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Abstract

The microwave spectrum of the weakly bound propyne-HF/DF complex
in the region between 6 and 16 GHz was analyzed. The spectrum was
characteristic of a distorted T-shaped asymmetric top exhibiting tor-
sional splitting caused by a low barrier to internal rotation of the
methyl top relative to the propyne-HF frame. Deuterium substitution of
HF confirms that the acid proton of HF is located between the F atom and
the propyne triple bond. The spectroscopic constants given below are
consistent with the fluorine atom being displaced toward the methyl
group from a line perpendicular to and bisecting the propyne triple
bond, suggesting a weak hydrogen bond intergction between fluorine and

the methyl protons.

Propyne=-HF Propyne=-DF
A (MHz) 8722(9) 8644 (12)
B(MHz) 3919(3) 3886 (6)
C (MHz) 2753(1) 2728(2)
D, (kHz) - -23(6)
X, 4 (kHZ) i 163(6)
V. (cm 1) 100 (50) 100 (50)
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INTRODUCT ION

The microwave spectrum of the weakly-bound complex formed between
propyne and HF has been recorded in the region between 6 and 16 GHz at
the University of |1linois, by Dr. Giles L. Henderson and J. A. Shea,
using a Flygare-Balle Spectrometer]. This study is an analysis of the
above data to determine the structure and internal dynamics of the complex.
This introduction is intended to serve the purpose of defining terms,
briefly covering experimental methods of studying complexes (in particular
the Flygare-Balle spectrometer), and reviewing the history of van der
Waals complexes. Since the author did not directly participate in data
collection or experimental design, no formal "Experimental Section' will
follow.

It is necessary at this point to make a distinction between what
will henceforth be called ''weakly-bound complexes'' and other molecules.
The term ''weakly-bound complex'' shall refer to molecules composed of
subunit molecules and/or atoms held together by intermolecular forces.
The force between the two subunits will be referred to as ''the weak bond."
Weakly bound complexes can be classified as ''classical van der Waals
complexes'' (Type 1) and complexes composed of subunits containing one
or more potar bonds (Type i11). Type | complexes include molecules such

as, (Ne)z, M. -Ar, (Ar)2, N.-Ar. Type || complexes include molecules

2
HC1-Ar, FCI-Ar, (HF)Z, C

2

such as (CO H2-HF and propyne-HF. The main

2)2’ 2
distinction between these types is that the subunits of Type | complexes
are generally separated at equilibrium such that their van der Waals
radii do not overlap, while in Type |l complexes the van der Waals radii
of the subunits penetrate each other. Table |. shows a comparison of

bond parameters for typical chemical and weak bonds.



TABLE |. Comparison of Bond Parameters for Chemical and Weak Bonds.

Parameter Chemical Bond Weak Bond

Stretching Force | & 7y A .04-.6
Constant (mdyne/Ang.)

' a.
Dissociation
Energy (kJ/mol) ~340 ~2.2

Temp. (K) at which

the ave. kinetic ~40,000 ~270
energy of one

molecule=De

a. Average over representative data set

Weakly-bound complexes have been the subject of a great deal of
study and several texts and reviews have been written on the topic )
Weakly-bound complexes are important in explaining bulk properties of
matter and they have been inferred as precursors in a variety of reaction
mechanisms. OQOther phenomena which can be explained in terms of weakly-
bound complexes includes spin-relaxation rates, nucleation and energy
transfer mechansims. Many experimental methods of studying complexes

take advantage of the effects described above. O0On the following pages,

a few of these effects are described in more detail.

Equations of State

J. C. van der Waals was one of the earliest to suggest that deviations
from ideal gas behavior could be accounted for on the basis of intermole-

cular forces. His famous equation of state
22
(P + an“/V°) (V -~ nb) =RT (1)

. 3 2 @2 : . .
includes a pressure correction term, an /V", associated with intermolecular



forces and a volume correction term, -nb, acknowledging molecular volune
or repulsive forces. Perhaps more generally useful is an expansion of his

equation called the virial equation of state,
_ 2
P=(RT/v ) {1 +B(T)/v_+cC(T)/V +. . .1, (2)

where Vm is the molar volume. One can see that the major pressure correc-
tion term in this equation is B, the second virial coefficient. A negative
B represents a decrease in pressure which could be attributed to the forma-
tion of weakly-bound complexes.

Table Il. shows a comparison of measured values of (a) from the
van der Waals equation and the temperature at which the second virial
coefficient becomes negative, with the spectroscopically determined bond
dissociation energy of the dimer for several gases. One can see a fairly
general gqualitative trend between De and (a), i.e. as (a) increases so
does De. However, the relationship between De and the temperature at
which the second virial coefficient becomes negative is more exact. In
Figure 1., De is plotted vs. the temperature at which B(T) = 0. If co,
is excluded from the fit, an excellent straight line relationship
(correlation coefticient = .994) is obtained. One should note that (C02)2
is the only Type |l. complex in the group. As expected, its dissociation
energy is higher than that predicted by the relationship for Type |I.

comp lexes.

Phase Diagrams

Bulk properties of mixtures are also affected by complex formation.
For example, the typical freezing point diagram for a mixture is shown in

Figure 2a. However, if complex formation occurs, the freezing point



Table I!. Comparison of Equation of State Parameters to Spectroscopically

Determined Dissociation Energies for Dimer.

Gas De (kJ/mo;) a (dmsatm mol-z)b' T(K) at wgich
of DIMER™’ B(T) =0

He .07 .03142 22.64

Ne .350 .2107 122.11

Ar 1.185 1.345 411.15

Kr 1.684 2.318 575.0

Xe 2.344 4.194 768.03

H2 2.29 L2444 111.04

N2 .79 1.390 327-.22

0 1.04 1.360 405.88

ch i .6 3.592 346.81

a. Ref. 2.

b. Robert C. Weast, ed., ''Handbook of Chemistry and Physics,' 57th ed.,

p. D-178, Chemical Rubber Publishing Co., Cleveland, Ohio (1977).
c. Dwight €. Gray, ed., '""American Institute of Physics Handbook,'' 3rd ed.,

pp. 4-(204-216), McGraw-Hill, New York, New York (1972).



Figure 1.

Plot of De vs. T at which B(T) = 0.
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Figure 24

Freezing Point Diagram for:
a. A '""Normal'' Mixture
b. A Mixture Which Forms a Complex.
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diagram will show a maximum at the mixture ratio corresponding to the
complex's subunit ratio as shown in Figure 2b. The maximum at X = .667

corresponds to the formation of the X,Y complex. Complex formation may

2
also be indicated by negative deviations from Raoult's Law, a non-linear
dependence of viscosity or refractive index on mole fraction, and a
variety of other bulk property phenomenaa

The above methods are all ways to Infer complex formation. We

shall now turn to methods of spectroscopically detecting weakly-bound

complexes.

Equilibrium Spectroscopic Methods

The earliest spectroscopic studies of weakly-bound complexes were
classical spectroscopy on equilibrium concentrations of complexes in the
gas phase. The main complication of these methods is detecting low concen-
trations of complex. As indicated in Table |., the average weak bond will
dissociate after one collision with a molecule at a mean translational
temperature of ~270K. For systems at room temperature and one atmosphere,
the time between collisions is on the order of 10_10 second and hence, the
lifetime of a complex is comparable to IO-]0 second.

These problems can be partially overcome by cooling the mixture.
However, at low temperatures the gas may liquefy. At lower pressures the
temperature of condensation will be lowered, but concentration will also
decrease proportionally. Long path-length spectroscopy is the ''brute-
force' solution. However, larger cells require larger volumes of gas and
are difficult to keep at thermal equilibrium. Several molecules have been

3

Ar-0 HC1-Ar, Ar, and H, -Ar.

studied by equilibrium methods including 2 2

2)

a. Reference 8 contains numerous examples of these effects.



Non-Equil ibrium Spectroscopic Me thods

In order to overcome the problem of low concentrations of complexes
in equilibriun mixtures, researchers have turned to non-equilibrium methods.
The two principle methods are, isolation of complex in an inert gas matrix
or production of complex in a molecular beam resulting from the expansion
of a high pressure gas into a vacuum.

In the matrix isolation method, the components which are expected
to form complexes are mixed, diluted with an inert gas and sprayed at a
slow rate onto a Csl (or similar material) window which has been cooled to
~10K. Infrared is the usual spectroscopic source, although U.V.-Visible may
also be used. Structural determinations of complexes isolated in a matrix
are somewhat suspect since the matrix applies a perturbation to the complex
it contains. Complexes studied in this manner include CH3F-HF9, HCN-HFlo
and C2H2-HF]]. To obtain accurate structural determinations rotational
spectroscopy is the method of choice if detectable populations of complexes
can be prepared in the gas phase. Two different methods have been developed
to obtain rotational spectra from molecular beams of complexes.

