0041 (12) | 0.0073 (11)  |
| O4B  | 0.0311 (14) | 0.0296 (13) | 0.0208 (12) | 0.0043 (11)  | 0.0011 (10)  | -0.0028 (10) |
| N2B  | 0.0294 (16) | 0.0283 (17) | 0.0166 (14) | 0.0113 (13)  | 0.0027 (12)  | 0.0011 (12)  |
| OlA  | 0.0443 (16) | 0.0359 (15) | 0.0188 (13) | -0.0053 (12) | -0.0011 (11) | 0.0037 (10)  |
| 06A  | 0.0524 (19) | 0.0437 (17) | 0.0391 (17) | -0.0080 (14) | -0.0153 (14) | 0.0012 (13)  |
| O5A  | 0.066 (2)   | 0.0397 (17) | 0.0359 (16) | -0.0218 (15) | 0.0024 (14)  | 0.0072 (13)  |
| C18B | 0.0188 (17) | 0.0243 (18) | 0.0234 (18) | -0.0001 (14) | 0.0011 (14)  | 0.0033 (14)  |
| N1B  | 0.037(2)    | 0.0265 (18) | 0.0388 (19) | 0.0061 (16)  | 0.0073 (15)  | 0.0045 (14)  |
| C14B | 0.0201 (17) | 0.0236 (17) | 0.0161 (16) | 0.0012 (14)  | 0.0039 (13)  | 0.0035 (13)  |
| C17B | 0.0242 (18) | 0.0278 (19) | 0.0222 (18) | 0.0032 (15)  | -0.0016 (14) | 0.0054 (14)  |
| C11B | 0.0298 (19) | 0.0308 (19) | 0.0126 (16) | 0.0083 (15)  | 0.0029 (13)  | 0.0027 (13)  |
| C8B  | 0.0255 (19) | 0.033 (2)   | 0.0159 (17) | 0.0046 (15)  | 0.0008 (14)  | 0.0047 (14)  |
| C13B | 0.032 (2)   | 0.032 (2)   | 0.0220 (18) | 0.0111 (16)  | 0.0062 (15)  | 0.0016 (15)  |
| C1A  | 0.029 (2)   | 0.0295 (19) | 0.0227 (19) | 0.0016 (15)  | 0.0064 (15)  | 0.0041 (14)  |
| C9B  | 0.033 (2)   | 0.0258 (19) | 0.0228 (18) | 0.0064 (15)  | -0.0031 (15) | 0.0023 (14)  |
| C2A  | 0.0250 (19) | 0.033 (2)   | 0.0194 (17) | 0.0008 (15)  | 0.0037 (14)  | -0.0014 (14) |
| N5A  | 0.0295 (17) | 0.0355 (18) | 0.0292 (17) | -0.0009 (14) | 0.0017 (13)  | -0.0009 (14) |
| C12B | 0.033 (2)   | 0.0257 (19) | 0.0222 (18) | 0.0083 (15)  | 0.0061 (15)  | 0.0049 (14)  |
|      |             |             |             |              |              |              |

| C7A        | 0.035 (2)                | 0.030 (2)                | 0.0201 (18)              | 0.0003 (16)              | 0.0012 (15)              | 0.0001 (14)              |
|------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| C16B       | 0.0242 (18)              | 0.0269 (18)              | 0.0184 (17)              | -0.0011 (14)             | 0.0068 (13)              | 0.0025 (13)              |
| C5A        | 0.0245 (19)              | 0.0250 (18)              | 0.0272 (19)              | -0.0025 (15)             | 0.0046 (15)              | -0.0014 (14)             |
| C10B       | 0.0282 (19)              | 0.032 (2)                | 0.0182 (17)              | 0.0106 (16)              | 0.0014 (14)              | 0.0011 (14)              |
| C19B       | 0.0268 (19)              | 0.032 (2)                | 0.0272 (19)              | 0.0074 (16)              | 0.0023 (15)              | 0.0037 (15)              |
| C6A        | 0.037 (2)                | 0.033 (2)                | 0.0241 (19)              | 0.0013 (17)              | 0.0055 (16)              | 0.0043 (15)              |
| C15B       | 0.035(2)                 | 0.031(2)                 | 0.0187 (18)              | 0.0060 (16)              | 0.0047 (15)              | 0.0028 (14)              |
| C3A        | 0.030(2)                 | 0.031(2)                 | 0.0262 (19)              | -0.0046(16)              | 0.0012(15)               | 0.0067(15)               |
| C4A        | 0.031(2)                 | 0.035(2)                 | 0.0232(19)               | 0.0005(17)               | -0.0028(15)              | 0.0007(15)               |
| O2B        | 0.0324(14)               | 0.0281(14)               | 0.0191(12)               | 0.0105(11)               | 0.0023(10)               | 0.0027(10)               |
| 01B        | 0.0320(14)               | 0.0201(14)<br>0.0325(14) | 0.0191(12)<br>0.0198(13) | 0.0105(11)<br>0.0124(11) | 0.0025(10)               | 0.0043(10)<br>0.0052(10) |
| 06B        | 0.0356(15)               | 0.0323(11)               | 0.0304(14)               | 0.0121(11)<br>0.0077(12) | 0.0000(10)<br>0.0044(11) | -0.0032(10)              |
| 05B        | 0.0462(16)               | 0.0357(15)               | 0.0301(11)<br>0.0321(15) | 0.0077(12)<br>0.0158(13) | 0.0048(12)               | 0.0070(11)               |
| C2B        | 0.0102(10)               | 0.0257(18)               | 0.0321(13)<br>0.0182(17) | 0.0130(13)<br>0.0014(14) | 0.0010(12)<br>0.0027(13) | 0.0105(11)<br>0.0041(13) |
| N5B        | 0.0135(17)               | 0.0235(10)<br>0.0276(16) | 0.0102(17)               | 0.0011(11)<br>0.0038(13) | 0.0027(13)               | 0.0041(13)               |
| C3B        | 0.0220(10)<br>0.0283(10) | 0.0270(10)<br>0.0281(19) | 0.0277(17)<br>0.0173(17) | 0.0038(15)               | 0.0010(13)<br>0.0043(14) | 0.0010(13)<br>0.0043(14) |
| C5B        | 0.0203(17)               | 0.0201(19)<br>0.0240(18) | 0.0173(17)<br>0.0243(18) | 0.0036(13)<br>0.0026(14) | 0.00+3(1+)<br>0.0017(13) | 0.00+3(1+)<br>0.0010(14) |
| C4B        | 0.0100(17)<br>0.0215(18) | 0.0240(10)<br>0.0282(10) | 0.0243(18)               | 0.0020(14)<br>0.0003(15) | 0.0017(13)               | 0.0010(14)               |
| C6B        | 0.0213(10)               | 0.0202(19)               | 0.0239(13)               | -0.0005(15)              | 0.0042(14)               | 0.0003(14)               |
|            | 0.0200(19)               | 0.0280(19)               | 0.0137(17)               | -0.0003(13)              | 0.0030(14)               | -0.0032(14)              |
| CTD<br>C7D | 0.0133(18)               | 0.0204(18)               | 0.0237(19)               | 0.0023(14)               | 0.0022(14)               | 0.0032(14)               |
| C/D        | 0.0232 (18)              | 0.0250 (18)              | 0.0192 (17)              | 0.0010 (14)              | 0.0013 (14)              | 0.0048 (13)              |
| Geomet     | tric parameters          | (Å, °)                   |                          |                          |                          |                          |
| <u> </u>   |                          | 1 424                    | (2)                      |                          |                          |                          |
| SI-04      | A                        | 1.434                    | (2)                      | NIB—C8B                  | 1.3                      | 359 (5)                  |
| SI-03      | A                        | 1.435                    | (2)                      | NIB—H30D                 | 0.8                      | 361 (18)                 |
| SI—N2      | A                        | 1.658                    | (3)                      | N1B—H30C                 | 0.8                      | 349 (19)                 |
| SI-CI      | IA                       | 1.738                    | (3)                      | C17B—C16B                | 1.3                      | 382 (5)                  |
| N4A—(      | CI4A                     | 1.318                    | (4)                      | C17B—H17B                | 0.9                      | 9500                     |
| N4A—(      | C18A                     | 1.353                    | (4)                      | C11B—C10B                | 1.3                      | 390 (5)                  |
| N3A—0      | C16A                     | 1.351                    | (4)                      | C11B—C12B                | 1.3                      | 396 (5)                  |
| N3A—C      | C14A                     | 1.351                    | (4)                      | C8B—C13B                 | 1.3                      | 396 (5)                  |
| N2A—0      | C14A                     | 1.391                    | (4)                      | C8B—C9B                  | 1.4                      | 107 (5)                  |
| N2A—I      | H31A                     | 0.873                    | (19)                     | C13B—C12B                | 1.3                      | 379 (5)                  |
| C10A—      | -C9A                     | 1.374                    | (5)                      | C13B—H13B                | 0.9                      | 9500                     |
| C10A—      | -C11A                    | 1.399                    | (5)                      | C1A—C2A                  | 1.4                      | 89 (5)                   |
| C10A—      | -H10A                    | 0.9500                   |                          | C9B—C10B                 | 1.3                      | 384 (5)                  |
| С25—С      | 213A                     | 1.366                    | (5)                      | C9B—H9B                  | 0.9                      | 9500                     |
| C25—C      | 28A                      | 1.414                    | (5)                      | C2A—C3A                  | 1.3                      | 880 (5)                  |
| С25—Н      | [25                      | 0.9500                   |                          | C2A—C7A                  | 1.3                      | 88 (5)                   |
| C8A—N      | N1A                      | 1.359                    | (4)                      | N5A—C5A                  | 1.4                      | 82 (4)                   |
| C8AC       | C9A                      | 1.413                    | (5)                      | C12B—H12B                | 0.9                      | 500                      |
| C13A—      | -C11A                    | 1.399                    | (5)                      | C7A—C6A                  | 1.3                      | 83 (5)                   |
| C13A—      | -H13A                    | 0.9500                   |                          | C7A—H7A                  | 0.9                      | 0500                     |
| NIA—I      | 130A                     | 0.845 (                  | (19)                     | C16B—C15B                | 1.5                      | 05 (4)                   |
| NIA—H      | 130B                     | 0.848                    | (19)                     | C5A—C6A                  | 1.3                      | 573 (5)                  |
| C9A—H      | 19A                      | 0.9500                   |                          | C5A—C4A                  | 1.3                      | 681 (5)                  |
| C16A—      | -C17A                    | 1.380                    | (5)                      | C10B—H10B                | 0.9                      | 500                      |
| C16A—      | -C15A                    | 1.499                    | (5)                      | C19B—H19D                | 0.9                      | 800                      |
| C18A—      | -C17A                    | 1.388                    | (5)                      | C19B—H19E                | 0.9                      | 800                      |
| C18A—      | -C19A                    | 1.487 (                  | (5)                      | C19B—H19F                | 0.9                      | 800                      |
| C17A—      | H17A                     | 0.9500                   | )                        | C6A—H6A                  | 0.9                      | 500                      |
| C15A—      | H15A                     | 0.9800                   | )                        | C15B—H15D                | 0.9                      | 800                      |
| C15A—      | H15B                     | 0.9800                   | )                        | C15B—H15E                | 0.9                      | 800                      |
| C15A—      | H15C                     | 0.9800                   | )                        | C15B—H15F                | 0.9                      | 800                      |
| C19A—      | H19A                     | 0.9800                   | )                        | C3A—C4A                  | 1.3                      | 85 (5)                   |

| C19A—H19B                         | 0.9800                | СЗА—НЗА                       | 0.9500               |
|-----------------------------------|-----------------------|-------------------------------|----------------------|
| C19A—H19C                         | 0.9800                | C4A—H4A                       | 0.9500               |
| S2—O4B                            | 1.419 (2)             | O2B—C1B                       | 1.317 (4)            |
| S2—O3B                            | 1.435 (2)             | O2B—H32B                      | 0.864 (19)           |
| S2—N2B                            | 1.639 (3)             | O1BC1B                        | 1.225 (4)            |
| S2—C11B                           | 1.747 (4)             | O6B—N5B                       | 1.226 (3)            |
| N3B—C16B                          | 1.347 (4)             | O5B—N5B                       | 1.226 (4)            |
| N3B—C14B                          | 1.351 (4)             | C2BC3B                        | 1.391 (4)            |
| N34B—C14B                         | 1.325 (4)             | C2B—C7B                       | 1.394 (4)            |
| N34B—C18B                         | 1.347 (4)             | C2B—C1B                       | 1.491 (4)            |
| O2A—C1A                           | 1.317 (4)             | N5B—C5B                       | 1.473 (4)            |
| 02A—H32A                          | 0.865 (19)            | C3B—C4B                       | 1.379 (5)            |
| N2B—C14B                          | 1.390 (4)             | C3B—H3B                       | 0.9500               |
| N2B—H31B                          | 0.863 (19)            | C5B—C4B                       | 1.372 (4)            |
| OIA—CIA                           | 1.217 (4)             | C5B—C6B                       | 1.394 (4)            |
| O6A—N5A                           | 1.227 (4)             | C4B—H4B                       | 0.9500               |
| O5A—N5A                           | 1.222 (4)             | C6B—C7B                       | 1.382 (5)            |
| C18B-C17B                         | 1 388 (5)             | C6B—H6B                       | 0.9500               |
| C18B— $C19B$                      | 1 492 (5)             | C7B—H7B                       | 0 9500               |
| 04A = S1 = 03A                    | 118.85 (14)           | C10B— $C11B$ — $S2$           | 118.6 (3)            |
| 04A - S1 - N2A                    | 109 89 (14)           | C12B— $C11B$ — $S2$           | 121.6 (3)            |
| O3A = S1 = N2A                    | 101 76 (14)           | N1B - C8B - C13B              | 1211(3)              |
| 04A = S1 = C11A                   | 109.63 (15)           | N1B - C8B - C9B               | 1199(3)              |
| 03A = S1 = C11A                   | 109.33 (15)           | C13B-C8B-C9B                  | 119.0(3)             |
| N2A = S1 = C11A                   | 106 54 (15)           | C12B— $C13B$ — $C8B$          | 1210(3)              |
| C14A - N4A - C18A                 | 1164(3)               | C12B— $C13B$ — $H13B$         | 119 5                |
| C16A - N3A - C14A                 | 116.8 (3)             | C8B-C13B-H13B                 | 119.5                |
| C14A = N2A = S1                   | 1235(2)               | O1A-C1A-O2A                   | 124 3 (3)            |
| C14A = N2A = H31A                 | 113(3)                | O1A-C1A-C2A                   | 127.5(3)<br>122.5(3) |
| $S1_N^2A_H^31A$                   | 113 (3)               | $O^2A$ — $C^1A$ — $C^2A$      | 1132(3)              |
| C9A - C10A - C11A                 | 1203(3)               | C10B-C9B-C8B                  | 119.8 (3)            |
| C9A - C10A - H10A                 | 119.9                 | C10B $C9B$ $H9B$              | 120.1                |
| $C_{11A} - C_{10A} - H_{10A}$     | 119.9                 | C8B-C9B-H9B                   | 120.1                |
| $C_{13A}$ $C_{25}$ $C_{8A}$       | 121 1 (3)             | C3A - C2A - C7A               | 119 5 (3)            |
| $C_{13}A - C_{25} - H_{25}$       | 119.4                 | $C_{3A}$ $C_{2A}$ $C_{1A}$    | 120.9(3)             |
| C8A = C25 = H25                   | 119.1                 | C7A - C2A - C1A               | 120.9(3)<br>1196(3)  |
| N1A - C8A - C9A                   | 119.8 (3)             | 05A - N5A - 06A               | 1234(3)              |
| N1A - C8A - C25                   | 1220(3)               | O5A - N5A - C5A               | 118 3 (3)            |
| C9A - C8A - C25                   | 122.0(3)<br>118 2 (3) | O6A - N5A - C5A               | 118.3(3)             |
| N4A - C14A - N3A                  | 1267(3)               | $C_{13B}$ $C_{12B}$ $C_{11B}$ | 110.2(3)<br>119.8(3) |
| N4A - C14A - N2A                  | 1195(3)               | C13B— $C12B$ — $H12B$         | 120.1                |
| N3A - C14A - N2A                  | 113.7(3)              | C11B-C12B-H12B                | 120.1                |
| $C_{25}$ - $C_{13A}$ - $C_{11A}$  | 1200(3)               | C6A - C7A - C2A               | 120.9 (3)            |
| $C_{25}$ $-C_{13A}$ $-H_{13A}$    | 120.0                 | С6А—С7А—Н7А                   | 119.6                |
| C11A - C13A - H13A                | 120.0                 | С2А—С7А—Н7А                   | 119.6                |
| C8A = N1A = H30A                  | 120 (3)               | N3B-C16B-C17B                 | 120.4 (3)            |
| C8A = N1A = H30B                  | 122 (3)               | N3B-C16B-C15B                 | 117.5 (3)            |
| $H_{30A}$ $N_{1A}$ $H_{30B}$      | 116 (4)               | C17B-C16B-C15B                | 122.1 (3)            |
| C10A - C11A - C13A                | 110(1)<br>1198(3)     | C6A - C5A - C4A               | 122.1(3)<br>123.0(3) |
| C10A - C11A - S1                  | 119.6(3)              | C6A - C5A - N5A               | 1197(3)              |
| C13A - C11A - S1                  | 1216(3)               | C4A - C5A - N5A               | 117 3 (3)            |
| $C10\Delta - C0\Delta - C8\Delta$ | 121.0(3)<br>1206(3)   | C9B-C10B-C11B                 | 120 6 (3)            |
| C10A - C0A - U0A                  | 110 7                 | C9B-C10B-H10B                 | 1197                 |
| $C_{0A} = C_{0A} = D_{0A}$        | 110.7                 | $C_{11B} C_{10B} H_{10B}$     | 119.7                |
| $COA - CYA - \Pi YA$              | 117.7                 |                               | 100 5                |
| NJA-UIOA-UI/A                     | 120.1 (3)             | C10D-C19D-119D                | 109.3                |

| N3A—C16A—C15A                                                                               | 117.1 (3)   | C18B—C19B—H19E             | 109.5      |
|---------------------------------------------------------------------------------------------|-------------|----------------------------|------------|
| C17A—C16A—C15A                                                                              | 122.8 (3)   | H19D—C19B—H19E             | 109.5      |
| N4A—C18A—C17A                                                                               | 120.9 (3)   | C18B—C19B—H19F             | 109.5      |
| N4A—C18A—C19A                                                                               | 116.4 (3)   | H19D—C19B—H19F             | 109.5      |
| C17A—C18A—C19A                                                                              | 122.7 (3)   | H19E—C19B—H19F             | 109.5      |
| C16A—C17A—C18A                                                                              | 119.0 (3)   | C5A—C6A—C7A                | 117.9 (3)  |
| C16A—C17A—H17A                                                                              | 120.5       | С5А—С6А—Н6А                | 121.0      |
| C18AC17AH17A                                                                                | 120.5       | С7А—С6А—Н6А                | 121.0      |
| C16A—C15A—H15A                                                                              | 109.5       | C16B—C15B—H15D             | 109.5      |
| C16A—C15A—H15B                                                                              | 109.5       | C16B—C15B—H15E             | 109.5      |
| H15A—C15A—H15B                                                                              | 109.5       | H15D—C15B—H15E             | 109.5      |
| C16A—C15A—H15C                                                                              | 109.5       | C16BC15BH15F               | 109.5      |
| H15A—C15A—H15C                                                                              | 109.5       | H15D-C15BH15F              | 109.5      |
| H15B—C15A—H15C                                                                              | 109.5       | H15E—C15B—H15F             | 109.5      |
| C18A—C19A—H19A                                                                              | 109.5       | C2A—C3A—C4A                | 120.8 (3)  |
| C18A—C19A—H19B                                                                              | 109.5       | С2А—С3А—Н3А                | 119.6      |
| H19A—C19A—H19B                                                                              | 109.5       | С4А—С3А—Н3А                | 119.6      |
| C18A—C19A—H19C                                                                              | 109.5       | C5A—C4A—C3A                | 117.9 (3)  |
| H19A—C19A—H19C                                                                              | 109.5       | C5A—C4A—H4A                | 121.1      |
| H19B—C19A—H19C                                                                              | 109.5       | C3A—C4A—H4A                | 121.1      |
| O4B—S2O3B                                                                                   | 118.98 (14) | C1B—O2B—H32B               | 109 (3)    |
| O4B—S2—N2B                                                                                  | 109.95 (14) | C3B—C2B—C7B                | 120.4 (3)  |
| O3B—S2—N2B                                                                                  | 103.06 (14) | C3B—C2B—C1B                | 117.4 (3)  |
| 04B = S2 = -C11B                                                                            | 110.48 (15) | C7B—C2B—C1B                | 122.1 (3)  |
| O3B - S2 - C11B                                                                             | 107.30 (15) | O5B—N5B—O6B                | 123.9 (3)  |
| N2B - S2 - C11B                                                                             | 106.16 (15) | O5B—N5B—C5B                | 117.4 (3)  |
| C16B—N3B—C14B                                                                               | 116.2 (3)   | 06B—N5B—C5B                | 118.7 (3)  |
| C14B—N34B—C18B                                                                              | 115.6 (3)   | C4B—C3B—C2B                | 120.2 (3)  |
| C1A - O2A - H32A                                                                            | 112 (3)     | C4B—C3B—H3B                | 119.9      |
| C14B— $N2B$ — $S2$                                                                          | 127.5 (2)   | C2B—C3B—H3B                | 119.9      |
| C14B - N2B - H31B                                                                           | 117 (3)     | C4B—C5B—C6B                | 122.6 (3)  |
| S2—N2B—H31B                                                                                 | 114 (3)     | C4B—C5B—N5B                | 118.6 (3)  |
| N34B—C18B—C17B                                                                              | 121.5 (3)   | C6B—C5B—N5B                | 118.8 (3)  |
| N34B—C18B—C19B                                                                              | 117.1 (3)   | C5B—C4B—C3B                | 118.6 (3)  |
| C17B-C18B-C19B                                                                              | 121.5 (3)   | C5B—C4B—H4B                | 120.7      |
| C8B-N1B-H30D                                                                                | 119 (3)     | C3B—C4B—H4B                | 120.7      |
| C8B-N1B-H30C                                                                                | 118 (3)     | C7B—C6B—C5B                | 118.5 (3)  |
| H30D - N1B - H30C                                                                           | 121 (4)     | C7B—C6B—H6B                | 120.8      |
| N34B—C14B—N3B                                                                               | 127.4 (3)   | C5B—C6B—H6B                | 120.8      |
| N34B— $C14B$ — $N2B$                                                                        | 119.6 (3)   | O1B-C1B-O2B                | 123.7 (3)  |
| N3B— $C14B$ — $N2B$                                                                         | 112.9 (3)   | O1B—C1B—C2B                | 121.3 (3)  |
| C16B—C17B—C18B                                                                              | 118.7 (3)   | O2B—C1B—C2B                | 115.0 (3)  |
| C16B—C17B—H17B                                                                              | 120.6       | C6B—C7B—C2B                | 119.7 (3)  |
| C18B—C17B—H17B                                                                              | 120.6       | C6B—C7B—H7B                | 120.2      |
| C10B-C11B-C12B                                                                              | 119.8 (3)   | C2B—C7B—H7B                | 120.2      |
| O4A = S1 = N2A = C14A                                                                       | 59.9 (3)    | N2B—S2—C11B—C12B           | -109.5(3)  |
| O3A = S1 = N2A = C14A                                                                       | -173.2(3)   | N1B-C8B-C13B-C12B          | 179.4 (3)  |
| C11A - S1 - N2A - C14A                                                                      | -58.8(3)    | C9B—C8B—C13B—C12B          | 1.1 (5)    |
| C13A—C25—C8A—N1A                                                                            | 177.7 (3)   | N1B—C8B—C9B—C10B           | -179.6 (3) |
| C13A - C25 - C8A - C9A                                                                      | -0.8 (5)    | C13B—C8B—C9B—C10B          | -1.2 (5)   |
| C18A - N4A - C14A - N3A                                                                     | 1.0 (5)     | OIA-CIA-C2A-C3A            | -173.3(3)  |
| C18A N4A $C14A$ N2A                                                                         | -178.0(3)   | O2A-C1A-C2A-C3A            | 7.6 (5)    |
| C16A = N3A = C14A = N4A                                                                     | -15(5)      | O1A— $C1A$ — $C2A$ — $C7A$ | 7.1 (5)    |
| C16A = N3A = C14A = N2A                                                                     | 177 6 (3)   | O2A - C1A - C2A - C7A      | -172.1(3)  |
| S1 - N2A - C14A - N4A                                                                       | -340(4)     | C8B-C13B-C12B-C11B         | -0.4(5)    |
| $\mathbf{D} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} I$ | 54.0 (4)    |                            | 0.1(3)     |

.

.

| S1—N2A—C14A—N3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 146.8 (2)  | C10B—C11B—C12B—                 | -0.1 (5)             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------|----------------------|
| C8A_C25_C13A_C11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 2 (5)    | S2 C11B C12B C13B               | 170.5(3)             |
| $C_{0A} = C_{10A} = C_{11A} = C_{13A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.2(5)     | $C_{2}$                         | 1/9.5(5)             |
| $C_{A}$ $C_{A$ | (0.5(5))   | $C_{A} = C_{A} = C_{A} = C_{A}$ | -1.5(3)              |
| $C_{A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1/.8(3)   | CIA - CZA - C/A - COA           | 1/8.4 (3)            |
| C25—C13A—C11A—C10A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1.0(5)    | C14B—N3B—C16B—C17B              | 0.0 (5)              |
| C25—C13A—C11A—S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 177.3 (3)  | C14B—N3B—C16B—C15B              | -179.8 (3)           |
| O4A—S1—C11A—C10A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 177.6 (2)  | C18B—C17B—C16B—N3B              | -2.5 (5)             |
| O3A—S1—C11A—C10A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45.7 (3)   | C18B—C17B—C16B—<br>C15B         | 177.3 (3)            |
| N2A—S1—C11A—C10A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -63.6(3)   | O5A—N5A—C5A—C6A                 | -5.3(5)              |
| 04A = S1 = C11A = C13A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.7(3)    | O6A - N5A - C5A - C6A           | 1744(3)              |
| $O_{3A}$ $S_{1}$ $C_{11A}$ $C_{13A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1326(3)   | $O_{5A}$ N5A $C_{5A}$ $C_{4A}$  | 171.1(3)<br>174.8(3) |
| N2A S1 C11A C12A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 152.0(5)   | $O_{A} = N_{A} = C_{A} = C_{A}$ | 174.0(3)             |
| NZA—SI—CITA—CISA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 118.1 (3)  | 00A - NJA - CJA - C4A           | -5.5 (5)             |
| CITA—CTUA—C9A—C8A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.2 (5)   | C8B—C9B—C10B—C11B               | 0.7(5)               |
| N1A—C8A—C9A—C10A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -178.3 (3) | C12B—C11B—C10B—C9B              | -0.1 (5)             |
| C25—C8A—C9A—C10A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.3 (5)    | S2—C11B—C10B—C9B                | -179.6 (2)           |
| C14A—N3A—C16A—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 1 (5)    |                                 | 0.0(5)               |
| C17A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.1 (5)    | C4A—CJA—COA—C/A                 | -0.9(3)              |
| C14A—N3A—C16A—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 170 2 (2)  |                                 | 150 0 (2)            |
| C15A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1/9.3(3)  | NJA-CJA-C6A-C/A                 | 179.2 (3)            |
| C14A—N4A—C18A—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                                 |                      |
| $C17\Delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.1 (5)   | C2A—C7A—C6A—C5A                 | 1.7 (5)              |
| C14A N4A $C18A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                 |                      |
| C10A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -179.0 (3) | C7A—C2A—C3A—C4A                 | -0.1 (5)             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                 |                      |
| N3A—C16A—C17A—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.4(6)    | C1A—C2A—C3A—C4A                 | -179.7(3)            |
| C18A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                                 | 1,507 (0)            |
| C15A—C16A—C17A—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -170.0(4)  | C6A - C5A - C4A - C3A           | -0.3(5)              |
| C18A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/9.9 (+)  | COA-CJA-CJA-CJA                 | 0.5 (5)              |
| N4A—C18A—C17A—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1.(()    |                                 | 170 5 (2)            |
| C16A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.1 (6)   | NJA-CJA-C4A-CJA                 | 179.5 (3)            |
| C19A—C18A—C17A—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /          |                                 |                      |
| C16A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 178.7 (4)  | C2A—C3A—C4A—C5A                 | 0.8 (5)              |
| 04B S2 N2B $C14B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -433(3)    | C7B—C2B—C3B—C4B                 | -13(5)               |
| $O_{3}P$ $S_2$ $N_{2}P$ $C_{1}AP$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1712(3)   | C1B $C2B$ $C3B$ $C4B$           | 1.5(3)<br>178 7 (3)  |
| OJD = S2 = N2D = C14D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 771.2(3)   | CID - C2D - C3D - C4D           | 170.7(3)             |
| CIIB = S2 = N2B = CI4B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | /0.2 (3)   | 03B—N3B—C3B—C4B                 | -3.6 (4)             |
| C14B—N34B—C18B—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.2 (5)    | O6B—N5B—C5B—C4B                 | 177.2 (3)            |
| СГЛВ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                                 |                      |
| C14B—N34B—C18B—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -177.6(3)  | 05B-N5B-C5B-C6B                 | 178 0 (3)            |
| C19B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 177.0 (5)  |                                 | 170.0 (5)            |
| C18B—N34B—C14B—N3B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -4.2 (5)   | O6B—N5B—C5B—C6B                 | -1.2 (4)             |
| C18B—N34B—C14B—N2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 174.3 (3)  | C6B—C5B—C4B—C3B                 | 0.9 (5)              |
| C16B—N3B—C14B—N34B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.6 (5)    | N5B—C5B—C4B—C3B                 | -177.4(3)            |
| C16B—N3B—C14B—N2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -174.9(3)  | C2B—C3B—C4B—C5B                 | 0.2 (5)              |
| $S^2 = N^2 B = C_1 4 B = N^3 4 B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60(5)      | C4B— $C5B$ — $C6B$ — $C7B$      | -0.9(5)              |
| S2 N2B C1/B N3B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1753(2)   | N5B C5B C6B C7B                 | 177 A (3)            |
| $S_2 = N_2 B = C_1 4 B = N_3 B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -173.3(2)  | NJB-CJB-C0B-C/B                 | 177.4(3)             |
| N34B - C18B - C1/B -    | 1.9 (5)    | C3B—C2B—C1B—O1B                 | -2.6(5)              |
| CI6B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                                 |                      |
| C19B—C18B—C17B—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1794(3)   | C7B-C2B-C1B-O1B                 | 177 3 (3)            |
| C16B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 179.4 (5)  | CID C2D CID CID                 | 177.5 (5)            |
| O4B—S2—C11B—C10B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -170.8 (2) | C3B—C2B—C1B—O2B                 | 177.2 (3)            |
| O3B—S2—C11B—C10B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -39.7 (3)  | C7B—C2B—C1B—O2B                 | -2.8 (5)             |
| N2B—S2—C11B—C10B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70.0 (3)   | C5B—C6B—C7B—C2B                 | -0.2 (5)             |
| 04B = S2 = C11B = C12B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 97(3)      | C3B-C2B-C7B-C6B                 | 1.2 (5)              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 140.8 (3)  | C1B C2B C7B C6B                 | -1787(3)             |
| UJD—J2—UIID—UI2D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1-0.0 (3)  | C1D - C2D - C/D - C0D           | 1/0./(3)             |



Figure S.5: Crystal Structure of the Cocrystal of Sulfamethazine and o-Methylbenzoic Acid Showing Thermal Parameters (50% Thermal Ellipsoids) and Hydrogen Bonding.

### Crystal data

 $C_{12}H_{14}N_4O_2S \cdot C_8H_8O_2$   $M_r = 414.47$ Triclinic, P a = 8.1595 (7) Å b = 9.9424 (8) Å c = 13.2334 (12) Å  $\alpha = 107.191 (4)^{\circ}$   $\beta = 90.459 (5)^{\circ}$   $\gamma = 107.881 (4)^{\circ}$   $V = 970.28 (15) \text{ Å}^3$ Z = 2 F(000) = 436  $D_x = 1.419 \text{ Mg m}^{-3}$ Melting point: 431-435 K Cu K\alpha radiation, \lambda = 1.54178 Å Cell parameters from 9834 reflections  $\theta = 4.9-68.4^{\circ}$   $\mu = 1.79 \text{ mm}^{-1}$  T = 100 KPlates, colourless  $0.40 \times 0.25 \times 0.14 \text{ mm}$ 

### Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Detector resolution: 8.33 pixels mm<sup>-1</sup> 3467 independent reflections

3139 reflections with  $I > 2\sigma(I)$  $R_{int} = ?$ 

### Crystal data

 $\begin{array}{l} C_{12}H_{14}N_4O_2S\cdot C_8H_8O_2\\ M_r = 414.47\\ Triclinic, P\\ a = 8.1595 \ (7) \ \text{\AA}\\ b = 9.9424 \ (8) \ \text{\AA}\\ c = 13.2334 \ (12) \ \text{\AA}\\ \alpha = 107.191 \ (4)^{\circ}\\ \beta = 90.459 \ (5)^{\circ}\\ \gamma = 107.881 \ (4)^{\circ}\\ V = 970.28 \ (15) \ \text{\AA}^3\\ Z = 2 \end{array}$ 

F(000) = 436  $D_x = 1.419 \text{ Mg m}^{-3}$ Melting point: 431-435 K Cu K\alpha radiation,  $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9834 reflections  $\theta = 4.9-68.4^{\circ}$   $\mu = 1.79 \text{ mm}^{-1}$  T = 100 KPlates, colourless  $0.40 \times 0.25 \times 0.14 \text{ mm}$ 

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Detector resolution: 8.33 pixels mm<sup>-1</sup> phi and  $\omega$  scans Absorption correction: multi-scan SADABS2014/7, Bruker AXS  $T_{min} = 0.417$ ,  $T_{max} = 0.753$ 3467 measured reflections 3467 independent reflections

3139 reflections with  $I > 2\sigma(I)$   $R_{int} = ?$   $\theta_{max} = 68.2^{\circ}, \ \theta_{min} = 3.5^{\circ}$  h = -9 9 k = -10 11 l = -15 15

### Refinement

| Refinement on $F^2$             |                                                                                     |
|---------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Hydrogen site location: mixed                                                       |
| $R[F^2 > 2\sigma(F^2)] = 0.044$ | H atoms treated by a mixture of independent and constrained refinement              |
| $wR(F^2) = 0.110$               | $w = 1/[\sigma^2(F_o^2) + (0.0416P)^2 + 0.9699P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| <i>S</i> = 1.15                 | $(\Delta/\sigma)_{\rm max} = 0.002$                                                 |
| 3467 reflections                | $\Delta \rho_{\rm max} = 0.31 \ {\rm e} \ {\rm \AA}^{-3}$                           |
| 281 parameters                  | $\Delta \rho_{\rm min} = -0.35 \ {\rm e} \ {\rm \AA}^{-3}$                          |
| 4 restraints                    | Extinction correction: none                                                         |
| 0 constraints                   |                                                                                     |
|                                 |                                                                                     |

| Fractional | <u>l atomic</u>      | coord | inates | and | isotrop | <u>ic or</u> | equiva | alent | isotropic | disp | <u>lacement</u> |
|------------|----------------------|-------|--------|-----|---------|--------------|--------|-------|-----------|------|-----------------|
| parameter  | rs (Å <sup>2</sup> ) |       |        |     | -       |              |        |       |           | -    |                 |

|     | x           | у            | Ζ             | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|-----|-------------|--------------|---------------|-------------------------------|
| S1  | 0.04963 (7) | 0.89273 (6)  | 0.29535 (4)   | 0.01845 (15)                  |
| O2  | 0.2855 (2)  | 0.44565 (17) | -0.02890 (13) | 0.0246 (4)                    |
| 01  | -0.1954 (2) | 0.69368 (18) | 0.02373 (13)  | 0.0277 (4)                    |
| H32 | -0.222 (4)  | 0.463 (4)    | 0.028 (2)     | 0.056 (11)*                   |
| 03  | -0.0306 (2) | 0.87615 (18) | 0.38900 (13)  | 0.0270 (4)                    |
| 04  | -0.0070 (2) | 0.97832 (17) | 0.24073 (15)  | 0.0283 (4)                    |
| N1  | 0.8023 (2)  | 1.1567 (2)   | 0.43164 (17)  | 0.0218 (4)                    |

| 1120 4 | 0.020 (2)   | 1.104 (3)    | 0.4076 (1.4)  | 0.015 (()*     |
|--------|-------------|--------------|---------------|----------------|
| HJUA   | 0.830(3)    | 1.194 (3)    | 0.4976 (14)   | $0.015(6)^{*}$ |
| H30B   | 0.803(4)    | 1.105(3)     | 0.399(2)      | $0.042(9)^{*}$ |
| N2     | 0.0150(2)   | 0.7309(2)    | 0.20407 (15)  | 0.0181(4)      |
| H3I    | -0.042(3)   | 0.724 (3)    | 0.14/8(1/)    | 0.028 (8)*     |
| N3     | -0.0811(2)  | 0.4757 (2)   | 0.14419 (15)  | 0.0187 (4)     |
| N4     | 0.0914 (2)  | 0.60646 (19) | 0.31252 (15)  | 0.0179 (4)     |
| Cl     | 0.2833 (3)  | 0.5747 (2)   | -0.03895 (18) | 0.0198 (5)     |
| C2     | -0.3958 (3) | 0.5607 (2)   | -0.13317 (17) | 0.0192 (5)     |
| C3     | -0,4939 (3) | 0.4190 (3)   | -0.19812 (19) | 0.0220 (5)     |
| H3     | 0.4890      | 0.3346       | -0.1801       | 0.026*         |
| C4     | -0.5975 (3) | 0.3982 (3)   | 0.28739 (19)  | 0.0237 (5)     |
| H4     | 0.6628      | 0.3007       | -0.3308       | 0.028*         |
| C5     | -0.6053 (3) | 0.5215 (3)   | 0.31314 (19)  | 0.0273 (5)     |
| H5     | -0.6763     | 0.5088       | -0.3747       | 0.033*         |
| C6     | 0.5093 (3)  | 0.6636 (3)   | 0.24911 (19)  | 0.0263 (5)     |
| H6     | -0.5153     | 0.7471       | 0.2681        | 0.032*         |
| C7     | -0.4048 (3) | 0.6869 (3)   | -0.15794 (19) | 0.0229 (5)     |
| C8     | 0.2743 (3)  | 0.9680 (2)   | 0.33077 (18)  | 0.0177 (4)     |
| C9     | 0.3922 (3)  | 0.9249 (2)   | 0.26382 (18)  | 0.0187 (4)     |
| H9     | 0.3523      | 0.8518       | 0.1961        | 0.022*         |
| C10    | 0.5677 (3)  | 0.9889 (2)   | 0.29645 (18)  | 0.0196 (5)     |
| H10    | 0.6482      | 0.9603       | 0.2504        | 0.023*         |
| C11    | 0.6283 (3)  | 1.0958 (2)   | 0.39689 (18)  | 0.0179 (4)     |
| C12    | 0.5071 (3)  | 1.1419 (2)   | 0.46137 (18)  | 0.0188 (5)     |
| H12    | 0.5464      | 1.2180       | 0.5279        | 0.023*         |
| C13    | 0.3317 (3)  | 1.0779 (2)   | 0.42911 (18)  | 0.0191 (5)     |
| H13    | 0.2506      | 1.1086       | 0.4737        | 0.023*         |
| C14    | 0.0092 (3)  | 0.5986 (2)   | 0.22277 (17)  | 0.0174 (4)     |
| C15    | 0.1790 (3)  | 0.4769 (3)   | 0.42217 (19)  | 0.0231 (5)     |
| H15A   | 0.3016      | 0.4931       | 0.4120        | 0.035*         |
| H15B   | 0.1294      | 0.3817       | 0.4359        | 0.035*         |
| H15C   | 0.1685      | 0.5577       | 0.4829        | 0.035*         |
| C16    | 0.0840 (3)  | 0.4741 (2)   | 0.32422 (18)  | 0.0189 (5)     |
| C17    | -0.0061(3)  | 0.3403 (2)   | 0.24707 (19)  | 0.0219 (5)     |
| H17    | -0.0110     | 0 2480       | 0 2 5 6 2     | 0.026*         |
| C18    | -0.0877(3)  | 0 3446 (2)   | 0 15767 (18)  | 0.0202 (5)     |
| C19    | -0.1895(3)  | 0.2056(3)    | 0 07106 (19)  | 0.0262(5)      |
| H19A   | -0.3083     | 0.2050 (5)   | 0.0599        | 0.039*         |
| H19R   | -0.1918     | 0.1183       | 0.0918        | 0.039*         |
| H19C   | -0.1350     | 0 2020       | 0.0050        | 0.039*         |
| C20    | -0.3092(4)  | 0.8453 (3)   | -0.0913(2)    | 0.0302 (6)     |
| H20A   | -0 3407     | 0.8614       | -0.0184       | 0.045*         |
| H20R   | ~0 3407     | 0.9138       | 0 1217        | 0.045*         |
| H20C   | 0.1841      | 0.8634       | 0.0906        | 0.045*         |
| 11200  | 0.1041      | TCO0.7       | 0.0700        | 0.010          |

, ê

# Atomic displacement parameters (Å<sup>2</sup>)

|            | $U^{11}$   | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$    |
|------------|------------|-------------|-------------|--------------|-------------|-------------|
| <b>S</b> 1 | 0.0143 (3) | 0.0131 (3)  | 0.0235 (3)  | 0.00386 (19) | -0.0014 (2) | 0 0001 (2)  |
| O2         | 0.0293 (9) | 0.0173 (8)  | 0.0237 (9)  | 0.0053 (7)   | -0.0052 (7) | 0.0041 (7)  |
| 01         | 0.0310 (9) | 0.0187 (8)  | 0.0258 (9)  | 0.0016 (7)   | -0.0096 (7) | 0.0031 (7)  |
| 03         | 0.0156 (8) | 0.0257 (9)  | 0.0283 (9)  | 0.0024 (6)   | 0.0022 (7)  | -0.0039 (7) |
| O4         | 0.0230 (8) | 0.0168 (8)  | 0.0425 (10) | 0.0079 (7)   | -0.0060(7)  | 0.0039 (7)  |
| N1         | 0.0164 (9) | 0:0200 (10) | 0.0263 (11) | 0.0045 (8)   | 0.0012 (8)  | 0.0047 (8)  |

| N2  | 0.0190 (9)  | 0.0155 (9)  | 0.0171 (10)              | 0.0044 (7)  | -0.0042 (8)  | 0.0027 (7)  |
|-----|-------------|-------------|--------------------------|-------------|--------------|-------------|
| N3  | 0.0199 (9)  | 0.0148 (9)  | 0.0194 (9)               | 0.0045 (7)  | 0.0019 (7)   | 0.0036 (7)  |
| N4  | 0.0156 (9)  | 0.0155 (9)  | 0.0211 (10)              | 0.0040 (7)  | 0.0016 (7)   | 0.0045 (7)  |
| C1  | 0.0190 (10) | 0.0194 (11) | 0.0204 (11)              | 0.0058 (9)  | 0.0036 (9)   | 0.0057 (9)  |
| C2  | 0.0165 (10) | 0.0209 (11) | 0.0189 (11)              | 0.0060 (9)  | 0.0036 (9)   | 0.0044 (9)  |
| C3  | 0.0180 (11) | 0.0213 (11) | 0.0253 (12)              | 0.0062 (9)  | 0.0045 (9)   | 0.0056 (9)  |
| C4  | 0.0174 (11) | 0.0220 (11) | 0.0227 (12)              | 0.0017 (9)  | 0.0015 (9)   | -0.0012 (9) |
| C5  | 0.0215 (11) | 0.0381 (14) | 0.0206 (12)              | 0.0104 (10) | -0.0020 (10) | 0.0059 (10) |
| C6  | 0.0280 (12) | 0.0270 (12) | 0.0274 (13)              | 0.0119 (10) | 0.0022 (10)  | 0.0108 (10) |
| C7  | 0.0207 (11) | 0.0220 (12) | 0.0253 (12)              | 0.0066 (9)  | 0.0031 (10)  | 0.0068 (9)  |
| C8  | 0.0130 (10) | 0.0145 (10) | 0.0248 (12)              | 0.0033 (8)  | -0.0006(9)   | 0.0062 (9)  |
| C9  | 0.0205 (11) | 0.0132 (10) | 0.0204 (11)              | 0.0047 (8)  | -0.0004 (9)  | 0.0034 (8)  |
| C10 | 0.0195 (11) | 0.0176 (10) | 0.0243 (12)              | 0.0083 (9)  | 0.0051 (9)   | 0.0078 (9)  |
| C11 | 0.0163 (10) | 0.0136 (10) | 0.0253 (12)              | 0.0029 (8)  | 0.0011 (9)   | 0.0105 (9)  |
| C12 | 0.0200 (11) | 0.0134 (10) | 0.0205 (11)              | 0.0038 (8)  | 0.0001 (9)   | 0.0036 (8)  |
| C13 | 0.0184 (11) | 0.0146 (10) | 0.0240 (12)              | 0.0051 (8)  | 0.0023 (9)   | 0.0059 (9)  |
| C14 | 0.0147 (10) | 0.0160 (10) | 0.0200 (11)              | 0.0050 (8)  | 0.0040 (9)   | 0.0036 (8)  |
| C15 | 0.0210 (11) | 0.0209 (11) | 0.0273 (12)              | 0.0047 (9)  | -0.0003 (10) | 0.0097 (9)  |
| C16 | 0.0164 (10) | 0.0204 (11) | 0.0209 (11)              | 0.0054 (8)  | 0.0046 (9)   | 0.0086 (9)  |
| C17 | 0.0229 (11) | 0.0162 (11) | 0.0265 (12)              | 0.0047 (9)  | 0.0046 (10)  | 0.0080 (9)  |
| C18 | 0.0196 (11) | 0.0175 (11) | 0.0217 (11)              | 0.0043 (9)  | 0.0039 (9)   | 0.0052 (9)  |
| C19 | 0.0309 (13) | 0.0165 (11) | 0.0257 (12) <sup>-</sup> | 0.0026 (9)  | 0.0003 (10)  | 0.0038 (9)  |
| C20 | 0.0367 (14) | 0.0192 (12) | 0.0329 (14)              | 0.0069 (10) | -0.0051 (11) | 0.0080 (10) |

.

# Geometric parameters (Å, °)

| S1—O3    | 1.4348 (18) | С6—Н6      | 0.9500    |
|----------|-------------|------------|-----------|
| S1—O4    | 1.4352 (18) | C7—C20     | 1.510 (3) |
| S1—N2    | 1.6418 (18) | C8—C9      | 1.392 (3) |
| S1—C8    | 1.754 (2)   | C8—C13     | 1.393 (3) |
| O2—C1    | 1.323 (3)   | C9—C10     | 1.382 (3) |
| O2—H32   | 0.852 (18)  | С9—Н9      | 0.9500    |
| O1—C1    | 1.221 (3)   | C10—C11    | 1.404 (3) |
| N1-C11   | 1.375 (3)   | C10—H10    | 0.9500    |
| N1—H30A  | 0.840 (17)  | C11—C12    | 1.406 (3) |
| N1—H30B  | 0.853 (18)  | C12—C13    | 1.381 (3) |
| N2-C14   | 1.395 (3)   | C12—H12    | 0.9500    |
| N2—H31   | 0.847 (17)  | С13—Н13    | 0.9500    |
| N3—C14   | 1.342 (3)   | C15-C16    | 1.494 (3) |
| N3—C18   | 1.352 (3)   | C15—H15A   | 0.9800    |
| N4—C14   | 1.329 (3)   | C15—H15B   | 0.9800    |
| N4—C16   | 1.353 (3)   | C15—H15C   | 0.9800    |
| C1—C2    | 1.489 (3)   | C16—C17    | 1.392 (3) |
| C2—C3    | 1.395 (3)   | C17—C18    | 1.371 (3) |
| C2—C7    | 1.409 (3)   | C17—H17    | 0.9500    |
| C3—C4    | 1.373 (3)   | C18—C19    | 1.502 (3) |
| С3—Н3    | 0.9500      | C19—H19A   | 0.9800    |
| C4—C5    | 1.385 (4)   | C19—H19B   | 0.9800    |
| C4—H4    | 0.9500      | C19—H19C   | 0.9800    |
| C5—C6    | 1.389 (4)   | C20—H20A   | 0.9800    |
| С5—Н5    | 0.9500      | C20—H20B   | 0.9800    |
| C6—C7    | 1.391 (4)   | C20—H20C   | 0.9800    |
| O3—S1—O4 | 116.92 (11) | C9—C10—C11 | 120.7 (2) |
| O3—S1—N2 | 111.34 (10) | C9—C10—H10 | 119.6     |
|          |             |            |           |

| O4—S1—N2                             | 103.91 (10)            | C11-C10-H10                    | 119.6                |
|--------------------------------------|------------------------|--------------------------------|----------------------|
| 03-81-08                             | 107 72 (10)            | N1 - C11 - C10                 | 1213(2)              |
| 04 - 81 - C8                         | 11015(10)              | N1_C11_C12                     | 121.3(2)<br>120.1(2) |
| N2_S1_C8                             | 106.32(10)             | C10-C11-C12                    | 120.1(2)<br>1186(2)  |
| $C_1 = C_2 = C_3$                    | 100.32(10)             | C10 - C12 - C12                | 110.0(2)             |
| C1 = O2 = H32                        | 100(2)                 |                                | 120.7(2)             |
| CII—NI—H30A                          | 11/.3(1/)              | CI3—CI2—HI2                    | 119.6                |
| C11—N1—H30B                          | 114 (2)                | C11—C12—H12                    | 119.6                |
| H30A—N1—H30B                         | 114 (3)                | C12—C13—C8                     | 119.6 (2)            |
| C14—N2—S1                            | 125.85 (16)            | C12—C13—H13                    | 120.2                |
| C14—N2—H31                           | 117.2 (19)             | C8—C13—H13                     | 120.2                |
| S1—N2—H31                            | 112.2 (19)             | N4—C14—N3                      | 127.7 (2)            |
| C14—N3—C18                           | 116.0 (2)              | N4—C14—N2                      | 118.55 (19)          |
| C14—N4—C16                           | 115.37 (19)            | N3—C14—N2                      | 113.8 (2)            |
| 01 - C1 - 02                         | 122 3 (2)              | C16—C15—H15A                   | 109 5                |
| $O_1  C_1  C_2$                      | 122.3(2)<br>123.7(2)   | $C_{16}$ $C_{15}$ $H_{15R}$    | 109.5                |
| 01 - 01 - 02                         | 123.7(2)<br>112.05(10) | $U_{15A} = C_{15} = H_{15B}$   | 109.5                |
| 02 - 01 - 02                         | 113.93(19)             | $\frac{113}{100}$              | 109.5                |
| $C_{3} = C_{2} = C_{1}$              | 119.0(2)               |                                | 109.3                |
| C3_C2_C1                             | 118.9 (2)              | HISA—CIS—HISC                  | 109.5                |
| C7—C2—C1                             | 121.5 (2)              | H15B—C15—H15C                  | 109.5                |
| C4—C3—C2                             | 121.8 (2)              | N4—C16—C17                     | 121.3 (2)            |
| C4—C3—H3                             | 119.1                  | N4—C16—C15                     | 117.5 (2)            |
| С2—С3—Н3                             | 119.1                  | C17—C16—C15                    | 121.2 (2)            |
| C3—C4—C5                             | 119.0 (2)              | C18—C17—C16                    | 118.6 (2)            |
| C3—C4—H4                             | 120.5                  | C18—C17—H17                    | 120.7                |
| C5—C4—H4                             | 120.5                  | C16-C17-H17                    | 120.7                |
| C4—C5—C6                             | 120.1 (2)              | N3-C18-C17                     | 121.0 (2)            |
| C4C5H5                               | 119.9                  | N3-C18-C19                     | 116.9 (2)            |
| С6—С5—Н5                             | 119.9                  | C17—C18—C19                    | 122.2 (2)            |
| C5—C6—C7                             | 121.7 (2)              | C18—C19—H19A                   | 109.5                |
| С5—С6—Н6                             | 119.1                  | C18—C19—H19B                   | 109.5                |
| C7—C6—H6                             | 1191                   | H19A—C19—H19B                  | 109.5                |
| C6 - C7 - C2                         | 117.8(2)               | $C_{18}$ $C_{19}$ $H_{19}C$    | 109.5                |
| C6 - C7 - C20                        | 117.0(2)<br>1181(2)    | H19A - C19 - H19C              | 109.5                |
| $C_{2}^{-}$ $C_{2}^{-}$ $C_{20}^{-}$ | 1241(2)                | H10B-C10-H10C                  | 109.5                |
| $C_2 - C_1 - C_2 C_2$                | 127.1(2)<br>120.6(2)   | C7 $C20$ $H20A$                | 109.5                |
| $C_{9} = C_{0} = C_{13}$             | 120.0(2)               | C7 = C20 = H20R                | 109.5                |
| $C_{9} = C_{0} = S_{1}$              | 122.32(17)             | $C_{1} = C_{20} = H_{20B}$     | 109.5                |
|                                      | 110.84 (10)            | H20A-C20-H20B                  | 109.3                |
| C10_C9_C8                            | 119.6 (2)              | $C_{1} = C_{20} = H_{20}C_{1}$ | 109.5                |
| С10—С9—Н9                            | 120.2                  | H20A—C20—H20C                  | 109.5                |
| С8—С9—Н9                             | 120.2                  | H20B-C20-H20C                  | 109.5                |
| O3—S1—N2—C14                         | -36.8 (2)              | C13-C8-C9-C10                  | 1.7 (3)              |
| O4—S1—N2—C14                         | -163.51 (18)           | SI_C8_C9_C10                   | 1/9.83 (17)          |
| C8—S1—N2—C14                         | 80.2 (2)               | C8—C9—C10—C11                  | 0.7 (3)              |
| O1—C1—C2—C3                          | -178.5 (2)             | C9—C10—C11—N1                  | 177.9 (2)            |
| O2—C1—C2—C3                          | 1.9 (3)                | C9—C10—C11—C12                 | -3.2 (3)             |
| O1—C1—C2—C7                          | 1.6 (3)                | N1-C11-C12-C13                 | -177.7 (2)           |
| O2—C1—C2—C7                          | -178.0 (2)             | C10-C11-C12-C13                | 3.4 (3)              |
| C7—C2—C3—C4                          | 1.3 (3)                | C11—C12—C13—C8                 | -1.0 (3)             |
| C1—C2—C3—C4                          | -178.6 (2)             | C9—C8—C13—C12                  | -1.5 (3)             |
| C2—C3—C4—C5                          | 0.4 (3)                | S1-C8-C13-C12                  | -179.77 (17)         |
| C3—C4—C5—C6                          | 0.0 (3)                | C16—N4—C14—N3                  | 0.9 (3)              |
| C4—C5—C6—C7                          | -0.5 (4)               | C16—N4—C14—N2                  | -178.43 (18)         |
| $C_{5}-C_{6}-C_{7}-C_{2}$            | 1.3 (3)                | C18—N3—C14—N4                  | -0.6 (3)             |
| $C_{5} - C_{6} - C_{7} - C_{20}$     | -1782(2)               | C18 - N3 - C14 - N2            | 178.78 (18)          |
| $C_{3}$ $C_{7}$ $C_{7}$ $C_{6}$      | -17(3)                 | $S1_N2_C14_N4$                 | -239(3)              |
|                                      | 1.7 (3)                |                                |                      |

-

Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x+1, y, z.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.



Figure S.6: Crystal Structure of the Cocrystal of Sulfamethazine and m-Methylbenzoic Acid Showing Thermal Parameters (50% Thermal Ellipsoids) and Hydrogen Bonding.

