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ABSTRACT

In order to determine the intermolecular force field of C.H,+<°HC1

2 » @

normal coordinate analysis appropriate for two weakly bound rigid rods is
developed. An exact centrifugal distortion analysis is then carried out
on the microwave spectrum of this '"T'-shaped hydrogen-bonded 7 complex.
The cistortion constants and published matrix-isolated vibrational fre-
quencies are employed in the normal coordinate analysis to obtain the
intermolecular force field and refinements in the structural parameters.

The following van der Waals force field is found to reproduce the existing

spectroscopic constants of C2H2'°H35C1:
f Mode re,.) C,H --H35C1
ij (Coy )
f11 (mdyne/A) H-bond stretch Ay 0.0630
f72 (mdyne A) in-plane HC1l libration B1 0.0522
f73 (mdyne A) in-plane interaction 81 0.0302
f33 (mdyne A) C2H2 libration B1 0.0454
f44 (mdyne A) out-of-plane HC! libration B2 0.0544

This study permits the first opportunity to ascertain the effect of com-
plexation on monomer properties in C2H2--HX/DX where X = F,Cl. A more
accurate description of the quadrupole coupling constant acknowledging

the effects of vibrational averaging of the projection operator and changes
in (}ZV/BZZ) indicate that hydrogen bonding decreases (BZV/azZ) by 7.8%

for Cl in C2H2-°HC1 and 10% for deuterium in C2H2-'DF. In the course of
this study, D,_ and r the spin-spin coupling constant and the H-F bond

HF HF’

length, were obtained for the complex. Comparison with Tug in free HF

indicates that complexation causes an increase in bond length by 1%.
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INTRODUCTION

Van der Waals complexes have long been the object of considerable
study. It has been within the past twenty to thirty years that spectros-
copy has advanced such that the spectra of van der Waals complexes can be
recorded. The motivation for the spectroscopic study of van der Waals com-
plexes is a description of the forces that hold them together. This study
is concerned with extracting a description of the intermolecular force
field of the an der Waals complex acetylene-HCl. Determination of the
force field will involve an analysis of microwave data obtained previously
by A. C. Legon1 and co-workers at the University of Illinois and infrared
data obtained by Lester Andrews2 and co-workers at the University of
Virginia. The methods used to extract the force field as well as a dis-
cussion of the results of the analysis will follow. An experimental section
will not be included as the author did not participate in the collection
of either the microwave or infrared data. This introduction will serve to
acquaint the reader with the study of van der Waals molecules by a discussion
of major experimental methods employed in their study. Major emphasis will
be placed on those methods which deal with the determination of the inter-
molecular force fields of van der Waals complexes.

A discussion of van der Waals complexes must begin with some clarifi-
cation of the terminology involved. Van der Waals complexes are weakly
bound aggregates composed of two or more subunits. For the purposes of
this study, the term ''complex" will be used to describe a dimer whose sub-

units may vary. These subunits can take the form of noble gas atoms, or

[y



diatomic or polyatomic molecules. Examples of some types of van der

(N2)2,4 He++I.,> CH3C2H--HF.6 A fairly com-

Waals complexes are Ar 2

21

plete listing (as of November 1983) of van der Waals complexes that have

been studied may be found in Reference 7. Additional new complexes studied
8 9 0 11 12

include HCN--CO NH,+-C,H AI‘"NCCN,1 Ar+ *HCN, 2

5 3 CoHy, and H,0++CO

The types of interactions between the subunits may also vary. They
may be dispersion interactions as in the case of Ar2,3 hydrogen bonded
complexes such as CHSCZH--HF6 (the hydrogen atom is pointed directly at

the m bond along a line perpendicular to and bisecting the 7w bond), and

charge-transfer complexes such as C6H6-°12.13 It is the variety of
interactions that leads to the intense study of these complexes. The
characterization of the strengths of these interactions are of great
interest to the scientific community.

14-19 and

These complexes have been studied directly via spectroscopy
also indirectly through many physical properties. Their existence has
been determined by their effects on spectra and physical properties. The
earliest work on van der Waals complexes evolved as a consequence of their
effect on many physical properties. With the advent of spectroscopy, more
accurate detection and quantitative information about these complexes be-
came available. Table I 1lists the major spectroscopic methods used to
study van der Waals complexes as well as physical properties affected by
these complexes. With recent advances in technology, spectroscopy has
become the principal tool used in the study of these complexes and thus
will be the focus of the introduction.

The amount and type of information available from spectroscopy varies

with the type of method. Of the various spectroscopic methods, nuclear

magnetic resonance, mass spectroscopy, electron, neutron and x-ray diffrac-



Table I. Methods of Investigating van der Waals Complexes

Spectroscopy

Electron Diffraction
Neutron Diffraction

X-Ray Diffraction

Laser Induced Fluorescence
Mass Spectroscopy

NMR

UV-Visible

Raman

Infrared

Molecular Beams

Microwave

Physical Properties

Solubility

Density

Viscosity

Heats of Reaction
Conductivity

Melting Point

Molar Refraction
Diamagnetic succeptibility

Dielectric constant



tion are marginal in terms of detection and quantitative information on
van der Waals complexes, particularly hidrogen bonded complexes.

In nuclear magnetic resonance (NMRY, the anomalous chemical shifts of
certain protons are indicative of their participation in hydrogen bonding,
a type of van der Waals interaction.14 The rnerging of signals in the NMR
can be an indication of formation and dissociation of van der Waals com-
plexes. The fact that this can be observed indicates a short life time
relative to the time scale of the experiment. The line widths of NMR

signals, which are a function of relaxation times T, and T2 (longitudinal

1
and transverse relaxation time), are affected by complexation.14 Formation
of complexes tends to freeze the immediate environment of a molecule, thus
requiring more time for nuclei in an upper energy state to transfer their
energy to the surrounding lattice of electrons and nuclei. As these relaxa-
tion times increase, the line width increases. Thus examination of the NMR
can reveal the existence of van der Waals complexes.

Mass pectroscopy has been used tc detect and measure concentrations
of van der Waals complexes. Leckenb» znd Robbins have studied concentra-

20,21 Their

tions of both rare gas and polyatomic van der Waals dimers.
instrumentation, designed to distinguish between true dimers formed and
those produced as a result of ion-atom interactions within the spectrometer,
determined dimer concentrations which are in reasonable agreement with

calculated values.21’22

This method will be shown later, used in conjunction
with molecular beams to provide a powerful tool in the investigation of
van der Waals complexes.
Neutron and X-ray diffraction can also indirectly yield information
on van der Waals interactions within the structure of a crystal. Bombard-

ment of the crystal with neutrons and X-rays can yield information

particularly on the location of hydrogen atoms. The location of the



hydrogen atom can yield information as to whether it is involved in hydrogen
bonding. It is also possible to determine hydrogen bond distances in com-
plexes found in crystals.14 Electron diffraction studies can also yield
information on van der Waals complexes.18 The interference pattern obtained
when an electron beam is crossed into a molecular beam containing rare gas van
der Waals molecules can be analyzed for the vibrationally averaged separa-
tion distance between the subunits of the complex.23—26 This method can be
expected to yield even more information in future studies as more extensive
van der Waals complexes are studied.

Laser induced fluorescence and UV-visible spectroscopy are other more
substantial sources of information on van der Waals complexes. The vacuum
ultraviolet spectrum of gaseous argon is a classic example of ultraviolet
spectroscopy of van der Waals complexes.3 Additional structures that appear
in the line spectra of argon are due to transitions between the vibrational
and rotational levels of the rare gas van der Waals complex Arz. Thus, the
molecular potential function and the dissociation energy of the complex
can be calculated from the vibrational fine structure observed. Laser
induced fluorescence provides vibronic spectra which can be used to charac-
terize the various electronic states of van der Waals complexes. Smalley
and coworkers have measured the laser induced fluorescence spectrum of
He°-12 and analyzed the vibronic structure for information on the electronic
states of the complex.5

Of the spectroscopic methods listed in Table 1, molecular beams, Raman,
infrared and microwave spectroscopy provide data that can be analyzed to
yield the intermolecular force field of a van der Waals complex. Raman

spectroscopy has the potential to yield force field data, but its potential

has yet to be realized due to difficulty in data analysis. The scattering



due to van der Waals complexes is weak and often obscured by the scattering
due to the subunits.®

Molecular beams, infrared and microwave spectroscopy are the three
major sources of force field data for van der Waals complexes. The remain-
der of this section will detail how these three methods are used to study
van der Waals complexes for the purpose of obtaining the intermolecular
force field.

Infrared spectroscopy is generally used when the force field of a
molecule is under investigation. By using what is known as a normal
coordinate analysis,27_29 it is possible to relate the force constants to
the observed vibrational frequencies. However, due to the nature of van
der Waals complexes, it is necessary to depart from the usual infrared
techniques to obtain their spectra. This is due to the fact that van der
Waals complexes are weakly bound species; i.e., the intermolecular bonds
are weaker, hence the force constants for these bonds are smaller.
Recalling that the vibrational frequencies are a function of k, the force
constant, it is evident that van der Waals frequencies will be significantly
smaller than those in conventional molecules. Another factor to be con-
sidered is the very small change in dipole moment due to van der Waals
vibration. This will result in very weak transitions as the intensity is
a function of the change in dipole moment.

Despite these limitations, the infrared spectra of van der Waals
molecules have been observed. Two approaches have been used to obtain
the spectra of these complexes--matrix isolation studies and LPLS (long
path length spectroscopy).

LPLS (long path length spectroscopy) provides a means of obtaining

infrared spectra for complexes whose monomers possess no dipole moment.

This can be achieved by the modulation of an electric dipole induced by

-



the proximity of a van der Waals partner (or collision partner). If the
incoming monomer has a quadrupole moment, it will induce a dipole moment
in the target monomer. It is also possible that upon collision, electron
density between the two monomers will overlap and become distorted, giving
rise to a dipole in the complex. The dipole created as a result of these
effects is then altered by the van der Waals vibration and can interact
with the incident radiation, thus giving rise to an infrared spectrum.

In order to achieve sufficient concentrations so as to record a
spectrum, conditions must be optimum for dimer formation. The gas samples
are cooled to very low temperatures (less than 100K) to achieve this.so
Large amounts of gas samples are required to obtain a sufficient optical
density of dimer to record the weak spectrum. To further optimize
conditions for recording the infrared spectrum, an extremely long path
length cell is used. Early LPLS experiments involved cells up to 220m inl
length.31 These cells were constructed out of steel drums that literally
stretched the length of a city block.32 The LPLS cell designed by Blickens-
derfer, et. al.33 avoided this by the use of White optics which permit
multiple transversals in a cell a fraction of the length of the earliest
LPLS cells. This LPLS cell (located at Indiana University) will generate
variable path lengths up to 230m in a 38m cell.33

The data obtained from LPLS can be analyzed for force constants. Pri-
marily, the rotational fine structure is analyzed to determine molecular
geometry and energy levels of van der Waals complexes. These spectra are
characteristically complex with many unresolved features due to the large
Boltzmann population of excited van der Waals modes. Moreover the spectral
lines are typically broad due to the relatively short lifetime of weak
complexes in a static gas; i.e. typical collision energies are sufficient

to dissociate them.



Another direct source of vibrational frequencies for complexes is
matrix isolation infrared spectra. This method was developed for the
study of reactive, unstable species by Pimentel and coworkers.34 It has
most recently been used by L. Andrews to study van der Waals complexes.

55,36 the monomers of interest

In the technique employed by Andrews,
are diluted with argon and sprayed onto a cold CsI window in a vacuum.

This entire assembly resides inside a vacuum vessel maintained at 14K.
Infrared spectroscopy can be done during or after the deposition of the
monomer/argon samples. The vacuum cell used by Andrews is shown in Fig.
(1.1).

The argon serves to trap and contain species which might not otherwise
survive in order to obtain spectra. Argon is not a unique choice as a
matrix. Becker and Pimentel have detailed the desired criteria for a
matrix.35 In order for a matrix to be useful, it must be chemically inert
with respect to the species it will contain. The matrix must accommodate
and contain the trapped species. This factor will be influenced greatly
by temperature. Another property of matrices which is also influenced by
temperature is its light scattering ability. A matrix should not scatter
a large amount of incident light and should be transparent in the region of
interest. The matrix must also be involatile so as to be used in a vacuum
at temperatures below 100K. Another characteristic is the mole ratio of
matrix to monomer, M/A.35 This must be determined so as to properly isolate
the species to prevent any undesired reactions. Undesired encounters and
subsequent reactions are usually limited when the number of nearest neigh-
bors is kept at two or lower. This corresponds to a M/A of 100/1. This

will vary, however, according to matrix and monomer studied. The study of

vibrational modes in an argon matrix permits infrared active van der Waals




Fig. [1.1] Vacuum Cell utilized by L. Andrews for argon matrix isolated
vibrational spectroscopy. The sample is delivered from a gas spray (S) onto
the cold CsI window (W). This cell is also designed for argon photolysis
experiments by using (D) as the discharge cavity and (T) as the discharge
tube. The vacuum port (V) is replaced with a quartz window (Q) during this

experment.
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modes to be assigned and characterized. However, the method does have its
drawbacks. The matrix atoms may perturb the local force field of the com-
plex which will be reflected in the frequencies observed and in the force
constants obtained from these frequencies. The effect of the matrix is to
shift the frequencies to a lower value, the shift being roughly 10% of
their gas phase values.36 The use of force constants obtained from a
matrix isolation infrared spectrum should be done with the above consider-
ation.

There do exist two spectroscopic methods where it is possible to
obtain gas phase data to determine intermolecular force fields for van der
Waals complexes. Molecular Beams and microwave spectroscopy provide rota-
tional spectra which can be analyzed for the effects of centrifugal
distortion. The results of the centrifugal distortion analysis can be
used to obtain an intermolecular force field.

Molecular beams encompass a wide range of experimental methods. A
classic discussion of the field can be found in Reference 37. The specific
method employed in van der Waals molecules is known as molecular beam
electric double resonance sﬁectroscopy. This method, employed by Klemperer,
utilizes a supersonic nozzle to deliver the gas samples into the spectro-
meter where they expand adiabatically. The spectrometer, a Rabi-type
molecular beam instrument, involves the use of three electric fields, two
inhomogeneous reflecting fields (A § B), separated by a homogeneous field
(C). As the molecular beam leaves the nozzle, it enters the first reflect-
ing field at an angle and is deflected slightly. The amount of deflection
will depend on the field-induced effective molecular dipole moment, which
is also a function of the rotational state of the molecule.37 Thus molecules

in different J states will be deflected by different amounts. This deflected
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beam then passes through a collimator in the center of the spectrometer
and enters the C field. This homogeneous field can oscillate at a given
frequency, in this case in the microwave-radio frequency region of the
spectrum. . As the C field oscillates, transitions between energy levels
in the molecule occur when the oscillator frequency is in resonance with
the energy level spacings of the molecule. The beam is then passed through
another reflecting field, the B field, which focuses the beam onto the
detector according to the same principle that applies to the A field.
Resonance is detected as a decrease in intensity at the detector, which
is a mass spectrometer in the instrument used by Klemperer38 (see Fig (1.2)).
Resonance between the oscillating electric field (C) and the rotational
energy levels of a complex gives rise to transitions in the microwave-radio
frequency region of the electromagnetic spectrum. Analysis of the rota-
tional spectrum can yield valuable information about complexes provided
certain assumptions are made regarding the monomers. In order for the
analysis of the rotational spectrum of a van der Waals complex to be tract-
able, the structure, electrical, and magnetic properties of the monomers
are commonly assumed to be unaffected by complexation. This permits the
structure, electrical and magnetic properties of the complex to be extracted
from the spectrum. When the spectrum is analyzed under these circumstances,
the distortion of the complex due to rotation can also be detected.
This contribution to the overall rotational spectrum, known as centrifugal
distortion, yields distortion constants which can be used to obtain an
intermolecular force field. The force constants obtained in this manner
are as accurate as the data from which they were obtained. It should be
noted that the accuracy of the force field obtained in this manner is

generally subject to approximations made in the calculation as opposed to
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Fig. [1.2] Diagram of Molecular Beam Electric Double Resonance Spectrometer
used by W. Klemperer. Illustrated is the method by which molecules in the

J=0, K=0 state are selected from the beam by the electrostatic fields.
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experimental uncertainty, since the method yields rotational frequencies
with precisions of 10 kHz.

An alternative method developed by T. J. Balle and W. H. Flygare at
the University of Illinois offers an even more precise determination of
the rotational frequencies of a complex. This method (Flygare-Balle
method) also involves obtaining the rotational spectrum of a complex, but
the manner in which it is obtained offers greater accuracy.

The rotational spectrum is obtained using a pulsed nozzle, Fabry
Perot cavity spectrometer. The thoery of this spectrometer has been des-

cribed in detail elsewhere.a'o_43

The gas samples of monomer/carrier gas
are pulsed through a supersonic nozzle, causing the gas samples to expand
adiabatically into a vaccuum. This technique favors low rotational gas
temperatures which lead to dimer formation. The gas molecules/dimers
expand between two mirrors in a Fabry Perot cavity and are subjected to a
microwave pulse which enters the cavity through one of the mirrors. This
pulse, containing frequencies over a range of 1 MHz, is the monochromatic
radiation that emerges from the source compressed over time. As this pulse
travels through the gas samﬁle, it is possible for resonance to occur between
frequencies of this pulse and frequencies due to transitions between energy
levels in the gas sample. After the pulse has dissipated, molecular coherent
emission due to free inductive decay occurs and is detected using a super
heterodyne detector. These data are digitized, stored and later corrected
for background. This cycle is repeated until a sufficient number of pulses
is obtained. These data are averaged and the frequency spectrum is obtained
by a fourier transform. A diagram of the spectrometer is shown in Fig (1.3).
The rotational spectra obtained in this manner for complexes has

been analyzed under the same constraints as in molecular electric double

resonance. The electrical and magnetic properties of complexes as well as
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Fig. [1.3] Block Diagram of the major components of the Flygare-Balle

Microwave Fourier transform spectrometer.
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molecular structure can be determined from the spectrum. Distortion of
molecular structure due to rotation can also be detected in the spectral
analysis to y}eld distortion constants to be analyzed for force constants.
The intermolecular force field determined here will have uncertainty due

to model approximations. The experimental uncertainty in frequencies
measured on the Flygare-Balle spectrometer is reported as 5-10 kHz; however,
it resolves hyperfine structure more completely than the spectrometer used
by Klemperer.

The major spectroscopic methods for obtaining data for the extraction
of intermolecular force fields have been described briefly to acquaint the
reader with the field. Of the methods described, this study will use
matrix isolation infrared data and microwave data from a Flygare-Balle
spectrometer to obtain the intermolecular force field of the van der Waals
complex C2H2-°HC1. The next section will detail how these data will be
analyzed to yield force constants. It will also be shown that a knowledge

of the vibrational force field will permit the first microwave determina-

tion of changes in monomer properties due to complex formation.



METHODS

A. Normal Coordinate Analysis of Two Weakly Bound Rigid Rods

In a description of forces between atoms in a molecule or between
monomers in a complex, it is extremely important to understand the nature
of the motions or degrees of freedom within the molecule or complex, i.e.
vibrations. These motions can be directly tied to the force field within
a molecule or complex. The magnitude and frequencies of the vibrations
of a molecule or complex can be analyzed for the force field of a particu-
lar molecule or complex. The method of analysis of the vibrational
frequencies, known as a Normal Coordinate Analysis, permits the extraction
of a force field based on knowledge of vibrational frequencies and structure
of the molecule or complex. This section will develop the concepts of a
Normal Coordinate Analysis for a chemically bound molecule and for the
case of two weakly bound rigid rods (ex: C2H2-°H35C1).

In a normal coordinate analysis, the potential energy of the molecule
or complex undergoing vibrations can be written in terms of two types of
coordinates, internal coordinates and normal coordinates. Internal coordi-
nates are changes in bond angles or bond lengths, i.e. changes in structural
parameters defined with respect to an internal molecular frame whose linear
combinations give rise to the vibrational motion of a molecular complex.
The choice of internal coordinates for a given molecule or complex is not
unique. However the selection of internal coordinates is generally made
such that the force field obtained can be related to properties of interest

within the molecule or complex. Internal coordinates must also be invariant

16
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to translations and rotations of the active molecule. This constraint

must be met such that the potential function written in terms of these
coordinates will not be affected by translations or rotations of the entire
molecule. The number of internal coordinates may not necessarily coincide
with the number of vibrations of a given molecule. This is quite common

in highly symmetric molecules such as chloroform44 where in one choice of
internal coordinates, there are ten internal coordinates and only nine
possible modes of vibration.

The second type of coordinates that can be used to write the potential
function of a vibrating molecule or complex are called normal coordinates.
The value of normal coordinates lies in the fact that the potential and
kinetic energies of vibration can be written without off-diagonal cross
terms. Normal coordinates are also very concise in that a normal coordinate
will encompass all the displacements of the atoms during a vibration. Since
the mechanics of complex vibrational motions are best described in terms
of normal coordinates while the molecular force field and potential energy
are most conveniently written in.terms of internal coordinates and the
kinetic energy in terms of Cartesian displacement coordinates, transforma-
tions between these coordinates would be desirable.

Using internal coordinates (due to their physical significance and
the ease in their use), the potential energy of a nonlinear molecule in

a harmonic approximation can be written in the following manner:

2V = R' fR (1)

where R is a vector of 3N-6 (where N equals the number of atoms) internal
coordinates and f is the Wilson symmetric square f or force constant matrix

of order 3N-6. The kinetic energy of a vibrating nonlinear molecule can
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also be written in matrix notation:

2 = X' MX 2)

where i is a 3N-6 vector whose elements are the derivatives of the cartesian
displacement coordinates (Cartesian displacement coordinates are coordinates
which can be used to describe the displacements of the atoms in a convenient
coordinate system) and M is a square diagonal matrix of order 3N-6 whose
elements are the masses of all the atoms in the molecule, each being present
three times.

It is possible to convert between the Cartesian displacement coordinates

and internal coordinates via eqn (3). Here R and X are defined as before
R = BX (3

and B is a rectangular matrix of 3N-6 x 3N whose elements are defined

below. Since B is rectangular, it is not possible to invert B and convert

Bij = BRi/BXj 4

directly to internal coordinates unless the Eckart conditions are incorpor-
. s 45-47 . .
ated into B. The Eckart conditions (zero net translation or rotation
of the molecule in a vibration) add 6 additional rows to the B matrix
corresponding to the 3 degrees of translation and 3 degrees of rotation
in the case of a nonlinear molecule.
Having the ability to convert from Cartesian displacement coordinates

to internal coordinates, it is now possible to write eqn (2) in internal

coordinates. Using eqn (3), the kinetic energy is written as:

2T = R' KR (5)
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where K is a symmetric square matrix of order 3N-6 as defined below:

1 -1

Bt = gt (6)

K = [BM

The K matrix is the inverse of the Wilson G matrix, a symmetric square
matrix of order 3N-6.

Having expressed the potential and kinetic energies as a function of
the internal coordinates in the limit of a harmonic oscillator model, it
is now possible to construct an equation of motion using Lagrange's equa-
tion, eqn (7), in a form appropriate for internal coordinates:27

) oT oV
5{(‘5;) * R, 0 (7)
i

where i denotes the ith internal coordinate. Substitution of eqns (5) and
(1) and simplification of i equations yields i second order differential

equations to be solved simultaneously.
£R + KR = 0 (8)

An appropriate solution to eqn (8) involves expressing the elements of the
R matrix, Ri(t) in terms of a cosine function. Expressions for these
elements are shown below along with the appropriate derivatives with respect

to time.

Ri(t) = zij cos (2ﬂvj + 8) (9)
R(8) = -2mv.fs sin (@mit v 9) (10)
R.(t) = -41220.. (cos 2mv.t + ©) (11)
i i3 ]

£ refers to the amplitude of the function and its subscripts i and j refer

to the number of internal coordinates and the number of vibrations respec-
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tively. 6 is the phase factor of the wave function and v is the frequency

of the jth vibration. The solution of eqn (8) using eqns (9) - (11) yields

3N-6 eqns of the form of eqn (12), where Aj = 4ﬂ2vj2,

(£ - MKyl = 0 (12)

The 3N-6 equations in the form of eqn (12) can be cast in a matrix forma-

tion and a solution obtained by left multiplying the terms within the

brackets by_g_l(g).