William Klemperer and associates have adopted the technique of mole-

2, ]3. Their spectro-

cular beam electron resonance spectroscopy (MBER)
meter consists of a molecular beam source of complexes which passes through

two non-uniform electrostatic quadrupole fields separated by an intermediate
resonance region followed by a 60° sector mass spectrometer as a detector.

A deflecting force which is dependent on field strength, field gradient and

effective molecular dipole acts upon the beam in both fields. Since effec-

tive molecular dipole is dependent on quantum state, the two field regions

can be chosen in strength, gradient, and length such that the second field

will exactly counteract the deflection of the first field for only one



particular quantum state. Hence, a particular quantum state can be
focused onto the entrance sltit of a mass spectrometer. The intermediate
resofiance region is then interrogated at either microwave or radio
frequencies and absorptions are detected as a decrease in beam intensity.
Stark experiments may also be performed by applying a homogeneous field
across the resonance region.

The main advantage of this method is the use of a mass spectrometer
as a detector. This provides high sensitivity detection if at least one
fragment of the complex under study has a unique charge to mass ratio
relative to other mixture components. Also since masses are determined
directly, there is usually little doubt as to the composition of the com-
plexes under study.

Flygare and co-workers have developed the method of pulsed nozzle,

L-17

Fourier-transform microwave spectroscopyl A schematic of their
instrument is shown in Figure 3. A short pulse (~3 msec) of a gas mix-
ture is expanded supersonically into a Fabrey-Perot cavity. Adiabatic
cooling produces a mixture rich in complexes with effective rotational
temperatures of ~SK. After a few milliseconds delay, a pulse of micro-
wave energy enters the cavity through the pin diode switch in line after the
master oscillator. The pulse is adjusted in power and duration to produce
maximum sample polarization. After a short delay (~.1lus) to allow the
polarizing radiation to dissipate, the coherent free induction decay from
all the rotational frequencies within the bandwidth of the cavity is mixed
down, detected with a superheterodyne receiver, digitized and stored.
After the gas has been evacuated, a background signal is obtained and
subtracted from the original signal. The process is repeated and the

signals are averaged over a suitable number of pulses. The final signal

is then Fourier transformed to the frequency domain power spectrum.



Figure 3.

Schematic Diagram of the Flygare-Balle Spectrometer.

10
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The main advantages of this technique is the inherent sensitivity
of Fourier transform spectroscopy and high resolution (~10kHz on theif
spectrometer). The method has also been recently extended to allow
measurement of Stark and Zeeman spectra]h-]S.

Appendix 1. contains a table of selected properties of many known

weakly bound complexes along with an indication of the method(s) of study

and appropriate references.

Theory

The data obtained consists of the microwave spectrum of Propyne-
HF/OF recorded in the region between 6 and 16 GHz with a resolution of
~10 kHz. The theory used to interpret these data consists of: the theory
of the rigid asymmetric rotor, the theory of the asymmetric rotor containing
a rigid internal rotor, and the theory of nuclear hyperfine structure. In
the following sections each of these theories is described separately and
a sample spectrum is provided at each level of theory. Since both methanol
and propyne-HF/DF are near prolate, a-dipole asymmetric rotors with low
barrier internal rotation of a C3 top, methanol is used as the example in

the rigid rotor and internal rotation sample spectra.

Rigid Rotor "

The classical Hamiltonian for a rigid rotating top in its principal

frame can be written as follows,

a. This section is intended to serve as a brief overview of the rigid
rotor. Many textbook discussions are available. See, for example,
Ref. 16.

11



12

Fl - =t + + (3)

where Jg and lgg are the angular momentum and moment of inertia about the

19

g axis. The matrix representation of the Hamiltonian in the prolate basis is

kM| Hep | IKD> = h(3+c) [J (J+1) K% ] +hk2A (4)

Jrml ool yke2B> —% (B-C) [J (s+1) -k (ke 1E 10 (4+1) - (ke1) (ke2) 12 (5)

where
2 2 2
__n N ..
AT BT Ear, T
aa bb ce

19

These equations can be permuted to the oblate case by the following

prolate - oblate
A-+¢C
B> A

C B

The above matrix may be diagonalized to yield the energy levels of
the asymmetric rigid rotor. Alternatively, for low J states, one may use
the reduced energy expressions as derived by King, Hainer and Crosszo.

, where K , and

Energy levels of the asymmetric rotor are labeled J 1

K 1K+1

K+I correspond to the K quantum numbers in the prolate and oblate limits.
J selection rules for transitions between energy levels are AJ=0, *1.

K selection rules, which depend upon the projection of molecular dipole
on the principal axes are given in Table Ill. Figure 4. shows a plot of

the a-dipole rigid rotor spectrum of a near prolate top.



Figure 4.

Rigid Rotor Spectrum of CH30H A=127532 MHz,

C=23762.5 MHz.

B=24672.5 MHz

13
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RSSIGNMENTS

1} 1(0,1)-0(0,0)
2) 2(1,2)-11(1,1)
3) 2(0,2)-11(0,1)
4) 2(1,1)-1(1,0)

48000 60500 73000 85500 98000
FREQ. {MHZ)



Table 1li. K-selection Rules for an Asymmetric Rigid
Rotor. The notation of (e) and (o) refers
to the evenness and oddness of the K quan-
tum numbers.

Altowed Transitions

a-dipole b-dipole c-dipole
ee <+ eo 00 +* ee ee +*+ oe
00 +*+ oe eo +* oe eo < oo

Rigid Rotor - Rigid Hindered Internal Rotor

If subunits within a molecule rotate with respect to each other,
there exists a projection of angular momentum on the principal axes due
to this internal rotation. The classical Hamiltonian for the rotational

energy of a molecule with one internal rotor as developed by CrawfordZI is

H = HRR+F(p-P)2+(Vm/2)(1-cos ma) (6)
where
_ a2
F=*n /Zrla, (7)
2
= |- A =
r 1 gla g /Ig g = X,Y,Z, (8)

(p-P) is the operator describing the relative angular momentum of the top
and the frame, Ag is the direction cosine of the top axis with the g prin-
cipal axis, Ia is the moment of inertia of the top about its axis of inter-
nal rotation, Vm is the height of the m periodic barrier and o is the
relative angle of the top with the frame. The first term in equation 6

is the usual rigid rotor Hamiltonian, representing the kinetic energy due

14



to overall rotation of the molecule. The second term represents the addi-
tional kinetic energy due to the internal top rotating relative to the
frame. The third term represents the potential energy the internal top
experiences in rotating relative to the frame. For a top in a force field

of C, symmetry, the potential energy is written as

3

Paks = (V3/2)(l-cos3a). (9)

Figure 5. shows a plot of this potential function and the definition of
0. Since propyne-HF contains a methyl top as its internal rotor, the
following internal rotor discussion is specific to a top in a force field
of C3 symmetry.

Since a low barrier was expected in this case, the matrix elements
of equation 6 were derived in the prolate symmetric top-free rotor basis.
These matrix elements have been correctly derived previously22 but, since

23

conflicting expressions can be found in the literature -, they were re-
derived during this study. An outline of the derivation can be found in

Appendix 2. The non-zero elements are:

<QKMm[H|JKMﬁ> = [(B+C+FBZ+FY2)/2][J(J+1)-K2]+(a2F+A)K2+Fm2-2maK+U3/2 (10)

L [H | kHm<3> = -V /4 (11)

<QKMm|Hletlmﬁ> = (i)F[a(ZKzl)—zm]—(eziy)[J(J+1)-K(Kt1)]* (12)

<kmm [h | oKz 2mMe>= (é)[c-B+F(s:iy)2][J(J+1)-K(Kzl)]*[J(J+1)-(Kil)(K:z)]5(13)
where
a = Azla/lz, B = Axla/lx and y = Ayla/ly. (14)

Since the basis set wave functions can be classified as either £ or

A symmetry under the operations of the D_ point group, matrix diagonaliza-

3
tion may be greatly facilitated by symmetry block factoring. Also, for

15



Figure 5.

Plot of the Barrier Potential

Function and Definition of a.
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17

molecules with a plane of symmetry, the A wave functions can be factored
into degenerate A] and A2 blocks. In practice, for coding simplicity,
only A-E block factoring was applied. This corresponds to A states of
m=0 mod 3 and degenerate E states of m=%*1 mod 3.

Figure 6. shows a correlation diagram for the internal energy levels
between the free rotor and harmonic librator limits. Energy levels are
classified according to the symmetry of the wave functions from which they
were derived. The dipole selection rule is Am=0. Figure 7. shows the
spectrum of methanol calculated using the above model and assuming that
only the lower energy levels (i.e. those corresponding to m=0 in the free

rotor limit) are populated. The parameters used in this calculation are

recorded in Table |[V.