#### Crystal data

 $C_{12}H_{14}N_4O_2S \cdot C_8H_8O_2$   $M_r = 414.47$ Monoclinic,  $P_{21}/c$  a = 8.2898 (3) Å b = 14.3256 (5) Å c = 17.6458 (7) Å  $\beta = 102.930$  (2)° V = 2042.42 (13) Å<sup>3</sup> Z = 4F(000) = 872

 $D_x = 1.348 \text{ Mg m}^{-3}$ Melting point: 436-438K Cu K $\alpha$  radiation,  $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9865 reflections  $\theta = 4.0-68.1^{\circ}$  $\mu = 1.70 \text{ mm}^{-1}$ T = 100 KPlate, colourless  $0.28 \times 0.19 \times 0.12 \text{ mm}$ 

Data collection

Radiation source: fine-focus sealed tube Detector resolution: 8.33 pixels mm<sup>-1</sup> 2365 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = ?$ 

### Crystal data

 $C_{12}H_{14}N_4O_2S \cdot C_8H_8O_2$   $M_r = 414.47$ Monoclinic,  $P2_1/c$  a = 8.2898 (3) Å b = 14.3256 (5) Å c = 17.6458 (7) Å  $\beta = 102.930$  (2)° V = 2042.42 (13) Å<sup>3</sup> Z = 4F(000) = 872

 $D_x = 1.348 \text{ Mg m}^{-3}$  . Melting point: 436-438K Cu Ka radiation,  $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9865 reflections  $\theta = 4.0-68.1^{\circ}$   $\mu = 1.70 \text{ mm}^{-1}$  T = 100 KPlate, colourless  $0.28 \times 0.19 \times 0.12 \text{ mm}$ 

### Data collection

Radiation source: fine-focus sealed tube Detector resolution: 8.33 pixels mm<sup>-1</sup> phi and  $\omega$  scans Absorption correction: multi-scan SADABS2014/7, Bruker AXS  $T_{min} = 0.533$ ,  $T_{max} = 0.753$ 3669 measured reflections *Refinement*  2365 reflections with  $I > 2\sigma(I)$   $R_{int} = ?$   $\theta_{max} = 68.2^{\circ}, \ \theta_{min} = 4.0^{\circ}$   $h = -9 \quad 9$   $k = -11 \quad 11$  $l = -21 \quad 21$ 

| Refinement on $F^2$             |                                                                           |
|---------------------------------|---------------------------------------------------------------------------|
| Least-squares matrix: full      | Hydrogen site location: mixed                                             |
| $R[F^2 > 2\sigma(F^2)] = 0.069$ | H atoms treated by a mixture of independent and constrained refinement    |
| $wR(F^2)=0.193$                 | $w = 1/[\sigma^2(F_o^2) + (0.1106P)^2]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| <i>S</i> = 1.01                 | $(\Delta/\sigma)_{\rm max} < 0.001$                                       |
| 3669 reflections                | $\Delta \rho_{\text{max}} = 0.35 \text{ e } \text{\AA}^{-3}$              |
| 281 parameters                  | $\Delta \rho_{\rm min} = -0.64 \ {\rm e} \ {\rm \AA}^{-3}$                |
| 4 restraints                    | Extinction correction: none                                               |
| 0 constraints                   |                                                                           |

| Fractional | l atomi  | c coord | linates | and | isotrop | oic or | equiva | lent | isotrop | oic disp | lacement |
|------------|----------|---------|---------|-----|---------|--------|--------|------|---------|----------|----------|
| parameter  | $s(Å^2)$ |         |         |     |         |        |        |      |         |          |          |

|            | r           | v                | 7            | Uina*/Uan   |
|------------|-------------|------------------|--------------|-------------|
| <b>S</b> 1 | 0.21823(12) | ,<br>0 48129 (6) | 0.23342 (6)  | 0.0320(3)   |
| 04         | 0.1365 (3)  | 0.51845 (18)     | 0.29060 (16) | 0.0350 (7)  |
| 02         | -0.2535 (4) | 0.4168 (2)       | 0.00036 (18) | 0.0395 (7)  |
| H32        | -0.205 (8)  | 0.465 (3)        | 0.023 (4)    | 0.11 (3)*   |
| 01         | -0.0652(4)  | 0.33378 (18)     | 0.08376 (17) | 0.0395 (7)  |
| O3         | 0.2499 (3)  | 0.38283 (18)     | 0.23260 (17) | 0.0361 (7)  |
| N4         | 0.0795 (4)  | 0.6580 (2)       | 0.1598 (2)   | 0.0331 (8)  |
| N3         | -0.1101 (4) | 0.5745 (2)       | 0.06140 (19) | 0.0321 (8)  |
| N2         | 0.1000 (4)  | 0.4981 (2)       | 0.1464 (2)   | 0.0325 (8)  |
| H31        | 0.053 (5)   | 0.449 (2)        | 0.125 (2)    | 0.042 (13)* |
| C14        | 0.0190 (5)  | 0.5813 (3)       | 0.1223 (2)   | 0.0310 (9)  |
| C3         | -0.4009(5)  | 0.2625 (3)       | -0.0755 (2)  | 0.0359 (9)  |
| H3         | -0.4391     | 0.3226           | -0.0940      | 0.043*      |
| N1   | 0.8695 (5)  | 0.6668 (3)  | 0.2970 (2)  | 0.0402 (9)  |
|------|-------------|-------------|-------------|-------------|
| H30A | 0.878 (5)   | 0.7234 (16) | 0.314 (2)   | 0.031 (11)* |
| H30B | 0.950 (5)   | 0.639 (3)   | 0.284 (3)   | 0.068 (18)* |
| C16  | -0.1882 (5) | 0.6553 (3)  | 0.0359 (2)  | 0.0337 (9)  |
| C2   | -0.2688 (5) | 0.2534 (3)  | -0.0109(2)  | 0.0337 (9)  |
| C10  | 0.5412 (5)  | 0.4974 (3)  | 0.2225 (2)  | 0.0345 (9)  |
| H10  | 0.5278      | 0.4385      | 0.1971      | 0.041*      |
| C11  | 0.4039 (5)  | 0.5409 (3)  | 0.2422 (2)  | 0.0320 (9)  |
| C17  | -0.1327 (5) | 0.7388 (3)  | 0.0719 (2)  | 0.0355 (10) |
| H17  | -0.1865     | 0.7958      | 0.0540      | 0.043*      |
| C18  | 0.0022 (5)  | 0.7380 (3)  | 0.1342 (2)  | 0.0348 (9)  |
| C8   | 0.7170 (5)  | 0.6263 (3)  | 0.2766 (2)  | 0.0331 (9)  |
| С9   | 0.6940 (5)  | 0.5391 (3)  | 0.2393 (2)  | 0.0345 (9)  |
| H9   | 0.7853      | 0.5087      | 0.2257      | 0.041*      |
| C4   | -0.4758 (5) | 0.1827 (3)  | -0.1122 (3) | 0.0409 (10) |
| H4   | -0.5647     | 0.1881      | -0.1565     | 0.049*      |
| C7   | -0.2137 (5) | 0.1654 (3)  | 0.0160 (2)  | 0.0363 (10) |
| H7   | -0.1239     | 0.1601      | 0.0600      | 0.044*      |
| C6   | -0.2870 (6) | 0.0848 (3)  | -0.0200 (3) | 0.0378 (10) |
| C1   | -0.1864 (5) | 0.3374 (3)  | 0.0287 (2)  | 0.0357 (10) |
| C13  | 0.5781 (5)  | 0.6713 (3)  | 0.2938 (2)  | 0.0350 (9)  |
| H13  | 0.5901      | 0.7315      | 0.3168      | 0.042*      |
| C19  | 0.0719 (5)  | 0.8247 (3)  | 0.1767 (3)  | 0.0393 (10) |
| H19A | 0.0672      | 0.8194      | 0.2315      | 0.059*      |
| H19B | 0.0070      | 0.8789      | 0,1535      | 0.059*      |
| H19C | 0.1872      | 0.8325      | 0.1728      | 0.059*      |
| C15  | -0.3318 (5) | 0.6488 (3)  | -0.0326 (3) | 0.0409 (10) |
| H15A | 0.2919      | 0.6311      | -0.0789     | 0.061*      |
| H15B | -0.3875     | 0.7095      | -0.0414     | 0.061*      |
| H15C | -0.4099     | 0.6016      | -0.0225     | 0.061*      |
| C12  | 0.4247 (5)  | 0.6287 (3)  | 0.2774 (2)  | 0.0337 (9)  |
| H12  | 0.3326      | 0.6594      | 0.2901      | 0.040*      |
| C20  | -0.2265 (6) | -0.0114 (3) | 0.0066 (3)  | 0.0463 (11) |
| H20A | -0.1623     | -0.0369     | -0.0289     | 0.069*      |
| H20B | -0.3215     | -0.0520     | 0.0068      | 0.069*      |
| H20C | 0.1565      | -0.0079     | 0.0592      | 0.069*      |
| C5   | -0.4203 (6) | 0.0952 (3)  | -0.0840 (3) | 0.0404 (10) |
| H5   | 0.4741      | 0.0411      | -0.1087     | 0.049*      |

13

# Atomic displacement parameters $(Å^2)$

ŧ

|            | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|------------|-------------|-------------|-------------|--------------|--------------|--------------|
| <b>S</b> 1 | 0.0320 (5)  | 0.0236 (5)  | 0.0383 (6)  | -0.0004 (4)  | 0.0035 (4)   | 0.0001 (4)   |
| 04         | 0.0363 (16) | 0.0318 (14) | 0.0367 (16) | -0.0009 (12) | 0.0079 (12)  | 0.0001 (12)  |
| 02         | 0.0384 (18) | 0.0289 (16) | 0.0469 (19) | -0.0003 (13) | 0.0005 (14)  | -0.0005 (13) |
| 01         | 0.0433 (18) | 0.0289 (15) | 0.0410 (18) | -0.0029 (12) | -0.0022 (14) | -0.0032 (12) |
| 03         | 0.0341 (16) | 0.0227 (14) | 0.0483 (18) | 0.0010 (11)  | 0.0022 (13)  | 0.0029 (12)  |
| N4         | 0.0333 (19) | 0.0270 (17) | 0.039 (2)   | 0.0001 (14)  | 0.0074 (15)  | -0.0008 (14) |
| N3         | 0.0324 (19) | 0.0265 (17) | 0.037 (2)   | 0.0037 (14)  | 0.0063 (15)  | 0.0000 (13)  |
| N2         | 0.0321 (19) | 0.0222 (17) | 0.038 (2)   | 0.0005 (14)  | -0.0023 (15) | -0.0045 (14) |
| C14        | 0.030 (2)   | 0.027 (2)   | 0.035 (2)   | -0.0001 (16) | 0.0056 (17)  | 0.0018 (16)  |
| C3         | .0.038 (2)  | 0.035 (2)   | 0.036 (2)   | 0.0009 (18)  | 0.0105 (18)  | -0.0003 (17) |
| N1         | 0.030(2)    | 0.032 (2)   | 0.060(3)    | -0.0030 (16) | 0.0128 (17)  | -0.0081 (17) |
| C16        | 0.036 (2)   | 0.032 (2)   | 0.034 (2)   | 0.0063 (17)  | 0.0096 (17)  | 0.0035 (17)  |
|            |             |             |             |              |              |              |

| C2  | 0.033 (2) | 0.032 (2)   | 0.037 (2) | -0.0044 (17) | 0.0082 (17) | -0.0026 (16) |
|-----|-----------|-------------|-----------|--------------|-------------|--------------|
| C10 | 0.037 (2) | 0.027 (2)   | 0.039 (2) | 0.0000 (17)  | 0.0073 (18) | 0.0013 (16)  |
| C11 | 0.032 (2) | 0.0262 (19) | 0.036 (2) | 0.0013 (16)  | 0.0027 (17) | 0.0019 (16)  |
| C17 | 0.037 (2) | 0.027 (2)   | 0.045 (3) | 0.0067 (17)  | 0.0122 (19) | 0.0067 (17)  |
| C18 | 0.039 (2) | 0.026 (2)   | 0.041 (3) | 0.0039 (17)  | 0.0119 (18) | 0.0023 (16)  |
| C8  | 0.031 (2) | 0.028 (2)   | 0.040 (2) | -0.0019 (17) | 0.0083 (18) | 0.0026 (16)  |
| C9  | 0.033 (2) | 0.027 (2)   | 0.043 (3) | 0.0023 (17)  | 0.0083 (18) | -0.0020 (17) |
| C4  | 0.039 (3) | 0.042 (2)   | 0.039 (3) | -0.006 (2)   | 0.0045 (19) | -0.0022 (19) |
| C7  | 0.038 (2) | 0.033 (2)   | 0.037 (3) | -0.0008 (18) | 0.0050 (18) | 0.0001 (17)  |
| C6  | 0.044 (3) | 0.033 (2)   | 0.039 (3) | -0.0067 (19) | 0.0154 (19) | -0.0018 (17) |
| C1  | 0.038 (2) | 0.030 (2)   | 0.038 (3) | -0.0006 (17) | 0.0063 (19) | -0.0007 (17) |
| C13 | 0.036 (2) | 0.0236 (19) | 0.044 (3) | -0.0012 (17) | 0.0062 (18) | -0.0040 (17) |
| C19 | 0.039 (3) | 0.028 (2)   | 0.053 (3) | 0.0012 (18)  | 0.014 (2)   | -0.0005 (18) |
| C15 | 0.040 (3) | 0.039 (2)   | 0.041 (3) | 0.008 (2)    | 0.0012 (19) | 0.0007 (19)  |
| C12 | 0.032 (2) | 0.027 (2)   | 0.042 (2) | 0.0039 (17)  | 0.0083 (18) | 0.0006 (17)  |
| C20 | 0.052 (3) | 0.033 (2)   | 0.053 (3) | -0.005(2)    | 0.008 (2)   | -0.003 (2)   |
| C5  | 0.043 (3) | 0.038 (2)   | 0.042 (3) | -0.010 (2)   | 0.012 (2)   | -0.0074 (18) |
|     |           |             |           |              |             |              |

•

1...\*

4

| (feometric parameters (A <sup>-</sup> ) |
|-----------------------------------------|
|-----------------------------------------|

.

•

| G1 0 <b>2</b>  | 1 425 (2)   | G11 G1 <b>2</b> | 1 205 (5) |
|----------------|-------------|-----------------|-----------|
| SI-03          | 1.435 (3)   |                 | 1.395 (5) |
| S1—O4          | 1.438 (3)   | C17C18          | 1.382 (6) |
| S1N2           | 1.644 (3)   | С17Н17          | 0.9500    |
| S1—C11         | 1.737 (4)   | C18C19          | 1.498 (5) |
| O2—C1          | 1.315 (5)   | C8—C9           | 1.406 (5) |
| O2H32          | 0.86 (2)    | C8C13           | 1.410 (6) |
| O1—C1          | 1.232 (5)   | С9—Н9           | 0.9500    |
| N4—C14         | 1.322 (5)   | C4C5            | 1.390 (6) |
| N4—C18         | 1.342 (5)   | C4—H4           | 0.9500    |
| N3—C14         | 1.339 (5)   | C7—C6           | 1.389 (6) |
| N3—C16         | 1.354 (5)   | С7—Н7           | 0.9500    |
| N2C14          | 1.388 (5)   | C6—C5           | 1.400 (6) |
| N2—H31         | 0.849 (19)  | C6—C20          | 1.505 (6) |
| C3—C4          | 1.390 (6)   | C13—C12         | 1.382 (6) |
| C3—C2          | 1.398 (6)   | C13—H13         | 0.9500    |
| C3H3           | 0.9500      | C19—H19A        | 0.9800    |
| N1—C8          | 1.364 (5)   | C19—H19B        | 0.9800    |
| N1—H30A        | 0.860 (19)  | C19—H19C        | 0.9800    |
| N1—H30B        | 0.85 (2)    | C15—H15A        | 0.9800    |
| C16—C17        | 1.383 (6)   | C15—H15B        | 0.9800    |
| C16C15         | 1.498 (6)   | C15H15C         | 0.9800    |
| C2C7           | 1.388 (5)   | C12—H12         | 0.9500    |
| C2—C1          | 1.481 (5)   | C20—H20A        | 0.9800    |
| C10–-C9        | 1.372 (6)   | C20—H20B        | 0.9800    |
| C10C11         | 1.408 (6)   | C20—H20C        | 0.9800    |
| C10—H10        | 0.9500      | C5H5            | 0.9500    |
| O3—S1—O4       | 119.14 (17) | C10             | 120,7 (4) |
| O3—S1—N2       | 101.93 (16) | С10—С9-—Н9      | 119.6     |
| O4S1N2         | 108.96 (17) | С8С9Н9          | 119.6     |
| 03             | 108.88 (17) | C3C5            | 119.8 (4) |
| 04             | 107.60 (18) | C3C4H4          | 120.1     |
| N2             | 110.07 (19) | C5-C4-H4        | 120.1     |
| C1 - O2 - H32  | 114 (5)     | C2—C7—C6        | 121.4 (4) |
| C14 - N4 - C18 | 1162(3)     | С2—С7—Н7        | 119.3     |
| 011 111 010    |             |                 |           |

| C14—N3—C16                | 116.1 (3)              | С6—С7—Н7                                | 119.3      |
|---------------------------|------------------------|-----------------------------------------|------------|
| C14—N2—S1                 | 124.0 (3)              | C7—C6—C5                                | 117.8 (4)  |
| C14—N2—H31                | 115 (3)                | C7—C6—C20                               | 122.5 (4)  |
| S1-N2-H31                 | 115 (3)                | C5—C6—C20                               | 119.7 (4)  |
| N4—C14—N3                 | 127.5 (3)              | O1-C1-O2                                | 122.5 (4)  |
| N4—C14—N2                 | 117.1(3)               | O1—C1—C2                                | 123.2 (4)  |
| N3—C14—N2                 | 115.3 (3)              | O2—C1—C2                                | 114.3 (4)  |
| C4-C3-C2                  | 119.3 (4)              | C12—C13—C8                              | 120.8 (4)  |
| C4—C3—H3                  | 120.3                  | C12—C13—H13                             | 119.6      |
| С2—С3—Н3                  | 120.3                  | C8-C13-H13                              | 119.6      |
| C8 - N1 - H30A            | 119 (3)                | C18— $C19$ — $H19A$                     | 109 5      |
| C8 - N1 - H30R            | 119(3)<br>118(4)       | C18 $C19$ $H19R$                        | 109.5      |
| $H_{30A}$ $N_1$ $H_{30B}$ | 122(5)                 | H10A - C10 - H10B                       | 109.5      |
| $N_3 C_{16} C_{17}$       | 122(3)<br>120 2(4)     | C18-C10-H10C                            | 109.5      |
| $N_{3}$ $C_{16}$ $C_{15}$ | 120.2 (4)<br>1167(4)   | $H_{10} - C_{10} - H_{10}C$             | 109.5      |
| $C_{17} C_{16} C_{15}$    | 110.7 (+)<br>122 1 (4) | HIDR CIO HIDC                           | 109.5      |
| CT = CT = CT              | 123.1(4)<br>120.1(4)   | $\frac{1130}{1130} = \frac{1130}{1130}$ | 109.5      |
| $C_{1} = C_{2} = C_{3}$   | 120.1(4)               | C16 C15 H15P                            | 109.5      |
| $C_{1} = C_{2} = C_{1}$   | 119.7(4)               | $U_{10} = C_{15} = H_{15} D$            | 109.5      |
| $C_{3} = C_{2} = C_{1}$   | 120.3 (4)              | $\Pi JA - C I J - \Pi J J J $           | 109.5      |
| $C_{9}$                   | 120.8 (4)              |                                         | 109.5      |
| C9—C10—H10                | 119.6                  | HISA—CIS—HISC                           | 109.5      |
| CII—CI0—HI0               | 119.0                  | HISB-CIS-HISC                           | 109.5      |
| C12—C11—C10               | 118.9 (4)              |                                         | 120.4 (4)  |
| CI2—CII—SI                | 120.1 (3)              | CI3—CI2—HI2                             | 119.8      |
| CI0—CII—SI                | 120.6 (3)              | CI1—C12—H12                             | 119.8      |
| C18—C17—C16               | 119.0 (4)              | C6—C20—H20A                             | 109.5      |
| C18—C17—H17               | 120.5                  | C6—C20—H20B                             | 109.5      |
| C16—C17—H17               | 120.5                  | H20A—C20—H20B                           | 109.5      |
| N4—C18—C17                | 121.0 (4)              | C6—C20—H20C                             | 109.5      |
| N4—C18—C19                | 116.0 (4)              | H20A—C20—H20C                           | 109.5      |
| C17—C18—C19               | 123.0 (4)              | H20B—C20—H20C                           | 109.5      |
| N1—C8—C9                  | 121.5 (4)              | C4 - C5 - C6                            | 121.5 (4)  |
| N1-C8-C13                 | 120.2 (4)              | C4—C5—H5                                | 119.2      |
| C9—C8—C13                 | 118.3 (4)              | C6—C5—H5                                | 119.2      |
| O3—S1—N2—C14              | 171.6 (3)              | C14—N4—C18—C19                          | -179.7 (4) |
| O4—S1—N2—C14              | 44.9 (4)               | C16—C17—C18—N4                          | 0.2 (6)    |
| C11—S1—N2—C14             | -72.9 (4)              | C16—C17—C18—C19                         | 179.7 (4)  |
| C18—N4—C14—N3             | 0.4 (6)                | Cl1—C10—C9—C8                           | -0.1 (6)   |
| C18—N4—C14—N2             | 178.2 (4)              | N1—C8—C9—C10                            | 177.0 (4)  |
| C16—N3—C14—N4             | -0.6 (6)               | C13—C8—C9—C10                           | -2.2 (6)   |
| C16—N3—C14—N2             | -178.5 (3)             | C2—C3—C4—C5                             | 0.8 (7)    |
| S1—N2—C14—N4              | 22.5 (5)               | C3—C2—C7—C6                             | 0.1 (7)    |
| S1—N2—C14—N3              | -159.4 (3)             | C1—C2—C7—C6                             | -179.5 (4) |
| C14—N3—C16—C17            | 0.6 (6)                | C2—C7—C6—C5                             | -0.8 (6)   |
| C14—N3—C16—C15            | 179.4 (4)              | C2—C7—C6—C20                            | 178.2 (4)  |
| C4—C3—C2—C7               | -0.1 (6)               | C7—C2—C1—O1                             | 2.7 (7)    |
| C4—C3—C2—C1               | 179.5 (4)              | C3—C2—C1—O1                             | -176.9 (4) |
| C9—C10—C11—C12            | 1.9 (6)                | C7—C2—C1—O2                             | -177.2 (4) |
| C9—C10—C11—S1             | -170.9 (3)             | C3—C2—C1—O2                             | 3.2 (6)    |
| O3—S1—C11—C12             | -152.0 (3)             | N1—C8—C13—C12                           | -176.4 (4) |
| O4—S1—C11—C12             | -21.6 (4)              | C9—C8—C13—C12                           | 2.8 (6)    |
| N2-S1-C11-C12             | 97.0 (4)               | C8-C13-C12-C11                          | -1.1 (6)   |
| O3—S1—C11—C10             | 20.6 (4)               | C10-C11-C12-C13                         | -1.2 (6)   |
| O4—S1—C11—C10             | 151.1 (3)              | S1-C11-C12-C13                          | 171.6 (3)  |
| N2—S1—C11—C10             | -90.3 (3)              | C3—C4—C5—C6                             | -1.6 (7)   |
| N3 - C16 - C17 - C18      | -0.5(6)                | C7—C6—C5—C4                             | 1.5 (7)    |

defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.



Figure S.7: Crystal Structure of the Cocrystal of Sulfamethazine and p-Methylbenzoic Acid Showing Thermal Parameters (50% Thermal Ellipsoids) and Hydrogen Bonding.

#### Crystal data

 $C_{12}H_{14}N_4O_2S \cdot C_8H_8O_2$   $M_r = 414.47$ Monoclinic, P2<sub>1</sub> a = 7.3207 (2) Å b = 13.1812 (4) Å c = 11.2377 (3) Å  $\beta = 107.343$  (1)° V = 1035.09 (5) Å<sup>3</sup> Z = 2F(000) = 436

Data collection Bruker APEXII CCD diffractometer  $D_x = 1.330 \text{ Mg m}^{-3}$ Melting point: 481-483 K Cu K $\alpha$  radiation,  $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9942 reflections  $\theta = 3.4-68.2^{\circ}$  $\mu = 1.68 \text{ mm}^{-1}$ T = 100 KPlates, colourless  $\times \times \text{mm}$ 

3706 independent reflections

a = 7.3207 (2) Å b = 13.1812 (4) Å c = 11.2377 (3) Å  $\beta = 107.343 (1)^{\circ}$  $V = 1035.09 (5) Å^3$ Z = 2F(000) = 436

Data collection Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Detector resolution: 8.33 pixels mm<sup>-1</sup>  $R_{\rm int} = 0.023$ phi and  $\omega$  scans Absorption correction: multi-scan  $h = -8 \quad 8$ SADABS2014/7, Bruker AXS  $T_{\min} = 0.542, T_{\max} = 0.753$ k = -15 15 15644 measured reflections l = -13 13

Cell parameters from 9942 reflections  $\theta = 3.4-68.2^{\circ}$  $\mu = 1.68 \text{ mm}^{-1}$ T = 100 KPlates, colourless  $\times \times mm$ 

3706 independent reflections

3675 reflections with  $I > 2\sigma(I)$  $\theta_{max} = 68.2^{\circ}, \ \theta_{min} = 4.1^{\circ}$ 

Absolute structure parameter: 0.039 (4)

Refinement

Refinement on  $F^2$ Hydrogen site location: mixed H atoms treated by a mixture of independent and Least-squares matrix: full constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.0397P)^2 + 0.0901P]$  $R[F^2 > 2\sigma(F^2)] = 0.024$ where  $P = (F_0^2 + 2F_c^2)/3$  $wR(F^2) = 0.062$  $(\Delta/\sigma)_{\rm max} < 0.001$  $\Delta\rho_{max}=0.15~e~\text{\AA}^{-3}$ *S* = 1.07 3706 reflections  $\Delta \rho_{\rm min} = -0.23 \ e \ {\rm \AA}^{-3}$ 281 parameters Extinction correction: none 5 restraints Absolute structure: Flack x determined using 1683 0 constraints quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $Å^2$ )

|     | x           | v             | Ζ            | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|-----|-------------|---------------|--------------|-------------------------------|
| S1  | 0.28941 (6) | -0.00515 (4)  | 0.15997 (4)  | 0.02031 (12)                  |
| 01  | 0.0876 (2)  | -0.01505 (13) | 0.43249 (12) | 0.0274 (3)                    |
| O4  | 0.4404 (2)  | -0.07014 (11) | 0.15000 (14) | 0.0313 (4)                    |
| O3  | 0.1021 (2)  | -0.04813 (12) | 0.14132 (13) | 0.0280 (3)                    |
| N3  | 0.4975 (2)  | 0.12997 (12)  | 0.47709 (14) | 0.0185 (3)                    |
| O2  | 0.2555 (2)  | 0.06475 (12)  | 0.60630 (13) | 0.0262 (3)                    |
| C1  | 0.1111 (3)  | 0.00847 (15)  | 0.54138 (18) | 0.0198 (4)                    |
| N4  | 0.6224 (2)  | 0.11865 (13)  | 0.30333 (15) | 0.0204 (3)                    |
| C14 | 0.4950 (3)  | 0.09864 (15)  | 0.36254 (17) | 0.0180 (4)                    |
| C18 | 0.7704 (3)  | 0.17799 (15)  | 0.36430 (19) | 0.0213 (4)                    |
| C12 | 0.0996 (3)  | 0.15156 (15)  | 0.02372 (17) | 0.0199 (4)                    |
| H12 | -0.0002     | 0.1352        | 0.0584       | 0.024*                        |
| N2  | 0.3387 (2)  | 0.03992 (14)  | 0.30266 (15) | 0.0218 (4)                    |

| C11  | 0.2696 (3)  | 0.09684 (15)  | 0.05841 (17)  | 0.0187 (4) |
|------|-------------|---------------|---------------|------------|
| C2   | -0.0219(3)  | -0.02465 (14) | 0.61074 (18)  | 0.0198 (4) |
| N1   | 0.1934 (3)  | 0.32726 (15)  | -0.20427 (17) | 0.0284 (4) |
| C3   | -0.1939 (3) | -0.07142 (15) | 0.54454 (18)  | 0.0211 (4) |
| H3   | -0.2217     | -0.0831       | 0.4575        | 0.025*     |
| C5   | -0.2840 (3) | -0.08711 (15) | 0.73448 (19)  | 0.0217 (4) |
| C16  | 0.6468 (3)  | 0.18835 (15)  | 0.53730 (19)  | 0.0207 (4) |
| C7   | 0.0185 (3)  | -0.00971 (18) | 0.73899 (17)  | 0.0225 (4) |
| H7   | 0.1342      | 0.0225        | 0.7846        | 0.027*     |
| C13  | 0.0763 (3)  | 0.22960 (16)  | -0.06127 (18) | 0.0213 (4) |
| H13  | -0.0396     | 0.2673        | -0.0840       | 0.026*     |
| C10  | 0.4178 (3)  | 0.12085 (15)  | 0.00898 (17). | 0.0196 (4) |
| H10  | 0.5345      | 0.0840        | 0.0339        | 0.023*     |
| C9   | 0.3935 (3)  | 0.19853 (16)  | -0.07638 (18) | 0.0225 (4) |
| H9   | 0.4943      | 0.2150        | -0.1101       | 0.027*     |
| C6   | -0.1108 (3) | -0.04206 (16) | 0.79982 (18)  | 0.0240 (4) |
| H6   | -0.0807     | -0.0333       | 0.8875        | 0.029*     |
| C17  | 0.7878 (3)  | 0.21435 (15)  | 0.48327 (19)  | 0.0226 (4) |
| H17  | 0.8930      | 0.2557        | 0.5263        | 0.027*     |
| C20  | -0.4249 (3) | -0.12048 (17) | 0.8008 (2)    | 0.0283 (5) |
| H20A | -0.4186     | -0.1944       | 0.8110        | 0.042*     |
| H20B | -0.5544     | -0.1008       | 0.7516        | 0.042*     |
| H20C | -0.3932     | -0.0880       | 0.8829        | 0.042*     |
| C15  | 0.6522 (3)  | 0.22316 (18)  | 0.6652 (2)    | 0.0283 (5) |
| H15A | 0.5271      | 0.2511        | 0.6630        | 0.042*     |
| H15B | 0.7504      | 0.2756        | 0.6934        | 0.042*     |
| H15C | 0.6824      | 0.1655        | 0.7229        | 0.042*     |
| C4   | -0.3235 (3) | -0.10071 (15) | 0.60608 (19)  | 0.0220 (4) |
| H4   | -0.4414     | -0.1306       | 0.5600        | 0.026*     |
| C19  | 0.9120 (3)  | 0.20192 (18)  | 0.2962 (2)    | 0.0287 (5) |
| H19A | 0.9495      | 0.1392        | 0.2629        | 0.043*     |
| H19B | 1.0253      | 0.2337        | 0.3536        | 0.043*     |
| H19C | 0.8540      | 0.2486        | 0.2274        | 0.043*     |
| C8   | 0.2206 (3)  | 0.25405 (15)  | -0.11438 (17) | 0.0210 (4) |
| H31  | 0.259 (3)   | 0.0240 (18)   | 0.341 (2)     | 0.021 (6)* |
| H32  | 0.323 (4)   | 0.085 (2)     | 0.562 (3)     | 0.040 (8)* |
| H30B | 0.296 (3)   | 0.352 (2)     | -0.213 (2)    | 0.026 (6)* |
| H30A | 0.101 (3)   | 0.3669 (19)   | -0.212 (2)    | 0.024 (6)* |

# Atomic displacement parameters (Å<sup>2</sup>)

|            | $U^{11}$   | $U^{22}$    | $U^{33}$    | $U^{12}$       | $U^{13}$     | $U^{23}$      |
|------------|------------|-------------|-------------|----------------|--------------|---------------|
| <b>S</b> 1 | 0.0277 (2) | 0.0170 (2)  | 0.0165 (2)  | -0.00184 (19). | 0.00702 (16) | -0.00112 (18) |
| 01         | 0.0290 (7) | 0.0352 (8)  | 0.0198 (7)  | -0.0088 (7)    | 0.0099 (5)   | -0.0033 (7)   |
| 04         | 0.0456 (9) | 0.0221 (8)  | 0.0283 (8)  | 0.0072 (7)     | 0.0141 (7)   | 0.0023 (6)    |
| 03         | 0.0364 (8) | 0.0258 (7)  | 0.0204 (7)  | -0.0107 (6)    | 0.0063 (6)   | -0.0019 (6)   |
| N3         | 0.0205 (8) | 0.0184 (8)  | 0.0158 (8)  | 0.0022 (6)     | 0.0043 (6)   | 0.0006 (6)    |
| 02         | 0.0246 (7) | 0.0337 (8)  | 0.0222 (7)  | -0.0099 (6)    | 0.0099 (6)   | -0.0045 (6)   |
| C1         | 0.0209 (9) | 0.0188 (10) | 0.0196 (9)  | 0.0012 (7)     | 0.0060 (7)   | 0.0010 (7)    |
| N4         | 0.0221 (8) | 0.0213 (8)  | 0.0186 (8)  | 0.0020 (7)     | 0.0074 (6)   | 0.0021 (6)    |
| C14        | 0.0197 (9) | 0.0169 (9)  | 0.0172 (9)  | 0.0023 (7)     | 0.0050 (7)   | 0.0027 (7)    |
| C18        | 0.0208 (9) | 0.0173 (10) | 0.0260 (10) | 0.0028 (8)     | 0.0075 (8)   | 0.0033 (8)    |
| C12        | 0.0210 (9) | 0.0217 (10) | 0.0182 (9)  | -0.0045 (8)    | 0.0080 (7)   | -0.0051 (7)   |
| N2         | 0.0225 (8) | 0.0290 (9)  | 0.0151 (7)  | -0.0058 (7)    | 0.0073 (7)   | -0.0004 (7)   |
|            |            |             |             |                | · ·          |               |

| C11 | 0.0243 (9)  | 0.0183 (9)  | 0.0131 (8)  | -0.0016 (8) | 0.0049 (7)  | -0.0034 (7) |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|
| C2  | 0.0219 (9)  | 0.0159 (10) | 0.0218 (9)  | 0.0014 (7)  | 0.0069 (7)  | 0.0015 (7)  |
| N1  | 0.0267 (10) | 0.0291 (10) | 0.0302 (10) | 0.0055 (8)  | 0.0100 (8)  | 0.0090 (8)  |
| C3  | 0.0242 (9)  | 0.0200 (10) | 0.0186 (9)  | -0.0006 (8) | 0.0054 (8)  | -0.0004 (7) |
| C5  | 0.0228 (9)  | 0.0162 (9)  | 0.0274 (10) | 0.0016 (7)  | 0.0094 (8)  | 0.0012 (8)  |
| C16 | 0.0217 (9)  | 0.0182 (9)  | 0.0205 (9)  | 0.0036 (8)  | 0,0035 (8)  | -0.0001 (7) |
| C7  | 0.0225 (9)  | 0.0225 (9)  | 0.0221 (9)  | -0.0037 (9) | 0.0058 (7)  | -0.0019 (9) |
| C13 | 0.0196 (9)  | 0.0223 (10) | 0.0205 (9)  | 0.0011 (7)  | 0.0036 (8)  | -0.0038 (8) |
| C10 | 0.0216 (9)  | 0.0211 (9)  | 0.0165 (9)  | 0.0027 (8)  | 0.0065 (7)  | -0.0015 (7) |
| C9  | 0.0227 (10) | 0.0268 (10) | 0.0200 (9)  | 0.0006 (8)  | 0.0096 (8)  | -0.0015 (8) |
| C6  | 0.0287 (10) | 0.0235 (10) | 0.0201 (9)  | -0.0014 (8) | 0.0081 (8)  | -0.0026 (8) |
| C17 | 0.0210 (9)  | 0.0203 (10) | 0.0251 (10) | -0.0008 (8) | 0.0048 (8)  | -0.0002 (8) |
| C20 | 0.0277 (10) | 0.0303 (12) | 0.0294 (11) | -0.0036 (9) | 0.0122 (9)  | 0.0021 (9)  |
| C15 | 0.0315 (11) | 0.0311 (11) | 0.0218 (10) | 0.0028 (9)  | 0.0070 (9)  | -0.0062(8)  |
| C4  | 0.0198 (9)  | 0.0196 (10) | 0.0254 (10) | -0.0020 (8) | 0.0048 (8)  | 0.0004 (8)  |
| C19 | 0.0283 (11) | 0.0287 (11) | 0.0338 (11) | -0.0029 (9) | 0.0165 (10) | -0.0007 (9) |
| C8  | 0.0269 (10) | 0.0203 (10) | 0.0149 (9)  | -0.0008 (8) | 0.0050 (8)  | -0.0021 (7) |
|     |             |             |             |             |             |             |

.

4465

# Geometric parameters (Å, °)

| S1O4      | 1.4290 (16) | С3Н3        | 0.9500      |
|-----------|-------------|-------------|-------------|
| S1O3      | 1.4401 (16) | C5—C6       | 1.395 (3)   |
| S1—N2     | 1.6460 (17) | C5—C4       | 1.396 (3)   |
| S1-C11    | 1.741 (2)   | C5C20       | 1.507 (3)   |
| 01C1      | 1.224 (2)   | C16-C17     | 1.387 (3)   |
| N3—C16    | 1.343 (3)   | C16—C15     | 1.498 (3)   |
| N3—C14    | 1.347 (2)   | C7C6        | 1.389 (3)   |
| O2—C1     | 1.319 (2)   | С7—Н7       | 0.9500      |
| O2—H32    | 0.84 (2)    | С13—С8      | 1.397 (3)   |
| C1C2      | 1.483 (3)   | С13Н13      | 0.9500      |
| N4—C14    | 1.324 (3)   | C10—-C9     | 1.378 (3)   |
| N4C18     | 1.346 (3)   | C10H10      | 0.9500      |
| C14N2     | 1.379 (3)   | C9C8        | 1.413 (3)   |
| C18—C17   | 1.390 (3)   | С9Н9        | 0.9500      |
| C18—C19   | 1.495 (3)   | С6—Н6       | 0.9500      |
| C12—C13   | 1.379 (3)   | C17—H17     | 0.9500      |
| C12C11    | 1.390 (3)   | C20—H20A    | 0.9800      |
| C12—H12   | 0.9500      | C20—H20B    | 0.9800      |
| N2H31     | 0.85 (2)    | C20-H20C    | 0.9800      |
| C11C10    | 1.394 (3)   | C15H15A     | 0.9800      |
| C2C7      | 1.396 (3)   | C15—H15B    | 0.9800      |
| C2C3      | 1.400 (3)   | C15—H15C    | 0.9800      |
| N1C8      | 1.368 (3)   | C4H4        | 0.9500      |
| N1-H30B   | .0.85 (2)   | C19—H19A    | 0.9800      |
| N1-H30A   | 0.84 (2)    | C19—H19B    | 0.9800      |
| C3-C4     | 1.385 (3)   | C19H19C     | 0.9800      |
| O4S1O3    | 118.56 (10) | C6C2C2      | 119.93 (17) |
| O4—S1—N2  | 110.05 (9)  | C6—C7—H7    | 120.0       |
| O3-S1N2   | 101.90 (9)  | С2—С7—Н7    | 120.0       |
| O4—S1—C11 | 109.06 (9)  | C12C13C8    | 120.97 (19) |
| O3-S1-C11 | 108.59 (9)  | С12-С13-Н13 | 119.5       |
| N2S1-C11  | 108.13 (9)  | C8 C13H13   | 119.5       |
| C16N3C14  | 115 73 (17) | C9C10C11    | 119.46 (18) |
| С1О2Н32   | 112 (2)     | С9С10Н10    | 120.3       |

| 01—C1—O2       | 123.10 (18)  | С11—С10Н10     | 120.3        |
|----------------|--------------|----------------|--------------|
| 01—C1—C2       | 122.16 (18)  | C10—C9—C8      | 120.89 (18)  |
| O2—C1—C2       | 114.73 (17)  | С10—С9—Н9      | 119.6        |
| C14-N4-C18     | 116.14 (17)  | С8—С9—Н9       | 119.6        |
| N4—C14—N3      | 127.48 (18)  | C7—C6—C5       | 121.16 (18)  |
| N4-C14-N2      | 118.23 (17)  | С7—С6—Н6       | 119.4        |
| N3-C14-N2      | 114.28 (17)  | С5—С6—Н6       | 119.4        |
| N4C18C17       | 121.27 (18)  | C16—C17—C18    | 117.97 (18)  |
| N4-C18-C19     | 115.96 (18)  | C16—C17—H17    | 121.0        |
| C17—C18—C19    | 122.77 (19)  | C18—C17—H17    | 121.0        |
| C13-C12-C11    | 119.80 (18)  | C5—C20—H20A    | 109.5        |
| C13—C12—H12    | 120.1        | C5-C20-H20B    | 109.5        |
| C11-C12-H12    | 120.1        | H20A—C20—H20B  | 109.5        |
| C14-N2-S1      | 125.93 (14)  | C5-C20-H20C    | 109.5        |
| C14—N2—H31     | 119.3 (16)   | H20A—C20H20C   | 109.5        |
| S1-N2-H31      | 114.8 (16)   | H20B-C20-H20C  | 109.5        |
| C12-C11-C10    | 120.55 (18)  | C16—C15—H15A   | 109.5        |
| C12-C11-S1     | 118.49 (15)  | C16—C15—H15B   | 109.5        |
| C10-C11-S1     | 120.92 (15)  | H15A—C15—H15B  | 109.5        |
| C7—C2—C3       | 119.38 (18)  | C16—C15—H15C   | 109.5        |
| C7—C2—C1       | 122.07 (17)  | H15A—C15—H15C  | 109.5        |
| C3—C2—C1       | 118.55 (17)  | H15B—C15—H15C  | 109.5        |
| C8—N1—H30B     | 114.6 (18)   | C3—C4—C5       | 121.27 (18)  |
| C8—N1—H30A     | 116.4 (18)   | C3—C4—H4       | 119.4        |
| H30B-N1-H30A   | 118 (3)      | C5C4H4         | 119.4        |
| C4—C3—C2       | 119.91 (18)  | C18—C19—H19A   | 109.5        |
| С4—С3—Н3       | 120.0        | C18—C19—H19B   | 109.5        |
| С2—С3—Н3       | 120.0        | H19A—C19—H19B  | 109.5        |
| C6—C5—C4       | 118.31 (18)  | C18C19H19C     | 109.5        |
| C6—C5—C20      | 120.86 (18)  | H19A—C19—H19C  | 109.5        |
| C4—C5—C20      | 120.84 (18)  | H19B—C19—H19C  | 109.5        |
| N3C16C17       | 121.40 (18)  | N1             | 121.08 (19)  |
| N3-C16-C15     | 116.31 (18)  | N1—C8—C9       | 120.55 (19)  |
| C17—C16—C15    | 122.29 (19)  | C13—C8—C9      | 118.33 (18)  |
| C18-N4-C14-N3  | -0.7 (3)     | C1—C2—C3—C4    | 178.24 (18)  |
| C18—N4—C14—N2  | 178.64 (17)  | C14—N3—C16—C17 | 0.3 (3)      |
| C16N3-C14-N4   | 0.1 (3)      | C14—N3—C16—C15 | -179.59 (17) |
| C16—N3—C14—N2  | -179.25 (16) | C3—C2—C7—C6    | 0.6 (3)      |
| C14—N4—C18—C17 | 0.9 (3)      | C1—C2—C7—C6    | 179.97 (19)  |
| C14—N4—C18—C19 | -178.93 (17) | C11—C12—C13—C8 | 0.7 (3)      |
| N4-C14-N2-S1   | -2.5 (3)     | C12-C11-C10-C9 | -1.0 (3)     |
| N3-C14-N2-S1   | 176.93 (14)  | S1-C11C10C9    | 176.47 (15)  |
| O4—S1—N2—C14   | 60.45 (19)   | C11-C10-C9-C8  | 0.0 (3)      |
| O3-S1-N2-C14   | -172.89 (17) | C2—C7—C6C5     | -1.8 (3)     |
| C11-S1-N2-C14  | -58.57 (19)  | C4—C5—C6—C7    | 1.1 (3)      |
| C13-C12-C11C10 | 0.7 (3)      | C20—C5—C6—-C7  | -179.0 (2)   |
| C13-C12-C11-S1 | -176.86 (14) | N3-C16-C17-C18 | -0.1 (3)     |
| O4S1C11C12     | 160.32 (14)  | C15C16C17C18   | 179.78 (19)  |
| O3—S1—C11—C12  | 29.80 (17)   | N4-C18-C17-C16 | -0.5 (3)     |
| N2-S1-C11-C12  | -80.03 (16)  | C19C18C17C16   | 179.29 (19)  |
| O4—S1—C11C10   | -17.20 (18)  | C2—C3—C4—C5    | -1.8 (3)     |
| O3S1C11C10     | -147.73 (15) | C6C5-C4-C3     | 0.7 (3)      |
| N2-S1-C11C10   | 102.45 (16)  | C20—C5—C4—C3   | -179.20 (19) |
| O1—C1—C2—C7    | 171.1 (2)    | C12-C13-C8N1   | 175.98 (19)  |
| O2—C1—C2—C7    | -8.9 (3)     | C12—C13—C8—C9  | -1.7 (3)     |

| N2—H31…O1 | 0.85(2)  | 1.91 (2) | 2.762 (2) | 177 (2) |
|-----------|----------|----------|-----------|---------|
| O2—H32…N3 | 0.84 (2) | 1.90 (2) | 2.742 (2) | 174 (3) |

Symmetry codes: (i) -x+1, y+1/2, -z; (ii) -x, y+1/2, -z.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.



Figure S.8: Crystal Structure of the Cocrystal of Sulfamethazine and o-Fluorobenzoic Acid Showing Thermal Parameters (50% Thermal Ellipsoids) and Hydrogen Bonding.

## Crystal data

 $C_{12}H_{14}N_4O_2S \cdot C_7H_5FO_2$   $M_r = 418.44$ Orthorhombic, *Pbca*  a = 9.5883 (3) Å b = 15.4399 (4) Å c = 26.7427 (7) Å V = 3959.05 (19) Å<sup>3</sup> Z = 8F(000) = 1744  $D_x = 1.404 \text{ Mg m}^{-3}$ Melting point: 460-469 K Cu K $\alpha$  radiation,  $\lambda = 1.54178 \text{ Å}$ Cell parameters from 4988 reflections  $\theta = 3.3-67.7^{\circ}$  $\mu = 1.84 \text{ mm}^{-1}$ T = 100 KPlate, colourless  $\times \times \text{mm}$ 

| $M_r = 418.44$                 |
|--------------------------------|
| Orthorhombic, Pbca             |
| <i>a</i> = 9.5883 (3) Å        |
| <i>b</i> = 15.4399 (4) Å       |
| <i>c</i> = 26.7427 (7) Å       |
| $V = 3959.05 (19) \text{ Å}^3$ |
| Z = 8                          |
| F(000) = 1744                  |

Melting point: 460-469 K Cu K $\alpha$  radiation,  $\lambda = 1.54178$  Å Cell parameters from 4988 reflections  $\theta = 3.3-67.7^{\circ}$  $\mu = 1.84$  mm<sup>-1</sup> T = 100 K Plate, colourless × × mm

#### Data collection

| Bruker APEXII CCD<br>diffractometer                           | 3627 independent reflections                                |
|---------------------------------------------------------------|-------------------------------------------------------------|
| Radiation source: fine-focus sealed tube                      | 3068 reflections with $I > 2\sigma(I)$                      |
| Detector resolution: 8.33 pixels mm <sup>-1</sup>             | $R_{\rm int} = 0.073$                                       |
| phi and $\omega$ scans                                        | $\theta_{max} = 68.2^{\circ}, \ \theta_{min} = 3.3^{\circ}$ |
| Absorption correction: multi-scan<br>SADABS2014/7, Bruker AXS | h = -10 11                                                  |
| $T_{\min} = 0.598, \ T_{\max} = 0.753$                        | k = -18 18                                                  |
| 54427 measured reflections                                    | l = -31  32                                                 |
|                                                               |                                                             |

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full Hydrogen site location: mixed H atoms treated by a mixture of independent and  $R[F^2 > 2\sigma(F^2)] = 0.036$ constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.038P)^2 + 1.6491P]$  $wR(F^2) = 0.094$ where  $P = (F_0^2 + 2F_c^2)/3$ S = 1.03 $(\Delta/\sigma)_{\rm max} < 0.001$  $\Delta\rho_{max}=0.19~e~\AA^{-3}$ 3627 reflections 344 parameters  $\Delta \rho_{min} = -0.42 \text{ e } \text{\AA}^{-3}$ 34 restraints Extinction correction: none 0 constraints

# Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

|    | x             | у            | Ζ            | $U_{\rm iso}$ */ $U_{\rm eq}$ | Occ. (<1) |
|----|---------------|--------------|--------------|-------------------------------|-----------|
| S1 | 0.12467 (4)   | 0.22413 (3)  | 0.15595 (2)  | 0.02806 (13)                  |           |
| 01 | 0.16377 (14)  | 0.12737 (9)  | 0.02122 (5)  | 0.0442 (3)                    |           |
| O2 | -0.03970 (14) | 0.10783 (9)  | -0.01786 (5) | 0.0405 (3)                    |           |
| 03 | 0.26555 (12)  | 0.20765 (8)  | 0.14002 (5)  | 0.0342 (3)                    |           |
| 04 | 0.06934 (13)  | 0.17119 (8)  | 0.19537 (4)  | 0.0350 (3)                    |           |
| N1 | 0.1038 (2)    | 0.58674 (11) | 0.22392 (7)  | 0.0489 (5)                    |           |

| H30A | 0.153 (2)     | 0.6243 (14)  | 0.2079 (8)   | 0.058 (7)*  |           |
|------|---------------|--------------|--------------|-------------|-----------|
| H30B | 0.046 (2)     | 0.6017 (14)  | 0.2463 (7)   | 0.049 (6)*  |           |
| N2   | 0.03437 (15)  | 0.20962 (10) | 0.10427 (5)  | 0.0295 (3)  |           |
| N3   | -0.16266 (15) | 0.19042 (9)  | 0.05649 (5)  | 0.0297 (3)  |           |
| N4   | -0.17851 (15) | 0.24589 (9)  | 0.13976 (5)  | 0.0281 (3)  |           |
| C1   | 0.0960 (2)    | 0.10026(11)  | -0.01418 (?) | 0.0353 (4)  |           |
| C8   | 0.10501 (19)  | 0.50346 (11) | 0.20768 (7)  | 0.0324 (4)  |           |
| C9   | 0.01237 (18)  | 0.44170 (11) | 0.22693 (6)  | 0.0303 (4)  |           |
| H9   | 0.0528        | 0.4583       | 0.2519       | 0.036*      |           |
| C10  | 0.01429 (18)  | 0.35756 (11) | 0.21027 (6)  | 0.0283 (4)  |           |
| H10  | 0.0496        | 0.3166       | 0.2235       | 0.034*      |           |
| C11  | 0.11023 (17)  | 0.33236 (11) | 0.17384 (6)  | 0.0274 (4)  |           |
| C12  | 0.20288 (18)  | 0.39266 (11) | 0.15396 (6)  | 0.0312 (4)  |           |
| H12  | 0.2677        | 0.3755       | 0.1290       | 0.037*      |           |
| C13  | 0.20049 (19)  | 0.47721 (12) | 0.17051 (7)  | 0.0355 (4)  |           |
| H13  | 0.2637        | 0.5182       | 0.1568       | 0.043*      |           |
| C14  | -0.10949(17)  | 0.21539 (10) | 0.10061 (6)  | 0.0263 (3)  |           |
| C15  | -0.3625 (2)   | 0.16640 (14) | 0.00283 (8)  | 0.0475 (5)  |           |
| H15B | 0.3580        | 0.1031       | 0.0008       | 0.071*      |           |
| H15A | -0.3088       | 0.1917       | 0.0247       | 0.071*      |           |
| H15C | -0.4599       | 0.1852       | 0.0004       | 0.071*      |           |
| C16  | -0.30253 (19) | 0.19581 (11) | 0.05169 (7)  | 0.0338 (4)  |           |
| C17  | -0.38375 (19) | 0.22639 (11) | 0.09066 (7)  | 0.0354 (4)  |           |
| H17  | 0.4822        | 0.2303       | 0.0874       | 0.043*      |           |
| C18  | -0.31791 (18) | 0.25118 (11) | 0.13460 (6)  | 0.0294 (4)  |           |
| C19  | -0.39555 (19) | 0.28420 (12) | 0.17898 (7)  | 0.0359 (4)  |           |
| H19B | -0.3802       | 0.2453       | 0.2074       | 0.054*      |           |
| H19C | -0.4954       | 0.2866       | 0.1713       | 0.054*      |           |
| H19A | -0.3621       | 0.3424       | 0.1874       | 0.054*      |           |
| C2   | 0.1769 (7)    | 0.0559 (8)   | -0.0574 (4)  | 0.0245 (16) | 0.620 (5) |
| C3   | 0.1082 (6)    | 0.0194 (5)   | -0.0971(3)   | 0.0340 (15) | 0.620 (5  |
| C4   | 0.1778 (8)    | 0.0198 (3)   | -0.1360(2)   | 0.0401 (16) | 0.620 (5  |
| H4   | 0.1288        | -0.0424      | -0.1640      | 0.048*      | 0.620 (5  |
| C5   | 0.3216 (7)    | -0.0252(3)   | -0.1329(2)   | 0.0464 (12) | 0.620 (5) |
| H5A  | 0.3722        | -0.0529      | -0.1589      | 0.056*      | 0.620 (5  |
| C7   | 0.3193 (6)    | 0.0499 (4)   | -0.0555 (2)  | 0.0357 (13) | 0.620 (5  |
| H7A  | 0.3678        | 0.0745       | 0.0279       | 0.043*      | 0.620 (5  |
| C6   | 0.3930 (6)    | 0.0092 (4)   | -0.0925 (2)  | 0.0526 (13) | 0.620 (5  |
| H6A  | 0.4917        | 0.0046       | -0.0905      | 0.063*      | 0.620 (5  |
| C2A  | 0.1356 (12)   | 0.0568 (13)  | -0.0586 (7)  | 0.029 (3)   | 0.380 (5  |
| C3A  | 0.0532 (9)    | 0.0230 (7)   | -0.0973 (4)  | 0.026 (2)   | 0.380 (5  |
| H3A  | -0.0452       | 0.0277       | -0.0943      | 0.031*      | 0.380 (5  |
| C4A  | 0.1066 (8)    | -0.0169 (6)  | -0.1396 (3)  | 0.0339 (19) | 0.380 (5  |
| H4A  | 0.0456        | -0.0421      | -0.1635      | 0.041*      | 0.380 (5  |
| C5A  | 0.2503 (10)   | -0.0198 (5)  | -0.1468 (3)  | 0.0315 (17) | 0.380 (5  |
| H5A1 | 0.2864        | -0.0465      | 0.1761       | 0.038*      | 0.380 (5  |
| C6A  | 0.3414 (9)    | 0.0153 (6)   | -0.1124 (3)  | 0.0424 (18) | 0.380 (5) |
| H6A1 | 0.4395        | 0.0156       | 0.1172       | 0.051*      | 0.380 (5) |
| C7A  | 0.2786 (11)   | 0.0505 (8)   | -0.0698 (4)  | 0.042 (3)   | 0.380 (5) |
|      |               | x=/          | · · · · ·    | · /         | · · ·     |

ς.

| F1         | -0.0326 (     | 3) 0.02      | 161 (17)               | -0.10023 (8)                             | 0.0625 (9)    | 0.620 (5)     |
|------------|---------------|--------------|------------------------|------------------------------------------|---------------|---------------|
| F2         | 0.3742 (4)    | ) 0.08       | 37 (3)                 | -0.03673 (14)                            | 0.0656 (15)   | 0.380 (5)     |
| H31        | 0.079 (2)     | 0.18         | 64 (13)                | 0.0800 (7)                               | 0.043 (6)*    |               |
| H32        | -0.071 (3)    | ) 0.13       | 75 (17)                | 0.0085 (8)                               | 0.084 (9)*    |               |
|            |               |              |                        |                                          |               |               |
| Ator       | nic displacer | nent paramet | ters (Å <sup>2</sup> ) |                                          |               | -             |
|            | $U^{11}$      | $U^{22}$     | $U^{33}$               | $U^{12}$                                 | $U^{13}$      | $U^{23}$      |
| <b>S</b> 1 | 0.0278 (2)    | 0.0288 (2)   | 0.0275 (2)             | 0.00147 (16)                             | -0.00212 (16) | -0.00086 (16) |
| 01         | 0.0426 (8)    | 0.0509 (8)   | 0.0392 (7)             | 0.0023 (6)                               | 0.0022 (6)    | -0.0149 (6)   |
| O2         | 0.0433 (8)    | 0.0454 (8)   | 0.0328 (7)             | -0.0029 (6)                              | 0.0043 (6)    | -0.0100 (6)   |
| 03         | 0.0262 (6)    | 0.0345 (6)   | 0.0419 (7)             | 0.0043 (5)                               | -0.0025(5)    | -0.0052(5)    |
| O4         | 0.0444 (7)    | 0.0315 (6)   | 0.0291 (6)             | 0.0008 (5)                               | -0.0005 (5)   | 0.0035 (5)    |
| N1         | 0.0613 (12)   | 0.0327 (9)   | 0.0529 (11)            | -0.0050 (8)                              | 0.0280 (9)    | -0.0070 (8)   |
| N2         | 0.0272 (8)    | 0.0367 (8)   | 0.0247 (7)             | -0.0005 (6)                              | 0.0007 (6)    | -0.0053 (6)   |
| N3         | 0.0319 (8)    | 0.0288 (7)   | 0.0283 (7)             | -0.0007 (6)                              | -0.0021 (6)   | -0.0023 (6)   |
| N4         | 0.0280 (7)    | 0.0279 (7)   | 0.0285 (7)             | -0.0007 (6)                              | 0.0019 (6)    | -0.0005 (6)   |
| C1         | 0.0445 (11)   | 0.0293 (9)   | 0.0320 (10)            | -0.0027 (8)                              | 0.0057 (8)    | -0.0031 (8)   |
| C8         | 0.0352 (10)   | 0.0303 (9)   | 0.0318 (9)             | 0.0025 (7)                               | 0.0028 (7)    | -0.0015 (7)   |
| C9         | 0.0302 (9)    | 0.0362 (9)   | 0.0245 (8)             | 0.0039 (7)                               | 0.0017 (7)    | 0.0002 (7)    |
| C10        | 0.0283 (9)    | 0.0333 (9)   | 0.0233 (8)             | -0.0004 (7)                              | -0.0026 (6)   | 0.0035 (7)    |
| C1 1       | 0.0278 (9)    | 0.0283 (9)   | 0.0260 (8)             | 0.0014 (7)                               | -0.0035 (6)   | -0.0014 (7)   |
| C12        | 0.0281 (9)    | 0.0336 (9)   | 0.0320 (9)             | 0.0012 (7)                               | 0.0025 (7)    | -0.0036 (7)   |
| C13        | 0.0328 (10)   | 0.0339 (10)  | 0.0398 (10)            | -0.0032 (7)                              | 0.0086 (8)    | -0.0018 (8)   |
| C14        | 0.0293 (9)    | 0.0238 (8)   | 0.0258 (8)             | -0.0026 (6)                              | 0.0002 (6)    | 0.0005 (6)    |
| C15        | 0.0465 (12)   | 0.0484 (12)  | 0.0475 (11)            | 0.0053 (9)                               | -0.0180 (9)   | -0.0165 (10)  |
| C16        | 0.0336 (10)   | 0.0298 (9)   | 0.0381 (10)            | -0.0003 (7)                              | -0.0076 (7)   | -0.0042 (7)   |
| C17        | 0.0281 (9)    | 0.0332 (9)   | 0.0450 (11)            | -0.0009 (7)                              | -0.0036 (8)   | -0.0052 (8)   |
| C18        | 0.0282 (9)    | 0.0243 (8)   | 0.0356 (9)             | -0.0018 (7)                              | 0.0033 (7)    | 0.0009 (7)    |
| C19        | 0.0307 (10)   | 0.0368 (10)  | 0.0401 (10)            | 0.0005 (8)                               | 0.0067 (8)    | -0.0035 (8)   |
| C2         | 0.015 (5)     | 0.0262 (19)  | 0.032 (2)              | -0.003 (3)                               | 0.012 (3)     | -0.0054 (14)  |
| C3         | 0.038 (4)     | 0.034 (2)    | 0.031 (2)              | 0.009 (3)                                | -0.001 (3)    | -0.0014 (15)  |
| C4         | 0.060 (5)     | 0.0308 (19)  | 0.030 (2)              | -0.002 (4)                               | 0.011 (3)     | -0.0010 (15)  |
| C5         | 0.065 (4)     | 0.030 (2)    | 0.045 (3)              | -0.005 (3)                               | 0.030 (3)     | -0.001 (2)    |
| C7         | 0.024 (3)     | 0.039 (2)    | 0.045 (3)              | -0.017 (2)                               | 0.004 (2)     | -0.017 (2)    |
| C6         | 0.052 (3)     | 0.046 (2)    | 0.060 (3)              | -0.010 (2)                               | 0.026 (2)     | -0.010 (3)    |
| C2A        | 0.010 (6)     | 0.029 (3)    | 0.049 (5)              | -0.002 (5)                               | 0.014 (4)     | 0.008 (3)     |
| C3A        | 0.022 (6)     | 0.028 (3)    | 0.028 (3)              | 0.000 (5)                                | 0.001 (4)     | -0.002 (2)    |
| C4A        | 0.039 (5)     | 0.031 (3)    | 0.032 (3)              | -0.005 (4)                               | 0.009 (3)     | -0.001 (2)    |
| C5A        | 0.034 (6)     | 0.025 (3)    | 0.036 (4)              | 0.000 (4)                                | 0.008 (3)     | -0.001 (3)    |
| C6A        | 0.041 (5)     | 0.047 (4)    | 0.040 (5)              | -0.004 (4)                               | 0.012 (3)     | -0.012 (4)    |
| C7A        | 0.031 (6)     | 0.046 (4)    | 0.049 (5)              | -0.016 (4)                               | -0.021 (4)    | -0.016 (4)    |
| F1         | 0.0510 (19)   | 0.0820 (17)  | 0.0544 (14)            | 0.0240 (15)                              | -0.0238 (13)  | -0.0329 (11)  |
| F2         | 0.030 (2)     | 0.104 (3)    | 0.063 (2)              | -0.015 (2)                               | 0.0048 (17)   | -0.043 (2)    |
| Geor       | metric param  | eters (Å, °) | · ·                    | an a |               |               |
|            | -             | -            |                        |                                          |               |               |

| S1—O4 | 1.4356 (12) | C15—H15C | 0.9800    |
|-------|-------------|----------|-----------|
| S1—O3 | 1.4391 (12) | C16C17   | 1.384 (3) |

| S1 N2                        | 1 6462 (14)              | C17 C18                                              | 1 299 (2)   |
|------------------------------|--------------------------|------------------------------------------------------|-------------|
| SI = INZ                     | 1.0402(14)<br>1.7427(17) | C17 - C18                                            | 1.300 (2)   |
|                              | 1.7437(17)               | $C1/\pi1/$                                           | 0.9300      |
| 01 - 01                      | 1.222(2)                 | C10 - C19.                                           | 1.491(2)    |
| 02 - 01                      | 1.310(2)                 | С19—П19В                                             | 0.9800      |
| 02—П32<br>N1 С9              | 0.691(17)                | С19П19С                                              | 0.9800      |
|                              | 1.35/(2)                 | CI9—HI9A                                             | 0.9800      |
| NI—H30A                      | 0.859 (16)               | $C_2 - C_3$                                          | 1.369 (9)   |
| NI—H30B                      | 0.847 (16)               | C2C7                                                 | 1.370(7)    |
| N2—C14                       | 1.386 (2)                | C3—F1                                                | 1.353 (5)   |
| N2—H31                       | 0.856 (15)               | C3—C4                                                | 1.377 (8)   |
| N3—C14                       | 1.342 (2)                | C4—C5                                                | 1.384 (7)   |
| N3—C16                       | 1.350 (2)                | C4—H4                                                | 0.9500      |
| N4-C14                       | 1.325 (2)                | C5—C6                                                | 1.384 (7)   |
| N4—C18                       | 1.346 (2)                | C5—H5A                                               | 0.9500      |
| C1C2A                        | 1.415 (18)               | C7—C6                                                | 1.369 (7)   |
| C1—C2                        | 1.553 (9)                | С7—Н7А                                               | 0.9500      |
| C8—C9                        | 1.401 (2)                | C6—H6A                                               | 0.9500      |
| C8C13                        | 1.411 (2)                | C2A—C3A                                              | 1.404 (13)  |
| C9—C10                       | 1.374 (2)                | C2A—C7A                                              | 1.407 (11)  |
| С9—Н9                        | 0.9500                   | C3A—C4A                                              | 1.386 (11)  |
| C10-C11                      | 1.395 (2)                | СЗА—НЗА                                              | 0.9500      |
| C10—H10                      | 0.9500                   | C4A—C5A                                              | 1.391 (8)   |
| C11—C12                      | 1.392 (2)                | C4A—H4A                                              | 0.9500      |
| C12C13                       | 1.379 (3)                | C5A—C6A                                              | 1.381 (9)   |
| C12—H12                      | 0.9500                   | C5A—H5A1                                             | 0.9500      |
| C13—H13                      | 0.9500                   | C6A—C7A                                              | 1.399 (11)  |
| C15—C16                      | 1.498 (2)                | C6A—H6A1                                             | 0.9500      |
| C15H15B                      | 0.9800                   | C7A—F2                                               | 1.372 (8)   |
| C15—H15A                     | 0.9800                   |                                                      |             |
| 04                           | 117.61 (7)               | C17C16C15                                            | 122.99 (17) |
| 04 - S1 - N2                 | 110.15 (7)               | C16-C17-C18                                          | 118.41 (17) |
| 03 - S1 - N2                 | 102.78 (7)               | C16-C17-H17                                          | 120.8       |
| 04 - 81 - C11                | 108.35 (8)               | C18—C17—H17                                          | 120.8       |
| 03 - S1 - C11                | 108.98 (8)               | N4—C18—C17                                           | 121.45 (16) |
| $N_{2} = S_{1} = C_{11}$     | 108.61 (8)               | N4-C18-C19                                           | 115.78 (15) |
| С1                           | 108.01(0)<br>108.4(19)   | C17 - C18 - C19                                      | 122.77 (16) |
| C8-N1-H30A                   | 1184(16)                 | C18—C19—H19B                                         | 109.5       |
| C8_N1_H30R                   | 119 3 (15)               | C18—C19—H19C                                         | 109.5       |
| H30A_N1_H30B                 | 122 (2)                  | H19B-C19-H19C                                        | 109.5       |
| C14 = N2 = S1                | 122(2)<br>125 04(12)     | C18_C19_H19A                                         | 109.5       |
| C14 = N2 = H31               | 123.07(12)               | H19B-C19-H19A                                        | 109.5       |
| S1 N2 U31                    | 115.1(14)                | H19C_C19_H19A                                        | 109.5       |
| $\frac{1}{1}$                | 115.5(17)<br>116.33(15)  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 118.8 (6)   |
| C14 NA $C18$                 | 110.33(13)               | $C_{3} = C_{2} = C_{1}$                              | 110.3(0)    |
| $C_{14}$ $-I_{N4}$ $-C_{18}$ | 113.87 (14)              | $C_{3} = C_{2} = C_{1}$                              | 121.2(3)    |
| 01-01-02                     | 123.78(17)               | $C_1 - C_2 - C_1$                                    | 120.0(0)    |
| OI - CI - C2A                | 132.0 (5)                | F1 - C2 - C2                                         | 121.2(3)    |
| 02—C1—C2A                    | 104.2 (5)                | F1-03-04                                             | 110.5 (6)   |
| 01—C1—C2                     | 117.5 (3)                | C2—C3—C4                                             | 122.2 (6)   |
| O2—C1—C2                     | 118.7 (3)                | C3—C4—C5                                             | 117.5 (5)   |

| N1-C8-C9                                | 121.44 (16)                                                                                                     | C3—C4—H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121.2         |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| N1-C8-C13                               | 120.21 (17)                                                                                                     | C5—C4—H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121.2         |
| C9—C8—C13                               | 118.34 (16)                                                                                                     | C4—C5—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121.2 (4)     |
| С10—С9—С8                               | 121.07 (16)                                                                                                     | C4—C5—H5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 119.4         |
| С10—С9—Н9                               | 119.5                                                                                                           | С6—С5—Н5А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 119.4         |
| С8—С9—Н9                                | 119.5                                                                                                           | C6—C7—C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121.2 (6)     |
| C9-C10-C11                              | 119.94 (16)                                                                                                     | С6—С7—Н7А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 119.4         |
| C9—C10—H10                              | 120.0                                                                                                           | С2—С7—Н7А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 119.4         |
| C11-C10-H10                             | 120.0                                                                                                           | C7C6C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 119.0 (5)     |
| C12-C11-C10                             | 120.05 (16)                                                                                                     | C7—C6—H6A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120.5         |
| C12-C11-S1                              | 119.04 (13)                                                                                                     | C5—C6—H6A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120.5         |
| C10-C11-S1                              | 120.74 (13)                                                                                                     | C3A—C2A—C7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 111.4 (13)    |
| C13—C12—C11                             | 120.00 (16)                                                                                                     | C3A—C2A—C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 130.1 (10)    |
| C13-C12-H12                             | 120.0                                                                                                           | C7A—C2A—C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 118.2 (10)    |
| C11—C12—H12                             | 120.0                                                                                                           | C4A—C3A—C2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 124.1 (10)    |
| C12—C13—C8                              | 120.59 (17)                                                                                                     | С4А—С3А—Н3А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 118.0         |
| С12—С13—Н13                             | 119.7                                                                                                           | С2А—С3А—НЗА                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 118.0         |
| C8—C13—H13                              | 119.7                                                                                                           | C3A—C4A—C5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.6 (8)     |
| N4—C14—N3                               | 127.38 (16)                                                                                                     | C3A—C4A—H4A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.2         |
| N4-C14-N2                               | 117.65 (15)                                                                                                     | C5A—C4A—H4A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.2         |
| N3—C14—N2                               | 114.95 (15)                                                                                                     | C6A—C5A—C4A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 121.4 (7)     |
| C16-C15-H15B                            | 109.5                                                                                                           | C6A—C5A—H5A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119.3         |
| C16—C15—H15A                            | 109.5                                                                                                           | C4A—C5A—H5A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119.3         |
| H15B—C15—H15A                           | 109.5                                                                                                           | C5A—C6A—C7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 115.1 (7)     |
| C16—C15—H15C                            | 109.5                                                                                                           | C5A—C6A—H6A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 122.5         |
| H15B-C15-H15C                           | 109.5                                                                                                           | C7A—C6A—H6A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 122.5         |
| H15A—C15—H15C                           | 109.5                                                                                                           | F2—C7A—C6A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 112.4 (9)     |
| N3-C16-C17                              | 120.55 (16)                                                                                                     | F2C7A-C2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 119.2 (10)    |
| N3-C16-C15                              | 116.46 (17)                                                                                                     | C6A—C7A—C2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 128.3 (11)    |
| 04 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - | 51.62 (16)                                                                                                      | C16—C17—C18—C19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -17942(16)    |
| 03 - S1 - N2 - C14                      | 177.74 (14)                                                                                                     | 01-C1-C2-C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 176.3 (8)     |
| C11 = S1 = N2 = C14                     | -66.90(16)                                                                                                      | $0^{2}-C^{1}-C^{2}-C^{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -48(12)       |
| N1 - C8 - C9 - C10                      | 179 99 (18)                                                                                                     | 01 - C1 - C2 - C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -13(12)       |
| C13 - C8 - C9 - C10                     | 0.2(3)                                                                                                          | $0^{2}-0^{2}-0^{2}-0^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.5(12)       |
| C8 - C9 - C10 - C11                     | 0.2(3)<br>04(3)                                                                                                 | C7 - C2 - C3 - F1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 178 4 (9)     |
| C9-C10-C11-C12                          | -0.7(2)                                                                                                         | C1 - C2 - C3 - F1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8 (15)      |
| C9-C10-C11-S1                           | 17452(13)                                                                                                       | C7 - C2 - C3 - C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -2.8(15)      |
| 04 = \$1 = C11 = C12                    | 153 73 (13)                                                                                                     | $C_1 - C_2 - C_3 - C_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1796(7)       |
| 03 - 1 - 11 - 12                        | 24 63 (16)                                                                                                      | $F_1 - C_3 - C_4 - C_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -178.1(5)     |
| $N_2 = S_1 = C_{11} = C_{12}$           | -86.62(15)                                                                                                      | C2-C3-C4-C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.0 (12)      |
| 04 - S1 - C11 - C10                     | -21.58(16)                                                                                                      | C3—C4—C5—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1.2(8)       |
| 03 - 10 - 11 - 10                       | -15068(13)                                                                                                      | $C_{3}$ $C_{2}$ $C_{7}$ $C_{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.7(15)       |
| $N_2 = S_1 = C_{11} = C_{10}$           | 98 07 (14)                                                                                                      | C1 - C2 - C7 - C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 178.3 (7)     |
| C10-C11-C12-C13                         | 04(3)                                                                                                           | $C_2 - C_7 - C_6 - C_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0 (11)      |
| SI_CII_CI2_CI3                          | -174 92 (14)                                                                                                    | C4 - C5 - C6 - C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.7(7)       |
| $C_{11} = C_{12} = C_{13} = C_{13}$     | (1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | 01 - C1 - C2A - C3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 176 5 (13)    |
| N1 = C12 = C13 = -C0                    | 179 69 (10)                                                                                                     | 02-C1-C2A-C3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -4(2)         |
| $C_0 = C_1 = C_{13} = C_{12}$           | -05(3)                                                                                                          | 01 - C1 - C2A - C7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -9(2)         |
| $C_{12} = C_{13} = C_{12}$              | 0.3(3)                                                                                                          | $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-}$ $0^{-$ | $\frac{7}{2}$ |
|                                         | 0.9 (4)                                                                                                         | $02$ $01$ $02\pi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/0.5 (15)    |

| C18—N4—C14—N2   | 179.46 (14)  | C7A—C2A—C3A—C4A | 4 (2)       |
|-----------------|--------------|-----------------|-------------|
| C16—N3—C14—N4   | -1.0 (3)     | C1—C2A—C3A—C4A  | 178.6 (15)  |
| C16—N3—C14—N2   | -179.61 (15) | C2A—C3A—C4A—C5A | -4.3 (19)   |
| S1—N2—C14—N4    | 9.4 (2)      | C3A—C4A—C5A—C6A | 0.9 (15)    |
| S1—N2—C14—N3    | -171.89 (12) | C4A—C5A—C6A—C7A | 2.1 (14)    |
| C14—N3—C16—C17  | 0.5(2)       | C5A—C6A—C7A—F2  | 179.5 (8)   |
| C14—N3—C16—C15  | -178.87 (16) | C5A—C6A—C7A—C2A | -2 (2)      |
| N3-C16-C17-C18  | 0.0 (3)      | C3A—C2A—C7A—F2  | 177.5 (11)  |
| C15—C16—C17—C18 | 179.32 (17)  | C1—C2A—C7A—F2   | 2 (2)       |
| C14—N4—C18—C17  | -0.3 (2)     | C3A—C2A—C7A—C6A | -1 (3)      |
| C14—N4—C18—C19  | 179.07 (15)  | C1—C2A—C7A—C6A  | -176.1 (11) |
| C16—C17—C18—N4  | -0.1 (3)     |                 |             |
|                 |              |                 |             |