[f - AKIL = 0 (13)
[Gf - AL = 0 (14)
GfL = LA (15)

In eqn (15), L and A are matrices of order 3N-6 whose elements are the terms
Eij and Aj that appeared in eqn (12). The matrices G and f are as defined
earlier.

The significance of eqn (15) is immediately evident. The frequencies
of the vibrations of a molecﬁle or a complex can be determined if the f
and G matrices are known and their product can be diagonalized. Before
the method of solving eqn (15) is discussed, it would be appropriate to

discuss the nature of the E.andlf matrices in more detail.

The f Matrix. The f matrix is a symmetric (Hermitian) square matrix

of order 3N-6 whose elements are the force constants that describe the
vibrations of a molecule or a van der Waals complex.

The structure of the f matrix consists of diagonal and off-diagonal
elements. The diagonal elements are the force constants that relate how
much force is required to cause a change in a given internal coordinate.

The off-diagonal elements are called interaction constants; these relate
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how the change in bond length or bond angle can affect the force required
to change other bond lengths or bond angles in the molecule or complex.
The assignment of non-zero values to interaction constants is not a simple
process for most molecules and complexes. There do exist a few general
guidelines in the determination of non-zero interaction constants. One
consideration which is important is the relative proximity of the two
motions. It is highly unlikely that a change in bond length would affect
a change in bond angle more than three or four atoms away. However, this
type of rationale must be invoked with caution. Another guideline is that
there must be a one-to-one correspondence between the f matrix elements
and G-matrix elements. If any G-matrix element is zero, then its correspond-
ing f-matrix element must be so.

Using the guidelines mentioned previously, the density of the f-matrix
would be reduced to the diagonal elements and some selected interaction
constants. At this point, the non-zero elements in the f matrix are deter-
mined by the description of the forces within a molecule or complex. There
exist three general approximations to the description of forces within a
molecule or complex: the central forces approximation, the valence force
approximation and the Urey-Bradley approximation.

The central forces approximation considers all forces acting within
a molecule or complex to be acting along lines joining pairs of atoms.2
In this level of approximation, the forces acting on an atom are the
total of the attractions and repulsions of other atoms to which it is
bonded. The forces vary according to the distances between the atoms
along lines (bond lengths) which join these atoms. This approximation
is the least sophisticated of the three descriptions of forces within a

molecule or complex in that it very poorly describes the forces involved
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in bending vibrations. The only advantage to this description lies in the
fact that the number of force constants is less than the number of normal
vibrations, thus making the problem soluble.

The valence force approximation is an improvement on the central force
description in that it contains a more refined description of the forces
involved in changing a bond angle. This idea, first proposed by Bjerrum,
states that restoring forces act along every valence bond in a molecule and
in bonds that join at a common atom to form a bond angle.48 In addition to
its improved description of the forces, it also has the advantage that the
number of force constants used is often less than the number of normal
vibrational frequencies, once again making the problem soluble. Due to
these advantages, the valence force description is considered the first
level of approximation in any normal coordinate analysis.

The most refined description of forces within a molecule or complex
is the Urey-Bradley approximation. The Urey-Bradley description builds
upon the valence force description by acknowledging the contribution of
non-bonding interactions to the forces within a molecule. The density of
the f matrix under the Urey;Bradley approximation is the maximum permitted
by the number of experimental frequencies available. This description is
the most refined and complete of the three approximations.

In the description of the f matrix, it has been shown that the forces
used to describe the vibrations of a molecule or complex can be modified
through the use of diagonal and off-diagonal elements to reproduce the
normal vibrational frequencies. However, the vibrational frequencies
are not solely dependent on the forces within a given molecule or a complex.
The equilibrium geometry of a molecule or a complex also.makes a signi-
ficant contribution to the normal frequencies through the G matrix, which

will be described in the next section.
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The G Matrix. The G matrix is the inverse of the kinetic energy

matrix in eqn (6). By taking the inverse of eqn (6), it is possible to

define G in the following manner:

6 = BME (16)

where B is the rectangular matrix (3N-6 x 3N) that transforms cartesian
displacement coordinates into internal coordinates, B' denotes B-trans-
pose and M is a diagonal square matrix of order 3N where the mass of each
atom appears three times.

In the case of most chemically bound molecules, however, it is not
necessary to revert to eqn (16) to derive the G matrix. Each G matrix ele-
ment is composed of two B matrix elements which in turn coorespond to two
internal coordinates. There are many combinations of internal coordinates
that occur frequently in chemically bound molecules, thus general formulas

for these elements are available.zg’49

For more geometrically complete
molecules of low symmetry, the G matrix elements are constructed by deriving
the B matrix using eqn (16). This approach has also been employed on many
occasions to derive the G matrix for van der Waals complexes. The deriva-
tion of the B matrix utilizes the s-vector method, simultaneously developed

by Wilson50 and Eliashevich,51 which will be discussed in the next section.

The '"'s'" Vector Method--Derivation of B

In the derivation of the B matrix using the "s" vector method,
eqn (17) is the point from which the derivation begins. This equation
states that for a given set of Cartesian displacement coordinates there
exist coefficients Bti that will properly mix these displacements such
that the summation of the product of these two quantities will generate

Rt’ one of the 3N-6 internal coordinates.
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This equation is then rewritten such that the three Cartesian displacement
coordinates used to describe each atom a's displacement are replaced by a
vector, pa, whose components along the three axes of the Cartesian frame

are the artesian displacement coordinates of the atom a. The elements

R, = I B_.X. t = 1,2..3N-6 (17)

Bti’ every three being associated with an atom a, are also converted into

a vector, Sta which cares about an internal coordinate t and an atom a.

E

Thus eqn (17) can be rewritten in the following manner:

X
1}
n ™M=z

, sta.pa 7 (18)

where Rt is now expressed as the summation of the dot products of these
vectors.

The advantages to eqn (18) in relation to deriving B are not immediately
clear. There is no need to define a reference frame for the cartesian dis-
placement coordinates. There are also definite rules for quantifying the

vectors Stor In physical terms, s is defined in the following manner:

ta

all atoms except the ath atom are at equilibrium such that the vector dis-
placement of atom a is in the direction that will produce the greatest

increase in Rt and the magnitude of St |'s is equal to the increase

a ta]’

in Rt due to a unit displacement of a in the direction of maximum increase

28

of Rt In terms of the derivation of B-matrix elements, when the vector

Sta is resolved in the same cartesian frame as the Cartesian displacement

coordinates, the components along the three axes are the B matrix elements.

The s__ vectors have been worked out for the four most frequently

ta
28,29

encountered internal coordinates in chemically bound molecules. The

Sta vectors for bond stretching and bond bending will be described in



detail. The derivation of the s vectors necessary to describe torsion

ta
and out-of-plane bending can be found in detail elsewhere.zs’29

To illu;trate the construction of an S, vector appropriate for bond
stretching, it will be informative to use a simple diatomic molecule as
only two atoms are only involved in stretching a bond (see Fig. 1.4a).

It is clear from Fig. (1.4a) that the optimum direction for each atom to
move so as to increase the bond length is away from the other atom along

a line joining the two atoms. The magnitude of the S__ vector appropriate

ta

for each atom has previously been defined as the increase in the internal
coordinate due to a unit displacement in the most effective direction. If

LA represents a unit vector from atom a to atom b along the bond joining

atoms a and b, then the magnitude of the vector Sta is equal to -€,p OF

in terms of the unit vector from atom b to atom a, e The magnitude of

ba

the vector s_, is equivalent to -€,, OT ¢

tb ab’

The construction of the S.q Vectors appropriate for the valence angle

bending involves three atoms and hence a triatomic molecule like that shown

in Fig (1.4b) will be used in the illustration. If construction of the Sta

vectors for atoms a and c, sta and S.o» are considered first, the direction

of these vectors will be perpendicular and outward from Tya and The

respectively. The distances Tha and Toe correspond to the bond lengths

between atoms b and a and atoms b and c respectively. The direction of

these vectors perpendicular to Tya and The will result in the longest

increase to the angle defined by Tya and Ther The magnitudes of Sta and

S.. can be calculated by recognizing that an infinitesimal unit displace-

ment in the directions of Sta and Stc will increment g by l/rba and 1/rbc

respectively, thus the magnitudes of Sta and Sy are l/rba and 1/rbC

respectively.
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Fig. [1.4a] Diatomic Molecule-Illustration of Sta vectors for bond

stretching.

Fig [1.4b] Triatomic Molecule-Illustration of Sta vectors for valence

angle bending.
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Calculation of the vector Stp can be simplified by invoking constraints
which must be followed in the construction of these vectors. These con-
straints are known as the Eckart conditions and state that during a vibration
the center of mass of the molecule or complex must not shift and that no

45-47 When the Eckart

angular momentum must be imparted to the molecule.
Conditions are invoked in the calculation of the sta vectors these con-

straints take the following form:52

T Seq = 0 (19)
o
2 Ra Seq ° 0 (20)

where Ra is a vector which defines the atom a's equilibrium position rela-
tive to an arbitrary origin and the X denotes the cross product.
Using eqn (19), it is now possible to determine the magnitude and

direction of Ste for the valence angle bending case. The magnitude of

must be equivalent to -(|s |stb|) since all Sy VECtors must obey

s'CC ta‘

the constraint of eqn (19).. The direction of Ste downward between The and
Tha is a consequence of eqn (19) such that the center of mass does not
shift due to the motions of atoms a and c.

Having derived the Sta vectors for two of the most common coordi-
nates, the components of these vectors resolved into a cartesian reference
frame become the elements of the B matrix necessary to calculate G.
If the B matrix is not to be utilized in another calculation, the sta

vectors can be utilized directly to calculate the matrix elements of G in

the following manner:

_ 1 N = number of atoms
G = Lo St Sta t,t' = 1,2,3...3N-6 (21)



where t,t' denote the vibrational modes, N is the number of atoms in the
molecule and the dot denotes the scalar product.

This app?oach is generally the method of choice for all chemically
bound molecules and a variety of van der Waals complexes. When this
approach is utilized on van der Waals complexes, the internal coordinates
of the monomers as well as those of the complex must be considered. This
leads to a G matrix whose elements are not easily calculated and requires
a more elaborate force field (f matrix). There have been two occasions
where this difficulty has been circumvented. In the calculation of vibra-
tional frequencies of carboxylic acid dimers, Halford53 and Pitzer54 have
used a '"rigid monomer'" model to construct the E.matrix in which only the
internal coordinates of the dimer. were used. This method led to a much
smaller G matrix and a smaller number of force constants. The justification
for the '"rigid monomer'" method was that the vibrational frequencies of the
monomer were several orders of magnitude larger than the vibrational fre-
quencies of the dimer. This statement is equivalent to saying that the
"'exact'" G matrix, one that is constructed using both monomer and dimer
internal coordinates, can be factored into two blocks. The two blocks
correspond to one which is concerned primarily with the high frequency
modes of the monomers and one that is concerned with the low frequency
dimer modes. Halford and Pitzer did not, however, begin with the "exact"
G matrix and block factor it into high and low frequency blocks. Their
method, involving a G matrix based solely on the internal coordinates of
the dimer, achieved the same results as the factoring of the '"exact" G
matrix into high and low frequency blocks.

Since the '"rigid monomer" model was first introduced by Halford and

Pitzer, it has been rarely used in the analysis of complexes. The large
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variety of complexes studied with the advent of Molecular beam electric
resonance and pulsed nozzle fourier-transform microwave spectroscopy whose
intermclecular force fields have characterized via a normal coordinate

analysis have used '"exact'" G-matrices calculated using the s-vector method.ss’56
The G matrices calculated for these complexes have all shown the feature
of being blocked off into high and low frequency blocks.

In the study of the intermolecular force field of acetylene-HC1l, the
''exact" G matrix will approximately factor into high and low frequency
blocks. Based on this assumption, the G matrix is calculated considering
only the internal coordinates of the complex and assuming the monomers to
be ''rigid rods'. A description of how the G matrix is calculated in the

"'rigid rod" approximation will be discussed in the next section.

Calculation of the G Matrix for Two Weakly Bound Rigid Rods

In the calculation of the G matrix for two weakly bound rigid rods,
it is necessary to define the rod system and discuss how the degrees of
freedom a rod possesses can be utilized to construct internal coordinates
for a nonlinear rigid rod complex.

Figure (1.5) shows two‘rods in an orientation exactly like that of
acetylene-HC1l (Figure (1.6)). The arrows and coordinates illustrate the
fact that a rod requires 5 coordinates to describe its location relative
to a reference frame, 3 cartesian coordinates (x,y,z) and two angles
(6,¢). If two rods are brought together in an arrangement such as in
Figure (1.5), the resulting nonlinear rod complex can easily be shown to
have three degrees of rotation and three degrees of translation. In
analogy to the treatment used to calculate the number of normal vibrations
in a nonlinear molecule, if the number of rods is multiplied by the number

of coordinates necessary to describe each rod's location in space and then



Fig [1.5] The ten degrees of freedom and rod displacement coordinates of a

two rod "T'"-shaped complex and their respective C2v symmetry types.
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Fig. [1.6] Equilibrium Structure of Acetylene-HCI.
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the number of translations and rotations possible for a nonlinear rod
system is subtracted from the product, it is possible to obtain the
number of normal vibrations for a nonlinear rod complex, 5p-6 (where p is
the number of rods in the complex). For the nonlinear complex shown in
Figure (1.5) there exist 4 normal vibrations.,

In describing the normal modes of a rigid rod system, it is necessary
as in a chemically bound molecule to choose a set of coordinates in which
to construct the kinetic and potential energies of the rod complex.
Internal coordinates are chosen for their physical significance and these
are illustrated for a nonlinear two-rod system in Figure (1.7). Figure (1.7a)
shows Rl’ which is equivalent to a change in distance between centers of
mass of the monomers. R1 is very similar to a change in bond length in
chemically bound molecules. The three remaining internal coordinates,
RZ-R4 are librations or rotations of the rods about their centers of méss
which give rise to an incrementation of an angle. Librations are somewhat
similar to valence bond angle displacements in chemically bound molecules.
Each libration in Figure (1.7b-d) shows displacement of both rods. This
is due to the fact that in order for the librational modes to be considered
proper internal coordinates, these motions must in no way shift the center
of mass or impart angular momentum to the complex. Thus, for each libration
or rotation of a rod about its center of mass as in Figure (1.4b), there
is a simultaneous counter rotation of the other rod about the first rod's
center of mass. This "Eckart" counter rotation of the other rod guarantees
that no angular momentum is imparted to the complex. Implicit also in
Figures (1.7b-d) is the fact that either one or both of the rods must also
be translated such that the center of mass of the complex remains unchanged.

At this point, the number of normal modes and the internal coordinates

for a nonlinear weakly bound complex of two rods of uniform mass distribu-



Fig. [1.7a-d] The van der Waals internal coordinates of a two rod complex
of C2v symmetry. The angles oy and a, are the instantaneous angles made by
HC1 with the (a) inertial axis in the [a,b] and [a,c] planes respectively. The

Eckart displacements shown are deliberately exaggerated to permit definition

of various structural parameters.






tion has been developed. It is evident, though, that the van der Waals

complex for which this concept is being developed (CZH ++HC1) is composed

2
of two rod-like monomers whose mass distribution is not uniform. It
becomes necessary to try to construct internal coordinates for a rod
system where the rods' mass distribution is not uniform.

The "rigid rod'" approach has been modified for this in the following
manner. If these rods are constructed of discrete point masses corresponding
to atoms, it is possible to write rod displacement operators for the rota-

tion or translation of the pth rod in an inertial frame.28 Translations

of the oth rod can be expressed as:

Tog m, [Ag;] g = X,¥,2 (22)

n
EIH
[ ae -4

i

O

where Lgi represents the cartesian displacement of the pth rod composed of
N atoms and a total mass mp. Rotations of the pth rod about the X axis can

be described by eqn (23):

N .
Rpx = Ti; iil m, {zi[Ayi] - yi[Azi]} (23)
where x,y,z can be taken in cyclic order for rotation about the y and z
axes and Ipx is the moment of inertia of the pth rod about the x axis. In
this approximation the monomers are replaced with inertially equivalent
rigid rods. Therefore, at the time scale of the van der Waals motions,
the rods are inertially equivalent to the monomers averaged over their
high frequency ground state vibrations. This separation of high and low
frequency modes is then analogous to the '"rigid rotor" approximation in
which rotational constants correspond to a vibrationally averaged moment

of inertia. In constructing the coordinates of each of the atoms of each
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rod, vibrational ground state structural parameters are therefore used
for the calculations of interatomic distances and equilibrium parameters
are used for the internal coordinates of the complex.

With the ability to write the rotation or translation of a rod in
terms of atomic displacements in a cartesian frame, these rigid rod dis-
placement operators are then used to construct internal coordinates that
conform to the Eckart Constraints. The rotations and translations are
written such that each rod is rotated and/or translated to give maximum
incrementation to the internal coordinates in a manner similar to that
used in the s-vector method outlined previously. For the case of a "T'-

shaped rod complex of C2V symmetry such as C2H ++HC1, the following

2

equations developed by Henderson describe the internal coordinates of the

complex in terms of rigid rod displacement operators.57

R1 - le - T22 (24)
Ry = Ryyp ~ Ryyp * CT1x (25)
Ry = Ryyp = Ryyp + CaToy (26)
Ry = Ryyp = Roxa * Gy (27)

The subscripts differ slightly from the notation presented earlier (see
eqn (23)). The additional subscript is required to encode specific informa-

tion about the axis of rotation, i.e., R is the rotational operator

2x1
which will give rise to rotation of rod 2 about the center of mass of rod

1 in the x-plane. The coefficients of the translation operators guarantee
the condition of zero net translation of the complex.

When these operators are summed, the x,y,z components of each atom

are used to construct a B-matrix of order 5p-6 by 3N where p and N are as



defined earlier. The B matrix is then used with the M matrix as defined
earlier to construct the G matrix according to eqn (16).

It is clgar that while the construction of the f matrix is not signifi-
cantly altered by whether the species being studiéd is a complex or
chemically bound molecule, the G matrix is significantly affected. Having
discussed the methods available to handle the special case of a G matrix
for a van der Waals complex and the nature of f and G matrices in general,
it would now be appropriate to discuss the solution of eqn (15).

Solution of the Secular Eqn

As stated earlier, if the product Gf could be determined and
diagonalized, it would be possible to determine the elements of A, which

contain the normal frequencies. It turns out that while it is possible to

L'GEL = A (28)

obtain the product Gf, it is not possible to diagonalize it using algorithms
for Hamiltonian matrices. The f and G matrices are both square symmetric
matrices, but their product Gf is not symmetric, i.e. Hermitian. If a
matrix is not Hermitian, it cannot be diagonalized using the algorithms
appropriate for diagonalizing Hamiltonian matrices. To bypass this diffi-
culty, it is necessary to construct a similar matrix, H, using G and f.

The first step in this procedure is to diagonalize G, which is Hermitian,
and obtain the transformation matrix A and the D matrix, a diagonal matrix

whose elements are the square root of the eigenvalues of G. Equation (29)

A'GA = DD =2

can be rearranged and used to rewrite eqn (15). It should be noted in
eqn (31) that the L matrix can easily be recovered and defined in eqns

(32) and (33).
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DUAGADT = E (30)
C'[D'A"GAD ' DA £ADIC = A (31)
L = ADC (32)
e o (33)

It can be shown that since eqn (34) is true that eqn (31) reduces to

eqn (35). Replacing G with its new definition (eqn (29)), it is possibie
-1 ' =
AD"DA' = E (34)

[ [g‘l A' GfADIC = A (35)

C'[D"A"ADDA"£ADIC = A (36)
C'IEDA" £ADIC = A (37)
C'[DA" £ADIC = A (38)
H = DA"£AD (39)

The solution to the secular equation (15) not only provides frequencies
for the normal modes of vibration but a means of transforming the internal
coordinates of a molecule or complex into the normal coordinates of the
molecule or complex. If the normal coordinates of a molecule or complex
are defined as elements of the 3N-6 dimensional column vector Q, then the
eigenvector matrix of the secular eqn, the L matrix, can be used to con-

vert R into Q. A more detailed proof can be found in reference (5).

R = LQ (40)
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A normal coordinate analysis can be used in two directions--to deter-
mine the force field of a molecule or complex if the normal mode frequencies
are available or to determine frequencies if a force field is available.
Both approaches depend also on a knowledge of structural parameters of
the molecule or complex.

In the situation where the force field is being sought, it may be
necessary to supplement the experimental data in order to obtain the most
accurate and refined force field. The most common source of data to
supplement vibrational spectra is from a centrifugal distortion analysis
of the microwave spectrum. In section B, the microwave spectrum and the
phenomenon known as Centrifugal Distortion will be investigated to ascertain
how they can be used to determine force constants for both chemically bound
molecules and van der Waals complexes.

B. The Microwave Spectrum and Centrifugal Distortion Analysis of van der
Waals Complexes

To clearly understand how the microwave spectrum can be used as a means
of supplementing vibrational data for the determination of the force field
of a chemically bound molecﬁle or complex, it will be necessary to first
present a brief summary of the basic principles of rotational spectroscopy.
This summary will serve to introduce the nature of rotational spectroscopy
and provide a basis upon which the topic of Centrifugal Distortion can be
developed.

In the description of a rotating nonlinear molecule or complex, the
dynamics can be described to a first approximation by assuming that the
bonds connecting atoms in a molecule or complex are not distorted during
rotation. This approximation, known as the rigid rotor approximation, can
be used to calculate the components of the angular momentum vector P in

both a molecular fixed frame (xyz) and in the principal inertial frame



(abc) of the molecule or complex. The components of angular momentum in
the molecular and principal inertial frames are operators which can be

interconverted via a direction cosine transformation.58
(Pa Pb PC) = (PX Py PZ) C (41)

The angular momentum operators along with the moments of inertia in

the principal inertial frame can be used to construct the rigid rotor

Hamiltonian:
H = —_— + 5 + (42)
T ZIaa LIbb ZICC

where 1 <1 <1 and the labels a, b, and c are given to the inertial
aa bb cc .

axes according to the conventions described in Reference 58. Eqn (42) can

now be inserted into the Schrodinger equation:

Pi Pi Pi >
HY = < 5T * 5T 5T Y = EY (43)
aa bb cc

and consideration given to the wave functions or basis set appropriate to
solve this eigenvalue problem.

The wave functions appropriate for the solution of eqn (43) will be
functions in three angles €, ¢, and ) since it requires three angles to
describe the molecule or complex's orientation relative to either the
principal inertial frame or the molecular frame. The wave functions must
also be eigenfunctions of the commuting angular momentum operators, P2,

P, and P .38
vA c

The exact form of the wave functions is given in detail elsewhere.59’60

It is sufficient to note that when these functions are employed in the
eigenvalue equations involving the commuting angular momentum operators

Pz, PZ, and PC the following eigenvalues resul‘c:b8
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PY(6,0,5) = h2J(J + 1)¥(2,6,%) (44)
PY(8,0,0 = hMY(8,6,%) (45)
P¥(8,4,) = hK¥(8,4,%) (46)

In the solution of eqn (43), it will be advantageous to employ a
matrix representation of the Hamiltonian. It becomes necessary then to
determine the matrix elements of the angular momentum operators Paz, Pb2,
and PC2 using ¥(6,¢,x). These matrix elements in the Y(8,¢,x) basis set
can be constructed using the commutation relationships and the eigenvalue
eqns (44) - (46). The details of the derivation of the matrix elements
can be found in References 58 and 61.

The matrix representations of Paz, sz, and Pc2 are square, symmetric
matrices of order 2J+1. These matrices can be factored into blocks
corresponding to a particular value of J. Each J block will be of order
2J+1 with diagonal elements in J,K,M. In the matrix representations of
Pa2 and sz, the J blocks will also have off diagonal elements corresponding
to K#2.