Table 1V. Spectrnscopic and Structural Parameters of

24

CH30H 5
A(HH3) 127532
B(MH3) 2L672.6
C(MH3) 23762.5
V3(cm-1) 375.6
AX .05364
A .998520
2
A 0
4 (methyl top is in X-Z plane)
la(Amu-Rz) 3.21321

Nuclear Hyperfine

The nuclear interactions responsible for hyperfine which must be

considered are spin-spin and nuclear quadrupole. The spin-spin Hamiltonian



Figure 6.

Correlation Between the Free Rotor (V3=0) and High Barrier

(V3=°°) Energy Leveis.

18
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Plot of CH

3

Figure 7.

OH Spectrum Calculated Using Hindered Internal Rotor Model.
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y . . ] . . 2
can be written as the classical interaction between two magnetic dipoles

e, = 755-{u1°u2-3(u]'R)(u2-R)/R2} (15)

where R is a vector from nucleus 1 to nucleus 2. My is the nuclear magnetic

moment due to nuclear angular momentum |. and can be expressed as
Wi = Wyl (16)
where Hy is the nuclear magneton and 9, is the nuclear g value for the ith
nucleus, Substitution of equation 16 into equation 15 yields
= I L] L]
Hss ~F B IH/D (]7)
where D is the spin-spin coupling tensor with elements given by
9:9, ;o > (R.S. . =3R.R.)
_ 7FH/D"N 2 5 ij
= z (18)
. R
is.j = X,Y,2Z.
The nuclear quadrupole interaction is given by:
H =Q(Dp):v(D) (19)
q = =
where Q(D) and V(D) are the deuterium nuclear quadrupole coupling and
electric field gradient tensors respectively. The total Hamiltonian is
simply
H = HtH - (20)
: 3 - 25,27
The matrix elements of equations 17 and 19 have been derived
on the basis:
1 I, 1+J =F. (21)
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They are:

- F+K+17,
<:F H/DIJKFM]H [ S M>= 8ep-Syy- (1)

[30(2|+1)(21‘+1)(2|F+1)(|F+1)| +1) | (2J+1)(2J’+1)]%-

P21t (yp*) 1y p

F F
rd - 2‘
J 2 J I 17 2141 | 1 D (22)
(_K _q K‘) La J F} H/D H/D --%g.
|

and

| +|F+ID+F+K

(=1)

J! D|JKM|H L1117 F M= 6.8,

[(21+1) (21 +1)(2J+1)(2J‘+1)]* % 3‘ ﬁ} (_i _é i:)~
| 172
v {'o 'o 'r
(-1) (xz_q) (23)
12 1y X
1,0 1g

where q=K“-K, the six membered quantities in parenthesis and braces

are 3-j and 6-j symbols respectively and the nine membered quantity in

braces a 9-j symbol. p2°-q and X are spherical tensors in the molecular

2-q

axis frame and are related to the cartesian tensors by

0. =D, (24)
D+; = :(2/3)*(Dba:inaa) (25)
Di; = (1/6)*(nbb-occt2103c) (26)
X20 = Xaa (27)



Xo41= t{2/3)4"xab (28)

and X, = (1/6)%(xpp X, ) - (29)

Subroutines to evaluate 3j, 6] and 9-j symbols were kindly provided by
J. A. Shea. Figure 8 shows a plot of the hyperfine pattern of the J=0-1
5

transitions for acetlyne-HF/DF2 .

Method and Results

The data obtained consist of the J=0-1 and J=1-2 transitions of
propyne-HF/DF. These transitions, as recorded, exhibit torsional splittings,
nuclear hyperfine and Doppler splitting due to the gas dynamics. Due to
the low rotational temperatures of the expanding gas, only the torsional
states corresponding to m=Q (A) and m=*1 (E) in the free rotor limit were
observeda. The frequency averaged line centers of both the A and E sym-
metry states along with their assignnents are reported in Table V. Since
E symmetry torsional states are of higher energy than corresponding A sym-
metry lines, symmetry assignments were made on the basis of observed

intensities, i.e. lines assigned as transitions between E symmetry states

were of markedly lower intensity than those assigned as A symmetry transtions.

It was not possible to confidently assign K-prolate/K-oblate quantum num-
bers to the J=1-2 symmetry lines.

Since m is the quantum number characterizing the free rotor basis
and hence, the relative angular momentum of the top, one might expect that
the A symmetry lines are least perturbed by internal rotation effects.

a. Henceforth the terms A and E symmetry shall be understood to mean the
states corresponding to m=0 and m=%1 in free rotor limit, respectively.
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1)
2)
3)
4)
5}

ASSIGNMENTS

I

3/2
172
372
372
172

F

372
172
3/2
3/2
172

IP

3/2
172
3/2
3/2
172

FP

1/2
372
S/2
3/2
172

8824.53

8824. 59

8824. 65

FREQ.

(MHZ)

8824. 71

s
1

8824.77



Table V.

Frequency Averaged Line Centers (MHz).

0(0,0)-1(0,1)A

11,1)-2(1,2)A

1(0,1)-2(0,2)A

1(1,0)-2(1,1)A

1-2

1-2

1-2

E

E

E

Propyne-HF
Observed Catlculated
6714.26 6697.19

6755.28 il
12224.82 12252.47
13242.91 13214.04
14525.41 14536.21

13164.73 =
13186.98 -
13199.55 s

Obser

6652.
6724.

12121

13126.
14402.
13066.
13092.

13148.

Propyne-DF
ved Calculated
25 6639.57
79 S
.96 12146.27
02 13099.93
87 14411.93
36 .
56 i
63 o

he
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Indeed, these lines exhibit a pseudo-rigid rotor spectrum and may be ana-
lyzed to obtain effective rigid rotor rotational constants as follows.
Formulas for frequencies of the J=0-1 and J=1-2 rigid rotor transitions
are provided in Table VI.

Table VI. Rigid Rotor Transition Frequencies for a
Near Prolate Assymmetric Rotor 16,

Transition Frequency
>
0oo 101 B+C
T T 242 B
24 n = e g ol
Ty = 25 2A+B+C-2[ (B-C) “+(A-C) (A-B) ]
]10 - 2]1 3B+C

As one can see, the frequency difference between the 1 > 2 d

12 an

10 - 2]] lines is equal to 2(B-C). Hence, this frequency difference and

11
1

the 0oo -+ ]01 line yield simultaneous equations which can be solved for
B and C. These values of B and C, along with the frequency of the
10] + 202 line, can be used to calculate A. Since internal rotation is

neglected, the constants obtained in this method must be regarded as

25

effective rotational constants. The values obtained are recorded in Table VIiI.

A structure was fit, using the Jacobi least-squares method, to the

effective rigid rotor constants calculated about with the following two

assumptions: (1) the structures of the monomers (Table VIIi) were assumed to

remain unchanged upon complexation and (2) the F = H vector of HF was
assumed to bisect the triple bond of propyne. The first assumption is

a usual assumption made for weakly-bound complexes and a great deal of

a. A copy of the least squares program used is in Appendix 3.



Table VIii{. Spectroscopic and Structural Parameters of the Complexa.

Pseudo-Rigid Rotor’ Hindered Internal Rotor
Propyne-HF  Propyne-DF Propyne-HF  Propyne-DF
A (MHzZ) 8722(9) 8644 (12) 8657 8747
B (MHz) 3919(3) 3886 (6) 3932 3896
C (MHz) 2753(1) 2728(2) 2782 2756
R (Ang.) 3.07(3) 3.08(2) 3.07(1) 3.06(1)
B (dg) 82(3) 81(3) 81(1) 82(1)
D__ (kHz) --- R = -23(6)
X, 4 (KHZ) = --- e 163 (6)
v (deg)© --- === —ec 34 (6)
Y* (deg) 37(1)

Fatues in parentheses represent one standard deviation in the fit.
b .

Effective constants.
CD termined from D

ete e P

dDetermined from x__.
aa

92



Table VIIlI. Monomer Structures and Molecular Constants.
Propynea HF OF
Bond Lengths <HCH=108°25"
and <HCC=110°30' . of
Structural Parameters R(CH,Me)=1.1124A Ro=.925595A R0=.92326A

R(CH,Acyl)=1.9602A
R(C-C)=1.4577A
R(C=C)=1.2073R

Rotational b 2 d

Constants Bo=85h5.8691 Bo=6l6365.5 BO=32558h.98
(MHz)

D, (kH2) - -286.75°% 44, 340°

v (D) (kHz) 354.283°

| (Amu-AZ) 3.2822 . i

a

A B Thomas, E. |. Sherrard, and J. Sheridan, Trans. Faraday Soc. 51, 619
(1955).

bA. Bauer and J. Burie, Compt. Rendu 2688, 800 (1969).