Hydrogen-bond geometry (Å, °)

| D—H···A                                                                         | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H···A |  |
|---------------------------------------------------------------------------------|-------------|--------------|--------------|---------|--|
| N1—H30A····O3 <sup>i</sup>                                                      | 0.86 (2)    | 2.36 (2)     | 3.176 (2)    | 159 (2) |  |
| N1—H30 <i>B</i> ····O4 <sup>ii</sup>                                            | 0.85 (2)    | 2.19 (2)     | 3.019 (2)    | 165 (2) |  |
| N2—H31…O1                                                                       | 0.86 (2)    | 1.99 (2)     | 2.8435 (19)  | 174 (2) |  |
| O2—H32…N3                                                                       | 0.89 (2)    | 1.76 (2)     | 2.6401 (19)  | 169 (3) |  |
| Symmetry codes: (i) $-x+1/2$ , $y+1/2$ , $z$ ; (ii) $-x$ , $y+1/2$ , $-z+1/2$ . |             |              |              |         |  |

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

| S1-N2-C14-N3    | -171.89 (12) | C4A—C5A—C6A—C7A | 2.1 (14)    |
|-----------------|--------------|-----------------|-------------|
| C14—N3—C16—C17  | 0.5(2)       | C5A—C6A—C7A—F2  | 179.5 (8)   |
| C14-N3-C16-C15  | -178.87 (16) | C5A—C6A—C7A—C2A | -2 (2)      |
| N3-C16-C17-C18  | 0.0 (3)      | C3A—C2A—C7A—F2  | 177.5 (11)  |
| C15-C16-C17-C18 | 179.32 (17)  | C1-C2A-C7A-F2   | 2 (2)       |
| C14-N4-C18-C17  | -0.3 (2)     | C3A—C2A—C7A—C6A | -1 (3)      |
| C14—N4—C18—C19  | 179.07 (15)  | C1—C2A—C7A—C6A  | -176.1 (11) |
| C16-C17-C18-N4  | -0.1 (3)     |                 |             |

Hydrogen-bond geometry (Å, °)

| <i>D</i> —H··· <i>A</i>              | D—H                  | H····A        | D···A       | <i>D</i> —H…A |
|--------------------------------------|----------------------|---------------|-------------|---------------|
| N1—H30A…O3 <sup>i</sup>              | 0.86 (2)             | 2.36 (2)      | 3.176 (2)   | 159 (2)       |
| N1—H30 <i>B</i> ····O4 <sup>ii</sup> | 0.85 (2)             | 2.19 (2)      | 3.019 (2)   | 165 (2)       |
| N2—H31…O1                            | 0.86 (2)             | 1.99 (2)      | 2.8435 (19) | 174 (2)       |
| O2—H32…N3                            | 0.89 (2)             | 1.76 (2)      | 2.6401 (19) | 169 (3)       |
| Symmetry codes: (i) $-x+1/2$ ,       | y+1/2, z; (ii) -x, y | +1/2, -z+1/2. |             |               |

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.



Figure S.9: Crystal Structure of the Cocrystal of Sulfamethazine and m-Fluorobenzoic Acid Showing Thermal Parameters (50% Thermal Ellipsoids) and Hydrogen Bonding.

| Bruker APEXII CCD<br>diffractometer                           | 3588 independent reflections                                              |
|---------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube                      | 3343 reflections with $I > 2\sigma(I)$                                    |
| Detector resolution: 8.33 pixels mm <sup>-1</sup>             | $R_{\rm int}=0.037$                                                       |
| phi and $\omega$ scans                                        | $\theta_{\text{max}} = 68.2^{\circ}, \ \theta_{\text{min}} = 3.5^{\circ}$ |
| Absorption correction: multi-scan<br>SADABS2014/7, Bruker AXS | h = -11  11                                                               |
| $T_{\min} = 0.627, \ T_{\max} = 0.753$                        | k = -16 18                                                                |
| 56279 measured reflections                                    | l = -30  30                                                               |
|                                                               |                                                                           |
|                                                               |                                                                           |

## Refinement

Refinement on  $F^2$ Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.034$ 

 $wR(F^2) = 0.089$ 

S = 1.053588 reflections 289 parameters 5 restraints 0 constraints Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.0443P)^2 + 2.9748P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 7.552$  $\Delta\rho_{max} = 0.85$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.42$  e Å<sup>-3</sup> Extinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|                 | x             | у             | Ζ            | $U_{\rm iso}$ */ $U_{\rm eq}$ | Occ. (< | <1) |
|-----------------|---------------|---------------|--------------|-------------------------------|---------|-----|
| S1              | 0.14616 (4)   | 0.01757 (2)   | 0.15740 (2)  | 0.01547 (11)                  |         |     |
| F1              | 0.57252 (10)  | 0.25347 (7)   | 0.08383 (4)  | 0.0297 (4)                    | 0.926   | (4) |
| F2              | 0.202 (4)     | 0.270 (8)     | -0.138 (3)   | 0.9 (2)                       | 0.074   | (4) |
| 01              | 0.20702 (11)  | 0.11037 (8)   | 0.01893 (4)  | 0.0240 (3)                    |         |     |
| O2              | 0.01712 (11)  | 0.14171 (8)   | -0.02580 (4) | 0.0231 (3)                    |         |     |
| H32             | -0.0215 (19)  | 0.1152 (12)   | 0.0010 (7)   | 0.028*                        |         |     |
| O3 <sup>°</sup> | 0.28587 (11)  | 0.02930 (7)   | 0.14244 (4)  | 0.0201 (2)                    |         |     |
| O4              | 0.09250 (11)  | 0.07202 (7)   | 0.19781 (4)  | 0.0211 (2)                    |         |     |
| N1              | 0.07660 (18)  | -0.34230 (10) | 0.22079 (7)  | 0.0343 (4)                    |         |     |
| H30B            | 0.120 (2)     | -0.3817 (13)  | 0.2040 (8)   | 0.041*                        |         |     |
| H30A            | 0.018 (2)     | -0.3577 (14)  | 0.2430 (8)   | 0.041*                        |         |     |
| N2              | 0.06451 (13)  | 0.03454 (8)   | 0.10205 (5)  | 0.0172 (3)                    |         |     |
| H31             | 0.1101 (17)   | 0.0546 (12)   | 0.0775 (6)   | 0.021*                        |         |     |
| N4              | 0.14842 (13)  | 0.00399 (8)   | 0.13611 (5)  | 0.0177 (3)                    |         |     |
| N3              | -0.12128 (13) | 0.06089 (8)   | 0.04965 (5)  | 0.0174 (3)                    |         |     |
| C1              | 0.14891 (16)  | 0.14416 (10)  | -0.01824 (6) | 0.0192 (3)                    |         |     |
| C2              | 0.22613 (17)  | 0.19117 (10)  | -0.05970 (6) | 0.0197 (3)                    |         |     |
| C3              | 0.36497 (17)  | 0.20142 (10)  | 0.05247 (6)  | 0.0212 (3)                    |         |     |
| H3              | 0.4084        | 0.1806        | -0.0217      | 0.025*                        |         |     |
| C4              | 0.43770 (17)  | 0.24242 (10)  | -0.09090 (7) | 0.0227 (3)                    |         |     |
| H4              | 0.5328        | 0.2490        | -0.0862      | 0.027*                        | 0.074   | (4) |
| C5              | 0.37935 (18)  | 0.27445 (10)  | -0.13598 (6) | 0.0243 (4)                    |         |     |

| H5   | 0.4329        | 0.3023        | -0.1619      | 0.029*     |
|------|---------------|---------------|--------------|------------|
| C6   | 0.2415 (2)    | 0.26503 (11)  | -0.14245 (7) | 0.0269 (4) |
| H6   | 0.1992        | 0.2873        | -0.1730      | 0.032* 0.9 |
| C7   | 0.16225 (19)  | 0.22302 (11)  | -0.10461 (6) | 0.0235 (4) |
| H7   | 0.065 (2)     | 0.2136 (13)   | -0.1098 (7)  | 0.028*     |
| C8   | 0.09121 (17)  | -0.25911 (10) | 0.20657 (6)  | 0.0210 (3) |
| С9   | 0.18848 (17)  | -0.23588 (10) | 0.16866 (6)  | 0.0227 (3) |
| H9   | 0.2442        | -0.2787       | 0.1533       | 0.027*     |
| C13  | 0.00964 (16)  | -0.19449 (10) | 0.22875 (6)  | 0.0187 (3) |
| H13  | -0.0555       | -0.2089       | 0.2548       | 0.022*     |
| C10  | 0.20360 (16)  | -0.15169 (10) | 0.15362 (6)  | 0.0191 (3) |
| H10  | 0.2702        | -0.1366       | 0.1283       | 0.023*     |
| C12  | 0.02349 (15)  | -0.11039 (10) | 0.21306 (6)  | 0.0170 (3) |
| H12  | -0.0331       | -0.0674       | 0.2277       | 0.020*     |
| C11  | 0.12090 (15)  | -0.08876 (10) | 0.17562 (6)  | 0.0161 (3) |
| C14  | -0.07524 (15) | 0.03302 (9)   | 0.09611 (6)  | 0.0160 (3) |
| C15  | -0.31002 (17) | 0.09080 (12)  | -0.00869 (6) | 0.0249 (4) |
| H15B | -0.2855       | 0.1511        | -0.0135      | 0.037*     |
| H15C | -0.4090       | 0.0849        | -0.0095      | 0.037*     |
| H15A | -0.2700       | 0.0566        | -0.0370      | 0.037*     |
| C16  | -0.25749 (16) | 0.06006 (10)  | 0.04304 (6)  | 0.0191 (3) |
| C17  | -0.34209 (16) | 0.03168 (10)  | 0.08284 (6)  | 0.0208 (3) |
| H17  | -0.4378       | 0.0317        | 0.0785       | 0.025*     |
| C18  | -0.28367 (16) | 0.00327 (10)  | 0.12912 (6)  | 0.0187 (3) |
| C19  | -0.36607 (17) | -0.03019 (11) | 0.17394 (7)  | 0.0243 (4) |
| H19C | -0.3392       | -0.0893       | 0.1815       | 0.036*     |
| H19A | -0.4625       | -0.0286       | 0.1646       | 0.036*     |
| H19B | -0.3505       | 0.0054        | 0.2050       | 0.036*     |

# Atomic displacement parameters (Å<sup>2</sup>)

|    |             |            |              | · · ·         |               |              |
|----|-------------|------------|--------------|---------------|---------------|--------------|
|    | $U^{11}$    | $U^{22}$   | $U^{33}$     | $U^{12}$      | $U^{13}$ .    | $U^{23}$     |
| S1 | 0.0168 (2)  | 0.0143 (2) | 0.01531 (19) | -0.00038 (13) | -0.00067 (13) | 0.00002 (13) |
| F1 | 0.0206 (6)  | 0.0344 (7) | 0.0339 (7)   | -0.0018 (4)   | 0.0073 (4)    | 0.0045 (5)   |
| F2 | 0.003 (17)  | 0.7 (2)    | 2.0 (7)      | -0.03(5)      | -0.05 (8)     | -0.4 (3)     |
| 01 | 0.0234 (6)  | 0.0284 (6) | 0.0202 (6)   | -0.0010 (5)   | 0.0011 (5)    | 0.0065 (5)   |
| O2 | 0.0219 (6)  | 0.0267 (6) | 0.0207 (6)   | -0.0028 (5)   | 0.0021 (5)    | 0.0056 (5)   |
| O3 | 0.0176 (6)  | 0.0198 (6) | 0.0230 (6)   | -0.0022 (4)   | -0.0010 (4)   | 0.0012 (4)   |
| O4 | 0.0262 (6)  | 0.0188 (6) | 0.0183 (5)   | 0.0007 (5)    | 0.0006 (4)    | -0.0024 (4)  |
| N1 | 0.0457 (10) | 0.0183 (8) | 0.0388 (9)   | 0.0031 (7)    | 0.0239 (8)    | 0.0058 (7)   |
| N2 | 0.0164 (6)  | 0.0204 (7) | 0.0148 (6)   | -0.0009 (5)   | 0.0014 (5)    | 0.0040 (5)   |
| N4 | 0.0187 (7)  | 0.0162 (6) | 0.0182 (7)   | 0.0007 (5)    | 0.0011 (5)    | -0.0001 (5)  |
| N3 | 0.0196 (6)  | 0.0162 (6) | 0.0166 (6)   | 0.0007 (5)    | -0.0001 (5)   | 0.0000 (5)   |
| C1 | 0.0233 (8)  | 0.0159 (8) | 0.0185 (8)   | -0.0001 (6)   | 0.0023 (6)    | -0.0026 (6)  |
| C2 | 0.0270 (9)  | 0.0146 (8) | 0.0175 (7)   | 0.0000 (6)    | 0.0027 (6)    | -0.0023 (6)  |
| C3 | 0.0258 (8)  | 0.0181 (8) | 0.0198 (8)   | 0.0018 (6)    | 0.0024 (6)    | -0.0001 (6)  |
|    |             |            |              |               |               |              |

0.926 (4)

| C4          | 0.0244 (8)               | 0.0173 (8)             | 0.0263 (   | (8) -0.0017 (6                | ) 0.0060  | (7) -0.          | .0037 (6) |
|-------------|--------------------------|------------------------|------------|-------------------------------|-----------|------------------|-----------|
| C5          | 0.0359 (9)               | 0.0175 (8)             | 0.0193 (   | (8) -0.0066 (7                | ) 0.0076  | (7) -0.          | .0023 (6) |
| C6          | 0.0376 (11)              | 0.0245 (9)             | 0.0186 (   | (8) -0.0060 (7                | ) -0.0008 | 3(7) 0.0         | 030 (7)   |
| C7          | 0.0264 (10)              | 0.0226 (9)             | 0.0215 (   | (8) -0.0049 (7                | ) -0.0013 | 3(7) 0.0         | 0008 (7)  |
| C8          | 0.0251 (8)               | 0.0185 (8)             | 0.0194 (   | (8) -0.0003 (6                | 0.0021    | (6) 0.0          | )027 (6)  |
| C9          | 0.0257 (8)               | 0.0181 (8)             | 0.0243 (   | (8) 0.0041 (6)                | 0.0068    | (7) 0.0          | )007 (6)  |
| C13         | 0.0195 (8)               | 0.0226 (8)             | 0.0140 (   | (7) -0.0018(6)                | 0.0023    | (6) -0           | .0002 (6) |
| C10         | 0.0191 (8)               | 0.0203(8)              | 0.0178 (   | (7) 0 0003 (6)                | 0.0040    | (6) 00           | 022(6)    |
| C12         | 0.0191(0)                | 0.0202(8)              | 0.0135 (   | (7) 0.0014(6)                 | -0.0008   | (6) -0           | 0020(6)   |
| C11         | 0.0181(7)                | 0.0152(0)              | 0.0125 (   | (7) -0.0009(6)                | -0.0020   | (6) 00           | 012 (6)   |
| C14         | 0.0101(7)                | 0.0130(7)<br>0.0123(7) | 0.0168 (   | (7) 0.0009 (0                 | 0.002     | (6) -0           | 0012(0)   |
| C14         | 0.0190(7)                | 0.0123(7)              | 0.0100 (   | (7) 0.0002 (0) (8) 0.0045 (7) | -0.0034   | (0) 0.           | 0.0010(0) |
|             | 0.0229(8)                | 0.0297(9)              | 0.0222 (   | (8) 0.0043(7) (8) 0.0024(6)   | 0.003     | (7) 0.0          | 013(7)    |
| C10         | 0.0210(8)                | 0.0139(8)              | 0.0199 (   | (6) 0.0024(0) (6) 0.0008(6)   | -0.0022   | F(0) = -0.       | .0025(0)  |
|             | 0.0176 (8)               | 0.0204 (8)             | 0.0245 (   | (8) 0.0008(6)                 | -0.0006   | (6) -0.          | .0023 (0) |
| C18         | 0.0198 (8)               | 0.0142 (7)             | 0.0220 (   | (8) 0.0006(6)                 | 0.0030    | (6) -0.          | .0030(6)  |
| C19         | 0.0216 (8)               | 0.0261 (9)             | 0.0252 (   | (8) 0.0000 (7)                | 0.0051    | (7) 0.0          | 026 (7)   |
| Geon        | netric param             | ieters (Å, °)          |            |                               |           |                  |           |
| S1—0        | )4                       | 1.4367 (               | 11)        | C5—C6                         | 1.377 (3  | )                |           |
| S1—0        | 03                       | 1.4402 (               | 11) (      | С5—Н5                         | 0.9500    |                  |           |
| S1—1        | N2                       | 1.6454 (               | 13)        | C6—C7                         | 1.404 (3  | )                |           |
| S1—0        | C11                      | 1.7429 (               | 15)        | С6—Н6                         | 0.9500    |                  |           |
| F1—0        | C4                       | 1.352 (2)              |            | С7—Н7                         | 0.98 (2)  |                  |           |
| F2—0        | C <b>7</b>               | 1.19 (3)               | ,          | C8—C9                         | 1.409 (2  | )                |           |
| F2—(        | 25                       | 1.75 (4)               |            | C8—C13                        | 1.409 (2) | )                |           |
| 01-0        | C1                       | 1.2265 (               | 19)        | C9—C10                        | 1.378 (2  | )                |           |
| 02—(        | C1                       | 1.314 (2)              | ) (        | С9—Н9                         | 0.9500    | ,<br>,           |           |
| 02—1        | H32                      | 0.846 (1)              | ,<br>5) (  | C13—C12                       | 1.380 (2  | )                |           |
| N1(         | C8                       | 1.357 (2)              | ) (        | С13—Н13                       | 0.9500    | ,<br>,           |           |
| N1—]        | H30B                     | 0.863 (10              | 5) (       | C10—C11                       | 1.395 (2  | )                |           |
| N1—1        | H30A                     | 0.845 (10              | 5)         | C10—H10                       | 0.9500    | ,                |           |
| N2—(        | C14                      | 1.386 (2)              | ) (        | C12—C11                       | 1.395 (2  | )                |           |
| N2—]        | H31                      | 0.831 (14              | ,<br>4) (  | C12—H12                       | 0.9500    | ,                |           |
| N4(         | C14                      | 1 329 (2)              | ) (        | C15-C16                       | 1 496 (2  | )                |           |
| N4(         | C18                      | 1 345 (2)              | )          | C15—H15B                      | 0.9800    | ,                |           |
| N3(         | C14                      | 1 3408 (               | ,<br>19) ( | C15—H15C                      | 0.9800    |                  |           |
| N3(         | C16                      | 1 353 (2)              | ) (        | C15—H15A                      | 0.9800    |                  |           |
| C1_(        | $\mathbb{C}^2$           | 1 495 (2)              | ) (        | C16-C17                       | 1.386 (2  | )                |           |
| $C^2$       | $C_{3}$                  | 1 390 (2)              | ) (        | C17 - C18                     | 1 385 (2  | ,<br>)           |           |
| $C_2$       | C7                       | 1 398 (2)              | ,<br>) (   | С17—Н17                       | 0.9500    | ,                |           |
| $C_{3}$     | C4                       | 1 372 (2)              |            | C18 - C19                     | 1 496 (2  | )                |           |
| C3I         | с <del>л</del><br>ЦЗ     | 0.9500                 | ,          | C19—H19C                      | 0.9800    | ,                |           |
|             | C <b>5</b>               | 1 370 (2)              | <b>`</b>   | С19—Н194                      | 0.9800    |                  |           |
| $C_{4} = 0$ |                          | 0.9500                 | ,          | C10H10B                       | 0.9800    |                  |           |
|             | 11 <del>4</del><br>61 02 | 0.9500<br>117 70 (     | 7)         |                               | 121 4 (1  | 2)               |           |
| 04          | SI                       | 11/./9(                | /)<br>7)   | $U = U = \Pi /$               | 121.4 (1  | <i>4)</i><br>15) |           |
| 04          | S1 - N2                  | 109.83 (               | /)         | $N1 = C^{0} = C^{12}$         | 120.14 (  | 15)              |           |
| 03-         | SI - N2                  | 102.70 (               | /)         | 1 1 - 0 - 0 13                | 121.23 (  | 15)              |           |
| 04-9        | SI-CII                   | 108.72 (               | /)         | C9—C8—C13                     | 118.60 (  | 15)              |           |
| 03—         | S1—C11                   | 109.17 (               | 7)         | С10—С9—С8                     | 120.68 (  | 15)              |           |

| - 56 |    | $\mathbf{i}_{S}$ |  |
|------|----|------------------|--|
|      | ź. |                  |  |

•

.

.

| N2-S1-C11                | 108.19 (7)           | С10—С9—Н9                                              | 119.7                     |
|--------------------------|----------------------|--------------------------------------------------------|---------------------------|
| C7—F2—C5                 | 109 (3)              | С8—С9—Н9                                               | 119.7                     |
| C1—O2—H32                | 110.4 (14)           | C12—C13—C8                                             | 120.64 (14)               |
| C8—N1—H30B               | 120.0 (16)           | C12C13H13                                              | 119.7                     |
| C8—N1H30A                | 121.6 (16)           | C8—C13—H13                                             | 119.7                     |
| H30B—N1—H30A             | 118 (2)              | C9C10C11                                               | 119.87 (14)               |
| C14—N2S1                 | 125.23 (11)          | C9—C10—H10                                             | 120.1                     |
| C14N2-H31                | 117.5 (13)           | C11-C10-H10                                            | 120.1                     |
| S1N2-H31                 | 116.1 (13)           | C13-C12-C11                                            | 119.79 (14)               |
| C14N4C18                 | 116.05 (13)          | C13—C12—H12                                            | 120.1                     |
| C14—N3—C16               | 116.26 (13)          | C11C12H12                                              | 120.1                     |
| 01C1O2                   | 124.22 (14)          | C10-C11-C12                                            | 120.40 (14)               |
| 01—C1—C2                 | 121.33 (14)          | C10C11S1                                               | 118.79 (12)               |
| O2C1C2                   | 114.45 (14)          | C12-C11-S1                                             | 120.76 (12)               |
| C3—C2—C7                 | 120.71 (15)          | N4C14N3                                                | 127.23 (14)               |
| C3—C2—C1                 | 117.65 (14)          | N4-C14-N2                                              | 117.48 (13)               |
| C7—C2—C1                 | 121.63 (16)          | N3—C14—N2                                              | 115.29 (13)               |
| C4—C3—C2                 | 118.25 (15)          | C16—C15—H15B                                           | 109.5                     |
| С4С3Н3                   | 120.9                | C16—C15—H15C                                           | 109.5                     |
| С2С3Н3                   | 120.9                | H15B-C15-H15C                                          | 109.5                     |
| F1C4C3                   | 118.53 (15)          | C16—C15—H15A                                           | 109.5                     |
| F1-C4-C5                 | 118.34 (15)          | H15B                                                   | 109.5                     |
| C3-C4C5                  | 123.12 (16)          | H15C-C15-H15A                                          | 109.5                     |
| C3C4H4                   | 118.4                | N3C16C17                                               | 120.58 (14)               |
| C5-C4-H4                 | 118.4                | N3C16C15                                               | 116 75 (14)               |
| C6C5C4                   | 118 20 (15)          | C17 - C16 - C15                                        | 122.67 (15)               |
| C6C5F2                   | 6 (4)                | C18 - C17 - C16                                        | 122.07(13)<br>118 41 (14) |
| C4 - C5 - F2             | 1153(12)             | C18C17H17                                              | 120.8                     |
| C6-C5H5                  | 120.9                | C16C17H17                                              | 120.8                     |
| C4-C5-H5                 | 120.9                | N4 - C18 - C17                                         | 120.0                     |
| $C_{1} = C_{2} = H_{2}$  | 120.9                | $N_{1} = C_{10} + C_{17}$<br>$N_{4} = C_{18} + C_{10}$ | 121.40(14)<br>116.08(14)  |
| $\Gamma_2 - C_3 - \Pi_3$ | 123.4<br>121 10 (17) | $R_{+-}C_{10} = C_{10}$                                | 110.08(14)<br>122.45(14)  |
| $C_{5} = C_{0} = C_{7}$  | 121.10 (17)          | C17 - C10 - C19                                        | 122.45 (14)               |
| $C_{2} = C_{0} = H_{0}$  | 119.4                | C10 - C19 - III9C                                      | 109.5                     |
| C/-C0H0                  | 119.4                | U10С С10 U10A                                          | 109.5                     |
| $F_2 = C_7 = C_2$        | 151(5)               | C18 C10 U10P                                           | 109.5                     |
| $F_2 - C_7 - C_0$        | 13(3)                | $U_{10} - U_{19} - \Pi_{19} D$                         | 109.5                     |
| $C_2 - C_7 - C_0$        | 118.00 (18)          | $H_{19} C = C_{19} = H_{19} D$                         | 109.5                     |
| $F_{2} H_{1}$            | 109(3)               | П19АС19—П19Б                                           | 109.5                     |
| C2C/H/                   | 119.9 (11)           |                                                        |                           |
| O4S1N2C14                | -52.01 (14)          | NIC8C13C12                                             | -178.53 (16)              |
| O3S1N2C14                | 178.12 (12)          | C9C8-C13-C12                                           | 0.9 (2)                   |
| C11S1N2C14               | 66.52 (14)           | C8C9C10C11                                             | -0.7 (3)                  |
| 01                       | -5.2 (2)             | C8-C13-C12-C11                                         | -1.2 (2)                  |
| O2C1C2C3                 | 175.72 (14)          | C9-C10C11-C12                                          | 0.5 (2)                   |
| O1C1C2C7                 | 174.00 (15)          | C9C10C11-S1                                            | 177.93 (13)               |
| O2-C1-C2-C7              | 5.1 (2)              | C13-C12-C11-C10                                        | 0.5 (2)                   |
| C7—C2—C3—C4              | -0.9 (2)             | C13C12C11S1                                            | -176.89 (12)              |
| C1—C2—C3—C4              | 178.26 (14)          | O4-S1-C11-C10                                          | -157.36 (12)              |
| C2C3C4-F1                | 179.23 (14)          | O3S1C11C10                                             | -27.65 (14)               |
|                          |                      |                                                        |                           |

-

| C2—C3—C4—C5   | 0.6 (2)      | N2S1-C11-C10    | 83.41 (13)   |
|---------------|--------------|-----------------|--------------|
| F1—C4—C5—C6   | -178.36 (15) | O4—S1—C11—C12   | 20.10 (14)   |
| C3—C4—C5—C6   | 0.3 (2)      | O3—S1—C11—C12   | 149.82 (12)  |
| C3—C4—C5—F2   | 7 (5)        | N2—S1C11—C12    | -99.12 (13)  |
| C7—F2—C5—C6   | 104 (26)     | C18—N4—C14—N3   | -0.6 (2)     |
| C7—F2—C5—C4   | -15 (11)     | C18—N4—C14—N2   | -179.96 (13) |
| C4—C5C6—C7    | -0.8 (3)     | C16N3C14N4      | 0.7 (2)      |
| F2            | -65 (18)     | C16—N3—C14—N2   | -179.91 (13) |
| C5—F2—C7—C2   | 17 (13)      | S1-N2C14N4      | -10.0 (2)    |
| C5—F2—C7—C6   | -23 (15)     | S1-N2-C14-N3    | 170.53 (11)  |
| C3—C2—C7—F2   | -11 (8)      | C14—N3—C16—C17  | 0.1 (2)      |
| C1—C2C7—F2    | 170 (8)      | C14—N3—C16—C15  | -179.85 (14) |
| C3—C2—C7—C6   | 0.5 (2)      | N3-C16-C17-C18  | -0.8 (2)     |
| C1C2C6        | -178.72 (15) | C15—C16—C17—C18 | 179.08 (15)  |
| C5—C6—C7—F2   | 146 (22)     | C14N4-C18-C17   | -0.3 (2)     |
| C5—C6—C7—C2   | 0.4 (3)      | C14-N4-C18-C19  | 179.44 (14)  |
| N1-C8-C9-C10  | 179.53 (17)  | C16-C17-C18-N4  | 1.0 (2)      |
| C13—C8—C9—C10 | 0.1 (2)      | C16-C17-C18-C19 | -178.76 (15) |
|               |              |                 |              |

Hydrogen-bond geometry (Å, °)

| D—H···A                             | D—H      | $\mathbf{H} \cdots \mathbf{A}$ | $D \cdots A$ | D—H··· $A$ |
|-------------------------------------|----------|--------------------------------|--------------|------------|
| N1-H30A····O4 <sup>ii</sup>         | 0.85 (2) | 2.16 (2)                       | 2.9788 (19)  | 163 (2)    |
| N1—H30 <i>B</i> ····O3 <sup>i</sup> | 0.86 (2) | 2.29 (2)                       | 3.1383 (19)  | 166 (2)    |
| N2H31····O1                         | 0.83 (1) | 1.98 (2)                       | 2.8042 (17)  | 175 (2)    |
| O2—H32…N3                           | 0.85 (2) | 1.83 (2)                       | 2.6744 (17)  | 174 (2)    |

Symmetry codes: (i) -x+1/2, y-1/2, z; (ii) -x, y-1/2, -z+1/2.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

| D—H···A                             | D—H      | H····A   | D····A      | <i>D</i> —H…A |
|-------------------------------------|----------|----------|-------------|---------------|
| N1—H30A…O4 <sup>ii</sup>            | 0.85 (2) | 2.16 (2) | 2.9788 (19) | 163 (2)       |
| N1—H30 <i>B</i> ····O3 <sup>i</sup> | 0.86 (2) | 2.29 (2) | 3.1383 (19) | 166 (2)       |
| N2—H31…O1                           | 0.83(1)  | 1.98 (2) | 2.8042 (17) | 175 (2)       |
| O2—H32…N3                           | 0.85 (2) | 1.83 (2) | 2.6744 (17) | 174 (2)       |

Symmetry codes: (i) -x+1/2, y-1/2, z; (ii) -x, y-1/2, -z+1/2.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.



Figure S.10: Crystal Structure of the Cocrystal of Sulfamethazine and p-Fluorobenzoic Acid Showing Thermal Parameters (50% Thermal Ellipsoids) and Hydrogen Bonding.

## Data collection

| 7088 independent reflections                                             |
|--------------------------------------------------------------------------|
| 6362 reflections with $I > 2\sigma(I)$                                   |
| $R_{\rm int} = 0.038$                                                    |
| $\theta_{\text{max}} = 68.3^{\circ},  \theta_{\text{min}} = 2.8^{\circ}$ |
| h = -17 18                                                               |
| k = -16 16                                                               |
| l = -21  21                                                              |
|                                                                          |

# Refinement

Refinement on  $F^2$ Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.058$ 

 $wR(F^2) = 0.151$ 

S = 1.057088 reflections 269 parameters 8 restraints 0 constraints Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.0698P)^2 + 7.8397P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.001$  $\Delta\rho_{max} = 0.74$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -1.05$  e Å<sup>-3</sup> Extinction correction: none

/

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|            | x             | у             | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ |
|------------|---------------|---------------|---------------|-----------------------------|
| <b>S</b> 1 | 0.04732 (4)   | 0.11025 (4)   | 0.23081 (3)   | 0.01803 (16)*               |
| S2         | 0.45268 (4)   | -0.38975 (4)  | 0.23080 (3)   | 0.01805 (16)*               |
| F1A        | 1.01267 (11)  | -0.36075 (13) | -0.04296 (10) | 0.0317 (4)*                 |
| F1B        | -0.51272 (11) | 0.13919 (13)  | -0.04296 (10) | 0.0319 (4)*                 |
| OlA        | 0.64633 (12)  | -0.40921 (14) | 0.09953 (10)  | 0.0222 (4)*                 |
| O2A        | 0.61424 (12)  | -0.38731 (14) | -0.02072 (11) | 0.0237 (4)*                 |
| H32A       | 0.5615 (16)   | -0.380 (4)    | -0.006 (3)    | 0.081 (17)*                 |
| O3A        | 0.53567 (12)  | -0.39352 (14) | 0.26456 (10)  | 0.0236 (4)*                 |
| O4A        | 0.39860 (12)  | -0.30775 (14) | 0.24519 (10)  | 0.0240 (4)*                 |
| O1B        | -0.14634 (12) | 0.09072 (14)  | 0.09946 (10)  | 0.0226 (4)*                 |
| O2B        | -0.11424 (13) | 0.11267 (14)  | -0.02068 (11) | 0.0238 (4)*                 |
| H32B       | -0.0616 (16)  | 0.119 (4)     | -0.006 (3)    | 0.088 (18)*                 |
| O3B        | -0.03559 (12) | 0.10651 (14)  | 0.26451 (10)  | 0.0239 (4)*                 |
| O4B        | 0.10143 (12)  | 0.19230 (14)  | 0.24513 (11)  | 0.0243 (4)*                 |
| N1B        | 0.22428 (17)  | -0.25725 (19) | 0.29612 (14)  | 0.0297 (5)*                 |
| H30D       | 0.191 (2)     | -0.304 (2)    | 0.308 (2)     | 0.056 (12)*                 |
| H30C       | 0.2760 (14)   | -0.264 (3)    | 0.278 (2)     | 0.042 (10)*                 |
| N2B        | 0.02525 (14)  | 0.10854 (16)  | 0.14094 (12)  | 0.0195 (5)*                 |
| H31B       | -0.0287 (13)  | 0.102 (3)     | 0.131 (2)     | 0.035 (9)*                  |
| N1A        | 0.27581 (17)  | -0.75726 (19) | 0.29606 (14)  | 0.0298 (5)*                 |

| H30B | 0.2240 (14)   | -0.765 (3)    | 0.278 (2)     | 0.042 (10)* |
|------|---------------|---------------|---------------|-------------|
| H30A | 0.308 (2)     | -0.804 (2)    | 0.310 (2)     | 0.055 (12)* |
| N2A  | 0.47475 (14)  | -0.39150 (16) | 0.14090 (12)  | 0.0193 (5)* |
| H31A | 0.5288 (13)   | -0.399 (2)    | 0.1308 (19)   | 0.032 (9)*  |
| N3A  | 0.45096 (14)  | -0.37791 (15) | 0.01532 (12)  | 0.0182 (4)* |
| N4A  | 0.33355 (14)  | -0.37975 (16) | 0.10053 (12)  | 0.0193 (5)* |
| N3B  | 0.04901 (14)  | 0.12213 (15)  | 0.01528 (12)  | 0.0180 (4)* |
| N4B  | 0.16646 (14)  | 0.12034 (16)  | 0.10052 (12)  | 0.0190 (4)* |
| CIA  | 0.66832 (16)  | -0.39763 (18) | 0.03436 (14)  | 0.0177 (5)* |
| C2A  | 0.75985 (16)  | -0.39266 (18) | 0.01212 (14)  | 0.0190 (5)* |
| C3A  | 0.82315 (17)  | -0.4090 (2)   | 0.06551 (15)  | 0.0219 (5)* |
| H3A  | 0.8074        | -0.4266       | 0.1147        | 0.026*      |
| C4A  | 0.90907 (18)  | -0.3996 (2)   | 0.04720 (16)  | 0.0247 (6)* |
| H4A  | 0.9526        | -0.4111       | 0.0831        | 0.030*      |
| C5A  | 0.92951 (17)  | -0.3730 (2)   | -0.02499 (15) | 0.0226 (6)* |
| C6A  | 0.86855 (17)  | -0.35766 (19) | -0.07954 (15) | 0.0215 (5)* |
| H6A  | 0.8848        | -0.3402       | -0.1287       | 0.026*      |
| C7A  | 0.78299 (16)  | -0.36841 (19) | -0.06066 (14) | 0.0192 (5)* |
| H7A  | 0.7399        | -0.3592       | -0.0974       | 0.023*      |
| C8A  | 0.31563 (17)  | -0.67192 (19) | 0.28131 (15)  | 0.0211 (5)* |
| C9A  | 0.40371 (17)  | -0.6609 (2)   | 0.29408 (15)  | 0.0231 (6)* |
| H9A  | 0.4358        | -0.7137       | 0.3134        | 0.028*      |
| C10A | 0.44420 (17)  | -0.57469 (19) | 0.27898 (14)  | 0.0212 (5)* |
| H10A | 0.5041        | -0.5687       | 0.2872        | 0.025*      |
| CllA | 0.39768 (16)  | -0.49607 (18) | 0.25169 (14)  | 0.0181 (5)* |
| C12A | 0.30928 (16)  | -0.50424 (19) | 0.24055 (14)  | 0.0187 (5)* |
| H12A | 0.2772        | -0.4504       | 0.2230        | 0.022*      |
| C13A | 0.26902 (17)  | -0.59121 (19) | 0.25527 (14)  | 0.0199 (5)* |
| H13A | 0.2090        | -0.5968       | 0.2477        | 0.024*      |
| C14A | 0.41617 (16)  | -0.38287 (18) | 0.08370 (14)  | 0.0172 (5)* |
| C15A | 0.43404 (19)  | -0.3602 (2)   | -0.11826 (16) | 0.0280 (6)* |
| H15A | 0.4961        | -0.3698       | -0.1151       | 0.042*      |
| H15B | 0.4220        | -0.2963       | -0.1396       | 0.042*      |
| H15C | 0.4089        | -0.4105       | -0.1501       | 0.042*      |
| C16A | 0.39601 (17)  | -0.36649 (19) | -0.04214 (15) | 0.0203 (5)* |
| C17A | 0.30858 (17)  | -0.3615 (2)   | -0.02927 (15) | 0.0227 (6)* |
| H17A | 0.2696        | -0.3533       | -0.0695       | 0.027*      |
| C18A | 0.27889 (17)  | -0.3688 (2)   | 0.04337 (15)  | 0.0215 (5)* |
| C19A | 0.18561 (18)  | -0.3653 (2)   | 0.06223 (16)  | 0.0267 (6)* |
| H19D | 0.1624        | -0.4313       | 0.0630        | 0.040*      |
| H19E | 0.1551        | -0.3269       | 0.0247        | 0.040*      |
| H19F | 0.1782        | -0.3355       | 0.1113        | 0.040*      |
| C1B  | -0.16827 (16) | 0.10240 (18)  | 0.03438 (14)  | 0.0175 (5)* |
| C2B  | -0.25997 (16) | 0.10734 (18)  | 0.01214 (14)  | 0.0190 (5)* |
| C3B  | -0.28294 (17) | 0.13168 (19)  | -0.06069 (14) | 0.0195 (5)* |
| H3B  | -0.2399       | 0.1410        | -0.0973       | 0.023*      |
| C4B  | -0.36857 (17) | 0.14222 (19)  | -0.07947 (15) | 0.0213 (5)* |
| H4B  | -0.3850       | 0.1595        | -0.1287       | 0.026*      |
| C5B  | -0.42947 (17) | 0.1270 (2)    | -0.02504 (15) | 0.0229 (6)* |

•

.

.

| C6B $-0.40910(18)$ $0.1004(2)$ $0.04721(16)$ $H6B$ $-0.4526$ $0.0890$ $0.0831$ $C7B$ $-0.32314(17)$ $0.0911(2)$ $0.06558(15)$ $H7B$ $-0.3072$ $0.0735$ $0.1148$ $C8B$ $0.18433(17)$ $-0.1720(2)$ $0.28126(15)$ $C9B$ $0.23099(17)$ $-0.09117(19)$ $0.25532(14)$ $H9B$ $0.2910$ $-0.0967$ $0.2479$ $C10B$ $0.19063(16)$ $-0.00437(19)$ $0.24054(14)$ $H10B$ $0.2226$ $0.0495$ $0.2229$ $C11B$ $0.10229(16)$ $0.00386(18)$ $0.25166(14)$ $C12B$ $0.05579(17)$ $-0.07480(19)$ $0.27892(14)$ $H12B$ $-0.0041$ $-0.0688$ $0.2870$ $C13B$ $0.09626(17)$ $-0.1609(2)$ $0.29417(15)$ $H13B$ $0.0642$ $-0.2136$ $0.3137$ $C14B$ $0.08388(16)$ $0.11715(18)$ $0.08366(14)$ $C15B$ $0.31435(18)$ $0.1347(2)$ $0.06223(16)$ $H15D$ $0.3221$ $0.1669$ $0.1104$ $H15E$ $0.3370$ $0.0685$ $0.0650$ $C16B$ $0.22101(17)$ $0.1313(2)$ $-0.04336(15)$ $C17B$ $0.19142(17)$ $0.13345(19)$ $-0.04215(15)$ | 0.0244 (6)*<br>0.029*<br>0.0218 (5)*<br>0.026*<br>0.0212 (5)*<br>0.0197 (5)*<br>0.024*<br>0.0190 (5)*<br>0.023*<br>0.0180 (5)*<br>0.025*<br>0.0231 (6)*<br>0.028*<br>0.0173 (5)*<br>0.0266 (6)*<br>0.040*  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| H6B $-0.4526$ $0.0890$ $0.0831$ C7B $-0.32314 (17)$ $0.0911 (2)$ $0.06558 (15)$ H7B $-0.3072$ $0.0735$ $0.1148$ C8B $0.18433 (17)$ $-0.1720 (2)$ $0.28126 (15)$ C9B $0.23099 (17)$ $-0.09117 (19)$ $0.25532 (14)$ H9B $0.2910$ $-0.0967$ $0.2479$ C10B $0.19063 (16)$ $-0.00437 (19)$ $0.24054 (14)$ H10B $0.2226$ $0.0495$ $0.2229$ C11B $0.10229 (16)$ $0.00386 (18)$ $0.25166 (14)$ C12B $0.05579 (17)$ $-0.07480 (19)$ $0.27892 (14)$ H12B $-0.0041$ $-0.0688$ $0.2870$ C13B $0.09626 (17)$ $-0.1609 (2)$ $0.29417 (15)$ H13B $0.0642$ $-0.2136$ $0.3137$ C14B $0.8388 (16)$ $0.11715 (18)$ $0.08366 (14)$ C15B $0.31435 (18)$ $0.1347 (2)$ $0.06223 (16)$ H15D $0.3221$ $0.1669$ $0.1104$ H15E $0.3451$ $0.1708$ $0.0236$ H15F $0.3370$ $0.0685$ $0.0650$ C16B $0.22101 (17)$ $0.1313 (2)$ $-0.04336 (15)$ C17B $0.19142 (17)$ $0.13345 (19)$ $-0.04215 (15)$                    | 0.029*<br>0.0218 (5)*<br>0.026*<br>0.0212 (5)*<br>0.0197 (5)*<br>0.024*<br>0.0190 (5)*<br>0.023*<br>0.0180 (5)*<br>0.0210 (5)*<br>0.0231 (6)*<br>0.028*<br>0.0173 (5)*<br>0.0266 (6)*<br>0.040*<br>0.040*  |
| C7B $-0.32314(17)$ $0.0911(2)$ $0.06558(15)$ $H7B$ $-0.3072$ $0.0735$ $0.1148$ $C8B$ $0.18433(17)$ $-0.1720(2)$ $0.28126(15)$ $C9B$ $0.23099(17)$ $-0.09117(19)$ $0.25532(14)$ $H9B$ $0.2910$ $-0.0967$ $0.2479$ $C10B$ $0.19063(16)$ $-0.00437(19)$ $0.24054(14)$ $H10B$ $0.2226$ $0.0495$ $0.2229$ $C11B$ $0.10229(16)$ $0.00386(18)$ $0.25166(14)$ $C12B$ $0.05579(17)$ $-0.07480(19)$ $0.27892(14)$ $H12B$ $-0.0041$ $-0.0688$ $0.2870$ $C13B$ $0.09626(17)$ $-0.1609(2)$ $0.29417(15)$ $H13B$ $0.0642$ $-0.2136$ $0.3137$ $C14B$ $0.08388(16)$ $0.11715(18)$ $0.08366(14)$ $C15B$ $0.31435(18)$ $0.1347(2)$ $0.06223(16)$ $H15D$ $0.3221$ $0.1669$ $0.1104$ $H15F$ $0.3370$ $0.0685$ $0.0650$ $C16B$ $0.22101(17)$ $0.1313(2)$ $-0.04236(15)$ $C17B$ $0.19142(17)$ $0.1385(2)$ $-0.02925(15)$ $H17B$ $0.2303$ $0.1466$ $-0.0694$                                                 | 0.0218 (5)*<br>0.026*<br>0.0212 (5)*<br>0.0197 (5)*<br>0.024*<br>0.0190 (5)*<br>0.023*<br>0.0180 (5)*<br>0.0210 (5)*<br>0.025*<br>0.0231 (6)*<br>0.0268*<br>0.0173 (5)*<br>0.0266 (6)*<br>0.040*<br>0.040* |
| H7B $-0.3072$ $0.0735$ $0.1148$ C8B $0.18433(17)$ $-0.1720(2)$ $0.28126(15)$ C9B $0.23099(17)$ $-0.09117(19)$ $0.25532(14)$ H9B $0.2910$ $-0.0967$ $0.2479$ C10B $0.19063(16)$ $-0.00437(19)$ $0.24054(14)$ H10B $0.2226$ $0.0495$ $0.2229$ C11B $0.10229(16)$ $0.00386(18)$ $0.25166(14)$ C12B $0.05579(17)$ $-0.07480(19)$ $0.27892(14)$ H12B $-0.0041$ $-0.0688$ $0.2870$ C13B $0.09626(17)$ $-0.1609(2)$ $0.29417(15)$ H13B $0.0642$ $-0.2136$ $0.3137$ C14B $0.08388(16)$ $0.11715(18)$ $0.08366(14)$ C15B $0.31435(18)$ $0.1347(2)$ $0.06223(16)$ H15D $0.3221$ $0.1669$ $0.1104$ H15F $0.3370$ $0.0685$ $0.0650$ C16B $0.22101(17)$ $0.1313(2)$ $0.04336(15)$ C17B $0.19142(17)$ $0.13345(19)$ $-0.04215(15)$                                                                                                                                                                  | 0.026*<br>0.0212 (5)*<br>0.0197 (5)*<br>0.024*<br>0.0190 (5)*<br>0.023*<br>0.0180 (5)*<br>0.0210 (5)*<br>0.025*<br>0.0231 (6)*<br>0.028*<br>0.0173 (5)*<br>0.0266 (6)*<br>0.040*<br>0.040*                 |
| C8B $0.18433(17)$ $-0.1720(2)$ $0.28126(15)$ C9B $0.23099(17)$ $-0.09117(19)$ $0.25532(14)$ H9B $0.2910$ $-0.0967$ $0.2479$ C10B $0.19063(16)$ $-0.00437(19)$ $0.24054(14)$ H10B $0.2226$ $0.0495$ $0.2229$ C11B $0.10229(16)$ $0.00386(18)$ $0.25166(14)$ C12B $0.05579(17)$ $-0.07480(19)$ $0.27892(14)$ H12B $-0.0041$ $-0.0688$ $0.2870$ C13B $0.09626(17)$ $-0.1609(2)$ $0.29417(15)$ H13B $0.0642$ $-0.2136$ $0.3137$ C14B $0.08388(16)$ $0.11715(18)$ $0.08366(14)$ C15B $0.31435(18)$ $0.1347(2)$ $0.06223(16)$ H15D $0.3221$ $0.1669$ $0.1104$ H15F $0.3370$ $0.0685$ $0.0650$ C16B $0.22101(17)$ $0.1313(2)$ $0.04336(15)$ C17B $0.19142(17)$ $0.13345(19)$ $-0.04215(15)$                                                                                                                                                                                                  | 0.0212 (5)*<br>0.0197 (5)*<br>0.024*<br>0.0190 (5)*<br>0.023*<br>0.0180 (5)*<br>0.0210 (5)*<br>0.025*<br>0.0231 (6)*<br>0.028*<br>0.0173 (5)*<br>0.0266 (6)*<br>0.040*<br>0.040*                           |
| C9B $0.23099(17)$ $-0.09117(19)$ $0.25532(14)$ H9B $0.2910$ $-0.0967$ $0.2479$ C10B $0.19063(16)$ $-0.00437(19)$ $0.24054(14)$ H10B $0.2226$ $0.0495$ $0.2229$ C11B $0.10229(16)$ $0.00386(18)$ $0.25166(14)$ C12B $0.05579(17)$ $-0.07480(19)$ $0.27892(14)$ H12B $-0.0041$ $-0.0688$ $0.2870$ C13B $0.09626(17)$ $-0.1609(2)$ $0.29417(15)$ H13B $0.0642$ $-0.2136$ $0.3137$ C14B $0.08388(16)$ $0.11715(18)$ $0.08366(14)$ C15B $0.31435(18)$ $0.1347(2)$ $0.06223(16)$ H15D $0.3221$ $0.1669$ $0.1104$ H15F $0.3370$ $0.0685$ $0.0650$ C16B $0.22101(17)$ $0.1313(2)$ $0.04336(15)$ C17B $0.19142(17)$ $0.13345(19)$ $-0.04215(15)$ H17B $0.2303$ $0.1466$ $-0.0694$ C18B $0.10395(17)$ $0.13345(19)$ $-0.04215(15)$                                                                                                                                                              | 0.0197 (5)*<br>0.024*<br>0.0190 (5)*<br>0.023*<br>0.0180 (5)*<br>0.0210 (5)*<br>0.025*<br>0.0231 (6)*<br>0.028*<br>0.0173 (5)*<br>0.0266 (6)*<br>0.040*                                                    |
| H9B $0.2910$ $-0.0967$ $0.2479$ C10B $0.19063 (16)$ $-0.00437 (19)$ $0.24054 (14)$ H10B $0.2226$ $0.0495$ $0.2229$ C11B $0.10229 (16)$ $0.00386 (18)$ $0.25166 (14)$ C12B $0.05579 (17)$ $-0.07480 (19)$ $0.27892 (14)$ H12B $-0.0041$ $-0.0688$ $0.2870$ C13B $0.09626 (17)$ $-0.1609 (2)$ $0.29417 (15)$ H13B $0.0642$ $-0.2136$ $0.3137$ C14B $0.08388 (16)$ $0.11715 (18)$ $0.08366 (14)$ C15B $0.31435 (18)$ $0.1347 (2)$ $0.06223 (16)$ H15D $0.3221$ $0.1669$ $0.1104$ H15E $0.3451$ $0.1708$ $0.0236$ H15F $0.3370$ $0.0685$ $0.0650$ C16B $0.22101 (17)$ $0.1313 (2)$ $0.04336 (15)$ C17B $0.19142 (17)$ $0.13345 (19)$ $-0.04215 (15)$                                                                                                                                                                                                                                      | 0.024*<br>0.0190 (5)*<br>0.023*<br>0.0180 (5)*<br>0.0210 (5)*<br>0.025*<br>0.0231 (6)*<br>0.028*<br>0.0173 (5)*<br>0.0266 (6)*<br>0.040*<br>0.040*                                                         |
| C10B $0.19063(16)$ $-0.00437(19)$ $0.24054(14)$ H10B $0.2226$ $0.0495$ $0.2229$ C11B $0.10229(16)$ $0.00386(18)$ $0.25166(14)$ C12B $0.05579(17)$ $-0.07480(19)$ $0.27892(14)$ H12B $-0.0041$ $-0.0688$ $0.2870$ C13B $0.09626(17)$ $-0.1609(2)$ $0.29417(15)$ H13B $0.0642$ $-0.2136$ $0.3137$ C14B $0.08388(16)$ $0.11715(18)$ $0.08366(14)$ C15B $0.31435(18)$ $0.1347(2)$ $0.06223(16)$ H15D $0.3221$ $0.1669$ $0.1104$ H15F $0.3370$ $0.0685$ $0.0650$ C16B $0.22101(17)$ $0.1313(2)$ $0.04336(15)$ C17B $0.19142(17)$ $0.13345(19)$ $-0.04215(15)$                                                                                                                                                                                                                                                                                                                              | 0.0190 (5)*<br>0.023*<br>0.0180 (5)*<br>0.0210 (5)*<br>0.025*<br>0.0231 (6)*<br>0.028*<br>0.0173 (5)*<br>0.0266 (6)*<br>0.040*<br>0.040*                                                                   |
| H10B $0.2226$ $0.0495$ $0.2229$ C11B $0.10229 (16)$ $0.00386 (18)$ $0.25166 (14)$ C12B $0.05579 (17)$ $-0.07480 (19)$ $0.27892 (14)$ H12B $-0.0041$ $-0.0688$ $0.2870$ C13B $0.09626 (17)$ $-0.1609 (2)$ $0.29417 (15)$ H13B $0.0642$ $-0.2136$ $0.3137$ C14B $0.08388 (16)$ $0.11715 (18)$ $0.08366 (14)$ C15B $0.31435 (18)$ $0.1347 (2)$ $0.06223 (16)$ H15D $0.3221$ $0.1669$ $0.1104$ H15E $0.3451$ $0.1708$ $0.0236$ H15F $0.3370$ $0.0685$ $0.0650$ C16B $0.22101 (17)$ $0.1313 (2)$ $-0.04336 (15)$ H17B $0.2303$ $0.1466$ $-0.0694$ C18B $0.10395 (17)$ $0.13345 (19)$ $-0.04215 (15)$                                                                                                                                                                                                                                                                                       | 0.023*<br>0.0180 (5)*<br>0.0210 (5)*<br>0.025*<br>0.0231 (6)*<br>0.028*<br>0.0173 (5)*<br>0.0266 (6)*<br>0.040*<br>0.040*                                                                                  |
| C11B $0.10229 (16)$ $0.00386 (18)$ $0.25166 (14)$ C12B $0.05579 (17)$ $-0.07480 (19)$ $0.27892 (14)$ H12B $-0.0041$ $-0.0688$ $0.2870$ C13B $0.09626 (17)$ $-0.1609 (2)$ $0.29417 (15)$ H13B $0.0642$ $-0.2136$ $0.3137$ C14B $0.08388 (16)$ $0.11715 (18)$ $0.08366 (14)$ C15B $0.31435 (18)$ $0.1347 (2)$ $0.06223 (16)$ H15D $0.3221$ $0.1669$ $0.1104$ H15E $0.3451$ $0.1708$ $0.0236$ H15F $0.3370$ $0.0685$ $0.0650$ C16B $0.22101 (17)$ $0.1313 (2)$ $0.04336 (15)$ C17B $0.19142 (17)$ $0.1385 (2)$ $-0.02925 (15)$ H17B $0.2303$ $0.1466$ $-0.0694$ C18B $0.10395 (17)$ $0.13345 (19)$ $-0.04215 (15)$                                                                                                                                                                                                                                                                       | 0.0180 (5)*<br>0.0210 (5)*<br>0.025*<br>0.0231 (6)*<br>0.028*<br>0.0173 (5)*<br>0.0266 (6)*<br>0.040*<br>0.040*                                                                                            |
| C12B $0.05579(17)$ $-0.07480(19)$ $0.27892(14)$ H12B $-0.0041$ $-0.0688$ $0.2870$ C13B $0.09626(17)$ $-0.1609(2)$ $0.29417(15)$ H13B $0.0642$ $-0.2136$ $0.3137$ C14B $0.08388(16)$ $0.11715(18)$ $0.08366(14)$ C15B $0.31435(18)$ $0.1347(2)$ $0.06223(16)$ H15D $0.3221$ $0.1669$ $0.1104$ H15E $0.3451$ $0.1708$ $0.0236$ H15F $0.3370$ $0.0685$ $0.0650$ C16B $0.22101(17)$ $0.1313(2)$ $0.04336(15)$ C17B $0.19142(17)$ $0.1385(2)$ $-0.02925(15)$ H17B $0.2303$ $0.1466$ $-0.0694$ C18B $0.10395(17)$ $0.13345(19)$ $-0.04215(15)$                                                                                                                                                                                                                                                                                                                                              | 0.0210 (5)*<br>0.025*<br>0.0231 (6)*<br>0.028*<br>0.0173 (5)*<br>0.0266 (6)*<br>0.040*<br>0.040*                                                                                                           |
| H12B $-0.0041$ $-0.0688$ $0.2870$ C13B $0.09626(17)$ $-0.1609(2)$ $0.29417(15)$ H13B $0.0642$ $-0.2136$ $0.3137$ C14B $0.08388(16)$ $0.11715(18)$ $0.08366(14)$ C15B $0.31435(18)$ $0.1347(2)$ $0.06223(16)$ H15D $0.3221$ $0.1669$ $0.1104$ H15E $0.3451$ $0.1708$ $0.0236$ H15F $0.3370$ $0.0685$ $0.0650$ C16B $0.22101(17)$ $0.1313(2)$ $0.04336(15)$ H17B $0.2303$ $0.1466$ $-0.0694$ C18B $0.10395(17)$ $0.13345(19)$ $-0.04215(15)$                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.025*<br>0.0231 (6)*<br>0.028*<br>0.0173 (5)*<br>0.0266 (6)*<br>0.040*<br>0.040*                                                                                                                          |
| C13B $0.09626(17)$ $-0.1609(2)$ $0.29417(15)$ H13B $0.0642$ $-0.2136$ $0.3137$ C14B $0.08388(16)$ $0.11715(18)$ $0.08366(14)$ C15B $0.31435(18)$ $0.1347(2)$ $0.06223(16)$ H15D $0.3221$ $0.1669$ $0.1104$ H15E $0.3451$ $0.1708$ $0.0236$ H15F $0.3370$ $0.0685$ $0.0650$ C16B $0.22101(17)$ $0.1313(2)$ $0.04336(15)$ C17B $0.19142(17)$ $0.1385(2)$ $-0.02925(15)$ H17B $0.2303$ $0.1466$ $-0.0694$ C18B $0.10395(17)$ $0.13345(19)$ $-0.04215(15)$                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0231 (6)*<br>0.028*<br>0.0173 (5)*<br>0.0266 (6)*<br>0.040*<br>0.040*                                                                                                                                    |
| H13B0.0642-0.21360.3137C14B0.08388 (16)0.11715 (18)0.08366 (14)C15B0.31435 (18)0.1347 (2)0.06223 (16)H15D0.32210.16690.1104H15E0.34510.17080.0236H15F0.33700.06850.0650C16B0.22101 (17)0.1313 (2)0.04336 (15)C17B0.19142 (17)0.1385 (2)-0.02925 (15)H17B0.23030.1466-0.0694C18B0.10395 (17)0.13345 (19)-0.04215 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.028*<br>0.0173 (5)*<br>0.0266 (6)*<br>0.040*<br>0.040*                                                                                                                                                   |
| C14B0.08388 (16)0.11715 (18)0.08366 (14)C15B0.31435 (18)0.1347 (2)0.06223 (16)H15D0.32210.16690.1104H15E0.34510.17080.0236H15F0.33700.06850.0650C16B0.22101 (17)0.1313 (2)0.04336 (15)C17B0.19142 (17)0.1385 (2)-0.02925 (15)H17B0.23030.1466-0.0694C18B0.10395 (17)0.13345 (19)-0.04215 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0173 (5)*<br>0.0266 (6)*<br>0.040*<br>0.040*                                                                                                                                                             |
| C15B0.31435 (18)0.1347 (2)0.06223 (16)H15D0.32210.16690.1104H15E0.34510.17080.0236H15F0.33700.06850.0650C16B0.22101 (17)0.1313 (2)0.04336 (15)C17B0.19142 (17)0.1385 (2)-0.02925 (15)H17B0.23030.1466-0.0694C18B0.10395 (17)0.13345 (19)-0.04215 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0266 (6)*<br>0.040*<br>0.040*                                                                                                                                                                            |
| H15D0.32210.16690.1104H15E0.34510.17080.0236H15F0.33700.06850.0650C16B0.22101 (17)0.1313 (2)0.04336 (15)C17B0.19142 (17)0.1385 (2)-0.02925 (15)H17B0.23030.1466-0.0694C18B0.10395 (17)0.13345 (19)-0.04215 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.040*<br>0.040*                                                                                                                                                                                           |
| H15E0.34510.17080.0236H15F0.33700.06850.0650C16B0.22101 (17)0.1313 (2)0.04336 (15)C17B0.19142 (17)0.1385 (2)-0.02925 (15)H17B0.23030.1466-0.0694C18B0.10395 (17)0.13345 (19)-0.04215 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.040*                                                                                                                                                                                                     |
| H15F0.33700.06850.0650C16B0.22101 (17)0.1313 (2)0.04336 (15)C17B0.19142 (17)0.1385 (2)-0.02925 (15)H17B0.23030.1466-0.0694C18B0.10395 (17)0.13345 (19)-0.04215 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                            |
| C16B0.22101 (17)0.1313 (2)0.04336 (15)C17B0.19142 (17)0.1385 (2)-0.02925 (15)H17B0.23030.1466-0.0694C18B0.10395 (17)0.13345 (19)-0.04215 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.040*                                                                                                                                                                                                     |
| C17B0.19142 (17)0.1385 (2)-0.02925 (15)H17B0.23030.1466-0.0694C18B0.10395 (17)0.13345 (19)-0.04215 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0213 (5)*                                                                                                                                                                                                |
| H17B 0.2303 0.1466 -0.0694<br>C18B 0.10395 (17) 0.13345 (19) -0.04215 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0226 (5)*                                                                                                                                                                                                |
| C18B 0 10395 (17) 0 13345 (19) $-0.04215 (15)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.027*                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0203 (5)*                                                                                                                                                                                                |
| C19B 0.06584 (19) 0.1399 (2) -0.11820 (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0277 (6)*                                                                                                                                                                                                |
| H19A 0.0044 0.1258 -0.1156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.042*                                                                                                                                                                                                     |
| H19B 0.0938 0.0928 -0.1510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.042*                                                                                                                                                                                                     |
| H19C 0.0743 0.2053 -0.1380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.042*                                                                                                                                                                                                     |
| <u>Geometric parameters (Å, °)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                            |
| S1—O3B 1.431 (2) C10A—C11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.394 (4)                                                                                                                                                                                                  |
| S1—O4B 1.436 (2) C10A—H10A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9500                                                                                                                                                                                                     |
| S1N2B 1.650 (2) C11AC12A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.399 (3)                                                                                                                                                                                                  |
| S1C11B 1.742 (3) C12AC13A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.381 (4)                                                                                                                                                                                                  |
| S2—O3A 1.431 (2) C12A—H12A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9500                                                                                                                                                                                                     |
| S2O4A 1.436 (2) C13AH13A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.9500                                                                                                                                                                                                     |
| S2N2A 1.652 (2) C15AC16A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.494 (4)                                                                                                                                                                                                  |
| S2C11A 1.742 (3) C15AH15A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9800                                                                                                                                                                                                     |
| F1AC5A 1.349 (3) C15AH15B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9800                                                                                                                                                                                                     |
| F1B—C5B 1.349 (3) C15A—H15C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9800                                                                                                                                                                                                     |
| O1AC1A 1.231 (3) C16AC17A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.386 (4)                                                                                                                                                                                                  |
| O2A—C1A 1.307 (3) C17A—C18A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.389 (4)                                                                                                                                                                                                  |
| O2AH32A . 0.870 (19) C17AH17A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9500                                                                                                                                                                                                     |
| O1BC1B 1.228 (3) C18AC19A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.496 (4)                                                                                                                                                                                                  |
| O2BC1B 1.308 (3) C19AH19D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9800                                                                                                                                                                                                     |
| O2BH32B 0.867 (19) C19AH19E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9800                                                                                                                                                                                                     |
| N1BC8B 1.359 (4) C19AH19F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9800                                                                                                                                                                                                     |
| N1B-H30D 0.861 (19) C1B-C2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.487 (3)                                                                                                                                                                                                  |
| N1B—H30C 0.877 (18) C2B—C7B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 00 - / 1                                                                                                                                                                                                 |
| N2BC14B 1.383 (3) C2BC3B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.395 (4)                                                                                                                                                                                                  |

,

.