The angular momentum matrices may be combined in accordance with

eqn (43) to construct H,, the Hamiltonian matrix appropriate for any type

R’
of rigid rotor. The Hamiltonian matrix is a square, symmetric matrix of
order 2J+1 and can also be factored into J blocks in a manner similar to
that of Paz, sz and PCZ. The internal structure of these J blocks con-
sists of diagonal elements in J,K,M and off diagonal elements corresponding
to K£2. The matrix elements are functions of J, K and the moments of
inertia expressed as rotational constants A,B,C. These rotational constants
are defined aszﬁ/4ﬂ1gg where g = a,b,c. The diagonal and off diagonal

matrix elements for the rigid rotor Hamiltonian are given below in the

prolate symmetric rotor basis:58
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<3, KMIH_| 3K, M> ﬁigiﬁl [J(J+1)-K°] + hK°A (47)

1
<J,K,M]Hr|J,Ki2,M> %—(B-C)[J(J+1)-K(Ki1)]2

[J[J+1)—(Ktl)(Ki2)]% ‘ (48)

It is possible by permuting A with B, B with C, and C with A to obtain the
corresponding Hamiltonian in the oblete symmetric rotor basis.

It is evident from eqn (48) that in the limit of a symmetric rotor
(B = C) the Hamiltonian matrix is dizgonal and the diagonal elements give
the energy levels of the symmetric rotor directly.

The discussion to this point has acknowledged the limiting cases of
prolate and oblate symmetric rotors. The intermediate case, an asymmetric
rotor, requires special consideration. There exists no general closed
expression for the basis set of an asymmetric rotor, hence an appropriate
choice of a basis set would be linear combinations of ¥(0,¢,%), the symmetric
rotor wave functions. The Hamiltonian constructed for an asymmetric rotor
in this basis set is no longer diagonal. The off diagonal elements corre-
sponding to K*2 are now present.

To determine the energy levels of an asymmetric rotor, the Hamiltonian

matrix is diagonalized:58

U H U =E (49)

The transformation matrix, U, yields the coefficients necessary to construct
Y from the symmetric rotor wave functions.
Having described the methods necessary to obtain the energy levels of
the three types of rotors, it is essential to describe the energy levels
and selection rules appropriate to calculate the spectra of these rotors.
The energy levels for the symmetric rotors are given in detail in

58-60

other sources. It is sufficient to recognize that the K-states in
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the symmetric rotor are degenerate and that when the symmetry of these
rotors is destroyed the degeneracy in the K-states is broken. This is due
to the fact that as the molecule or complex becomes more asymmetric, off
diagonal elements in K are no longer zero and thus mixing occurs between
the K-states of a given J block. The notation used to identify the asym-
metric top energy levels reveals this feature as each level is denoted J,
K-prolate, K-oblate where K-prolate and K-oblate are the quantum numbers
of the degenerate K levels that it is derived from (see Fig (1.8)).

The selection rules will also differ slightly between symmetric and
asymmetric rotors. The details of the derivation of the selection rules are

given elsewhere.59’6o

The selection rules for a symmetric rotor are

AJ = *#1,0, AK = 0. The situation.differs slightly for an asymmetric rotor.
The selection rules for J are still applicable, but the selection rules for
K must acknowledge the fact that there are projections of the dipole moment
of the molecule or complex along any one or all three inertial axes. These
are given in Table II, where e and o refer to the evenness or oddness of
the K-prolate, K-oblate quantum numbers.

Figure (1.9a) shows the stick representation of the spectrum of an
asymmetric rotor. The transitions illustrated are R-branch, a-dipole tran-
sitions. The intensities are not drawn to scale.

Having discussed the dynamics of the rigid rotor, it is now appropriate
to consider the effect of relaxing this constraint on the description of
rotation for a chemically bound molecule or complex. In a non-rigid molecule
or complex, rotation causes centrifugal distortions of bond lengths and
bond angles which are opposed by the restoring forces of the bonds. It is
possible to obtain molecular force constants from an analysis of the
effects of these distortions on the rotational spectrum. This technique

is known as a Centrifugal Distortion Analysis and will be discussed with
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Fig. [1.8] Energy level diagram for the near prolate asymmetric rotor NSF.
The energy levels in the limit of a rigid rotor are shown on the left and
the energy levels acknowledging centrifugal distortion (calculated using a
first order approximation from distortion constants in Reference 76) are

shown on the left.
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Fig. [1.9a] Spectrum of a near prolate asymmetric rigid rotor, NSF. Illus-
trated are selected R-branch, A-dipole transitions. The transitions are denoted
1-10 and the corresponding quantum labels are given below. The following
spectroscopic constants were employed in the calculation of the spectrum:76

A= 49719.5600 MHz B= 8712.3300 MHz C= 7393.1300 MHz

Fig. [1.9b] Spectrum of NSF acknowledging centrifugal distortion. The same
transitions shown in Fig. [1.9a] were calculated with centrifugal distortion
included. Centrifugal Distortion was treated as a first order correction using
distortion constants from Reference 76. The effects of distortion are somewhat

exaggerated to illustrate the effect more clearly.

J K(-1) K(+1) J K(-1) K(+1)
1. 1 0 1 2 0 2
2. 1 1 1 2 1 2
3. 1 1 0 2 1 1
4. 2 1 2 3 1 3
5. 2 0 2 3 0 3
6. 2 1 1 3 1 2
7. 1 0 1 2 2 0
8. 2 0 2 3 2 1
9. 2 1 1 3 3 0
10. 2 1 2 3 3 1
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Table II. Selection Rules for an Asymmetric Rotor

A-dipole ee &——> €0

00 &——> oe

B dipole. 00 &> ee

eo ———— oe

C dipole ee &—> oe

€0 <—>» 00
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respect to an asymmetric rotor in the next section.

Centrifugal Distortion

The effects of distortion and the subseqguent restoring forces on a
chemically bound molecule or complex can be described by an appropriate
Hamiltonian:62

H = % o + V (50)
a,B

Yog"as
where o,B = Xx,y,z (molecular fixed frame), uaB are elements of the inverse
of the moment of inertia tensor, Pa and P6 are components of the total

angular momentum along the o and B axes in the molecular fixed frame and

V is the potential energy in the limit of a harmonic oscillator.
(51)

In this definition fij are elements of the f matrix and R is a vector whose
elements are the internal coordinates of the molecule or complex (see
Methods Section, Part A). The subsripts i and j are used to denote the
3N-6 internal coordinates.

The elements Hyg can be approximated in a Taylor series expansion
about ua; where uaB = f(Ri). The value of U&Z occurs when all ri‘s are
zero (no rotation). At uaz, the moment of inertia tensor, I, is diagonal
and the elements of p are the inverse of the elements of I. The series
can be truncated at the linear term since all Ri's are assumed to be very

small.

= “'Z T SO (52)
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be - <_3R_—?B) (53
1

This result can be used in conjunction with Hamilton's equation of

motion:

b o= (54)

to express the relationship between the distorting forces of rotation and

the restoring forces at equilibrium:

ou
0B oV, _ —
z TR PuPB + SRC - 0 i = 1,2. . .3N-6 (55)
a,B i i

NI

when vibration is neglected. Upon substitution, eqn (55) becomes:

1z W

PaP
a,B

g Tf..R. = 0 (56)
j

1] )
which when solved for Rj for all 3N-6 internal coordinates has the general

form:

1

R. = -} I (f" )ji ”as(i) PP (57)

B
where (f~1)ji is the ijth element of the inverse of the f matrix.
Eqn (57) is valuable since both the potential energy and uaB can now

be expressed in terms of the components of angular momentum, Pa and P,.

B
(1) 1
vV = 1/8 z U (f 7).; (58)
i,j,0,8 H
Y56
_ e 1 . -1 (1)
UO.S - U(IB - ; z UO.B(:L) (f )13 UQB P'Ypé (59)

i,j,a,B,Y’G
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The subscripts a,B,y,8 represent Xx,y,z in cyclic order.
These results are substituted into eqn (50) and the expression simpli-

fied to obtain:

Ho= 1/2 TuSpp, -1/8 T ( )( )i HysPaPeP P (60)

This expression can be further simplified by substitution of the following

. 62
expression:

1 (1) (1)
TaByG T2 i (£ )11 YS (61)
to obtain:
H = 1/2 = U + 1/4 z T P PP P (62)
o, B ocB o B @,8,v,6 aBYS "o B Y S

It should be observed that the first term in the Hamiltonian is Hr’ the

rigid rotor Hamiltonian. The second term corresponds to HD, the distor-

tion Hamiltonian.

In order to evaluate HD’ it is necessary to discuss the calculation

. The T 's, known as distortion constants, require knowledge
aBys aBys 7 ? qu g

of both the Qf—l) matrix and uéé?. The (g—l) matrix can be obtained by

of T

inversion of the f matrix (the elements of (g_l) are not the same as the

inverses of the elements of the f matrix). The partial derivatives,

ne

aB ?

matrices:

can be obtained by writing the product of u and I expressed as

vl = E (63)

where E is the unit matrix. Taking the partial derivatives in eqn (63)

with respect to Ri at equilibrium, a set of 3N-6 equations result which



(1)
aB

oI
o) . Ie Ie
o kB

can be solved for u

auaB
< o R.>
1 e

Utilizing the following expression for SIQQ/BRi:

D

This result is given below:

aIaB
JaB -~ 3R, (65)
i
it is possible to rewrite eqn (60) in the following manner:
_ _1,7€ € e e (-1 _ i, .-1 i
Togys = ~2UgTgalvylss) i'j[Jaﬁ]e(f )i5yele (66)

The values for the inertial derivatives, JaB’ are evaluated at equilibrium
for the ith internal coordinate.

When TaByd is expressed as in eqn (65), the (f:l) matrix and values
for Iza (the moment of inertia about the o axis at equilibrium) and [Jaﬁ]e
are required for its calculation. The moments of inertia can be calculated
at equilibrium in the principal inertial frame using the equation below:

N 2 2
I = 51 my(8," + Y, ) (67)

oo 2
where o,fB, and Y are x,y,z taken in cyclic order. Obtaining [JaB]e is
possible by two approaches; both of which will be discussed in the next
section.

Calculation of JaB——The Inertial Derivatives

The inertial derivatives are actually elements of the J matrix which
is a 3-dimensional matrix of order 3X3X3N-6. Each cross section corresponds

to derivatives of the moment of inertia tensor calculated for an appropriate
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change in an internal coordinate. The change in a given internal coordinate
cannot be made arbitrarily. It must be made such that the Eckart condi-
tions are satisfied3 (see Methods Section, Part A). Kivelson and Wilson

have obtained general analytical expressions for the matrix elements of

each cross section. These expressions are given below:62’63
i 2 N
Yoo = IR, o M Bp BBt vy By (68)
i £=1
i 2 N N %
J = - = (1 L myB,ha, + I, I m,a,AB (69)
aBf ARiIYY o py L5477k B £=1 Jau dated
N 2
where 1 is defined according to eqn (66) and I_ = Z ma_ ~.
Y o s=1 s

There are specific guidelines associated with the use of these equa-
tions. The coordinates of the atoms not involved in incrementing AR mgst
be equilibrium values in the principal inertial frame. The locations of
the atoms must be changed so as to increment the internal coordinate Ri'
The advantage to the Wilson method is that these displacements of the atoms
can be arbitrary. The axis system can even be translated such that the
displacements can be calculated conveniently (note: They must be trans-
lated back to the principal inertial frame for use in eqns (68) - (69)).
This is due to the fact that the Eckart Conditions are built into these
eqns. Inherent in eqns (68) - (69) are translations and rotational terms
that will convert any arbitrary displacement to an "Eckart allowed'" dis-
placement, provided the coordinates are in the principal inertial frame.
As stated earlier, this method is appropriate for both chemically bound
molecules and complexes and can be used with distortion constants to
determine force constants for a nonlinear rigid rod system.

An alternative matrix method determines J from readily available

o

matrices. This method generates a column of a cross section of the J



matrix according to the following eqn:64

J .= 26YtB1%1
0B S 31 1

B X (70)

where G and B are as defined earlier (see Methods Section, Part A), X is

a 3N-dimensional column vector of the equilibrium coordinates of all the

B

. L . . a Lo .
atoms in the principal inertial frame, I~ and I are auxiliary matrices

of order 3N with the following matrices repeated N times along the diagonal:65

00 0' 0 0 -1‘ 0 1 o‘
i% = 0 1 i =10 0 0 i#= -1 0 o (71)
10 -1 0 i1 0 ok 0 0 0

The Eckart considerations are consolidated in the construction of B (see
Methods Section, Part A).

It is now possible to calculate T and thus HD for a chemically

aBydS
bound molecule, complex, and a nonlinear rigid rod complex in a classical
sense. If the components of angular momentum are regarded as operators,
the quantum mechanical Hamiltonian is obtained. The resulting distortion
Hamiltonian, HD’ can be treated as a correction or perturbation to the
rigid rotor Hamiltonian. The order of the correction (first, second, etc.)
is that required to bring the calculated spectrum into agreement with the
observed spectrum. The order generally indicates the magnitude of the
effect the perturbation has on a given system. In the next section, the
first order perturbation or correction due to centrifugal distortion will

be discussed.

First Order Perturbation Treatment of Centrifugal Distortion

Using the quantum mechanical Hamiltonian (eqn (62) where the components

of angular momentum are construed to be operators), the calculation of HD

will involve averaging H_ over the asymmetric rotor wave functions. This

D



discussion will serve to illustrate the pertinent points of this averaging
to determine HD to first order. More detailed discussions can be found in
References 62, 66, 67.
The number of terms in the summation over a,B,Y,S8 in eqn (72) and

Hy = 3 OL,B?Y,@ Togys PoPefyPs (72)
hence the number of terms to average can be reduced by invoking the commu-
tation rules of the angular momentum operators.68 The commutation rules
reduce the summation to eighty-one terms. It is also possible to reduce
this further by recognizing that many of the remaining taus are equal (see
eqn (66)). It also can be shown that many of these terms will not contribute
to the first order correction.62

TaByG = Tyésa - TyBéa - TSBYQ - TBGya (73)

Another reduction occurs due to group theoretical considerations.

The product of the angular momentum operators averaged over the asymmetric
rotor wave functions must be invariant to the symmetry operations of the
point group to which the wave functions belong (Dz). This means that this
product must belong to the totally symmetric representation A. This require-
ment must be met such that the integral does not go to zero. The angular
momentum operators Pa’ Pb, PC transform as the irreducible representations
58,62

Bl’ B,, and B3 respectively.

2 Thus any term in the summation that con-

tains an odd power of an angular momentum operator will, when averaged,
vanish because the product of these operators will not transform as the
symmetric representation A. This will reduce the number of terms in the
summation to twenty-one (many of which are still equivalent to each other)

for any asymmetric rotor.66
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Alternatively, this reduction can be made if the point group of the
molecule or complex is considered. For the molecules or complexes of
orthorhombic symmetry (C°v’ D2h’ D2 point groups), the taus that rmultiply

terms which contain odd powers of angular momentum vanish since H_ and HD

must be invariant to the symmetry operations of the point group of the

molecule. This also yields twenty-one non-vanishing terms in H For

D’
molecules of nonorthorhombic symmetry there are, in addition to the other

twenty-one, terms whose angular momentum operators will generate Ktl and

66

K3 terms in HD. These terms will become significant only if HD is

treated as a second order-perturbation.66
The twenty-one remaining terms can be arranged into nine different

groups, since several of these terms can be grouped under the same tau.

The nine taus are given below:62

T (74)

caoo’ aaBB T TBRaa’ ‘aBaB | ‘aBBa | “BaBa - Boof

where a,B = x,y, or z.

The nine remaining groups can be reduced still further by utilizing

the commutation rules for angular momentum and the following eqn:58’66

2 2.2 2.2 2 2 2
(PPg + PgP)" = 2(PPg + PgPL) + 3 PL - 2P - 2Py (79)

where o # B # v and a,B,Y are X,y,z taken in cyclic order. It should be
noted that papB does not commute, therefore, there will be four P4 terms

which can be grouped under T If the right hand side of eqn (75) is

aBaB’

substituted for these P4 terms, it is possible to eliminate the T

aRaB

terms. The P2 terms from the substitution are absorbed along with the

associated T coefficients into Hr’ The taus are combined with the

apaB

rotational constants to define new effective rotational constants. Of

the coefficients of the six remaining groups in HD’ three are now linear
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combinations of taus. The new coefficients are denoted by T' The

oaBB”

Hamiltonian corrected to first order for centrifugal distortion is shown

below:

H = Hr + HD (76)
- 1 2 ] 2 1 2

Hr = AP+ B P8 + C PY (77)
- 1 ] 2,2

HD = 3 aZB L Pap,e (78)

The coefficients, T' 8 and corrected rotational constants are defined

aaf
in Table III.

Using eqn (78), the first order distortion energy can be written as an
average over the asymmetric rotor wave functions:

E. = 1/8 £ T

> (79)
D o, B

2.2
+ pBPa

2.2
aaBB < PapB
The integrals can be expressed as a function of < Pzn > (n=2,4), the square

of the rigid rotor energy, E 2 and P2 (the square of the total angular

T
momentum). By use of commutation relationships developed by Wilson,67

Er2 can be eliminated from these integrals. The details of the substitu-
tion of Er2 can be found in References 24 and 19. For this discussion, it
is necessary to note that Er2 introduces additional terms, Pi, which can
be absorbed into Hr’ This results in a redefinition of the effective
rotational constants. The details of the subsequent calculation of ED are

given in References 67 and 62. The resulting expression defines the energy

of a semirigid asymmetric rotor:

E = E_ + E (80)

_ 2 2 2 4
ED = —dJJ (J + 1)° - dJK(J + 1)< Pz > . dK < pZ >
2
-dp B I+ 1) - dp B <P (81)

“
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where J is the rotational quantum number, the lower case d's are Watson
distortion coefficients defined in Teble IV znd < Pzn > (n=2,4) is defined

below:

a K (82)

where the coefficients a are the elements of the transformation matrix of
the rigid rotor.
Table IV gives the distortion coefficients and definitions of the

rotational constants for the energy of a semirigid corrected to first

order.66’67

This discussion of the first order correction to the energy is appro-
priate for any molecule. The situation simplifies greatly for a planar

molecule. In this case Ty and are equal to zero. Thus, there

T
yxy yiyz

are seven nonzero taus, four of which are independent (1 , T , T s
XXXX’ zzzz’ XXzZ

szxz)' The three remaining taus are linear combinations of the independent

taus and also dependent on the equilibrium rotational constants. If the

equilibrium rotational constants are not available, the effective rota-

tional constants can be utilized:62
C'/A! 4 2 C!4 4 83
= —_— T ' 1
Tyyyy (Cr/A") Y2222 ¢ A'ZB'Z "xxzz T (C'/B") Txxxx (83)
T - (/)% 1 + (C'/AN? T (84)
XXyy XXXX XXZ2Z
- 1 1 2 : 1 1 2
T = (C'/A")" 1 + (C'/BY)" 1 (85)

yyzz 2222 ZZXX

These taus can be used in the previous discussion to determine the first

order correction to the energy.
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Table IV. Distortion Coefficients and Rotational Constants
of the First-Order Energy Expression
= '
A A' + 16 R6
B = B' - (16 RG(A'-C"))/(B'-C")
C = C' + (16 R6(A'_Bl))/(Bl_Cl)
26J(B + C)
dy = Dy - 5-c - R
B + C
dJK = DJK - ZO'GJ + 4(R5 + 26R6)§_:——C_ + 12R6
dK = DK + 4O(R5 + 20R6) - 10R6
. ) 46J
EJ B -C
; ) -8(R5 + 20R6)
"EK B-C
G = 2A - B - C
B -C
4
D, = —1/32{3TXXXX + 3Tyyyy + 2(TXX},:_,, + 2Txyxy)}'ﬁ
D, = D, - 1/4{t - (1 + 27 ) - (7 + 27 )}h4
K J 2222 XXz2Z XzZXZ Yyzz yzyz
D., = -D. - D, - 1/41___ A&
JK J K 2222
4
Rg = -1/32{Txxxx " Tyyyy T 2(Tyxzz * Txgxa) * 2(Tyyzz * ZTyzyz)}iil
- : _ 4
R = 1/64{TXXXX * vy 2(1)0(yy + 2nyxy) 2t
4
§; = —1/16{TXXXX - Tyyyy



For the case of the '"T'"-shaped planar complex of C y Symmetry,

2
CZHZ"HCI, further simplification is possible. Using the internal coordi-
nates shown in Fig. (1.4) and eqn (67), it can be shown that Jzzi vanishes
for these internal coordinates. It is evident from eqn (65) that this

will cause two of the four independent taus to vanish. Thus, for C2H2'°HC1,
this clearly permits a fit of the two remaining independent taus, T ixxx and

T rxz? and three rotational constants to the six observed line centers
using a first order approximation of centrifugal distortion.

For more asymmetric molecules and lighter molecules, centrifugal dis-
tortion cannot be treéted as a first order correction. For discussions of
the treatment of centrifugal distortion as a higher order effect, references
62 and 69 are helpful.

While the centrifugal distortion analysis of the microwave spectrum
and a normal coordinate analysis of the vibrational spectrum are the
primary sources of information about molecular force fields, nuclear quad-
rupole coupling constants can be used to supplement the force field of
those van der Waals complexes possessing nuclei with a quadrupole. Vibra-
tional averaging of structural parameters of complexes over the appropriate
wave functions also provides an additional source of information about the
force field. The next two sections briefly describe these secondary

sources--the nuclear quadrupole coupling constants and the vibrationally

averaged structure.
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C. Nuclear Quadrupole Coupling Constants and the van der Waals Force Field

In the previous discussions, the nuclei in a molecule or a complex have
been described as discrete point changes. A more accurate description,
however, recognizes that each nucleus possesses a rotating charge distri-
bution which may or may not be spherically symmetric. This section will
briefly illustrate how this description of the nucleus will affect the rota-
tional spectrum and how information from this spectrum can be analyzed to
yield force constants for complexes.

In the refined description of the nucleus, the nuclear charge distri-
bution is no longer fixed in space but is spinning. This motion, known
as nuclear spin, gives rise to a quantized angular momentum |1| = Vi(I+1}ﬁ,
where I is the nuclear spin quantum number, a property of the nucleus.

There exist 2I+1 allowed orientations of the angular momentum vector, I,

in the nucleus. For the values of I > }, the nuclear charge distribution

is no longer spherically symmetric. In cases of nonspherical nuclear

charge distribution, the nuclear spin may couple with the rotational motions
of the molecule causing small splittings in the rotational energies.

The energy due to this‘coupling is a function of the nuclear charge
density and the electrostatic potential at the nucleus due to the surround-
ing electric field of the electrons. To define the energy, it is convenient
to expand the electric potential as a Taylor series in three dimensions:

xoV yoVv z9dV
0 0 0

V = V0 + X + 5y + 52 e e e e

(86)

integrate over the nuclear volume with the charge density, p = f(x,y,z)
and neglect those terms that are independent of the nuclear orientation
and are due to the nuclear dipole moment (zero in absence of an applied

field):59
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2 2 2
3
Eq = 1/6 pl3x” - 1% L+ (3y% - 1) 3_‘21 v (322 - 19 3_‘2/
ox ay 9z
2 2 2

where Xx,y,z are coordinates in a Cartesian reference frame with the nucleus
at the origin.
The matrix representation of eqn (87) is the dot product of the quad-

rupole moment tensor and the electric field gradient:59

EQ = -1/6 Q:V E (88)
where VE is the electric field gradient due to the electrons of a molecule.

By defining Q and VE as operators, the quadrupole Hamiltonian may be written:59

HQ = -1/6 Q:V E (89)
The details of the solution of HQ are discussed by Casimir.70 The solution,
E is given below for a linear molecule:59

Q,

EQ = (1/2) (eqQ/ (1(21-1)J(2J-1))) (3/4C(C+1)-I(I+1)J(J+1)]  (90)

where Q, the nuclear quadrupole moment, reveals how much the nuclear charge
distribution deviates from spherical symmetry. When Q is positive, the
nuclear charge distribution is extended along the nuclear z-axis; if Q is
negative, the nuclear charge distribution is flattened against the nuclear

. 59
z-axis.