“G. Guelachvili, Opt. Commun. 19, 150 (1976).

d

F. J. Lovis and E. Tiemann, J. Phys. Chem. Ref. Data 3; 397 (1974).
J. S. Muenter, J. Chem. Phys. 56, 5409 (1972).

F. C. Delucia, P. Helminger and W. G. Gordy, Phys. Rev. A 3, 1849 (1971).
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s =z o

experimental data seems to support this hypothesis. The second assumption

225720 compounds where R =

is based on known structures for other R-HX
acetylene or ethylene and X = Cl, F, CN. All of these complexes have
T-shaped structures with the X = H vector perpendicular to and bisecting
the m-bond. Since propyne does not have a plane of symmetry perpendicular
to and bisecting the m-bond, a distorted T shaped structure is expected.
Figure 9. describes the structural parameters used to reproduce
the effective rigid rotor rotational constants. The fitted values of
these parameters are recorded in Table VI!. It should be noted that these
rotational constants are consistent with two possible T shaped structures,
one in which the acid proton is located between the F-atom and the triple
bond and another in which the hydrogen is on the opposite side of the F-
atom, making it the farther atom of the two from the triple bond. Table
IX clearly illustrates that only the former structure is consistent with
the rotational constants of both propyne-HF and propyne-DF. An internal

rotor analysis shall now be considered.

Table IX. Determination of HF Vector Directionalitya.

Assumed Structure Fitted Distance to
F(R)
Propyne-HF 2.97
Propyne-DF 2.97
Propyne -FH 2.88
Propyne-FD 2.80

a .
For this purpose the FH vector was assumed to be perpen-
dicular to, and bisect the propyne triple bond.
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Figure S.

The Principal Inertial Axes and Structural Parameters ef
Propyne-HF. Orthogonal zero-point bending modes result in

a precessional motion and a vibrationally averaged quadrupole
projection operator corresponding to the operationally-defined
angle Y* (see Equation 31).

29






It is of interest to qualitatively compare the observed propyne-
HF /DF spectra with the corresponding transitions in methanol, which
may be regarded as a well characterized near-prolate top which also
exhibits a low C3 barrier to internal rotation (see Figure 10). An
accurate description of internal rotation must include coupling with the
vibrational modes that affect the interaction of the methyl top with the
neighboring atoms. Table X. shows that the rigid internal rotor Hamil-
tonian of equation 6, which totally neglects this coupling, fails to
reproduce the quantitative torsional splittings. As expected, the A-
symmetry lines are reproduced fairly well, but the calculated E symmetry
lines are in poor agreement with the observed.

Table X. Comparision of the Rigid Internal-Rotor-Rigid Frame
Spectrum of Methanol! with the Observed.

Measured2] Calculated Resid
000 ~ IOO(A) 48377.09 48375.59 1.50
111 & 2]2(A) 95914.29 9591 3.65 .64
10] - 202(A) 96744.58 96745.25 -.67
1]0 -+ Z]I(A) 97582.83 97582.07 .76
Ogg * gy (E) 48372.60 48367.07 D08
1]] o ZIZ(E) 96755. 51 96761.89 -6.38
10] & 202(E) 96741.42 96726.50 14.92
1]0 e 21](E) 96739.39 96734.58 4. 81

Kirtman30 has developed the theory of interaction of hindered

internal rotation with ordinary vibration. However, this treatment
requires the determination of eight parameters to describe a-dipole,

R-branch transitions and 12 parameters to describe b-dipole, Q-branch

30



Comparison of methanol
(c) spectra.

Figure 10.

(a), propyne-DF (b), and propyne=-HF
Frequencies are in GHz. i
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transitions. Moreover, an accurate determination of the barrier can only
be obtained if b-dipole, Q-branch transitions are observed. Lees and
Baker21 have succeeded in fitting all 20 of these parameters to several
hundred methanol lines.

tn view of the large amplitude, low frequency vibrational modes
common to weakly bound complexes the need for including the interaction
discussed above in describing propyne-HF is apparent. However, no Q-
dipole transitions have been identified and only two a-dipole R-branches
were observed in the experimentally accessible region. Thus the Hamil ton-
ian described in equation 6 (the rigid rotor-rigid internal rotor) was
applied. Although this treatment was not expected to reproduce the E
symmetry lines, it is felt that the A symmetry lines and hence, the rota-
tional constants derived from them are more accurately treated with this
model .

In order to apply this model under these conditions, an estimate
of the barrier height V3 must be obtained. This was accomplished by
fixing the rotational constants at values calculated from the effective
rigid rotor structure averaged over both isotopic species and sweeping
the barrier from 50-150 cm-]. The results of this calculation are shown
graphically in Figure 11. At barriers above 150 cm-] the calculated
spectrum approaches the high barrier limit of a harmonic librator with
convergence to a rigid rotor spectrum, at barriers below 50 cm‘1 tor-
sional splittings are quite large. From the measured spectrum of propyne-
HF plotted above the calculated spectrum, it is clear that 100 50 cm-]
is a reasonable estimate of the barrier.

Since the Hamiltonian matrix elements are sensitive to the direc-

tion cosines of the top axes with the principle axes which are in turn

32



Figure 11.

Calculated Spectrum of Propyne-HF as a Function of Barrier.
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dependent on the structure, it i$ convenient to fit the structural para-
meters defined in Figure 9 directly to the spectrum rather than to fit the
rotational constants. A least squares fit of the A symnetry 1lines was
carried out with V3 fixed at 100 cm-1. The determined structural para-
meters are reported in Table V.

Although nuclear spin hyperfine splitting was observed for all lines,
only the J=0-1 patterns were fully resolved and assigned (See Table XI). It
can be shown that the J=0-1 hyperfine pattern is virtually independent of
Dbb’ Dcc’ xbb’ XCC and all the off diagonal elements of the coupling ten-
sors. Hence, in principal, the J=0-1 splittings of propyne-HF should be
calculable with the appropriate value of Daa and likewise Xaa and Daa for
propyne-DF. However, only the J=0-1 pattern of propyne-DF could be repro-
duced by these calculations. This was accomplished by fitting xaa’ Daa and
a line center. The fitted values of Xaa and Daa are recorded in Table VII
and the calculated frequencies are recorded in Table X.

To interpret the values of Xaa and Daa it is necessary to consider

the expression
C = icgécoszy-t> (30)

giving the vibrationally averaged projection of the free DF spin-spin or
deuterium quadrupole coupling constant Co onto the a-axis of the complex
where Y is the instantaneous angle the DF vector makes with the a-axis-.

An operationally defined angle corresponding to the vibrationally averaged

value of this projection operator may then be defined,

Y* = arccos(é%L + 1/3)% (31)
o

The values of y* calculated from Daa and Xaa are recorded in Table VII.



Table XI. Nuclear Hyperfine Structure of the 0(0,0)-1(0,1) Transitions.

Propyne-HF Propyne-DF
| F 17 F” Observed (MHz) 1 F 1”7 F° Observed (MHz) Calc. (MHz)
111 1 6714.1762 3/2 3/2 3/2 3/2 6652.1558 6652. 1560
000 1 6714.2204 1/2 1/2 1/2 3/2 6652.2229 6652.2258
111 2 6714.3025 3/2 3/2 3/2 5/2 6652.2354 6652.2321
111 0 6714.3277 3/2 3/2 3/2 3/2 6652.2746 6652.2735

1/21/2 1/2 1/2 6652.2895 6652.2908

3
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Discussion and Conclusion

The molecular structure of propyne-HF has been determined. The
optimized structure has the acid proton of HF forming a hydrogen bond with
the m-electron density of propyne and the F displaced towards the methyl
group from a 1ine perpendicular to and bisecting the propyne triple bond.
This F displacement suggests the presence of a weak hydrogen bonding inter-
action between F and the methyl protons. This idea is further strengthened
when one Lonsiders the van der Waals radii of fluorine and the methyl
protons. As shown in Figure 12, the calculated coordinates for F place
it in a position such that its van der Waals radius is nearly in contact
with that of the nearest methyl proton, i.e., in the attractive region of
the tennard-Jones potential.

This attractive interaction between the F and the methyl protons
may further suggest that minima in the internal rotation barrier potential
occur when the methyl protons are eclipsed with F.

Due to the limited number of observed lines, the position of the
proton of HF could not be given any degrees of freedom. Also, the rota-
tional constants are not very sensitive to the position of this proton and
hence, the constraint that the F = H vector bisects the triple bond was
chosen. In view of the known structures of other n-complexeszz’zs-zg,
this constraint seems reasonable. However, aB initio calculations indi-
cate3h that, in propyne, the charge density on the acetylenic carbon bonded
to the methyl group is much smaller than the charge density on the other
acetylenic carbon. Hence, it is likely that the chosen constraint on the

position of the proton of HF places the proton too close to the methyl

end of the triple bond of propyne.