.

151

| N2B—H31B      | 0.868 (18)  | C3B—C4B        | 1.386 (4) |
|---------------|-------------|----------------|-----------|
| N1A—C8A       | 1.358 (4)   | C3B—H3B        | 0.9500    |
| N1A—H30B      | 0.876 (18)  | C4B—C5B        | 1.381 (4) |
| N1A—H30A      | 0.859 (19)  | C4B—H4B        | 0.9500    |
| N2A—C14A      | 1.380 (3)   | C5B—C6B        | 1.385 (4) |
| N2A—H31A      | 0.869 (18)  | C6B—C7B        | 1.388 (4) |
| N3A—C14A      | 1.345 (3)   | C6B—H6B        | 0.9500    |
| N3A—C16A      | 1.350 (3)   | С7В—Н7В        | 0.9500    |
| N4A—C14A      | 1.326 (3)   | C8B—C13B       | 1.403 (4) |
| N4A—C18A      | 1.342 (3)   | C8BC9B         | 1.412 (4) |
| N3B—C14B      | 1.344 (3)   | C9B—C10B       | 1.379 (4) |
| N3B—C18B      | 1.352 (3)   | C9B—H9B        | 0.9500    |
| N4B—C14B      | 1.325 (3)   | C10B—C11B      | 1.398 (3) |
| N4B—C16B      | 1.343 (3)   | C10B—H10B      | 0.9500    |
| C1A—C2A       | 1.486 (3)   | C11BC12B       | 1.395 (4) |
| C2A—C3A       | 1.394 (4)   | C12B-C13B      | 1.374 (4) |
| C2A—C7A       | 1.397 (4)   | C12B—H12B      | 0.9500    |
| C3A—C4A       | 1.388 (4)   | C13B—H13B      | 0.9500    |
| СЗА—НЗА       | 0.9500      | C15B—C16B      | 1.496 (4) |
| C4A—C5A       | 1.385 (4)   | C15B—H15D      | 0.9800    |
| C4A—H4A       | 0.9500      | C15B—H15E      | 0.9800    |
| C5A—C6A       | 1.381 (4)   | C15B—H15F      | 0.9800    |
| C6A—C7A       | 1.387 (4)   | C16BC17B       | 1.386 (4) |
| СбА—НбА       | 0.9500      | C17B—C18B      | 1.386 (4) |
| C7A—H7A       | 0.9500      | C17B—H17B      | 0.9500    |
| C8A—C9A       | 1.402 (4)   | C18B—C19B      | 1.492 (4) |
| C8A—C13A      | 1.410 (4)   | C19B—H19A      | 0.9800    |
| C9A—C10A      | 1.375 (4)   | C19B—H19B      | 0.9800    |
| С9А—Н9А       | 0.9500      | C19B—H19C      | 0.9800    |
| O3B—S1—O4B    | 119.01 (11) | N3A—C16A—C17A  | 120.2 (2) |
| O3B—S1—N2B    | 103.04 (11) | N3A-C16A-C15A  | 116.9 (2) |
| O4B—S1—N2B    | 107.96 (11) | C17A—C16A—C15A | 122.9 (2) |
| O3B—S1—C11B   | 108.93 (12) | C16A—C17A—C18A | 118.9 (2) |
| O4B—S1—C11B   | 109.71 (12) | C16AC17AH17A   | 120.6     |
| N2B—S1—C11B   | 107.48 (12) | C18A—C17A—H17A | 120.6     |
| O3A—S2—O4A    | 119.00 (11) | N4A—C18A—C17A  | 120.9 (2) |
| O3A—S2—N2A    | 102.92 (11) | N4A-C18A-C19A  | 116.6 (2) |
| O4A—S2—N2A    | 108.12 (11) | C17A—C18A—C19A | 122.5 (2) |
| O3A—S2—C11A   | 108.94 (12) | C18A—C19A—H19D | 109.5     |
| O4A—S2—C11A   | 109.60 (12) | C18A—C19A—H19E | 109.5     |
| N2A—S2—C11A   | 107.58 (12) | H19D-C19A-H19E | 109.5     |
| C1A—O2A—H32A  | 113 (3)     | C18A—C19A—H19F | 109.5     |
| C1B—O2B—H32B  | 113 (4)     | H19DC19A-H19F  | 109.5     |
| C8B—N1B—H30D  | 115 (3)     | H19E—C19A—H19F | 109.5     |
| C8B—N1B—H30C  | 116 (3)     | O1BC1BO2B      | 123.7 (2) |
| H30D—N1B—H30C | 125 (4)     | O1BC1BC2B      | 121.9 (2) |
| C14B—N2B—S1   | 126.08 (19) | O2BC1BC2B      | 114.4 (2) |
| C14B—N2B—H31B | 120 (2)     | C7B—C2B—C3B    | 120.1 (2) |
| S1—N2B—H31B   | 114 (2)     | C7B—C2B—C1B    | 119.3 (2) |
|               | N 2         |                |           |

| C8A—N1A—H30B   | 118 (3)     | C3B—C2B—C1B    | 120.5 (2)   |
|----------------|-------------|----------------|-------------|
| C8A—N1A—H30A   | 116 (3)     | C4B—C3B—C2B    | 120.0 (2)   |
| H30B—N1A—H30A  | 124 (4)     | C4B—C3B—H3B    | 120.0       |
| C14A—N2A—S2    | 125.99 (19) | C2B—C3B—H3B    | 120.0       |
| C14A—N2A—H31A  | 120 (2)     | C5B—C4B—C3B    | 118.5 (3)   |
| S2—N2A—H31A    | 114 (2)     | C5B—C4B—H4B    | 120.8       |
| C14A—N3A—C16A  | 116.5 (2)   | C3B—C4B—H4B    | 120.8       |
| C14A—N4A—C18A  | 116.5 (2)   | F1BC5BC4B      | 118.5 (2)   |
| C14B—N3B—C18B  | 116.5 (2)   | F1B—C5B—C6B    | 118.4 (2)   |
| C14B—N4B—C16B  | 116.5 (2)   | C4B—C5B—C6B    | 123.1 (3)   |
| 01A—C1A—O2A    | 123.6 (2)   | C5B—C6B—C7B    | 117.9 (3)   |
| OIA—CIA—C2A    | 122.1 (2)   | C5B—C6B—H6B    | 121.0       |
| O2A—C1A—C2A    | 114.3 (2)   | C7B—C6B—H6B    | 121.0       |
| C3A—C2A—C7A    | 119.9 (2)   | C6B—C7B—C2B    | 120.4 (3)   |
| C3A—C2A—C1A    | 119.3 (2)   | C6B—C7B—H7B    | 119.8       |
| C7A—C2A—C1A    | 120.8 (2)   | C2B—C7B—H7B    | 119.8       |
| C4A—C3A—C2A    | 120.4 (3)   | N1B-C8B-C13B   | 120.8 (2)   |
| С4А—С3А—НЗА    | 119.8       | N1B—C8B—C9B    | 120.8 (2)   |
| С2А—С3А—НЗА    | 119.8       | C13B—C8B—C9B   | 118.4 (2)   |
| C5A—C4A—C3A    | 118.1 (3)   | C10B—C9B—C8B   | 120.9 (2)   |
| C5A—C4A—H4A    | 121.0       | C10B—C9B—H9B   | 119.5       |
| C3A—C4A—H4A    | 121.0       | C8B—C9B—H9B    | 119.5       |
| F1A—C5A—C6A    | 118.3 (2)   | C9B-C10B-C11B  | 119.6 (2)   |
| F1A—C5A-—C4A   | 118.7 (2)   | C9B—C10B—H10B  | 120.2       |
| C6A—C5A—C4A    | 123.0 (3)   | C11B—C10B—H10B | 120.2       |
| C5A—C6A—C7A    | 118.2 (3)   | C12B—C11B—C10B | 120.0 (2)   |
| С5А—С6А—Н6А    | 120.9       | C12B—C11B—S1   | 118.38 (19) |
| С7А—С6А—Н6А    | 120.9       | C10B—C11B—S1   | 121.57 (19) |
| C6A—C7A—C2A    | 120.3 (2)   | C13B—C12B—C11B | 120.3 (2)   |
| С6А—С7А—Н7А    | 119.8       | C13B—C12B—H12B | 119.9       |
| C2A—C7A—H7A    | 119.8       | C11B—C12B—H12B | 119.9       |
| N1AC8AC9A      | 120.8 (2)   | C12B—C13B—C8B  | 120.8 (3)   |
| N1A—C8A—C13A   | 120.9 (2)   | C12B—C13B—H13B | 119.6       |
| C9A—C8A—C13A   | 118.3 (2)   | C8B-C13B-H13B  | 119.6       |
| C10A—C9A—C8A   | 120.9 (3)   | N4B—C14B—N3B   | 126.9 (2)   |
| С10А—С9А—Н9А   | 119.6       | N4B—C14B—N2B   | 118.5 (2)   |
| С8А—С9А—Н9А    | 119.6       | N3B—C14B—N2B   | 114.6 (2)   |
| C9A—C10A—C11A  | 120.2 (2)   | C16B—C15B—H15D | 109.5       |
| C9A—C10A—H10A  | 119.9       | C16B—C15B—H15E | 109.5       |
| C11A—C10A—H10A | 119.9       | H15D—C15B—H15E | 109.5       |
| C10A—C11A—C12A | 120.1 (2)   | C16B—C15B—H15F | 109.5       |
| C10A—C11A—S2   | 118.36 (19) | H15D—C15B—H15F | 109.5       |
| C12A—C11A—S2   | 121.58 (19) | H15E—C15B—H15F | 109.5       |
| C13A—C12A—C11A | 119.5 (2)   | N4B—C16B—C17B  | 121.1 (2)   |
| C13A—C12A—H12A | 120.3       | N4B-C16B-C15B  | 116.7 (2)   |
| C11A—C12A—H12A | 120.3       | C17B—C16B—C15B | 122.3 (2)   |
| C12A—C13A—C8A  | 121.0 (2)   | C16B—C17B—C18B | 118.7 (2)   |
| C12A—C13A—H13A | 119.5       | C16B—C17B—H17B | 120.6       |
| C8A—C13A—H13A  | 119.5       | C18B—C17B—H17B | 120.6       |

| N4A—C14A—N3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 126.9 (2)         | N3B—C18B—C17B                      | 120.3 (2)  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------|------------|
| N4A—C14A—N2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 118.5 (2)         | N3B—C18B—C19B                      | 116.9 (2)  |
| N3A—C14A—N2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 114.6 (2)         | C17B—C18B—C19B                     | 122.8 (2)  |
| C16A—C15A—H15A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.5             | C18B—C19B—H19A                     | 109.5      |
| C16A—C15A—H15B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.5             | C18B—C19B—H19B                     | 109.5      |
| H15A—C15A—H15B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109 5             | H19A—C19B—H19B                     | 109 5      |
| C16A - C15A - H15C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.5             | C18B-C19B-H19C                     | 109.5      |
| $H_{15A}$ $C_{15A}$ $H_{15C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5             | H19A - C19B - H19C                 | 109.5      |
| H15B-C15A-H15C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.5             | HI9R_C19R_H19C                     | 109.5      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109.5             |                                    | 109.5      |
| O3B—S1—N2B—C14B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 175.6 (2)         | C14A—N4A—C18A—<br>C19A             | 180.0 (2)  |
| O4B—S1—N2B—C14B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48.9 (2)          | C16A—C17A—C18A—<br>N4A             | 0.5 (4)    |
| C11B—S1—N2B—C14B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -69.4 (2)         | C16A—C17A—C18A—<br>C19A            | -179.3 (3) |
| O3A—S2—N2A—C14A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -175.6 (2)        | O1B—C1B—C2B—C7B                    | -4.9 (4)   |
| O4A—S2—N2A—C14A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -48.8 (2)         | O2B—C1B—C2B—C7B                    | 175.9 (2)  |
| C11A—S2—N2A—C14A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 69.4 (2)          | O1B—C1B—C2B—C3B                    | 172.6 (2)  |
| 01A—C1A—C2A—C3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.0 (4)           | O2B—C1B—C2B—C3B                    | -6.6 (3)   |
| O2A—C1A—C2A—C3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -175.9 (2)        | C7B—C2B—C3B—C4B                    | 1.7 (4)    |
| 01A—C1A—C2A—C7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -172.6 (2)        | C1B—C2B—C3B—C4B                    | -175.8 (2) |
| O2A—C1A—C2A—C7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.5 (3)           | C2B—C3B—C4B—C5B                    | -0.7 (4)   |
| C7A—C2A—C3A—C4A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.1 (4)           | C3B—C4B—C5B—F1B                    | 178.7 (2)  |
| C1A—C2A—C3A—C4A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -176.5 (2)        | C3B—C4B—C5B—C6B                    | -0.9 (4)   |
| C2A—C3A—C4A—C5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5 (4)           | F1B-C5B-C6B-C7B                    | -178.1(2)  |
| C3A - C4A - C5A - F1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 178 0 (2)         | C4B-C5B-C6B-C7B                    | 16(4)      |
| C3A - C4A - C5A - C6A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1.5(4)           | C5B-C6B-C7B-C2B                    | -0.6(4)    |
| F1A - C5A - C6A - C7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1787(2)          | C3B-C2B-C7B-C6B                    | -11(4)     |
| C4A - C5A - C6A - C7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 8 (4)           | C1B-C2B-C7B-C6B                    | 1765(2)    |
| $C_{5A}$ $C_{6A}$ $C_{7A}$ $C_{2A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10(4)             | N1B - C8B - C9B - C10B             | -1797(2)   |
| $C_{3A}$ $C_{2A}$ $C_{7A}$ $C_{6A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -19(4)            | C13B - C8B - C9B - C10B            | -22(4)     |
| C1A - C2A - C7A - C6A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.5(1)<br>1757(2) | C8B - C9B - C10B - C11B            | 0.2(4)     |
| N1A - C8A - C9A - C10A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 179.8 (3)         | C9B-C10B-C11B-C12B                 | 13(4)      |
| $C_{13A} = C_{8A} = C_{9A} = C_{10A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -24(4)            | COB CIOB CIIB SI                   | -1777(2)   |
| $C_{13} = C_{13} = C$ | 2.7(7)            | $O_{3P} = S_1 = C_{11P} = C_{12P}$ | 177.7(2)   |
| $C_{0A} = C_{10A} = C_{11A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.0 (4)           | 05B—51—011B—012B                   | 13.4 (2)   |
| C12A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9 (4)           | O4B—S1—C11B—C12B                   | 147.3 (2)  |
| C9A—C10A—C11A—S2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -178.1 (2)        | N2B—S1—C11B—C12B                   | -95.6 (2)  |
| O3A—S2—C11A—C10A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -15.5 (2)         | O3B—S1—C11B—C10B                   | -165.6 (2) |
| O4A—S2—C11A—C10A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -147.2 (2)        | O4B—S1—C11B—C10B                   | -33.8 (2)  |
| N2A—S2—C11A—C10A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 95.4 (2)          | N2B—S1—C11B—C10B                   | 83.4 (2)   |
| O3AS2C11AC12A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 165.6 (2)         | C10B—C11B—C12B—<br>C13B            | -0.7 (4)   |
| O4A—S2—C11A—C12A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33.8 (2)          | S1—C11B—C12B—C13B                  | 178.2 (2)  |
| N2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -83.5 (2)         | C11B—C12B—C13B—C8B                 | -1.3 (4)   |
| C10A—C11A—C12A—<br>C13A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1.4 (4)          | N1B—C8B—C13B—C12B                  | -179.8 (3) |
| S2—C11A—C12A—C13A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 177.5 (2)         | C9B—C8B—C13B—C12B                  | 2.7 (4)    |
| C11A—C12A—C13A—<br>C8A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0 (4)           | C16B—N4B—C14B—N3B                  | 1.2 (4)    |

-

•

| N1A—C8A—C13A—C12A                                       | 179.7 (2)   |                                | C16B—N4B—          | C14B—N2B | -178.3 (2)   |
|---------------------------------------------------------|-------------|--------------------------------|--------------------|----------|--------------|
| C9A—C8A—C13A—C12A                                       | 1.9 (4)     |                                | C18B—N3B—          | C14B—N4B | -1.4 (4)     |
| C18A—N4A—C14A—N3A                                       | -1.2 (4)    |                                | C18B—N3B—          | C14B—N2B | 178.1 (2)    |
| C18A—N4A—C14A—N2A                                       | 178.3 (2)   |                                | S1—N2B—C14         | 4B—N4B   | 5.1 (3)      |
| C16A—N3A—C14A—N4A                                       | 1.5 (4)     |                                | S1                 | 4B—N3B   | -174.41 (18) |
| C16A—N3A—C14A—N2A                                       | -178.1 (2)  |                                | C14BN4B<br>C17B    | C16B—    | -0.2 (4)     |
| S2—N2A—C14A—N4A                                         | 5.2 (3)     |                                | C14BN4B<br>C15B    | C16B—    | -179.8 (2)   |
| S2—N2A—C14A—N3A                                         | 174.40 (18) |                                | N4B—C16B—<br>C18B  | C17B—    | -0.4 (4)     |
| C14A—N3A—C16A—<br>C17A                                  | -0.7 (4)    |                                | C15B—C16B—<br>C18B | -C17B—   | 179.2 (3)    |
| C14A—N3A—C16A—<br>C15A                                  | 179.6 (2)   |                                | C14B—N3B—<br>C17B  | C18B—    | 0.6 (4)      |
| N3A—C16A—C17A—<br>C18A                                  | -0.2 (4)    |                                | C14B—N3B—<br>C19B  | C18B—    | -179.5 (2)   |
| C15A—C16A—C17A—<br>C18A                                 | 179.5 (3)   |                                | C16B—C17B—<br>N3B  | -C18B    | 0.2 (4)      |
| C14A—N4A—C18A—<br>C17A                                  | 0.2 (4)     |                                | C16B—C17B—<br>C19B | -C18B—   | -179.7 (3)   |
| Hydrogen-bond geometry                                  | ⊻ (Å, °)    |                                |                    |          |              |
| <i>D</i> —H··· <i>A</i>                                 | DH          | $\mathbf{H} \cdots \mathbf{A}$ | $D \cdots A$       | D—H···A  |              |
| N1 $A$ —H30 $A$ ····O1 $A$ <sup>iii</sup>               | 0.86 (2)    | 2.29 (3                        | 3.064 (3)          | 149 (4)  |              |
| N1 <i>A</i> —H30 <i>B</i> ····O4 <i>B</i> <sup>ii</sup> | 0.88 (2)    | 2.09 (2                        | 2.954 (3)          | 170 (4)  |              |
| N1 <i>B</i> —H30 <i>C</i> ····O4 <i>A</i>               | 0.88 (2)    | 2.09 (2                        | 2.956 (3)          | 168 (4)  |              |
| N1 <i>B</i> —H30 <i>D</i> ····O1 <i>B</i> <sup>i</sup>  | 0.86 (2)    | 2.32 (3                        | 3.068 (3)          | 146 (4)  |              |
| N2A—H31A····O1A                                         | 0.87 (2)    | 1.93 (2                        | 2.792 (3)          | 175 (3)  |              |
| N2 <i>B</i> —H31 <i>B</i> ⋯O1 <i>B</i>                  | 0.87 (2)    | 1.93 (2                        | 2.790 (3)          | 175 (4)  |              |
| O2 <i>A</i> —H32 <i>A</i> ⋯N3 <i>A</i>                  | 0.87 (2)    | 1.77 (2                        | 2.634 (3)          | 172 (5)  |              |
| O2 <i>B</i> —H32 <i>B</i> <sup>*</sup> ···N3 <i>B</i>   | 0.87 (2)    | 1.77 (2                        | 2.631 (3)          | 173 (5)  |              |

Symmetry codes: (i) -x, y-1/2, -z+1/2; (ii) x, y-1, z; (iii) -x+1, y-1/2, -z+1/2.

All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.



Figure S.11: Crystal Structure of the Cocrystal of Sulfamethazine and m-Chlorobenzoic Acid Showing Thermal Parameters (50% Thermal Ellipsoids) and Hydrogen Bonding.

# Crystal data

C<sub>12</sub>H<sub>14</sub>N<sub>4</sub>O<sub>2</sub>S·C<sub>7</sub>H<sub>5</sub>ClO<sub>2</sub>  $M_r = 434.89$ Monoclinic,  $P2_1/c$  a = 8.2042 (4) Å b = 28.2960 (11) Å c = 9.6571 (4) Å  $\beta = 114.825$  (2)° V = 2034.70 (16) Å<sup>3</sup> Z = 4F(000) = 904  $D_x = 1.420 \text{ Mg m}^{-3}$ Melting point: 446-448 K Cu K $\alpha$  radiation,  $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9365 reflections  $\theta = 3.1-68.2^{\circ}$  $\mu = 2.92 \text{ mm}^{-1}$ T = 100 KPlates, colourless  $0.40 \times 0.30 \times 0.18 \text{ mm}$ 

### Data collection

| Bruker APEXII CCD                                 |
|---------------------------------------------------|
| diffractometer                                    |
| Radiation source: fine-focus sealed tube          |
| Detector resolution: 8.33 pixels mm <sup>-1</sup> |
| phi and $\omega$ scans                            |
| Absorption correction: multi-scan                 |
| SADABS2014/7, Bruker AXS                          |
| $T_{\min} = 0.571, T_{\max} = 0.753$              |
| 30572 measured reflections                        |

3707 independent reflections

3614 reflections with  $I > 2\sigma(I)$   $R_{int} = 0.029$   $\theta_{max} = 68.2^{\circ}, \ \theta_{min} = 3.1^{\circ}$  h = -9 9 k = -34 33 l = -11 11

# Refinement

Refinement on  $F^2$ Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.031$  $wR(F^2) = 0.079$ 

S = 1.093707 reflections 280 parameters 4 restraints 0 constraints Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.0335P)^2 + 1.4222P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.001$  $\Delta\rho_{max} = 0.35$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.40$  e Å<sup>-3</sup> Extinction correction: none

<u>Fractional atomic coordinates and isotropic or equivalent isotropic displacement</u> parameters ( $Å^2$ )

|      | r            | v                | 7            | Uine*/Une    |
|------|--------------|------------------|--------------|--------------|
| S1   | 0.53092(5)   | )<br>0.66026 (2) | 0.62097 (4)  | 0.01646(10)  |
| Cl2  | 0.95600 (6)  | 0.41356 (2)      | 1.20135 (5)  | 0.03151 (12) |
| 03.  | 0.56883 (14) | 0.64535 (4)      | 0.77332 (12) | 0.0225 (2)   |
| 04   | 0.64270 (14) | 0.69622 (4)      | 0.59967 (12) | 0.0213 (2)   |
| 01   | 0.66804 (15) | 0.52484 (4)      | 0.71434 (13) | 0.0247 (3)   |
| O2 · | 0.75909 (18) | 0.49458 (4)      | 0.54405 (13) | 0.0301 (3)   |
| H32  | 0.706 (3)    | 0.5195 (7)       | 0.491 (3)    | 0.055 (7)*   |
| N2   | 0.55233 (18) | 0.61118 (5)      | 0.53860 (15) | 0.0188 (3)   |
| H31  | 0.583 (3)    | 0.5869 (6)       | 0.596 (2)    | 0.030 (5)*   |
| N4   | 0.48834 (17) | 0.64515 (5)      | 0.30188 (14) | 0.0189 (3)   |
| N3   | 0.61073 (17) | 0.56739 (4)      | 0.36413 (14) | 0.0186 (3)   |
| N1   | -0.2082 (2)  | 0.73395 (6)      | 0.37111 (19) | 0.0312 (3)   |
| H30A | -0.278 (3)   | 0.7234 (7)       | 0.409 (2)    | 0.030 (5)*   |
| H30B | -0.242 (3)   | 0.7542 (7)       | 0.300 (2)    | 0.032 (5)*   |
| C14  | 0.5504 (2)   | 0.60823 (5)      | 0.39441 (17) | 0.0171 (3)   |
| C18  | 0.4864 (2)   | 0.64040 (6)      | 0.16257 (18) | 0.0210 (3)   |
| C13  | 0.0175 (2)   | 0.68102 (6)      | 0.53736 (17) | 0.0203 (3)   |
| H13  | -0.0630      | 0.6697           | 0.5774       | 0.024*       |

157

| C12  | 0.1900 (2)  | 0.66354 (5) | 0.59296 (17) | 0.0186 (3) |
|------|-------------|-------------|--------------|------------|
| H12  | 0.2283      | 0.6405      | 0.6719       | 0.022*     |
| C7   | 0.8551 (2)  | 0.45280 (5) | 0.92326 (19) | 0.0217 (3) |
| H7   | 0.8016      | 0.4769      | 0.9589       | 0.026*     |
| C10  | 0.2520 (2)  | 0.71267 (5) | 0.41607 (17) | 0.0189 (3) |
| H10  | 0.3319      | 0.7230      | 0.3740       | 0.023*     |
| C6   | 0.9449 (2)  | 0.41564 (6) | 1.01727 (19) | 0.0238 (3) |
| C16  | 0.6085 (2)  | 0.56308 (6) | 0.22427 (18) | 0.0211 (3) |
| C17  | 0.5463 (2)  | 0.59944 (6) | 0.11988 (18) | 0.0224 (3) |
| H17  | 0.5446      | 0.5965      | 0.0213       | 0.027*     |
| C11  | 0.3087 (2)  | 0.67945 (5) | 0.53381 (17) | 0.0167 (3) |
| C9   | 0.0801 (2)  | 0.73048 (5) | 0.36105 (18) | 0.0205 (3) |
| H9   | 0.0422      | 0.7531      | 0.2811       | 0.025*     |
| C5   | 1.0241 (2)  | 0.38004 (6) | 0.9683 (2)   | 0.0266 (4) |
| H5   | 1.0854      | 0.3548      | 1.0344       | 0.032*     |
| C3   | 0.9229 (2)  | 0.41876 (6) | 0.72417 (19) | 0.0238 (3) |
| H3   | 0.9152      | 0.4197      | 0.6233       | 0.029*     |
| C19  | 0.4142 (2)  | 0.68135 (6) | 0.05641 (19) | 0.0277 (4) |
| H19A | 0.2850      | 0.6845      | 0.0278       | 0.042*     |
| H19B | 0.4346      | 0.6761      | -0.0354      | 0.042*     |
| H19C | 0.4755      | 0.7104      | 0.1072       | 0.042*     |
| C8   | -0.0403 (2) | 0.71549 (5) | 0.42191 (18) | 0.0202 (3) |
| C2   | 0.8443 (2)  | 0.45432 (5) | 0.77564 (18) | 0.0204 (3) |
| C1   | 0.7477 (2)  | 0.49478 (5) | 0.67579 (18) | 0.0211 (3) |
| C15  | 0.6756 (3)  | 0.51723 (6) | 0.1910 (2)   | 0.0285 (4) |
| H15A | 0.7982      | 0.5116      | 0.2676       | 0.043*     |
| H15B | 0.6752      | 0.5186      | 0.0895       | 0.043*     |
| H15C | 0.5973      | 0.4915      | 0.1941       | 0.043*     |
| C4   | 1.0121 (2)  | 0.38200 (6) | 0.8209 (2)   | 0.0276 (4) |
| H4   | 1.0658      | 0.3578      | 0.7859       | 0.033*     |

# Atomic displacement parameters (Å<sup>2</sup>)

|            | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$      | $U^{13}$     | $U^{23}$      |
|------------|--------------|--------------|--------------|---------------|--------------|---------------|
| <b>S</b> 1 | 0.01585 (19) | 0.01887 (19) | 0.01512 (18) | 0.00059 (13)  | 0.00694 (14) | -0.00223 (13) |
| Cl2        | 0.0335 (2)   | 0.0332 (2)   | 0.0287 (2)   | -0.00094 (17) | 0.01395 (18) | 0.00958 (16)  |
| 03         | 0.0204 (6)   | 0.0308 (6)   | 0.0156 (5)   | 0.0038 (5)    | 0.0068 (4)   | -0.0010 (4)   |
| Ó4         | 0.0186 (5)   | 0.0231 (6)   | 0.0234 (6)   | -0.0026 (4)   | 0.0100 (5)   | -0.0051 (4)   |
| 01         | 0.0271 (6)   | 0.0202 (6)   | 0.0302 (6)   | 0.0044 (5)    | 0.0153 (5)   | 0.0036 (5)    |
| O2         | 0.0413 (7)   | 0.0251 (6)   | 0.0237 (6)   | 0.0119 (5)    | 0.0135 (6)   | 0.0031 (5)    |
| N2         | 0.0238 (7)   | 0.0167 (6)   | 0.0170 (6)   | 0.0043 (5)    | 0.0098 (5)   | 0.0018 (5)    |
| N4         | 0.0200 (7)   | 0.0199 (6)   | 0.0176 (6)   | 0.0003 (5)    | 0.0087 (5)   | -0.0002 (5)   |
| N3         | 0.0187 (6)   | 0.0187 (6)   | 0.0186 (6)   | 0.0001 (5)    | 0.0081 (5)   | -0.0018 (5)   |
| N1         | 0.0215 (8)   | 0.0363 (8)   | 0.0379 (9)   | 0.0079 (6)    | 0.0145 (7)   | 0.0192 (7)    |
| C14        | 0.0152 (7)   | 0.0192 (7)   | 0.0172 (7)   | -0.0019 (6)   | 0.0072 (6)   | -0.0026 (6)   |
| C18        | 0.0199 (8)   | 0.0242 (8)   | 0.0183 (7)   | -0.0036 (6)   | 0.0076 (6)   | -0.0008 (6)   |
| C13        | 0.0202 (8)   | 0.0223 (8)   | 0.0214 (8)   | -0.0005 (6)   | 0.0117 (6)   | 0.0016 (6)    |
| C12        | 0.0209 (8)   | 0.0184 (7)   | 0.0172 (7)   | 0.0011 (6)    | 0.0087 (6)   | 0.0014 (6)    |
| C7         | 0.0195 (8)   | -0.0184 (8)  | 0.0281 (8)   | -0.0014 (6)   | 0.0108 (7)   | -0.0007 (6)   |

| C10 | 0.0210 (8)  | 0.0183 (7) | 0.0196 (7)  | -0.0033 (6) | 0.0106 (6) | -0.0011 (6) |
|-----|-------------|------------|-------------|-------------|------------|-------------|
| C6  | 0.0198 (8)  | 0.0239 (8) | 0.0259 (8)  | -0.0054 (6) | 0.0078 (7) | 0.0016 (6)  |
| C16 | 0.0188 (8)  | 0.0237 (8) | 0.0220 (8)  | -0.0031 (6) | 0.0099 (6) | -0.0059 (6) |
| C17 | 0.0238 (8)  | 0.0275 (8) | 0.0183 (7)  | -0.0025 (6) | 0.0112 (6) | -0.0039 (6) |
| C11 | 0.0168 (7)  | 0.0162 (7) | 0.0172 (7)  | 0.0000 (6)  | 0.0072 (6) | -0.0025 (6) |
| C9  | 0.0225 (8)  | 0.0179 (7) | 0.0200 (7)  | -0.0002 (6) | 0.0080 (6) | 0.0037 (6)  |
| C5  | 0.0194 (8)  | 0.0194 (8) | 0.0340 (9)  | 0.0005 (6)  | 0.0044 (7) | 0.0040 (7)  |
| C3  | 0.0221 (8)  | 0.0209 (8) | 0.0256 (8)  | -0.0023 (6) | 0.0072 (7) | -0.0052 (6) |
| C19 | 0.0355 (10) | 0.0274 (9) | 0.0202 (8)  | 0.0020 (7)  | 0.0116 (7) | 0.0033 (7)  |
| C8  | 0.0188 (8)  | 0.0200 (7) | 0.0210 (7)  | -0.0001 (6) | 0.0076 (6) | -0.0006 (6) |
| C2  | 0.0165 (7)  | 0.0171 (7) | 0.0254 (8)  | -0.0030 (6) | 0.0068 (6) | -0.0013 (6) |
| C1  | 0.0195 (8)  | 0.0187 (8) | 0.0237 (8)  | -0.0026 (6) | 0.0075 (7) | -0.0018 (6) |
| C15 | 0.0357 (10) | 0.0264 (9) | 0.0282 (9)  | 0.0022 (7)  | 0.0179 (8) | -0.0067 (7) |
| C4  | 0.0218 (8)  | 0.0198 (8) | 0.0369 (10) | 0.0016 (6)  | 0.0082 (7) | -0.0054 (7) |

# Geometric parameters (Å, °)

| S1—O3     | 1.4336 (11) | C7—C2       | 1.392 (2)   |
|-----------|-------------|-------------|-------------|
| S1—O4     | 1.4413 (11) | С7—Н7       | 0.9500      |
| S1—N2     | 1.6460 (13) | С10—С9      | 1.377 (2)   |
| S1—C11    | 1.7434 (15) | C10-C11     | 1.396 (2)   |
| Cl2—C6    | 1.7424 (17) | C10—H10     | 0.9500      |
| 01—C1     | 1.222 (2)   | C6—C5       | 1.385 (2)   |
| O2—C1     | 1.314 (2)   | C16—C17     | 1.380 (2)   |
| O2—H32    | 0.872 (16)  | C16—C15     | 1.496 (2)   |
| N2-C14    | 1.3882 (19) | C17—H17     | 0.9500      |
| N2—H31    | 0.852 (15)  | С9—С8       | 1.410 (2)   |
| N4-C14    | 1.329 (2)   | С9—Н9       | 0.9500      |
| N4—C18    | 1.345 (2)   | C5—C4       | 1.386 (3)   |
| N3—C14    | 1.337 (2)   | С5—Н5       | 0.9500      |
| N3—C16    | 1.349 (2)   | C3—C4       | 1.384 (2)   |
| N1        | 1.358 (2)   | C3—C2       | 1.394 (2)   |
| N1—H30A   | 0.851 (15)  | С3—Н3       | 0.9500      |
| N1—H30B   | 0.844 (15)  | C19—H19A    | 0.9800      |
| C18—C17   | 1.388 (2)   | C19—H19B    | 0.9800      |
| C18—C19   | 1.495 (2)   | C19—H19C    | 0.9800      |
| C13—C12   | 1.377 (2)   | C2-C1       | 1.492 (2)   |
| С13—С8    | 1.405 (2)   | C15—H15A    | 0.9800      |
| C13—H13   | 0.9500      | C15—H15B    | 0.9800      |
| C12—C11   | 1.394 (2)   | C15—H15C    | 0.9800      |
| C12—H12   | 0.9500      | C4—H4       | 0.9500      |
| C7—C6     | 1.382 (2)   |             |             |
| 03—S1—O4  | 118.51 (7)  | C16—C17—C18 | 118.32 (14) |
| O3—S1—N2  | 103.10 (7)  | С16—С17—Н17 | 120.8       |
| O4—S1—N2  | 108.86 (7)  | C18—C17—H17 | 120.8       |
| O3—S1—C11 | 108.63 (7)  | C12-C11-C10 | 120.01 (14) |
| O4—S1—C11 | 108.08 (7)  | C12-C11-S1  | 118.06 (12) |
| N2—S1—C11 | 109.37 (7)  | C10-C11-S1  | 121.74 (12) |
| C1—O2—H32 | 110.3 (17)  | С10—С9—С8   | 120.82 (14) |
| C14—N2—S1 | 125.22 (11) | С10—С9—Н9   | 119.6       |
|           |             |             |             |

•

| C14—N2—H31                                | 118.6 (14)                | С8—С9—Н9                                             | 119.6        |
|-------------------------------------------|---------------------------|------------------------------------------------------|--------------|
| S1—N2—H31                                 | 115.4 (14)                | C6—C5—C4                                             | 118.71 (15)  |
| C14—N4—C18                                | 115.74 (13)               | C6—C5—H5                                             | 120.6        |
| C14—N3—C16                                | 116.53 (13)               | C4—C5—H5                                             | 120.6        |
| C8—N1—H30A                                | 118.0 (14)                | C4—C3—C2                                             | 119.62 (16)  |
| C8-N1-H30B                                | 119.5 (15)                | C4—C3—H3                                             | 120.2        |
| H30A—N1—H30B                              | 122 (2)                   | С2—С3—Н3                                             | 120.2        |
| N4C14N3                                   | 127.20 (14)               | C18-C19-H19A                                         | 109.5        |
| N4-C14-N2                                 | 117.84 (13)               | C18—C19—H19B                                         | 109.5        |
| N3-C14-N2                                 | 114.95 (13)               | H19A—C19—H19B                                        | 109.5        |
| N4-C18-C17                                | 121.57 (14)               | C18—C19—H19C                                         | 109.5        |
| N4-C18-C19                                | 116.30 (14)               | H19A—C19—H19C                                        | 109.5        |
| C17C18C19                                 | 122.12 (14)               | H19B-C19-H19C                                        | 109.5        |
| C12C13C8                                  | 120.53 (14)               | N1-C8-C13                                            | 120.45 (15)  |
| C12-C13-H13                               | 119.7                     | N1-C8-C9                                             | 121.05 (15)  |
| C8—C13—H13                                | 119.7                     | С13—С8—С9                                            | 118.49 (14)  |
| C13C12C11                                 | 120.27 (14)               | С7—С2—С3                                             | 120.19 (15)  |
| C13-C12-H12                               | 119.9                     | C7—C2—C1                                             | 118.28 (14)  |
| C11—C12—H12                               | 119.9                     | C3—C2—C1                                             | 121.53 (15)  |
| C6—C7—C2                                  | 118.91 (15)               | 01—C1—O2                                             | 124.21 (15)  |
| С6—С7—Н7                                  | 120.5                     | 01—C1—C2                                             | 122.96 (15)  |
| С2С7Н7                                    | 120.5                     | O2—C1—C2                                             | 112.83 (14)  |
| C9-C10-C11                                | 119.84 (14)               | C16—C15—H15A                                         | 109.5        |
| C9—C10—H10                                | 120.1                     | C16—C15—H15B                                         | 109.5        |
| C11-C10-H10                               | 120.1                     | H15A-C15-H15B                                        | 109.5        |
| C7-C6-C5                                  | 121.73 (16)               | C16—C15—H15C                                         | 109.5        |
| C7C6Cl2                                   | 118.74 (13)               | H15A—C15—H15C                                        | 109.5        |
| $C_{5}$ — $C_{6}$ — $C_{12}$              | 119.53 (13)               | H15B—C15—H15C                                        | 109.5        |
| N3C16C17                                  | 120.64 (14)               | C3-C4-C5                                             | 120.83 (16)  |
| N3-C16-C15                                | 116 24 (14)               | C3—C4—H4                                             | 119.6        |
| C17 - C16 - C15                           | 123 12 (14)               | С5—С4—Н4                                             | 119.6        |
| $O_2 \otimes S_1 \otimes O_2 \otimes O_1$ | -17162(17)                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | -21.55 (14)  |
| 03 - 31 - N2 - C14                        | -1/1.03(12)<br>-44.05(14) | 03-31-011-012                                        | -151.34(12)  |
| 04 - 51 - N2 - 014                        | -44.93(14)                | V4 = S1 = C11 = C12                                  | 131.34(12)   |
| C1151 - N2 - C14                          | 72.94 (14)                | $N_2 = S_1 = C_{11} = C_{12}$                        | 90.29(13)    |
| C10 - N4 - C14 - N3                       | 0.1(2)                    | 03 = 31 = 011 = 010                                  | 133.39(12)   |
| C16 = N4 = C14 = N2                       | -1/9.00(13)               | V4 = S1 = C11 = C10                                  | -04.77(13)   |
| C16 N2 C14 N2                             | 0.0(2)                    | $N_2 = S1 = C11 = -C10$                              | -0.2(2)      |
| $C10 - N_3 - C14 - N_2$                   | 1/9.10(13)                | C11 - C10 - C9 - C8                                  | -0.2(2)      |
| S1 - N2 - C14 - N4                        | -15.0(2)                  | $C_{1} = C_{0} = -C_{3} = -C_{4}$                    | -0.1(2)      |
| SI - N2 - C14 - N3                        | 165.18 (11)               | C12 - C0 - C3 - C4                                   | 177.50 (16)  |
| CI4N4CI8CI7                               | -0.2(2)                   | C12 - C13 - C8 - N1                                  | =1/7.59(10)  |
| CI4N4CI8CI9                               | 1/9.04 (14)               | C12 - C13 - C8 - C9                                  | 2.1 (2)      |
| C8C13C12C11                               | 0.8 (2)                   | C10-C9C8-NI                                          | 1/8.08 (16)  |
| C2C7C6C5                                  | 0.0 (2)                   | C10—C9—C8—C13                                        | -1.6 (2)     |
| C2C7C6Cl2                                 | ~179.34 (12)              | C6—C7—C2—C3                                          | 0.1 (2)      |
| C14N3C16C17                               | -0.1 (2)                  | C6—C7—C2—C1                                          | -179.70 (14) |
| C14—N3—C16—C15                            | -179.78 (14)              | C4—C3—C2—C7                                          | -0.2 (2)     |
| N3-C16-C17-C18                            | 0.0 (2)                   | C4—C3—C2—C1                                          | 179.62 (15)  |
| C15-C16C17-C18                            | 179.70 (15)               | C7—C2—C1—O1                                          | -4.9 (2)     |

 $\widehat{\mathcal{E}}(\hat{s})$ 

•

| C15-C16-C17-C18 | 179.70 (15)  | C7-C2-C1-01 | -4.9 (2)    |
|-----------------|--------------|-------------|-------------|
| N4-C18-C17-C16  | 0.1 (2)      | C3-C2-C1-01 | 175.27 (15) |
| C19-C18-C17-C16 | -179.06 (15) | C7—C2—C1—O2 | 174.66 (14) |
| C13-C12-C11-C10 | -1.0 (2)     | C3-C2-C1-O2 | -5.2 (2)    |
| C13-C12-C11-S1  | 174.01 (12)  | C2—C3—C4—C5 | 0.1 (2)     |
| C9-C10-C11-C12  | 1.5 (2)      | C6-C5-C4-C3 | 0.0 (2)     |
| C9-C10-C11-S1   | -173.33 (12) |             |             |

#### Hydrogen-bond geometry (Å, °)

| 11 |
|----|
| )  |
| )  |
| )  |
| )  |
|    |

Symmetry codes: (i) *x*-1, -*y*+3/2, *z*-1/2; (ii) *x*-1, *y*, *z*.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.





#### Crystal data

C<sub>12</sub>H<sub>14</sub>N<sub>4</sub>O<sub>2</sub>S·C<sub>7</sub>H<sub>5</sub>ClO<sub>2</sub>  $M_r = 434.89$ Triclinic, P a = 7.8082 (3) Å b = 14.9985 (5) Å c = 17.8133 (6) Å a = 88.142 (2)°  $\beta = 80.879$  (2)°  $\gamma = 77.939$  (2)° V = 2014.29 (12) Å<sup>3</sup> Z = 4F(000) = 904 F(000) = 904  $D_x = 1.434 \text{ Mg m}^{-3}$ Melting point: 478-481 K Cu K\alpha radiation,  $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9803 reflections  $\theta = 2.5 - 68.3^{\circ}$   $\mu = 2.95 \text{ mm}^{-1}$  T = 100 KBlock  $0.21 \times 0.21 \times 0.17 \text{ mm}$ 

## Data collection

Bruker APEXII CCD 12669 independent reflections diffractometer Radiation source: fine-focus sealed tube 10592 reflections with  $I > 2\sigma(I)$ ? monochromator  $R_{\text{int}} = ?$ Detector resolution: 8.33 pixels mm<sup>-1</sup>  $\theta_{max} = 68.2^{\circ}, \ \theta_{min} = 2.5^{\circ}$  $h = -9 \quad 9$ phi and  $\omega$  scans Absorption correction: multi-scan  $k = -18 \quad 18$ SADABS2014/7, Bruker AXS  $l = 0 \quad 21$  $T_{\min} = 0.627, T_{\max} = 0.753$ 12669 measured reflections

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full

$$R[F^2 > 2\sigma(F^2)] = 0.046$$

 $wR(F^2) = 0.114$ 

S = 1.02

12669 reflections

552 parameters

8 restraints

0 constraints

Refined as a 2-component twin.

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.0495P)^2 + 1.0678P]$ where  $P = (F_o^2 + 2F_c^2)/3$   $(\Delta/\sigma)_{max} < 0.001$   $\Delta\rho_{max} = 0.31$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.38$  e Å<sup>-3</sup> Extinction correction: none
| paramet |              |               |               |                               |
|---------|--------------|---------------|---------------|-------------------------------|
|         | x            | У             | Z             | $U_{\rm iso}$ */ $U_{\rm eq}$ |
| Cl1A    | 0.15845 (14) | -0.32624 (6)  | 0.27195 (6)   | 0.0614 (3)                    |
| Cl1B    | 0.46422 (13) | 0.19139 (6)   | 0.24259 (6)   | 0.0537 (2)                    |
| S1A     | 0.18743 (10) | 0.32329 (5)   | 0.45642 (4)   | 0.02717 (17)                  |
| S1B     | 0.65238 (10) | 0.82792 (4)   | 0.03927 (4)   | 0.02676 (17)                  |
| O3A     | 0.1372 (3)   | 0.30071 (15)  | 0.38661 (12)  | 0.0372 (5)                    |
| OIA     | 0.2473 (4)   | 0.06841 (14)  | 0.41219 (12)  | 0.0516 (7)                    |
| O2A     | 0.2282 (4)   | -0.01670 (15) | 0.51652 (12)  | 0.0491 (7)                    |
| H32A    | 0.239 (5)    | 0.030 (2)     | 0.539 (2)     | 0.059*                        |
| O4A     | 0.0562 (3)   | 0.38218 (13)  | 0.50796 (12)  | 0.0341 (5)                    |
| O1B     | 0.7411 (4)   | 0.48399 (15)  | -0.01167 (12) | 0.0470 (6)                    |
| H32B    | 0.771 (5)    | 0.531 (2)     | -0.034 (2)    | 0.056*                        |
| O2B     | 0.6658 (4)   | 0.57673 (14)  | 0.08828 (12)  | 0.0497 (7)                    |
| O3B     | 0.5500 (3)   | 0.80777 (14)  | 0.10945 (11)  | 0.0343 (5)                    |
| O4B     | 0.5605 (3)   | 0.88520 (13)  | -0.01368 (11) | 0.0333 (5)                    |
| N1A     | 0.8098 (4)   | 0.49438 (18)  | 0.38447 (16)  | 0.0352 (6)                    |
| H30B    | 0.906 (4)    | 0.462 (2)     | 0.394 (2)     | 0.042*                        |
| H30A    | 0.797 (5)    | 0.5518 (16)   | 0.3944 (19)   | 0.042*                        |
| N2A     | 0.2517 (3)   | 0.22429 (15)  | 0.49594 (13)  | 0.0275 (5)                    |
| H31A    | 0.250 (4)    | 0.1803 (18)   | 0.4685 (16)   | 0.033*                        |
| N3A     | 0.2743 (3)   | 0.12246 (15)  | 0.59373 (13)  | 0.0297 (5)                    |
| N4A     | 0.2987 (3)   | 0.27625 (15)  | 0.61232 (13)  | 0.0279 (5)                    |
| N1B     | 1.2206 (4)   | 0.99394 (19)  | 0.12028 (17)  | 0.0381 (6)                    |
| H30C    | 1.211 (5)    | 1.0500 (16)   | 0.110 (2)     | 0.046*                        |
| H30D    | 1.328 (3)    | 0.965 (2)     | 0.109 (2)     | 0.046*                        |
| N2B     | 0.7437 (3)   | 0.72754 (15)  | 0.00228 (13)  | 0.0280 (5)                    |
| H31B    | 0.712 (4)    | 0.6842 (18)   | 0.0281 (16)   | 0.034*                        |
| N3B     | 0.8479 (3)   | 0.62108 (15)  | -0.09130 (13) | 0.0276 (5)                    |
| N4B     | 0.8779 (3)   | 0.77538 (16)  | -0.11542 (13) | 0.0291 (5)                    |
| C1A     | 0.2310 (5)   | -0.0033 (2)   | 0.44372 (17)  | 0.0357 (7)                    |
| C2A     | 0.2128 (4)   | -0.08418 (19) | 0,40168 (17)  | 0.0324 (7)                    |
| C3A     | 0.2150 (6)   | -0.0787 (2)   | 0.32380 (19)  | 0.0463 (9)                    |
| H3A     | 0.2278       | -0.0236       | 0.2978        | 0.056*                        |
| C4A     | 0.1985 (6)   | -0.1532 (2)   | 0.2835 (2)    | 0.0504 (9)                    |
| H4A     | 0.1998       | -0.1496       | 0.2301        | 0.060*                        |
| C5A     | 0.1802 (5)   | -0.2326 (2)   | 0.3224 (2)    | 0.0405 (8)                    |
| C6A     | 0.1792 (5)   | -0.2400 (2)   | 0.39935 (19)  | 0.0390 (8)                    |
| H6A     | 0.1679       | -0.2956       | 0.4249        | 0.047*                        |
| C7A     | 0.1947 (4)   | -0.1651 (2)   | 0.43920 (18)  | 0.0359 (7)                    |
| H7A     | 0.1930       | -0.1691       | 0.4926        | 0.043*                        |
| C8A     | 0.3747 (4)   | 0.37143 (19)  | 0.43699 (15)  | 0.0268 (6)                    |
| C9A     | 0.5440 (4)   | 0.31850 (19)  | 0.42723 (16)  | 0.0289 (6)                    |
| H9A     | 0.5609       | 0.2542        | 0.4328        | 0.035*                        |
| C10A    | 0.6890 (4)   | 0.35901 (19)  | 0.40942 (16)  | 0.0302 (6)                    |
| H10A    | 0.8053       | 0.3224        | 0.4031        | 0.036*                        |
| C11A    | 0.6653 (4)   | 0.4537 (2)    | 0.40061 (15)  | 0.0284 (6)                    |

<u>Fractional atomic coordinates and isotropic or equivalent isotropic displacement</u> parameters  $(Å^2)$ 

| <b>01</b> | 0.40.5.5.4.5 | 0 00 00 00   | 0 100 11 17 5 |             |
|-----------|--------------|--------------|---------------|-------------|
| C12A      | 0.4925 (4)   | 0.5060 (2)   | 0.40841 (16)  | 0.0307 (7)  |
| H12A      | 0.4746       | 0.5701       | 0.4010        | 0.037*      |
| C13A      | 0.3483 (4)   | 0.46592 (19) | 0.42661 (16)  | 0.0290 (6)  |
| H13A      | 0.2316       | 0.5021       | 0.4321        | 0.035*      |
| C14A      | 0.2755 (4)   | 0.20853 (18) | 0.57101 (15)  | 0.0255 (6)  |
| C15A      | 0.2944 (5)   | 0.1028 (2)   | 0.66646 (17)  | 0.0354 (7)  |
| C16A      | 0.3160 (5)   | 0.1688 (2)   | 0.71377 (17)  | 0.0390 (8)  |
| H16A      | 0.3285       | 0.1552       | 0.7653        | 0.047*      |
| C17A      | 0.3193 (4)   | 0.2552 (2)   | 0.68502 (16)  | 0.0323 (7)  |
| C18A      | 0.2917 (6)   | 0.0065 (2)   | 0.6918 (2)    | 0.0550 (11) |
| H18A      | 0.1844       | -0.0105      | 0.6799        | 0.083*      |
| H18B      | 0.2923       | 0.0019       | 0.7468        | 0.083*      |
| H18C      | 0.3965       | -0.0347      | 0.6653        | 0.083*      |
| C19A      | 0.3486 (5)   | 0.3287 (2)   | 0.73377 (18)  | 0.0409 (8)  |
| H19A      | 0.4662       | 0.3418       | 0.7164        | 0.061*      |
| H19B      | 0.3408       | 0.3082       | 0.7868        | 0.061*      |
| H19C      | 0.2578       | 0.3839       | 0.7300        | 0.061*      |
| C1B       | 0.6793 (4)   | 0.5021 (2)   | 0.05951 (17)  | 0.0335 (7)  |
| C2B       | 0.6247 (4)   | 0.42437 (19) | 0.10438 (16)  | 0.0316 (7)  |
| C3B       | 0.6451 (4)   | 0.3394 (2)   | 0.07049 (18)  | 0.0358 (7)  |
| H3B       | 0.6930       | 0.3310       | 0.0181        | 0.043*      |
| C4B       | 0.5957 (5)   | 0.2674 (2)   | 0.11304 (19)  | 0.0388 (8)  |
| H4B       | 0.6095       | 0.2094       | 0.0903        | 0.047*      |
| C5B       | 0.5262 (4)   | 0.2812 (2)   | 0.18876 (19)  | 0.0359 (7)  |
| C6B       | 0.5025 (5)   | 0.3656 (2)   | 0.22332 (18)  | 0.0404 (8)  |
| H6B       | 0.4522       | 0.3742       | 0.2754        | 0.048*      |
| C7B       | 0.5535 (5)   | 0.4363 (2)   | 0.18055 (17)  | 0.0383 (7)  |
| H7B       | 0.5397       | 0.4941       | 0.2036        | 0.046*      |
| C8B       | 0.8265 (4)   | 0.87524 (19) | 0.05939 (15)  | 0.0274 (6)  |
| C9B       | 0.9882 (4)   | 0.82114 (19) | 0.06875 (16)  | 0.0303 (7)  |
| H9B       | 1.0089       | 0.7570       | 0.0619        | 0.036*      |
| C10B      | 1.1193 (4)   | 0.8609 (2)   | 0.08808 (17)  | 0.0322 (7)  |
| H10B      | 1.2313       | 0.8239       | 0.0935        | 0.039*      |
| C11B      | 1.0898 (4)   | 0.9551 (2)   | 0.09985 (15)  | 0.0299 (7)  |
| C12B      | 0.9235 (4)   | 1.0081 (2)   | 0.09215 (16)  | 0.0314 (7)  |
| H12B      | 0.9004       | 1.0718       | 0.1015        | 0.038*      |
| C13B      | 0.7927 (4)   | 0.96966 (19) | 0.07129 (16)  | 0.0293 (6)  |
| H13B      | 0.6812       | 1.0066       | 0.0650        | 0.035*      |
| C14B      | 0.8270 (4)   | 0.70886 (18) | -0.07178 (15) | 0.0255 (6)  |
| C15B      | 0.9550 (4)   | 0.75129 (19) | -0.18683 (16) | 0.0300 (6)  |
| C16B      | 0.9824 (4)   | 0.6619 (2)   | -0.21207 (16) | 0.0329 (7)  |
| H16B      | 1.0385       | 0.6457       | -0.2625       | 0.040*      |
| C17B      | 0.9272 (4)   | 0.59761 (19) | -0.16296 (16) | 0.0297 (6)  |
| C18B      | 0.9490(5)    | 0.4998 (2)   | -0.18439(18)  | 0.0422 (8)  |
| H18D      | 1 0336       | 0.4616       | -0.1555       | 0.063*      |
| H18F      | 0 9934       | 0 4921       | -0.2389       | 0.063*      |
| HISE      | 0.8343       | 0.4815       | -0 1728       | 0.063*      |
| CIOP      | 1 0107 (5)   | 0 8237 (2)   | -0.23913(18)  | 0 0420 (8)  |
|           | 0.05/1       | 0.8237 (2)   | -0.2175       | 0.063*      |
| 1117D     | 0.7541       | 0.0057       | 0.21/5        | 0.005       |