The quantity C is defined as:59

C = F(F+1)-I(I+1)-J(J+1) (91)

where F = I + J, the nuclear spin and rotational quantum numbers. In

eqn (90), e is the charge on an electron, q is the electric field gradient
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at the nucleus due to an axially symmetric charge distribution:

( _(3cos6-1) _(azv)
L S
T oz (92)

where r and © are coordinates that define the orientation of the symmetric
charge density, p, along the z axis. It should be noted that p is defined
so as to include all the charge density outside of the nucleus. It includes
the contributions due to valence electrons and charge distributions asso-
ciated with neighboring atoms or molecules. A more detailed discussion
which describes a more quantitative means of calculating the electric field
gradient can be found in Reference 85.

It is evident that the nuclear spin angular momentum, I, can couple
to the angular momentum of a molecule or complex through the electric field
gradient of the molecule. This coupling will cause splitting in the rota-
tional levels in the molecule or complex.60 This splitting will cause a
single transition in the spectrum to become a series of closely spaced
lines known as nuclear spin hyperfine structure.

The collection of terms, eqQ, is referred to as the nuclear quadrupole
coupling constant and has been obtained accurately for a number of molecules

ex: free HC1, XSCI

= eqQ/h = -67.61893 MHz.71 However, in the hydrogen
bonded éomplex C2H2"HC1, it is logical to expect slight changes in the
electric field gradient about HCI, SZV/BZZ, due to alteration of the charge
density p (as defined in eqn (92)) due to hydrogen bond formation. Since
the nuclear quadrupole coupling constant is a function of 82V/Sz2, changes
in eqn (90) due to complexation give rise to Xue1 » the nuclear quadrupole
constant for HC1 in C2H2--HC1. It should also be observed that in C2H2-°HC1
the librational modes of the HCl subunit will cause its electric field

gradient to be displaced by some angle o away from the (a) inertial axis

(see Fig (1.7)). The observed spectrum thus yields an effective nuclear
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quadrupole constant which is the vibrationally averaged projection of Xge1

on the (a) inertial axis:1

Yaa T "HCL < 3/2 coszu -3 (93)

In the situation where the in-plane ard out-oi-plane librational ampli-
tudes are not equivalent, there exists a corresponding anisotropy in the
nucleur quadrupole tensor (Xbb#xcc)' This resulits in the following expres-
sions for the vibrationally averaged cosine of the angle of the projections

on the inertial axes:1

:
X + 2X
< coszab s __'aa . HCi (94)
Xaa Xbb XHCl
2 Xaa * $Xyc1
< cos oL > = = (95)

Xaa * Xee ¥ Xhc1
where ng (g = a,b,c) is the vibrationally averaged projection of the nucle r
quadrupole coupling constant on the inertial axis and Xuc1 is as defined
earlier.

An alternative way of calculating < coszaC > and < coszcxb > involves

the normal mode wave function, Y(Q):

< coszocg > W*(Q) COSZQU ¥(Q) dqQ g = b,c (96)

«»00C
To determine the value of this integral, it will be necessary to obtain
. . 2 .
expression for ¥(Q) and define the operator, cos a_, in terms of Q, the
S
normal coordinate. Closed analytical expressions for the solution of

these integrals are derived in Appendix V.

The normalized ground state harmonic wave function for the ith normal
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w . 72
mode, &O(Qi) is:

Hi=

=

where Y5 is defined as:/2
4ﬁ2cw.
Y. = i
h

(98)
Wy is the ith normal mode frequency and c and h are the speed of light
and Planck's constant respectively.

It is obvious from eqn (98) that the force field can be used to determine
w, via a normal coordinate analysis and subsequently determine WO(Qi). A
normal coordinate analysis may also be used to express the operator, coszag,
in terms of Qi' Unless the angle formed by the projection of the monomer
and the g inertial axis is a normal coordinate, it will be necessary to write
ug as a function of a convenient internal coordinate, Ri' With ag express-
ed as f(Ri), the elements of the L matrix can be used to transform the Ri
into Qi according to eqn (40).

Thus, the nucleur quadrupole coupling constants can be used to calcu-
late the vibrationally averaged projection operator, which is also a
function of WO(Qi), the normal mode wave functions calculated via a know-
ledge of the force field. It is now apparent that if Xye1 is known,
librational force constants can be obtained from eqns (94) - (95) via
Xbb and Xee® Conversely, knowledge of the force field will permit deter-
mination of Xhe1 via eqns (94) - (95) using Xbb and Xee®

Comparison of Xhe1 with X8C1’ the nucleur quadrupole coupling constant
of the free monomer, will make it possible to infer changes in the electric
field gradient at chlorine due to complexation via eqn (92).

Another source that may be employed in the acquisition of the force

field in the vibrationally averaged structure. This method, utilized



specifically for complexes, is an additional source of information and
will be discussed in the next section.

D. Vibrationally Averaged Structure

The vibrationally averaged structure refers to the instantaneous
structural parameters averaged over the vibrational ground state motion
and characterize the experimentally observed moments of inertia.

In order to describe the vibrationally averaged structure of a '"T'"-shaped

planar complex of C2v symmetry such az C,H

5 2--HC1, it should be acknowledged

that the monomers are undergoing large amplitude excursions from their
equilibrium positions while in the vibrational ground state. The position
and crientation of the monomers during these excursions can be described
relative to a convenient xyz frame by the following structural parameters,
T, R3, oL and ay (see Fig. (1.10)).

The derivation of inertial equations that will relate these structural
parameters to the observed rotational constants will involve some approxi-
mation about the nature of the monomers and their motions. It will be
assumed that the structure of the monomers will remain unchanged upon
complexation. The linear combinations of the in-plane and out-of-plane
librational motions of the HCl subunit give rise to a precessional motion
whose period is less that the rotational period of the complex. Thus, the
inertial equations for the vibrationally averaged structure describe the
rods as masses distributed over the vibrationally averaged motions of
the complex as opposed to the rigid point mass structure used previously.1’73
Hence, the vibrationally averaged structure can be described effectively by

three parameters, r, R, and Q.

3
The above approximations and the parallel axis theorem were used to
obtain eqns for the instantaneous inertial tensor elements, which were

then averaged over the zero point motion to yield the non-zero inertial
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Fig. [1.10] Instantaneous Structure of Acetylene-HCI.
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tensor elements:

_ 2 .2 1 2
IXX = uRo + IAC < sin R3 >+ 3 IHCl (1 + < cos a, >) (99)
I = uRz + 1 + 11 (1 + < cos’a >) (100)
Yy o} AC HC1 z
I = I < c0526 > o+ 1 (1 + < cosza >) (101)
zz AC HC1 z

= < i >
IXZ IAC cos R3 sin R3 (102)

2
ac™uc1/ Mac * Myep))s Ry =

2 .
< r” >, the square of the distance between the centers of mass of the

where p is the pseudodiatomic reduced mass (m

IAC and IHCl are the moments of

inertia of C2H2 and HC1 in their respective ground states, and o, is the

monomers averaged over the ground state,

instantaneous angle HCl makes with the z axis defined in terms of o and
Q.
2 2
’ cos"a  cos ay
< cos“a > = < > 103
z 2 2 2 2 ( )
cos 0 + cos a_ - cos O_ cos qa
X y X y

The inertial tensor calculated from eqns (99) - (102) can be diagonal-
ized via a direction cosine transformation to obtain the principal moments
of inertia.

Examination of eqs (99)- (101) clearly show that the rotational constants
are insensitive to the value of o, therefore, < coszcxZ > is obtained
from the normal mode wave functions that reproduce the vibrational spectrum.

. . . . . 2.3
This will permit a fit of the remaining structural parameters, Ro =[<r">]?

* o) 1
and R3 = Arccos[<cos"R3>]2. Conversely, it is also possible to determine
these parameters by averaging over their ground state wave functions,

WO(Q) = f(wi), determined by the molecular force field via a normal

coordinate analysis (see Methods Section, Part C).
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In summary, the methods outlined in this section have demonstrated
that the vibrational spectrum , centrifugal distortion constants, nucleur
quadrupole coupling tensor elements and the vibrationally averaged
structure are intimately related to the intermolecular force field through
an appropriate normal coordinate analysis.

A rigid rod mode has been developed to determine the Wilson f matrix
that will reproduce the observed spectroscopic constants of C2H2--HC1.57

The result of the application of this method, obtained using Fortran codes

in Appendices I and II, will be presented in the next section.



RESULTS

The determination of the intermolecular force field of C2H2'-HC1
involves the use of methods detailed in the previous section. The experi-
mental data employed in these methods were obtained previously by Legon1
and Andrews.2 The data consist of two R-branch transitions (J=1-3 2
and J=2 = 3), nuclear quadrupole coupling constants, and normal mode fre-
quencies of the complex. This section will detail the outcome of this

application.

A. Centrifugal Distortion Analysis

Assuming the structures of the monomers to be unaffected by centrifugal
distrotion, the matrix representation of the semi-rigid asymmetric rotor
Hamiltonian was constructed in accord with eqn (76). Due to planarity
and the symmetry of the complex, only two linearly independent distortion
constants and three rotational constants were needed to fit the observed
quadrupole hyperfine band origins. Using the FORTRAN code in Appendix I,

A, B, C, T XXX and szxz were obtained and are reported in Table V with
precisions of * one standard deviation. The calculated band origins are
presented in Table VI in addition to the observed band origins and the

earlier results of Legon.1

B. Vibrationally Averaged Structure

The structural parameters of C *+*HC1 may be determined from the

2t
rotational constants (see Table V) via eqns (99) - (102). Since examina-

tion of eqns (99) - (101) indicated that the moments of inertia were very

68
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Table V. Spectroscopic Constants of C2H2°-HC1 a(M}lz)

35 37

C,H,*-H™"Cl C,H,--H™'Cl
A 35975.6333 (48.4) 35966.2663 (13.6)
B 2482.1065 (11) 2425.4201 (3)
o 2307.3064 (8) 2258.2295 (2)
T -0.03789 (1) -0.03628 (3)
XX

T -0.02835 (1) -0.02732 (1)
yYyy

T -0.03278 (1) -0.03148 (1)
XXyy

T -1.0238 (8) - .9806 (2)
XZX2Z

SNumbers in parentheses represent one standard deviation in the
fit i



Table VI Observed and Calculated Line Centers for C_H_--HC1

22
Isotope Transition Observed (MHz) This Work Resd (Kliz) Legon,l et al Resd (Klz)
| 35
.o 4
C2H2 H--Ccl1 101 202 9578.417 9578.417 0 9578.417 0
110 211' 9749.571 9749.571 0 9749.555 16
111 212 9404.613 9404.613 0 9404.629 -16
202 303 14365.489 14365.489 0 14365.489 0
211 312 14623.430 14623.430 0 14623.441 -11
212 313 14106.064 14106.064 0 14106.054 10
37
CZHZ H™'Cl 101 202 9366.936 9366.936 0 9366.936 0
110 211 9530.6006 9530.606 0 9530.591 15
111 212 9200.670 9200.670 0 9200.685 -15
. ' L4
202 303 14048.429 14048.429 0 14048.429 0
211 312 14295.038 14295.038 0 14295.048 -10
2 3 13800.202 13800.202 0 13800.192 10

12 13

0L
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weakly dependent on < coszaZ >, this value was determined from the libra-
tional amplitude by approximately < coszonZ > =< cosza > (see Results
Section, part D). The validity of this approximation can be demonstrated
by considering the magnitude of the Eckart counter-rotation necessary to
offset the librational motion of the HCl subunit. For an in-plane libra-
tion of HC1 about its center of mass of 35°, the Eckart counterrotation

of the complex required to bring the z-axis into the (a) inertial frame

is .2°.» This approximation can also be demonstrated to be reasonable when
the magnitude of IXZ is considered relative to the diagonal inertial tensor
elements.

Given the moments of inertia of the subunits (see Table VII) and

NI

*
the value of < cosza >=17.1°, R

2
3 = Arccos[cos RS]

and Ro were determined
from the rotational constants by an iterative fit of eqns (99) - (102).

The vibrationally averaged structure of C2H **HC1 is reported in Table VIII

2

along with the earlier structure proposed by Legon.

C. Van der Waals Force Field

The van der Waals force field can be completely specified by four
force constants and one interaction constant that couples the in-plane
librational modes of the complex. The centrifugal distortion analysis
provided two linearly independent taus which can be calculated from a
knowledge of the force constants. The analysis of the nuclear quadrupole
hyperfine structure yielded tensor elements which were used with a know-
ledge of the electric field gradient to calculate vibrationally averaged
projection operators < coszo;b > and < coszaC >. These operators can also
be determined from the force field when calculated from the normal mode
wave functions (see Methods Section, part C). In order to completely

determine the force field, it was necessary to supplement these values



Table VII. Spectroscopic and Molecular Constants of C2H2 and HC1

€yt
B, (vHz)® 35273.820
B, (Hz)” 35455.374
ro(c-C)(X)C 1.20858 (5)
ro(c_H)(R)C 1.05706 (10)
re<c-c)(2)b 1.20241 (9)
r_(c-1) &)° 1.06250 (10)
Q) (esu-cn’)® 8.0 (16) x.10_26

B3>c1 wlc1
B, (MHz)© 312989.297 312519.121
B, (MHz)© 317557.115 317076.601
T & 1.28387 1.28386
r, ®° 1.2745991 1.2745991
X, (mHz) 8 ~67.61893 -53.294
b (P 1.07 1.07

aReference 77
b
Reference 78
€calculated from Bo values in Reference 77 via least squares fit
d
Reference 79
e
Reference 80
fCalculated from Reference 80
BReference 71

hReference 81
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Table VIII. The Vibrationally Averaged Structure of C,H °'H35Cl

272
This Work Legon1 et.al.

R_(4) 3.660 (6) 3.663

* N

R3 (deg) 9.3 (4)a not determined
* b

ab (deg) 12.6 15.7

* b
o (deg) 11.7 15.0

aDetermined from rotational constants

Determined from normal mode wavefunctions, uncertainties described in
Discussion Section



74

determined from the microwave spectrum with normal mode frequencies from
an argon matrix infrared study.2

Since frequencies of the van der Waals modes may be shifted 5 to 10%
from their gas phase values by matrix effects, a corresponding uncertainty

in the force field is expected.36

The distortion constants, normal mode frequencies and projection
operators are not all linearly dependent on the force field. Recalling
eqn (66), it is clear that the distortion constants are linear functions
of the elements of the inverse force constant matrix, while the vibration-
ally averaged projection operators and normal mode frequencies are to first
order linear functions of the f matrix elements. Due to this incompati-
bility in dependence on the force field, a simultaneous fit of the force

field to these five values was not possible using the usual Jacobian
method.74

The f matrix of C2H2--HC1, however, factors into Al’ B2 and B2 symmetry
blocks of order 1,2,1 respectively. This clearly permits two of the five

force constants to be determined independently. The force constants f11

and f44 correspond to the elements of the A1 and B2 symmetry blocks, while

f22, f23 and f33 comprise the B1 symmetry block.

Consideration of the inertial derivatives, evaluated under the rigid

rod approximation using a ''T''-shaped geometry and T, = R

. -1 . .
Toxxx Was 2 function of f11 only. Since f11 is independent of the rest

of the f matrix, fll-l = l/fll’ and may therefore be determined directly.

o’ indicated that

The value of f44 can also be determined independently by means of the

4

The remaining force constants, f22, f23 and f33, were determined

secular eqn (15) since the normal mode w, is the only mode of B2 symmetry.

. . -1 2
iteratively from Wy = 240 cm szx_, and <cos ab>. The normal mode fre-



Table IX. Normal Coordinate Analysis of C2H2"H35Cl
£ (mdyne/A) 0.0630 (2)
f22 (mdyne A) 0.0522
f23 (mdyne A) 0.0302
1'33 (mdyne A) 0.0454
f44 (mdyne A) 0.0544
o, (en ) 84.2
w, (™) 240.0
0, (e h) 58.2
w, (cn 1ty 240.0
2L (Mhz) -62.3
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quencies w, and w, are degenerate as they are reported as unresolved
features in the argon matrix study of Andrews, et. a1.2 The vibrationally
averaged projection operator was determined from the electric field
gradient and the nuclear quadrupole tensor elements as described in Part
C, Methods Section. The iterative process was deemed necessary due to
the nonlinear dependence of Tezxz 1 these force constants.

The complete force field and calculated normai mode frequencies from
a rigid rod normal coordinate analysis are given in Table IX. Appendix III
details the matrices and eqns used in this calculation. No uncertainties
in the force field and normal mode frequencies are cited as the uncertainty
due to matrix effects is expected to be larger than the uncertainties in

the spectroscopic constants.

D. Effects of Hydrogen Bonding on Monomer Properties

The symmetry of the complex afforded the opportunity to investigate
the effect of hydrogen bonding, i.e., complexation on the monomer properties,
specifically the bond length in C2H2-'HF and the electric field gradient

at a quadrupolar nucleus in CzH *+DF and C2H2"HC1. It had been common

2
practice prior to this study to assume the electric and structural pro-
perties of the monomers remained unchanged upon complexation.

Since W, is the only mode of B2 symmetry, the vibrationally averaged

projection operator, < cosZOLC >, can be calculated from W, via the normal
mode wave function W4 (see Part C, Methods Section).

The projection operator can also be determined from the electric field
gradient and the nuclear quadrupole tensor elements via eqn (95). With
the value of < cosZOLC > and the nuclear quadrupole tensor elements, a

value for the electric field gradient at Cl in the complex can now be

obtained via eqn (95). This permits calculation of < coszab > via eqn (94),



which can be used in obtaining the force constants of the B1 symmetry block.
Knowledge of the electric field gradient also permits calculation of <c052a>

from Xaa:1

X
aa 2 -1
Xyo1 = —5—-[3 < cos'a > -1] (104)

This value can be utilized in the determination of the vibrationally
averaged structure (see Part B, Results Section).

This same approach may be invoked for C *+DF to determine the

2t
electric field gradient at deuterium. The spectrum, obtained by Read,73
2 2 .
= < > = < >

reveals that Xbb Xee? thus cos”ay cos™a, as determined by
eqns (94) - (95). With normal mode frequencies available from an argon
matrix study,2 < coszaC > =< coszonb > can be obtained from the normal
mode wave functions (see Methods Section, Part C). The projection
operator < cosza > can be written as a function of these components (see

Appendix IV):

2 2
coso,cos o,

< cosa > = < 5 2b 5 5— > (105)
COSTOp + COSTx - COSTC, COSTO
and employed in eqn (106):
X
aa 2 -1
Xpp = 5 [3 < cos™a > -1] (106)

to obtain XpE* The values for XpE* XpC1 and their respective electric
field gradients are cited in Tables X - XI. Their uncertainties are
governed by ‘the same considerations involved for the force field.

Consideration of C2H2°°HF permitted an opportunity to obtain an esti-

mate of bond elongation upon complexation. Since both hydrogen and fluorine

possess spins of ; the spectrum of C,H,+-HF will possess fine structure

- <



Table X. Spectroscopic and Molecular Constants of Czﬁz--HF/DF
C,H, * -HF C,H, " *DF
0, (cm 12 382.0 2844
b 616365.5° 325584.98°
HF/DF (MHz) : :
B (i) 4719.9790 4698.4312
6, (am A%yt 1.22895 0.65354
, d
Xga (KH2) 282.6
YF (ki — 354.238
F (kH2) —_— 315.73
D (KHz)Y ~237.2 —
aa
piF (xHz)f -286.75 -—-
(-]
pF (kHz)® -277.3 ---
a
Reference 2
b
Reference 82
CReference 83
dReference 73

eThis work

fReference

84
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Table XI. Effect of Hydrogen Bonding on HX Properties

Complex bound HX/DX free HX/DX
2 Cl -
<3—V) (1013 xolit, C.H +-H>>C1 1.79 1.94
2 2 22
oz cm
2 D
olt
a_g (1013 255 C,H, " *DF 0.208 0.233
°8Z cm
rHF (A®) C2H2'°HF 0.936 0.92559
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related to the interaction of the magnetic moment of fluorine with the
magnetic moment of hydrogen in HF. An analysis of this hyperfine struc-

ture yields Daa’ the vibrationally averaged projection of the spin-spin

interaction of HF on the (a) inertial axis, defined in the following manner:

2
Daa = DHF/2 [3 < cos®a > -1] : (107)

. . 4
where DHF is defined as:

2,.3
DHF = -nggHuN /R (108)

where 8ps 8y are the nuclear g-factors, Hy is the nuclear magneton and

R is the H-F bond length. A knowledge of Daa and < coszu > permit calcu-
lation of DHF and via eqn (108), the H-F bond length in the complex. Thgse
results are reported in Tables X-XI subject to uncertainty due to matrix

effects.

73



DISCUSSION

Examination of the results of this study clearly reveals a significant
improvement in the description of C2H2°-HC1. Comparison of the spectra
given in Table VI indicates that for the transitions observed the effects
of centrifugal distortion can be properly accounted for by an exact
asymmetric top first order perturbation treatment as opposed to the approxi-
mate symmetric top treatment proposed by Legon.1 This calculation also
yielded spectroscopic constants which were used to further characterize
the complex in terms of its vibrationally averaged structure and inter-
molecular force field.

The rotational constants obtained from the centrifugal distortion
analysis permitted a complete description of the structural parameters of
the rigid rod model. Using inertial eqns derived to describe the complex
as a weakly bound nonlinear rigid rod system, it was possible to obtain
the refined structure in Table VIII.

The description of the intermolecular force field based on the avail-
able data served as the incentive for the development of the rigid rod
normal coordinate analysis. This description, neglecting anharmonicity
and off-diagonal elements coupling the high and low frequency blocks of
the exact Gf matrix, permitted characterization of the intermolecular
force field of the complex. The neglect of off-diagonal elements that
couple the high and low frequency blocks of the Gf matrix will introduce
uncertainty into the force field, tending to overestimate the normal mode
frequencies by several percent.54 A measure of the self consistency of
this calculation can be demonstrated by using normal mode wave functions

S1
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to calculate < cosZR3 >

8

< coszR3 > ¥ Q) v (Qy) c;osZR3 ¥(Q,) ¥(Qg) dQ, dQ; (109)

- OO

where ?(QZ) and W(QS) are defined in terms of w, and wg respectively (see
Methods Section, Part C). This vibrationally averaged projection operator
was also obtained from the (A) rotational constant via eqn (101). The value

* 1
R, = Arccos[c052R3]2 = 9.3° evaluated from (A) can be compared to R, = 8.2°

3 3
obtained from the integration over the normal mode wave functions. The
discrepancy can be attributed to model dependent effects and matrix pertur-
bations of the force field as well as the uncertainty in the (A) rotational
constant.