Figure 12.

Van der Waals Contours of Propyne-HF.
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This study may represent the first example of rotational spectra
which exhibit clear evidence of internal rotation in a van der Waals mole-
cule. Rather large uncertainties in the spectroscopic constants are pri-
marily due to model defects and cannot be improved upon without a signifi-
cantly larger data set. However, the residuals of the calculated line
centers are of the same order of magnitude as other internal rotor mole-

cules done at this level of sophistication3s’36.

Figure 9 clearly indi-
cates that the complex has a component of b-dipole and hence, as the sen-
sitivity of experimental methods increases, b-dipole data may become
available.

Table XIl shows a comparison of barrier heights for several internal
rotor molecules. From this table, one can identify certain qualitative
trends in the dependence of barrier on structure. As expected, barrier
height decreases as the distance of the internal tops protons from their
nearest neighbor increases. This is demonstrated in the comparison of the
barrier height of ethane with that of 2-butyne. Beth molecules contain two
axial methyl tops whose mutual interactions are responsible for the barrier
to rotation. However, in 2-butyne the methyl groups are separated by a
triple bond. As one can see, this decreases the barrier height by a factor
of nearly 500. Another rather dramatic demonstration of this effect can
be seen in the difference of barrier heights of cis- and trans- methy]!
nitrite. 1In trans-methyl! nitrite, the N is the closest atom to the methyl
protons whereas in cis-methyl nitrite, the O atom is in close proximity
of the methyl protons resulting in a higher barrier.

It is also expected that barrier height depends on the number of
nearest neighbors. This seems borne outin the series H3C0H, H3CNH2,
H3CCH3. In these three molecules, the methyl protons interact with 1, 2

or 3 other protons approximately the same distance away on an sp3 hybridized



Table XI!. Barrier Heights of Selected Internal Rotor Molecules.

Formula Name U3(cm-1)
H3CONO Trans-methyl nitrite®” 10
H, CONO Cis-methyl nitrite®" 731
H3CCCCH3 2-butyneb' <2.1
H3CCH3 Ethane®" 1005
H3CNH2 Methylamined' 692
H, COH Me thano!® 375.6
0,COH " 371.8
H,COD e 370.3
0,CND, s 684.7
H3CC0F Acetyl f]uorided' 363.8
H3CC0CI Acetyl ch]orided' 453
H3CCOBr Acetyl bromided' 456.1
HyCCO ! Acetyl iodide?" 4547
H3C-Cl3 Trichloro-ethaned' 1049
H3COOOH Peroxyacetic acidf' 76.7
H3CC00CH3 Methy | acetatef' 99.6
H,COOH Acetic acid? 167.8
H,CCOCN Acety ] cyanideh' 422.9

3




Table XIl. (cont.)
a. Ref. 35.
b. Gordy, W. and Cook, R. L. Microwave Molecular Spectra, Interscience

(1970).

Russell M. Pitzer, Acc. Chem. Res., 16, 207 (1983).

N.B.S. Monograph 70, Vol 3. ''Microwave Spectral Tables, Polyatomic
Molecules with Internal Rotation'', U.S. Dept. of Commerce, Nat. Bur.
of Standards (1969).

Ref. 24.

J. A. Cugley, W. Bossert, A. Bauder and Hs. H. Gunthard, Chem. Phys.
16, 229 (1976).

L. C. Krisher and E. Saegebarth, J. Chem Phys., 54, 4553 (1971).

L. C. Krisher and E. B. Wilson, J. Chem. Phys. 31, 882 (1959).
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center. The barriers to rotation for these molecules are 375.6, 692 and
1005 (cm—1) respectively or roughly as 1:2:3 ratio. Also since the order
of bond lengths is C-0<C-N<C-C, it is not surprising that the actual ratio
is 1.12:2.07:3.

If one compares the barriers of deuterated species with those of
non-deuterated species, tte effect of vibrational interactions on barrier
height is clearly observed. In general, substitution of an atom in the
vicini;y of or on the top, with a heavier isotope, results in a lowering.
of the barrier. This effect can be explained by recognizing that the
barrier to internal rotation in a molecule depends upon the vibrationally
averaged interaction of the top with the neighboring atoms. Isotopic
substitution with a heavier atom lowers the vibrationally averaged displace-
ment of that atom, usually resulting in a lower time averaged interaction
and hence, a lower barrier. As discussed in the Method and Results section,
this effect is particularly large in weakly-bound conplexes. Indeed, the
torsional splittings in the spectrum of propyne-DF are larger than those of
propyne-HF (see Figure 10), suggesting a lower barrier for propyne-DF.

It is also of interest to compare the barrier heights of a homolo-

gous series such as H,CCOX where X - F, Cl, Br or |. One would expect

3
competing effects in progressing through this series. The interaction
between the methyl protons and the halide would be expected to decrease as
the electronegativity of the halide decreases, but should increase as the
van der Waals radius of the halide increases. Apparently the size of the
halide atom is most important as the barriers are 364, 453, 4S6 and 455
cm_] respectively.

The optimized structure of propyne-HF compares favorably with other

known T-complexes. As shown in Table XI||1, the calculated distance from

L,



Table X1li. Comparison of Bond Lengths of Propyne-HF and Some Other
Weakly Bound Complexes.

R (H) (A)®
Propyne-HF 2.18
Acetylene-HFb 2.19
Ethylene-HFS 2.22
Benzene-HFd 2.25
Acetylene-HCle 2.41
Ethylene-HCIf 2.44
Benzene-HC19 2.35

aR(H) is distance fron H of HX to the center of the m-bond or benzene
center of mass.

b

Ref. 25.
“Fre. 29.
dRef. 37.
€Ref. 29.
1:Ref. 30.

9Ref. 38.
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the H of HF to the center of the triple bond of propyne fits well in the
series R-HX where R = acetylene, ethylene and benzene and X = F or Cl.
If shorter bond lengths are taken to indicate higher gas phase Lewis

acidity, these complexes demonstrate the expected trend of HF<HCI.



Appendix 1.

Properties of Selected Weakly Bound Complexes.

Molecutle Point Group De (kJ /mol) Re+(nm) Method*
Mg, e, 5.09 .389 hv
Ca, D, 13.0 428 hv
Ne D, . 350 .3102 DS,S
Ar, Dy, 1.185 . 3761 S35 s
e, I 1.684 .4007 DS,G,S,hv
Xe, O, 2. 344 4362 DS,G,S,hv

Ne-H, G .329 . 344 SLR
Ar-H, G 691 .361 hv
Kr-H2 COOV .829 .374 hv
Xe-H, Gs, .918 .393 hv
Ar-HF B 1.4 .35 MBER
Ar-HCI1 CmV i =5 =39 MBER
Ar-C1F¥ Cmv 2.7 353, MBER
Kr-C1F B 3.4 .34 MBER
Ar-N, €y, >1.14 .39 DS,hv
Ar-0, O, >1.23 .35 DS,hv
(NZ)Z sz .79 .37 hv,G
N0y, oy, >6.7 >.18 h
{co,), Coy 1.6 <. hv, G
Ar0CS CS >.35 MBER
H N, ? >.54 .35 hv,G
H3P-HF C3v .331 FB
H,P-HCI1 C .338 FB

Ref.

Ly



Appendix 1. (cont.)

Molecule Point Group De (kg /mo1) Ref(nm) Method* Ref.
H3P'H8r C3v .4o6 FB d
H3P"HCN C3v 461 FB e
CZHZ-HF sz . 307 FB fi

C2H2'HC1 sz 7.35 . 366 FB g

CZHZ-HCN sz 6.88 h21 FB h

Cth-HF sz .310 FB i

Cth-HC1 C2v 6.88 . 367 FB J

Cth-HCN sz 6.88 426 FB k

C3H6-HF sz 22.4 « 312 FB 1

C3H6-HCL sz 10.2 .370 FB m

C3H6-HCN sz 10.3 Ry FB n

C6H6‘HF C6v .32 MBER o

C6H6-HC1 C6V 8.61 .36 FB P

C6H6‘Ar C6v .34 q

Furan-Ar Cs .354 FB r

Hg-HCI Cmv 410 FB s

ArCICN G . 364 FB t

S

Re is center of mass to center of mass distance.

b

hv - absorption spectroscopy; DS = differential scattering; S, L and G
correspond to bulk property measurements, solid, liquid, gas; MBER =
molecular beam electron resonance; FB = Flygare-Balle Spectrometer;

SLR = Spin Lattice Relaxation.
a. B. L. Blaney and G. E. Ewing, Ann. Rev. Phys. Chem., 27, 553-86 (1976).
b. A. C. Legon, J. Phys. Chem. 87, 2064 (1983).

c. A. C. Legon and L. C. Willoughby, Chem. Phys. 74, 127 (1983).
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Appendix 1. (cont.)