•

| H19E | 0.9748 | 0.8180 | -0.2887 | 0.063* |
|------|--------|--------|---------|--------|
| H19F | 1.1398 | 0.8166 | -0.2454 | 0.063* |

# Atomic displacement parameters (Å<sup>2</sup>)

•

|        | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|--------|-------------|-------------|-------------|--------------|--------------|--------------|
| Cl1A · | 0.0633 (6)  | 0.0438 (5)  | 0.0821 (7)  | -0.0141 (4)  | -0.0158 (5)  | -0.0292 (4)  |
| Cl1B   | 0.0550 (6)  | 0.0395 (4)  | 0.0683 (6)  | -0.0132 (4)  | -0.0148 (5)  | 0.0238 (4)   |
| S1A    | 0.0272 (4)  | 0.0256 (3)  | 0.0302 (3)  | -0.0067 (3)  | -0.0082 (3)  | 0.0050 (3)   |
| S1B    | 0.0281 (4)  | 0.0239 (3)  | 0.0285 (3)  | -0.0047 (3)  | -0.0050 (3)  | -0.0050 (3)  |
| O3A    | 0.0377 (13) | 0.0444 (12) | 0.0350 (11) | -0.0146 (10) | -0.0156 (10) | 0.0080 (9)   |
| OlA    | 0.095 (2)   | 0.0290 (11) | 0.0357 (12) | -0.0241 (13) | -0.0104 (13) | 0.0001 (9)   |
| O2A    | 0.088 (2)   | 0.0320 (12) | 0.0338 (12) | -0.0217 (13) | -0.0149 (13) | -0.0009 (9)  |
| O4A    | 0.0282 (12) | 0.0275 (10) | 0.0455 (12) | -0.0066 (9)  | -0.0021 (9)  | 0.0028 (9)   |
| O1B    | 0.0741 (19) | 0.0321 (12) | 0.0349 (12) | -0.0216 (12) | 0.0056 (12)  | -0.0033 (9)  |
| O2B    | 0.086 (2)   | 0.0308 (12) | 0.0347 (12) | -0.0228 (13) | -0.0021 (12) | -0.0035 (9)  |
| O3B    | 0.0335 (12) | 0.0370 (11) | 0.0327 (11) | -0.0092 (10) | -0.0016 (9)  | -0.0082 (9)  |
| O4B    | 0.0350 (12) | 0.0278 (10) | 0.0392 (11) | -0.0052 (9)  | -0.0128 (10) | -0.0029 (8)  |
| N1A    | 0.0308 (15) | 0.0323 (14) | 0.0446 (15) | -0.0104 (12) | -0.0076 (12) | 0.0026 (12)  |
| N2A    | 0.0364 (15) | 0.0214 (11) | 0.0266 (12) | -0.0075 (11) | -0.0083 (11) | -0.0009 (9)  |
| N3A    | 0.0356 (15) | 0.0220 (11) | 0.0307 (12) | -0.0042 (10) | -0.0057 (11) | 0.0025 (9)   |
| N4A    | 0.0306 (14) | 0.0243 (11) | 0.0287 (12) | -0.0038 (10) | -0.0065 (10) | -0.0023 (9)  |
| N1B    | 0.0348 (16) | 0.0368 (15) | 0.0459 (16) | -0.0114 (13) | -0.0095 (13) | -0.0059 (12) |
| N2B    | 0.0363 (15) | 0.0210 (11) | 0.0273 (12) | 0.0091 (11)  | -0.0027 (11) | -0.0014 (9)  |
| N3B    | 0.0295 (14) | 0.0230 (11) | 0.0302 (12) | -0.0048 (10) | -0.0048 (10) | -0.0033 (9)  |
| N4B    | 0.0310 (14) | 0.0275 (12) | 0.0296 (12) | -0.0077 (11) | -0.0048 (11) | -0.0026 (9)  |
| C1A    | 0.045 (2)   | 0.0274 (15) | 0.0353 (16) | -0.0081 (14) | -0.0079 (15) | -0.0011 (12) |
| C2A    | 0.0348 (18) | 0.0256 (14) | 0.0372 (16) | -0.0062 (13) | -0.0065 (14) | -0.0029 (12) |
| C3A    | 0.073 (3)   | 0.0314 (17) | 0.0380 (17) | -0.0135 (17) | -0.0166 (18) | 0.0027 (13)  |
| C4A    | 0.074 (3)   | 0.0421 (19) | 0.0392 (18) | -0.0132 (18) | -0.0180 (18) | -0.0051 (15) |
| C5A    | 0.0359 (19) | 0.0303 (16) | 0.057 (2)   | -0.0055 (14) | -0.0103 (16) | -0.0149 (14) |
| C6A    | 0.0388 (19) | 0.0262 (15) | 0.0514 (19) | -0.0105 (14) | 0.0000 (15)  | -0.0035 (13) |
| C7A    | 0.0410 (19) | 0.0303 (15) | 0.0366 (16) | -0.0096 (14) | -0.0041 (14) | 0.0004 (12)  |
| C8A    | 0.0289 (16) | 0.0266 (14) | 0.0259 (14) | -0.0063 (12) | -0.0068 (12) | 0.0032 (11)  |
| C9A    | 0.0296 (17) | 0.0236 (14) | 0.0332 (15) | -0.0033 (12) | -0.0076 (13) | 0.0035 (11)  |
| C10A   | 0.0263 (16) | 0.0292 (15) | 0.0335 (15) | -0.0025 (12) | -0.0049 (13) | 0.0014 (12)  |
| C11A   | 0.0318 (17) | 0.0311 (15) | 0.0239 (13) | -0.0099 (13) | -0.0046 (12) | 0.0013 (11)  |
| C12A   | 0.0357 (18) | 0.0246 (14) | 0.0314 (15) | -0.0061 (13) | -0.0045 (13) | 0.0013 (11)  |
| C13A   | 0.0272 (16) | 0.0266 (14) | 0.0317 (15) | -0.0027 (12) | -0.0043 (12) | 0.0021 (11)  |
| C14A   | 0.0245 (15) | 0.0240 (13) | 0.0276 (13) | -0.0033 (12) | -0.0053 (12) | -0.0003 (11) |
| C15A   | 0.043 (2)   | 0.0297 (15) | 0.0311 (15) | -0.0021 (14) | -0.0073 (14) | 0.0027 (12)  |
| C16A   | 0.054 (2)   | 0.0339 (16) | 0.0274 (15) | -0.0004 (15) | -0.0117 (15) | -0.0007 (12) |
| C17A   | 0.0319 (17) | 0.0313 (15) | 0.0313 (15) | 0.0009 (13)  | -0.0065 (13) | -0.0044 (12) |
| C18A   | 0.094 (3)   | 0.0313 (17) | 0.0393 (18) | -0.0088 (19) | -0.016 (2)   | 0.0092 (14)  |

| C19A   | 0.048 (2)    | 0.0372   | (17)     | 0.0377 (17) | 0.0034  | (15)   | -0.0141 (15) | -0.0063 (13) |
|--------|--------------|----------|----------|-------------|---------|--------|--------------|--------------|
| C1B    | 0.0391 (19)  | 0.0312   | (15)     | 0.0320 (15) | -0.0099 | ) (14) | -0.0070 (14) | -0.0014 (12) |
| C2B    | 0.0351 (18)  | 0.0273   | (14)     | 0.0334 (15) | -0.0064 | (13)   | -0.0090 (13) | -0.0001 (12) |
| C3B    | 0.0413 (19)  | 0.0287   | (15)     | 0.0379 (16) | -0.0070 | )(14)  | -0.0073 (15) | -0.0032 (12) |
| C4B    | 0.041 (2)    | 0.0243   | (15)     | 0.0531 (19) | -0.0063 | 6 (14) | -0.0140 (16) | 0.0011 (13)  |
| C5B    | 0.0307 (18)  | 0.0313   | (16)     | 0.0482 (18) | -0.0080 | )(13)  | -0.0143 (14) | 0.0125 (13)  |
| C6B    | 0.049 (2)    | 0.0401   | (17)     | 0.0323 (16) | -0.0106 | 5 (16) | -0.0073 (15) | 0.0049 (13)  |
| C7B    | 0.052 (2)    | 0.0307   | (16)     | 0.0341 (16) | -0.0108 | 3 (15) | -0.0092 (15) | -0.0009 (12) |
| C8B    | 0.0314 (17)  | 0.0280   | (14)     | 0.0239 (13) | -0.0080 | (12)   | -0.0041 (12) | -0.0034 (11) |
| C9B    | 0.0316 (17)  | 0.0245   | (14)     | 0.0342 (15) | -0.0035 | 5 (12) | -0.0054 (13) | -0.0054 (11) |
| C10B   | 0.0277 (17)  | 0.0327   | (16)     | 0.0351 (16) | 0.0018  | 3 (13) | -0.0069 (13) | -0.0048 (12) |
| C11B   | 0.0342 (18)  | 0.0343   | (15)     | 0.0229 (14) | 0.0122  | 2 (14) | -0.0021 (12) | -0.0029 (11) |
| C12B   | 0.0427 (19)  | 0.0252   | (14)     | 0.0279 (15) | -0.0098 | 3 (13) | -0.0061 (13) | -0.0029 (11) |
| C13B   | 0.0323 (17)  | 0.0257   | (14)     | 0.0294 (14) | -0.0021 | (12)   | -0.0083 (13) | -0.0017 (11) |
| C14B   | 0.0255 (16)  | 0.0248   | (13)     | 0.0274 (14) | -0.0051 | (12)   | -0.0076 (12) | -0.0031 (11) |
| C15B   | 0.0306 (17)  | 0.0334   | (15)     | 0.0280 (14) | -0.0096 | 6 (13) | -0.0067 (12) | -0.0002 (12) |
| C16B   | 0.0349 (18)  | 0.0338   | (16)     | 0.0286 (14) | -0.0046 | 6 (13) | -0.0023 (13) | -0.0057 (12) |
| C17B   | 0.0290 (16)  | 0.0292   | (15)     | 0.0305 (15) | -0.0034 | (12)   | -0.0052 (12) | -0.0068 (11) |
| C18B   | 0.054 (2)    | 0.0302   | (16)     | 0.0394 (17) | -0.0068 | (15)   | 0.0010 (16)  | -0.0101 (13) |
| C19B   | 0.054 (2)    | 0.0385   | (17)     | 0.0342 (16) | -0.0162 | (16)   | 0.0000 (16)  | 0.0004 (13)  |
| Geome  | etric parame | ters (Å, | °)       |             |         |        |              |              |
| Cl1A—  | C5A          |          | 1.743 (3 | 5)          | C10A—C  | 11A    | 1            | .401 (4)     |
| Cl1B   | C5B          |          | 1.735 (3 | 5)          | С10А-Н  | 10A    | 0            | .9500        |
| \$1A—0 | 04A          |          | 1.431 (2 | 2)          | C11A—C  | 12A    | 1            | .401 (4)     |
| S1A0   | 03A          |          | 1.433 (2 | 2)          | C12A—C  | 13A    | 1            | .374 (4)     |
| S1A-N  | N2A          | •        | 1.639 (2 | 2)          | С12А—Н  | 12A    | 0            | .9500        |
| \$1A—C | C8A          |          | 1.744 (3 | 5)          | С13А—Н  | 13A    | 0            | .9500        |
| S1B-C  | )4B          |          | 1.431 (2 | 2)          | C15A—C  | 16A    | . 1          | .374 (4)     |
| S1BC   | 03B          |          | 1.433 (2 | 2)          | C15AC   | 18A    | 1            | .502 (4)     |
| S1BN   | N2B          |          | 1.636 (2 | 2)          | C16A—C  | 17A    | 1            | .383 (4)     |
| S1BC   | C8B          |          | 1.748 (3 | 5)          | С16А—Н  | 16A    | 0            | .9500        |
| 01A—0  | C1A .        |          | 1.218 (4 | -)          | C17A—C  | 19A    | 1            | .500 (4)     |
| 02A0   | C1A          |          | 1.303 (4 | -)          | С18А-Н  | 18A    | 0            | .9800        |
| 02AH   | H32A         |          | 0.85 (2) |             | С18А-—Н | 18B    | 0            | .9800        |
| 01BC   | C1B          |          | 1.299 (4 | .)          | С18А—Н  | 18C    | 0            | .9800        |
| 01B—F  | 132B         | 1        | 0.86 (2) |             | С19А—Н  | 19A    | 0            | .9800        |
| 02B—0  | C1B          |          | 1.223 (3 | )           | С19А—Н  | 19B    | 0            | .9800        |
| N1A-C  | C11A         |          | 1.379 (4 | .)          | С19АН   | 19C    | 0            | .9800        |
| N1AH   | H30B         | (        | 0.85 (2) |             | C1B-C2I | B      | 1            | .490 (4)     |
| NIA—H  | H30A         | (        | ).87 (2) |             | C2BC7I  | B      | 1            | .385 (4)     |
| N2A—C  | C14A         |          | 1.385 (3 | )           | C2BC3I  | В      | 1            | .395 (4)     |
| N2A—I  | H31A         | (        | ).84 (2) |             | C3B—C4I | B      | 1            | .385 (4)     |
| N3A0   | C14A         | · /      | 1.342 (3 | )           | C3BH31  | В      | 0            | .9500        |
| N3A—C  | C15A         |          | 1.346 (4 | •)          | C4BC5I  | B      | 1            | .377 (5)     |
| N4AC   | C14A         |          | 1.332 (3 | )           | C4B—H4I | В      | 0            | .9500        |
| N4A(   | C17A         |          | 1.349 (4 | •)          | C5BC6I  | В      | 1            | .390 (4)     |
| N1B—C  | C11B         |          | 1.377 (4 | .)          | C6B-C7I | В      | 1            | .375 (4)     |
| N1B—F  | 130C         | .: (     | 0.84(2)  |             | C6B-H6  | В      | · 0          | .9500        |

,

.

.

.

-

.

### 166

| N1B—H30D      | 0.85 (2)    | C7B—H7B        | 0.9500    |
|---------------|-------------|----------------|-----------|
| N2B—C14B      | 1.385 (3)   | C8B—C9B        | 1.382 (4) |
| N2B—H31B      | 0.84 (2)    | C8B—C13B       | 1.402 (4) |
| N3B—C14B      | 1.343 (3)   | C9B—C10B       | 1.380 (4) |
| N3B—C17B      | 1.351 (4)   | C9B—H9B        | 0.9500.   |
| N4B—C14B      | 1.332 (4)   | C10B—C11B      | 1.399 (4) |
| N4B—C15B      | 1.344 (4)   | C10B—H10B      | 0.9500    |
| C1A—C2A       | 1.489 (4)   | C11B—C12B      | 1.398 (4) |
| C2A—C3A       | 1.385 (4)   | C12B—C13B      | 1.376 (4) |
| C2A—C7A       | 1.389 (4)   | C12B—H12B      | 0.9500    |
| C3A—C4A       | 1.386 (5)   | C13B—H13B      | 0.9500    |
| СЗА—НЗА       | 0.9500      | C15B—C16B      | 1.390 (4) |
| C4A—C5A       | 1.381 (5)   | C15B—C19B      | 1.496 (4) |
| C4A—H4A       | 0.9500      | C16B—C17B      | 1.372 (4) |
| C5AC6A        | 1.371 (5)   | C16B—H16B      | 0.9500    |
| C6A—C7A       | 1.384 (4)   | C17B—C18B      | 1.496 (4) |
| С6А—Н6А       | 0.9500      | C18B—H18D      | 0.9800    |
| C7A—H7A       | 0.9500      | C18B—H18E      | 0.9800    |
| C8A—C9A       | 1.381 (4)   | C18B—H18F      | 0.9800    |
| C8A-C13A      | 1.399 (4)   | C19B—H19D      | 0.9800    |
| C9A—C10A      | 1.383 (4)   | C19B—H19E      | 0.9800    |
| С9А—Н9А       | 0.9500      | C19B—H19F      | 0.9800    |
| O4A—S1A—O3A   | 117.27 (13) | N4A—C17A—C16A  | 121.5 (3) |
| O4A—S1A—N2A   | 110.83 (12) | N4A—C17A—C19A  | 117.8 (3) |
| O3A—S1A—N2A   | 104.14 (12) | C16A—C17A—C19A | 120.8 (3) |
| O4A—S1A—C8A   | 108.26 (13) | C15A—C18A—H18A | 109.5     |
| O3A-S1A-C8A   | 109.69 (13) | C15A—C18A—H18B | 109.5     |
| N2A—S1AC8A    | 106.08 (13) | H18A—C18A—H18B | 109.5     |
| O4B—S1B—O3B   | 117.36 (13) | C15A—C18A—H18C | 109.5     |
| O4B—S1B—N2B   | 110.87 (12) | H18AC18A-H18C  | 109.5     |
| O3BS1B-N2B    | 103.88 (12) | H18B—C18A—H18C | 109.5     |
| O4B—S1B—C8B   | 109.19 (13) | C17A—C19A—H19A | 109.5     |
| O3B—S1B—C8B   | 108.84 (13) | C17A—C19A—H19B | 109.5     |
| N2B—S1B—C8B   | 106.06 (14) | H19A—C19A—H19B | 109.5     |
| C1A—O2A—H32A  | 112 (3)     | C17A—C19A—H19C | 109.5     |
| C1BH32B       | 110 (3)     | H19A—C19A—H19C | 109.5     |
| C11AN1AH30B   | 115 (3)     | H19B—C19A—H19C | 109.5     |
| C11A—N1A—H30A | 119 (2)     | O2B—C1B—O1B    | 123.5 (3) |
| H30B—N1A—H30A | 115 (3)     | O2B—C1B—C2B    | 121.9 (3) |
| C14A—N2A—S1A  | 126.82 (19) | O1B—C1B—C2B    | 114.7 (3) |
| C14A—N2A—H31A | 119 (2)     | C7B—C2B—C3B    | 119.6 (3) |
| S1A-N2A-H31A  | 113 (2)     | C7B—C2B—C1B    | 119.8 (3) |
| C14A—N3A—C15A | 116.8 (2)   | C3B—C2B—C1B    | 120.7 (3) |
| C14A—N4A—C17A | 115.6 (2)   | C4B—C3B—C2B    | 120.1 (3) |
| C11B—N1B—H30C | 115 (3)     | C4B—C3B—H3B    | 120.0     |
| C11B—N1B—H30D | 118 (3)     | C2B—C3B—H3B    | 120.0     |
| H30C—N1B—H30D | 111 (4)     | C5B—C4B—C3B    | 119.0 (3) |
| C14B—N2B—S1B  | 126.95 (19) | C5B—C4B—H4B    | 120.5     |
| C14B—N2B—H31B | 117 (2)     | C3B—C4B—H4B    | 120.5     |

| S1B—N2B—H31B   | 114 (2)   | C4B—C5B—C6B    | 121.8 (3) |
|----------------|-----------|----------------|-----------|
| C14B—N3B—C17B  | 116.8 (2) | C4B—C5B—C11B   | 119.4 (2) |
| C14B—N4B—C15B  | 115.7 (2) | C6B—C5B—C11B   | 118.9 (3) |
| O1A—C1A—O2A    | 123.7 (3) | C7BC6BC5B      | 118.6 (3) |
| O1A—C1A—C2A    | 122.4 (3) | C7B—C6B—H6B    | 120.7     |
| O2A—C1A—C2A    | 113.9 (3) | C5B—C6B—H6B    | 120.7     |
| C3AC2AC7A      | 119.5 (3) | C6B—C7B—C2B    | 120.9 (3) |
| C3A—C2A—C1A    | 119.4 (3) | C6B—C7B—H7B    | 119.5     |
| C7A—C2A—C1A    | 121.1 (3) | C2B—C7B—H7B    | 119.5     |
| C2A—C3A—C4A    | 120.4 (3) | C9B—C8B—C13B   | 120.8 (3) |
| С2А—С3А—Н3А    | 119.8     | C9B—C8B—S1B    | 121.4 (2) |
| С4А—С3А—Н3А    | 119.8     | C13B—C8B—S1B   | 117.7 (2) |
| C5A—C4A—C3A    | 118.8 (3) | C10B—C9B—C8B   | 119.5 (3) |
| C5A—C4A—H4A    | 120.6     | C10B—C9B—H9B   | 120.2     |
| C3A—C4A—H4A    | 120.6     | C8B—C9B—H9B    | 120.2     |
| C6A—C5A—C4A    | 122.0 (3) | C9B-C10B-C11B  | 121.0 (3) |
| C6A—C5A—C11A   | 119.1 (3) | C9B-C10B-H10B  | 119.5     |
| C4A—C5A—C11A   | 118.9 (3) | C11B—C10B—H10B | 119.5     |
| C5A—C6A—C7A    | 118.8 (3) | N1B-C11B-C12B  | 121.0 (3) |
| С5А—С6А—Н6А    | 120.6     | N1B-C11B-C10B  | 120.5 (3) |
| С7А—С6А—Н6А    | 120.6     | C12B—C11B—C10B | 118.5 (3) |
| C6A—C7A—C2A    | 120.5 (3) | C13B—C12B—C11B | 121.2 (3) |
| C6A—C7A—H7A    | 119.7     | C13B—C12B—H12B | 119.4     |
| C2A—C7A—H7A    | 119.7     | C11B—C12B—H12B | 119.4     |
| C9A—C8A—C13A   | 120.3 (3) | C12B—C13B—C8B  | 119.0 (3) |
| C9A—C8A—S1A    | 121.8 (2) | C12B—C13B—H13B | 120.5     |
| C13A—C8A—S1A   | 117.7 (2) | C8B-C13B-H13B  | 120.5     |
| C8A—C9A—C10A   | 120.1 (3) | N4B—C14B—N3B   | 126.9 (3) |
| С8А—С9А—Н9А    | 120.0     | N4B—C14B—N2B   | 119.8 (2) |
| С10А—С9А—Н9А   | 120.0     | N3B-C14B-N2B   | 113.3 (2) |
| C9A-C10A-C11A  | 120.4 (3) | N4B-C15B-C16B  | 121.4 (3) |
| C9A-C10A-H10A  | 119.8     | N4B-C15B-C19B  | 118.1 (3) |
| C11A—C10A—H10A | 119.8     | C16B—C15B—C19B | 120.4 (3) |
| N1A—C11A—C12A  | 120.8 (3) | C17B—C16B—C15B | 118.9 (3) |
| N1A—C11A—C10A  | 120.4 (3) | C17B—C16B—H16B | 120.6     |
| C12A—C11A—C10A | 118.7 (3) | C15B—C16B—H16B | 120.6     |
| C13A—C12A—C11A | 120.9 (3) | N3B-C17B-C16B  | 120.3 (3) |
| C13A—C12A—H12A | 119.5     | N3B-C17B-C18B  | 116.4 (3) |
| C11A—C12A—H12A | 119.5     | C16B—C17B—C18B | 123.3 (3) |
| C12A—C13A—C8A  | 119.5 (3) | C17B—C18B—H18D | 109.5     |
| C12A—C13A—H13A | 120.2     | C17B—C18B—H18E | 109.5     |
| C8A—C13A—H13A  | 120.2     | H18D-C18B-H18E | 109.5     |
| N4A—C14A—N3A   | 126.9 (2) | C17B—C18B—H18F | 109.5     |
| N4A—C14A—N2A   | 119.4 (2) | H18D—C18B—H18F | 109.5     |
| N3A—C14A—N2A   | 113.7 (2) | H18É—C18B—H18F | 109.5     |
| N3A—C15A—C16A  | 120.4 (3) | C15B—C19B—H19D | 109.5     |
| N3A—C15A—C18A  | 116.6 (3) | C15B—C19B—H19E | 109.5     |
| C16A—C15A—C18A | 123.0 (3) | H19D—C19B—H19E | 109.5     |
| C15A—C16A—C17A | 118.8 (3) | C15B—C19B—H19F | 109.5     |
|                | (-)       |                |           |

• .

| C15A—C16A—H16A                    | 120.6      | H19D—C19B—H19F                                        | 109.5               |
|-----------------------------------|------------|-------------------------------------------------------|---------------------|
| C17A—C16A—H16A                    | 120.6      | H19E—C19B—H19F                                        | 109.5               |
| O4A—S1A—N2A—C14A                  | -37.5 (3)  | C14A—N4A—C17A—<br>C19A                                | 179.2 (3)           |
| O3A—S1A—N2A—C14A                  | -164.4 (3) | C15A—C16A—C17A—<br>N4A                                | 1.2 (5)             |
| C8A—S1A—N2A—C14A                  | 79.8 (3)   | C15A—C16A—C17A—<br>C19A                               | -178.0 (3)          |
| O4B—S1B—N2B—C14B                  | 39.3 (3)   | O2B—C1B—C2B—C7B                                       | 1.1 (5)             |
| O3B—S1B—N2B—C14B                  | 166.2 (3)  | O1B—C1B—C2B—C7B                                       | -178.7 (3)          |
| C8B—S1B—N2B—C14B                  | -79.1 (3)  | O2B—C1B—C2B—C3B                                       | -178.6 (3)          |
| O1A—C1A—C2A—C3A                   | 0.3 (5)    | O1B—C1B—C2B—C3B                                       | 1.5 (5)             |
| O2A—C1A—C2A—C3A                   | -179.6 (3) | C7B—C2B—C3B—C4B                                       | -0.5 (5)            |
| O1A—C1A—C2A—C7A                   | 179.9 (3)  | C1B—C2B—C3B—C4B                                       | 179.3 (3)           |
| O2A—C1A—C2A—C7A                   | 0.0 (5)    | C2B—C3B—C4B—C5B                                       | 0.1 (5)             |
| C7A—C2A—C3A—C4A                   | 0.3 (6)    | C3B—C4B—C5B—C6B                                       | 0.7 (5)             |
| C1A—C2A—C3A—C4A                   | 179.9 (4)  | C3B—C4B—C5B—C11B                                      | -179.9 (3)          |
| C2A—C3A—C4A—C5A                   | -0.1 (6)   | C4B—C5B—C6B—C7B                                       | -1.3 (5)            |
| C3A—C4A—C5A—C6A                   | -0.5 (6)   | Cl1B—C5B—C6B—C7B                                      | 179.4 (3)           |
| C3A—C4A—C5A—Cl1A                  | 179.7 (3)  | C5B—C6B—C7B—C2B                                       | 0.9 (5)             |
| C4A—C5A—C6A—C7A                   | 0.8 (6)    | C3B—C2B—C7B—C6B                                       | 0.0 (5)             |
| Cl1A—C5A—C6A—C7A                  | -179.4 (3) | C1B—C2B—C7B—C6B                                       | -179.8(3)           |
| C5A—C6A—C7A—C2A                   | -0.6 (5)   | O4B—S1B—C8B—C9B                                       | -141.8(2)           |
| C3A—C2A—C7A—C6A                   | 0.1 (5)    | O3B—S1B—C8B—C9B                                       | 89.0 (3)            |
| C1A—C2A—C7A—C6A                   | -179.5 (3) | N2B—S1B—C8B—C9B                                       | -22.2(3)            |
| 04A—S1A—C8A—C9A                   | 143.6 (2)  | O4B— $S1B$ — $C8B$ — $C13B$                           | 42.8(3)             |
| O3A - S1A - C8A - C9A             | -874(3)    | O3B— $S1B$ — $C8B$ — $C13B$                           | -864(2)             |
| N2A— $S1A$ — $C8A$ — $C9A$        | 246(3)     | N2B— $S1B$ — $C8B$ — $C13B$                           | 1624(2)             |
| 04A— $S1A$ — $C8A$ — $C13A$       | -405(3)    | $C_{13B} = C_{8B} = C_{9B} = C_{10B}$                 | -1.7(4)             |
| O3A = S1A = C8A = C13A            | 88 6 (2)   | S1B - C8B - C9B - C10B                                | -1770(2)            |
| N2A $S1A$ $C8A$ $C13A$            | -1595(2)   | $C_{8B}^{0} = C_{9B}^{0} = C_{10B}^{0} = C_{10B}^{0}$ | 177.0(2)<br>13(4)   |
| $C_{13} = C_{8} = C_{9} = C_{10}$ | 20(4)      | $C_{0B} = C_{10B} = C_{11B} = C_{11B}$                | 1.3(+)<br>170 0 (3) |
| S1A - C8A - C9A - C10A            | 2.0(4)     | $C^{0}B$ $C^{1}0B$ $C^{1}1B$ $C^{1}2B$                | 175.0(5)            |
| C8A—C9A—C10A—C11A                 | -0.5 (4)   | NIB—C11B—C12B—<br>C13B                                | 179.6 (3)           |
| C9A—C10A—C11A—N1A                 | 178.6 (3)  | C10B—C11B—C12B—<br>C13B                               | -1.9 (4)            |
| C9A—C10A—C11A—<br>C12A            | -1.5 (4)   | C11B—C12B—C13B—C8B                                    | 1.5 (4)             |
| N1A—C11A—C12A—<br>C13A            | -178.2 (3) | C9B—C8B—C13B—C12B                                     | 0.3 (4)             |
| C10A—C11A—C12A—<br>C13A           | 1.9 (4)    | S1B-C8B-C13B-C12B                                     | 175.8 (2)           |
| C11A—C12A—C13A—<br>C8A            | -0.4 (4)   | C15B—N4B—C14B—N3B                                     | 1.4 (4)             |
| C9A—C8A—C13A—C12A                 | -1.6 (4)   | C15B—N4B—C14B—N2B                                     | -178.9 (3)          |
| S1A—C8A—C13A—C12A                 | 177.6 (2)  | C17B—N3B—C14B—N4B                                     | -0.7 (4)            |
| C17A—N4A—C14A—N3A                 | -1.5 (5)   | C17B—N3B—C14B—N2B                                     | 179.6 (2)           |
| C17A—N4A—C14A—N2A                 | 179.4 (3)  | S1B—N2B—C14B—N4B                                      | 16.7 (4)            |
| C15A—N3A—C14A—N4A                 | 1.8 (5)    | S1B—N2B—C14B—N3B                                      | -163.6 (2)          |
|                                   |            |                                                       |                     |

.

•

| C15A—N3A—C14AN2A                                         | -179.1 (3) | (                       | C14B—N4B—C<br>C16B | C15B—      | -1.4 (4)   |  |
|----------------------------------------------------------|------------|-------------------------|--------------------|------------|------------|--|
| S1A—N2A—C14A—N4A                                         | 20.5 (4)   | (                       | C14B—N4B—C<br>C19B | C15B—,     | 178.5 (3)  |  |
| S1A—N2A—C14A—N3A                                         | 160.4 (2)  | 1<br>(                  | N4B—C15B—C<br>C17B | C16B—      | 0.9 (5)    |  |
| C14A—N3A—C15A—<br>C16A                                   | -0.4 (5)   | (                       | C19B—C15B—<br>C17B | C16B—      | -179.0 (3) |  |
| C14A—N3A—C15A—<br>C18A                                   | 179.6 (3)  | (                       | C14B—N3B—C<br>C16B | C17B—      | 0.1 (4)    |  |
| N3A—C15A—C16A—<br>C17A                                   | -0.9 (5)   | (                       | C14B—N3B—C<br>C18B | C17B—      | -179.7 (3) |  |
| C18AC15AC16A<br>C17A                                     | 179.1 (3)  | C<br>N                  | C15B—C16B—<br>N3B  | C17B—      | -0.2 (5)   |  |
| C14AN4AC17A<br>C16A                                      | 0.0 (4)    | (                       | C15B—C16B<br>C18B  | C17B—      | 179.6 (3)  |  |
| Hydrogen-bond geometry (Å, °)                            |            |                         |                    |            |            |  |
| $D - H \cdots A$                                         | D—H        | $H \cdot \cdot \cdot A$ | $D \cdots A$       | D—H··· $A$ |            |  |
| N1A—H30A····O4A <sup>ii</sup>                            | 0.87 (2)   | 2.56 (3)                | 3.141 (3)          | 125 (3)    |            |  |
| N1A—H30B····O4 $A^{i}$                                   | 0.85 (2)   | 2.63 (3)                | 3.335 (3)          | 141 (3)    |            |  |
| N1 <i>B</i> —H30 <i>C</i> ····O4 <i>B</i> <sup>iii</sup> | 0.84 (2)   | 2.60 (3)                | 3.140 (4)          | 123 (3)    |            |  |
| N1 <i>B</i> —H30 <i>D</i> ····O3 <i>B</i> <sup>i</sup>   | 0.85 (2)   | 2.62 (3)                | 3.365 (4)          | 146 (3)    |            |  |
|                                                          |            |                         |                    |            |            |  |

| N1A—H30A····O4 $A^{ii}$                               | 0.87(2)  | 2.56(3)  | 3,141 (3) | 125 (3) |
|-------------------------------------------------------|----------|----------|-----------|---------|
| $N1A - H30B - O4A^{i}$                                | 0.85(2)  | 2.63 (3) | 3.335 (3) | 141 (3) |
| N1 <i>B</i> —H30 <i>C</i> ···O4 $B^{iii}$             | 0.84(2)  | 2.60 (3) | 3.140 (4) | 123 (3) |
| N1 <i>B</i> —H30 <i>D</i> ···O3 <i>B</i> <sup>i</sup> | 0.85 (2) | 2.62 (3) | 3.365 (4) | 146 (3) |
| N2A—H31A…O1A                                          | 0.84 (2) | 1.99 (2) | 2.823 (3) | 175 (3) |
| N2 <i>B</i> −−−H31 <i>B</i> ····O2 <i>B</i>           | 0.84 (2) | 1.97 (2) | 2.809 (3) | 174 (3) |
| O1 <i>B</i> —−H32 <i>B</i> ····N3 <i>B</i>            | 0.86 (2) | 1.81 (2) | 2.662 (3) | 173 (4) |
| O2 <i>A</i> —H32 <i>A</i> ⋯N3 <i>A</i>                | 0.85 (2) | 1.80 (2) | 2.652 (3) | 175 (4) |
|                                                       |          |          |           |         |

Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y+2, -z.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.



Figure S.13: Crystal Structure of the Cocrystal of Sulfamethazine and m-Methoxybenzoic Acid Showing Thermal Parameters (50% Thermal Ellipsoids) and Hydrogen Bonding.

#### Crystal data

 $C_{12}H_{14}N_4O_2S \cdot C_8H_8O_3$   $M_r = 430.47$ Monoclinic,  $P_{21}/n$  a = 7.9803 (2) Å b = 24.0097 (6) Å c = 21.7459 (5) Å  $\beta = 92.269$  (1)° V = 4163.35 (18) Å<sup>3</sup> Z = 8F(000) = 1808

Data collection Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Detector resolution: 8.33 pixels mm<sup>-1</sup> phi and  $\omega$  scans Absorption correction: multi-scan SADABS2014/7, Bruker AXS  $D_x = 1.374 \text{ Mg m}^{-3}$ Melting point: 466-469 K Cu K\alpha radiation,  $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9881 reflections  $\theta = 4.1-68.3^{\circ}$   $\mu = 1.73 \text{ mm}^{-1}$  T = 100 KPlates, colourless  $0.38 \times 0.27 \times 0.24 \text{ mm}$ 

7594 independent reflections

7113 reflections with  $I > 2\sigma(I)$   $R_{int} = 0.031$   $\theta_{max} = 68.2^{\circ}, \ \theta_{min} = 2.7^{\circ}$ h = -9 9

| $T_{\min} = 0.693, \ T_{\max} = 0.753$ | k = -28 | 28 |
|----------------------------------------|---------|----|
| 62640 measured reflections             | l = -26 | 26 |

Refinement

Refinement on  $F^2$ Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.032$ 

 $wR(F^2) = 0.084$ 

S = 1.037594 reflections 579 parameters 8 restraints 0 constraints Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.0461P)^2 + 1.9388P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.001$  $\Delta\rho_{max} = 0.37 \text{ e } \text{Å}^{-3}$  $\Delta\rho_{min} = -0.43 \text{ e } \text{Å}^{-3}$ Extinction correction: none

### <u>Fractional atomic coordinates and isotropic or equivalent isotropic displacement</u> parameters $(Å^2)$

|      | x             | у            | Ζ            | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|------|---------------|--------------|--------------|-------------------------------|
| S1   | 0.23997 (4)   | 0.13432 (2)  | 0.13533 (2)  | 0.01622 (8)                   |
| S2   | 0.25392 (4)   | 0.15845 (2)  | 0.40901 (2)  | 0.01810 (9)                   |
| O1A  | 0.32833 (17)  | -0.01429 (5) | 0.11601 (5)  | 0.0366 (3)                    |
| O2A  | 0.31480 (15)  | -0.05108 (4) | 0.02184 (5)  | 0.0313 (3)                    |
| H32A | 0.276 (3)     | -0.0177 (7)  | 0.0136 (10)  | 0.061 (7)*                    |
| O3A  | 0.28144 (12)  | 0.10178 (4)  | 0.18922 (4)  | 0.0210 (2)                    |
| O4A  | 0.11097 (12)  | 0.17557 (4)  | 0.13807 (4)  | 0.0203 (2)                    |
| O5A  | 0.54999 (17)  | -0.16037 (4) | 0.25428 (5)  | 0.0349 (3)                    |
| O1B  | 0.14120 (16)  | 0.09321 (5)  | 0.55306 (5)  | 0.0370 (3)                    |
| O2B  | 0.16208 (14)  | 0.00046 (4)  | 0.55851 (5)  | 0.0298 (2)                    |
| H32B | 0.206 (3)     | 0.0048 (11)  | 0.5230 (9)   | 0.072 (8)*                    |
| O3B  | 0.22341 (12)  | 0.19296 (4)  | 0.46139 (5)  | 0.0237 (2)                    |
| O4B  | 0.38179 (12)  | 0.17417 (4)  | 0.36829 (5)  | 0.0237 (2)                    |
| O5B  | -0.10284 (16) | 0.14446 (4)  | 0.76031 (5)  | 0.0329 (3)                    |
| N1A  | 0.86671 (15)  | 0.24095 (5)  | 0.06146(6)   | 0.0228 (3)                    |
| H30A | 0.955 (2)     | 0.2197 (8)   | 0.0569 (9)   | 0.047 (6)*                    |
| H30B | 0.861 (2)     | 0.2683 (7)   | 0.0363 (8)   | 0.031 (5)*                    |
| N2A  | 0.18555 (15)  | 0.08633 (5)  | 0.08389 (5)  | 0.0187 (2)                    |
| H31A | 0.2282 (19)   | 0.0556 (6)   | 0.0931 (7)   | 0.018 (4)*                    |
| N3A  | 0.18752 (14)  | 0.05017 (5)  | -0.01384 (5) | 0.0190 (2)                    |
| N4A  | 0.11142 (14)  | 0.14556 (5)  | 0.00165 (5)  | 0.0194 (2)                    |
| N1B  | -0.39092 (17) | 0.14947 (6)  | 0.26960 (6)  | 0.0288 (3)                    |
| H30D | -0.395 (2)    | 0.1460 (7)   | 0.2313 (7)   | 0.029 (5)*                    |
| H30C | -0.478 (2)    | 0.1424 (8)   | 0.2893 (9)   | 0.041 (5)*                    |
| N2B  | 0.30035 (15)  | 0.09830 (5)  | 0.44192 (6)  | 0.0218 (3)                    |
| H31B | 0.252 (2)     | 0.0957 (8)   | 0.4760 (8)   | 0.039 (5)*                    |
| N3B  | 0.31766 (15)  | 0.00308 (5)  | 0.44737 (5)  | 0.0225 (3)                    |
| N4B  | 0.41705 (14)  | 0.05161 (5)  | 0.35962 (5)  | 0.0212 (2)                    |
| C1A  | 0.35116 (18)  | -0.05337 (6) | 0.08139 (6)  | 0.0229 (3)                    |
| C2A  | 0.42278 (18)  | -0.10707 (6) | 0.10409 (6)  | 0.0210 (3)                    |
| C3A  | 0.45353 (19)  | -0.15163 (6) | 0.06505 (7)  | 0.0226 (3)                    |
| H3A  | 0.4311        | -0.1485      | 0.0220       | 0.027*                        |

| C4A  | 0.51737 (19)  | -0.20053 (6) | 0.09029 (7)  | 0.0249 (3)             |
|------|---------------|--------------|--------------|------------------------|
| H4A  | 0.5383        | -0.2312      | 0.0640       | 0.030*                 |
| C5A  | 0.55162 (19)  | -0.20580 (6) | 0.15333 (7)  | 0.0245 (3)             |
| H5A  | 0.5952        | -0.2397      | 0.1699       | 0.029*                 |
| C6A  | 0.52128 (19)  | -0.16091 (6) | 0.19179 (7)  | 0.0240 (3)             |
| C7A  | 0.45675 (19)  | -0.11159(6)  | 0.16681 (7)  | 0.0244 (3)             |
| H7A  | 0.4359        | -0.0809      | 0.1930       | 0.029*                 |
| C8A  | 0.72018 (17)  | 0.21607 (6)  | 0.07690 (6)  | 0.0181 (3)             |
| C9A  | 0.71868 (17)  | 0.16015 (6)  | 0.09701 (6)  | 0.0192 (3)             |
| H9A  | 0.8202        | 0.1395       | 0.0993       | 0.023*                 |
| C10A | 0.57155 (17)  | 0.13540 (6)  | 0.11333 (6)  | 0.0183 (3)             |
| H10A | 0.5714        | 0.0977       | 0.1265       | 0.022*                 |
| C11A | 0.42181 (16)  | 0.16599 (6)  | 0.11042 (6)  | 0.0167 (3)             |
| C12A | 0.42027 (17)  | 0.22098 (6)  | 0.09020 (6)  | 0.0189 (3)             |
| H12A | 0.3180        | 0.2413       | 0.0876       | 0.023*                 |
| C13A | 0.56810 (17)  | 0.24595 (6)  | 0.07387 (6)  | 0.0195 (3)             |
| H13A | 0.5672        | 0.2836       | 0.0605       | 0.023*                 |
| C14A | 0.16033 (16)  | 0.09535 (6)  | 0.02077 (6)  | 0.0175 (3)             |
| C15A | 0.1931 (2)    | 0.00650 (6)  | -0.11444 (7) | 0.0272 (3)             |
| H15A | 0.3118        | -0.0037      | -0.1098      | 0.041*                 |
| H15B | 0.1656        | 0.0154       | -0.1576      | 0.041*                 |
| H15C | 0 1238        | -0.0248      | -0.1016      | 0.041*                 |
| C16A | 0.15972 (17)  | 0.05639 (6)  | -0.07514(6)  | 0.0205(3)              |
| C17A | 0.10608(18)   | 0.10677 (6)  | -0.09947(6)  | 0.0226 (3)             |
| H17A | 0.0847        | 0.1110       | -0.1425      | 0.027*                 |
| C18A | 0.08404 (18)  | 0.15111 (6)  | -0.05966(6)  | 0.0212(3)              |
| C19A | 0.0261(2)     | 0 20705 (6)  | -0.08257(7)  | 0.0212(3)<br>0.0289(3) |
| H19A | -0.0918       | 0.2124       | -0.0730      | 0.043*                 |
| H19B | 0.0378        | 0 2091       | -0.1272      | 0.043*                 |
| H19C | 0.0944        | 0.2362       | -0.0625      | 0.043*                 |
| C20A | 0 5998 (3)    | -0.21169(8)  | 0 28297 (8)  | 0.0442(5)              |
| H20A | 0 5109        | -0.2394      | 0 2762       | 0.066*                 |
| H20B | 0.6193        | -0.2057      | 0.3273       | 0.066*                 |
| H20C | 0.7032        | -0.2251      | 0.2651       | 0.066*                 |
| C1B  | 0.12032(19)   | 0.04958 (6)  | 0.58045 (7)  | 0.0254 (3)             |
| C2B  | 0.04407(18)   | 0.04766 (6)  | 0.64186 (6)  | 0.0231 (3)             |
| C3B  | 0.01110 (18)  | -0.00267(6)  | 0.67031 (7)  | 0.0243(3)              |
| H3B  | 0.0375        | -0.0369      | 0.6510       | 0.029*                 |
| C4B  | -0.06123(18)  | -0.00237(6)  | 0.72755 (7)  | 0.0257 (3)             |
| H4B  | -0.0855       | -0.0366      | 0.7472       | 0.031*                 |
| C5B  | -0.09771 (19) | 0.04721 (6)  | 0.75583 (7)  | 0.0255 (3)             |
| H5B  | -0.1465       | 0.0469       | 0.7950       | 0.031*                 |
| C6B  | -0.06362(19)  | 0.09790 (6)  | 0.72743 (7)  | 0.0249 (3)             |
| C7B  | 0.00687 (19)  | 0.09842 (6)  | 0.67004 (7)  | 0.0247 (3)             |
| H7B  | 0.0295        | 0.1327       | 0.6502       | 0.030*                 |
| C8B  | -0.24063 (17) | 0.14730 (6)  | 0.30117(6)   | 0.0202 (3)             |
| C9B  | -0.23388(17)  | 0.14531 (6)  | 0.36612 (6)  | 0.0205 (3)             |
| H9B  | -0.3348       | 0.1427       | 0.3877       | 0.025*                 |
| C10B | -0.08261(17)  | 0.14718 (6)  | 0.39841 (6)  | 0.0185 (3)             |
| H10B | -0.0790       | 0.1462       | 0.4421       | 0.022*                 |
| C11B | 0.06606 (16)  | 0.15058 (5)  | 0.36674 (6)  | 0.0172 (3)             |
| C12B | 0.06281 (17)  | 0.15062 (6)  | 0.30280 (6)  | 0.0197(3)              |
| H12B | 0.1646        | 0.1519       | 0.2816       | 0.024*                 |
| C13B | -0.08921(18)  | 0.14872 (6)  | 0.27026 (6)  | 0.0203 (3)             |
| HI3R | -0.0915       | 0 1484       | 0.2265       | 0.024*                 |
|      | 0.0710        |              | <b>-</b>     |                        |

| C14B | 0.34628 (17) | 0.04883 (6)  | 0.41380 (6) | 0.0201 (3) |
|------|--------------|--------------|-------------|------------|
| C15B | 0.3325 (2)   | -0.09738 (7) | 0.45917 (8) | 0.0323 (4) |
| H15D | 0.3561       | -0.0904      | 0.5031      | 0.048*     |
| H15E | 0.4039       | -0.1277      | 0.4454      | 0.048*     |
| H15F | 0.2144       | -0.1078      | 0.4526      | 0.048*     |
| C16B | 0.36762 (18) | -0.04567 (6) | 0.42323 (7) | 0.0247 (3) |
| C17B | 0.44477 (18) | -0.04708 (6) | 0.36738 (7) | 0.0258 (3) |
| H17B | 0.4812       | -0.0814      | 0.3507      | 0.031*     |
| C18B | 0.46776 (17) | 0.00262 (6)  | 0.33628 (7) | 0.0233 (3) |
| C19B | 0.5509 (2)   | 0.00518 (7)  | 0.27588 (7) | 0.0288 (3) |
| H19D | 0.4677       | 0.0150       | 0.2433      | 0.043*     |
| H19E | 0.5998       | -0.0312      | 0.2669      | 0.043*     |
| H19F | 0.6395       | 0.0334       | 0.2779      | 0.043*     |
| C20B | -0.1110 (3)  | 0.19639 (7)  | 0.72858 (8) | 0.0422 (4) |
| H20D | 0.0006       | 0.2061       | 0.7146      | 0.063*     |
| H20E | -0.1497      | 0.2254       | 0.7563      | 0.063*     |
| H20F | -0.1895      | 0.1933       | 0.6929      | 0.063*     |
|      |              |              |             |            |

# Atomic displacement parameters (Å<sup>2</sup>)

|            | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$      | $U^{13}$     | $U^{23}$ .    |
|------------|--------------|--------------|--------------|---------------|--------------|---------------|
| <b>S</b> 1 | 0.01647 (16) | 0.01908 (16) | 0.01319 (15) | 0.00140 (12)  | 0.00138 (12) | 0.00057 (12)  |
| S2         | 0.01453 (16) | 0.01959 (17) | 0.02021 (17) | -0.00098 (12) | 0.00102 (12) | -0.00501 (12) |
| OlA        | 0.0665 (8)   | 0.0228 (6)   | 0.0200 (5)   | 0.0149 (5)    | -0.0047 (5)  | -0.0009 (4)   |
| O2A        | 0.0525 (7)   | 0.0226 (5)   | 0.0183 (5)   | 0.0105 (5)    | -0.0060(5)   | 0.0002 (4)    |
| O3A        | 0.0235 (5)   | 0.0251 (5)   | 0.0146 (5)   | 0.0015 (4)    | 0.0017 (4)   | 0.0025 (4)    |
| O4A        | 0.0184 (5)   | 0.0234 (5)   | 0.0192 (5)   | 0.0030 (4)    | 0.0033 (4)   | -0.0009 (4)   |
| O5A        | 0.0606 (8)   | 0.0248 (6)   | 0.0184 (5)   | 0.0106 (5)    | -0.0080(5)   | 0.0013 (4)    |
| O1B        | 0.0558 (8)   | 0.0293 (6)   | 0.0270 (6)   | 0.0063 (5)    | 0.0147 (5)   | 0.0035 (5)    |
| O2B        | 0.0376 (6)   | 0.0274 (6)   | 0.0248 (6)   | 0.0004 (5)    | 0.0057 (5)   | -0.0024 (4)   |
| O3B        | 0.0214 (5)   | 0.0254 (5)   | 0.0242 (5)   | -0.0006 (4)   | -0.0003 (4)  | -0.0094 (4)   |
| O4B        | 0.0171 (5)   | 0.0245 (5)   | 0.0298 (5)   | -0.0037 (4)   | 0.0041 (4)   | -0.0044 (4)   |
| O5B        | 0.0503 (7)   | 0.0258 (5)   | 0.0228 (5)   | 0.0037 (5)    | 0.0056 (5)   | -0.0003 (4)   |
| N1A        | 0.0190 (6)   | 0.0274 (7)   | 0.0222 (6)   | 0.0016 (5)    | 0.0016 (5)   | 0.0076 (5)    |
| N2A        | 0.0231 (6)   | 0.0164 (6)   | 0.0164 (6)   | 0.0010 (5)    | -0.0008 (5)  | 0.0024 (4)    |
| N3A        | 0.0198 (6)   | 0.0195 (6)   | 0.0176 (6)   | -0.0004 (4)   | -0.0017 (4)  | 0.0006 (4)    |
| N4A        | 0.0203 (6)   | 0.0200 (6)   | 0.0181 (6)   | 0.0012 (4)    | 0.0013 (5)   | 0.0018 (4)    |
| N1B        | 0.0198 (7)   | 0.0484 (8)   | 0.0182 (6)   | -0.0004 (6)   | -0.0007 (5)  | -0.0028 (6)   |
| N2B        | 0.0214 (6)   | 0.0260 (6)   | 0.0181 (6)   | 0.0032 (5)    | 0.0008 (5)   | -0.0029 (5)   |
| N3B        | 0.0190 (6)   | 0.0256 (6)   | 0.0226 (6)   | 0.0021 (5)    | -0.0036 (5)  | -0.0014 (5)   |
| N4B        | 0.0182 (6)   | 0.0238 (6)   | 0.0213 (6)   | 0.0010 (5)    | -0.0021 (5)  | -0.0050 (5)   |
| C1A        | 0.0280 (8)   | 0.0205 (7)   | 0.0199 (7)   | 0.0012 (6)    | -0.0003 (6)  | 0.0016 (6)    |
| C2A        | 0.0240 (7)   | 0.0184 (7)   | 0.0205 (7)   | -0.0004 (5)   | -0.0002 (5)  | 0.0012 (5)    |
| C3A        | 0.0285 (8)   | 0.0212 (7)   | 0.0180 (7)   | -0.0015 (6)   | -0.0011 (6)  | -0.0001 (5)   |
| C4A        | 0.0328 (8)   | 0.0185 (7)   | 0.0235 (7)   | 0.0004 (6)    | 0.0014 (6)   | -0.0029 (6)   |
| C5A        | 0.0301 (8)   | 0.0180 (7)   | 0.0253 (7)   | 0.0025 (6)    | -0.0005 (6)  | 0.0036 (6)    |
| C6A        | 0.0307 (8)   | 0.0225 (7)   | 0.0184 (7)   | 0.0010 (6)    | -0.0029 (6)  | 0.0013 (5)    |
| C7A        | 0.0332 (8)   | 0.0191 (7)   | 0.0206 (7)   | 0.0032 (6)    | -0.0007 (6)  | -0.0025 (5)   |
| C8A        | 0.0191 (7)   | 0.0242 (7)   | 0.0111 (6)   | 0.0003 (5)    | 0.0002 (5)   | -0.0015 (5)   |
| C9A        | 0.0183 (7)   | 0.0233 (7)   | 0.0158 (6)   | 0.0047 (5)    | -0.0011 (5)  | -0.0006 (5)   |
| C10A       | 0.0207 (7)   | 0.0191 (7)   | 0.0148 (6)   | 0.0027 (5)    | -0.0003 (5)  | 0.0002 (5)    |
| C11A       | 0.0171 (6)   | 0.0201 (6)   | 0.0128 (6)   | -0.0002 (5)   | 0.0007 (5)   | -0.0018 (5)   |
| C12A       | 0.0190 (7)   | 0.0213 (7)   | 0.0164 (6)   | 0.0051 (5)    | 0.0007 (5)   | -0.0013 (5)   |
| C13A       | 0.0237 (7)   | 0.0188 (6)   | 0.0163 (6)   | 0.0019 (5)    | 0.0020 (5)   | 0.0008 (5)    |
|            |              |              |              |               |              |               |

| C14A | 0.0147 (6)  | 0.0201 (6) | 0.0178 (6) | -0.0015 (5) | 0.0000(5)   | 0.0007 (5)  |
|------|-------------|------------|------------|-------------|-------------|-------------|
| C15A | 0.0373 (9)  | 0.0232(7)  | 0.0206 (7) | 0.0047 (6)  | -0.0037 (6) | -0.0021(6)  |
| C16A | 0.0201 (7)  | 0.0227 (7) | 0.0185 (7) | -0.0009(5)  | -0.0010(5)  | 0.0001 (5)  |
| C17A | 0.0253 (7)  | 0.0253 (7) | 0.0171 (7) | 0.0026 (6)  | -0.0014(5)  | 0.0010 (6)  |
| C18A | 0.0208 (7)  | 0.0231 (7) | 0.0195 (7) | 0.0021 (5)  | 0.0007 (5)  | 0.0029 (5)  |
| C19A | 0.0405 (9)  | 0.0256 (8) | 0.0206 (7) | 0.0107 (7)  | 0.0020 (6)  | 0.0039 (6)  |
| C20A | 0.0746 (14) | 0.0337 (9) | 0.0235 (8) | 0.0185 (9)  | -0.0078(8)  | 0.0056 (7)  |
| C1B  | 0.0250 (8)  | 0.0294 (8) | 0.0215 (7) | 0.0003 (6)  | -0.0025 (6) | -0.0012 (6) |
| C2B  | 0.0212 (7)  | 0.0282 (8) | 0.0195 (7) | -0.0021 (6) | -0.0032(6)  | -0.0002 (6) |
| C3B  | 0.0233 (7)  | 0.0257 (7) | 0.0237 (7) | -0.0020 (6) | -0.0032 (6) | -0.0023 (6) |
| C4B  | 0.0253 (7)  | 0.0261 (7) | 0.0255 (7) | -0.0041 (6) | -0.0028 (6) | 0.0043 (6)  |
| C5B  | 0.0251 (7)  | 0.0315 (8) | 0.0198 (7) | -0.0015 (6) | 0.0001 (6)  | 0.0019 (6)  |
| C6B  | 0.0277 (8)  | 0.0260 (7) | 0.0209 (7) | 0.0004 (6)  | -0.0032 (6) | -0.0016 (6) |
| C7B  | 0.0277 (8)  | 0.0250 (7) | 0.0212 (7) | -0.0019 (6) | -0.0011 (6) | 0.0023 (6)  |
| C8B  | 0.0200 (7)  | 0.0203 (7) | 0.0203 (7) | -0.0009 (5) | -0.0003(5)  | -0.0020 (5) |
| C9B  | 0.0163 (7)  | 0.0254 (7) | 0.0201 (7) | -0.0017 (5) | 0.0043 (5)  | -0.0007 (5) |
| C10B | 0.0193 (7)  | 0.0207 (7) | 0.0157 (6) | -0.0008 (5) | 0.0016 (5)  | -0.0008 (5) |
| C11B | 0.0157 (6)  | 0.0157 (6) | 0.0203 (7) | -0.0003 (5) | 0.0000 (5)  | -0.0022 (5) |
| C12B | 0.0192 (7)  | 0.0196 (7) | 0.0206 (7) | -0.0012 (5) | 0.0058 (5)  | -0.0035 (5) |
| C13B | 0.0235 (7)  | 0.0216 (7) | 0.0160 (6) | -0.0011 (5) | 0.0029 (5)  | -0.0022 (5) |
| C14B | 0.0141 (6)  | 0.0239 (7) | 0.0217 (7) | 0.0015 (5)  | -0.0049 (5) | -0.0033 (5) |
| C15B | 0.0344 (9)  | 0.0269 (8) | 0.0355 (9) | 0.0023 (6)  | -0.0021 (7) | 0.0023 (7)  |
| C16B | 0.0192 (7)  | 0.0264 (7) | 0.0281 (8) | 0.0021 (6)  | -0.0063 (6) | 0.0016 (6)  |
| C17B | 0.0219 (7)  | 0.0231 (7) | 0.0321 (8) | 0.0028 (6)  | -0.0027 (6) | -0.0068 (6) |
| C18B | 0.0163 (7)  | 0.0272 (7) | 0.0261 (7) | 0.0009 (5)  | -0.0043 (6) | 0.0076 (6)  |
| C19B | 0.0284 (8)  | 0.0289 (8) | 0.0295 (8) | 0.0009 (6)  | 0.0045 (6)  | -0.0090 (6) |
| C20B | 0.0648 (12) | 0.0262 (8) | 0.0363 (9) | 0.0041 (8)  | 0.0114 (9)  | 0.0022 (7)  |
|      |             |            |            |             |             |             |

Geometric parameters (Å, °)

 $\epsilon \sim \epsilon$ 

| S1—O4A   | 1.4314 (10) | C11A—C12A | 1.3916 (19) |
|----------|-------------|-----------|-------------|
| S1—O3A   | 1.4361 (10) | C12A—C13A | 1.382 (2)   |
| S1—N2A   | 1.6520 (12) | C12AH12A  | 0.9500      |
| S1—C11A  | 1.7434 (13) | C13A—H13A | 0.9500      |
| S2—O4B   | 1.4281 (10) | C15A—C16A | 1.5013 (19) |
| S2—O3B   | 1.4371 (10) | C15A—H15A | 0.9800      |
| S2—N2B   | 1.6474 (12) | C15A—H15B | 0.9800      |
| S2—C11B  | 1.7376 (14) | C15A—H15C | 0.9800      |
| O1A—C1A  | 1.2211 (18) | C16A—C17A | 1.382 (2)   |
| O2A—C1A  | 1.3169 (17) | C17A—C18A | 1.388 (2)   |
| O2A—H32A | 0.876 (16)  | C17A—H17A | 0.9500      |
| O5AC6A   | 1.3693 (17) | C18A—C19A | 1.4990 (19) |
| O5A—C20A | 1.4301 (19) | C19A—H19A | 0.9800      |
| O1B—C1B  | 1.2198 (19) | C19A—H19B | 0.9800      |
| O2B—-C1B | 1.3199 (19) | C19A—H19C | 0.9800      |
| O2B—H32B | 0.867 (17)  | C20A—H20A | 0.9800      |
| O5B—C6B  | 1.3699 (18) | C20A—H20B | 0.9800      |
| O5B—C20B | 1.425 (2)   | C20A—H20C | 0.9800      |
| N1A—C8A  | 1.3668 (18) | C1B—C2B   | 1.490 (2)   |
| N1A—H30A | 0.876 (15)  | C2B—C3B   | 1.388 (2)   |
| N1AH30B  | 0.855 (14)  | C2B—C7B   | 1.401 (2)   |
| N2A—C14A | 1.3964 (17) | C3B—C4B   | 1.393 (2)   |
| N2A—H31A | 0.834 (13)  | C3B—H3B   | 0.9500      |
| N3A—C14A | 1.3427 (17) | C4B—C5B   | 1.376 (2)   |
| N3A—C16A | 1.3510 (18) | C4B—H4B   | 0.9500      |
| N4A—C14A | 1.3288 (18) | C5B—C6B   | 1.396 (2)   |