This method permits a very important advance in the knowledge of the
complexes in that it is now possible to estimate the effects of complexation
on monomer properties such as bond length and the electric field gradient
at a quadrupolar nucleus. Examination of Tables X-XI reveals a decrease in
the electric field gradient .due to complexation. This decrease can be
attributed to an increase in charge separation due to hydrogen bonding. In
C2H2--HC1, this causes the H-Cl1 bond to become more ionic. As the ionic
character increases, the electric charge density immediately surrounding the
atom tends to become more spherically symmetric thus decreasing the amount
of interaction between the spinning nuclear charge and the rotating molecule.
The observed increases in H-F bond length and ionic character of the HC1
monomer are clearly consistent with the reported red shift of the HX
stretching frequencies, e.g. 208 c:m_1 for HF.75’2

The importance of the methods developed in the course of this study

cannot be overemphasized. It is evident that these methods will permit



the opportunity of further refinements of intermolecular force fields of
complexes as well as gas phase vibrational spectra and vibrationally
excited rotational spectra become available. In addition, the description
of the van der Waals vibrations in terms of rigid subunits can clearly be
generalized and extended to further understand the electrical properties

and dynamics of other van der Waals molecules.
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Appendix I

FITSPECT-Jacobian Fitting Program to Calculate Spectrum
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L0 ) Yy Y

(AN SN AN A NAN R EISRE R AN o NSNS NN & BN o NS

TRE LUSRCUTINE ThHAT CALCJLATIES T HWUMBEZERs THAT ARI Ta 2Z U3ZED IN 00000140
FITTING PROCISS OR wliLbL &CTUALLY JU THZ CaLCULATICONS iTSZELFfe Tnis 00000150
IS JDEPENDENT ION THE COMPLEXITY OF THE CALCJLATIONS INVULVZD. 00000160
TraInxE ARE THREE STOCTK 3USROJTINIS THAT ATCOMPANY THIS PACKAGE ocoool70
VATOUT=SSULRDIUTINE THAT OJTPUTS JaCUSIAN «aTRIK wHEN FIT CCNVERGES 00D001E0
MMJILT =MATRIX WULTIPLICATION 35USRJIUTINE 00000190.
MTIXIN=MATRII X INVERSION SUSRCUTINE 00000200
N=NUMBER CF PARAMETEZERS M= NUMBER JF CXPERIRENTALS 00000210:
A=ARRAY OF PARAMETEZRS TO B8E FITTED 00000220
Y=4RKAY OF EXPERIMINTAL VALUES Y.BL=ARRAY TO STJRZ THE ZSXP.LA3ELS 00000230
TITLZ=wHERZ HEADING 3TQORZD STAR=LINZI OF 35TARS FUR F3RNAT 00000240;
E=ZRROR ARRAY XJ=JACOSIAN ARRAY 00000250;
XJT=T RANSPOSE OF XJ XJP=XJxXJT+ INVERSE ALSD STGRED HEREO00000260
XJTE=XJT%E VRP=VARIANCE OF PARMS ARRAY 00000270:
Fe=P=CALCU_ATED VALUZS ARRAY(FP 40LDS THZ NEX CALC VALUZES IN IT) 00000280
OLA=ARRAY TO HOLD ADJJUSTHENTS TI PARAMZITER ARRAY : 00000290
ISOJE=SsITC4 TO GET S7D DZV OF PARMS (IF DZSIRED=L) 00000300
ITC=ULTIMATE HIGHEST NJWM3ER OF CYCLES FITTING PROGRAM IS PERMITTEDO0000310
ITC 1S FAILSAFE LIMIT IN CASE FIT GETS 0JT OF HAND 00000320
IMPLICIT KEAL®8(A-H,D-Z) 00000330
DIMENSICN A(SG) Y (53)srL3L(50,13)+TITLZE(i3),STAR(18),E(50) 00000340
DIMENSION XJ(SD0+S0) 1 XJT(50e50)sKJP{50.30) XJTE(S0),AP(50) 00000350
DIMENSION VRPI(50) «Fl353).FfP(50)+2.4(50) 00000360
ke eX¥x INITIALIZE MATRICES *F XXX XXF X FXXC K AXXXXIFTZXXXEXAXXXXXXXXFXXXX%%x%k%%x 00000370
Ke=1 00000380
MDIM=50 00000399
DD &40 [N=1,MDIM 00000400
A2(IN)=0.0D0 00000410
E(IN)=0.000 00000420
FUIN)=0.0D0 00000430
FPLIN)=0.0DO : . 00000440 .
XJTE(IN)I=0.000 00000450
Y(IN)=0.0D0 00000460
DLA{IN)=0.0D0 00000470
A(IN)=0.0D0 00000430
VR2?{IN)=0.0D0 00000490
DD 5 IM=1.,7 00000500
YL3L(IN«IM)=0.0D0 000003510
CONTINUE 00000520
CCNTINVE -~ 00000330
D) 4S5 ll=1.,MDIM ’ 000003540
VL &5 [J=1+MDIM 00000550
XJ(11.1J0)=0.0D0 00000560
XJT{l1l.1J)=C.0D0 00000570
XJ2(11,13)=0.CD9 00000580
CINTINVE 006000550
CrEReaREly IN PARAMETIRSeTIToS EXPERIMNTAL vACOZ 3+ LASELSETCeszaxx3%72500000000
READ (S.30) TITLE ’ . 00000610
TLAD (Z,3C) STAR ccoene20
KZAD (2,10) NeMo1TCoiISOc 00000630
G2 15 1I=1.N 000600¢40 .
rCay =, 20) Al 0C0000c350

(4]

40

45

89

ANYF1T SY REEECCA LZEZ 14 APR 33 00000070
THI3 PROGRAM IS DISISNZD FIR THEZ 5INERAL PJRPISZ OF JACLSIAN FITTINSO0000080
THE ALGLRITHM USED I3 JUTLINED BY AYUNYIhw KIiMyJelHAZEMeZDes~7,2(157C) 000000650
Pel2I~122s THE FITTING ROJTINE [S5S GENZIRAL &ND RIGUIRES NO ADAFPTATICNOOOOOLOO
FRCM AFPLICATICN TO A2P_ICATION. THE USEX &J3T SJUPPLY s0OTH &N OUTPUT 00000110
SUckIT g CQUITOYILTD TS WJTRPUT T4 SaTa (v TmZ JDESIRZIJ FUHWMAT, aND 00000120
4N *FSULE* SUBRCUTINE THAT 4aY ZITH4z2R SERVI A4S AN INTZRFACZT EZZTeZEN 00000130

CLNTIRUG : 02000uo00



90

D2 25 J=1.,M 000005670
RZAD (5,260 Y(J)o(YL3L(Jo1J) IJ=1e7) 00000050
25  CLWTINUE 0000650 !
xR ERF [TTING LUD AT X XTSRS XTFIARRREE SRR RXE S XXX XXX X2 2732 5xxx2452200000700
12HK=0 00000710
4RITE (6,32) TITLE 00000720
WRITE (€,29) ’ 00000730
29 FOIMAT (1H o *FORCE CINSTANTS IN PRCPER Cs35 UNITS*') 00000740
106 Aol FSUE (MCIMINsMea,F) 00000750
00 50 IE=1.M . 000007560
E(IE)=Y(IE)}=F(IE) 00000770 |
50 CONTINUE 00000730 !
cxkseCALCULATE VARIANCE OF 3JVERALL FIT. RESREISSION)STD EKRUX DF PARMS**%x%x 00000760 !
RM2=0.0D0 00000800 |
OO 85 NP=1.M R 00000610 |
QM=M 00000820 |
QnN=N 00000830 |
RM2=(E(NP)*%2) +RM2 oooooaao!
es CONTINUE : 00000550
VAIP=DSCRT(RMN2/(Q¥-QN)) oooooaso!
IF (ISDE.NE.1) GO TO 95 00000870
IF (ICHK.EQ.0) GO TO 95 00000830 |
DD 50 NV=1.N 00000890 |
VRP(NV)=DSQRT({VARP*%2)*XJP(NV.NV )) . ' 00000500 |
90 CONTINUE : 000005101
95 xRITE (6.39) STAR 00000920
110 CALL OUTPUT (NyMsAsFsY s YLBLeEsVR2 yICHKs7ARPIRM2) 000009301
C*x22%xTZST FOR DIVERGENCE-CONVERGENCE®*F XXX XXX T FEFKFXAFEEEFTFF XXX FEX XX 00000940i
IF (ICHK.EQ.0) GO TO 121 000009501
IF (VARP.GT.VAR) GO TO 150 000005£0]
120 IF ((ICHK.GT.ITC).0R«(VARP.GT.(VAR—1.0D-94%V4AR))) G3 TO 250 00000970
121 VAR=VARP : 00000580:
GG TO 200 ’ 00000950
250 wRITE (£.20) STAR 00001000
KL=0 00001010
CALL MATOUT (MDIM.M,XJ.KL) 00001020
GD TO 2¢0 00001030
Cxxxex JACOBIAN LODP** XS5k XK XIS XXX XX R XX XRXFIFEFIFSEXTXTKEXTE XXX 23X kX¥x 00001040
300 ICHK=1CHEK+1 . 00001050
D) 60 K=1,.N 00001060
TaA=0.00D0 00001070
D) 302 MI=1sN 00001030
‘AP(RI)=A(MI) 00001090
303 CONTINUE 00001100
I (AP(K)=0.0D0) 554564455 0000111§
55  TwAZAP(K)*1.00-06 ) 00001129
S0 TO S6 0000113¢
S4 TwAa=1.00-06 0000114¢
6 22 (K)=AF(K)+THA 00C5115(
CALL FSUB (MOIMJN.MsAP,FP) 00001106¢
LS 03 IK=1,M - 0000117t
XJOIK W K)=(FP(IK)=F(IK))/TWA 0000118
€5 CCNTINUE 00001191
62 CUNTINVE 0000120l
T 70 IR=1.M 0000121
DO 70 IC=1.4M ooool22i
AJTUIC,IRI=XJ(IR,IC) 0000123
79 CIUNTINUE 0020124
Call MMULT(MOIMiN 4N s KIT 4 KD XJ2) o060V 123

cal MTIEYIN (FDIMWXJIP &) N co001ca
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NCV =1 00001270
CALL MMULTIMDIM NIM NCVXJT,Z+XJTE) cooo012480
CAoL MMULT(MCIM(NJNoNCVeXJ2 4 XJTZ,DLA) 00001290
D3 39 L=1.N ©C001300
a(Ll=alL)+dLA(L) 00001310
=0 CSNTINUE : 0C001320
GC T3 100 00001330
cxexruTN) UF JACO3IAN LCOPX* S st s RS X XEFF XL XS XK I XN E FLXNFELEFEFE XT3 V00D 1340
19 FL<4AT (5{3) 00001330 :
20 FLIMAT (Cl4e7) 00001300
30 FOINAT (1B4s&) 00001370 |
31 FGRMAT (1H +18A8) oooo1sso@
s FCRAAT (F1S.$.744) €0001350 |
150 «RITE (6.30) ST&R 00001400 |
wWRITE (£4155) ooooxa;oi
155 FCRMAT(IH +*FITTING RUUTINE NOT CUNVERGING-EXECUTIUWN TERMINATED®) 00001420 |
WRITE (€»320) STAR 00001430 |
KU=9 - 00001440 |
CALL MATOUT (MDIM,MsXJ,KL) 00001450 |
200 3ToP 00001460 )
END 00001470 |
CHEXEXTICXE T XX FERXFIXNKAKE XX I XXX XX KERFE XXX R E XXX 00001480 |
SUSROUTINE MMULT(MOIMNAR'NACNICoAs3+C) 00001490 |
CEEXEFXFXXXERER XX EFEAC XXX XA EFIXL KX E XX EFE XX KX K EF X R K XK 00001500 )
IMPLICITREAL*E(A-H,0-2) ' ’ 00001510 i
DIMENSICN A(MDIMMDIM) s 3(MDIMsMIIM),C(RDIK,MDIN) 00001520 )
03 S00 I=1,NAR ) 00001530 |
U0 500 J=1.N8C 00001540 |
C(1,J)=0C.0D0 00001550 |
DO 500 K=1,NAC . ooooxséog
C(I+J)=C(IsJ)FA(IWKI®BI<+J) o 00001570 |
500 CINTINUE : 00001580 !
RETURN ‘ 00001590 !
END 00001600
CEFXTEFFF XX XIXXXAT XFAFFELEXEXAX XA XAAFE R XX FITERE XXX BXERNKXEE XK 000015810
SU3ROUTINE MTRXIN(MOIMsAsN) 00001620
CEXFEXEIFTFXELXXXEXEXN AN XAEAXXXIX XXX KSI R RS XTFEEF X XKAXXEKXETEXE X 00001630
INPLICIT REAL *8(A—H,0-Z) . 00001640 :
DIMENSICON A(MDIMMDIM), IPV(50,3) 00001650
: INITIALIZATION 00001660
D2 1 J=1,.N 00001070
1 1PV(J,3)=0 00001680:
: SEAICHFCR PIVOT ELEMENT 00001690
D5 3 1=1,N 00001700
AMAX=0.0D0 . 00001710
DO 6 J=1.N 00001720
IFCIPV(J.a3)=1)T706,7 00001730
7 OC 5 K=1.N 00001740
IF(IPVIK3)=1) %S4 9 €0001750
7 IF(AMAX=CA35(A(JsK)))I11ls 5,3 00001760
1l 1ROa=J ' 00001770
1COL UM=K 00001720
aMAX=DAES(A(JeK)) 00001790
Y CCNTINUE €0001800
v CSNTINUE ' 00001310
IPVLICCLUM I ) =IPV(IZOLUMI3) +1 cCo01320
1°vII,1)=1R0w 00001830
12v(i+2)=1C0LUM €C001540
NTSXCRANGo 2IWS TC PJUT PiVIT SlLesdzihT SN DL «SUNAL 0C0013850

IF(IFCa=iCoLU#)It 17410 002012092



'R

NONOO N

(4]

16 00 20 L=1.N
St AP=A(IROw,L)
ALIRCWWL)=A(ICCLIMI L)
2C A(ICSLUM.L)=SwaAP
UIVIDE PIVDOT ROw B8Y PILVIT ZLEMENT
17 PlvuT=A(ICOLUM,ICCLUM)
A(ICCLUMJICOLUM)=1,.000
OJ 23 L=1l.N
23 A(ICLLLNMWL)I=A(ICCLUALWWLI/ZPLIVOT
REDJCE TFE NON FIVOT ROWS
DU 4 L1=14N
IF(LI-1ICOLUM)ZEN 3426
20 T=A(L1+ICOLUM)
A(L1,ICOLUM)=C.0D0
DD 29 L=1sN
29 A(LlosL)=A(L1sL)=A(ICOLUM.L)*T
3 CONTINUE .
INTERCHANGE THE COLUMNS
DD 31 I=1,N

L=N=-1+1
IF(IPV(L.1)=1PV(L.2))34.31,34
34 JRCW=IPV(L1).

JCCLUM=IPV(L,2)
DO 32 K=1,N
SWAP=A(KsJROW)
ALK JROW)=A(Ky»JCOLUN)
A(KsJCCLUM)=S¢AP
32 CONTINUEZ
31 CONTINUE
41 RETURN
END
MATOUT
WRITTEN BY REBECCA LZE 11 FEB &3

THIS SUBROUTINE wILL PRINT OUT ANY SIZE MATRIX WITA NINE COLUMANS
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EASTZIRN ILLINGIS UNIVERSITY

CGN A PAGE. THE CALLING SZQUENCE 1S AS FO_LOwWS:

CALL MATOUT (MDIMNON.X)

WHERE 2 MDIM=CIMENSION OF THE MAIN ARRAY

NON=0ORDER OF THZ MATRIX TO 3E PRINTED OR NUMBER OF ROWS

IN THE CASZ OF A MATR IX wHICH IS NOT SQUARE

X=THE MATRIX TO 3E PRINTZ

SUSBRUUTINE MATOUT (MDIMsNON,ywsKL)
IMPLICIT REAL*8(A-H,2-Z)
DIMENSION W{(MDIM,MDIM)

“c=9

NN=9

I (KL.EC.1) GO TC 1000

IF (NCN.LE.NNJGGC TO 40

NT=NJIN/NN

S50 3 K=1sNT

IF (K.EC.1) GC TC 3

IF (KeNEel) GC TC 5

M=1

¢l TU 8

M=MEG

MC=il ¢S

anlTE (CoCT2) M,MC
= FLIM4AT (lh ,'0=',13,' TJ *,13)

D7 1=140MON

WRITE (Le2G7) (wlTeodedzd, Ml
£ FOlAaT (1h3.%(olceusX))

D

00001070
00001880
00001890
00001500
000013710
00001520
00001930
00001540
00001950
00001960
0001570
00001530
00001950
00002000
00002010
00002020
00002030
00002040
00002050
00002060
00002070
00002080
00002050
00002100
00002110
00002120

€0002130
00002140

06002150
coo002160

00002170 -

00002180
00002190
00002200

00002210

00002220
00002230
00002240
00002250
00002260
00002270
00002280
00002270
00002300
000022310
00002220
0c002330
0€C002340
06002539
00002360
00002270
00002380
000023%0
00002400
0C002¢1C
cceo 2420
0000243C
ocon243C
0000245¢(
00002«of



CF*x*¥xCALCULATICN CF SPECTRUM VIA DPRZI? AND ROTCEN*¥F*xx* % xs¥xxx42xxxx%%00002650

Ckxx*x%PLACE DESIRED FREQUENCIES IN F ARRAYFZEXEFIFXATXAXIFIXAEXRIXXXATCRERXRER

Y e S () V) €Y

50
<0
1000

15

93

CONTINUE

NT2=nNT*NN

NTR=NIN=NT?

NTP=NTP+

IF(NTR.EG.0) GD TO 1000
IFI(NTR.LTNN) S8 T 32

a=ITE (C+900) NTPNON

GO TC =0

vl &3 I=!+N3IN

WRAITE (Ee599) (w(leJ)sJ=1+NDN)
RETURN

DT 50 I=1,NON

CeRITE (Evw59) (w{T4J)sI=NTP+NON)
RZTURN

END

SUSROUTINE FSUB (MODIMeNsdsAF)
IMPLICIT REAL*8 (A-H,0-2)
DIMENSICN A(MCIM) ,F(MOLM)FRQLI(L1Y)

D3 1S5 J=1.,14
FRQI(J)=0.0D0

CONTINUE

CaLL DPREP(MDIM.AFRQI)

F(l)=FRQI (2)
F{2)=FKRQOI(S)
F{3)=FRQI(4)
F(4)=FRCL (6)
F(3)=FRCI(10)
F(6)=FRCI (8)
RETURN
END
OPREP
CEFINITION OF INTERNAL COORDINATZS:
R1=HCL STRETCHKING MOTION ALONG THE Z-&XI>
R2=HCL LIBRATIONAL MOTION IN THZI XZ PLANZ

R3=ACETYLENZ BENDING MIOTION IN THE XZ PLANE

R&e=HCL LIBRATIONAL NOTION IN THZ YZ PLANZ

BENDING AND LIBRATION PIVOT PT I3 THE C.3F.MASS OF SUSUNIT

SU3ROUTINE OPREP(IDIM,P.FRQ)
IM2L1ICIT REAL*8(A-H.D-2)
DIMENSIGN P(ICIM)sF(3)»TAU(7)FR2(1%)

c*exxx INITIALIZATION* S XXS XX L XFEFFFIXXKE XX TITXFEIFXT XXX XRRAFTER KL X FRR

PN e

10

00 10 [J=1,7
Tau(lJy)=0.000
CONTINUE

**xxxP_ACE TAUS IN TAU ARRAY TO SEND TO RCOTCENSF*E* XXX X EXFXX ST X ILTXREEEX

NOTE TAUS MJUST B2 CONVERTED TO vAZ 3EF3J]EZ

TRZY ARE SENT TO ROTCEN

TAM1)=T-2222 TAG(2)=T-XXXX=T X& TAJ(3)=T=-KX22Z
TaJ(&)=T-XZXL=TXZ TAU(3)=T-YYYY=TY4 TAU(B)=T-YYXX=TX2Y2

TAU(T7)=T=-YYZ2Z

AIXIXXTFESFZTXARFIXIEFTEARREZILAEL R EXAFENEX XK FNE I XITISTFXEFEXIFNFXNFAFEZZILST XL EFER

A=2(1)

b=2(2)

C=2(3)

Tau(2)=F (&)

Taul(s)=P(E)
TAI(S)=((P(23)/P(2))*x6)%xTAU(2)
TAdle)sl(r () r2(L))xx2)2TAJ(2)
VAL FCTCLN (AeBeCeTaAULFRY)

00002470
00002480
00002490
occo2s500
00002510
00002520
000023530
00002540
000023550
000025¢€0
00002570
00002540
000025%0
00002600
00002610
00002620
00002630
00002040

00002660
00002670
00002680
00002590
00002700
00002710
00002720
€0002730
00002740
00002750
00002760
00002770
00002780 -
00002750

00002800 :
ocooz2810
00002820
0002830
00002840
00002850 !
€0002860:
00002870
00002880
€00028%0.
00002900
00002910
00002920
00002530
00002940
cceco2s50
00002560
00002970
00002980
€00029%0
ococo3c00
00003010
0co003020
00003020
00003040

C0003050

000030050
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XXX XEXIXFEATEXFXX XSRS BEIF A X XFX A RFEE XX ITX IR R XRAREKX X XXX SX KX XX X2 2222 00003350

AETURN 00003070
END 00002080
- RCTCEN BY RESECCA LEE €0003090
< EASTERN ILLINCIS UNIVERSITY 00603100
(o 12 MAR &2 : 00023110
- RZTCEN CALCULATES THE HALILTCNIGN FOR A ZPECIFIC J-olLOCK AND WILL 0OCD03120
< OIAGCNALIZZ IT AND J3TAlin THE ENzKGY LEVELS FUR TrHAT STATE. IT HAS00002130
< A SeITCH TJ CALCULATE THEZ ZIWERGSIcS CCRRILTEVD FOR CENTRIFUGAL 06003140
< CISTORTION. 1T CALLS A SJUEROVUTINE (CCIl) anlCH A1LL CALCJULATE THE 0C0031%50
c CISTORTION ENERGIES ACCORDING TJ A FIRST JORDER APPRUXIMATICN. IT 00003160
- wILL ACC THIS CORRECTIUN TC THE RIGID RJ4TUR EZNERGYe RUTCEN ALSO 000923170
< CA_CULATES TRE SPECTRUM JF THEZ MOLECULE iN QUESTICN ACCORDING TO 00003180
c SelTChHe Q AND R ERANCH TRANSITIINS WI7TA «NY CCM3INATICN CF A«B84C 00003190
< DIPOLE TRANSITICNS CAN BZ DESIGNATEDe. Trz APPROPRIATEZE DZISIGNATIONSO00003200
c FOX ThHE SwITCHES WwILL FOLLOWe THZ Sa&lTCaZsS ARE EITHcR CNE OR ZERO 00003210 !
c wITH CNE AS THE VALJE TO D3TAIN I'HC DESIIcD OPTION. THIS PROGRAM 00003220 :
c «4S WRITTEN WITH THE STRATEGIES PRCVIDED 38Y DRe GILZS HZINDERSON, 00003220 :
C PrIFESSCR OF PHYSICAL CTAZSWMISTRYZEASTERN LLLINJIS UNIVERSITY. 000032401
CEXE XXX XXX AXNRFIXIXXIXXARERXXREIFFERXRFEXXXIE XFREINEXTXEXXXXEXXFEXEXFT X X223 00003250 |
SUBROUTINE ROTCEN (AP,3P.CP,s TAU.FRQ) 00003260;
IMPLICIT REAL*8(A-H,0-2Z) 00003270!
OINENSION TAU(7) oFRA(20)+sH(214+21) +EIVR(21 421)+E(11:21)T(7) 00002280 |
DIMENSICN KPON({11421)+KOQN{11+s21)+1I5K(11.21) 000032901
NDM=11 - : 00003300 |
MOIN=Z1 00003310 |
IGN=1 ' 00003320 |
I1GEN=0 00003330 |
10=xNO=1 00003340 |
c {
c AP ,BP,CP ARE THE EQUILISRIUM CONSTANTS NIRMALLY USED IN THE RIGID 00003360{
- ROTOR HAMILTCNIANe As3¢C ARE THZ SCRIPT CONSTANTS GIVEN IN EON 8.400003370 !
c CN Pe 222+ GCRDY AND COOK. 00003380 !
R EEE T TE TR L F XX AT T XA I T AR X FFC KX E IR I XX IR X F LI AT R FE XS FXKE XK FFXRSTXR XXX ¥ XX ¥$2x00003350 -
1CEDS=1 00003400 !
JHAaXx=3 00003410 |
IGBR=0 00003420 i
IR3R=1 00003430
Ias=1 . 00003440 !
I1£s5=0 00003450
1Cs=0 00003460 !
Cxx%x3xTAU~-T INTERFACE** XX kXK XX XXX IXXXFASEITXITXXFE XXX EFXXX K EX XX %%xx 00003470 |
DO 6 I=1,7 ) 000032480 |
T(1)=Taul(l) 000034901
6 CONTIANLE 00003500 |
C3EXTLECALCULATE As B CHEFX XXX XL XXX XX FFE XX KITEXES IXSEXFXEFT X Xk xx%x%xx%xx00003510 )
R5=(1.0CN/64 .CD0)*(T(2)+T{5)—-2.020%T7(6)) OOOOSSZO&
A=4P+] E.OCO*R6 000035301
E=eP=((1¢+DD0=2RE*(AP=CP)I)/(ZP=C2)) 00003540!
C=C2+((16.000%R6*(4AP=02) )/ (3P—-CP) ) 000035501
GD TO 12 00003560 |
] L=z=4P 0CDO03570
o=32 00003380"
C=CP 00002590
3T INITIALIZE THE AFRAY SZX XXX F3EEF XFXXTIIFESTEEETXFEXFIXNXX x5 kx5 %%x5xx00003000"
D3 5 I=1.20 00003010
FaL(1)=0.0D0 00003620
< CoNTINUE 00002E30!
12 MM QXS JAX ¢ 1 00N236%91
eaaT B NIK ¢ . co003e50!