L. C. Willoughby and A. C. Legon, J. Phys. Chem. 87, 2085 (1983).

A. C. Legon and L. C. Willoughby, to be published Chem. Phys. (1984).
Ref. 25.

Ref. 29.

P. D. Aldrich, S. G. Kukolich and E. J. Campbell, J. Chem. Phys. 78,
3521 (1983).

Ref. 28.
Ref. 30.

S. G. Kukolich, W. G. Read, and P. D. Aldrich, J. Chem. Phys., 78,
2552 11983)..

L. W. Buxton, P. D. Aldrich, J. A. Shea, A. C. Legon and W. H. Flygare,
J. Chem. Phys., 75, 2681 (1981).

A. C. Legon, P. D. Aldrich and W. H. Flygare, J. Am. Chem. Soc. 104,
1486 (1982).

S. G. Kukolich, J. Chem. Phys. 78, 4832 (1983).
Ref. 37.
Ref. 38.

K. H. Fung, H. L. Selze and E. W. Schlag, Z. Naturforsh, A, 36, 1338
(1981).
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Appendix 2. Derivation of Internal Rotor Matrix Elements

To derive the Hamiltonian in the form of equation 6, one begins with
H = T+(Vm/2)(l-cosma) (A2-1)

where T is the total kinetic energy and the second term is the potential

energy. The kinetic energy may be writtenZ]

- 2 . 02 _
T = &[élgwg+2luq§lgwg+lug ] (A2-2)

g = X,Y,2.

where wg is the component of angular velocity of the frame about the
g-principal axis, lg is the moment of inertia about the g-axis, 'a is the
moment of inertia of the top about its symmetry axis and « is the angular
velocity of the top relative to the frame. The angular momenta are then

def ined by
J = 3T/aw_ =1 w+r | o A2-
g wg gwg ga ( 3)
p =9T/3 = Iag+laglgwg. (A2-4)

Hence, the components of total angular momentum Jg’ contain a contribution
from internal motion; and the total angular momentum of the internal top,
p includes contributions from overall rotation. For a rigid rotor, T would
be %Zngz/lg. This term can be subtracted from the total kinetic energy

to separate the rigid rotor Hamiltonian,

2 2 -2
T=4Z J “/1 = 3[1- [
&zg 3 / g 3 zgxg a/lg]laa

2 2 A
= - \ Y . -
or T = 4[1 zg)g 'a/'g]'a“ +&zg 5 /|g (A2-5)
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°2

The coefficient of o is the reduced moment of inertia for internal rotation

which will be denoted 2r1a. The relative angular momentum of the internal

top and framework may then be defined by
p-P = 2rlaa (A2-6)

from A2-5 and A2-4 it is evident that

P=ZzJ A | | = RJ J +ad A2-
ggga/g BXWY 4 ( 7)
where
A Al Al
x = |Z a, B = Ix a and Y =‘1!_§,
4 XX vy

where «, B and y are choosen to correspond to A, B and C in the prolate
basis.

Substitution of A2-6 into A2-5 yields,

— - 2 -
T ET HRR+F(p P) ’ (AZ 8)
where,
2
- _h .
F =3 (A2-9)
o
and HRR is the usual rigid rotor Hamiltonian. Substitution of A2-8 into
A2-1 yields,
H = HRR+F(p—P)2+(Vm/2) (1-cosma) . (6)

If the second term in the Hamiltonian (equation 6) is expanded and
the potential function is written as appropriate for a C3 barrier, one

obtains,
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= HRR+Fp2+FP2—2FPp+(V3/2)(1-cos3a). (A2-3)

Since a low barrier was expected in this case, the matrix representation
of the above Hamiltonian was written in the |JKMJm> basis, where J, K,
and MJ pertain to the prolate symmetric rotor basis and m correpsonds to
the free rotor basis, i.e. wave functions of the form eima_ In order to
allow the barrier function to interact more favorably with the free rotor
wave functions, the barrier function is written in the Euler form;
i3a_é-i3a )

5 (A2-4)

Barrier = (V3/2) 1 =<

The matrix elements of equation A2-3 are most conviently derived term
by term, the parts of which may be summed to yield H. Since the matrix
elements of the rigid rotor prolate basis are diagonal in both J and M,
the notation following will be shortened to lk@) with 8 .8, . understood.

The first term of equation A2-3 is the usual rigid rotor Hamiltonian

19

with matrix elements given as follows,

<& m|HRR|k » = 5MH,[h(B+c)/Z][J(J+1)-K2]+hK2A (A2-5)
<K m|Hop K2 B> = Gmm,[h(B-C)/h][J(J+l)-K(Ktl)]*[J(J+l)'(Kil)Kiz)]%, (A2-6)

the Gmm, coming from the fact the HRR does not operate on the m space.

The matrix representation of sz can be written,
2 - -
<KL m|Fp” K m>. (A2-7)
Since F is a constant and p does not operate on the K space,

<& rn|Fp2|k D> = Skk"Fﬁlpzl_m>=



2 o
AT ima, 9 im O _ 2
8- F {e [—ze(e )18a = Foy -8 M. (A2-8)

The matrix representation of the third term of equation A2-3 is
<k m| FP?| Kim™>= F®|P2| K'm™>= F<K,m|P|K,»><K,m|P|Kim™> (A2-9)

Recall that

= BJX+YJy+aJZ. (A2-2)

Hence, we require the matrix representation of Jx’Jy and JZ, the x,y,2z

components of the rigid rotor angular momentum. For the prolate case,

19

These are given as,

<<|J kD> = +(ih/2) [J(4+1) - K(k£1)]2 (A2-10)
<klJ,|R> = hk (A2-11)
<Ky, keD> = (h/2) [J(a+1) -k (keD) 1,
Therefore,
<K.m|P|K,m> = K= (A2-13)

<K m|PiKtl,m>= [B¥iY) /2] [J(J+1)-K(K21) 12, (A2-14)

. . £ 2 By :
Hence, to obtain the matrix representation of P~, one multiplies two

tridiagonal matrices,

< mlPP K> = £ <K,m|PlK,mD> <, m Pl K (A2-15)

kll’mll

50



This YIelds diagonals in K and off diagonals in K by %1 and #2 as

follows:

Diagonals in K

& m| P2k, = <& ml PIK,B>K,m| PLK,D+E-1,m|P|K, B> K m|P| k-1, 3>+

<K+1,m|P| K, B><K,m|P|K+1,B> = 2 k24 [ (B-iy) /2] [J (9+1) - (k=1) K] F[ (B+iy) /2] -

[J(d+1) K (K=1) T [ (B+iv) /2] (4 (3+1) - (K1) KIE L (B-1y) /2] [9(J+1) K (Kke1)1¥ =

2K+ (8247 /2] [4 (441) K] (A2-16)
0ff diagonals in K by 1
& ,m| P2 ke1,3> = <K,m| Pl k1, 3><K,m| Pk, 5>+ <Ke1,m|P| Ke1,3> K| P K1km> =
[(B+-iy)/2] [y (J+|)-K(Kt1)]4‘r“l<+°=(Kil)[(B+'iY)/2][J(J+1)'K(Ktl)]% =
«(2K£1) [B+1 1Y) /2) [J(9+1) -K (ke 1) ]
0ff diagonals in K by 2
<<,m{r>2||<:z,m>=<K¢1[P|k12><g|P]1<:1>= [(B+-iy)/2][J(J+1)9(K:1)(Kiz)]‘:'
[B+-1v/2)] (3 (3+1) =K (Ke1) 1% = [(B+-iv) 2/8] [J (3+1)-K(keD) 1}
[J(J#1) - (Ke1) (K22) 12 (A2-18)
Hence from the third term of equation ;\2-3 one obtains
<k, FP2| K> = Fa?k2+[F (82+y2) /21 [J (3+1) -K?) (A2-19)

<, F;’ZI Kt ,m> = Fe (2K+1) [(B+-iYy) /2] [J(J+1)-K(K*1) ]’lr (A2-20)

S1
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<%,m| Fp?| K2 ,m> = [F (B+-iv) 2/81 [ (3+1) -K (k1) 1 L0 (1) - (ke1) (k22) 12, (A2-21)
The fourth term in equation A2-3 is represented as

<K,m|-2Pp| Kim > = -2F&K|P| > <G |p|m D> (A2-22)

where the above separation is possible because P and p operate on the K and

m coordinates respectively.