•

| N4A—C18A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.3492 (18)            | C5B—H5B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9500                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| N1B—C8B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.3592 (19)            | C6B—C7B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.389 (2)                |
| N1B—H30D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.837 (14)             | C7B—H7B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9500                   |
| N1B—H30C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.848 (15)             | C8B—C13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.406 (2)                |
| N2B—C14B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.3918 (18)            | C8B—C9B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.4121 (19)              |
| N2B—H31B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.853 (15)             | C9B-C10B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.373 (2)                |
| N3B—C14B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.3435 (19)            | C9B—H9B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9500                   |
| N3B-C16B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.3495 (19)            | C10B—C11B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.3976 (19)              |
| N4B—C14B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.3281 (19)            | C10B—H10B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9500                   |
| N4B—C18B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.3494 (18)            | C11B—C12B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.3896 (19)              |
| C1A—C2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.4867 (19)            | C12B—C13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.381 (2)                |
| C2A—C7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.384 (2)              | C12B—H12B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9500                   |
| C2A—C3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.393 (2)              | C13B—H13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9500                   |
| C3A—C4A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.385 (2)              | C15B—C16B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.499 (2)                |
| СЗА—НЗА                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9500                 | C15B—H15D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9800                   |
| C4A—C5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.393 (2)              | C15B—H15E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9800                   |
| C4A—H4A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9500                 | C15B—H15F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9800                   |
| C5A—C6A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.391 (2)              | C16B—C17B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.384 (2)                |
| C5A—H5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9500                 | C17B—C18B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.387 (2)                |
| C6A - C7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 393 (2)              | C17B—H17B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9500                   |
| C7A - H7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9500                 | C18B-C19B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 496 (2)                |
| C8A - C13A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 4092 (19)            | C19B—H19D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9800                   |
| C8A - C9A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 4122 (19)            | C19B—H19E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 9800                   |
| C9A - C10A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 375 (2)              | C19B—H19F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9800                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.9500                 | $C_{20B}$ H101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.9800                   |
| C10A - C11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 4020 (19)            | $C_{20B}$ H20E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.9800                   |
| C10A - H10A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.9500                 | $C_{20B}$ H20E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.9800                   |
| 04A = S1 = 03A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 119.04 (6)             | C18A - C17A - H17A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120 7                    |
| O4A = S1 = N2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 109.91 (6)             | N4A - C18A - C17A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 121.41 (13)              |
| O3A = S1 = N2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 102.64 (6)             | N4A - C18A - C19A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 116 91 (12)              |
| 04A = S1 = C11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 102.04 (0)             | C17A - C18A - C19A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 121 67 (13)              |
| $O_{3A}$ $S_{1}$ $C_{11A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 108.84 (6)             | C18A - C19A - H19A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109 5                    |
| N2A - S1 - C11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 107.07 (6)             | C18A - C19A - H19B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.5                    |
| $O4B = S^2 = O3B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 119 12 (6)             | H19A - C19A - H19B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.5                    |
| $04B = S^2 = 0.3B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110 31 (6)             | C18A - C19A - H19C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.5                    |
| O3BN2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 101 73 (6)             | H19A - C19A - H19C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.5                    |
| $04B = S^2 = C^{11}B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 101.75 (0)             | H19B-C19A-H19C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.5                    |
| $O_{3B} = S_{2} = C_{11B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 108.20 (6)             | 05A-C20A-H20A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                    |
| N2B-S2-C11B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 108.01 (6)             | O5A - C20A - H20B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.5                    |
| C1A = O2A = H32A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 107.6(15)              | H20A - C20A - H20B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.5                    |
| C6A = 05A = C20A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 117 21 (12)            | O5A - C20A - H20C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.5                    |
| C1B = 02B = H32B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.3(17)              | H20A - C20A - H20C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.5                    |
| C6B = 05B = C20B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 117 91 (12)            | $H_{20B}$ $C_{20A}$ $H_{20C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                    |
| C8A = N1A = H30A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 117.9 (12)             | O1B-C1B-O2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 123.34 (13)              |
| C8A = N1A = H30B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 117.9(17)<br>117.9(12) | O1B-C1B-C2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 122.19 (14)              |
| $H_{30A}$ $N_{1A}$ $H_{30B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 117.5(12)<br>113.6(18) | $O^2B$ — $C^1B$ — $C^2B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 114.48 (13)              |
| C14A = N2A = S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 125.5(10)              | C3B - C2B - C7B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 121.01 (13)              |
| C14A = N2A = H31A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 123.55(10)             | C3B = C2B = C1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 121.01(13)<br>121.20(13) |
| S1 - N2A - H31A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 111.0(11)              | C7B-C2B-C1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 117 79 (13)              |
| $C_{14A} = N_{3A} = C_{16A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11610(12)              | $C^{2}B$ $C^{2}B$ $C^{4}B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119 13 (14)              |
| C14A = N/A = C18A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 115 64 (12)            | C2B $C3B$ $H3B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120.4                    |
| $C_{17A} = 10^{1}A = C_{10A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110 7 (12)             | C4B - C3B - H3B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120.4                    |
| $C_{0}D_{1}T_{1}D_{1}D_{1}D_{1}D_{1}D_{1}D_{1}D_{1}D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 117.7(13)<br>1175(14)  | $C_{2} = C_{2} = C_{2$ | 120.41 (14)              |
| $\mathbf{U}_{00} = \mathbf{U}_{10} = \mathbf{U}_{00}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 117.3(17)<br>1180(10)  | $C_{2}B - C_{2}B - C_{2}B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110 8                    |
| $\frac{1130D}{1130D} = \frac{1110}{1130} = \frac{1130U}{1130} = 11$ | 128.01(17)             | C3B - C4B - H4B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110.8                    |
| U14D $112D$ $32$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120.01 (10)            | CJD—CHD—RHD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 117.0                    |

•

•

.

| C14B—N2B—H31B                                                         | 117.2 (13)               | C4B—C5B—C6B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120.53 (14)               |
|-----------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| S2—N2B—H31B                                                           | 109.8 (13)               | C4B—C5B—H5B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 119.7                     |
| C14B—N3B—C16B                                                         | 116.01 (12)              | C6B—C5B—H5B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 119.7                     |
| C14B—N4B—C18B                                                         | 115.74 (13)              | O5B—C6B—C7B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 124.80 (13)               |
| O1A—C1A—O2A                                                           | 122.81 (13)              | O5B—C6B—C5B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 115.33 (13)               |
| O1A—C1A—C2A                                                           | 121.76 (13)              | C7B—C6B—C5B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 119.86 (14)               |
| O2A—C1A—C2A                                                           | 115.43 (12)              | C6B—C7B—C2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 119.05 (14)               |
| C7A—C2A—C3A                                                           | 120.50 (13)              | C6B—C7B—H7B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120.5                     |
| C7A—C2A—C1A                                                           | 116.93 (13)              | C2B—C7B—H7B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120.5                     |
| C3A—C2A—C1A                                                           | 122.57 (13)              | N1B-C8B-C13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 121.02 (13)               |
| C4A—C3A—C2A                                                           | 118.72 (13)              | N1B-C8B-C9B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120.30 (13)               |
| С4А—С3А—Н3А                                                           | 120.6                    | C13B—C8B—C9B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 118.65 (13)               |
| С2А—С3А—Н3А                                                           | 120.6                    | C10B—C9B—C8B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120.55 (12)               |
| C3A—C4A—C5A                                                           | 121.46 (13)              | C10B—C9B—H9B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 119.7                     |
| C3A—C4A—H4A                                                           | 119.3                    | C8B—C9B—H9B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 119.7                     |
| C5A—C4A—H4A                                                           | 119.3                    | C9B-C10B-C11B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 119.76 (13)               |
| C6A—C5A—C4A                                                           | 119.29 (13)              | C9B—C10B—H10B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120.1                     |
| C6A—C5A—H5A                                                           | 120.4                    | C11B—C10B—H10B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 120.1                     |
| C4A - C5A - H5A                                                       | 120.4                    | C12B— $C11B$ — $C10B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.70 (13)               |
| 05A - C6A - C5A                                                       | 125 29 (13)              | C12B— $C11B$ — $S2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120.72 (10)               |
| 05A - C6A - C7A                                                       | 115.07(13)               | C10B-C11B-S2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 118 50 (10)               |
| $C_{5A}$ $C_{6A}$ $C_{7A}$                                            | 119.64 (13)              | C13B— $C12B$ — $C11B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119 60 (12)               |
| $C^{2}A - C^{7}A - C^{6}A$                                            | 120.39 (13)              | C13B— $C12B$ — $H12B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.2                     |
| $C_{2A} = C_{7A} = H_{7A}$                                            | 110.8                    | C11B - C12B - H12B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.2                     |
| C64 - C74 - H74                                                       | 119.8                    | C12B— $C13B$ — $C8B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.66 (13)               |
| N1A - C8A - C13A                                                      | 120.63 (13)              | C12B $C13B$ $H13B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119 7                     |
| N1A - C8A - C9A                                                       | 120.03(13)<br>120.63(12) | C8B_C13B_H13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 119.7                     |
| $\begin{array}{c} \text{C13A}  \text{C8A}  \text{C9A} \\ \end{array}$ | 120.03(12)<br>11873(12)  | N4B-C14B-N3B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 127.63 (13)               |
| $C_{10A} = C_{0A} = C_{0A}$                                           | 120.58(12)               | N4B_C14B_N2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 127.05(13)<br>118.40(13)  |
| $C_{10A} = C_{9A} = H_{9A}$                                           | 110 7                    | N3B_C14B_N2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 113 92 (12)               |
| $C_{A} C_{A} H_{A}$                                                   | 110.7                    | $C_{16B}$ $C_{15B}$ $H_{15D}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 109.5                     |
| $C_{0A} = C_{0A} = C_{11A}$                                           | 119.7                    | C16B $C15B$ $H15E$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 109.5                     |
| $C_{0A} = C_{10A} = U_{10A}$                                          | 120.1                    | HISD CISB HISE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5                     |
| $C_{JA} = C_{I0A} = H_{I0A}$                                          | 120.1                    | C16B_C15B_H15E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5                     |
| C12A $C11A$ $C10A$                                                    | 120.1<br>120.54(12)      | H15D - C15B - H15F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 109.5                     |
| C12A = C11A = C10A                                                    | 120.34(12)               | $\begin{array}{c} 1115D - C15D - 1115F \\ 1115E - C15D - 1115F \\ 1115E - C15D - 1115E \\ 1115E - C15D - 115E \\ 1115E - C15E \\ $ | 109.5                     |
| C12A - C11A - S1                                                      | 120.99 (10)              | $\frac{1132}{138} - \frac{1132}{148} - \frac{1132}{148}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.5<br>120.75(14)       |
| C12A $C12A$ $C11A$                                                    | 110.43(10)<br>110.72(12) | N2P C16P C15P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120.75(14)<br>116.81(13)  |
| C12A = C12A = U12A                                                    | 119.75 (12)              | $\begin{array}{c} \text{NJD} \\ \text{C17D} \\ \text{C16D} \\ \text{C15D} \\ \text{C15D} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 170.01(13)<br>172.43(14)  |
| C11A C12A H12A                                                        | 120.1                    | C17B— $C10B$ — $C13BC16P$ — $C17P$ — $C19P$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 122.43(14)<br>118 61 (13) |
| C12A = C12A = C12A                                                    | 120.1<br>120.62(12)      | C16B - C17B - C18B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.7                     |
| C12A = C12A = U12A                                                    | 120.02(12)               | C10D - C17D - II17D<br>C18P - C17P - H17P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120.7                     |
| $C_{12A} - C_{13A} - H_{13A}$                                         | 119.7                    | N/B $C18B$ $C17B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 121.26 (13)               |
| $C_{0A}$ $C_{14A}$ $N_{2A}$                                           | 119.7                    | NAB C18B C10B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 121.20(13)<br>116.30(13)  |
| N4A = C14A = N3A                                                      | 127.30(12)<br>118.52(12) | C17P C18P C10P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110.39(13)<br>122.35(13)  |
| N4A = C14A = N2A                                                      | 110.32(12)<br>112.01(12) | C17B $C10B$ $C19B$ $C19B$ $C10B$ $U10D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100 5                     |
| $N_{A} = C_{14A} = N_{ZA}$                                            | 115.91 (12)              | $C_{18B} = C_{19B} = H_{19D}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 109.5                     |
| CIGA CISA HISP                                                        | 109.5                    | C10B - C19B - H19E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 109.5                     |
| UIVA-UIVA-HIVB                                                        | 109.3                    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5                     |
| HIDA-UIDA-HIDB                                                        | 109.3                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.5                     |
| UIDA-UIDA-HIDC                                                        | 109.5                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.3                     |
| HIDA—CIDA—HIDC                                                        | 109.5                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.5                     |
| HISB—CISA—HISC                                                        | 109.5                    | USB-C20B-H20D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 109.5                     |
| N3A—C16A—C17A                                                         | 120.73 (13)              | USB-C20B-H20E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 109.5                     |
| N3A—C16A—C15A                                                         | 116.60 (12)              | H20D—C20B—H20E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5                     |
| C17A—C16A—C15A                                                        | 122.67 (12)              | O5B—C20B—H20F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 109.5                     |

| C16A—C17A—C18A<br>C16A—C17A—H17A | 118.54 (13)<br>120.7 | H20D—C20B—H20F<br>H20E—C20B—H20F | 109.5<br>109.5 |
|----------------------------------|----------------------|----------------------------------|----------------|
| O4A—S1—N2A—C14A                  | 63.59 (12)           | C14A—N4A—C18A—<br>C19A           | 179.07 (13)    |
| O3A—S1—N2A—C14A                  | -168.80 (11)         | C16A—C17A—C18A—<br>N4A           | -1.0 (2)       |
| C11A—S1—N2A—C14A                 | -54.27 (13)          | C16A—C17A—C18A—<br>C19A          | -179.98 (14)   |
| O4B—S2—N2B—C14B                  | -50.73 (14)          | O1B—C1B—C2B—C3B                  | 175.59 (15)    |
| O3B—S2—N2B—C14B                  | -178.09 (12)         | O2B—C1B—C2B—C3B                  | -4.1 (2)       |
| C11B—S2—N2B—C14B                 | 68.15 (13)           | O1B—C1B—C2B—C7B                  | -4.5 (2)       |
| O1A—C1A—C2A—C7A                  | 2.4 (2)              | O2B—C1B—C2B—C7B                  | 175.77 (13)    |
| O2A—C1A—C2A—C7A                  | -177.71 (13)         | C7B—C2B—C3B—C4B                  | 0.5 (2)        |
| O1A—C1A—C2A—C3A                  | -178.39 (15)         | C1B—C2B—C3B—C4B                  | -179.61 (13)   |
| O2A—C1A—C2A—C3A                  | 1.5 (2)              | C2B—C3B—C4B—C5B                  | -0.7 (2)       |
| C7A—C2A—C3A—C4A                  | 0.5 (2)              | C3B—C4B—C5B—C6B                  | 0.3 (2)        |
| C1A—C2A—C3A—C4A                  | -178.73 (14)         | C20B—O5B—C6B—C7B                 | 16.0 (2)       |
| C2A—C3A—C4A—C5A                  | -0.3 (2)             | C20B—O5B—C6B—C5B                 | -164.68 (15)   |
| C3A—C4A—C5A—C6A                  | -0.1 (2)             | C4B—C5B—C6B—O5B                  | -179.04 (14)   |
| C20A—O5A—C6A—C5A                 | -6.4 (2)             | C4B—C5B—C6B—C7B                  | 0.3 (2)        |
| C20A—O5A—C6A—C7A                 | 173.73 (16)          | O5B—C6B—C7B—C2B                  | 178.71 (14)    |
| C4A—C5A—C6A—O5A                  | -179.65 (15)         | C5B—C6B—C7B—C2B                  | -0.6 (2)       |
| C4A—C5A—C6A—C7A                  | 0.2 (2)              | C3B—C2B—C7B—C6B                  | 0.2 (2)        |
| C3A—C2A—C7A—C6A                  | -0.4 (2)             | C1B—C2B—C7B—C6B                  | -179.72 (13)   |
| C1A—C2A—C7A—C6A                  | 178.89 (14)          | N1B-C8B-C9B-C10B                 | -175.26 (14)   |
| O5A—C6A—C7A—C2A                  | 179.90 (14)          | C13B—C8B—C9B—C10B                | 2.8 (2)        |
| C5A—C6A—C7A—C2A                  | 0.0 (2)              | C8B—C9B—C10B—C11B                | -0.6 (2)       |
| N1A—C8A—C9A—C10A                 | 179.12 (12)          | C9B—C10B—C11B—C12B               | -1.7 (2)       |
| C13A—C8A—C9A—C10A                | -0.01 (19)           | C9B—C10B—C11B—S2                 | 174.97 (11)    |
| C8A—C9A—C10A—C11A                | -0.47 (19)           | O4B—S2—C11B—C12B                 | 10.34 (13)     |
| C9A—C10A—C11A—C12A               | 1.05 (19)            | O3B—S2—C11B—C12B                 | 141.16 (11)    |
| C9A—C10A—C11A—S1                 | -176.66 (10)         | N2B—S2—C11B—C12B                 | -109.45 (12)   |
| O4A—S1—C11A—C12A                 | -7.36 (13)           | O4B—S2—C11B—C10B                 | -166.33 (10)   |
| O3A—S1—C11A—C12A                 | -138.39 (11)         | O3B—S2—C11B—C10B                 | -35.50 (12)    |
| N2A—S1—C11A—C12A                 | 111.32 (11)          | N2B—S2—C11B—C10B                 | 73.88 (12)     |
| O4A—S1—C11A—C10A                 | 170.35 (10)          | C10B—C11B—C12B—<br>C13B          | 1.7 (2)        |
| O3A—S1—C11A—C10A                 | 39.31 (12)           | S2—C11B—C12B—C13B                | -174.91 (10)   |
| N2A—S1—C11A—C10A                 | -70.98 (12)          | C11B—C12B—C13B—C8B               | 0.6 (2)        |
| C10A—C11A-—C12A—                 | 1 15 (10)            |                                  | 175 22 (14)    |
| C13A                             | -1.15 (19)           | NIB                              | 175.22 (14)    |
| S1—C11A—C12A—C13A                | 176.51 (10)          | C9B—C8B—C13B—C12B                | -2.8 (2)       |
| C11A—C12A—C13A—C8A               | 0.7 (2)              | C18B—N4B—C14B—N3B                | -0.9 (2)       |
| N1A—C8A—C13A—C12A                | -179.22 (12)         | C18B—N4B—C14B—N2B                | 176.28 (12)    |
| C9A—C8A—C13A—C12A                | -0.09 (19)           | C16B—N3B—C14B—N4B                | 0.4 (2)        |
| C18A—N4A—C14A—N3A                | 1.0 (2)              | C16B—N3B—C14B—N2B                | -176.96 (12)   |
| C18A—N4A—C14A—N2A                | -177.95 (12)         | S2—N2B—C14B—N4B                  | 25.42 (18)     |
| C16A—N3A—C14A—N4A                | -0.9 (2)             | S2—N2B—C14B—N3B                  | -156.99 (10)   |
| C16A—N3A—C14A—N2A                | 178.04 (11)          | C14B—N3B—C16B—C17B               | 0.56 (19)      |
| S1—N2A—C14A—N4A                  | -27.82 (18)          | C14B—N3B—C16B—C15B               | -178.35 (13)   |
| S1—N2A—C14A—N3A                  | 153.09 (10)          | N3B—C16B—C17B—C18B               | -0.8 (2)       |
| C14A—N3A—C16A—<br>C17A           | -0.15 (19)           | C15B—C16B—C17B—<br>C18B          | 178.00 (14)    |
| C14A - N3A - C16A - C16A         |                      |                                  | 0.50 (10)      |
| C15A                             | 178.77 (12)          | C14B—N4B—C18B—C17B               | 0.58 (19)      |

.

.

| C14A—N3A—C16A—<br>C15A                 | 178.77 (12)     | C14B—         | -N4B-C18B-  | -C17B   | 0.58 (19)    |
|----------------------------------------|-----------------|---------------|-------------|---------|--------------|
| N3A—C16A—C17A—<br>C18A                 | 1.1 (2)         | C14B—         | N4B—C18B-   | -C19B   | -178.81 (12) |
| C15A—C16A—C17A—<br>C18A                | -177.80 (13)    | C16B—         | -C17BC18B   | —N4B    | 0.2 (2)      |
| C14A—N4A—C18A—<br>C17A                 | 0.0 (2)         | C16B-<br>C19B | -C17BC18B   | -       | 179.60 (13)  |
| Hydrogen-bond geometry                 | <u>v (Å, °)</u> |               |             |         |              |
| D-H···A                                | D-H             | H <i>A</i>    | D····A      | D-H     | ·A           |
| $N1A - H30A \cdots O4Ai$               | 0.88(2)         | 2.37 (2)      | 2,9635 (16) | 125 (2) | **           |
| N1A—H30B···O3Bii                       | 0.86(1)         | 2.14(2)       | 2,8920 (16) | 147(2)  |              |
| N1B—H30 $C$ ···O4 $Biii$               | 0.85(2)         | 2.22 (2)      | 2.9250 (17) | 140 (2) |              |
| N2A—H31A…O1A                           | 0.83(1)         | 1.92 (1)      | 2.7495 (16) | 179 (2) |              |
| N2B—H31B…O1B                           | 0.85(2)         | 1.93 (2)      | 2.7770 (16) | 178 (2) |              |
| O2 <i>A</i> —H32 <i>A</i> …N3 <i>A</i> | 0.88 (2)        | 1.86 (2)      | 2.7353 (15) | 173 (2) |              |
| O2 <i>B</i> —H32 <i>B</i> ⋯N3 <i>B</i> | 0.87 (2)        | 1.90 (2)      | 2.7612 (16) | 171 (3) |              |
|                                        |                 |               |             |         |              |

Symmetry codes: (i) x+1, y, z; (ii) x+1/2, -y+1/2, z-1/2; (iii) x-1, y, z.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.





Crystal data

 $C_{12}H_{14}N_4O_2S \cdot C_8H_8O_3$   $M_r = 430.47$ Monoclinic,  $P2_1/c$  a = 8.1902 (3) Å b = 21.2180 (9) Å c = 12.3529 (5) Å  $\beta = 108.135$  (2)° V = 2040.05 (14) Å<sup>3</sup> Z = 4F(000) = 904  $D_x = 1.402 \text{ Mg m}^{-3}$ Melting point: 447-451 K Cu Ka radiation,  $\lambda = 1.54178 \text{ Å}$ Cell parameters from 6506 reflections  $\theta = 4.2-68.1^{\circ}$  $\mu = 1.76 \text{ mm}^{-1}$ T = 100 KPlate, colourless  $0.39 \times 0.18 \times 0.12 \text{ mm}$ 

Data collection Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Detector resolution: 8.33 pixels mm<sup>-1</sup> phi and  $\omega$  scans Absorption correction: multi-scan SADABS2014/7, Bruker AXS  $T_{\min} = 0.567$ ,  $T_{\max} = 0.753$ 30180 measured reflections

3711 independent reflections

-

3174 reflections with  $l > 2\sigma(l)$   $R_{int} = 0.057$   $\theta_{max} = 68.2^{\circ}, \ \theta_{min} = 4.2^{\circ}$  h = -9 9 k = -25 25 l = -14 13

Refinement

| Refinement on $F^2$             |                                                                                    |
|---------------------------------|------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Hydrogen site location: mixed                                                      |
| $R[F^2 > 2\sigma(F^2)] = 0.059$ | H atoms treated by a mixture of independent and constrained refinement             |
| $wR(F^2) = 0.180$               | $w = 1/[\sigma^2(F_o^2) + (0.0947P)^2 + 2.847P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| S = 1.14                        | $(\Delta/\sigma)_{\rm max} < 0.001$                                                |
| 3711 reflections                | $\Delta \rho_{\rm max} = 0.73 \ {\rm e} \ {\rm \AA}^{-3}$                          |
| 290 parameters                  | $\Delta \rho_{\rm min} = -0.49 \ {\rm e} \ {\rm \AA}^{-3}$                         |
| 3 restraints                    | Extinction correction: none                                                        |
| 0 constraints                   |                                                                                    |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|    | x           | У           | Z           | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|----|-------------|-------------|-------------|-------------------------------|
| S1 | 0.06326 (9) | 0.68737 (3) | 0.43157 (6) | 0.0242 (2)                    |

| 01       | 0.2859 (3)  | 0.47278 (10) | 0.51964 (19)        | 0.0310 (5)             |
|----------|-------------|--------------|---------------------|------------------------|
| O2       | 0.3423 (3)  | 0.56881 (10) | 0.5985 (2)          | 0.0314 (5)             |
| H32      | 0.233 (8)   | 0.585 (3)    | 0.534 (5)           | 0.085 (18)*            |
| O4       | 0.1451 (3)  | 0.71128 (10) | 0.3519 (2)          | 0.0314 (5)             |
| O3       | 0.1443 (3)  | 0.70235 (10) | 0.5506 (2)          | 0.0323 (6)             |
| 05       | 0.9327 (3)  | 0.41452 (10) | 0.95129 (18)        | 0.0260 (5)             |
| N1       | -0.6249 (4) | 0.80618 (14) | 0.2994 (3)          | 0.0305 (6)             |
| H30A     | -0.673 (7)  | 0.816(2)     | 0.228 (5)           | 0.059 (15)*            |
| H30B     | -0.699 (6)  | 0.789(2)     | 0.321 (4)           | 0.043 (12)*            |
| N2       | 0.0604 (3)  | 0.61074 (12) | 0.4308 (2)          | 0.0239 (6)             |
| H31      | 0.114 (7)   | 0.500 (2)    | 0.415 (4)           | 0.071 (15)*            |
| N4       | -0.1457 (3) | 0.60230 (12) | 0.2494 (2)          | 0.0224 (5)             |
| N3       | 0.0138 (3)  | 0.51417 (12) | 0.3441 (2)          | 0.0223(5)              |
| C1       | 0.3748 (4)  | 0.50916 (14) | 0.5954 (3)          | 0.0229 (6)             |
| C2       | 0.5235 (4)  | 0.48422(14)  | 0.6878 (3)          | 0.0227(6)              |
| C3       | 0.6232(4)   | 0.52340(14)  | 0 7746 (3)          | 0.0227(6)              |
| H3       | 0.5968      | 0 5670       | 0.7745              | 0.027*                 |
| C4       | 0.7599 (4)  | 0.49880 (14) | 0.8605 (3)          | 0.0235(6)              |
| H4       | 0.8286      | 0 5256       | 0.9186              | 0.028*                 |
| C5       | 0 7966 (4)  | 0.43441(14)  | 0.8616 (3)          | 0.020                  |
| C6       | 0.6982(4)   | 0 39494 (14) | 0.7758(3)           | 0.0241 (6)             |
| H6       | 0 7234      | 0.3512       | 0 7764              | 0.029*                 |
| C7       | 0.5626 (4)  | 0.42046(14)  | 0.6892 (3)          | 0.029<br>0.0247 (6)    |
| С7<br>Н7 | 0.3020 (1)  | 0 3939       | 0.6301              | 0.0247 (0)             |
| C8       | -0.4695(4)  | 0.77609 (14) | 0.3273(3)           | 0.0249 (6)             |
| C9       | -0.3630(4)  | 0.78171(15)  | 0.2581(3)           | 0.0219(0)<br>0.0252(7) |
| H9       | -0.4005     | 0.8057       | 0 1899              | 0.030*                 |
| C10      | -0.4100(4)  | 0 74081 (14) | 0 4282 (3)          | 0.0250(7)              |
| H10      | -0.4793     | 0.7368       | 0.4768              | 0.030*                 |
| C11      | -0.2035(4)  | 0.75253 (14) | 0.2882 (3)          | 0.0253 (6)             |
| H11      | -0.1332     | 0.7560       | 0.2401              | 0.0205 (0)             |
| C12      | -0.2504(4)  | 0.71170 (14) | 0.2101<br>0.4571(3) | 0.0247 (6)             |
| H12      | -0.2124     | 0.6871       | 0.1371 (3)          | 0.030*                 |
| C13      | -0.1466(4)  | 0.71810(13)  | 0 3890 (3)          | 0.0225 (6)             |
| C14      | -0.0260(4)  | 0 57652 (14) | 0 3379 (2)          | 0.0212(6)              |
| C15      | -0.3712(4)  | 0.59215 (16) | 0.0577(2)           | 0.0212(0)<br>0.0288(7) |
| H15A     | -0.4728     | 0 5994       | 0.0033              | 0.043*                 |
| H15B     | -0.4012     | 0.5638       | 0.0031              | 0.043*                 |
| H15C     | -0.3307     | 0.6324       | 0.0481              | 0.043*                 |
| C16      | -0.2321(4)  | 0.56281 (15) | 0.1647 (3)          | 0.0237 (6)             |
| C17      | -0.1962(4)  | 0.49817(14)  | 0.1677 (3)          | 0.0239 (6)             |
| H17      | -0.2588     | 0.4713       | 0.1075              | 0.029*                 |
| C18      | -0.0690(4)  | 0.47427 (14) | 0.2588 (3)          | 0.0228 (6)             |
| C19      | -0.0128(4)  | 0.40671 (14) | 0.2722 (3)          | 0.0262 (7)             |
| H19A     | 0.1123      | 0.4045       | 0.2897              | 0.039*                 |
| H19B     | -0.0679     | 0.3839       | 0.2012              | 0.039*                 |
| H19C     | -0.0459     | 0.3875       | 0.3344              | 0.039*                 |
| C20      | 0.9666 (4)  | 0.34812 (15) | 0.9608 (3)          | 0.0304 (7)             |
| H20A     | 0.8642      | 0.3258       | 0.9654              | 0.046*                 |
| H20B     | 1.0628      | 0 3397       | 1 0298              | 0.046*                 |
| H20C     | 0.9959      | 0.3335       | 0.8939              | 0.046*                 |
| 11200    | 0.7757      | 0.0000       | 0.0737              | 0.010                  |

Atomic displacement parameters (Å<sup>2</sup>)

|                                         | $U^{11}$                 | $U^{22}$                    | $U^{33}$                 | $U^{12}$     | $U^{13}$                 | $U^{23}$     |
|-----------------------------------------|--------------------------|-----------------------------|--------------------------|--------------|--------------------------|--------------|
| <b>S</b> 1                              | 0.0208 (4)               | 0.0244 (4)                  | 0.0260 (4)               | 0.0000(3)    | 0.0052(3)                | -0.0041(3)   |
| 01                                      | 0.0291(12)               | 0.0307(12)                  | 0.0289 (12)              | -0.0001(9)   | 0.0029(10)               | -0.0003(9)   |
| 02                                      | 0.0340(13)               | 0.0294(12)                  | 0.0269(12)               | 0.0085 (9)   | 0.0029(10)               | 0.00003(9)   |
| 04                                      | 0.0269(12)               | 0.029 + (12)<br>0.0289 (12) | 0.0207(12)<br>0.0417(14) | -0.0005(9)   | 0.0059(10)<br>0.0154(10) | 0.0001(9)    |
| 03                                      | 0.0289(12)               | 0.0209(12)<br>0.0288(12)    | 0.0311(13)               | 0.0003(9)    | -0.0038(10)              | -0.009(10)   |
| 05                                      | 0.0260(12)               | 0.0200(12)                  | 0.0311(13)<br>0.0257(11) | 0.0031(9)    | 0.0038(10)               | -0.0080(9)   |
| N1                                      | 0.0230(11)<br>0.0234(14) | 0.0249(11)<br>0.0275(16)    | 0.0237(11)<br>0.0206(17) | 0.0028(8)    | 0.0044(9)                | 0.0021(6)    |
| INI<br>NO                               | 0.0234(14)<br>0.0238(12) | 0.0373(10)                  | 0.0300(17)               | 0.0042(12)   | 0.0082(13)               | 0.0062(12)   |
| INZ                                     | 0.0228(13)               | 0.0262(14)                  | 0.0191(13)               | -0.0004(10)  | 0.0044 (10)              | -0.0025(10)  |
| IN4                                     | 0.0203(12)               | 0.0209(13)                  | 0.0208(13)               | 0.0010(10)   | 0.0075 (10)              | -0.0011 (10) |
| N3                                      | 0.0203(13)               | 0.0245 (13)                 | 0.0224 (13)              | -0.0007(10)  | 0.0072 (10)              | -0.0007 (10) |
| CI                                      | 0.0217 (15)              | 0.0272 (15)                 | 0.0216 (15)              | -0.0007 (12) | 0.0093 (12)              | -0.0005 (12) |
| C2                                      | 0.0205 (15)              | 0.0292 (16)                 | 0.0209 (15)              | 0.0002 (12)  | 0.0100 (12)              | 0.0009 (12)  |
| C3                                      | 0.0228 (15)              | 0.0219 (14)                 | 0.0259 (16)              | 0.0010 (11)  | 0.0111 (12)              | 0.0013 (11)  |
| C4                                      | 0.0215 (15)              | 0.0262 (15)                 | 0.0226 (15)              | -0.0025 (12) | 0.0068 (12)              | -0.0020 (12) |
| C5                                      | 0.0177 (14)              | 0.0288 (16)                 | 0.0200 (15)              | 0.0016 (11)  | 0.0084 (12)              | 0.0028 (11)  |
| C6                                      | 0.0241 (15)              | 0.0224 (14)                 | 0.0279 (16)              | 0.0011 (12)  | 0.0110 (13)              | -0.0007 (12) |
| C7                                      | 0.0231 (15)              | 0.0260 (15)                 | 0.0248 (16)              | -0.0020 (12) | 0.0070 (12)              | -0.0022 (12) |
| C8                                      | 0.0217 (15)              | 0.0238 (15)                 | 0.0263 (16)              | -0.0017 (12) | 0.0034 (12)              | -0.0030 (12) |
| C9                                      | 0.0288 (16)              | 0.0286 (16)                 | 0.0163 (14)              | 0.0020 (12)  | 0.0042 (12)              | 0.0016 (11)  |
| C10                                     | 0.0250 (15)              | 0.0261 (15)                 | 0.0258 (16)              | -0.0004 (12) | 0.0107 (13)              | 0.0002 (12)  |
| C11                                     | 0.0264 (15)              | 0.0283 (15)                 | 0.0224 (15)              | 0.0005 (12)  | 0.0091 (13)              | -0.0020(12)  |
| C12                                     | 0.0260 (16)              | 0.0241 (15)                 | 0.0224 (15)              | 0.0005 (12)  | 0.0053 (13)              | 0.0017 (12)  |
| C13                                     | 0.0227(15)               | 0.0212(14)                  | 0.0220(15)               | 0.0009 (11)  | 0.0045(12)               | -0.0037(11)  |
| C14                                     | 0.0192(14)               | 0.0266 (15)                 | 0.0195 (15)              | 0.0004 (11)  | 0.0082(12)               | -0.0006(11)  |
| C15                                     | 0.0237(16)               | 0.0358(17)                  | 0.0253(16)               | 0.0012(13)   | 0.0055(13)               | -0.0023(13)  |
| C16                                     | 0.0204(15)               | 0.0320(16)                  | 0.0216(15)               | -0.0019(12)  | 0.0107(12)               | -0.0015(12)  |
| C17                                     | 0.0201(15)               | 0.0220(10)<br>0.0289(16)    | 0.0210(15)<br>0.0228(15) | -0.0019(12)  | 0.0107(12)               | -0.0015(12)  |
| C18                                     | 0.0217(15)<br>0.0228(15) | 0.0269(10)                  | 0.0220(15)<br>0.0235(15) | -0.0079(12)  | 0.0000(12)<br>0.0127(12) | -0.0010(12)  |
| C10                                     | 0.0220(15)<br>0.0207(16) | 0.0200(15)<br>0.0237(15)    | 0.0255(15)<br>0.0267(16) | -0.0029(12)  | 0.0127(12)               | -0.0010(11)  |
| $C_{19}$                                | 0.0237(10)               | 0.0237(13)                  | 0.0207(10)               | -0.0020(12)  | 0.0108(13)               | -0.0020(12)  |
| C20                                     | 0.0321(17)               | 0.0234 (10)                 | 0.0322 (18)              | 0.0049 (13)  | 0.0080 (14)              | 0.0034(13)   |
| Geor                                    | metric param             | eters (Å, °)                |                          |              |                          |              |
| S1_0                                    | 74                       | 1 444 (2)                   | С6—Н6                    |              | 0.9500                   |              |
| S1-0                                    | 3                        | 1.448(2)                    | С7—Н7                    |              | 0.9500                   |              |
| S1_1                                    | N2                       | 1.110(2)<br>1.626(3)        |                          | )            | 1 404 (4)                |              |
| S1_(                                    | 713                      | 1.020(3)<br>1.759(3)        |                          |              | 1.101(1)<br>1.404(4)     |              |
| 01                                      | C1                       | 1.755(5)                    | $C_0 - C_1$              | I            | 1.388 (4)                |              |
| 01 - 02                                 | C1                       | 1.256 (4)                   | С9—СП                    | L            | 0.0500                   |              |
| 02 - 02 - 02 - 02 - 02 - 02 - 02 - 02 - | Ц32                      | 1.290 (4)                   | $C_{10}$                 | 2            | 1.388(4)                 |              |
| 02-1                                    | C5                       | 1.00(0)<br>1.371(4)         | C10 U                    | 12           | 0.0500                   |              |
| 05                                      | C20                      | 1.371(4)                    |                          | 10           | 0.9300<br>1 202 (4)      |              |
| N1 (                                    | C20                      | 1.434(4)<br>1.269(4)        |                          | 13           | 0.0500                   |              |
|                                         |                          | 1.300(4)                    |                          | 11           | 0.9300                   |              |
|                                         | HJUA                     | 0.87(5)                     |                          | 13           | 1.376 (4)                |              |
|                                         | H30B                     | 0.82(5)                     | C12—H1                   | 12           | 0.9500                   |              |
| N2-0                                    | C14                      | 1.356 (4)                   |                          | 16           | 1.498 (4)                |              |
| N4—(                                    |                          | 1.338 (4)                   | С15—Н                    | ISA          | 0.9800                   |              |
| N4—0                                    | C16                      | 1.355 (4)                   | C15—H1                   | 158          | 0.9800                   |              |
| N3—0                                    | C18                      | 1.357 (4)                   | C15—H1                   | 15C          | 0.9800                   |              |
| N3—0                                    | C14                      | 1.359 (4)                   | C16—C1                   | 7            | 1.401 (4)                |              |
| N3—1                                    | H31                      | 1.04 (5)                    | C17—C1                   | 8            | 1.371 (4)                |              |
| C1—0                                    | C2                       | 1.484 (4)                   | C17—H1                   | 17           | 0.9500                   |              |
| C2—0                                    | C7                       | 1.389 (4)                   | C18—C1                   | 9            | 1.499 (4)                |              |
| C2—0                                    | C3                       | 1.401 (4)                   | C19—H1                   | 19A          | 0.9800                   |              |
| C3—(                                    | C4 ·                     | 1.383 (4)                   | C19—H1                   | 19B          | 0.9800                   |              |

| С3—Н3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9500                   | C19—H19C                     | 0.9800            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------|-------------------|
| C4—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.398 (4)                | C20—H20A                     | 0.9800            |
| C4—H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9500                   | C20—H20B                     | 0.9800            |
| C5—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.394 (4)                | C20—H20C                     | 0.9800            |
| C6—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.389 (4)                |                              |                   |
| 04—\$1—03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 116.87 (15)              | C12—C10—C8                   | 120.3 (3)         |
| 04 - 81 - N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 110.87 (13)              | $C_{12}$ $-C_{10}$ $-H_{10}$ | 119.9             |
| 03 - 81 - N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 103.09(13)               | C8 - C10 - H10               | 119.9             |
| 04 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - | 106.48 (14)              | C9-C11-C13                   | 119.9(3)          |
| 03 - 1 - 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 108.10(11)<br>108.57(14) | C9-C11-H11                   | 120.0             |
| $N_2 = S_1 = C_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100.57(14)<br>110.06(13) | C13_C11_H11                  | 120.0             |
| 112 - 31 - 013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 110.90(15)               | $C_{13}$ $C_{12}$ $C_{10}$   | 120.0<br>120.7(3) |
| C1 = 02 = 1132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 113(3)<br>1172(3)        | C13 - C12 - C10              | 120.7(3)          |
| $C_{3} = 0_{3} = 0_{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 117.2(2)<br>117(2)       | C10 C12 H12                  | 119.7             |
| $C_{0}$ N1 H20D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 117(3)<br>116(2)         | $C_{10} - C_{12} - C_{11}$   | 119.7<br>120.0(2) |
| $C_0 = N_1 = H_2 O D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 110(3)                   | C12 - C13 - C11              | 120.0(3)          |
| $H_{30A}$ $N_{1}$ $H_{30B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 107(5)                   | C12C13S1                     | 120.9(2)          |
| C14 NA $C14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 122.9 (2)                | CII = CI3 = SI               | 119.0(2)          |
| C14—N4—C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 116.9 (3)                | N4 - C14 - N2                | 122.0(3)          |
| C18—N3—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.7 (3)                | N4— $C14$ — $N3$             | 123.1 (3)         |
| C18—N3—H31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 123 (3)                  | N2-C14-N3                    | 114.9 (3)         |
| C14—N3—H31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 116 (3)                  | CI6—CI5—HI5A                 | 109.5             |
| 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 123.0 (3)                | CI6—CI5—HI5B                 | 109.5             |
| 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 120.0 (3)                | HI5A—CI5—HI5B                | 109.5             |
| 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 116.9 (3)                | C16—C15—H15C                 | 109.5             |
| C7—C2—C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.4 (3)                | H15A—C15—H15C                | 109.5             |
| C7—C2—C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.2 (3)                | HISB—CIS—HISC                | 109.5             |
| C3—C2—C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 121.4 (3)                | N4—C16—C17                   | 122.0 (3)         |
| C4—C3—C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.2 (3)                | N4—C16—C15                   | 116.0 (3)         |
| С4—С3—Н3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.9                    | C17—C16—C15                  | 122.0 (3)         |
| С2—С3—Н3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.9                    | C18—C17—C16                  | 118.9 (3)         |
| C3—C4—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.8 (3)                | C18—C17—H17                  | 120.5             |
| C3—C4—H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.1                    | C16—C17—H17                  | 120.5             |
| С5—С4—Н4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.1                    | N3—C18—C17                   | 118.4 (3)         |
| O5—C5—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 124.2 (3)                | N3—C18—C19                   | 116.7 (3)         |
| O5—C5—C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 115.3 (3)                | C17—C18—C19                  | 125.0 (3)         |
| C6—C5—C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.5 (3)                | C18—C19—H19A                 | 109.5             |
| C7—C6—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.0 (3)                | C18—C19—H19B                 | 109.5             |
| С7—С6—Н6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.5                    | H19A—C19—H19B                | 109.5             |
| С5—С6—Н6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.5                    | C18—C19—H19C                 | 109.5             |
| C6—C7—C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 121.0 (3)                | H19A—C19—H19C                | 109.5             |
| C6—C7—H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.5                    | H19B—C19—H19C                | 109.5             |
| C2—C7—H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.5                    | O5—C20—H20A                  | 109.5             |
| N1—C8—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.7 (3)                | O5—C20—H20B                  | 109.5             |
| N1—C8—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.8 (3)                | H20A—C20—H20B                | 109.5             |
| C10C8C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 118.4 (3)                | O5—C20—H20C                  | 109.5             |
| C11—C9—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.7 (3)                | H20A—C20—H20C                | 109.5             |
| С11—С9—Н9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.7                    | H20B—C20—H20C                | 109.5             |
| С8—С9—Н9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.7                    |                              |                   |
| O4—S1—N2—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -63.4 (3)                | C10—C12—C13-—C11             | -1.9 (5)          |
| O3—S1—N2—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 170.8 (2)                | C10-C12-C13-S1               | 174.2 (2)         |
| C13—S1—N2—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 54.8 (3)                 | C9—C11—C13—C12               | 1.7 (4)           |
| 01—C1—C2—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0 (4)                  | C9-C11-C13-S1                | -174.5 (2)        |
| O2—C1—C2—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 179.2 (3)                | O4—S1—C13—C12                | -170.4 (2)        |
| 01—C1—C2—C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -178.8 (3)               | O3—S1—C13—C12                | -43.8 (3)         |
| O2—C1—C2—C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.4 (4)                  | N2—S1—C13—C12                | 68.8(3)           |

| C7—C2—C3—C4    | 0.4 (4)    | O4—S1C13—C11    | 5.7(3)     |
|----------------|------------|-----------------|------------|
| C1—C2—C3—C4    | 179.2 (3)  | O3—S1—C13—C11   | 132.4 (2)  |
| C2—C3—C4—C5    | -1.1 (4)   | N2—S1—C13—C11   | -115.0 (2) |
| C20—O5—C5—C6   | -4.7 (4)   | C16—N4—C14—N2   | -175.5 (3) |
| C20—O5—C5—C4   | 175.2 (3)  | C16—N4—C14—N3   | 1.8 (4)    |
| C3—C4—C5—O5    | -178.9 (3) | S1-N2C14-N4     | -15.6 (4)  |
| C3—C4—C5—C6    | 1.0 (4)    | S1—N2—C14—N3    | 166.9 (2)  |
| O5—C5—C6—C7    | 179.7 (3)  | C18             | -0.4 (4)   |
| C4—C5—C6—C7    | -0.1 (4)   | C18—N3—C14—N2   | 177.1 (3)  |
| C5—C6—C7—C2    | -0.6 (5)   | C14—N4—C16—C17  | -1.5 (4)   |
| C3—C2—C7—C6    | 0.4 (4)    | C14—N4—C16—C15  | 177.2 (3)  |
| C1—C2—C7—C6    | -178.4 (3) | N4—C16—C17—C18  | -0.3 (4)   |
| N1-C8-C9-C11   | 178.2 (3)  | C15—C16—C17—C18 | -178.9 (3) |
| C10C8C9C11     | 0.6 (4)    | C14N3C18C17     | -1.5 (4)   |
| N1-C8-C10-C12  | -178.4 (3) | C14N3C18C19     | 178.4 (3)  |
| C9C8C10C12     | -0.8 (4)   | C16—C17—C18—N3  | 1.7 (4)    |
| C8—C9—C11—C13  | -1.1 (5)   | C16—C17—C18—C19 | -178.1 (3) |
| C8-C10-C12-C13 | 1.5 (5)    |                 |            |

Hydrogen-bond geometry (Å, °)

| D—H···A                                                                   | D—H      | $\mathbf{H} \cdots \mathbf{A}$ | $D \cdots A$ | D—H··· $A$ |  |  |
|---------------------------------------------------------------------------|----------|--------------------------------|--------------|------------|--|--|
| N1—H30A····O3i                                                            | 0.87(5)  | 2.27 (5)                       | 3.072 (4)    | 153 (4)    |  |  |
| N1—H30 <i>B</i> ····O4ii                                                  | 0.82 (5) | 2.19 (5)                       | 2.964 (4)    | 157 (4)    |  |  |
| N3—H31…O1                                                                 | 1.04 (5) | 1.69 (5)                       | 2.726 (3)    | 173 (5)    |  |  |
| O2—H32⋯N2                                                                 | 1.06 (6) | 1.67 (6)                       | 2.727 (3)    | 180 (6)    |  |  |
| Symmetry codes: (i) $x-1$ , $-y+3/2$ , $z-1/2$ , (ii) $x-1$ , $y$ , $z$ . |          |                                |              |            |  |  |

.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.



Figure S.15: Crystal Structure of the Cocrystal of Sulfamethazine and p-Hydroxybenzoic Acid Showing Thermal Parameters (50% Thermal Ellipsoids) and Hydrogen Bonding.

### Crystal data

| $C_{12}H_{14}N_4O_2S \cdot C_7H_6O_3$ |
|---------------------------------------|
| $M_r = 416.45$                        |
| Triclinic, P                          |
| <i>a</i> = 7.9730 (5) Å               |
| <i>b</i> = 9.3867 (6) Å               |
| c = 13.2673 (9) Å                     |
| $\alpha = 74.041 (3)^{\circ}$         |
| $\beta = 75.846 \ (2)^{\circ}$        |
| $\gamma = 85.704 \ (2)^{\circ}$       |
| $V = 925.65 (11) \text{ Å}^3$         |
| Z=2                                   |
| F(000) = 436                          |

 $D_x = 1.494 \text{ Mg m}^{-3}$ Melting point: 492-494 K Cu K $\alpha$  radiation,  $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9940 reflections  $\theta = 3.6-68.2^{\circ}$  $\mu = 1.92 \text{ mm}^{-1}$ T = 100 KBlocks, colourless  $0.41 \times 0.39 \times 0.23 \text{ mm}$ 

| 3305 independent reflections                               |
|------------------------------------------------------------|
| 3226 reflections with $I > 2\sigma(I)$                     |
| $R_{\rm int} = 0.044$                                      |
| $\theta_{max} = 68.2^{\circ},  \theta_{min} = 3.6^{\circ}$ |
| h = -9  9                                                  |
| k = -11 11                                                 |
| <i>l</i> = -15 15                                          |
|                                                            |

## Refinement

.

Refinement on  $F^2$ Least-squares matrix: full

| Least-squares matrix: full      | Hydrogen site location: mixed                                                       |
|---------------------------------|-------------------------------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.037$ | H atoms treated by a mixture of independent and constrained refinement              |
| $wR(F^2) = 0.110$               | $w = 1/[\sigma^2(F_o^2) + (0.0668P)^2 + 0.7096P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| <i>S</i> = 1.06                 | $(\Delta/\sigma)_{\rm max} = 0.005$                                                 |
| 3305 reflections                | $\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$                           |
| 284 parameters                  | $\Delta \rho_{\rm min} = -0.60 \ {\rm e} \ {\rm \AA}^{-3}$                          |
| 5 restraints                    | Extinction correction: none                                                         |
| 0 constraints                   |                                                                                     |

<u>Fractional atomic coordinates and isotropic or equivalent isotropic displacement</u> parameters  $(Å^2)$ 

|            | x             | у            | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ |
|------------|---------------|--------------|---------------|-----------------------------|
| <b>S</b> 1 | 0.47674 (5)   | 0.60053 (4)  | 0.28248 (3)   | 0.00969 (14)                |
| 01         | 0.81394 (16)  | 0.51973 (14) | -0.04807 (10) | 0.0163 (3)                  |
| O2         | 0.77103 (17)  | 0.70903 (15) | 0.02895 (11)  | 0.0188 (3)                  |
| H32        | 0.695 (3)     | 0.651 (3)    | 0.0751 (19)   | 0.041 (8)*                  |
| 03         | 0.55062 (15)  | 0.74759 (13) | 0.23814 (10)  | 0.0146 (3)                  |
| O4         | 0.54280 (15)  | 0.50671 (13) | 0.37161 (10)  | 0.0135 (3)                  |
| · O5       | 1.34986 (16)  | 0.98763 (14) | -0.38809 (10) | 0.0160 (3)                  |
| H33        | 1.336 (3)     | 1.0799 (19)  | -0.399 (2)    | 0.031 (7)*                  |
| N1         | -0.27172 (18) | 0.70978 (17) | 0.45471 (12)  | 0.0129 (3)                  |
| H30A       | -0.298 (3)    | 0.695 (2)    | 0.5244 (13)   | 0.014 (5)*                  |
| H30B       | -0.335 (3)    | 0.658 (2)    | 0.4340 (18)   | 0.019 (5)*                  |
| N2         | 0.51175 (18)  | 0.53113 (16) | 0.18059 (11)  | 0.0112 (3)                  |
| N3         | 0.56260 (18)  | 0.33590 (16) | 0.10565 (12)  | 0.0110 (3)                  |
| H31        | 0.634 (3)     | 0.397 (2)    | 0.0543 (15)   | 0.017 (5)*                  |
| Ň4         | 0.37057 (18)  | 0.29949 (16) | 0.27730 (12)  | 0.0115 (3)                  |
| C1         | 0.8498 (2)    | 0.6454 (2)   | -0.04791 (14) | 0.0134 (4)                  |
| C2         | 0.9830 (2)    | 0.73810 (19) | -0.13410 (14) | 0.0124 (4)                  |
| C3         | 1.0090 (2)    | 0.8864 (2)   | -0.13867 (14) | 0.0145 (4)                  |
| H3         | 0.9422        | 0.9286       | -0.0841       | 0.017*                      |
| C4         | 1.1315 (2)    | 0.9717 (2)   | -0.22234 (15) | 0.0155 (4)                  |
| H4         | 1.1493        | 1.0715       | -0.2244       | 0.019*                      |

| C5   | 1.2291 (2)  | 0.9105 (2)   | -0.30387 (14) | 0.0129 (4) |
|------|-------------|--------------|---------------|------------|
| C6   | 1.2054 (2)  | 0.7617 (2)   | -0.29867 (14) | 0.0131 (4) |
| H6   | 1.2730      | 0.7192       | -0.3528       | 0.016*     |
| C7   | 1.0833 (2)  | 0.67679 (19) | -0.21437 (14) | 0.0137 (4) |
| H7   | 1.0677      | 0.5762       | -0.2112       | 0.016*     |
| C8   | -0.0957 (2) | 0.67966 (18) | 0.41440 (14)  | 0.0117 (3) |
| C9   | -0.0418 (2) | 0.65015 (19) | 0.31313 (14)  | 0.0131 (4) |
| H9   | -0.1245     | 0.6495       | 0.2725        | 0.016*     |
| C10  | 0.1316 (2)  | 0.62187 (19) | 0.27174 (14)  | 0.0123 (3) |
| H10  | 0.1675      | 0.6020       | 0.2032        | 0.015*     |
| C11  | 0.2523 (2)  | 0.62301 (18) | 0.33210 (14)  | 0.0112 (3) |
| C12  | 0.2005 (2)  | 0.65271 (18) | 0.43294 (14)  | 0.0123 (4) |
| H12  | 0.2835      | 0.6536       | 0.4733        | 0.015*     |
| C13  | 0.0273 (2)  | 0.68082 (18) | 0.47380 (14)  | 0.0129 (4) |
| H13  | -0.0080     | 0.7009       | 0.5423        | 0.015*     |
| C14  | 0.4779 (2)  | 0.38750 (19) | 0.19190 (13)  | 0.0100 (3) |
| C15  | 0.6494 (2)  | 0.1498 (2)   | 0.00466 (15)  | 0.0164 (4) |
| H15A | 0.5902      | 0.1843       | -0.0544       | 0.025*     |
| H15B | 0.6610      | 0.0417       | 0.0221        | 0.025*     |
| H15C | 0.7645      | 0.1943       | -0.0173       | 0.025*     |
| C16  | 0.5464 (2)  | 0.19462 (19) | 0.10202 (14)  | 0.0123 (4) |
| C17  | 0.4368 (2)  | 0.10319 (19) | 0.18733 (14)  | 0.0132 (4) |
| H17  | 0.4197      | 0.0039       | 0.1877        | 0.016*     |
| C18  | 0.3498 (2)  | 0.15942 (19) | 0.27448 (14)  | 0.0121 (4) |
| C19  | 0.2285 (2)  | 0.06184 (19) | 0.36823 (14)  | 0.0152 (4) |
| H19A | 0.2637      | 0.0575       | 0.4348        | 0.023*     |
| H19B | 0.2317      | -0.0381      | 0.3584        | 0.023*     |
| H19C | 0.1107      | 0.1022       | 0.3729        | 0.023*     |

# Atomic displacement parameters (Å<sup>2</sup>)

|            | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$     | $U^{13}$      | $U^{23}$      |
|------------|------------|------------|------------|--------------|---------------|---------------|
| <b>S</b> 1 | 0.0081 (2) | 0.0090 (2) | 0.0117 (2) | 0.00008 (15) | -0.00031 (16) | -0.00415 (17) |
| 01         | 0.0157 (6) | 0.0162 (6) | 0.0152 (7) | -0.0047 (5)  | 0.0012 (5)    | -0.0042 (5)   |
| 02         | 0.0186 (7) | 0.0169 (7) | 0.0161 (7) | -0.0036 (5)  | 0.0067 (5)    | -0.0053 (6)   |
| 03         | 0.0131 (6) | 0.0109 (6) | 0.0189 (7) | -0.0019 (5)  | 0.0002 (5)    | -0.0054 (5)   |
| .04        | 0.0111 (6) | 0.0152 (6) | 0.0151 (7) | 0.0021 (5)   | -0.0030 (5)   | -0.0060 (5)   |
| 05         | 0.0155 (6) | 0.0126 (6) | 0.0136 (7) | -0.0006 (5)  | 0.0024 (5)    | 0.0020'(5)    |
| N1         | 0.0104 (7) | 0.0148 (7) | 0.0129 (8) | -0.0006 (6)  | -0.0005 (6)   | -0.0045 (6)   |
| N2         | 0.0114 (7) | 0.0093 (7) | 0.0116 (7) | -0.0002 (5)  | 0.0004 (5)    | -0.0033 (6)   |
| N3         | 0.0106 (7) | 0.0101 (7) | 0.0108 (7) | -0.0005 (5)  | -0.0004 (5)   | -0.0020 (6)   |
| N4         | 0.0093 (7) | 0.0113 (7) | 0.0141 (7) | 0.0004 (5)   | -0.0023 (5)   | -0.0044 (6)   |
| C1         | 0.0104 (8) | 0.0162 (9) | 0.0145 (9) | 0.0015 (7)   | -0.0042 (7)   | -0.0047 (7)   |
| C2         | 0.0107 (8) | 0.0136 (8) | 0.0109 (8) | -0.0003 (6)  | -0.0022 (6)   | -0.0004 (7)   |
| C3         | 0.0135 (8) | 0.0146 (9) | 0.0143 (9) | 0.0025 (7)   | -0.0008 (7)   | -0.0048 (7)   |
| C4         | 0.0152 (8) | 0.0122 (8) | 0.0188 (9) | 0.0015 (7)   | -0.0028 (7)   | -0.0051 (7)   |

| C5   | 0.0095 (8)   | 0.0157 (9)    | 0.0103 | (8)  | 0.0012 (6)  | - | -0.0024 (6) | 0.0 | 017 (7)   |
|------|--------------|---------------|--------|------|-------------|---|-------------|-----|-----------|
| C6   | 0.0113 (8)   | 0.0155 (9)    | 0.0128 | (9)  | 0.0029 (6)  | - | -0.0018 (6) | -0. | .0056 (7) |
| C7   | 0.0130 (8)   | 0.0127 (8)    | 0.0166 | (9)  | 0.0015 (6)  | - | -0.0049 (7) | -0. | .0047 (7) |
| C8   | 0.0118 (8)   | 0.0062 (7)    | 0.0148 | (9)  | -0.0003 (6) | - | -0.0011 (7) | -0. | .0005 (7) |
| C9   | 0.0130 (8)   | 0.0121 (8)    | 0.0142 | (9)  | -0.0003 (6) | - | -0.0045 (7) | -0. | 0025 (7)  |
| C10  | 0.0134 (8)   | 0.0115 (8)    | 0.0114 | (8)  | 0.0001 (6)  | - | -0.0013 (6) | -0. | .0037 (7) |
| C11  | 0.0086 (8)   | 0.0089 (8)    | 0.0143 | (9)  | 0.0004 (6)  | ( | 0.0002 (6)  | -0. | .0029 (7) |
| C12  | 0.0122 (8)   | 0.0108 (8)    | 0.0138 | (9)  | -0.0007 (6) | - | -0.0025 (6) | -0. | .0035 (7) |
| C13  | 0.0139 (8)   | 0.0107 (8)    | 0.0141 | (9)  | 0.0010 (6)  | - | -0.0014 (7) | -0. | .0053 (7) |
| C14  | 0.0084 (7)   | 0.0106 (8)    | 0.0109 | (8)  | 0.0017 (6)  | - | -0.0034 (6) | -0. | 0019 (7)  |
| C15  | 0.0173 (9)   | 0.0156 (9)    | 0.0177 | (9)  | 0.0026 (7)  | - | -0.0024 (7) | -0. | 0092 (8)  |
| C16  | 0.0113 (8)   | 0.0130 (8)    | 0.0145 | (9)  | 0.0032 (6)  | - | -0.0055 (7) | -0. | .0055 (7) |
| C17  | 0.0148 (8)   | 0.0088 (8)    | 0.0163 | (9)  | 0.0006 (6)  | - | -0.0043 (7) | -0. | .0032 (7) |
| C18  | 0.0100 (8)   | 0.0116 (8)    | 0.0152 | (9)  | 0.0021 (6)  | _ | -0.0051 (7) | -0. | 0029 (7)  |
| C19  | 0.0165 (9)   | 0.0114 (8)    | 0.0152 | (9)  | -0.0027(7)  | _ | -0.0001 (7) | -0. | .0017 (7) |
|      |              |               |        | (- ) |             |   |             | -   |           |
| Geor | netric paran | neters (Å, °) |        |      |             |   |             |     |           |
| S1—0 | 03           | 1.4506 (      | 12)    | С5—  | -C6         |   | 1.404 (2)   |     |           |
| S1—0 | 04           | 1.4539 (      | 13)    | C6—  | -C7         |   | 1.389 (3)   |     |           |
| S11  | N2           | 1.6132 (      | 14)    | C6—  | -H6         |   | 0.9500      |     |           |
| S1—0 | 211          | 1.7677 (      | 16)    | C7—  | -H7         |   | 0.9500      |     |           |
| 01—  | C1           | 1.235 (2)     | )      | C8—  | -C13        |   | 1.403 (2)   |     |           |
| O2—0 | C1           | 1.325 (2)     | )      | C8—  | -C9         |   | 1.404 (2)   |     |           |
| O2—2 | H32          | 0.850 (1'     | 7)     | С9—  | -C10        |   | 1.392 (2)   |     |           |
| 05—0 | C5           | 1.354 (2)     | )      | С9—  | -H9         |   | 0.9500      |     |           |
| O5—1 | H33          | 0.842 (1      | 7)     | C10- | C11         |   | 1.396 (2)   |     |           |
| N1—  | C8           | 1.412 (2)     | )      | C10- | -H10        |   | 0.9500      |     |           |
| N1—1 | H30A         | 0.870 (10     | 6)     | C11- | C12         |   | 1.398 (2)   |     |           |
| N1—1 | H30B         | 0.862 (10     | 6)     | C12- | C13         |   | 1.388 (2)   |     |           |
| N2—0 | C14          | 1.355 (2)     | )      | C12- | -H12        |   | 0.9500      |     |           |
| N3—0 | C16          | 1.357 (2)     | )      | C13- | -H13        |   | 0.9500      |     |           |
| N3—0 | C14          | 1.370 (2)     | )      | C15- | C16         |   | 1.499 (2)   |     |           |
| N3—1 | H31          | 0.874 (10     | 6)     | C15- | -H15A       |   | 0.9800      |     |           |
| N4—0 | C14          | 1.347 (2)     | )      | C15- | -H15B       |   | 0.9800      |     |           |
| N4—0 | C18          | 1.349 (2)     | )      | C15- | -H15C       |   | 0.9800      |     |           |
| C1—0 | C2           | 1.480 (2)     | )      | C16- | C17         |   | 1.370 (3)   |     |           |
| C2—0 | C7           | 1.399 (2)     | )      | C17- | C18         |   | 1.409 (2)   |     |           |
| C2—0 | C3           | 1.405 (2)     | )      | C17- | -H17        |   | 0.9500      |     |           |
| C3—0 | C4           | 1.388 (3)     | )      | C18- | C19         |   | 1.496 (2)   |     |           |
| C3—I | H3           | 0.9500        |        | C19- | -H19A       |   | 0.9800      |     |           |
| C4—0 | C5           | 1.403 (2)     | )      | C19- | -H19B       |   | 0.9800      |     |           |
| C4—I | H4           | 0.9500        |        | C19- | -H19C       |   | 0.9800      |     |           |
| O3—9 | S1—O4        | 115.25 (      | 7)     | C10- | C9C8        |   | 120.65 (16) |     |           |
| 03—9 | S1—N2        | 104.40 (      | 7)     | C10- | —С9—Н9      |   | 119.7       |     |           |
| 04—9 | S1—N2        | 112.56 (      | 7)     | C8—  | -С9—Н9      |   | 119.7       |     |           |
| 03—9 | S1—C11       | 107.19 (*     | 7)     | С9—  | -C10C11     |   | 119.28 (16) |     |           |
| 04—9 | S1—C11       | 106.91 (      | 8)     | С9—  | -C10H10     |   | 120.4       |     |           |
| N2—3 | S1—C11       | 110.42 (      | 8)     | C11- | C10H10      |   | 120.4       |     |           |
| C1—0 | O2—H32       | 109.6 (19     | 9)     | C10- | C11C12      |   | 120.69 (15) |     |           |

| С5—О5—Н33                     | 112.4 (18)               | C10-C11-S1                        | 122.48 (13)              |
|-------------------------------|--------------------------|-----------------------------------|--------------------------|
| C8—N1—H30A                    | 112.3 (14)               | C12—C11—S1                        | 116.69 (13)              |
| C8—N1—H30B                    | 109.1 (15)               | C13—C12—C11                       | 119.76 (16)              |
| H30A—N1—H30B                  | 112 (2)                  | C13-C12-H12                       | 120.1                    |
| C14—N2—S1                     | 122.01 (12)              | C11—C12—H12                       | 120.1                    |
| C16—N3—C14                    | 122.51 (15)              | C12—C13—C8                        | 120.31 (16)              |
| C16—N3—H31                    | 121.0 (15)               | C12-C13-H13                       | 119.8                    |
| C14—N3—H31                    | 116.3 (15)               | C8-C13-H13                        | 119.8                    |
| C14—N4—C18                    | 117.56 (15)              | N4—C14—N2                         | 125.40 (15)              |
| 01—C1—O2                      | 122.80 (16)              | N4—C14—N3                         | 120.95 (15)              |
| 01—C1—C2                      | 122.80 (16)              | N2—C14—N3                         | 113.64 (15)              |
| O2-C1-C2                      | 114.40 (15)              | C16-C15-H15A                      | 109.5                    |
| C7—C2—C3                      | 119.25 (16)              | C16-C15-H15B                      | 109.5                    |
| C7—C2—C1                      | 118.84 (16)              | H15A—C15—H15B                     | 109.5                    |
| C3—C2—C1                      | 121.89 (16)              | C16-C15-H15C                      | 109.5                    |
| C4—C3—C2                      | 120.49 (16)              | H15A—C15—H15C                     | 109.5                    |
| С4—С3—Н3                      | 119.8                    | H15B-C15-H15C                     | 109.5                    |
| С2—С3—Н3                      | 119.8                    | N3—C16—C17                        | 117.74 (15)              |
| C3—C4—C5                      | 120.00 (16)              | N3-C16-C15                        | 117.62 (16)              |
| C3—C4—H4                      | 120.0                    | C17-C16-C15                       | 124.64 (16)              |
| C5—C4—H4                      | 120.0                    | C16—C17—C18                       | 118.62 (16)              |
| O5—C5—C4                      | 123.07 (16)              | C16—C17—H17                       | 120.7                    |
| O5—C5—C6                      | 117.25 (15)              | C18—C17—H17                       | 120.7                    |
| C4—C5—C6                      | 119.66 (16)              | N4—C18—C17                        | 122.61 (16)              |
| C7—C6—C5                      | 120.02 (16)              | N4—C18—C19                        | 117.84 (15)              |
| С7—С6—Н6                      | 120.0                    | C17—C18—C19                       | 119.55 (15)              |
| С5—С6—Н6                      | 120.0                    | C18-C19-H19A                      | 109.5                    |
| C6—C7—C2                      | 120.56 (16)              | C18—C19—H19B                      | 109.5                    |
| С6—С7—Н7                      | 119.7                    | H19A—C19—H19B                     | 109.5                    |
| С2—С7—Н7                      | 119.7                    | C18—C19—H19C                      | 109.5                    |
| $C_{13} - C_{8} - C_{9}$      | 119 31 (15)              | H19A—C19—H19C                     | 109.5                    |
| C13 - C8 - N1                 | 120 73 (15)              | H19B—C19—H19C                     | 109.5                    |
| C9 - C8 - N1                  | 119.95 (15)              |                                   | 10710                    |
| $O_2 = S_1 = N_2 = C_1 A$     | 172.60 (12)              | N2 S1 C11 C10                     | -17 24 (17)              |
| 03 - 51 - N2 - C14            | 1/2.00(13)               | $N_2 = S1 = C11 = C10$            | -17.24(17)<br>-70.75(14) |
| $C_{11} = S_1 = N_2 = C_{14}$ | -72.40(15)               | 03 - 31 - 011 - 012               | 73.75(14)                |
| C11 - 31 - N2 - C14           | -5.6(3)                  | $N_{2} = S_{1} = C_{11} = C_{12}$ | 167 12 (12)              |
| 01 - 01 - 02 - 07             | 3.0(3)                   | $N_2 = 31 = 011 = 012$            | 107.12(12)               |
| 02-01-02-07                   | 174.92(15)<br>173.02(16) | C10-C11-C12-C13                   | 0.2(3)                   |
| 01 - C1 - C2 - C3             | -64(2)                   | SI = CII = CI2 = CI3              | 1/3.38(13)               |
| 02-01-02-03                   | -0.4(2)                  | C11 - C12 - C13 - C0              | -0.2(3)                  |
| $C_1 = C_2 = C_3 = C_4$       | 179.07(16)               | $C_{9} = C_{0} = C_{13} = C_{12}$ | -0.2(3)                  |
| C1 - C2 - C3 - C4             | -1/8.0/(10)              | $NI = C_0 = C_{13} = C_{12}$      | -1/9.27(13)              |
| $C_2 - C_3 - C_4 - C_5$       | 0.8(3)                   | C18 - N4 - C14 - N2               | 1/8.98 (13)              |
| $C_3 - C_4 - C_5 - 0_5$       | 1/9.59 (15)              | C18—N4— $C14$ —N3                 | =0.1(2)                  |
| C3C4C5C6                      | -1.8 (3)                 | $S_1 - N_2 - C_1 4 - N_4$         | 20.1 (2)                 |
| US-US-U6-U7                   | -179.88 (15)             | SI - N2 - CI4 - N3                | -160.77 (12)             |
| C4—C5—C6—C7                   | 1.4 (3)                  | C16 - N3 - C14 - N4               | -1.3 (2)                 |
| C5—C6—C7—C2                   | 0.0 (3)                  | C16—N3—C14—N2                     | 179.55 (14)              |
| C3—C2—C7—C6                   | -1.0 (3)                 | C14—N3—C16—C17                    | 1.9 (2)                  |

.