U2 14 NisSlesMaxX 0C003L0o0;



DT 13 Nu=RI.hwmax
H(NI«NJ)=C.0DC
ciVa(N1:dJ)=0.0D0
RINJsRNLI=ER{NT W NJ)
clVRINJ«NIISEIVR(NIWNJI)
1o CUNTINLE
Qu 13> Kl=1l.MMaX
OC 15 VMJ=1,NMAX
ClwlswNI)=C.CDC
KFUN(MIWMII=O
KCON( M I MI)=0
li4 (M1 WMJ)=0
15 CUNTINUE
Jmax0=0

C¥¥*xxCALCULATE ASYM2=Kk&P2a4, THE ASYMMZ TRY PARLHETER*#Xx*xxx*x%xx*5xx+¥x%xx¥xx00003310

ASYHP=((2.0D0C*BP)~-AP=CP)/(AP-CP)

C*x**¥xxCALCULATE THE HAVMILTONIAN MATRIX FOR E&CA J-3TATE****>x&X**x%xx%%%xx00003830

DO SCO M=1.,MMAX
N=M4=]
NXN=2%N +1
D3 40 IlI=14NXN
OO0 40 IJ=I11eNXN
K=LI=(N¢1)
KP=IJ=(N¢1)
IF {(ASYMP—-0.0D0) 25,25.,30
25 IF(KeEQeKP) H(IIZ1J)=HPO(AsBeCosNeK)
17 ((K#2).EQeKP) H(II,IJ)=HPGOGD(A,BeCsNsK)
IF ((KeNEeKP)eAND({K+2) e NEeKP)) H(II,L1J)=0.0D0
H(IJeI1)=R(ITIW1J)
GO TO 40
30 IF (KeEQeKP) H(IIZIJ)=HOD(A»B8sCeN+K)
IF ((K#2)<EQeKP) H(IIsIJ)=HOCD(As BsCeN:K)
IF ((KeNEeKP)eAND.((K+2)e NEoKP)) H(II»1J)=0.0D0
H{IJell)=H(IIs1J)
GO TO &0
40 CONT INUE

C0003070
00003640
000026%0
ccoo37o0
00003710
00203720
00003730
00005740
Co003750
00003760

00003770
00003780
00003750 :
0Cc003800

00003620

00003840
€0003850
00003560
00003870
00003580
00003850
00003900
00003510
00003920 ;
00003530 |
00003540 |
000039501
C0003560 |
000039701
00003960
000032990.
00004000
000040101
00004020

I*¢**«DIAGONALIZE J BLGCK.OIDER, READ ZIGENVALJES INTO E MATRIX****%x*&%x%£00004030!

CALL HOIAG (HNXN,MOIM, LGEN, [ORNOD ,EIVR)
DO 28 J=1.NXN
ElMeJdI=H(JI)

28 CONTINUVE

Q0004040
00004050
000040€0!
00004070

CxxxxxRTINITIALIZE H MATRIX*F3FXXAXFXIXEAXXIFIZEXFEXAFXEXEETIXAXEXIXIXXXX%2xx%x00004030

DD 45 IL=1,21

DO 45 LI=1,21

H{IL.LI)=C.D0DO
45 CONTINUE

0004050
00004100

€Cc004110:
00004120:

C*x+x*rxCONSTRUCT K=PROLATEWK=O3LATE LALILS*FEXxI X XXTERXXILEXXXR XXk xxxx5xkx 00004150

Ik=0
Cl 2% KJ=1.NXNs2
1K=IK¢+1
LENXNel=KJ
KPAN(NMKJ)=KI=IK
NoQNK(NLL)=KPCN{M,KJ)
IF (IKeEQeKJ) GO TO 29
IF (IKeNEeKJ) KPCN(Mo(RKJI-1)})=KPUN(M.KI)
RUIN(M W (L#L) I=KPCON(4.KJ)
2y CSONTINUVE

00004140
€C004150
00004160!
0004170
00004180
0C004150
€0004200
00004210
00004220
€Co04c30
00004240

c¥*mEe(ALCULATL EWNERGIES alTH CENTRIFUoAL DISTJRTIIN INCLUDED***xcxx4x%x00004:50

if (1CZ0SeZ20e1l) CALL CTOl (s wIIRsNSAeT 21 VRIWIAPIIPeLP)

000042¢c0



CxsxxxSIT UYUP SYMMITRY FMATRIXZX XXX FXXXZFXXTIITITTFEFTFTEX SR X225 x5 2535500004270

33
[S49]
500

L3 60 JS=1,NXN
KWP=KPCR(MJS)
KuP= KEYMINP)
NO=KJCN(M,JS)
ARew= KEYR(NQ)

96

IF ((KCFP.EQe=1)+2&ND.(K3ULEQ.1)) 30 TO S0
IF ((KCPeEQe=1)eANDe(KCD.E2.-1)) GO TO 351

4

F O O((KCF.EQel ) ANCa{KUIeZCal))

wo T3 352

15 (({KCP.EQe1l).AND.(KQJ.EQ.~1)) 50 TO S3

ISS(MeJS)=T
GO TO ¢c
ISM{MsJS)=10
GC TO €0
1S4 (MyJE)=16
GO TO €0
ISM{M,JE)=41
CUNTINLCE
CONTINUE

00004280
00004290
0€004300 :
00004310 i
00004320
00004330
00004340
00004350
00004360
00004370
00004330
00004350
00004400 !
00004410 |
00004420 |
00004430 |
00004440 |
00004450 §

CxskknCALCULATE SPECTRUMA S XX KX st k¥ X IR FT T X X4 XS FTA XXX XIXR AT SR X XL XXX 24200004460 |
i

600

200
250
280

IF=0
IF{IRBR.EQ.1) GO TO 220
IF(1QER.EC.1) GO TD 300
GD TO 1000 _

1IF (IAS.EQ.1) GO TO 201
IF (1ES.EC.1) GO TD 251
1= (ICS.EQ.!) GO T3 281
GC TO €60

00004470}
00004480
00004490]
000045001
00004510]
000045201
00004530]
00004540i

C*x5¥¥A=D]IP0OLE SELECTICN RULES*XFsX IFFXEXXASSTFXTFIFFXIFAILXEXEIX XX E X%k 00004550]

201

235

220
215
210

LERRFSL-JirLLE

251

1CHK=0

DD 210 1G=1sJMAX
IZ=1G+1

J=I1G=-1

NXN=2%J+]

NXNE=2%1G+1

DO 21S JG=1+NXN

DO 220 JE=1,NXNE
NS=ISM(IG.JG)I+ISH(IE,JIE)
IF (NS.EG.57) GO TJ 235
IF (NS.EC.17) GO TO 235
GJd TO 220
DA=(E(IE,JE)-E(1G,2G))
ICHK=ICHK+1
FRA(ICHK)=DA

CCNTINUE

CONTINUE

CCNTINUE

Gu TS 250

OC 254 LC=1.JMAX
LE=LG¢+L

JE=LG=-1
NEN=2%J)3¢)

NINE=cFLGHL

CC Z23€ KG=1.NEN

DC 237 KE=1.NONE
“S3S1SEN(LGWKG) FISM(LEWKE)
IF (4S.,TC.26) GC TJ 253

17 (sSezuedc) 50 T2 23>

~ i

=37

¢
(3

00004560i
00004570:
00004580
00004590
00004500
00004610
0000462Q
00004630
00004640
00004650
00004660
00004670
00004680
00004650
00004700
00004714
00004720
00004730
0000474

SSLECTICN RULS S ¥ FE R R FIEET ST EIEFEIRXTFEETLTERF XX %22x0000475¢(

0000476(
0000477¢(
0000478(
0000475¢(
0600480¢(
0000431¢(
0co00482l
000048l
0000454l
0000435i
00CC 4 B0}



250 UO=(E(LESKEI=E(LGWKSG)) 00004370
27 CONTINUE 0004880
z25e CUNTINCE €C00456%0
254  CONTINUE 00004500
GL TG 2&0 00004910 .
C#e=2aL=DIPLLE SSLECTION AU Sos re XX sas s an s 2245 s AR X KA X IR XF X522 253553500006 520 *
25l DO 290 IC=l.JMAX 00004930
IL=1C+1 00004940 i
Jc=1c-1 00004950 |
NCN=(2%0C) +1 0004560 !
NCNE=Z2%1C+1 £0004570 ;
CL 291 MG=1.NCN £0004930 |
LU 292 ME=1.NCNE 60004590 |
LS=ISHM(IC.MG) +ISM(ID,MZ) 00005000 :
IF (LS.EC.23) S0 TJ 293 0005010 !
IF (LS.EQ.51) GO To 2%3 00005020 °
G0 TO 292 . 00005030 |
293 DC=(E(IC ME)-E(IC.M3)) ©0C005040 |
262 CONTINUE 00005050 |
291 CONTINUE 00005060 |
290 CONTINUE €000S070 |
GO TGO €00 00005080 |
300 IF (laDS.EQ.1) GC TO 301 02005050 |
350 IF (IBDS.EQ.1) GO TO 351 00005100 |
350 IF (ICCS.EQ.1) GO TO 38l 00005110 !
GO TO too00O 00005120}
C*x*¥%¥*%L~-D]JPCLE SELECTION**XXXXI*X ¥ XXX XXX EXXTATTIXXXRANXKEXRENEXEX XXX XX x%xxx000051320 )
361 CD 311 16=2.¥X €c005140]
J=16-1 000051501
NXN=23%J¢1 00005160
DI 312 JG=1,NXN 00005170
DO 313 JE=JG+NXN 00005180
NSzISKM(IG.JG) +ISM(IG.JIE) 00005150
IF (NS.EQ.17) GO TO 314 00005200
IF (NS.EC.37) GO TO 314 ¢0005210.
GO TO 213 0005220
314 DA=(E(IG.JIE)-E(IG+JG])) 00005230
313 CONTINUE €€005240!
312 CONTINUE 000052501
311 CONTINUE 00005260i
GO Tu 250 00005270;
Cx%x%x%x*¥3=) [POLE SELECTION RULCS*** kT XXX EFAEEXXFLC X AXXTETXEXEXEKE XXX Xxx%x00005280]
351 DO 3S2 LG=2.MX 00005250!
JB=LG-1 ©0005300!
NEN=2®JB+1 €c0005310:
DD 354 KG=1,NEN €0005320;
CO 35S KE=KG.NBN 00005330
MS=ISMILG K3 ) +ISMILSKE) 00005340
WF (M>efuweco) SO TS 3350 000053550:
1> (4S.EQ.a48) GO TO 3506 €0005350:
GJ TO 2ss 0005370
Jic  SE=(E(LGWKE)=E(LGWK3)) 00005380
I58 CINTINLCE 00005350
354 CONTINUE 0000ss00
ZS3 CIWTINLE 0005410
S T zE0 00005420

C 3% 25 8C-D)]PCLE SELECTICN RULCS*-*FEFEFZFBF EICRRF AL IR X XXX F X R KX R R AT A 52200005 »00

<31 DL &3 I1C=2.MXx
Jezie—1l
Kew=(l=0C)r)

$CC05440
20003434
6000S+0d

i



98

O0) 384 MG=1.KCN
O2 385 ME=HG.ACN
LS=ISM(IC«MG) ¢ISH(IC.H4E)
IF (LS.EQ.23) GO 72 386
IF (LS.EC.51) SO TO 3506
Gs TU 385
o CC=(E(ICME)-E(IC+MS))
&3 CLisTINLE
84 CONTINUE
383 CONTINLE
1000 RZTURN
END
FUNCTICN KSYK (N)

00005470
00002480
00005450
00005500
0000S510
00005320
00D0SZ3s0
000053540
00005550
06005560
00005570
0000Sss80
00005550

C**x*x3CA_CULATES THE EVEN OR ODDNESS 3 THE CJUANTUM NOo Kezkxxxxxxx%x*xxx00005600

IMPLICIT REAL=*3(A-r,0-2Z)
KSYM=(~1)*%N ’
RETURN

END

FUNCTION HPD (A+BesCoN+K)

0000Sc1l0
00005c20
00005630
00005640
0000Ss50

C*&xxxDIAGONAL MATRIX ELEMENT-RIGID RITOR-PROLATE*s**xxxxxx2xxx %% %x%xx%*x2%x 00005660

IMPLICIT REAL*8(A-H,0-2)

RN=N

RK=K

H3D=((B#+C)/2.0D0) *(RN*(RN+1.000)-RK*%x2) + ( (RK*%*2) *A4)
RETURN .

END i

FUNCTICN HPGD (A+B+sCTeNWK)

0000SE7O
00005680
00005650
00005700
00005710
00005720
000057z0

.*xx*x*x*0FF OIAGONAL MATRIX ZLIM4SNT-RIGID ROTCR=-2RILATEzx*xxxs*xx*xsxxxx3xx200005730

IMPLICIT REAL®*¥8{A-H,0-2)

RN=N

RK=K

TA= OSCRT(RN=®=(IN+1.0D0)-RK*(RK+1.0D0))
TB=OUOSQORTIKN®*(RN+1.0D0)-((RK#+1.0)0)*(RK+2.0D0)))
HPGD=((E-=C) /74 .0D0 )*TAXT3

RETURN

END

FUNCTICN HOD (A.Be+CoivyK)

00005750
00005760
00005770
00005780
00005790
00005800
ooooss1o0
00005820
00005830

**¥x2*xDJAGONAL MATRIX ELZEMENT=RIGID ROTOR-CBLAT S ***s x> x5k ¥Ex 25 %x2x¥x%x%x 00005340

IMPLICIT REAL*8B(A-Hs0-2Z)

RN=N

RK=K
HID=((A+B)/2.0D0)* (RN« (RN+1.0D00)-~K*%2)¢( (RKx%2)*(C)
RETURN

END

FUNCTICN HOOD (A+sBeCrNK)

00005850
000058¢€0
coooss70
00005880
00005850
€00055C0
00005910

**+x*CFT DJIAGCNAL MATRIX ESLZMENT-RIGI) ROTOR-JSLATE**x*xxx*k=x*3xxx*¥xx2xxx00005920

IMOLICIT REAL*S(A~-HA,0-2)

RKN=N

AK=K

TA=DSCRT(RNX(AN#1.0DD)—-IK*x(RK¢+1.,2D0D))
TOoSISCRTIRNF(ENFL 0O0)=((RKE1.000) ¥ (R<K<tcs 20002
ROuL= ((A=3)/74.000)=TA4A=T3

RETURN

END

SUSRCOUTINE HCIAG(AWNeWNOIEKWyIEGENIURDWZIvk)

A= ATRlA TC EE Z14ASINSLTIZED
4w i=DIMENSICIN OF &

00005530
00005940
00005950
00005560
000035970
CC005560
00005550

00006000 :
00006010

00006020

00006030

00C050%0
0005050
000000¢0



99

(8]

N=)IHAINSICN CF SUEKATRIX TJU 8E DlASuinaLIZED
LEGeN=" [F ZCTH EIGENVALUES AND EIGNVECTORS ARE DESIRED
Il IF CNLY EIGENVALUES ARE DESIRED
15-25=0 [IF NC CTROERING OJOF EZI1GZNVALUES OrR ViICTOARS I3 VESIRED
(CKCER IN = CROER UUT)
1 IF CRCEZAING &Y 3122 OF ZIGINvalUZIS [5 UZSIRED
EIVR=TRANSFCRMATICN MATARIX (H4ATRIX JF ZIiGINVZCTORSI)

ONOOnn

CLwxxxxThlS ACUTINE LSES A VARIADLE THrRZISHILD JACT3I METHOO
C*xxxx]T GIVES VERY GULC EIGENVALUES AVND CIGENY ECTCRS
C*xxx=xxThS ROLTINE IS MLCH FASTEZR THAN THZ CLV rMDl1AG ROUTINE WRITTEN
Caxxxxal MeleTe THAT USES THZ JACOGEI MITAHOD 3J0T NIT TAE VARIASLE
CFs*¥axTASESHOLD TECKNICUS THAT IS APPLLED rHIRE
c
IMPLICIT REAL*E(A-H,0-Z)
DIMENSICN A(NDIMyNOIM} sCIVR{NDIA, NDIH)
IF(N.GT.0) GCTO 1
clVR({1,s1)=1.000
RETURN
1 IF(IEGEN.GT.0) GCTO 102
00 101 J=1sN
DO 100 I=1l.N
100 EIVR(I.J)=0.0D0
101 EIVR(J.J)=1.0D0
FIND THE ABSOLUTELY LARGEST ELEMENT OF A
102 ATOP=0.
DO 111 I=1sN
S3 11l J=1.N
IFCATCP.GE.DCAES(A(I.J)))
ATSP=CAES(A(I.J))
111 CONTINUE
IF(ATOP)109.,109.113
109 RETURN
CALCULATE THE STOPPING CRITERION — D3T0OP
113 AVGF=FLOAT(N=*(N-1))*.55D00
D=0.0DCO
DO 114 JJ=2.N
00 114 I11=2.,JJ
S=A(I1-1,JJ)/7ATOF
114 C=s=*S+C
DSTCP=(1.0-06)%D
c CALCULATE THE THRISHOLD. THRSA

n

GOT0o 111

[}

THRSH=DSQORT(D/AVGF)*ATQOP

START A SWEEP

0o0n

11S IFLAG=0
C2 123 JCCL=2.N
JCCLLl=uCCL-1
D2 130 IRCw#=1,JCCL1
AlJ=a(IRCweJCCL)

CCMPARE ThHE OFF=JIAGONAL ELEMINT «ITA THRSH

cCon

IFIDAES(&ALlJ) s LEsTHRS3AH) SOTO 130
all=a(]kCuaslFCW)
AJdJI=A(ICCLLJCCL)

Z=acJd=all

0000607
000060&
€co060%
0000010
0000611:
0000612
0000614
0000614!
0000615]
0000616
0000617
000961 8l
000061 5|
0000620
0000621
0000622
0000623|
0000624(
0000625(
00006261
0000627¢
0000628¢
00006294
000063040

, 6000631¢
00006328
00006330
0060063440
00006350
00006350
000063274
00006330
00006350
00006400
00006410
00006420
00006430
00006440:
00006450.
00006460:
00006470
000064301
000064901
000065001
00006510
000065201
000065301
00006540!
000063501
0000£560
0000&570 1
00006530 !
0CD0ESSO:
00006000 :
0C00E610 :
00006020 :
0C006630 !
00006040
0000€050
00000LED
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n o

N O

115

120

121

122
123

124

1ez

100

CHECK T) SEE 1F THZ CHUSEN RUTATIGON (S LESS THAN THE RCJNUING £C00006670

IF SCe¢ THEN DOC NJOT RJOTATE.

IF{oacS(AlJY) aLZa(1.00-07%DA33(S))) S0Tu 130
IFLAG=1

IF THE ROTATICN IS VZIRY CLOSZ TGO 45 OUESREEJs SET SIN AND COS

TO 1/(F2OCT 2).

IF(C(]l .OD-10*DABS(AlJ)) .LT.DAES(3)) GITO 116
5=.70710€6781D0

c=s

GU TO 120

CALCLLATICN OF SIN ANO COS FOR ROTATIIN THAT IS
TO 45 DEGREES

T=alJ/S
S=0.25C0/DSQRT(0.25D3¢T*T)

Cos = C SIN= S

C=DSQORT(0.5000+S)
S=2.000*T=*S/7C

CALCULATICN OF THE NcWw ELEMENTS OF MATRIX A

2O 121 I=1.IR0«

T=4(Ls IRCw)

L=a(I,0C0L)
A(l+]IROR)=C*xT—S*U
A(1,JCCL)=S*T+C*U
12=1R0Ow¢+2

IF(I2.GT.JCCL) GOTO 123
CONTINUVE

OO 122 I=12.JC0L
T=A(I-1,JCCL)
U=a(IRCwI-1)
A(I=1+JCCL)=S#U+l*T
A(IRON +I—-1)=C*U-S =T
A{JCOL,JCOL)=S+AalJtCxAUY
A(IROW+ IRCH)=C*A( IROW+ IRIW)-5%(CkALlJ-5%xAJJ)
D0 124 J=UCOL N
T=4(IR0OwW,.J)

Usa(JCClL «J)
A(IRDOW.J)=C*xT-S*V
A(JCOL ¢ JI=SET +C*yU

AuTATION CCMFLETZO.
SEE iF EIGENVECTIRS ARE wWANTED BY USER

LF(IZSGEN.GT.0) GCTGC 126

DT 128 I=ienN

T=Z1VR([+I2Cw)
Clvn(l+17Ca)=C3T-CEIVI(1,JCOL =S
TIval(l JCLL)=SET+EIVI(L 2CSL)*C

CALCLLATE THE NZax NJRd O AND COMPARE «ITH JO3TOP

CINTINCE

NOT VERY CLCSE

00006650
00006650
00006700
00006710
€C00E720
00006730
00006740
00006750
00006760
00006770 |
00006700 |
06006750 |
00006E00 !
00006810 |
00006820 |
00006830 i
00006840/
000068501
000063601
00006670]
00006880
00006390!
00006900
0000651 0!
00006920;
00006920
00205940!
00006550
00006960
00006970
00006580
0000655¢
0000700¢
€000701¢(
0000702¢
00007031
0000704
0000705i
00007061
0000707!
0000708
c00070S
0000710
0000711
0000712
0000712
0000714
€00071:
000071¢
0000717
€00071¢
c00071¢
000072(
000072,
cceoova.
€00072
0c0072
000072
007072



£+ 0y

[

NnNnoON

s

R

12¢

129
130

16

15

10
11

101

S=ALJ/ATCFR
O=0-5%¢S
IF(D«CGECSTOP) GCTI 129

KkZCALCULATE DSTOP ANJ TAR3A TJ DISCARID ROUNDING ERRCRS

o=0.000

Cl 128 JJ=2.N

ve 128 11=2.4J
S=aAl(lI=1+JJ)/ATGCP
O=5%5¢C
DSTCP=(1.D-0€)*D
THRSH=CSCRT(C/AVGF) *ATOP
CCNTINUE

IF(IFLAG.NE.O) GCTO 115

ARRANGE THEZE EIGENVALUES IN THE ORDER OF LNCRZASING ENERGY.
ARRANGE THEZ EIGENVECTIRS IN THE SAME JROZR.

