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Abstract

Title of thesis: Empirical Equations for Activity and
Osmotic Coefficients.
By N. Ragunathan.

Thesis Directed by Dr David W. Ebdon, Professor of Chemistry.

A system of equations for fitting the experimental
activity and osmotic coefficients of single and mixed
electrolytes in aqueous solutions has been empirically
developed 1n the present research. The results obtained
through the equations developed here are comparable to the
Pitzer equations in terms of accuracy and range of fitting.
The equation for activity coefficient developed 1n the
present research compared to the Pitzer activity coefficient
equation has a form which i1s conveinient for computational

purposes. The equation for activity coefficients is

1/72 172 3/72

In g = =-1Z 2 1AL [I /(1 + bl ) + EI In(I) + 3,1 + 3,1
mx D

1 2
where, b is fixed parameter having a value of 1.8; E, Jl'
and Jz are floating parameters. The corresponding equation
for osmotic coefficients is obtained through the Gibbs-Duhem
equation. The parameters have been evaluated by a nonlinear
least squares computer program. This program weights all
the data points equally. Parameters for both the

coefficients are presented. In most of the cases data

recommended by Robinson and Stokes 1s used. In the case of



the 2-2 electrolytes one additlional parameter 1s Included to
obtaln acceptable results Instead of two by Pltzer.
Representing the 2-2 electrolytes In this manner lIgnores
assoclatlon constants, and thereby sImlefylhg the treatment
of these electrolytes at higher solutlion concentrations.
Treatment of mixed electrolytes involves, In additlion to
pure electrolyte terms, parameters to account for the mixling
effects is utillsed. Only a few mixed electrolytes
Iinvolving osmotic coefficlents as experimental data has been
treated here, and the results obtalned are comparable to

Pltzer's,
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Introduction

Thermodynamic properties of nonideal solutions can be
accounted for by obtaining theoretical expression for the
chemical potentials or activity coefficients. To obtain a
theoretical express1onrthe chemical potential or activity
coefficient can be expressed as a function of temperature,
composition, pressure, solvent properties or any other
relevant varfable. For computational purposes activity
coefficients rather than chemical potentials are utfilfzed to
express the nonideal portion of solution behavior. This
approach 1s utilfzed due to the nature of the relatfonship
between the chemical potentfial and the activity coefficient.
As the solute concentration approaches zero the chemical
potential of the solute approaches negative infinity whereas
the activity coefficient of the solute tends to unity.
Correspondingly the solvent activity approaches unity and
hence the solvent chemical potential to {ts standard value.
The reason for not utfilizing solvent chemical potential to
express thermodynamic properties 1s due 1ts poor sensitivity
at low to moderate concentrations. In addition one f{s
generally more interested 1n the behavior of different
solutes 1n a given solvent. FPhysically what this means fis
that addition of an infiniftesimal amount of solute to an
infinitely dilute solution is a spontaneous process. The

fundamental difference between the properties of an {1deal



solution and a nonideal solution is the existence of
interparticle interactions in the latter. The concept of an
{deal solution 1s hypothetical, but {1t helps to form a basis
in the treatment of nonfdeal solutions. The degree or
extent of deviation from 1deality 1s given by the activity
coefficient. D1fferen; thermodynamic properties of a
solution can be 1nterée1ated if one knows the degree of
departure from ideality or the activity coefficient.

For an aqueous solutions solutes can be <classified into
-electrolytes or nonelectrolytes. Electrolytes are
substances which on dissolution in an aqueous media
dissociates {into charged species known as fons, as was first
proved by Arrheniusl. For any solution whether electrolytic
or ﬁone1ectro1yt1c there exist {nteractions between various
component particles. In the case of a nonelectrolytic
solution, interactions are 1imited to short range forces
between solute particles, and the between solute and
solvent. The nature of these forces are such that they fall
off with increasing distance rapidly. 1In {fonic solutions
such interactions exist in addition one has to account for
long range or coulombic interactions between ions due to the
presence of charge on the fons to explain the thermodynamic
properties. The latter interactions do not fall off with
increasing distance as rapidly as the short range
interactions and are responsible for the observed deviations

from 1deality under dilute conditions. Under dilute



conditions the short range forces make negligible
contribution to nonideality even though at higher
concentrations such short range forces begin to predominate
over the coulombic forces and have to be accounted for. 1In
any theoretical treatment the relationship between chemical
potential and activity coefficient of a solute 1s expressed
as

Gy = G’ + VRT 1n (g m) (1)

where, EB 1s the chemical potential of the solute b, Ebo is

the standard chemical potential; g is the mean activity
coefficient and m the mean molality.