~

•

.

| C1—C2—C7—C6                | 177.74 (15)    | C14N3C         | C16-C15                       | -178.32   | (15)           |
|----------------------------|----------------|----------------|-------------------------------|-----------|----------------|
| C13C8C9C10                 | 0.2 (3)        | N3-C16-C       | C17—C18                       | -1.1 (2)  |                |
| N1-C8-C9-C10               | 179.28 (15)    | C15—C16—       | C17—C18                       | 179.07 (  | 15)            |
| C8C9C10C11                 | 0.0 (3)        | C14N4C         | C18—C17                       | 0.8(2)    |                |
| C9C10C11C12                | -0.2 (3)       | C14N4C         | C18—C19                       | -178.99   | (14)           |
| C9-C10-C11-S1              | -175.71 (13)   | C16-C17-       | C18—N4                        | -0.2 (3)  |                |
| O3—S1—C11—C10              | 95.90 (15)     | C16C17-        | C18C19                        | 179.61 (1 | 15)            |
| O4S1C11C10                 | -139.99 (14)   |                |                               |           |                |
| Hydrogen-bond geon         | netry (Å, °)   |                | τ                             |           |                |
| $D - H \cdots A$           | <i>D</i> —H    | $H \cdots A$   | D··                           | $\cdot A$ | D— $H$ ··· $A$ |
| N1—-H30A ··· O4ii          | 0.87 (         | 2) 2.66 (      | 2) 3.12                       | 238 (19)  | 114 (2)        |
| N1H30A…N4ii                | 0.87 (         | 2) 2.57 (      | 2) 3.42                       | 26 (2)    | 170 (2)        |
| N1H30 <i>B</i> ····S1iii   | 0.86 (         | 2) 2.96 (      | 2) 3.75                       | 593 (16)  | 154 (2)        |
| N1—H30 <i>B</i> ····O4iii  | 0.86 (         | 2) 2.21 (      | 2) 3.00                       | 677 (19)  | 171 (2)        |
| N3—H31…O1                  | 0.87 (         | 2) 1.91 (      | 2) 2.78                       | 815 (19)  | 172 (2)        |
| O2—-H32…S1                 | 0.85 (         | 2) 2.81 (      | 2) 3.53                       | 315 (13)  | 144 (2)        |
| O2H32····O3                | 0.85 (         | 2) 2.56 (      | 3) 2.99                       | 989 (18)  | 113 (2)        |
| O2−−H32···N2               | 0.85 (         | 2) 1.93 (      | 2) 2.78                       | 830 (19)  | 176 (3)        |
| O5—H33…N1i                 | 0.84 (         | 2) 1.98 (      | 2) 2.80                       | 04 (2)    | 164 (2)        |
| Symmetry codes: (i) $-x+1$ | 1,y+2,z; (ii)x | z, -y+1, -z+1; | (iii) <i>x</i> −1, <i>y</i> , | Ζ.        |                |

.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.



Figure S.16: Crystal Structure of the Cocrystal of Sulfamethazine and p-Ethylbenzoic Acid Showing Thermal Parameters (50% Thermal Ellipsoids) and Hydrogen Bonding.

#### Crystal data

 $C_{12}H_{14}N_4O_2S \cdot C_9H_{10}O_2$   $M_r = 428.50$ Monoclinic,  $P2_1$  a = 7.5193 (4) Å b = 13.1705 (7) Å c = 11.3736 (6) Å  $\beta = 108.609$  (3)° V = 1067.47 (10) Å<sup>3</sup> Z = 2F(000) = 452

 $D_x = 1.333 \text{ Mg m}^{-3}$ Melting point: 468-471 K Cu K $\alpha$  radiation,  $\lambda = 1.54178 \text{ Å}$ Cell parameters from 8427 reflections  $\theta = 4.1-68.4^{\circ}$  $\mu = 1.65 \text{ mm}^{-1}$ T = 100 KPlates, colourless  $\times \times \text{mm}$ 

#### Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Detector resolution: 8.33 pixels mm<sup>-1</sup> phi and  $\omega$  scans Absorption correction: multi-scan SADABS2014/7, Bruker AXS  $T_{min} = 0.637$ ,  $T_{max} = 0.753$ 

3837 independent reflections 3711 reflections with  $I > 2\sigma(I)$   $R_{int} = 0.034$   $\theta_{max} = 68.2^{\circ}, \theta_{min} = 4.1^{\circ}$  h = -9 9 k = -15 15

| ת  | <u>^</u> |
|----|----------|
| RO | tinomont |
| ne | inemeni  |
| ,  |          |

Refinement on  $F^2$ 

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.026$ 

 $wR(F^2) = 0.071$ *S* = 1.07 3837 reflections 290 parameters

5 restraints

0 constraints

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_0^2) + (0.0408P)^2 + 0.095P]$ where  $P = (F_0^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} < 0.001$  $\Delta \rho_{max} = 0.16 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{min} = -0.21 \text{ e } \text{\AA}^{-3}$ Extinction correction: none Absolute structure: Flack x determined using 1678 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259). Absolute structure parameter: 0.040 (6)

| parame          | ters ( $Å^2$ )         |                             |                            |                          |
|-----------------|------------------------|-----------------------------|----------------------------|--------------------------|
| <u>.</u>        | Y                      | 12                          | 7                          | 17:*/17                  |
| <b>S</b> 1      | 0 13521 (8)            | y<br>0 80275 (5)            | $\frac{2}{0.84177}$ (5)    | 0.02082(14)              |
| 01              | -0.3180(2)             | 0.30273(3)                  | 0.57775(16)                | 0.02002(11)<br>0.0310(4) |
| $\frac{01}{02}$ | -0.3244(3)             | 0.79232(17)<br>0.87370(15)  | 0.37773(10)<br>0.40403(18) | 0.0310(1)<br>0.0298(4)   |
| 02<br>Ц22       | -0.211(4)              | 0.888(3)                    | 0.448 (3)                  | 0.0290(+)                |
| 02              | -0.0264(3)             | 0.000(3)<br>0.75870(13)     | 0.86308 (16)               | 0.039(12)                |
| 01              | 0.0204(3)              | 0.73875(13)                 | 0.80398(10)                | 0.0207(4)                |
| 04<br>N1        | 0.2917(3)<br>0.2922(3) | 0.73033(13)<br>1 14192 (19) | 1.1038(2)                  | 0.0231(4)                |
|                 | 0.3822(3)              | 1.14102(10)                 | 1.1936 (2)                 | 0.0271(3)                |
| HOUB            | 0.300 (4)              | 1.180(2)                    | 1.204 (3)                  | 0.029 (8)*               |
| H30A            | 0.493 (3)              | 1.167 (2)                   | 1.204 (3)                  | 0.032 (9)*               |
| N2              | 0.0462 (3)             | 0.84658 (17)                | 0.6997 (2)                 | 0.0231 (5)               |
| H31             | -0.072 (3)             | 0.835 (2)                   | 0.661 (3)                  | 0.029 (8)*               |
| N3              | 0.0340 (3)             | 0.93689 (15)                | 0.52539 (19)               | 0.0206 (4)               |
| N4              | 0.3200 (3)             | 0.92523 (16)                | 0.69519 (19)               | 0.0225 (4)               |
| C1              | -0.4004 (3)            | 0.8162 (2)                  | 0.4700 (2)                 | 0.0222 (5)               |
| C2              | -0.5948 (3)            | 0.78270 (18)                | 0.4049 (2)                 | 0.0225 (5)               |
| C3              | -0.6804 (3)            | 0.7967 (2)                  | 0.2778 (2)                 | 0.0245 (5)               |
| H3              | -0.6145                | 0.8300                      | 0.2302                     | 0.029*                   |
| C4              | -0.8611 (4)            | 0.7620 (2)                  | 0.2210 (2)                 | 0.0244 (5)               |
| H4              | -0.9166                | 0.7701                      | 0.1340                     | 0.029*                   |
| C5              | -0.9640 (3)            | 0.71519 (18)                | 0.2895 (2)                 | 0.0209 (5)               |
| C6              | -0.8775 (4)            | 0.70353 (19)                | 0.4166 (2)                 | 0.0230 (5)               |
| H6              | -0.9455                | 0.6732                      | 0.4650                     | 0.028*                   |
| C7              | -0.6950 (4)            | 0.73503 (19)                | 0.4741 (2)                 | 0.0221 (5)               |
| Н7              | -0.6376                | 0.7243                      | 0.5606                     | 0.027*                   |

# Fractional atomic coordinates and isotropic or equivalent isotropic displacement

| C8   | 0.3239 (4)  | 1.06696 (19) | 1.1073 (2) | 0.0211 (5) |
|------|-------------|--------------|------------|------------|
| C9   | 0.4547 (3)  | 1.01328 (19) | 1.0657 (2) | 0.0230 (5) |
| H9   | 0.5833      | 1.0321       | 1.0949     | 0.028*     |
| C10  | 0.3988 (3)  | 0.93380 (18) | 0.9832 (2) | 0.0206 (5) |
| H10  | 0.4880      | 0.8983       | 0.9555     | 0.025*     |
| C11  | 0.2097 (3)  | 0.90589 (18) | 0.9407 (2) | 0.0197 (5) |
| C12  | 0.0780 (3)  | 0.95892 (19) | 0.9792 (2) | 0.0218 (5) |
| H12  | -0.0506     | 0.9399       | 0.9492     | 0.026*     |
| C13  | 0.1335 (3)  | 1.03866 (19) | 1.0605 (2) | 0.0222 (5) |
| H13  | 0.0426      | 1.0751       | 1.0856     | 0.027*     |
| C14  | 0.1401 (3)  | 0.90521 (18) | 0.6383 (2) | 0.0193 (5) |
| C15  | 0.6063 (4)  | 1.0095 (2)   | 0.6994 (3) | 0.0329 (6) |
| H15A | 0.6137      | 1.0590       | 0.7652     | 0.049*     |
| H15B | 0.6636      | 1.0382       | 0.6406     | 0.049*     |
| H15C | 0.6734      | 0.9475       | 0.7361     | 0.049*     |
| C16  | 0.4050 (4)  | 0.98467 (19) | 0.6329 (2) | 0.0243 (5) |
| C17  | 0.3093 (4)  | 1.0212 (2)   | 0.5159 (2) | 0.0267 (5) |
| H17  | 0.3705      | 1.0630       | 0.4725     | 0.032*     |
| C18  | 0.1210(4)   | 0.99529 (19) | 0.4631 (2) | 0.0237 (5) |
| C19  | 0.0051 (4)  | 1.0296 (2)   | 0.3366 (2) | 0.0328 (6) |
| H19A | -0.0052     | 0.9743       | 0.2771     | 0.049*     |
| H19B | 0.0649      | 1.0885       | 0.3121     | 0.049*     |
| H19C | -0.1204     | 1.0486       | 0.3376     | 0.049*     |
| C20  | -1.1612 (4) | 0.6772 (2)   | 0.2281 (2) | 0.0253 (5) |
| H20A | -1.2207     | 0.6653       | 0.2930     | 0.030*     |
| H20B | -1.1547     | 0.6110       | 0.1884     | 0.030*     |
| C21  | -1.2856 (4) | 0.7484 (2)   | 0.1310 (3) | 0.0288 (6) |
| H21A | -1.2891     | 0.8151       | 0.1683     | 0.043*     |
| H21B | -1.4130     | 0.7205       | 0.1001     | 0.043*     |
| H21C | -1.2350     | 0.7553       | 0.0619     | 0.043*     |

# Atomic displacement parameters (Å<sup>2</sup>)

.

|            | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|------------|-------------|-------------|-------------|--------------|-------------|--------------|
| <b>S</b> 1 | 0.0227 (3)  | 0.0178 (3)  | 0.0197 (3)  | -0.0011 (2)  | 0.0035 (2)  | 0.0012 (2)   |
| 01         | 0.0224 (8)  | 0.0423 (11) | 0.0232 (9)  | -0.0075 (9)  | 0.0002 (7)  | 0.0056 (9)   |
| O2         | 0.0238 (9)  | 0.0374 (11) | 0.0254 (9)  | -0.0072 (8)  | 0.0040 (8)  | 0.0053 (8)   |
| 03         | 0.0304 (10) | 0.0250 (9)  | 0.0229 (9)  | -0.0058 (8)  | 0.0061 (8)  | 0.0026 (7)   |
| 04         | 0.0302 (10) | 0.0230 (10) | 0.0292 (10) | 0.0030 (8)   | 0.0027 (8)  | -0.0033 (8)  |
| N1         | 0.0263 (12) | 0.0274 (12) | 0.0275 (11) | 0.0003 (10)  | 0.0083 (10) | -0.0066 (9)  |
| N2         | 0.0190 (11) | 0.0289 (11) | 0.0189 (10) | -0.0040 (9)  | 0.0024 (9)  | 0.0007 (9)   |
| N3         | 0.0234 (11) | 0.0190 (10) | 0.0194 (10) | 0.0003 (8)   | 0.0067 (8)  | -0.0010 (8)  |
| N4         | 0.0217 (10) | 0.0227 (11) | 0.0230 (10) | -0.0006 (8)  | 0.0069 (9)  | -0.0027 (9)  |
| C1         | 0.0223 (12) | 0.0234 (14) | 0.0208 (12) | 0.0019 (10)  | 0.0065 (10) | -0.0012 (10) |
| C2         | 0.0228 (12) | 0.0197 (13) | 0.0236 (12) | 0.0024 (10)  | 0.0053 (10) | 0.0006 (10)  |
| C3         | 0.0256 (12) | 0.0262 (12) | 0.0227 (11) | -0.0001 (12) | 0.0091 (10) | 0.0026 (12)  |
| C4         | 0.0254 (13) | 0.0254 (12) | 0.0184 (11) | 0.0009 (10)  | 0.0014 (10) | 0.0039 (10)  |
| C5         | 0.0218 (12) | 0.0176 (11) | 0.0224 (12) | 0.0035 (10)  | 0.0059 (10) | -0.0005 (10) |
|            |             |             |             |              |             |              |

.

.

| C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0258 (13)        | 0.0230 (12)               | 0.0218 (12)          | -0.0007 (10) | 0.0096 (10)          | -0.0001 (10) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------|----------------------|--------------|----------------------|--------------|
| C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0248 (13)        | 0.0235 (13)               | 0.0169 (12)          | 0.0021 (10)  | 0.0048 (10)          | 0.0004 (9)   |
| C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0259 (13)        | 0.0217 (12)               | 0.0151 (11)          | 0.0023 (10)  | 0.0055 (10)          | 0.0029 (9)   |
| C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0186 (12)        | 0.0258 (13)               | 0.0211 (12)          | 0.0010 (10)  | 0.0014 (10)          | 0.0017 (10)  |
| C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0206 (12)        | 0.0220 (12)               | 0.0190 (11)          | 0.0047 (10)  | 0.0059 (10)          | 0.0021 (9)   |
| C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0229 (12)        | 0.0186 (12)               | 0.0155 (11)          | -0.0006 (10) | 0.0034 (9)           | 0.0026 (9)   |
| C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0200 (12)        | 0.0233 (13)               | 0.0216 (12)          | -0.0003 (10) | 0.0061 (10)          | 0.0056 (10)  |
| C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0224 (12)        | 0.0245 (12)               | 0.0205 (12)          | 0.0042 (10)  | 0.0080 (10)          | 0.0033 (10)  |
| C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0207 (12)        | 0.0186 (11)               | 0.0200 (11)          | -0.0001 (9)  | 0.0084 (9)           | -0.0030 (9)  |
| C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0234 (13)        | 0.0330 (15)               | 0.0405 (16)          | -0.0072 (12) | 0.0075 (12)          | -0.0012 (12) |
| C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0257 (13)        | 0.0198 (12)               | 0.0303 (13)          | -0.0030 (10) | 0.0130 (11)          | -0.0061 (11) |
| C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0320 (13)        | 0.0218 (13)               | 0.0296 (13)          | -0.0028 (11) | 0.0143 (11)          | -0.0018 (11) |
| C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0321 (14)        | 0.0197 (12)               | 0.0218 (12)          | 0.0019 (11)  | 0.0118 (11)          | -0.0014 (10) |
| C19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0427 (16)        | 0.0311 (14)               | 0.0245 (14)          | -0.0017 (13) | 0.0107 (13)          | 0.0043 (11)  |
| C20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0240 (13)        | 0.0253 (13)               | 0.0237 (13)          | -0.0017 (10) | 0.0036 (11)          | -0.0003 (10) |
| C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0219 (13)        | 0.0320 (14)               | 0.0279 (14)          | 0.0013 (11)  | 0.0015 (11)          | -0.0013 (11) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                           | . ,                  | . ,          | . ,                  | . ,          |
| Geor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | netric param       | eters (Å, °)              |                      |              |                      |              |
| S1_(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 74                 | 1 4275 (10)               | <u>C8</u> <u>C</u> 9 |              | 1 410 (3)            |              |
| S1_0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <del>ר</del><br>זר | 1.4273(19)<br>1 4302 (19) | C8 - C13             | 2            | 1.410(3)<br>1 409(4) |              |
| S1-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | JJ<br>N2           | 1.4392(19)<br>1.644(2)    | $C_0 - C_1$          | )            | 1.409 (4)            |              |
| S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11<br>1            | 1.0+(2)<br>1.738(2)       |                      | )            | 0.9500               |              |
| 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C1                 | 1.736(2)<br>1.224(3)      | C10_C1               | 1            | 1 307 (3)            |              |
| 01 - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | 1.224(3)                  | C10 U                | 10           | 0.0500               |              |
| 02 - 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | U22                | 1.318(3)                  |                      | 2            | 1.302(3)             |              |
| N1 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C8                 | 1.363(2)                  | C12 - C1             | 3            | 1.392(3)<br>1 374(4) |              |
| NI I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C0<br>H30B         | 1.303(3)                  | C12—U                | 12           | 0.0500               |              |
| N1_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H30D               | 0.85(2)                   | C13_H1               | 3            | 0.9500               |              |
| N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C14                | 1.377(3)                  | C15-C1               | 6            | 1 496 (4)            |              |
| N2 I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U21                | 1.377(3)                  | C15_H1               | 15 A         | 0.0800               |              |
| N3 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C14                | 1.344(3)                  | C15_H1               | IJA          | 0.9800               |              |
| N3 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C18                | 1.344(3)                  | C15—H1               | 5C           | 0.9800               |              |
| N/ (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C14                | 1.370(3)                  | C16 - C1             | 7            | 1 382 (4)            |              |
| N4 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C14                | 1.327(3)                  | C10-C1               | 8            | 1.302 (4)            |              |
| C1 = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\sim$             | 1.3+0(3)                  | C17—H1               | 17           | 0.9500               |              |
| $C_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\mathbb{C}^2$     | 1 304 (3)                 | C18-C1               | 9            | 1 495 (4)            |              |
| $C_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C7                 | 1.394(3)<br>1 400(3)      | C19—H1               | 9A           | 0.9800               |              |
| $C_2 = C_3 $ | С7<br>~4           | 1.400(3)<br>1 383(4)      | C19—H1               | 19R          | 0.9800               |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U3                 | 0.9500                    | C19—H1               | 190          | 0.9800               |              |
| $C_{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C5                 | 1404(4)                   | $C^{20}$             | 21           | 1 522 (4)            |              |
| $C_{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | С5<br>ЦЛ           | 0.9500                    | C20 C2               | 20 Δ         | 0.9900               |              |
| $C_{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ~6                 | 1 302 (3)                 | C20-H2               | 20A          | 0.9900               |              |
| $C_{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C0<br>C20          | 1.592(3)                  | C21_H2               | 201          | 0.9900               |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~7                 | 1.300 (4)                 | C21—H2               | 2173<br>21R  | 0.9800               |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 1.302 (4)                 | $C_{21}$ $\Pi_{2}$   | 210          | 0.9000               |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10<br>117          | 0.9300                    | C21—f12              | 210          | 0.2000               |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n/                 | 0.9300                    | 010 01               | 1 010        | 120 4 (2)            |              |
| 04—9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 81-03              | 118.33 (11)               | CI2—CI               |              | 120.4 (2)            |              |
| 04—9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S1—N2              | 109.95 (11)               | C12—C1               | 1—51         | 118.76 (19)          |              |
| 03—9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S1—N2              | 102.24 (11)               | C10—C1               | 1—51         | 120.78 (18)          |              |

.

| 04—S1—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.38 (11)          | C13-C12-C11                  | 120.1 (2)   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------|-------------|
| O3—S1—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 108.45 (11)          | C13—C12—H12                  | 119.9       |
| N2—S1—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 107.91 (11)          | C11-C12-H12                  | 119.9       |
| C1—O2—H32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109 (3)              | C12—C13—-C8                  | 120.7 (2)   |
| C8—N1—H30B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 117 (2)              | C12C13H13                    | 119.7       |
| C8—N1—H30A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 116 (2)              | C8—C13—H13                   | 119.7       |
| H30B-N1H30A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 118 (3)              | N4—C14—N3                    | 127.3 (2)   |
| C14N2S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 125.55 (18)          | N4                           | 118.2 (2)   |
| C14-N2-H31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 117 (2)              | N3C14N2                      | 114.5 (2)   |
| S1-N2-H31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 118 (2)              | C16-C15H15A                  | 109.5       |
| C14N3C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 116.1 (2)            | C16-C15-H15B                 | 109.5       |
| C14—N4—C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 116.1 (2)            | H15A—C15—H15B                | 109.5       |
| 01—C1—O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 123.0 (2)            | C16—C15—H15C                 | 109.5       |
| O1C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 121.9 (2)            | H15A—C15—H15C                | 109.5       |
| O2-C1-C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 115.1 (2)            | H15B-C15-H15C                | 109.5       |
| C3—C2—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.3 (2)            | N4-C16-C17                   | 121.4 (2)   |
| C3—C2—C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 122.4 (2)            | N4C16C15                     | 115.7 (2)   |
| C7—C2—C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 118.3 (2)            | C17—C16—C15                  | 122.9 (2)   |
| C4—C3—C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.0 (2)            | C16—C17—C18                  | 118.3 (2)   |
| С4С3-Н3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120.0                | C16—C17—H17                  | 120.8       |
| С2—С3—Н3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.0                | C18—-C17H17                  | 120.8       |
| C3—C4—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121.3 (2)            | N3C18C17                     | 120.7 (2)   |
| C3—C4—H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.3                | N3-C18-C19                   | 116.5 (2)   |
| C5-C4-H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.3                | C17—C18—C19                  | 122.7 (2)   |
| C6-C5-C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 117.8 (2)            | C18—C19—H19A                 | 109.5       |
| C6-C5-C20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120.6(2)             | C18—C19—H19B                 | 109.5       |
| C4 - C5 - C20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120.0(2)<br>121.6(2) | H19A—C19—H19B                | 109.5       |
| C7 - C6 - C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 121.0(2)<br>121.5(2) | C18-C19-H19C                 | 109.5       |
| С7—С6—Н6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119 2                | H19AC19H19C                  | 109.5       |
| С5—С6Н6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119.2                | H19B                         | 109.5       |
| $C_{6} = C_{7} = C_{2}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.0(2)             | $(5 - C^2) - C^2$            | 1147(2)     |
| C6-C7-H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.0 (2)            | C5_C20_H20A                  | 108.6       |
| $C_{2} - C_{7} - H_{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120.0                | С21_С20_Н20А                 | 108.6       |
| $N_1 - C_8 - C_9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120.0<br>120.5(2)    | C5_C20_H20B                  | 108.6       |
| N1 - C8 - C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120.3(2)             | C21_C20_H20B                 | 108.6       |
| R1 = C8 = C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 121.1(2)<br>1183(2)  | $H_{20}A = C_{20} = H_{20}B$ | 107.6       |
| $C_{10} = C_{0} = C_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 110.5(2)             | C20C21-H21A                  | 107.0       |
| С10 С0 Ц0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 121.0 (2)            | $C_{20}$ $C_{21}$ $H_{21R}$  | 109.5       |
| $C_{10} = C_{20} = -113$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.5                | H21A_C21_H21B                | 109.5       |
| $C_0 = C_1 $ | 119.3<br>110.4(2)    | C20_C21_H21C                 | 109.5       |
| $C_{0} = C_{10} = U_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 119.7 (2)            | $H_{21} = C_{21} = H_{21}C$  | 109.5       |
| $C_{11} = C_{10} = H_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.3                | $H_{21R} = C_{21} = H_{21C}$ | 109.5       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120.3                |                              | 109.5       |
| 04S1—N2—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -60.4 (2)            | 04—SI—CII—CI0                | 19.7 (2)    |
| 03N2C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 173.1 (2)            | U3SICIICI0                   | 150.04 (19) |
| C11-S1N2-C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 58.9 (2)             | N2—S1—C11—C10                | -99.9 (2)   |
| 01C1C2C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -170.5 (3)           | C10—C11C12—C13               | -0.7 (3)    |
| O2—C1—C2—C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.0 (4)             | S1-C11-C12C13                | 177.86 (19) |
| 01—C1—C2—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.3 (4)              | C11—C12—C13—C8               | -0.9 (4)    |
| O2—C1—C2—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -170.2 (2)           | N1-C8-C13-C12                | -175.9 (2)  |

÷.

.

.

195

| C7—C2—C3—C4    | -1.1 (4)     | C9—C8—C13—C12   | 1.8 (4)      |
|----------------|--------------|-----------------|--------------|
| C1—C2—C3—C4    | 178.6 (2)    | C16—N4—C14—N3   | 0.6 (4)      |
| C2—C3—C4—C5    | 1.9 (4)      | C16—N4—C14—N2   | -178.5 (2)   |
| C3C4C5C6       | 0.8 (4)      | C18—N3—C14—N4   | 0.2 (4)      |
| C3—C4—C5—C20   | -180.0 (2)   | C18N3C14N2      | 179.4 (2)    |
| C4—C5—C6—C7    | -1.2 (4)     | \$1-N2C14-N4    | 3.0 (3)      |
| C20C5C6C7      | 178.0 (2)    | S1-N2-C14-N3    | -176.21 (18) |
| C5—C6—C7—C2    | 2.0 (4)      | C14—N4—C16—C17  | -0.8 (3)     |
| C3—C2—C7—C6    | -0.8 (4)     | C14N4-C16-C15   | 178.2 (2)    |
| C1—C2—C7–-C6   | 179.4 (2)    | N4C16C17C18     | 0.2 (4)      |
| N1-C8-C9-C10   | 176.5 (2)    | C15—C16—C17—C18 | -178.7 (2)   |
| C13C8C10       | -1.2 (3)     | C14—N3—C18—C17  | -0.9 (3)     |
| C8—C9—C10—C11  | -0.3 (4)     | C14—N3—C18—C19  | 179.1 (2)    |
| C9—C10—C11—C12 | 1.2 (3)      | C16-C17-C18-N3  | 0.7 (4)      |
| C9-C10-C11-S1  | -177.27 (18) | C16C17C18C19    | -179.2 (2)   |
| O4—S1—C11—C12  | -158.83 (18) | C6—C5—C20—C21   | 138.4 (2)    |
| O3S1-C11-C12   | -28.5 (2)    | C4—C5—C20—C21   | -42.4 (3)    |
| N2—S1—C11—C12  | 81.6 (2)     |                 |              |
|                |              |                 |              |

Hydrogen-bond geometry (Å, °)

| D—-H···A                | D—H      | $\mathbf{H} \cdots \mathbf{A}$ | $D \cdots A$ | $D - H \cdots A$ |
|-------------------------|----------|--------------------------------|--------------|------------------|
| N1—H30.4…O4ii           | 0.87(2)  | 2.13 (2)                       | 2.944 (3)    | 156 (3)          |
| N1—H30 <i>B</i> ····O3i | 0.83 (2) | 2.21 (2)                       | 2.973 (3)    | 152 (3)          |
| N2—H31…O1               | 0.87 (2) | 1.88 (2)                       | 2.741 (3)    | 172 (3)          |
| O2—H32…N3               | 0.86 (2) | 1.88 (3)                       | 2.736 (3)    | 170 (4)          |

Symmetry codes: (i) -x, y+1/2, -z+2; (ii) -x+1, y+1/2, -z+2.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.



Figure S.17: Crystal Structure of the Cocrystal of Sulfamethazine and p-Dimethylaminobenzoic Acid Showing Thermal Parameters (50% Thermal Ellipsoids) and Hydrogen Bonding.

## Crystal data

C<sub>12</sub>H<sub>14</sub>N<sub>4</sub>O<sub>2</sub>S·C<sub>9</sub>H<sub>11</sub>NO<sub>2</sub>·O  $M_r = 459.52$ Monoclinic,  $P2_1/c$  a = 7.8837 (3) Å b = 31.8034 (13) Å c = 9.6952 (4) Å  $\beta = 112.284$  (2)° V = 2249.31 (16) Å<sup>3</sup> Z = 4F(000) = 968

 $D_x = 1.357 \text{ Mg m}^{-3}$ Melting point: 452-456 K Cu K $\alpha$  radiation,  $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9926 reflections  $\theta = 2.8-72.3^{\circ}$  $\mu = 1.65 \text{ mm}^{-1}$ T = 100 KPrism, colourless  $0.28 \times 0.25 \times 0.22 \text{ mm}$ 

### Data collection

| Bruker APEXII CCD                                             | 4121 inden                |
|---------------------------------------------------------------|---------------------------|
| diffractometer                                                | 4121 macp                 |
| Radiation source: fine-focus sealed tube                      | 3801 reflec               |
| Detector resolution: 8.33 pixels mm <sup>-1</sup>             | $R_{\rm int}=0.043$       |
| phi and $\omega$ scans                                        | $\theta_{\rm max} = 68.2$ |
| Absorption correction: multi-scan<br>SADABS2014/7, Bruker AXS | h = -9  9                 |
| $T_{\min} = 0.684, T_{\max} = 0.753$                          | k = -36 3                 |

4121 independent reflections 3801 reflections with  $I > 2\sigma(I)$   $R_{int} = 0.043$   $\theta_{max} = 68.2^{\circ}, \theta_{min} = 2.8^{\circ}$  h = -9 9 k = -36 38

| Radiation source: fine-focus sealed tube                      | 3801 reflections with $I > 2\sigma(I)$                 |
|---------------------------------------------------------------|--------------------------------------------------------|
| Detector resolution: 8.33 pixels mm <sup>-1</sup>             | $R_{\rm int} = 0.043$                                  |
| phi and $\omega$ scans                                        | $\theta_{max} = 68.2^\circ,  \theta_{min} = 2.8^\circ$ |
| Absorption correction: multi-scan<br>SADABS2014/7, Bruker AXS | h = -9  9                                              |
| $T_{\min} = 0.684, T_{\max} = 0.753$                          | k = -36 38                                             |
| 34091 measured reflections                                    | l = -11 11                                             |

### Refinement

,

| Refinement on $F^2$             |                                                                                     |
|---------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Hydrogen site location: mixed                                                       |
| $R[F^2 > 2\sigma(F^2)] = 0.049$ | H atoms treated by a mixture of independent and constrained refinement              |
| $wR(F^2) = 0.139$               | $w = 1/[\sigma^2(F_o^2) + (0.0664P)^2 + 2.7068P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| <i>S</i> = 1.10                 | $(\Delta/\sigma)_{\rm max} < 0.001$                                                 |
| 4121 reflections                | $\Delta \rho_{\rm max} = 0.36 \ {\rm e} \ {\rm \AA}^{-3} \ .$                       |
| 304 parameters                  | $\Delta \rho_{\rm min} = -0.97 \ e \ {\rm \AA}^{-3}$                                |
| 2 restraints                    | Extinction correction: none                                                         |
| 0 constraints                   |                                                                                     |

.

| <b>_</b> | ~~~ <u>~</u> ~~ <u>/</u> | N                | 7                | · <b>I</b> T. */ <b>I</b> T |
|----------|--------------------------|------------------|------------------|-----------------------------|
| 01       | x<br>0.07250 (7)         | y<br>0 16475 (2) | 2<br>0.50015 (() | $O_{1so} = O_{eq}$          |
| 51       | 0.07259(7)               | 0.10473 (2)      | 0.59915 (6)      | 0.01975(17)                 |
| 01       | 0.1880 (3)               | 0.04947 (5)      | 0.67245 (19)     | 0.0295 (4)                  |
| O2       | 0.2137 (3)               | 0.01244 (5)      | 0.48526 (19)     | 0.0296 (4)                  |
| O3       | 0.0951 (2)               | 0.14863 (6)      | 0.74340 (17)     | 0.0268 (4)                  |
| 04       | 0.1942 (2)               | 0.19783 (5)      | 0.59179 (18)     | 0.0250 (4)                  |
| H30A     | -0.704 (4)               | 0.2522 (9)       | 0.276 (3)        | 0.023 (7)*                  |
| H30B     | -0.762 (4)               | 0.2231 (10)      | 0.363 (3)        | 0.035 (8)*                  |
| H32      | 0.199 (6)                | 0.0374 (8)       | 0.447 (5)        | 0.080 (14)*                 |
| H31      | 0.132 (7)                | 0.1006 (10)      | 0.562 (5)        | 0.103 (17)*                 |
| N1       | -0.6748 (3)              | 0.23468 (7)      | 0.3456 (3)       | 0.0278 (5)                  |
| N2       | 0.1008 (3)               | 0.12305 (6)      | 0.5106 (2)       | 0.0207 (4)                  |
| N3       | 0.1312 (3)               | 0.08461 (6)      | 0.3227 (2)       | 0.0210 (4)                  |
| N4       | 0.0437 (2)               | 0.15670 (6)      | 0.2816 (2)       | 0.0198 (4)                  |
| N5       | 0.4266 (3)               | -0.12630(6)      | 1.0013 (2)       | 0.0268 (4)                  |
| C1       | 0.2222 (3)               | 0.01570 (7)      | 0.6210 (3)       | 0.0232 (5)                  |
| C2       | 0.2910 (3)               | -0.01914 (8)     | 0.8636(3)        | 0.0263 (5)                  |
| H4       | 0.2670                   | 0.0070           | 0.9000           | 0.032*                      |
| C3       | 0.3399 (4)               | -0.05305 (8)     | 0.9582 (3)       | 0.0274 (5)                  |
| Н3       | 0.3480                   | -0.0501          | 1.0580           | 0.033*                      |
| C4       | 0.3.783 (3)              | -0.09244 (7)     | 0.9084 (3)       | 0.0218 (5)                  |
| C5       | 0.3647 (3)               | -0.09496 (7)     | 0.7588 (3)       | 0.0232 (5)                  |
| Н5       | 0.3908                   | 0.1208           | 0.7219           | 0.028*                      |

<u>Fractional atomic coordinates and isotropic or equivalent isotropic displacement</u> parameters  $(Å^2)$
| C6   | 0.3143 (3)  | 0.06053 (7)   | 0.6658 (3) | 0.0236 (5)   |
|------|-------------|---------------|------------|--------------|
| H6   | 0.3057      | -0.0631       | 0.5658     | 0.028*       |
| C7   | 0.2754 (3)  | -0.02185 (7)  | 0.7160 (3) | 0.0215 (5)   |
| C8   | -0.5049 (3) | 0.21721 (7)   | 0.3962 (3) | 0.0209 (5)   |
| C9   | -0.4632 (3) | 0.18279 (7)   | 0.4949 (3) | 0.0221 (5)   |
| H9   | -0.5567     | 0.1708        | 0.5219     | 0.027*       |
| C10  | -0.2882 (3) | 0.16618 (7)   | 0.5530 (3) | 0.0208 (5)   |
| H10  | -0.2612     | 0.1432        | 0.6203     | 0.025*       |
| C11  | -0.1512 (3) | 0.18345 (7)   | 0.5120 (2) | 0.0186 (4)   |
| C12  | -0.1913 (3) | 0.21651 (7)   | 0.4109 (3) | 0.0210 (5)   |
| H12  | -0.0984     | 0.2276        | 0.3812     | 0.025*       |
| C13  | -0.3659 (3) | 0.23330 (7)   | 0.3535 (3) | 0.0218 (5)   |
| H13  | -0.3924     | 0.2559        | 0.2845     | 0.026*       |
| C14  | 0.0906 (3)  | 0.12230 (7)   | 0.3665 (2) | 0.0174 (4)   |
| C15  | 0.1732 (4)  | 0.03941 (8)   | 0.1363 (3) | 0.0356 (6)   |
| H15A | 0.3061      | 0.0378        | 0.1634     | 0.053*       |
| H15B | 0.1108      | 0.0360        | 0.0282     | 0.053*       |
| H15C | 0.1342      | 0.0170        | 0.1873     | 0.053*       |
| C16  | 0.1252 (3)  | 0.08116 (8)   | 0.1818 (3) | 0.0252 (5)   |
| C17  | 0.0778 (3)  | 0.11540 (8)   | 0.0880 (3) | 0.0264 (5)   |
| H17  | 0.0734      | 0.1134        | -0.0111    | 0.032*       |
| C18  | 0.0368 (3)  | 0.15281 (7)   | 0.1415 (3) | 0.0224 (5)   |
| C19  | -0.0176 (4) | 0.19110 (8)   | 0.0449 (3) | 0.0296 (5)   |
| H19A | -0.0925     | 0.2095        | 0.0802     | 0.044*       |
| H19B | -0.0886     | 0.1827        | -0.0583    | 0.044*       |
| H19C | 0.0926      | 0.2063        | 0.0494     | 0.044*       |
| C20  | 0.4399 (4)  | -0.12262 (8)  | 1.1540 (3) | 0.0298 (5)   |
| H20A | 0.5376      | -0.1027       | 1.2078     | 0.045*       |
| H20B | 0.4680      | -0.1502       | 1.2025     | 0.045*       |
| H20C | 0.3231      | -0.1124       | 1.1551     | 0.045*       |
| C21  | 0.4867 (4)  | -0.16502 (8)  | 0.9551 (3) | 0.0301 (6)   |
| H21A | 0.3860      | -0.1769       | 0.8697     | 0.045*       |
| H21B | 0.5236      | -0.1852       | 1.0377     | 0.045*       |
| H21C | 0.5911      | -0.1592       | 0.9267     | 0.045*       |
| 05   | 0.1402 (6)  | -0.05972 (13) | 0.2649 (5) | 0.1108 (12)* |

# Atomic displacement parameters (Å<sup>2</sup>)

|    | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$   | $U^{23}$    |
|----|-------------|-------------|-------------|-------------|------------|-------------|
| S1 | 0.0168 (3)  | 0.0262 (3)  | 0.0166 (3)  | 0.0006 (2)  | 0.0068 (2) | -0.0035 (2) |
| 01 | 0.0404 (10) | 0.0206 (8)  | 0.0262 (9)  | 0.0055 (7)  | 0.0111 (8) | 0.0005 (7)  |
| 02 | 0.0433 (10) | 0.0240 (9)  | 0.0222 (9)  | 0.0043 (8)  | 0.0133 (8) | 0.0032 (7)  |
| 03 | 0.0235 (8)  | 0.0396 (10) | 0.0168 (8)  | 0.0058 (7)  | 0.0072 (7) | -0.0008 (7) |
| 04 | 0.0191 (8)  | 0.0277 (9)  | 0.0293 (9)  | -0.0036 (6) | 0.0103 (7) | -0.0094 (7) |
| N1 | 0.0189 (10) | 0.0257 (11) | 0.0366 (12) | 0.0015 (8)  | 0.0083 (9) | 0.0084 (9)  |
| N2 | 0.0243 (10) | 0.0220 (10) | 0.0168 (9)  | 0.0040 (8)  | 0.0088 (8) | 0.0000 (8)  |
| N3 | 0.0218 (9)  | 0.0200 (9)  | 0.0231 (10) | -0.0009 (7) | 0.0108 (8) | -0.0043 (7) |
| N4 | 0.0188 (9)  | 0.0214 (9)  | 0.0197 (9)  | -0.0006 (7) | 0.0079 (8) | -0.0003 (7) |

.

| N5         | 0.0344 (11)  | 0.0240 (10)              | 0.0201 (10) | 0.0032 (8)   | 0.0083 (8)  | 0.0027 (8)   |
|------------|--------------|--------------------------|-------------|--------------|-------------|--------------|
| C1         | 0.0210 (11)  | 0.0229 (12)              | 0.0244 (12) | -0.0011 (9)  | 0.0073 (9)  | -0.0003 (9)  |
| C2         | 0.0335 (13)  | 0.0216 (12)              | 0.0261 (12) | 0.0030 (10)  | 0.0137 (10) | -0.0017 (9)  |
| C3         | 0.0379 (14)  | 0.0272 (13)              | 0.0184 (11) | 0.0019 (11)  | 0.0122 (10) | -0.0009 (9)  |
| C4         | 0.0200 (11)  | 0.0218 (11)              | 0.0210 (11) | -0.0005 (9)  | 0.0049 (9)  | 0.0002 (9)   |
| C5         | 0.0262 (12)  | 0.0208 (11)              | 0.0209 (11) | 0.0011 (9)   | 0.0069 (9)  | -0.0029 (9)  |
| C6         | 0.0271 (12)  | 0.0251 (12)              | 0.0167 (11) | -0.0007 (9)  | 0.0062 (9)  | -0.0017 (9)  |
| C7         | 0.0203 (11)  | 0.0217 (11)              | 0.0209 (11) | -0.0007 (9)  | 0.0060 (9)  | 0.0004 (9)   |
| C8         | 0.0191 (11)  | 0.0205 (11)              | 0.0218 (11) | -0.0012 (9)  | 0.0064 (9)  | -0.0045 (9)  |
| C9         | 0.0203 (11)  | 0.0239 (11)              | 0.0250 (12) | -0.0013 (9)  | 0.0118 (9)  | -0.0001 (9)  |
| C10        | 0.0221 (11)  | 0.0214 (11)              | 0.0202 (11) | 0.0006 (9)   | 0.0096 (9)  | 0.0008 (8)   |
| C11        | 0.0168 (10)  | 0.0211 (11)              | 0.0184 (10) | 0.0000 (8)   | 0.0073 (9)  | -0.0043 (8)  |
| C12        | 0.0219 (11)  | 0.0202 (11)              | 0.0232 (11) | -0.0028 (9)  | 0.0112 (9)  | -0.0036 (9)  |
| C13        | 0.0248 (11)  | 0.0181 (11)              | 0.0222 (11) | -0.0011 (9)  | 0.0085 (9)  | -0.0001 (9)  |
| C14        | 0.0148 (10)  | 0.0191 (11)              | 0.0179 (10) | -0.0014 (8)  | 0.0056 (8)  | -0.0022 (8)  |
| C15        | 0.0482 (16)  | 0.0311 (14)              | 0.0322 (14) | 0.0035 (12)  | 0.0207 (13) | -0.0091 (11) |
| C16        | 0.0250 (12)  | 0.0259 (12)              | 0.0260 (12) | -0.0024 (9)  | 0.0112 (10) | -0.0073 (9)  |
| C17        | 0.0294 (12)  | 0.0325 (13)              | 0.0189 (11) | -0.0027 (10) | 0.0109 (10) | -0.0036 (9)  |
| C18        | 0.0196 (11)  | 0.0260 (12)              | 0.0198 (11) | -0.0027 (9)  | 0.0055 (9)  | 0.0007 (9)   |
| C19        | 0.0330 (13)  | 0.0305 (13)              | 0.0236 (12) | 0.0004 (11)  | 0.0087 (10) | 0.0062 (10)  |
| C20        | 0.0343 (13)  | 0.0312 (13)              | 0.0211 (12) | 0.0028 (11)  | 0.0073 (10) | 0.0052 (10)  |
| C21        | 0.0371 (14)  | 0.0224 (12)              | 0.0287 (13) | 0.0034 (10)  | 0.0101 (11) | 0.0035 (10)  |
| Geo        | metric param | eters (Å, °)             |             |              |             |              |
| <b>C</b> 1 | 02           | 1 4250 (17)              |             |              | 0.0500      |              |
| S1-        | 03           | 1.4339 (17)              | $C_0 - H_0$ |              | 0.9500      |              |
| SI-        | 04<br>N2     | 1.4433(17)<br>1.6300(10) | $C_{8}$     |              | 1.407(3)    |              |
| S1-        | N2<br>C11    | 1.0399(19)               | $C_0 = C_1$ | 1            | 1.400(3)    |              |
| 01         |              | 1.747(2)<br>1.256(2)     | C9 = C10    |              | 1.382 (3)   |              |
| 01 - 02    |              | 1.230(3)                 | С9—П9       | 1            | 0.9300      |              |
| 02 - 100   | -СТ<br>H32   | 1.290(3)                 | C10 H1      | 0            | 1.397 (3)   |              |
| 02—<br>N1  | C8           | 1.358(3)                 |             | 2            | 1 300 (3)   |              |
| N1         | H30 A        | 1.558(5)                 | C12-C1      | 3            | 1.390(3)    |              |
| N1         | H30R         | 0.85(3)                  | С12—С1      | 2            | 0.0500      |              |
| N2         | C14          | 1.369(3)                 | C12—III     | 3            | 0.9500      |              |
| N2         | H31          | 0.850(19)                | C15         | 6            | 1 493 (3)   |              |
| N3         | C14          | 1.350(3)                 | C15—H1      | 5A           | 0.9800      |              |
| N3         | C16          | 1.353(3)                 | С15—Н1      | 5R           | 0.9800      |              |
| N4         | C14          | 1.335(3)                 | C15—H1      | 5 <u>C</u>   | 0.9800      |              |
| N4         | C18          | 1.337(3)                 | C16-C1      | 7<br>7       | 1 376 (4)   |              |
| N5         | C4           | 1.362(3)                 | C17C1       | 8            | 1.376 (1)   |              |
| N5         | C20          | 1.302(3)<br>1 449(3)     | C17—H1      | 7            | 0.9500      |              |
| N5—        | C21          | 1450(3)                  | C18—C1      | 9            | 1.497 (3)   |              |
| C1—        | C7           | 1 469 (3)                | С19—Н1      | 9A           | 0 9800      |              |
| C2—        | C3           | 1.373 (3)                | С19—Н1      | 9B           | 0.9800      |              |
| C2—        | C7           | 1.392 (3)                | C19—H1      | 9C           | 0.9800      |              |
|            |              |                          |             |              |             |              |

•

C20—H20A

C20—H20B

C20—H20C

0.9800

0.9800

0.9800

0.9500

0.9500

1.416 (3)

C2—H4

C3—C4

С3—Н3

| C4—C5      | 1.416 (3)   | C21—H21A       | 0.9800      |
|------------|-------------|----------------|-------------|
| C5—C6      | 1.378 (3)   | C21—H21B       | 0.9800      |
| С5—Н5      | 0.9500      | C21—H21C       | 0.9800      |
| C6—C7      | 1.399 (3)   | · · ·          |             |
| O3—S1—O4   | 117.99 (10) | C11C10-H10     | 120.2       |
| O3—S1—N2   | 103.29 (10) | C12C11C10      | 120.3 (2)   |
| O4—S1—N2   | 109.82 (10) | C12—C11—S1     | 121.12 (17) |
| 03—S1-—C11 | 108.78 (10) | C10-C11-S1     | 118.45 (17) |
| 04S1C11    | 107.21 (10) | C13C12C11      | 120.1 (2)   |
| N2         | 109.56 (10) | C13—C12—H12    | 119.9       |
| C1         | 108 (3)     | C11—C12—H12    | 119.9       |
| C8—N1—H30A | 120.0 (19)  | C12-C13-C8     | 120.6 (2)   |
| C8         | 121 (2)     | C12-C13-H13    | 119.7       |
| H30AN1H30B | 117 (3)     | C8—C13—H13     | 119.7       |
| C14-N2-S1  | 125.52 (16) | N4—C14—N3      | 125.3 (2)   |
| C14—N2H31  | 118 (4)     | N4-C14-N2      | 120.69 (19) |
| S1-N2-H31  | 116 (4)     | N3—C14—N2      | 114.04 (19) |
| C14—N3—C16 | 117.9 (2)   | C16—C15—H15A   | 109.5       |
| C14N4C18   | 116.31 (19) | C16—C15—H15B   | 109.5       |
| C4—N5—C20  | 120.4 (2)   | H15A—C15-—H15B | 109.5       |
| C4—N5—C21  | 120.6 (2)   | C16—C15—H15C   | 109.5       |
| C20—N5—C21 | 118.6 (2)   | H15A—C15—H15C  | 109.5       |
| 01         | 122.4 (2)   | H15BC15H15C    | 109.5       |
| 01C7       | 119.9 (2)   | N3—C16—C17     | 120.0 (2)   |
| O2C1C7     | 117.7 (2)   | N3-C16-C15     | 117.1 (2)   |
| C3—-C2—C7  | 122.1 (2)   | C17—C16—C15    | 123.0 (2)   |
| C3         | 119.0       | C16C17C18      | 118.4 (2)   |
| С7С2Н4     | 119.0       | C16C17H17      | 120.8       |
| C2C3C4     | 120.7 (2)   | С18—С17—Н17    | 120.8       |
| С2—С3—Н3   | 119.7       | N4C18C17       | 122.1 (2)   |
| С4—С3-—Н3  | 119.7       | N4             | 116.7 (2)   |
| N5C4C3     | 121.1 (2)   | C17—C18—C19    | 121.1 (2)   |
| N5C4C5     | 121.7 (2)   | C18—C19—H19A   | 109.5       |
| C3—C4—C5   | 117.1 (2)   | C18-C19-H19B   | 109.5       |
| C6C5C4     | 121.1 (2)   | H19A—C19—H19B  | 109.5       |
| С6С5Н5     | 119.5       | С18С19Н19С     | 109.5       |
| C4—C5—H5   | 119.5       | H19AC19H19C    | 109.5       |
| C5C6C7     | 121.2 (2)   | H19BC19-H19C   | 109.5       |
| С5—С6—Н6   | 119.4       | N5C20H20A      | 109.5       |
| С7С6Н6     | 119.4       | N5-C20-H20B    | 109.5       |
| C2C6       | 117.8 (2)   | H20AC20H20B    | 109.5       |
| C2—C7—C1   | 119.2 (2)   | N5-C20-H20C    | 109.5       |
| C6C1C1     | 123.0 (2)   | H20AC20H20C    | 109.5       |
| N1C8-C13   | 121.1 (2)   | H20BC20H20C    | 109.5       |
| N1C8C9     | 120.5 (2)   | N5-C21-H21A    | 109.5       |
| C13—C8—C9  | 118.4 (2)   | N5-C21-H21B    | 109.5       |
| С10—С9С8   | 120.9 (2)   | H21AC21-H21B   | 109.5       |
| С10—С9—Н9  | 119.5       | N5C21H21C      | 109.5       |
| С8С9-Н9    | 119.5       | H21A—C21H21C   | 109.5       |

•

.

-

.

.

.

| C9—C10—C11     | 119.6 (2)   | H21B-C21-H21C   | 109.5        |
|----------------|-------------|-----------------|--------------|
| С9—С10—Н10     | 120.2       |                 |              |
| O3—S1—N2—C14   | 179.45 (18) | O3—S1—C11—C12   | 149.96 (18)  |
| O4—S1—N2—C14   | -53.8 (2)   | 04—S1—C11—C12   | 21.3 (2)     |
| C11—S1—N2—C14  | 63.7 (2)    | N2-S1-C11-C12   | -97.81 (19)  |
| C7—C2-—C3—C4   | 0.6 (4)     | O3—S1C11C10     | -26.1 (2)    |
| C20—N5—C4—C3   | -0.1 (3)    | O4-S1C11C10     | -154.73 (17) |
| C21—N5C4—C3    | -172.6 (2)  | N2-S1C11C10     | 86.14 (19)   |
| C20—N5—C4—C5   | 179.8 (2)   | C10-C11-C12-C13 | 1.8 (3)      |
| C21—N5—C4C5    | 7.2 (3)     | S1-C11-C12-C13  | -174.15 (17) |
| C2-C3-C4-N5    | -179.9 (2)  | C11-C12-C13-C8  | 0.0 (3)      |
| C2—C3—C4—C5    | 0.3 (4)     | N1-C8-C13-C12   | 177.0 (2)    |
| N5—C4—C5—C6    | 179.5 (2)   | C9—C8—C13C12    | -2.1 (3)     |
| C3C4C5C6       | -0.7 (3)    | C18—N4—C14—N3   | 0.1 (3)      |
| C4—C5—C6—C7    | 0.3 (4)     | C18-N4-C14-N2   | -179.76 (19) |
| C3—C2—C7—C6    | -1.0 (4)    | C16—N3—C14—N4   | 0.4 (3)      |
| C3—C2—C7—C1    | 179.9 (2)   | C16—N3—C14—N2   | -179.74 (19) |
| C5—C6—C7—C2    | 0.6 (3)     | S1-N2-C14-N4    | -4.3 (3)     |
| C5—C6—C7—C1    | 179.7 (2)   | S1-N2-C14-N3    | 175.78 (16)  |
| 01C1C2         | -1.4 (3)    | C14—N3—C16—C17  | -0.3 (3)     |
| O2—C1—C7—C2    | 178.2 (2)   | C14—N3—C16C15   | 179.1 (2)    |
| 01—C1—C7—C6    | 179.6 (2)   | N3-C16-C17-C18  | -0.2 (3)     |
| O2—C1—C7—C6    | -0.9 (3)    | C15—C16—C17—C18 | -179.6 (2)   |
| N1C8C9C10      | -176.7 (2)  | C14—N4—C18—C17  | -0.7 (3)     |
| C13—C8—C9—C10  | 2.4 (3)     | C14—N4—C18—C19  | 179.4 (2)    |
| C8—C9—C10—C11  | -0.7 (3)    | C16-C17C18-N4   | 0.7 (4)      |
| C9—C10—C11—C12 | -1.4 (3)    | C16-C17-C18-C19 | -179.4 (2)   |
| C9—C10—C11-—S1 | 174.65 (17) |                 |              |
|                |             |                 |              |

Hydrogen-bond geometry (Å, °)

| D—H···A                  | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H···A |
|--------------------------|-------------|--------------|--------------|---------|
| N1—H30A…O4i              | 0.83 (3)    | 2.30 (3)     | 3.131 (3)    | 175 (3) |
| N1—H30 <i>B</i> ····O4ii | 0.85 (3)    | 2.50 (3)     | 3.163 (3)    | 135 (3) |
| N1—H30 <i>B</i> ····N4ii | 0.85 (3)    | 2.55 (3)     | 3.228 (3)    | 137 (3) |
| N2—H31…O1                | 0.85 (2)    | 1.91 (2)     | 2.755 (3)    | 177 (5) |
| O2H32····N3              | 0.87 (2)    | 1.87 (2)     | 2.720 (3)    | 166 (4) |

Symmetry codes: (i) x-1, -y+1/2, z-1/2; (ii) x-1, y, z.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.