IF(IORDEQe«O) RETURN
NU=N
DD 11 I=1.N
IF(l.GE.NU) RETURN
AMIN=A(I,.1)
DD 10 J=I.NV
IFCA(JIvJ) cGE .AMIN) 50 70 10
IF EIGEN IS =1 , EXCLJUDE UNCCNVIRGED ZISENVALUES FROM ORDERING.
TE=OABS(EIVR(NGJ))+DABZSIZIVRIN=1» J))
IF((TE+GTee05)eAND.(IEGEN.EQe—1))} S0 T3 15
i1=1
AMIN=A(JJ)
A(JIyJI=A(1,1)
A(Il.l)=AMIN
DS 12 K=1WN
TEMP=EIVR(K,11)
EIVR(KII)=EIVR(K,J)
EIVR(KsJI=TEMP
GD TO 10
AM=A(J.J)
AlCJeJ)I=A{NU,NU)
A{NUsNUJ=AM
11=NV
NU=NU=-1
GD TO 16
CONTINVE
CONTINUVE
RETURN
END
co1
ThiIS SUERCUTINE CALCJULATES TRE ENVERGY DJZ TO CENTRIFUGAL
OISTORTIUN 3Y A FIRST URDER PEXRTJUREATIIN 4CTHOO. IT FOLLOWS
A PRCCECUFRZ AS CUTLINED SY wALTER GURIDY ¢ Rele COOK IN CHes 8e
'MICRCWAVE AND MCLEZULAR SPECTRA' + THZI P<JUCEDURE INVULVES
FIRST ThE CALCULATIION OF TAHZI WILSON PARAMITERSs wHiCH ARE
TAP<ESSEL IN TERMZI OF 7 TAUS. THZI PLANARITY CONDITIUN HAS
1inveKED IN TRIZS SITUATIONS THERI AKE FOJr INDEPENDENT Taus
AND THKEE TAUS wrICH CAN oZ EXPR:I3SZID IN TERMS OF THACE GCTHER
Flourme TRESET WERE CALCJLATEID IN THZ ORiVzZe alTa THE TALCULATED
ada 3N FARAMETINE THAZ 4ATSON DIOTCTATICN PAARaAdeTERS ARS THEN
CALCULATECe THE AVIRASED VALUCES 24==2 Aivs Po3s3 AnZ CALCULATED

oCcoo7270
00007280
0LCco072350
€C0072C0
00007310
€CCc07z20
00007220
0Cd07340
€C007339%
00007360
00007370
000072€0
00007390
00607400
00007410
00007420
00007420
00007440
CC007450
C0007460
00007470
000074E0
00007490
00007500
GC007510
00007520
00007530
00007540
€0007550
00007260
00007570
00007580
000075¢%0
00007600 .
00007610
00007620
00007630
00007640
0C007&50
00007€60
00007670
00007560
00007690
00007709
€0007710
00007720
00007730
00007740
0C007750
00007760
00007770
00007780
0000775¢C
0C007800
ocoo7elo
¢coo07eco
0Co07830
C00073+0
02007840
€CO007809



c USTING THE SIGENVECTOSRS FROM THE JDIAGONALLLATICN CF THAZ wIGID oopo787C
< ALUTCR HAMILTCKNIAN AND THEZE QUANTUM NJUK3ZXR Ke IT «AS CALCULATED CCOO7ESC
C via A METHID SHC&N IN TH.7+5CROY &ND ClIK. a{THA THE AVZIRASED 0Cc027&5¢
c VALUES AND ThE wWATSON PARAMZITEROe IT IS POSSISLE TU CALOULATE 0000790C
c & DISTORTICN ENERGY ThiAT CaN 3E ADDED T3 THZ KRZISULT OF THE 0000751 ¢
[ ClAGONALIZATICN CF TrHAZ w1OlD ROTJUR AND i VE AN ENEROY THAT IS5 00007%&¢C
Cc CORRECTED FOR CENTRIFJUSAL DISTORT ICNe. 0CO007S3C
CHEEXF XXX T RXITATXXTATF TR X EUX IR QI XZIXAXXRFE XEE TLTEX XEFXXIXFXIXIZXX X332 %%k 520000754 (
SUBRULTINI CDI(EsMMeNS s ToEIVReNsavde ) 0000795¢
IMPLICIT REAL®B(A-H,0-2) : €00075€¢
ODIMINSION E(NMyMM) ¢ T(T7)2TIVR{MM, M M) 00007970

GN=N 00007554
Cxxxx*CALCULATE THZ wILSGON PARAHETERS‘GS*xt::t:xxt:*xxx:!t::l;t:*tttt##:000079;d
DJ==(1.000/732.0D0)*%(3.000*%T(2)+3.0D0%*%T(5) +2.0D0%T(6)) 00008000
CK=DJ=(1e0D0/4.CO00)%(T(L)=(T(3)#+c .0DO%XT(4))=T(7)) OOOOEOlq
DJUK==CJ=CK=(1.000/4.020)*T(1) 00008020
R5=—=(1.000/32.000)%(T(2)-T(5)-2.2D00=(T(3)+2.0D00%xT(4))¢+2.000%T(7)) OOQOBO3d
R6={1.000/64.CD0)*(T(2)+T(5)=-2.000%xT(6)) 0000804 ¢C
DLJ==(1.0D00/16.000)%(T(2)-T(ES)) ocoososa
Cx*xxx*xCALCULATE THE WATSON PARAHETERS*:**::tsts:*:t::x:x*x#:u:aun:n:t:ttt0000506d
€G=((2.0C0%xA)-8-C)/(3-C) oo008070
DDJ=0J-((2.0CO*DLI*(B3¢+C) )/ (383-Cl)-2.0D0*RS oooos808aQ
COJIK=DJIK=(2.0D0*SG*DLJI)+4.000%(Ro>+(2.0D085G*R6))*x({B+C)/ (B-C))+ 00008050
+12.000 *R6 N ooocog10d
COK=DK +4 .0D0*SG*(R5+(2,0D0*%SC*R>) )-10.000 *Ro ocoos110
DEJ=(4.000%xDLJ)/(B-C) oooosi2a
CEK=(~8+CCO*(R5+(2.dD)*5G*R6)))/7(8-C) 0000613q
Cx%2x2CALCULATE PZ2 PG *¥xXx XXX xX¥ X XXF L RXF XIS FXIXXEXFITFXIEXEX XXX II2xx%xx 00008140
NXN=2#%N+1 0oc00815Q

M=N¢+1 OOOOEIGQ

DO 10 I=1.NXN - 00008170
PZ4=0.000 opooos8180
PZ2=0.0C0 oocoglvo

DD 40 J=1,NXN ooooegz200
FRK=J=(N#+1) oooo8210.
PZT=((EIVR(J,1))*%x2)x((PK)*%x2) oooogz20
PZF=((EIVR{Js 1)) *%2)x((PK)%xx%x4) 00008230
PZ2=P2T+PZ2 00008240
PLa=PZF+PZ4 00008250

40 CCNT INUVE €o00d08260
C**sxxCALCUL ATE DISTORTION ENZRGIZ S,k X s x s kXX X ¥ sk X FXEFXXXXL X222 2335¥%x00008270:
o EA=PART 1 OF EON 8.44,CH.8 OOOOBZBQ
Cc EBE=PART 2 OF CQN 8.44,CH.8 €0008250:
C=x$ttt¥:tt:a:sttttt*tttt::txt:t*:tttts::t:xxxttstx*:tttt#x::*t*ttt*#:t#tQOOOBJQOE
EA==OC J*(CN*%Z)x ((ON+1.000)*32)-5DJK*ANX( ON¢+1.0D0)=xP22 00008310
EB=~OCK=xPZ24=CEJ*E(My [ ) *ONX(CN#+1 .2 D0 )-DEKES( M, [)xPZ2 CCOOBBZd
EV=CcA+EE 00008530:
E(MI)=ED¢E(MLT) 00008340:

16 CLNTIALE 0ooo82s0!
RETJRN _ 00008360i

END 000Cs270¢
SUSAUUTINE OUTPUT (NoedydsFsY oYL3CL vCTo VIl IAKe VAR Rid2) 000083380
IvPLICIT REAL®*3(A-H,2-2Z) c0008390:
CUWMENESICN ACE0)WF(30) «Y(30),YL3C(32+7) el S0)sVIPISL) €C006400

SRITE (€4,10) ICkK 000038410

12 FLIAAT (1h o' ITCRATIVE CrCLE NUMIEIR= ', 1e//) CC005429:
L 12 I=1,N 000084230

RITZ (£415) TeAC1) VF2(1) 00003440!

1o Fe-waT (1M .'ALPPA(‘-ZE.‘)='-22J.IO.JK.'K'.Jll.u.')‘) CCO003«350

le “eivT INUVE 00008«0C:



20

s

ce

S0

Le

FRXXXXEFTXEERAFEXXRXAEXAIXTFXFEZEXRFAXEEE EXRFEEX EFE X EXEXEXEEFFEEFXFEXREEXFEEF XXEX XXX KX

1)

WRITE (£.20)
FOIXHAAT (1hOs*
+'RESICUAL")

C2 45 I=1.M

EXPERIMINTAL® » 23Xs* OcSTRVID* » 535X+ ' CALCULATED" 512Xy

a<]TE (€e25) (YLELUTZ1J)0lJI=1e7)eYUL)oF(c)ell)

FLCRAAT (1h
ConT INCGE
WRITE (€,30) RM2

FTIYAT (1HO, *HESICUAL 30+ JF
«x1TE (6.35) Vak

FCINAT (1H
IF (ICHK.NE.0) GO TS 109
w=ITE (€+S9)

FCR¥AT (1lh +*TRIAL 3U=ZS5S3ZS

+ NIXT CYCLE®*)

RETURN
END

«7A8 12X sF1S5eP1aX4Flze91S5XsFide v)

SCUARES" D1l e 4)

+* VARIANCE OF OVIRALL FIT®,0ll .4)

AND CALCULATED VALUZS-FiTTING

00003470
00008480
00008490
0C00ES500!
00008510
00008520
000085301
00008540!
000DE550 !
00008560 |
00008570
00008580 |
0C008&550 !
2EGINS INO0ODOS8GOO |

00008610 |

00008620 |

00008630 |

i
1




Appendix II

NCOR-Normal Coordinate Analysis Program
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NCUR (SLRIMERLY “GMATH) wRITTIN AND ZVISED v REZELCA Lz==Z
AalT CONSULTATIION AND DJ13JU35I0N FRUM DRe Slu=S Le HENUERSON
P=LUFESSZR OF PHAYSICAL CAHIMISTRY CASTZRN ILULINOGIS JUNIVERSITY
Tnio PRe0RaM COMPUTES FRIZIINCIES ANJ L=INvZIXSE FUR THZ KRTRaAL
MJJES 2F VIDRATION OF ANY MOLECULE. (T [HPL=MZNTS THE APPRCACH
DTVEL 222D 3Y Ce ERIGHT al_533 (THZ @l LSIN Fo AZTHZID) AS JUTLINED
IN *VI3KATING MJLECULES? 3Y PETZR GANSe THI U3Zk iaUST sUPPLY A
o=V ATRIX COMPCSED OF ELZMINT S JDETERHLINED BY THAE GZiCMETRY CF THE
MI3LECJ-E. THE F MATRIX (JC5CRIPTIVE OF THRZI *5RCZE FiIiEBLD IN THE
wWO.ECJ_Z) MUST ALSD BZ PROVIJED. THZI F MATRIK MUST BE IN CG53 UNITS.
THE & MATRIX MUST 3E IN UNITS CF AMU-CENTIKITERS. THE F MATRIX®*S
ELEMENTS KUST ALREADY HAVE SZEN AOJJUSTED AKNJ CORRECTEO w=HERZ
NZCESSARY TG FROVIDE TAZ PrRIPER JUNIT>e THZE FreOJUSNCIES sILL SE
REPCRTIO IN WAVE NUMBER3. THIS PROGRAM WILL ALSO GENEZRATZ AN L-
INVCRSZS MATRIX aHICH w#wAZIN MULTIPLIED BY AN R=-VECTOR (VECTOR #HICH
CONTAINS THE INTERNAL COCRDINATES OF THE MO_ECUJULE) «ILL YIELD Q
THE MATRIX REPRISENTING THZ NCORMAL HUIDE DISPLACCNENT VECTORS »
G=G MATRIX F=F KATRIX NXN=0OROIR UOF MATRIX
A=TRANSFORMATION MATPRPIX FOR G MATRIX
O=UMATRLIX ELEMENTS ARE THZ S2RT OF THE ZIGSHYALUES OF G
AT=A-TRANSPOSE AD FAD,» ATFAD=PRIDUCTS OGF THE RESPECTIVE MNATRICES
H=h-MATRIX 7O 3E DIAGCNALIZZD TO YIELD FRECGJUENCIES
C=C MATRIX-TRANSFORMATION MATRIX FGR H MATRIX
AJC=L-INVERSE MATRIX
IMPLICIT REAL*8(A-H,2-2Z)
DIMINSION G(10,10),A(10410)+O(1d,10)AT(LO,10)sF(20,20)
DIMENSICN 43(10,10),F&D(10,10) +ATFAD(10,10),H(10,10)
OIMENSIIN C(10410)0,0C(10+12),AD2L10C,10)
NOIM=10
NXN=4 .
¥Ex¥XINITIALIZE MATRICES* %% % kXX XXX FE K XXX IXXXE F XXX XX KX KA XK KKE K RE XK
DO 20 I=1,NDIM
00 2D J=1,.NDIM
G(I+J)=0.0D0
A(l,J)=0.0D0
D{(Ie«J)=0.0D0
AT(1,J3)=0.0D0
F(l+J)=0.00D0
AD(14,+J)=0.0D0
Fa>(1.,J)=0.0D0
ATFAD(14J)=0.000
H(lsJ)=0.0D0
ClI.J)=0.0D00
DC(I,J)=0.0D0
ADCZ(1,J)=0.0D0
29 CUNTINUE
LZIISN=0
k¥ %2XGENEQATE G MATRIX FIz*3F£ 2k IXXLE SEFFXTXE X ETEXXXXEKEF LT XTXTFFSEXE
Cani GSUZE (NXNWNDIA, 3)
CALL MATOUT (NDIWV,inKNy )

£33 xxxD]ASONALIZE G MATRI XFrx ¥ 33 s Sk XS R ¥ S EFEFIE XX SR XX FEEXEXFARFT AR RS K

CALL LIAG (NOIMsGeNKNoI[EIGN, A)
Ud 09 I=1,NXN
DUl I)=DSCRT(WINID)
%) CLUNT I hUE
22222 NTER THE ° MATRIX A4S 46285 ¥ 5 S5 ¢ T C XXX FFSE T AT S XK XF T XIS ST EFEEF XX
DU 0 =1 ,NXN
02 $0 J=1NXN
mZAL (S492) F(1.J)

) foAal (217.10)

00000070
000006080
000C0050
00000100
00000110
0C000120
00000150
00000140
066035150
00000100
00000170
00000180
00000150
00000200
00000210
00000220
00000230
00000240
00000250
00000250
00C00270
00000230

00000250 -

00000300

00000310 .

00000320

00000330 .

00000340
00000350
00000350
00000370
00000380
00000390
00000400
00000410
00000420
00000430
00000440
00000450
00000460
00000470
00000430
00000490
00000500
00000S10
00000520
00000530
00000340
000003550
00000560
00000579
0Cc000=50
00000350
00000000
00000610
00000020

00000030 -

00000040

0000000

00000020



106

' F(U 1)1=F(1.9)
90 CLNTINUE
Call MATOUT (NIOIMyNXNLWF)

JFERLE INTLATE h=MATR ([ XEESETXSFEFT A ERCEE AR S FTEEE S AR EXEETRREXEX XXX X EX

Ca_L FMMULT (NDIM NXNy,NANINANsA«D e AD)
Caie MMULT (KRCIMINK &y cKison&neFond s Fad)
OU 110 1=1eNXN
0J 110 J=1eNXN
AT (ledi=aldnll
110 CONTINUE }
CA_L MMULT (NDIMINXNyNANsNXNsAT, ZAD.ATFAD )
CALe HYMULT (NI VMIANXVNeNXNoNXNsDeaTFADWH)
CAaLL CIAG (WNDIMyHINANGIZIGONSC)

C*¥*sF & CA_CULATICN OF FREQUENCICESFS XXX kX FIFXFF A XXX XXX XXX R XK KK ET XX

C35=2.957923D0¢+10
Pl=5.14159260D0
AV=5.0220450+23
Co=CS*x2
Plz4.0D0%(PI*x%x2)
«RITE (6+150)
150 FCIMAT (1H ,*FREQUENCIES (WAVE NJMGERS)*,/)
0D 130 I=1.NXN
FRZQ=0SQORT(( (H(I+.1)=®aV)/(CS=PI))
WIITE (€+170) I.FREQ
170 FOIMAT (1h +I32¢2XF20e40e2Xs® WAVE NUMBERS® )
130 CONTINUE

C2exx%CALCULATICN COF L-INVERSCHA XL X 4X k¥ & XXX AT XXX I RS A KA KK XK KX R XX KL X &

Ca.l FMULT(NDIMoNXNSNXNeVXN,OsCedC)
CALL MMULTUINDIM NXNsNXNyiNXNes A,DC, ADC)
CA_L MTRXIN(NDIM,ADCsNXN)
CalLL MATDUT (NDIM«NXNsADC)
sSTGP
END
LEEFEEXFXXTETXXNFFFXEFXXXRXIZIXZATKRTXIXXXFXIXRE XXX EXXZE EF Xk &
SUSROUTINE MMULT(MDIM,NARNAC,N3C.,A,B,C)
LXK XXX EFTFEXINN XTI AR IR EFFEITXEFTIXRAEXXXIFEFXEFEIXXE X KK XX
IMPLICITREAL *8{ A-H,3-2)
DIMINSICN A(MDIMeMOIM) s S(MDIMIMII M) +CI(MIILMIHDIM)
DU 500 I=1.NAR
DO S00 J=1..N3C
'C{1.,J)=0.0D0
DO S50 K=1,NAC
Cll +J)=C(1+J)+A(]1K)IXB(K +J)
500 CCNTINUE
~ZITURN
END
LEFEFFREEEFFTITXFSIFXEFIXLXAKXIFEAXRZIZIFLINFIAXRXEREZXXIXIXXNX ERE R KL XXFEXRXK
SUERIOUTINE MTRXIN{MOIMeAsN)
L EL AL AL LR EARIT TR EFES FEFATEXISNTXIRTRIXXNFEEXITIFIN XX FEXXEXXRESE
IMPLICIT REAL*8(A-A.0-2)
CIVENZICN A(MDIMLVD M), IPV(ED, 3)
INITIALIZATION
DS 1 J=1,.N
i I=videzd=r
CLAIIAFCR PIVOT ELEMENT
co < l=lWN
AMAX=C.320
00 6 J=1l.N
IFCIRPVIJeZ)I=1) 20007
/ S L K=lW.N

00000670
00000540
0N0006350
0CC60700
00000710
cCoOV0720
00000730
000C0740
00000750
00000760
00000779
00000730
00000790
00000800 .
00000310
00000820
00000830
00000840
00000850
00000860 . :
00000870
00000880
00000890
00000500
00000910
€0000920 ;
00000930
00000940
00000950
00000960
00000970
00000580
00000950
00001000 |
00001010
00001020 !
€C001030 |
00001040 !
000010501
00001060}
000010701
00001080 f
00001090
000011001
ooool110!
000011201
oooo1130!
00001140]
000011501
00001160!
ocooc1170
00001180
00001150
£0001200
00001210
00001220
00001250
00001240
cood12:9
000010 &



[a)

o006 an

€00y (¢

¢

IF(IPV(K43)=1)9¢5.:9

> IF(AMAX=DA33(A(JWKRI)ILILIY S0
11 IRcw=y
ICSLU¥=K
AMaAXx=D4z3(A(JeK))
) CONTINVE

€ CONTINUE
IPVIICTLUMS3)=IPVICILUMI3) ¢l
I12V(1+1)=IROW
IPV(I42)2=ICOLUK :
INTERCHANGE RCwS TC PUT PIVOT ZLEMINT ON Ol ASONAL
IF(IRCw=ICOLUM)1E+17416
1€ DI 20 L=1.N
SwAP=A(ICw.l)
ACITRCwL)=a(ICOLUMLL)
20 ALICOLUM,L)=SWAP
DIVIDE PIVOT ROw EY PIVIT ZLEMENT
17 PIvCT=A(ICOLUM, ICOLUN)
A(ICOLUM,L,ICOLUM)=1.020
DD 23 L=1.N
23 A(ICOLUM.,L)=A(ICOLUM,L)/7PIVOT
REDJCLE THE NON PIVOT ROWS
D3 3 L1=1,N
IF(L1-ICOLUM)26+.3,26
25 T=A(L1,.ICOLUN)
A(L1+ICOLUM)=0.0D0
DO 2% L=1l.N
2% A(LloL)=A(LLWL)=A(ICOLUM.L)*T
3 CUNTINUE
INTERCHANGE THE COLUMNS
D0 31 I=1.N

L=N=1I+1
IF(IPVI(LG1)=IPVIL2))34.31,34
34 JRO#=IPV(L 1)

JCOLUM=IPVI(L.2)

DO 32 K=1,.N
SwAP=A(K, JROW)
A(KsJRCW)=A(K+sJCOLUM)
A(Ko+JCCLUM) =Sw AP

.32 CONTINUE

31 CIONTINLE
41 KRETURN
END
MATOUT
wITTEN BY REBECCA _EZ 11 FZ3 83 ZTASTERN ILLINIJIS UNIVERSITY
TAIS SUBRCUTINE wWILL PRINT OUT ANY SIZEZE WATRIX wWITH NINZ COLUMNS
UN A PAGE. THE CAWLING SZQUENCE IS AS FU-.J#S:
CALL MATCUT (MDIM,NON,yX)
PO PO WMol Mz2TIRERNSTION ofF Tl dau i AARXAT
NCN=CARDER OF THE MATRIX TGO SE PRIINTZO OR NUHMDE
IN THE CASZS GF A 4ATRIX erITHA IS NIT S0JAR
X=TmE YATRIX TI 3& PRINTID
TITLE=TITULE UF MATRIX TS £Z PRINTZD
SUSKUUTING “ATZTUT (401 46 vGiNe 4)
12U 1CIT RrREAL=E(4-A,0-2)
OINMINSICN «(MCI2,wvD1 M)

“l=0

R OF ROwS

NNEY
17 (Wlhenle vin)Ol T2 50

VTSl N/ZNN

00001270
00001¢80
000012v0 :
00001300 :
0000151 0 :
006001320
00001330
00001340 .
00001230
N0051360
00001370
000013301
00001390
000014001
00001410/
000014201
000014301
00001440
00001450
00001460i
00001470!
000014801
00001490!
000015001
00001510
00001520
00001530:
0C001540
00001E550:
00001560:
00001570:
00001580.
00001590;
00001600
00001610.
00001620
00001630
00001640
00001650
00001660
00001670
00001630
00001650
0000170Q
oo00171a
oooo172a
00001730
0001740
00061730
600017060
00001770
00001750
00001750
00001000
00001510
€C0013520
00001830
CCCC1E4D
€0001u22
3C00lcuq

i



CGOOOOOOONDOO0NOOND OO0 O6GO00

06

(L

99y

So
60
1000

108

0L 5 K=1,hT
i (KetCel) GC TC 3
IF (KeNEWol) GC TC 5
p=1
Go TO &
VNzwe s
MI=v4CtsS
WRITE (E4500) M,HMC
FL-waAT (lh ' u=' I3, TO *,13)
03 7 1=1,NON
WRITE (€+€69) (W(IsJ)eJ=AsMC)
FLIAAT (1HO,9(D12.35,2X))
CINTINUE
NT2=NT=NN
NTI=NCN=NTP
NTP=NTP¢1
IF(NTR.EQ.D) GO TO 1000
IF(NTR.LT.NN) GO TO 30
®"RITE (6+200) NTP,NON
GJ TO So
DD &S I=1.NON
wRITE (€+599) (W(lsJ)eJ=1lNOIN)
RETURN
DO 60 1I=1sNON
W#ALTE (6+s999) (W(IeJ)eJ=NTP,,NON)
~ETURN
END
DIAG

D14G DOIAGONALIZES HERHITIANb(REAL SYMRETRIC) MATRICES
Ery THE JACOBI METFOD. THE CALLING 3SEQUENCE IS:

CALL DIAG(NOIMsAsNeIGENJI

WHZRE NDIM IS THE MATRIX DIMENSIUN

H=FMERMITIAN MATRIX TO 3E DIAGONALIZED

N =THE CRDER CF H

IGEN = 0 FOR BOTH EIGINVALUZ S AND EIGENVICTORS,
GIN = 1 FOR CNLY Z1IGENVALUES

AND U= EIGINVECTCRS

THZ EIGENVALUES ARE THZE D1AGONAL ELEMENTS OF H

DIAG GCPERATES ONLY ON THZ ELEMENTS OF H THAT ARE TO THE
SISHT CF THE MAIN DIAGONAL. THJ)5 s GONLY A TRIANGULAR
SZICTICN MUST EBE STOREZD IN THE ARRAY H.

AUTHURS: Fo. CORBATO AND M. MERWIN (SEZ Ke ¥IBZRGs "COMPUTER
PRGLRAMS FCS CHEMIST3™s 3ENJAMIN, 1D2353M 2P.3d8-50).