™ . "
-2F<g|P| K><qlp|m> = —2F<KIPI|<>Z$r e %3 /50e"™*]90 = -2Fm K|P|K” (A2-23)

Substituting equations (A2-13) and (A2-14) into (A2-23) one obtains,

<K,m| -2FPp|K,m> = -2FmK= (A2-24)
and

<K,m| -2FPp| K21 ,m>= -2Fm[ (B + -iY) /2] [J (J+1) -K (K1) 2. (A2-25)

The final term of equation (A2-3) is

o300 i3
<:k,m[(V3/2)(1-————E————-)|K m>=

-imo i 30&_3" i30

2 .
e fmaty o
ﬁkk,VB/Z {[e (1l ———)e 18a

GKKﬁﬁmm‘(V3/2) and

5KK,5mmi3(-v3/h). (A2-26)

Hence ,

<m| (v3/2) (1-cos3a) | km> = V,/2 (A2-27)



(Kmlv3/2) (1-cos3a) | kmt3> = -V /h (A2-28)

To obtain(&m|H|K'mj> one sums up the above derived parts vyielding

<K,m|H|k,m>= [ (B+C+FB+FY%) /21 [0 (J+1) -K2 1+ (=2 F+A) Ko+

Fm2-2FmaK+V3/2 (10)
<K,m|H|kmt3> = -U3/4 (11)
&«.nlH| K21 ,m> = (F/2[a(2K*1)-2m] (B+-i7) [J(4+1)-K (K1) 12 (12)

KKom|H] Ke2,m> = ([e-B+F(B+-iv) 21/6} [0 (9+1) -k (Ke1) TH LU (3+1) - (k1) (ke2) 12, (13)

where the above expressions are understood to be in frequency units.
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00100 PROGRAM JACOB (INPUT,OUTPUT,DATA,TAPES=INPUT,TAPE6=0UTPUT,
00110+TAPE7=DATA)

00120C PROGRAM TO PERFORM GENERAL JACOBIAN LEAST SQUARES FITS

00130C WRITTEN BY ROGER BUMGARNER, JAN., 1983.

00140C BASED ON ALGORITM FROM HYUNYONG KIM, J. CHEM. ED.,VOL.47,

00150C PGS. 120-122,(1970).

00160C PROGRAM REQUIRES TWO SUBROUTINES, "FSUB", AND "OUTPUT".

00170C "FSUB" IS A SUBROUTINE WHICH IS PASSED PARAMETERS (VECTOR

00180cC "ALPHA") AND RETURNS CALCULATED VALUES OF THE FUNCTION (VECTOR
00190C BYS, __") ."MDIM" IS THE DIMENSION OF THE MATRICES IN THE MAIN
00200C PROGRAM AND MAY, OF COURSE, BE CHANGED TO SUIT ONE’S NEEDS.
00210C "NDPTS"™ AND "NPARMS" ARE THE NUMBER OF DATA PTS. AND PARAMETERS
00220C RESPECTIVELY. THESE MAY OR MAY NOT BE NEEDED BY "FSUB" BUT ARE
00230C PASSED FOR GENERAL COMPATABILITY. "OUTPUT" IS A USER WRITTEN
00240C SUBROUTINE TO GENERATE THE THE DESIRED OUTPUT FORMAT."OUTPUT"
00250C IS CALLED ON EACH ITERATIVE CYCLE."OUTPUT" IS PASSED "MDIM",
00260C "NDPTS" AND "NPARMS" AS IS "FSUB". IT IS ALSO PASSED "DATA"-
00270C A VECTOR CONTAINING THE DATA WHICH IS BEING FIT,"YOUGHT"-THE
00280C CALCULATED VALUES FOR THIS SET OF PARAMETERS, "ALPHA"-THE FITTED
00290C SET OF PARAMETERS,"KOUNT"-TBE §# OF THE ITERATIVE CYCLE,"SS"-THE
00300C VARIANCE OF THE OVERALL FIT,"V"-A VECTOR CONTAINING THE VARIANCE
00310C EACH PARAMETER "ALPHA" ,AND "RV"-A SWITCH TO INDICATE WHETHER
00320C OR NOT TO OUTPUT "V". "RV"=0 ON THE ZERO’TH ORDER SWEEP SINCE
00330C "V" CANNOT YET BE CALCULATED, THEREAFTER KV=1 I.E. OUTPUT "V".
00340C STATEMENT 81 IS A GENERAL PURPOSE TITLE FORMAT TO BE CHANGED
00350C FOR EACH TYPE OF RUN. DATA READ BY THE MAIN PROG. IS "NDPTS",
00360C "NPARMS ", "DATA" AND "ALPHA" (INITIAL GUESSES). THE CHOSEN
00370C CRITERIA FOR CONVERGENCE IS THAT THE VARIANCE OF THE OVERALL FIT
00380C OF A GIVEN CYCLE IS NOT LESS THAN THE OLD VAR. - lE-5* (OLD VAR.)
00390C OR SIX ITERATIVE CYCLES.

00400 DIMENSION DATA(20) ,ALPBA (20) ,ALPHA 2(20) ,YOUGEBT (20) ,YPRIME (20)
00410 DIMENSION RJACOB(20,20) ,EVECT(20,20),C(20,20) ,DELTAA(20,20)
00420 DIMENSION TRNSPJ(20,20),TE(20,20),V(20) ,ASAVE(20) ,DSAVE(20)
00430 MDIM=20

00440 KOUNT=0

00450 SSOLD=1.0E1l6

00460 Kv=0

00470 ICON=0

00480CH***kkhhhkrrddd* INITIALI ZATIONA * Ak kkddddddddkr kbbb dkk ko

00490 W=0.0

00500 DO 3 I=l,20

00510 DATA (I)=W

00520 ALPHA(I)=W

00530 ALPHA2 (I) =W
00540 YOUGHT (I)=W
00550 YPRIME (I)=W
00560 V(I)=W

00570 DO 2 J=1,20
00580 RJACOB (I,J)=W
00590 DELTAA (I,J)=W
00600 EVECT (I,J)=W
00610 C(I,J)=W
00620 TRNSPJ (I,J)=W
00630 TE(I,J)=W

00640 2 CONTINUE



00650 3 CONTINUE

T ittt at S a e T T
00670C READ NUMBER OF DATA PTS. AND PARAMETERS

00680 READ (7,1)NDPTS, NPARMS
00690 WRITE (6, 31) NDPTS ,NPARMS
00700C READ AND ECHO DATA

00710 DO 10 I=1,NDPTS

00720 READ (7,11)DATA (I)
00730 WRITE (6,41)I,DATA (I)

00740 10 CONTINUE
00750C READ AND AND ECHO PARAMETER GUESSES

00760 DO 20 I=1,NPARMS
00770 READ(7,11)ALPHA(I)
00780 WRITE(6,51) I ,ALPHA(I)

00790 20 CONTINUE
00800C CALCULATE YOUGHT
00810 25 CALL FSUB(MDIM,NDPTS,NPARMS ,ALPHA,YOUGHT)

00820 DO 40 J=1,NPARMS

00830 DELAL=ALPHA(J)*1.0E-6

00840C GIVE DELAL SMALL FINITE VALUE IF ALPHA (J)=0
008s0 IF (DELAL.EQ.0.0)DELAL=1.0E-6

00860 DO 30 I=1,NPARMS

00870 ALPHA2 (I)=ALPHA (I)

00880 IF(I.EQ.J)ALPHA2 (I)=ALPHA (I)+DELAL

00890 30 CONTINUE
00900C CALCULATE YPRIME '