Figure S.18: Crystal Structure of the Cocrystal of Sulfamethazine and o-Acetyloxybenzoic Acid Showing Thermal Parameters (50% Thermal Ellipsoids) and Hydrogen Bonding.

# Crystal data

C<sub>12</sub>H<sub>14</sub>N<sub>4</sub>O<sub>2</sub>S·C<sub>9</sub>H<sub>8</sub>O<sub>4</sub>  $M_r = 458.48$ Monoclinic,  $P2_1/c$  a = 7.6482 (1) Å b = 21.6227 (4) Å c = 13.4404 (3) Å  $\beta = 102.728$  (1)° V = 2168.08 (7) Å<sup>3</sup> Z = 4F(000) = 960

 $D_x = 1.405 \text{ Mg m}^{-3}$ Melting point: 411-415 K Cu K $\alpha$  radiation,  $\lambda = 1.54178 \text{ Å}$ Cell parameters from 855 reflections  $\theta = 2.2-68.7^{\circ}$  $\mu = 1.73 \text{ mm}^{-1}$ T = 100 KPlates, colourless  $0.24 \times 0.17 \times 0.13 \text{ mm}$ 

### Data collection

| Bruker APEXII CCD<br>diffractometer                           | 3963 independent reflections                                             |
|---------------------------------------------------------------|--------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube                      | 3434 reflections with $I > 2\sigma(I)$                                   |
| Detector resolution: 8.33 pixels mm <sup>-1</sup>             | $R_{\rm int}=0.048$                                                      |
| phi and $\omega$ scans                                        | $\theta_{\text{max}} = 68.2^{\circ},  \theta_{\text{min}} = 3.9^{\circ}$ |
| Absorption correction: multi-scan<br>SADABS2014/7, Bruker AXS | h = -9 9                                                                 |
| $T_{\min} = 0.650, \ T_{\max} = 0.753$                        | k = -25 26                                                               |
| 32897 measured reflections                                    | l = -16  16                                                              |

#### Refinement

| Refinement on $F^2$             |                                                                                     |
|---------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Hydrogen site location: mixed                                                       |
| $R[F^2 > 2\sigma(F^2)] = 0.036$ | H atoms treated by a mixture of independent and constrained refinement              |
| $wR(F^2)=0.100$                 | $w = 1/[\sigma^2(F_o^2) + (0.0523P)^2 + 1.1985P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| <i>S</i> = 1.05                 | $(\Delta/\sigma)_{\rm max} = 0.001$                                                 |
| 3963 reflections                | $\Delta \rho_{\rm max} = 0.41 \ {\rm e} \ {\rm \AA}^{-3}$                           |
| 304 parameters                  | $\Delta \rho_{\rm min} = -0.32 \ e \ {\rm \AA}^{-3}$                                |
| 4 restraints                    | Extinction correction: none                                                         |
| 0 constraints                   |                                                                                     |

All nonhydrogen atoms were located in a successive difference Fourier electron density maps and refined using anisotropic displacement parameters. All C-H hydrogen atoms were placed in calculated positions with Uiso = 1.2xUeqiv (1.5Ueq for methyl groups) of the connected C atoms. Those H atoms attached to nitrogen were located in Fourier diff maps and assigned Uiso = 1.2xUeqiv with N-H bond distances restrained to 0.85(2) angstroms.

| parame | ters (Å <sup>2</sup> ) | lates and isotropic | or equivalent isotre |                             |
|--------|------------------------|---------------------|----------------------|-----------------------------|
|        | x                      | у                   | Z                    | $U_{ m iso}$ */ $U_{ m eq}$ |
| S1     | 0.25637 (5)            | 0.30690 (2)         | 0.56525 (3)          | 0.01811 (13)                |
| 01     | 0.1790 (2)             | 0.45650 (6)         | 0.70292 (10)         | 0.0313 (3)                  |
| O2     | 0.19031 (19)           | 0.54545 (6)         | 0.62016 (10)         | 0.0276 (3)                  |
| H32    | 0.199 (3)              | 0.5220 (10)         | 0.5719 (15)          | 0.033*                      |
| 03     | 0.21986 (16)           | 0.30025 (6)         | 0.66531 (9)          | 0.0225 (3)                  |
| O4     | 0.41611 (16)           | 0.27946 (6)         | 0.54559 (9)          | 0.0234 (3)                  |
| 05     | 0.20934 (18)           | 0.46542 (6)         | 0.90961 (10)         | 0.0277 (3)                  |
| O6     | 0.48973 (19)           | 0.48367 (7)         | 0.88668 (11)         | 0.0324 (3)                  |
| N1     | -0.3732 (2)            | 0.21628 (8)         | 0.26287 (13)         | 0.0290 (4)                  |
| H30B   | -0.359 (3)             | 0.2131 (11)         | 0.2006 (13)          | 0.035*                      |
| H30A   | -0.476 (2)             | 0.2307 (10)         | 0.2724 (18)          | 0.035*                      |
|        |                        |                     |                      |                             |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement

| N2   | 0.2625 (2)   | 0.38244 (7)  | 0.55124 (11) | 0.0213 (3) |
|------|--------------|--------------|--------------|------------|
| N3   | 0.26773 (19) | 0.47512 (7)  | 0.46729 (12) | 0.0214 (3) |
| H31  | 0.232 (3)    | 0.4033 (9)   | 0.5972 (14)  | 0.026*     |
| N4   | 0.33330 (19) | 0.37988 (7)  | 0.39113 (11) | 0.0214 (3) |
| C1   | 0.1732 (2)   | 0.51309 (8)  | 0.70048 (14) | 0.0226 (4) |
| C2   | 0.1431 (2)   | 0.55128 (8)  | 0.78753 (14) | 0.0219 (4) |
| C3   | 0.0914 (2)   | 0.61332 (8)  | 0.77192 (15) | 0.0239 (4) |
| H3   | 0.0817       | 0.6313       | 0.7064       | 0.029*     |
| C4   | 0.0543 (3)   | 0.64881 (9)  | 0.85051 (16) | 0.0281 (4) |
| H4   | 0.0182       | 0.6907       | 0.8385       | 0.034*     |
| C5   | 0.0699 (3)   | 0.62324 (9)  | 0.94667 (16) | 0.0280 (4) |
| H5   | 0.0427       | 0.6474       | 1.0003       | 0.034*     |
| C6   | 0.1250 (3)   | 0.56237 (9)  | 0.96463 (15) | 0.0273 (4) |
| H6   | 0.1381       | 0.5451       | 1.0309       | 0.033*     |
| C7   | 0.1607 (3)   | 0.52688 (8)  | 0.88601 (15) | 0.0249 (4) |
| C8   | -0.2269 (2)  | 0.23805 (8)  | 0.33220 (14) | 0.0213 (4) |
| C9   | -0.0532 (2)  | 0.22876 (8)  | 0.31682 (14) | 0.0215 (4) |
| H9   | -0.0369      | 0.2074       | 0.2578       | 0.026*     |
| C10  | 0.0945 (2)   | 0.25046 (8)  | 0.38680 (13) | 0.0192 (4) |
| H10  | 0.2114       | 0.2450       | 0.3748       | 0.023*     |
| C11  | 0.0718 (2)   | 0.28022 (8)  | 0.47473 (13) | 0.0175 (3) |
| C12  | -0.1005 (2)  | 0.28878 (8)  | 0.49196 (13) | 0.0199 (4) |
| H12  | -0.1156      | 0.3088       | 0.5524       | 0.024*     |
| C13  | -0.2485 (2)  | 0.26828 (8)  | 0.42160 (14) | 0.0219 (4) |
| H13  | -0.3652      | 0.2745       | 0.4334       | 0.026*     |
| C14  | 0.2888 (2)   | 0.41334 (8)  | 0.46503 (13) | 0.0197 (4) |
| C16  | 0.3616 (2)   | 0.41167 (9)  | 0.30979 (14) | 0.0226 (4) |
| C17  | 0.3433 (2)   | 0.47580 (9)  | 0.30470 (15) | 0.0252 (4) |
| H17  | 0.3630       | 0.4980       | 0.2472       | 0.030*     |
| C18  | 0.2958 (2)   | 0.50638 (9)  | 0.38530 (14) | 0.0230 (4) |
| C19  | 0.2695 (3)   | 0.57544 (9)  | 0.38520 (16) | 0.0304 (4) |
| H19A | 0.1410       | 0.5849       | 0.3692       | 0.046*     |
| H19B | 0.3258       | 0.5943       | 0.3338       | 0.046*     |
| H19C | 0.3246       | 0.5921       | 0.4526       | 0.046*     |
| C20  | 0.3795 (3)   | 0.44808 (9)  | 0.90466 (14) | 0.0276 (4) |
| C21  | 0.4037 (3)   | 0.38011 (10) | 0.92244 (18) | 0.0379 (5) |
| H21A | 0.3614       | 0.3580       | 0.8580       | 0.057*     |
| H21B | 0.3347       | 0.3667       | 0.9720       | 0.057*     |
| H21C | 0.5310       | 0.3710       | 0.9491       | 0.057*     |
| C31  | 0.4166 (3)   | 0.37475 (9)  | 0.22778 (15) | 0.0289 (4) |
| H31A | 0.5369       | 0.3578       | 0.2536       | 0.043*     |
| H31B | 0.4175       | 0.4015       | 0.1690       | 0.043*     |
| H31C | 0.3315       | 0.3408       | 0.2070       | 0.043*     |

.

| Atom | nic displacem                 | ent parameter                 | s (Å <sup>2</sup> )           |                                 |                                        |                                     |
|------|-------------------------------|-------------------------------|-------------------------------|---------------------------------|----------------------------------------|-------------------------------------|
| S1   | U <sup>11</sup><br>0.0174 (2) | U <sup>22</sup><br>0.0206 (2) | U <sup>33</sup><br>0.0160 (2) | U <sup>12</sup><br>0.00069 (16) | <i>U</i> <sup>13</sup><br>0.00311 (16) | <i>U</i> <sup>23</sup> 0.00111 (16) |

•

| O2 $0.0342$ (7) $0.0251$ (7) $0.0253$ (7) $0.0011$ (6) $0.0104$ (6) $-0.4$ $O3$ $0.0228$ (6) $0.0276$ (7) $0.0170$ (6) $0.0000$ (5) $0.0040$ (5) $0.0000$ $O4$ $0.0182$ (6) $0.0292$ (7) $0.0225$ (6) $0.0042$ (5) $0.0036$ (5) $0.0000$ $O5$ $0.0336$ (7) $0.0213$ (6) $0.0321$ (7) $-0.0001$ (6) $0.0154$ (6) $0.0000$ $O6$ $0.0318$ (8) $0.0337$ (8) $0.0333$ (8) $-0.0010$ (6) $0.0111$ (6) $0.0000$ $O6$ $0.0318$ (8) $0.0354$ (9) $0.0257$ (9) $-0.0022$ (7) $0.0008$ (7) $-0.00000$ $N1$ $0.0238$ (8) $0.0200$ (8) $0.0183$ (7) $-0.0024$ (6) $0.0072$ (6) $-0.000000$ $N2$ $0.0266$ (8) $0.0200$ (8) $0.0118$ (7) $-0.0024$ (6) $0.0072$ (6) $-0.00000000000000000000000000000000000$                                    | 0023 (6)<br>017 (5)<br>025 (5)<br>006 (6)<br>027 (6)<br>0043 (7)<br>0025 (6)<br>0022 (6)<br>0022 (6)<br>0023 (8)<br>0044 (7) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 017 (5)<br>025 (5)<br>006 (6)<br>027 (6)<br>0043 (7)<br>0025 (6)<br>0022 (6)<br>0022 (6)<br>0033 (8)<br>0044 (7)<br>0000 (8) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 025 (5)<br>006 (6)<br>027 (6)<br>0043 (7)<br>0025 (6)<br>0022 (6)<br>0022 (6)<br>0033 (8)<br>0044 (7)                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 006 (6)<br>027 (6)<br>0043 (7)<br>0025 (6)<br>0022 (6)<br>002 (6)<br>0033 (8)<br>0044 (7)                                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 027 (6)<br>0043 (7)<br>0025 (6)<br>0002 (6)<br>002 (6)<br>0033 (8)<br>0044 (7)                                               |
| N1 $0.0238$ (8) $0.0354$ (9) $0.0257$ (9) $-0.0022$ (7) $0.0008$ (7) $-0.0016$ N2 $0.0266$ (8) $0.0200$ (8) $0.0183$ (7) $-0.0024$ (6) $0.0072$ (6) $-0.0016$ N3 $0.0186$ (7) $0.0218$ (8) $0.0226$ (8) $-0.0033$ (6) $0.0017$ (6) $-0.0066$ N4 $0.0189$ (7) $0.0237$ (8) $0.0211$ (8) $-0.0027$ (6) $0.0036$ (6) $0.0066$ C1 $0.0187$ (9) $0.0235$ (9) $0.0253$ (9) $-0.0037$ (7) $0.0041$ (7) $-0.0666$ C2 $0.0178$ (8) $0.0220$ (9) $0.0264$ (9) $-0.0040$ (7) $0.0057$ (7) $-0.06666$ C3 $0.0206$ (9) $0.0240$ (9) $0.0265$ (10) $-0.0012$ (7) $0.0038$ (7) $-0.06666666$ C4 $0.0290$ (10) $0.0219$ (9) $0.0336$ (11) $0.0014$ (8) $0.0075$ (8) $-0.066666666666666666666666666666666666$                                    | 0043 (7)<br>0025 (6)<br>002 (6)<br>002 (6)<br>0033 (8)<br>0044 (7)                                                           |
| N2 $0.0266(8)$ $0.0200(8)$ $0.0183(7)$ $-0.0024(6)$ $0.0072(6)$ $-0.06$ N3 $0.0186(7)$ $0.0218(8)$ $0.0226(8)$ $-0.0033(6)$ $0.0017(6)$ $-0.06$ N4 $0.0189(7)$ $0.0237(8)$ $0.0211(8)$ $-0.0027(6)$ $0.0036(6)$ $0.006$ C1 $0.0187(9)$ $0.0235(9)$ $0.0253(9)$ $-0.0037(7)$ $0.0041(7)$ $-0.066(7)$ C2 $0.0178(8)$ $0.0220(9)$ $0.0264(9)$ $-0.0040(7)$ $0.0057(7)$ $-0.66(7)$ C3 $0.0206(9)$ $0.0240(9)$ $0.0265(10)$ $-0.0012(7)$ $0.0038(7)$ $-0.66(7)$ C4 $0.0290(10)$ $0.0219(9)$ $0.0336(11)$ $0.0014(8)$ $0.0075(8)$ $-0.66(7)$ C5 $0.0286(10)$ $0.0256(10)$ $0.0317(10)$ $-0.0016(8)$ $-0.016(8)$ $-0.0016(8)$                                                                                                           | 0025 (6)<br>0002 (6)<br>002 (6)<br>0033 (8)<br>0044 (7)                                                                      |
| N3 $0.0186$ (7) $0.0218$ (8) $0.0226$ (8) $-0.0033$ (6) $0.0017$ (6) $-0.0017$ N4 $0.0189$ (7) $0.0237$ (8) $0.0211$ (8) $-0.0027$ (6) $0.0036$ (6) $0.0017$ C1 $0.0187$ (9) $0.0235$ (9) $0.0253$ (9) $-0.0037$ (7) $0.0041$ (7) $-0.0027$ C2 $0.0178$ (8) $0.0220$ (9) $0.0264$ (9) $-0.0040$ (7) $0.0057$ (7) $-0.0027$ C3 $0.0206$ (9) $0.0240$ (9) $0.0265$ (10) $-0.0012$ (7) $0.0038$ (7) $-0.0027$ C4 $0.0290$ (10) $0.0219$ (9) $0.0336$ (11) $0.0014$ (8) $0.0075$ (8) $-0.0012$ C5 $0.0286$ (10) $0.0256$ (10) $0.0317$ (10) $-0.0016$ (8) $-0.016$                                                                                                                                                                   | 0002 (6)<br>002 (6)<br>0033 (8)<br>0044 (7)                                                                                  |
| N4         0.0189 (7)         0.0237 (8)         0.0211 (8)        0.0027 (6)         0.0036 (6)         0.00           C1         0.0187 (9)         0.0235 (9)         0.0253 (9)         -0.0037 (7)         0.0041 (7)         -0.0           C2         0.0178 (8)         0.0220 (9)         0.0264 (9)         -0.0040 (7)         0.0057 (7)         -0.0           C3         0.0206 (9)         0.0240 (9)         0.0265 (10)         -0.0012 (7)         0.0038 (7)         -0.0           C4         0.0290 (10)         0.0219 (9)         0.0336 (11)         0.0014 (8)         0.0075 (8)         -0.0           C5         0.0286 (10)         0.0256 (10)         -0.0016 (8)         0.0106 (8)         -0.0 | 002 (6)<br>0033 (8)<br>0044 (7)                                                                                              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )033 (8)<br>)044 (7)                                                                                                         |
| C2         0.0178 (8)         0.0220 (9)         0.0264 (9)         -0.0040 (7)         0.0057 (7)         -0.0           C3         0.0206 (9)         0.0240 (9)         0.0265 (10)         -0.0012 (7)         0.0038 (7)         -0.0           C4         0.0290 (10)         0.0219 (9)         0.0336 (11)         0.0014 (8)         0.0075 (8)         -0.0           C5         0.0286 (10)         0.0256 (10)         0.0317 (10)         -0.0016 (8)         0.0106 (8)         -0.0                                                                                                                                                                                                                               | )044 (7)                                                                                                                     |
| C3         0.0206 (9)         0.0240 (9)         0.0265 (10)         -0.0012 (7)         0.0038 (7)         -0.0           C4         0.0290 (10)         0.0219 (9)         0.0336 (11)         0.0014 (8)         0.0075 (8)         -0.0           C5         0.0286 (10)         0.0256 (10)         0.0317 (10)         -0.0016 (8)         0.0106 (8)         -0.0                                                                                                                                                                                                                                                                                                                                                         | 1000 ( <b>0</b> )                                                                                                            |
| C4         0.0290 (10)         0.0219 (9)         0.0336 (11)         0.0014 (8)         0.0075 (8)         -0.0           C5         0.0286 (10)         0.0256 (10)         0.0317 (10)         -0.0016 (8)         0.0106 (8)         -0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1003 (0)                                                                                                                     |
| C5 0.0286 (10) 0.0256 (10) 0.0317 (10) -0.0016 (8) 0.0106 (8) -0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0024 (8)                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0074 (8)                                                                                                                     |
| C6 0.0293 (10) 0.0276 (10) 0.0276 (10) -0.0032 (8) 0.0116 (8) -0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0017 (8)                                                                                                                     |
| C7 0.0241 (9) 0.0207 (9) 0.0318 (10) -0.0013 (7) 0.0101 (8) -0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0002 (8)                                                                                                                     |
| C8 0.0231 (9) 0.0183 (9) 0.0212 (9) -0.0016 (7) 0.0020 (7) 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | )32 (7)                                                                                                                      |
| C9 0.0277 (9) 0.0180 (8) 0.0189 (9) 0.0014 (7) 0.0054 (7) -0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 010 (7)                                                                                                                      |
| C10 0.0198 (8) 0.0172 (8) 0.0217 (9) 0.0020 (7) 0.0073 (7) 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 024 (7)                                                                                                                      |
| C11 0.0176 (8) 0.0168 (8) 0.0175 (8) 0.0003 (7) 0.0028 (7) 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30 (7)                                                                                                                       |
| C12 0.0224 (9) 0.0204 (9) 0.0182 (8) 0.0038 (7) 0.0071 (7) 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12 (7)                                                                                                                       |
| C13 0.0171 (8) 0.0257 (9) 0.0236 (9) 0.0018 (7) 0.0059 (7) 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28 (7)                                                                                                                       |
| C14 0.0155 (8) 0.0226 (9) 0.0198 (9) -0.0040 (7) 0.0012 (7) -0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 012 (7)                                                                                                                      |
| C16 0.0164 (8) 0.0298 (10) 0.0207 (9) -0.0041 (7) 0.0024 (7) 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01 (8)                                                                                                                       |
| C17 0.0223 (9) 0.0270 (10) 0.0260 (10) -0.0030 (7) 0.0046 (8) 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 57 (8)                                                                                                                       |
| C18 0.0172 (8) 0.0240 (9) 0.0263 (9) -0.0039 (7) 0.0013 (7) 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21 (8)                                                                                                                       |
| C19 0.0313 (10) 0.0237 (10) 0.0355 (11) -0.0029 (8) 0.0055 (9) 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28 (8)                                                                                                                       |
| C20 0.0330 (10) 0.0295 (10) 0.0215 (9) -0.0013 (8) 0.0086 (8)0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 011 (8)                                                                                                                      |
| C21 0.0432 (13) 0.0284 (11) 0.0438 (13) 0.0019 (9) 0.0135 (10) -0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 002 (10)                                                                                                                     |
| C31 0.0327 (10) 0.0308 (10) 0.0256 (10) -0.0009 (8) 0.0115 (8) 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13 (8)                                                                                                                       |
| <u>Geometric parameters (Å, °)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                              |
| S1O4 1.4341 (13) C6-C7 1.381 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                              |
| S1 O3 1 4308 (13) C6 U6 0 0500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                              |
| 1.730(13) $0.7300$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                              |
| S1OS       1.4358 (13)       C0H0       0.9300         S1N2       1.6459 (15)       C8C9       1.403 (3)         S1C11       1.7463 (18)       C8C13       1.409 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                              |
| S1C5 $1.4536 (15)$ C0R0 $0.9300$ S1N2 $1.6459 (15)$ C8C9 $1.403 (3)$ S1C11 $1.7463 (18)$ C8C13 $1.409 (3)$ O1C1 $1.225 (2)$ C9C10 $1.383 (3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                              |
| S1-C5 $1.4536 (15)$ $C6-H0$ $0.9300$ $S1-N2$ $1.6459 (15)$ $C8-C9$ $1.403 (3)$ $S1C11$ $1.7463 (18)$ $C8-C13$ $1.409 (3)$ $O1-C1$ $1.225 (2)$ $C9-C10$ $1.383 (3)$ $O2-C1$ $1.317 (2)$ $C9-H9$ $0.9500$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                              |
| S1C5 $1.4536 (15)$ C0H0 $0.9300$ S1N2 $1.6459 (15)$ C8C9 $1.403 (3)$ S1C11 $1.7463 (18)$ C8C13 $1.409 (3)$ O1C1 $1.225 (2)$ C9C10 $1.383 (3)$ O2C1 $1.317 (2)$ C9H9 $0.9500$ O2H32 $0.837 (16)$ C10C11 $1.390 (2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                              |
| S1C5       1.4538 (15)       C0H0       0.9300         S1N2       1.6459 (15)       C8C9       1.403 (3)         S1C11       1.7463 (18)       C8C13       1.409 (3)         O1C1       1.225 (2)       C9C10       1.383 (3)         O2C1       1.317 (2)       C9H9       0.9500         O2H32       0.837 (16)       C10C11       1.390 (2)         O5C20       1.370 (2)       C10H10       0.9500                                                                                                                                                                                                                                                                                                                           |                                                                                                                              |
| S1C5 $1.4536 (15)$ $C6H0$ $0.9300$ $S1N2$ $1.6459 (15)$ $C8C9$ $1.403 (3)$ $S1C11$ $1.7463 (18)$ $C8C13$ $1.409 (3)$ $O1C1$ $1.225 (2)$ $C9C10$ $1.383 (3)$ $O2C1$ $1.317 (2)$ $C9H9$ $0.9500$ $O2H32$ $0.837 (16)$ $C10C11$ $1.390 (2)$ $O5C20$ $1.370 (2)$ $C10H10$ $0.9500$ $O5C7$ $1.397 (2)$ $C11C12$ $1.400 (2)$                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                              |
| S1C5       1.4558 (15)       C0H0       0.9300         S1N2       1.6459 (15)       C8C9       1.403 (3)         S1C11       1.7463 (18)       C8C13       1.409 (3)         O1C1       1.225 (2)       C9C10       1.383 (3)         O2C1       1.317 (2)       C9H9       0.9500         O2H32       0.837 (16)       C10C11       1.390 (2)         O5C20       1.370 (2)       C10H10       0.9500         O5C7       1.397 (2)       C11C12       1.400 (2)         O6C20       1.204 (2)       C12C13       1.378 (3)                                                                                                                                                                                                      |                                                                                                                              |
| S1C5       1.4556 (15)       C0H0       0.9300         S1N2       1.6459 (15)       C8C9       1.403 (3)         S1C11       1.7463 (18)       C8C13       1.409 (3)         O1C1       1.225 (2)       C9C10       1.383 (3)         O2C1       1.317 (2)       C9H9       0.9500         O2H32       0.837 (16)       C10C11       1.390 (2)         O5C20       1.370 (2)       C10H10       0.9500         O5C7       1.397 (2)       C11C12       1.400 (2)         O6C20       1.204 (2)       C12C13       1.378 (3)         N1C8       1.372 (2)       C12H12       0.9500                                                                                                                                               |                                                                                                                              |
| S1C5       1.4558 (15)       C0H0       0.9300         S1N2       1.6459 (15)       C8C9       1.403 (3)         S1C11       1.7463 (18)       C8C13       1.409 (3)         O1C1       1.225 (2)       C9C10       1.383 (3)         O2C1       1.317 (2)       C9H9       0.9500         O2H32       0.837 (16)       C10C11       1.390 (2)         O5C20       1.370 (2)       C10H10       0.9500         O5C7       1.397 (2)       C11C12       1.400 (2)         O6C20       1.204 (2)       C12C13       1.378 (3)         N1C8       1.372 (2)       C12H12       0.9500         N1H30B       0.869 (16)       C13H13       0.9500                                                                                     |                                                                                                                              |
| S1C5 $1.4556(15)$ $C6H0$ $0.9300$ S1N2 $1.6459(15)$ $C8C9$ $1.403(3)$ S1C11 $1.7463(18)$ $C8C13$ $1.409(3)$ O1C1 $1.225(2)$ $C9C10$ $1.383(3)$ O2C1 $1.317(2)$ $C9H9$ $0.9500$ O2H32 $0.837(16)$ $C10C11$ $1.390(2)$ O5C20 $1.370(2)$ $C10H10$ $0.9500$ O5C7 $1.397(2)$ $C11C12$ $1.400(2)$ O6C20 $1.204(2)$ $C12C13$ $1.378(3)$ N1C8 $1.372(2)$ $C12H12$ $0.9500$ N1H30B $0.869(16)$ $C13H13$ $0.9500$ N1H30A $0.884(16)$ $C16C17$ $1.394(3)$                                                                                                                                                                                                                                                                                   |                                                                                                                              |
| S1C5 $1.4.576 (15)$ $C6H0$ $0.9300$ $S1N2$ $1.6459 (15)$ $C8C9$ $1.403 (3)$ $S1C11$ $1.7463 (18)$ $C8C13$ $1.409 (3)$ $O1C1$ $1.225 (2)$ $C9C10$ $1.383 (3)$ $O2C1$ $1.317 (2)$ $C9H9$ $0.9500$ $O2H32$ $0.837 (16)$ $C10C11$ $1.390 (2)$ $O5C20$ $1.370 (2)$ $C10H10$ $0.9500$ $O5C7$ $1.397 (2)$ $C11C12$ $1.400 (2)$ $O6C20$ $1.204 (2)$ $C12C13$ $1.378 (3)$ $N1C8$ $1.372 (2)$ $C12H12$ $0.9500$ $N1H30B$ $0.869 (16)$ $C13H13$ $0.9500$ $N1H30A$ $0.884 (16)$ $C16C17$ $1.394 (3)$ $N2C14$ $1.390 (2)$ $C16C31$ $1.494 (3)$                                                                                                                                                                                                |                                                                                                                              |
| S1C5 $1.4576(15)$ $C6H0$ $0.9300$ $S1N2$ $1.6459(15)$ $C8C9$ $1.403(3)$ $S1C11$ $1.7463(18)$ $C8C13$ $1.409(3)$ $O1C1$ $1.225(2)$ $C9C10$ $1.383(3)$ $O2C1$ $1.317(2)$ $C9H9$ $0.9500$ $O2H32$ $0.837(16)$ $C10C11$ $1.390(2)$ $O5C20$ $1.370(2)$ $C10H10$ $0.9500$ $O5C7$ $1.397(2)$ $C11C12$ $1.400(2)$ $O6C20$ $1.204(2)$ $C12C13$ $1.378(3)$ $N1C8$ $1.372(2)$ $C12H12$ $0.9500$ $N1H30B$ $0.869(16)$ $C13H13$ $0.9500$ $N1H30A$ $0.884(16)$ $C16C17$ $1.394(3)$ $N2C14$ $1.390(2)$ $C16C31$ $1.494(3)$ $N2H31$ $0.839(15)$ $C17C18$ $1.384(3)$                                                                                                                                                                              |                                                                                                                              |

,

x.

-

... -

| N3-C18       | 1.350 (2)   | C18—C19       | 1.507 (3)   |
|--------------|-------------|---------------|-------------|
| N4-C14       | 1.332 (2)   | C19—H19A      | 0.9800      |
| N4—C16       | 1.349 (2)   | C19—H19B      | 0.9800      |
| C1—C2        | 1.491 (2)   | C19—H19C      | 0.9800      |
| C2—C3        | 1.401 (3)   | C20—C21       | 1.494 (3)   |
| C2—C7        | 1.403 (3)   | C21—H21A      | 0.9800      |
| C3—C4        | 1.385 (3)   | C21H21B       | 0.9800      |
| С3—Н3        | 0.9500      | C21—H21C      | 0.9800      |
| C4—C5        | 1.387 (3)   | C31—H31A      | 0.9800      |
| C4—H4        | 0.9500      | C31—H31B      | 0.9800      |
| C5—C6        | 1.387 (3)   | C31—H31C      | 0.9800      |
| С5—Н5        | 0.9500      |               |             |
| O4—S1—O3     | 118.63 (7)  | С9С10Н10      | 120.0       |
| O4           | 110.03 (8)  | C11-C10-H10   | 120.0       |
| O3—S1—N2     | 102.84 (8)  | C10-C11-C12   | 120.05 (16) |
| O4—S1—C11    | 109.02 (8)  | C10-C11-S1    | 120.79 (13) |
| O3—S1—C11    | 108.92 (8)  | C12—C11—S1    | 119.16 (13) |
| N2—S1—C11    | 106.69 (8)  | C13—C12—C11   | 120.30 (16) |
| C1—O2—H32    | 110.7 (16)  | C13—C12—H12   | 119.9       |
| C20—O5—C7    | 117.20 (14) | C11—C12—H12   | 119.9       |
| C8—N1—H30B   | 115.3 (16)  | C12—C13—C8    | 120.11 (16) |
| C8—N1—H30A   | 113.6 (15)  | C12-C13-H13   | 119.9       |
| H30B-N1-H30A | 118 (2)     | C8—C13—H13    | 119.9       |
| C14—N2—S1    | 125.83 (13) | N4—C14—N3     | 127.38 (16) |
| C14—N2—H31   | 118.1 (15)  | N4—C14—N2     | 117.91 (16) |
| S1-N2-H31    | 115.4 (15)  | N3—C14—N2     | 114.71 (15) |
| C14—N3—C18   | 115.90 (16) | N4—C16—C17    | 120.97 (17) |
| C14—N4—C16   | 116.14 (16) | N4-C16-C31    | 116.57 (17) |
| 01—C1—O2     | 122.91 (17) | C17—C16—C31   | 122.45 (16) |
| 01—C1—C2     | 122.91 (17) | C18-C17-C16   | 118.53 (17) |
| O2—C1—C2     | 114.18 (16) | C18—C17—H17   | 120.7       |
| C3—C2—C7     | 117.81 (17) | C16—C17—H17   | 120.7       |
| C3—C2—C1     | 120.00 (17) | N3-C18-C17    | 121.08 (17) |
| C7—C2—C1     | 122.18 (16) | N3-C18-C19    | 116.85 (16) |
| C4—C3—C2     | 120.99 (18) | C17—C18—C19   | 122.06 (17) |
| С4—С3—Н3     | 119.5       | C18C19H19A    | 109.5       |
| С2—С3—Н3     | 119.5       | C18C19H19B    | 109.5       |
| C3—C4—C5     | 120.00 (18) | H19A—C19—H19B | 109.5       |
| C3C4H4       | 120.0       | C18—C19—H19C  | 109.5       |
| C5C4H4       | 120.0       | H19A          | 109.5       |
| C4—C5—C6     | 120.07 (18) | H19B—C19—H19C | 109.5       |
| C4—C5H5      | 120.0       | O6C20O5       | 123.31 (18) |
| C6—C5—H5     | 120.0       | O6—C20—C21    | 126.38 (19) |
| C7C6C5       | 119.87 (18) | O5C20C21      | 110.30 (17) |
| С7—С6—Н6     | 120.1       | C20-C21-H21A  | 109.5       |
| С5—С6—Н6     | 120.1       | C20—C21—H21B  | 109.5       |
| C6—C7—O5     | 116.25 (17) | H21A—C21—H21B | 109.5       |
| C6—C7—C2     | 121.23 (17) | C20—C21—H21C  | 109.5       |
| O5—C7—C2     | 122.49 (16) | H21A—C21—H21C | 109.5       |

.

| N1-C8-C9                       | 120.51 (17)        | H21B-C21-H21C                        | 109.5        |  |  |  |  |
|--------------------------------|--------------------|--------------------------------------|--------------|--|--|--|--|
| N1-C8-C13                      | 120.48 (17)        | C16-C31-H31A                         | 109.5        |  |  |  |  |
| C9—C8—C13                      | 118.97 (16)        | C16—C31—H31B                         | 109.5        |  |  |  |  |
| С10—С9—С8                      | 120.62 (16)        | H31A—C31—H31B                        | 109.5        |  |  |  |  |
| С10—С9—Н9                      | 119.7              | C16—C31—H31C                         | 109.5        |  |  |  |  |
| С8—С9—Н9                       | 119.7              | H31A-C31-H31C                        | 109.5        |  |  |  |  |
| C9—C10—C11                     | 119.92 (16)        | H31B—C31—H31C                        | 109.5        |  |  |  |  |
| O4—S1—N2—C14                   | 54.64 (17)         | O3—S1—C11—C10                        | -145.34 (14) |  |  |  |  |
| O3—S1—N2—C14                   | -178.04 (14)       | N2-S1-C11-C10                        | 104.29 (15)  |  |  |  |  |
| C11—S1—N2—C14                  | -63.48 (16)        | O4—S1—C11—C12                        | 165.08 (13)  |  |  |  |  |
| O1—C1—C2—C3                    | -163.29 (18)       | O3—S1—C11—C12                        | 34.24 (16)   |  |  |  |  |
| O2—C1—C2—C3                    | 15.7 (2)           | N2-S1-C11-C12                        | -76.13 (15)  |  |  |  |  |
| 01—C1—C2—C7                    | 15.2 (3)           | C10-C11-C12-C13                      | -0.6 (3)     |  |  |  |  |
| O2—C1—C2—C7                    | -165.75 (17)       | S1-C11-C12-C13                       | 179.85 (14)  |  |  |  |  |
| C7—C2—C3—C4                    | -1.7 (3)           | C11—C12—C13—C8                       | 0.6 (3)      |  |  |  |  |
| C1—C2—C3—C4                    | 176.85 (17)        | N1-C8-C13-C12                        | 178.54 (17)  |  |  |  |  |
| C2—C3—C4—C5                    | 0.7 (3)            | C9—C8—C13—C12                        | 0.6(3)       |  |  |  |  |
| C3—C4—C5—C6                    | 0.9 (3)            | C16—N4—C14—N3                        | 0.5 (3)      |  |  |  |  |
| C4C5C6C7                       | -1.3 (3)           | C16—N4—C14—N2                        | -178.55 (15) |  |  |  |  |
| C5—C6—C7—O5                    | -177.79 (17)       | C18—N3—C14—N4                        | -0.3 (3)     |  |  |  |  |
| С5С6С7С2                       | 0.2 (3)            | C18—N3—C14—N2                        | 178.80 (15)  |  |  |  |  |
| C20—O5—C7—C6                   | -115.03 (19)       | S1—N2—C14—N4                         | -8.2 (2)     |  |  |  |  |
| C20—O5—C7—C2                   | 67.0 (2)           | S1—N2—C14—N3                         | 172.64 (13)  |  |  |  |  |
| C3—C2—C7—C6                    | 1.3 (3)            | C14—N4—C16—C17                       | -0.4 (2)     |  |  |  |  |
| C1—C2—C7—C6                    | -177.27 (17)       | C14—N4—C16—C31                       | 178.34 (16)  |  |  |  |  |
| C3—C2—C7—O5                    | 179.18 (16)        | N4-C16-C17-C18                       | 0.2 (3)      |  |  |  |  |
| C1—C2—C7—O5                    | 0.6 (3)            | C31—C16—C17—C18                      | -178.52 (17) |  |  |  |  |
| N1-C8-C9-C10                   | -179.76 (17)       | C14—N3—C18—C17                       | 0.0 (2)      |  |  |  |  |
| C13—C8—C9—C10                  | -1.8 (3)           | C14—N3—C18—C19                       | 178.84 (16)  |  |  |  |  |
| C8—C9—C10—C11                  | 1.8 (3)            | C16-C17-C18-N3                       | 0.0 (3)      |  |  |  |  |
| C9—C10—C11—C12                 | -0.6 (3)           | C16—C17—C18—C19                      | -178.74 (17) |  |  |  |  |
| C9-C10-C11-S1                  | 178.94 (13)        | C7—O5—C20—O6                         | 4.1 (3)      |  |  |  |  |
| O4—S1—C11—C10                  | -14.50 (16)        | C7—O5—C20—C21                        | -174.72 (16) |  |  |  |  |
| Hydrogen-bond geometry (Å, °)  |                    |                                      |              |  |  |  |  |
| D—H···A                        | <i>D</i> —Н        | $H \cdots A \qquad D \cdots A$       | D—H···A      |  |  |  |  |
| $N1 - H30 A \cdots O3^{i}$     | 0.88 (2)           | 2.54 (2) 3.120 (2)                   | 124 (2)      |  |  |  |  |
| N1—H $30B$ ····O4 <sup>i</sup> | 0.80(2)            | 2.40(2) $3.010(2)$                   | 128 (2)      |  |  |  |  |
| N2—H31…01                      | 0.84(2)            | 1.94(2) $2.775(2)$                   | 175 (2)      |  |  |  |  |
| $\Omega^2$ H37 $\Omega^1$      | 0.81(2)<br>0.84(2) | 1.91(2) $2.773(2)1.90(2)$ $2.724(2)$ | 168 (2)      |  |  |  |  |
| SZ 1152 115                    | 0.07 (2)           | 1.50 (2) 2.721 (2)                   | 100 (2)      |  |  |  |  |

Symmetry code: (i) x-1, -y+1/2, z-1/2.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An

| N2—H31…O1 | 0.84 (2) | 1.94 (2) | 2.775 (2) | 175 (2) |
|-----------|----------|----------|-----------|---------|
| O2—H32…N3 | 0.84 (2) | 1.90 (2) | 2.724 (2) | 168 (2) |

Symmetry code: (i) x-1, -y+1/2, z-1/2.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

#### S2. Hot-Stage Microscopy











77.1°

105.4°

121.9°









55.7°

78.5°

103.7°

















(S)-Br (R)-CF₃

107.5°

221

117.6°

118.8°







 Table S2: Hot Stage Images of Same Handed Homochiral Diarylamide Derivatives

Hydrogen





## Fluoride

















Nitro



Bromide



59.1°

74.5°

77.5°



S3. X-ray Crystallography - Powder Diffraction



Figure S.19: Powder XRD of (S)-CH<sub>3</sub>/(R)-Br Quasiracemate and Related Components.


Figure S.20: Powder XRD of (S)-Br/(R)-CF<sub>3</sub> Quasiracemate and Related Components.



Figure S.21: Powder XRD of (S)-Cl/(R)-NO<sub>2</sub> Quasiracemate and Related Components.



Figure S.22: Powder XRD of (S)-Cl/(R)-I Quasiracemate and Related Components.

### **S4. Single Crystal X-ray Diffraction**



Figure S.23: Crystal Structure of N-(2-Fluoro)/N-2-(benzoyl)methylbenzylamine Quasiracemate Showing Thermal Parameters (50% Thermal Ellipsoids).



Figure S.24: Crystal Structure of N-(2-Trifluoro)/N-2-(Nitrobenzoyl)methylbenzylamine Quasiracemate Showing Thermal Parameters (50% Thermal Ellipsoids).



Figure S.25: Crystal Structure of N-(2-Trifluoro)/N-2-(Methylbenzoyl)methylbenzylamine Quasiracemate Showing Thermal Parameters (50% Thermal Ellipsoids).



Figure S.26: Crystal Structure of N-(2-Nitro)/N-2-(Bromobenzoyl)methylbenzylamine Quasiracemate Showing Thermal Parameters (50% Thermal Ellipsoids).



Figure S.27: Crystal Structure of N-(2-Trifluoro)/N-2-(Iodobenzoyl)methylbenzylamine Quasiracemate Showing Thermal Parameters (50% Thermal Ellipsoids).

|                                            | (R)-Cl/(S)Br <sup>1</sup>       | (±)-Br <sup>1</sup>                  | ( <i>S</i> )-H/( <i>R</i> )-F | (S)-NO <sub>2</sub> /(R)-CF <sub>3</sub> |
|--------------------------------------------|---------------------------------|--------------------------------------|-------------------------------|------------------------------------------|
| Crystal data                               |                                 |                                      |                               |                                          |
| CCDC deposit no.                           | LUNQIU                          | LUNQEQ                               | 1534590                       | 1534591                                  |
| Empirical formula                          | $C_{30}H_{28}BrCIN_2O_2$        | C <sub>15</sub> H <sub>14</sub> NOBr | $C_{30}H_{14}FN_2O_2$         | $C_{31}H_{28}F_{3}N_{3}O_{3}$            |
| Crystal System, space                      | Monoclinic                      | Orthorhombic                         | Triclinic                     | Monoclinic                               |
| group                                      | <i>P</i> 2 <sub>1</sub> (no. 4) | <i>Pbca</i> (no. 61)                 | <i>P</i> 1 (no. 1)            | <i>P</i> 2 <sub>1</sub> (no. 4)          |
| Mr                                         | 563.90                          | 304.18                               | 468.55                        | 563.56                                   |
| a, Å                                       | 8.7790(8)                       | 9.4207(7)                            | 5.3540(2)                     | 8.3035(14)                               |
| <i>b</i> , Å                               | 17.699(2)                       | 16.361(1)                            | 8.3824(4)                     | 9.6853(13)                               |
| <i>c,</i> Å                                | 9.4652(9)                       | 18.348(2)                            | 13.8585(7)                    | 17.333(3)                                |
| α, deg                                     | 90                              | 90                                   | 96.477(3)                     | 90                                       |
| <i>β,</i> deg                              | 108.391(8)                      | 90                                   | 93.829(3)                     | 101.057(9)                               |
| γ, deg                                     | 90                              | 90                                   | 105.841(3)                    | 90                                       |
| <i>V,</i> (ų)                              | 1395.6(2)                       | 2828.0(4)                            | 591.42(5)                     | 1368.0(4)                                |
| Z, Z'                                      | 2, 1                            | 8, 1                                 | 1, 1                          | 2, 1                                     |
| D <sub>calc</sub> (g cm <sup>-3</sup> )    |                                 |                                      | 1.316                         | 1.368                                    |
| $\mu$ (mm <sup>-1</sup> ), rad. type       |                                 |                                      | 0.705, Cu <i>Kα</i>           | 0.882, Cu <i>Ka</i>                      |
| F <sub>000</sub>                           |                                 |                                      | 248                           | 588                                      |
| temp (K)                                   |                                 |                                      | 100(2)                        | 100(2)                                   |
| Crystal form, color                        |                                 |                                      | plate, colorless              | plate, colorless                         |
| Crystal size, mm                           |                                 |                                      | 0.39 x 0.07 x 0.07            | 0.26 x 0.01 x 0.0                        |
| Data collection                            |                                 |                                      |                               |                                          |
| Diffractometer                             |                                 |                                      | Bruker Apex II                | Bruker Apex II                           |
| T <sub>min</sub> / T <sub>max</sub>        |                                 |                                      | 0.653/0.753                   | 0.591/0.753                              |
| No. of refls. (meas.,<br>uniq., and obs.)  |                                 |                                      | 13271/3785/2730               | 20018/4899/379                           |
| R <sub>int</sub>                           |                                 |                                      | 0.0760                        | 0.0992                                   |
| ϑ <sub>max</sub> (°)                       |                                 |                                      | 68.25                         | 68.22                                    |
| Refinement                                 |                                 |                                      |                               |                                          |
| $R/R^2_{\omega}$ (obs data)                |                                 |                                      | 0.0668/0.1661                 | 0.0616/0.1599                            |
| $R/R^2\omega$ (all data)                   |                                 |                                      | 0.0946/0.1886                 | 0.0787/0.1708                            |
| S                                          |                                 |                                      | 1.045                         | 1.061                                    |
| No. of refls.                              |                                 |                                      | 3785                          | 4899                                     |
| No. of parameters                          |                                 |                                      | 406                           | 380                                      |
| $\Delta ho_{max/min}$ (e·Å <sup>-3</sup> ) |                                 |                                      | 0.638/-0.204                  | 0.341/-0.350                             |
|                                            |                                 |                                      |                               |                                          |

| Table S3: Crystallographic data for diarylamide quasiracemates. |  |
|-----------------------------------------------------------------|--|
|-----------------------------------------------------------------|--|

|                                                | (R)-CH <sub>3</sub> /(S)-CF <sub>3</sub> | (R)-NO <sub>2</sub> /(S)-Br | (R)-CF₃/(S)-I                                          | (S)-OMe                                         |
|------------------------------------------------|------------------------------------------|-----------------------------|--------------------------------------------------------|-------------------------------------------------|
| Crystal data                                   |                                          | ( ) ( )                     | ( ) ( ) ( )                                            | (-/                                             |
| CCDC deposit no.                               | 1534592                                  | 1534593                     | 1534594                                                | 1534589                                         |
| Empirical formula                              | $C_{32}H_{31}F_{3}N_{2}O_{2}$            | $C_{30}H_{28}BrN_{3}O_{4}$  | $C_{31}H_{28}F_{3}IN_{2}O_{2}$                         | C <sub>16</sub> H <sub>17</sub> NO <sub>2</sub> |
| Crystal System, space                          | Monoclinic                               | Monoclinic                  | Orthorhombic                                           | Orthorhombic                                    |
| group                                          | <i>P</i> 2 <sub>1</sub> (no. 4)          | P21 (no. 4)                 | P2 <sub>1</sub> 2 <sub>1</sub> 2 <sub>1</sub> (no. 19) | P212121 (no. 19)                                |
| Mr                                             | 532.59                                   | 574.46                      | 644.45                                                 | 255.30                                          |
| a, Å                                           | 8.7183(13)                               | 8.2953(5)                   | 9.4943(2)                                              | 5.8757(10)                                      |
| b, Å                                           | 18.007(2)                                | 9.5761(5)                   | 16.1705(4)                                             | 14.464(2)                                       |
| <i>c,</i> Å                                    | 9.5051(11)                               | 17.2423(9)                  | 18.3454(5)                                             | 15.887(3)                                       |
| α, deg                                         | 90                                       | 90                          | 90                                                     | 90                                              |
| <i>6,</i> deg                                  | 106.811(8)                               | 101.342(3)                  | 90                                                     | 90                                              |
| γ, deg                                         | 90                                       | 90                          | 90                                                     | 90                                              |
| <i>V,</i> (ų)                                  | 1428.4(3)                                | 1342.92(13)                 | 2816.52(12)                                            | 1350.2(4)                                       |
| Ζ, Ζ΄                                          | 2, 1                                     | 2, 1                        | 4, 1                                                   | 4, 1                                            |
| D <sub>calc</sub> (g cm <sup>-3</sup> )        | 1.572                                    | 1.421                       | 1.520                                                  | 1.256                                           |
| $\mu$ (mm <sup>-1</sup> ), rad. type           | 0.748, Cu <i>Kα</i>                      | 2.420, Cu <i>Kα</i>         | 9.367, Cu $Klpha$                                      | 0.661, Cu <i>Kα</i>                             |
| F <sub>000</sub>                               | 560                                      | 592                         | 1296                                                   | 544                                             |
| temp (K)                                       | 100(2)                                   | 100(2)                      | 100(2)                                                 | 100(2)                                          |
| Crystal form, color                            | plate, colorless                         | plate, colorless            | plate, colorless                                       | block, colorless                                |
| Crystal size, mm                               | 0.44 x 0.17 x 0.10                       | 0.15 x 0.11 x 0.03          | 0.15 x 0.15 x 0.10                                     | 0.31 x 0.15 x 0.06                              |
| Data collection                                |                                          |                             |                                                        |                                                 |
| Diffractometer                                 | Bruker Apex II                           | Bruker Apex II              | Bruker Apex II                                         | Bruker Apex II                                  |
| T <sub>min</sub> / T <sub>max</sub>            | 0.591/0.753                              | 0.587/0.753                 | 0.532/0.753                                            | 0.669/0.753                                     |
| No. of refls. (meas.,<br>uniq., and obs.)      | 20723/5088/3596                          | 20609/4825/3810             | 43195/5159/4723                                        | 5676/2162/1911                                  |
| R <sub>int</sub>                               | 0.0734                                   | 0.1097                      | 0.0765                                                 | 0.0381                                          |
| ϑ <sub>max</sub> (°)                           | 68.20                                    | 68.25                       | 68.23                                                  | 68.22                                           |
| Refinement                                     |                                          |                             |                                                        |                                                 |
| $R/R^2_{\omega}$ (obs data)                    | 0.0515/0.1446                            | 0.0737/0.1536               | 0.0277/0.0582                                          | 0.0371/0.0852                                   |
| $R/R^2_{\omega}$ (all data)                    | 0.0712/0.1662                            | 0.0967/0.1652               | 0.0328/0.0612                                          | 0.0435/0.0893                                   |
| S                                              | 1.073                                    | 1.088                       | 1.004                                                  | 1.060                                           |
| No. of refls.                                  | 5088                                     | 4825                        | 5159                                                   | 2162                                            |
| No. of parameters                              | 363                                      | 351                         | 362                                                    | 178                                             |
| $\Delta  ho_{ m max/min}$ (e·Å <sup>-3</sup> ) | 0.157/-0.172                             | 1.047/-0.821                | 0.624/-0.507                                           | 0.172/-0.161                                    |
| flack                                          | 0.0(2)                                   | 0.10(2)                     | -0.005(3)                                              | 0.0(2)                                          |

Table S3: Crystallographic data for diarylamide quasiracemates. (Continued)

.

| Compound                                      | D-H···A                     | D–H (Å)   | H…A (Å) | D…A (Å)   | D–H…A (°) |
|-----------------------------------------------|-----------------------------|-----------|---------|-----------|-----------|
| ( <i>S</i> )-H/( <i>R</i> )-H                 | N1A-H1A…O1A'                | 0.87(3)   | 2.33(3) | 3.143(6)  | 156(5)    |
|                                               | N1B-H1B…O1B"                | 0.87(3)   | 2.32(3) | 3.122(7)  | 154(5)    |
| (S)-NO <sub>2</sub> /(R)-CF <sub>3</sub>      | N1–H1…O1 <sup>iii</sup>     | 0.86(3)   | 2.02(3) | 2.870(6)  | 170(9)    |
|                                               | N1A-H1A…O1A"                | 0.86(3)   | 2.02(3) | 2.855(6)  | 164(6)    |
| ( <i>R</i> )-CH₃/( <i>S</i> )-CF₃             | N1A–H1A…O1 <sup>v</sup>     | 0.85(2)   | 2.08(3) | 2.911(5)  | 164(4)    |
|                                               | N1–H1…O1A <sup>vi</sup>     | 0.87(2)   | 2.11(3) | 2.923(5)  | 156(5)    |
| ( <i>R</i> )-NO <sub>2</sub> /( <i>S</i> )-Br | N1–H1…O1 <sup>vii</sup>     | 0.85(3)   | 1.97(4) | 2.802(11) | 166(12)   |
|                                               | N1A–H1A…O1A <sup>viii</sup> | 0.84(2)   | 2.06(3) | 2.871(11) | 164(10)   |
| ( <i>R</i> )-CF₃/( <i>S</i> )-I               | N1–H1…O1A <sup>v</sup>      | 0.82(3)   | 2.15(3) | 2.946(5)  | 163(5)    |
|                                               | N1A-H1A…O1 <sup>ii</sup>    | 0.84(2)   | 2.13(3) | 2.948(5)  | 164(4)    |
| (S)-OMe                                       | N1−H1…O2 <sup>⊭</sup>       | 0.883(19) | 1.94(2) | 2.669(3)  | 139(3)    |

Table S4: Hydrogen Bond Parameters for Diarylamide Quasiracemate Structures.

Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z; (iii) -x, y-0.5, -z; (iv) -x+1, y+0.5, -z+1; (v) x, y, z; (vi) x, y, z-1; (vii) -x+1, y-0.5, -z; (viii) 2-x, 0.5+y, 1-z

.

## S5. <sup>1</sup>H NMR Overlays





Figure S.28: <sup>1</sup>H NMR Overlays of the S-Cl/R-Br Quasiracemate System.





Figure S.29: <sup>1</sup>H NMR Overlays of the S-NO<sub>2</sub>/R-CF<sub>3</sub> Quasiracemate System.

(S)-Br/(R)-CF<sub>3</sub> Quasiracemate



Figure S.30: <sup>1</sup>H NMR Overlays of the S-Br/R-CF<sub>3</sub> Quasiracemate System.





Figure S.31: <sup>1</sup>H NMR Overlays of the S-Cl/R-I Quasiracemate System.

## S6 – Functional Group and Chemical Framework Volume and Surface Area Comparisons

Functional group volume and surface area approximations were taken from previously reported values.<sup>1,2</sup> The following table provides percent increases of the volume and surface areas corresponding to both functional group and the 2-substituted diarylamide molecular frameworks.

#### **Volume Comparisons**

| Group         |                               |        |       |       |       |       |       |       |       |       |       |      |
|---------------|-------------------------------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|
| Volume (لأَّ) |                               | _      |       |       |       |       |       | *     |       |       |       |      |
| 5.9           | Н                             |        |       |       |       |       |       |       |       |       |       |      |
| 7.8           | F                             | 32.2   |       |       |       |       |       |       |       |       |       |      |
| 19.6          | CI                            | 232.2  | 151.3 |       |       |       |       |       |       |       |       |      |
| 21.0          | CN                            | 255.9  | 169.2 | 7.1   |       |       |       |       |       |       |       |      |
| 23.3          | CH3                           | 294.9  | 198.7 | 18.9  | 11.0  |       |       |       |       |       |       |      |
| 23.2          | NO2                           | 293.2  | 197.4 | 18.4  | 10.5  | -0.4  |       |       |       |       |       |      |
| 27.6          | Br                            | 367.8  | 253.8 | 40.8  | 31.4  | 18.5  | 19.0  |       |       |       |       |      |
| 28.9          | CF3                           | 389.8  | 270.5 | 47.4  | 37.6  | 24.0  | 24.6  | 4.7   |       |       |       |      |
| 32.6          | OCH₃                          | 452.5  | 317.9 | 66.3  | 55.2  | 39.9  | 40.5  | 18.1  | 12.8  |       |       |      |
| 34.6          | I                             | 486.4  | 343.6 | 76.5  | 64.8  | 48.5  | 49.1  | 25.4  | 19.7  | 6.1   |       |      |
| 82.9          | C <sub>6</sub> H <sub>5</sub> | 1305.1 | 962.8 | 323.0 | 294.8 | 255.8 | 257.3 | 200.4 | 186.9 | 154.3 | 139.6 |      |
|               |                               | н      | F     | CI    | CN    | CH3   | NO2   | Br    | CF3   | OCH3  | I     | C₅H₅ |

#### Table S5: Functional Group Volume Comparison

#### Table S6: Diarylamide Molecular Volume Comparison

| Diarylamide<br>Molecular |      |      |      |      |      |      |      |      |      |      |      |      |
|--------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Volume (ų)               |      | _    |      |      |      |      |      |      |      |      |      |      |
| 221.9                    | Н    |      |      |      |      |      |      |      |      |      |      |      |
| 223.8                    | F    | 0.9  |      |      |      |      |      |      |      |      |      |      |
| 235.6                    | Cl   | 6.2  | 5.3  |      |      |      |      |      |      |      |      |      |
| 237.0                    | CN   | 6.8  | 5.9  | 0.6  |      |      |      |      |      |      |      |      |
| 239.3                    | CH₃  | 7.8  | 6.9  | 1.6  | 1.0  |      |      |      |      |      |      |      |
| 239.2                    | NO2  | 7.8  | 6.9  | 1.5  | 0.9  | 0.0  |      |      |      |      |      |      |
| 243.6                    | Br   | 9.8  | 8.8  | 3,4  | 2.8  | 1.8  | 1.8  |      |      |      |      |      |
| 244. <del>9</del>        | CF3  | 10.4 | 9.4  | 3.9  | 3.3  | 2.3  | 2.4  | 0.5  |      |      |      |      |
| 248.6                    | OCH3 | 12.0 | 11.1 | 5.5  | 4.9  | 3.9  | 3.9  | 2.1  | 1.5  |      |      |      |
| 250.6                    | I    | 12.9 | 12.0 | 6.4  | 5.7  | 4.7  | 4.8  | 2.9  | 2.3  | 0.8  |      |      |
| 298.9                    | C₅H₅ | 34.7 | 33.6 | 26.9 | 26.1 | 24.9 | 25.0 | 22.7 | 22.0 | 20.2 | 19.3 |      |
|                          |      | н    | F    | CI   | CN   | CH₃  | NOz  | Br   | CF3  | ОСН₃ | I    | C₅H₅ |

## Surface Area Comparisons

| Group Surface           |      |        |       |       |       |       |       |       |       |       |       |      |
|-------------------------|------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|
| Areas (Å <sup>2</sup> ) |      |        |       |       |       |       |       |       |       |       |       |      |
| 6.8                     | Н    |        |       |       |       |       |       |       |       |       |       |      |
| 12.1                    | F    | 77.9   |       |       |       |       |       |       |       |       |       |      |
| 29.0                    | Cl   | 326.5  | 139.7 |       |       |       |       |       |       |       |       |      |
| 32.2                    | CN   | 373.5  | 166.1 | 11.0  |       |       |       |       |       |       |       |      |
| 33.4                    | СН₃  | 391.2  | 176.0 | 15.2  | 3.7   |       |       |       |       |       |       |      |
| 37.0                    | NOz  | 444.1  | 205.8 | 27.6  | 14.9  | 10.8  |       |       |       |       |       |      |
| 37.1                    | Br   | 445.6  | 206.6 | 27.9  | 15.2  | 11.1  | 0.3   |       |       |       |       |      |
| 37.3                    | CF3  | 448.5  | 208.3 | 28.6  | 15.8  | 11.7  | 0.8   | 0.5   |       |       |       |      |
| 40.1                    | OCH3 | 489.7  | 231.4 | 38.3  | 24.5  | 20.1  | 8.4   | 8.1   | 7.5   |       |       |      |
| 45.0                    | 1    | 561.8  | 271.9 | 55.2  | 39.8  | 34.7  | 21.6  | 21.3  | 20.6  | 12.2  | L     |      |
| 94.9                    | C₅H₅ | 1295.6 | 684.3 | 227.2 | 194.7 | 184.1 | 156.5 | 155.8 | 154.4 | 136.7 | 110.9 |      |
|                         |      | н      | F     | Cl    | CN    | CH3   | NOz   | Br    | CF3   | OCH3  | I     | C₅H₅ |

## Table S7: Functional Group Surface Area Comparison

## Table S8: Diarylamide Surface Area Comparison

| Diarylamide             |                   |      |      |      |      |      |      |      |      |      |      |      |
|-------------------------|-------------------|------|------|------|------|------|------|------|------|------|------|------|
| Molecular Surface       |                   |      |      |      |      |      |      |      |      |      |      |      |
| Areas (Å <sup>3</sup> ) |                   |      |      |      |      |      |      |      |      |      |      |      |
| 302.8                   | н                 |      |      |      |      |      |      |      |      |      |      |      |
| 308.1                   | F                 | 1.8  |      |      |      |      |      |      |      |      |      |      |
| 325.0                   | Cl                | 7.3  | 5.5  |      |      |      |      |      |      |      |      |      |
| 328.2                   | CN                | 8.4  | 6.5  | 1.0  |      |      |      |      |      |      |      |      |
| 329.4                   | CH₃               | 8.8  | 6.9  | 1.4  | 0.4  |      |      |      |      |      |      |      |
| 333.0                   | NO2               | 10.0 | 8.1  | 2.5  | 1.5  | 1.1  |      |      |      |      |      |      |
| 333.1                   | Br                | 10.0 | 8.1  | 2.5  | 1.5  | 1.1  | 0.0  |      |      |      |      |      |
| 333.3                   | CF33              | 10.1 | 8.2  | 2.6  | 1.6  | 1.2  | 0.1  | 0.1  |      |      |      |      |
| 336.1                   | OCH3              | 11.0 | 9.1  | 3.4  | 2.4  | 2.0  | 0.9  | 0.9  | 0.8  |      |      |      |
| 341.0                   | 1                 | 12.6 | 10.7 | 4.9  | 3.9  | 3.5  | 2.4  | 2.4  | 2.3  | 1.5  |      |      |
| 390.9                   | C <sub>6</sub> H₅ | 29.1 | 26.9 | 20.3 | 19.1 | 18.7 | 17.4 | 17.4 | 17.3 | 16.3 | 14.6 |      |
|                         |                   | н    | F    | Cl   | CN   | CH₃  | NO2  | Br   | CF3  | OCH3 | 1    | C₅H₅ |
|                         | I                 |      |      |      |      |      |      |      |      |      |      |      |
|                         |                   |      |      |      |      |      |      |      |      |      |      |      |
|                         |                   |      |      |      |      |      |      |      |      |      |      |      |

.

,

# S.7 References

- (1) Gavezzotti, A. J. Am. Chem. Soc. 1983, 105 (16), 5220-5225.
- (2) Gavezzotti, A. J. Am. Chem. Soc. 1985, 107 (4), 962–967.