SU=RCUTIANE DlAo (NDOIMyHsNyIGINyJ)
[“>LICIT REAL*B(A-AH,0-2)
DIMENSICN HINDIMoNDIM) e JUNDIMIND IM)
DI4ENSICN X(20)., 12020}

INITIALIZE U
IF(LGENNNIZL0) GO T2 1S
OoC 1Y i=1lWN

So b U=l

00001E70
oooo1880
ocootlev0
c0001520
00001910
coC01vy20
00001530
C0001%+0
00001%50
00001960
ocoo1l1970
00001980
00001990
00002000
00002010
00002020
00002030
00002040
0002050
000020€0
00002070 .
©0002080
00002090
00002100
00002110
00002120
00002130
00002140
00002150
00002160
00002170
00002180
00002190
00002200
00002210
00002220
00002230
00002240
00002250
€C002260
00c02270
00002280
00002250
00002300
00002310
00002320
00002350
00002340
00602350
000023€0
00002370
00002580
00002350
C0002400
c000 2410
00002429
00002430
00002440
0CC02+«30
00002400




[a AN RN NA]

N oo

—_
(VIR

30

Nn oo 0O oO0Onon

o

(a]

O n

(3]

69

70

90

159

109

ull.J)=C.C00

IF(I.EC.Y) U(TIvJI=1.0D00
CULNTINLE

NR=0

IF(N.LE.1) RETURN

SCAN FOR LARGEST COFF-DI[ASONAL EcaMENT IN ZACHA ROW
X(I) CCRNTAINS LARGEST ZLIMENT IN THE ITH ROa
iI5(1) HOLDS SECCNO JUS33CRIPT DEFUINILNG PuslTIUN OF ZLEMENT

NHMI1=N=1

03 30 I[=1,NM11

X(1)=0.0C0

IPLI=1¢1

OC 30 J=1PL1 N
IF(X(I).GT.DAES(H(I+J))) GO TO 32
XUI)=DABS(H(I.4+J))

QC1i=9

CCONTINUE

SET INCICATOR FOR SHUT-03FF: RAP=2%%—27. NR=NJ OF ROTATIONS

RAP=7.4S0S80€0D0~S
HDTEST=1.7038

FIND THE MAXIMUM OF X(I)*'S FOR THE PIVOT. ELEMENT
TEST FOR END CF FRO3LEM

DO 70 I=l1.N#I1

IF(l.LE.1) GD TO €0

IF (XMAX.GE.X(I)) GO TO 70
XMaAX=X(1)

IPIv=1

JRPIvVv=1Ia(1)

CONTINUE

IS MAXe X(I) EQUAL TO ZERDO? IF LZISS THAN rADTESTs REVISE HOTEST

IF(XHMAX.LE-.O) RETURN

IF(HDTEST.LE.O0) GC TO 30
IF(XMAXeGT.HDTEST) G0 TO 143
HOIKIN=DABS(H(1.1))

CO 110 I=2.N
IFCHODIMINC.LE.DABS(H(I1,+I))) GO TO LlO
POlIA4IN=DAES(H(I.1))

CONTINUE

AITEST=FDIMIN*RAP

LT OR IE MAXN eHA( 1 Wd) LZ00 TAAN (2%3%=27)35433 (A(KK)=idIN)

IF(HOTESTGE « XMAX) <ZITURN
NR=NR ¢1

COXPUTE TANSERNTWSING ANO CISINEs HOIwi)ealJded)

TaNS=CSIGR(Z.0D04(A{LIPI VI IPLIV)I=AlJPIVII2iv)))xR(IPIV.IPIV)/
(CASE(RUIRPIVIIFIVI=n( 421V JIPIV)) ¢ D337
((A(IPIVveIPIVI=-HIJRIV.JPIV))Ex2 & 4.2 s4(IPIV+JIPIVI®EX2))
CIZIWI=l /28 0RT (e #HAaNST=2)

00002470
00002480
000024v0
00092500
60002510
0C0023520
000023530
00C02340
00002550
00002560
00002570
000025680
00002590
00002600
00002610
00002620
00002630
00002640
00002650
00002660
00002670
00002680
00002690

00002700 .

00002710
00002720
00002730
00002740
00002750
00002760
00002770
00002780
00002750

‘00002800

000025610
00002820
00002830
00002840
00002850
0c002860
06002670
00002830
00002890
00002300
0Cc002910
00002920
00002930
00002540
ullo&v09
00002v¢0

00002570 |
06002550

00002350
00003000
oooo3¢clto0

000020260 :

00003030
02003040
CCCI335560
¢Co020u0
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153

<CC
210
230
240

3290

350

t
~
(5

110

Hll=r({IPIV,IP1V)

MOIFPIVIIPIV)ISCOSINZ®$2=(AII+TANS* (Z2.FH(12IVeJPIV) ¢TANGE

¢ m(JPIVvJFRIVY))
A(JPIVJPIV)=CCIINZx=22% (R (JPIViJ21IVI-TANG*F (24 *¥A(IPIVeJPLV)=TANGE
¢+ RID))

FllFIVAaJFRIVI=CCDCH

P3zJDC RANK THE EICINVALJES
AuJduST SItE ARND CO3 FuUx CUMPUTATION OF MU IK) AND ULLIJ)

IF(H(IPIVWIPIV)CGELH(JPIV.JPLV)) GO TO 153
HTEWMP=R(1FIV.IPIV)
R1PIVLIPIVI=R(JFPIV.JIPLIV)

HUJPIV JPLIV)=HTENP

RECCMPLTE SINE AKNC COSINE

ATEMP=CSIGN(]1 «000«=3INEJ*COSINE
CSSINE=DABS(SINE)

SINE=FTEMP

CONTINUVE

INSPECT THE 1QS EETWEEZWN [+l AND N-1 TO DITERMINE
wHEITHER A NSw MAXIMUM VALUE SHOJLD BE CONMPUTED SINCE
THE PRESENT MAXIMUM IS IN THE I DR J ROwe.

DO 35S0 I=1.NKI1

IF(I=-1IPIV) 21Ce350,209
IF(1.EQ.JPIV) GO TO 350
IS(1Q(l).EQ.IPIV ) GO TO 240
IFC(IQ(I1).NE.JPIV) GO TO 35S0
K=1Q(1)

RTEMP=K(],K)

H(I.K)=0a

IPLI=1+1

X(1)=0.0

SCARCH IN DEPLETED RO« FUOR NEW K& XIMUM

DD 320 J=IPLI1 N
IF{X(1)«.GT.DAES(H(IsJ))) GO TO 3¢0
X{I)=CAEBS(H(I1.,J))

Iadt)=9

CONTINUE

H{ 1+K)=HTEMP

CONTINUE

X(1P1lv)=0.0

X(JPIv)=0.0

CAANGE ThE CRLCER SLEMENTS OF H

OU 530 I=1.N

IFCI-1PIV) 27C.S30+420

RTEMP=R(1.1P1V) )
FOlelFIVISCOSINESHTE4? + SINE*H(L,JPIV)
IF (X(1).CGZ.CAHS(H(I,I2IV))) GO TO 333
X(1)=Cles(H(1.IPIV))

IG(1)=121V

] v JdPiV)I==SINISFT 142 ¢ JZSINZE4(1JPivV)
I3(m0ieiv))) 30 TU 52

FoLALL)eLZ el A
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00003440
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00003470
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Xx(1)=DABS(A(I+JP1V))

12(I)=JP1V

S5 TS €30

IF(i=JPIlV) &30 +530,4630

RTZ&P=R(1PIV, 1)

REIFIVII)=CSEINE=RTLEMP + LINT*R(L JP IV

I (X(IPIV)sGE.DASS(AlIPIV.I))) 30 TGO 6352
x(IPIV)=CABS(HR(IPIV,1))

IS(lPIv)=1

H{TsJPIV)==SINZ*HTZMP + COSINZ=*dl( l.JPIV)
1T (Xx(1)-CAaoS(H(I.JP1V))) 4C0,535.530
ATSvP=r(IPIV.1)

M{iPIVel)= CCSINEXATEM® + SINS=1(JPIV.])
IF (X(IPIV).GE.CABS(H(1PIV,I1))) 30 TO 502
ALIPIVI=CABS(F(IPIVLI))

ISClPIV)=1

H(JPLIVel)= —SINEXHTEMP ¢ COSINZ«4(JPLlV.1)
I (X(JPIV).GE.CABS(H(JPIVY,1))) 3G TO S30
X(JIPIVI=DABS{H(JIPIV.]1))

12(JPLlv)= 1

CONTINUE

TEST FCR COMPUTATION OF

m
—
[
m

NVECZT CRS

IFCIGEN.NE.D) GO TO 40

DO 530 I=1.N

HTZHP=U(IIPIV)

VlI4iPIv)=s CLOSINE®RATE4P ¢ SINEZFJ( 1,J4P1V)
L(1sJPLlV)= = SINEHHTEIMP ¢ CISINZ€®€UlIJPIv)
GS TO 40

RETURN

END
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Appendix III
Intermediate Matrices and Operators of the
-Normal Coordinate Analysis of Acetylene-HCl

(CGS Units)



.2801E-01

.9720E+00

-.3874E-01

-.4613E+00

-.4613E+00
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(B) -TRANSPOSE MATRIX

.7862E+08

-.5238E+08

-.1017E+07

.4615E+06

-.1211E+08
0

.1999E;07

-.1211E+08

-.1999E+07

-.1017E+07

-.4615E+06

.5027E+06

.26 73E+08

-.1055E+07

-.1169E+08

-.1256E+08

-.5061E+08

-.1256E+08

.5061E+08

-.1055E+07

.1169E+08

-.7865E+08

.5133E+08

.1058E+07

.1260E+08

.1260E+08

.1058E+07




.398%E+23

.1997E+12

114

(G) -MATRIX
0 0
.3758E+40 -.5472E+36
-.5472E+36 .4499E+39
0 0
(L) -MATRIX
0 0
.5995E+20 -.1280E+20
.4419E+19 .2075E+20
0 0

.3759E+40

.6131E+20
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ROTATION AND TRANSLATION OPERATORS
FOR ACETYLZNE-ACL (CGS UNITS) IN
TERMS OF EQUILIBRIUM COORDINATES

DEFINITION OF ATOMS

(1)-8 . (4)-C (3RD CUADRANT)
(2)-CL (5)-C (4TB QUADRANT)
(3)-B (3RD QUADRANT) (6)-B (4TB QUADRANT)

ROD 1=BRCL ROD 2=ACETYLENE

DEFINITION OF OPERATORS

T =TRANSLATION OF ROD 1 IN Z-DIRECTION
1z

R =ROTATION OF ROD 1 ABOUT TBE Y-AXIS WEICB RUNS TBROUGR TEE
1Y2
CENTER OF MASS OF ROD 2

OPERATORS

T =2.801E-02Z (1) + .9720z(2)
12

T =3.874E-02Z(3) + .4613Z(4) +.4613Z(5) + 3.874E-02Z(6)
22

R =7.789E+07X (1) - 7.789E+07X(2)
1Yl

R =1.017E+06X(3) - 4.615E+07Z(3) + 1.211E+07X(4) - 1.999E+062 (4)
2Y1
+ 1.211E+07X(5) + 1.999E+06Z(5) + 1l.017E+06X(6) + 4.615E+06Z(6)

R =-1.169E+07Z(3) - 5.061E+07Z(4) + 5.061lE+07Z(5) + 1.169E+07Z(6)
2Y2

R =-5.027E+05X (1) + 2.801E+07X(2)
1ly2

R =-7.789E+07Y (1) + 7.789E+07Y(2)
1X1

R =-1.058E+06Y(3) - 1.260E+07Y(4) - 1.260E+07Y(5) - 1.058E+06Y (6)

2X1



Appendix 1V

. . 2
Derivation of <cosd>=f(<coszc(b >,<ccs"ag__>)

The angle made by the HCl subunit with the (a) inertial
axis appears several times in the course of this study.
However, experimental data permit the calculation of the
projection of BHBCl on either the (b) or (¢) inertial axis.
Therefore, it would be desirable to write <cos’A > as a
function of these two quantities, <coszc(b> and <cos’o(c_>.

The figure below describes the necessary structural

parameters employed in this derivation.
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Inspection of the previous figure yields the following

relationships:

cos & =z/hx (A4-1)
cos® =z/hz (A4=-2)
cos c(c_=z/hy ' (A4-3)

By the pythagorean theorem, hx, hy, and hz can be

replaced:
cos®y =z/ (x +2%)I* (A4-4)
cos & =z/(r"+z" )9,_' | (A4-5)
cos o(c_=z/(y’~+z")yz- (A4-6)

If the expression for cos & is sguared, egquation (A4-7) is

obtained:
cos® =zz/(z7'+r") (A4;7)

At this point, it is desirable to replace 2® with expressions
containing cos o(s and cosa. (egns (A4-4) and (A4-6)). 1In order
to make this substitution, cosﬁtband cos qc_must be sguared and

2

solved for zz. To easily solve egns (A4-4) and (A4-6) for 2z,

the following substitutions are made:

x2+zz=x"/(sinze(b) (A4-8)
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y +z-=y*/ (sin’a, ) (A4-9)

2

. . 2 2
and expressions for z in terms of coso(b and cos <, are

obtained using egn (A4-10), a standard trigonometric identity:

cos 8 + sin*8 =1 (A4-10)
z =x" cos’ay / (1-cos®ly) (Ad4-11)
z =y"cos*a<¢_/(l—cos’“a(¢_) (A4-12)

When equations (A4-11)-(A4-12) are substituted into the
denominator and numerator of egn (A4-7), the following
expression results:

cos*a, =y2'cos’b(¢_/(l-coszd¢)

—————————————————————————————— (A4-13)
(x"coszatb / (l—ccs‘«:(k> )) +r*™

Close scrutiny of the figure on the first page of this
appendix clearly indicateé that x and y form the sides of a
rectangle in which r 1is the diagonal. By the pythagorean

theorem, it can be shown that:
rr=x? +y*- (A4-14)

Using egn (A4-14) and simplifying , cos®*« is now defined in
accordance with egn (A4-15):
2 _.2 2 2 2
cos X =y~ (cos'® -cos ‘. cos dy )

------------------------------------------ (A4-15)
x? (l-cosa, y+y© (1-cos’ey —cos’dc—cos'c{b cos'a )
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It is important that x? ani yz be eliminated from egn

(A4-15), therefore, the following definitions of xz and yz' in

terms of tan? db and tanzb(& are used:
x" =zz tan"c{h (A4-16)
y =z tan&¢ (A4-17)

Substitution of egns (A4-16)-(A4-17) yields the following

expression:

cos® =z tanzolc (cosAe —cos™d, cos"ﬂkb)
————————————————————————————————————————————— (A4-18)
z”tan"c(b (l-coszc(Q )+Z t:an""G(L (l—cos"db -cos’%—coszdbcm\g

It is clear that z- factors out of egn (A4-18), leaving
only cos"o& as a function of cos"ctb ’ coszc(t, tan:aLb, and
R .
tan °(c.' Recalling the definition of the tangent function, egn

(A4-19) :
tanB=sinB®/cos 8 ‘ . (A4-19)
and egn (A4-10), egn (A4-18) can be rewritten:

cos =sin’de (coszl’(c_—cos:de_ cosxcLb)
cosde (A4-20)

The following egns are the subsecuent simplification of

egn (A4-20).
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2 .
cos® =sin’e, (1-cos )
ST TIITIL T TTIIO TTTTTITIITIIOC - (hé21)
sindg sin’d cos & +sin'& cos’Xy (1-cos«y, ~cos'd, —cosKy cosa, )

———————_— ———————————— {—————————— T ———{—— ———— ] ]— — ——{— {—— {——————————— o "= o

coszibcoszc‘(c

2

cosd =s inld\-_ sinto(bcos%(b cos’o(c_
Bttty i T---(A4722) :
sin'dy sin'K cos™ +sin & cos dy (1-cos’dy —cos'®, -cos™y, cos¥. )

cosd=sindly cos¥ cosw
——————————————————————————————————————————————— (A4-23)
s in""(‘ cos zdc_+coslc<b (l-cos ’b(b-coszb(r_—cosza(b cos’otc)

2
cos®=sin’dy cos’dy cos o
T TR R W Fomm T ST - (Ag-24)
sin®y cos™, +cos & ~cos &, -cos & cosd&, +cos &, cose,

cos’d =s in“ib cos"akB cosza(c_ ]
—-oTTT T T T o (A4-25)
sin e(bcos o« +cos o(b(l—cos"ulb)-cos o(b cos o(Q(l—coszo(b)

cosX =5 int"(h coszdbcostclc_
----------------------------------------------- (A4-26)
sin z4:'(% (cos'&:‘(|:,+cos"<:(‘_—cos’d\B cos’ctc_)

S
cos®=cos Xpcos *d
oD oo (A4-27)
cosd, +cos ¥ ~cos’®, cos Lc

In order to obtain <cosic(>, egn (A4-27) is averaged over
the ground state vibrational wave functions (see Methods

section, Part C for a description of these wave functions):

<cos¥>= cos’& cos’de

cos’;;- cos'®, —cos&b coszc(e_

It is assumed that the right hand side of egqn (A4-28) <can be
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written in terms of the individual vibrationally averaged
projection operators:

<cos’d>= <cos?dy ><cos®c >

<cos"aLb >+<cos’m, >-<cos®y ><cos?ac >

. : 2
so as to obtain <cos™® > as a function of <cos@p > and <cosz°kc>.



Appendix V
Derivation of Solution to Integration of

the Projection Operator <cosgib>

The 1integration of <cos%ib> involves averaging the
operator cosqu over the graund state wvibrational wave
functions. In order to accomplish this, the operator must be
written as a function of Qf, the normal coordinate. To write
cosﬁﬂb=f(Q), the angle Nb must first be written.as a function

of R

{r an internal coordinate. Internal coordinates and normal

coordinates are related through the following matrix equation:

R= LQ (A5-1)

where L is the eigenvector matrix of the secular equation:
GEL=LA ~ (A5-2)

For more details regarding L and egn (A5-2), see Methods
section, Part A.

Examination of Fig [1.7b] clearly reveals that ‘*b is a

functien of RL:

&KL =R,+ ¥ (AS5-3)
where ¥ is the angle between the line joining the centers of
mass of the two rods and the (a) inertial axis. The anglez' is

a negative angle defined in accordance with vector conventions

and angular momentum constraints. By the Eckart conditions
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(see Methods section, Part A for a discussion of this topic),
it is possible to relate Ro to ¥ and thus obtain<ib solely as a

function of RZ:
a(b=Rz—R2_(Im /1”‘) (A5-5)

where Ijj‘ is the moment of inertia about the y axis of the
complex when Roy is incremented. By the parallel axis theoren,
it can be shown. that the contribution of R, to Ig" will be

guite small; therefore, I%%’ can be approximated by ijz
b 2 ‘
IﬂJ%ARb +IA¢+(1/2)I“Q‘(1+cos R,) (A5-6)

where I, and I”q_ are the ground state moments of inertia (see
Table VIII), Re is the distance between the centers of mass of
the two rods and A is the pseudodiaiomic reduced mass egual to
(m“mm_l )/(mAC+muu_). Anticipating the conversion from
internal coordinates into normal coordinates, the last term of
egqn (A5-6) 1is assumed constant in order to simplify the
calculation. This approximation is valid as it can be shown
that coisz. is constant to fqur figures over the integration
limits.

It should also be noted that the internal coordinates R

3

and R3 are both of By symmetry and therefore are coupled.



It would be expected that any incrementation of R could be

3
expected to affect 2y . Examination of Fig [l.7c] and the

Eckart conditions permit dl: to be expressed as a function of
y°
Ryl e=" dblji;( (A5-17)

where Ia" is approximated once again by I(,.” From Fig [l.7¢c],
it is clear that R, is zero; therefore, the last term 1in egn
(A5-6) vanishes,.

Thus, o can be expressed as a function of R, and 93:
d =R_(1-(I I + Ro(-Iae/I -
and can be written as a function of Q via egn (A5-1):

°(b= ﬁzQz+ €3Q3 : (A5-9)

where 5Land 55are Gefined in terms of the L matrix elements and

and the ground state moments of inertia of the monomers:
Br= (1~ (Iq /gy ) lan = (“Tpe /Iﬁy )Lag _ (A5-10)
@;(l'(lna /I;u ) )LZL&_ = (=Iae /Igg )Lz3 (A5-11)
Baving defined & in terms of the normal coordinates Q,

and 03, it is possible to write the operator cos’c(b in terms of

Q. and qusing the trigonometric identity, egn (A5-12):

cos (8+ )=c059cospl+sin98in/d (A5-12)



2
COS"’% = [Cosﬁ,_Qz_cos B, Q -sinf, Q,sin 5 Q,]) (A5-13)
cc>s7-,¢h =cos" BZQZCOSI(’: Q,-2cos 8.0, sin@ Q. cos@,Q, sin 6.2,

+sin” g,0 sin® g0, ' (A5-14)

It is evident from symmetry considerations that the term
cosﬁQ;sing‘—Q; in egn(A5-14) is an antisymmetric function and will
vanish upon integration. Therefore, it is eliminated from egn

(A5-14) leaving the following expression:

cos"::(b .—.cos"ﬂ,‘ Qlcosz @303-&5 irx"@zozsigﬁ3 Q, ' (A5-15)

When egn (A5-15) ié integrated over the ground state

vibrational wave functions,Y (Q‘-) :
Y (0;)= ¥ /m M exp (- ¥;0;* /2) , (A5-16)

where ¥{is defined :

Y =4'cw/h (A5-17)

in terms of ¢, the speed of light, w;,the ith normal mode

k)

frequency, the following integral is obtained:

<cos’c-lb >= N,_NB exp (- ‘IzQ: )exp(—TSQ: )cosaa’;[> sz_dQ.3 (A5-18)

o

where cos z&b is defined as in egn (A5-15) and N, and N.3 are

defined as:
- Y2 _
N:. = (B’l/'n') (A5-19)

8, = (/™ (a5-20)



Substitution of egn (A5-15) permits egn (A5-18) to be written

as a sum of integrals:
-4

<cos:a(5 >=j N, Na exp (—sz: )exp (- XBQ;' )cos® BzQQ_cos 2 ﬁstszdQ'3

[ o

-
1»} N, N exp(—.TzQ: )exp (-3, x )sin’Bansin"BzQédQ:_dQ_g (A5-21)
-0

This sum can be rewritten as a sum of products of integrals :

<coszaf.b >= Nz‘exp(- h’,_Q: )cos"(S;QldQ,_SmNzexp(—YSQ; )cos’ﬁz‘QadQ.3

-—c0 —oce®

+5<‘:ilexp (-¥,Q,.)sin" B,0,40, §:3exp (-¥,0F )sin*@,0,4d0, (A5-22)
- og o

in which integration over the Q, space 1is separated from
integration over the QS space.. The integrals involving sin"é’;Q;
can be rewritten in terms  of cos® 8iQ, using egns

(A5-23)- (A5-24) :
N,exp(-Y¥,QF )-Nyexp(-¥,Q3 )cos'8, 0,40, (A5-23)

Ny exp (- %05 )-Nyexp (- ¥,0; )cos* B;0,d0, (A5-24)

The solution to egn (A5-22) can be obtained numerically or
by further simplification of the integrals so as to obtain
expressions that can be evaluated by the use of tables. The
later method will be used to evaluate the integrals to acgquire
<cos?ey>.

Examination of the integral tables yields two definite
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integrals that can be used to solve the integrals in egn

(A5-22):
ﬁxp(-a"xz)dx=(l/2a) (1r>%' . (A5-25)
(-]
o A
SexP(-a’ xz)cos bx dx=(1l/2a) [('n')"’éxp(—b’-/4a’-)] (A5-26)
(]

\

However, the wuse of these integrals will involve making
accomodations for their integration limits in egn (A5—22).. The
actual 1integration will go from =zero. . to infinity and the
resulting area will be doubled to obtain the solution to egn
(A5-22).. Another requirement involving use of these integrals
is that cosLBIQ; be rewritten in a form appropriate for egn
(A5-26). In order to acéomplish this, the following

trigonometric identity'is used:
cos™8 = (1/2) [1+cos 28] (A5-27)

These alterations and substitutions permit the solution of

<coszd£> to be written in a closed analytical form:

<cos By >= (1/2) [1+exp (-62/¥,) ] (1/2) (L+exp(-67¥,)]
+ (1/2) [1-exp(-£7/¥%,)] (1/2) [1-exp(-§/¥,)]  (A5-28)

Multiplication of terms in egn (A5-28) and simplification leads

to the solution of <cosﬁib>:

<cos%£b>=(l/2){l+exp(-6:/xx)exp(-3:/33)] (A5-29)
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