00910 CALL FSUB (MDIM,NDPTS,NPARMS ,ALPHA2,YPRIME)
00920C CALCULATE JACOBIAN MATRIX

00930 DO 35 I=1,NDPTS

00940 RJACOB(I,J)=(YPRIME (I)-YOUGHT (I))/DELAL

00950 35 CONTINUE

00960 40 CONTINUE

00970C CALCULATE ERROR VECTOR

00980 DO S0 I=1,NDPTS

00990 EVECT (I,1)=DATA{I)-YOUGHT (I)
01000 50 CONTINUE

01010C CALCULATE JACOBIAN”“S TRANSPOSE

01020 DO 70 I=1,NDPTS
01030 DO 60 J=1,NPARMS
01040 TRNSPJ (J,I)=RJACOB (I,J)

01050 60 CONTINUE
01060 70 CONTINUE
01070C DO PRESCRIBED MATRIX OPERATIONS

01080 CALL MMULT (MDIM,NPARMS ,NDPTS,NPARMS ,TRNSPJ, RJACOB,C)
01090 CALL MTRXIN(MDIM,C,NPARMS)

01100 CALL MMULT (MDIM,NPARMS ,NDPTS,1,TRNSPJ,EVECT,TE)
01110 CALL MMULT (MDIM,NPARMS,NPARMS,1,C,TE,DELTAA)

01120CSSSSS CALCULATE VARIANCE OF OVERALL FITSSSSSSSSSSSSSSSS
01130 §S=0.0

01140 DO 75 I=1,NDPTS

011S0 SS=SS+ (DATA(I)-YOUGHT (I))**2
01160 75 CONTINUE

01170 SS=SS/{NDPTS-NPARMS)

01180CSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
01190C CHECK FOR DIVERGENCE IF SO ATTEMPT DAMPENED FIT



01200 IF(SS.GT.SSOLD)GO TO 190
01210C RESET NO DIVERGENCE SWITCH

01220 ICON=0

01230 SR=SSOLD-SSOLD*1 .0E-5

01240C CHECK FOR CONVERGENCE

01250 IF (SS.GT.SR)GO TO 200

01260 SSOLD=SS

01270 CALL OUTPUT (MDIM,NDPTS ,NPARMS ,DATA,YOUGHT ,ALPHA,KOUNT,SS,V ,KV)
01280 00 80 I=1,NPARMS

01290 ASAVE (I)=ALPHA(I)

01300 DSAVE (I)=DELTAA(I,1)*0.1

01310 ALPHA (I)=ALPHA(I)+DELTAA(I,1)

01320 80 CONTINUE
01330C CALCULATE DIAGS OF VARIANCE-COVARIANCE MATRIX

01340 DO 100 I=1,NPARMS

01350 V(I)=SS*C(I,I)

01360 100 CONTINUE

01370 RV=1

01380C CHECK FOR TOO MANY ITERATIONS
01390 IF (ROUNT.GT.S5)GO TO 200
01400 ROUNT=KOUNT+1

01410 GO TO 25

01420C CHECK TO SEE IF DAMPENED FIT HAS PREVIOUSLY BEEN ATTEMPTED ON
01430C THIS ITERATIVE CYCLE
01440 190 IF(ICON.GT.0)GO TO 195

01450 WRITE(6,71)

01460 DO 192 I=]1,NPARMS

01470 ALPHA (I)=ASAVE (I)+DSAVE (I)
01480 192 CONTINUE

01490 ICON=1

01500 GO TO 25

01510 195 WRITE (6,21)

01520 STOP

01530 200 CONTINUE
01540C OUTPUT FINAL JACOBIAN MATRIX

01550 CALL OUTPUT (MDIM,NDPTS,NPARMS,DATA,YOUGHT ,ALPHA ,KOUNT,SS,V,KV)
01560 DO 350 I=1,NPARMS

01570 DO 300 J=1,NDPTS

01580 WRITE(6,61)DATA(J) ,ALPHA (I) ,RJACOB (J,I)

01590 300 CONTINUE

01600 350 CONTINUE

01610 STOP

01620 1 FORMAT (2I3)

01630 11 FORMAT (F20.4)

01640 21 FORMAT (1X,” ROUTINE IS NOT CONVERGING-TERMINATED®)
01650 31 FPORMAT(1X, NDPTS=",13,5X, NPARMS=",13)

01660 41 FORMAT(1X,”I=°,13,5X,°DATA(I)=",F20.4)

01670 51 FORMAT(1X,“I=",I3,SX, ALPHA(I)=",F20.4)

01680 61 FORMAT (1X,” DATA PT “,F20.10,3X, PARAMETER”,
01690+ F20.10,3X, “SENSITIVITY ,Ff20.10)

01700 71 FORMAT (1X, ***CAUTION] ***ATTEMPTING DAMPENED FIT")
01710 END

D1720CA A A AARR R AR R RRARRNR R R R R RRAANRNR R R R R RARANRRRRARNRNRNRRRRRAAANR AR

01730 SUBROUTINE MMULT (MDIM,NAR,NAC ,NBC,A,B,C)
0L 740 AR AR A AR AR AR AR AR R AR AR AR AR R AR AR AR AR AR ARAR AR RN AR AN AR
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01750 DIMENSION A(MDIM,MDIM),B(MDIM,MDIM),C (MDIM,MDIM)
01760 DO 500 I=1,NAR

01770 DO 500 J=1,NBC

01780 Cc(1,J3)=0.0

01790 DO 500 K=1,NAC

01800 C(1,J)=C(I,J)+A(I,K)*B(K,J)

01810 500 CONTINUE

01820 RETURN

01830 END

R L SR e R R R R R Ry L T T T T Y T P e
01850 SUBROUTINE MTRXIN (MDIM,A,N)

01860 Ch* A R R R R R R R R AR R R R R RN RN R R R R R R RN RN RN AR RRRRRR AR AR
01870 DIMENSION A (MDIM,MDIM) ,IPV(50,3)

01880C INITIALIZATION

01890 DO 1 J=1,N

01900 1 1PV (J,3)=0
0l910C SEARCHFOR PIVOT ELEMENT

01920 DO 3 I=},N

01930 AMAX=0.0

01940 DO 6 J=1,N

01950 Ir(Ipv(J,3)-1)7,6,7

01960 7 DO 5 RK=1,N

01970 IF (IPV(K,3)-1)9,5,9

01980 9 IF (AMAX~-ABS(A(J,K)))1l1,5,5
01990 11 TIROW=J

02000 ICOLUM=K

02010 AMAX=ABS (A(J ,K))

02020 5 CONTINUE

02030 6 CONTINUE

02040 IPV(ICOLUM,3)=IPV(ICOLUM,3)+1

02050 IPV(I,1l)=IROW

02060 IPV(I,2)=ICOLUM

02076C INTERCHANGE ROWS TO PUT PIVOT ELEMENT ON DIAGONAL
02080 IF (IROW-ICOLUM)16,17,16

02090 16 DO 20 L=1,N

02100 SWAP=A (IROW,L)

02110 A (IROW,L)=A(ICOLUM,L)

02120 20 A(ICOLUM,L)=SWAP

02130C DIVIDE PIVOT ROW BY PIVOT ELEMENT
02140 17 PIVOT=A (ICOLUM,ICOLUM)

02150 A (ICOLUM, ICOLUM)=1.0

02160 DO 23 L=1,N

02170 23 A (ICOLUM,L)=A(ICOLUM,L)/PIVOT
02180C REDUCE THE NON PIVOT ROWS

02190 PO 3 L1=1,N
02200 IF(L1-ICOLUM) 26,3,26

02210 26 T=A (L1, ICOLUM)

02220 A(L1l,ICOLUM)=0.0

02230 DO 29 L=1,N

02240 29 A(L1,L)=A(L1,L)-A{ICOLUM,L)*T

02250 3 CONTINUE

02260C INTERCHANGE THE COLUMNS

02270 DO 31 1=1,N

02280 L=N-I+1

02290 IF(IPV(L,1)-IPV(L,2))34,31,34



02300 34 JROW=IPV (L,1)

02310 JCOLUM=IPV (L,2)

02320 DO 32 K=1,N

02330 SWAP=A(K,JROW)

02340 A (K,JROW)=A(K,JCOLUM)
02350 A (X,JCOLUM)=SWAP

02360 32 CONTINUE
02370 31 CONTINUE

02380 RETORN

02390 END

02400CH AR R AR AR RN RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR AR

02410 SUBROUTINE OUTPUT (MDIM,NDPTS,NPARMS ,DATA,Y,ALPHA ,KOUNT,SS,V,KV)

02420Cr ek kkkkk kR k kAR AR RRRRARARRRRAAAARRRRRARAARR AR R AR

02430 DIMENSION DATA (MDIM) ,Y (MDIM) ,ALPHA(MDIM) ,V (MDIM)

02440 IF(XV.EQ.0)WRITE(6,81)

02450 WRITE(6,1)KOUNT

02460 DO 10 I=1,NPARMS

02470 IF (KV.EQ.0)WRITE(6,11)I ,ALPEA(I)

02480 SD=SQRT (V(I))

02490 IF(XV.GT.0)WRITE(6,21)I ,ALPEA(I) ,SD

02500 10 CONTINUE

02510 WRITE(6,31)SS

02520 DO 20 I=1,NDPTS

02530 RESID=DATA (I)~Y(I)

02540 20 WRITE(6,41)DATA(I),¥(I) ,RESID

02550 RETURN

02560 l FORMAT(lx"*t*tt***ttt****ﬁt****t*****fﬁ*t***tt***.******Q***fﬁtt**’
02570+//,” 1ITERATIVE CYCLE ¢ “,I12//)

02580 11 FORMAT (1X, “PARAMETER(”,I2, )= “,F20.10)

02590 21 FORMAT (1X, “PARAMETER(”,I2,”)= °,F20.10,° SD= “,F20.10)
02600 31 FORMAT (//1X, “VARIANCE OF OVERALL FIT= ~,F30.10//)
02610 41 FORMAT (1X, ‘pDATA=",F20.10,° CALC=",F20.10,° RESID=",F20.10)
02620 81 FORMAT (1H1,//1X,”PUT YOUR TITLE HERE"//)

02630 END
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