For the solvent

- =09
Gy = Gy A

uhere the GA and GAO are solvent and standard solvent

+ RT 1n a (2)
chemical potential, and an is the activity of the solvent.
Changes in solvent activity with changes in concentration of
~the solute at a Tow to moderate concentration does not
provide a sensitive measure of solvent activity. Hence
BJerrum2 introduced the concept of osmotic coefficient. The
rational osmotic coefficient is defined as follows

-0 :

Gy = Gy A

where, d 1s the rational osmotic coefficient and NA the

+ dRT 1n N (3)

mole fraction of the solvent. The practical osmotic
coefficient {is defined as
/1000) - .5%(vmM,/1000)02 +....1]

A A
- (vaA/1000)¢ _ (4)

-d [(vmM

fi

Tn aA



where is the practical osmotic coefficient. This is the
coefficient that 1s used for practical thermodynamic
calculations and hence will be simpiy termed the "osmotic
coefficifent™.
The activity coefficient of é solute and the osmotic
coefficifent of a solvent are re1ated.5y the Gibbs=-Duhem

equation as shown 1in the following equations.

zn, dG = 0 | (5a)

n, dG, + ng dGg = 0 (5b)
(lOOO/MA) d Ina, +vmd Ingm=0 (5¢)
- d(m¢ )+ mdlngm=20 (5d)
dlm (¢ -1)1 = md In g (Se)
S w Cegwi T 3 ¥ (5f)

Equation (5f) relates the two coefficients and will
henceforth be termed.as the Gibbs-Duhem relation. Thus when
a tﬂéoreffca1 or an empirfical equation for activity
coefficients 1s known the corresponding equatfion for osmotic
coefficients can be obtatned using the above relation.
Furthermore, data for one of the coefficients can be
computed graphically or numerically from the experimental

data of the other by utilizing the above relation.



Debye-Huckel Theory

In 1923 Debye and Hucke13 were the first to present a
simple theory of interfonic attraction in aqueous
solutions. This theory allows one to predict activity or
osmotic coefficients of an electrolyte in dilute solutions.
A fundamental assumption of the theory is the complete
dissocfation of electrolytes in aqueous soclutions with fons
considered to be hard spheres in a dielectric continuum.
With the assumption of a hard sphere or hard core model,
éffects of short range interaction on thermodynamic
properties are considered. Due to the dilute nature of the
solution, effects of such short range interactions are
neglible. The deviation from 1deality are ascribed to the
coulombic or long range electrostatic interactions between
fons. Mathemat1ca1]y; the potential between two fons in

aqueous solutfon is represented as

. L 2
U1’J(r) U1,J(r) + 2,2,0/D*r (6)
*

where, U1’J(r) 1s the short range potential

and ZIZZeZ/D*r 1s the electrostatic potential.

1 J(r)* o« for r<a, where a is the radius of
’ the fon

0 for r>a

U

Debye and Huckel 1n order to obtain the potential, W,
at a point 1n an fonic solution, utilize the Poisson
equatfion of electrostatic theory and the Boltzmann

distribution law of statistical mechanics. An {fonic



solution on the whole fs electrically neutral, but {in the
vicinity of a given ion this 1s not true. The Boltzmann
distribution law for fons around a given "central®™ {ion 1is

n1' = ni*exp(-21eﬂ /kT) (7)

J

where Z1ew 1s equal to the average electrical potential

enefgy of the i-th 1on. W, 1s the potential at the point

J
where the i-th 1on 1s and the subscript J denotes that the
potentfal 1s measured with respect to the j-th fon as the
"central™ 1ion.

Charge-déns1ty. p» in the vicinity of the central fon fis

equal to

p. = g ni'Z e (8)

i

The Poisson equation relates charge density to the

pofenf1a1 and is the most generalized form of Coulomb's law.

v wJ = = 4T1np/D

2 2 2

v: = (1/r") d/drl r dWJ/dr] » for a spherical symmetry.
The Poisson equation is based on the principle of 11near
superposition of potentials; 1.e. the potential at a point
due to two independently charged particles is equal to the
sum of the potentials due to each at that point. To satisfy
this condition Debye and Huckel expanded the exponential
term and droped terms beyond the linear. Application to
dilute solution makes this approximation of 1inearizing the

Boltzmann distribution law possible. Also in dilute



solutions, Z1ew<<kT. Thus terms beyond the linear are
negligible. Substitution of the radial distribution
function in the charge density equation, followed by
expansion leads to

The first term vanishes due to the electrical neutrality
condition 1n the solutfon. Substitution of the charge
density 1n the Poisson equation and solution of the 11inear
differential equation 1in WJ and r gives the potential, WJ.
at a point in the solution with j-th fon as the center of

the coordinate system.

WJ = ZJexp(-K(r—a))/Dr(1+Ka)

where, K = 4 ezn n1212

1/K 1s the Debye Huckel distance and k is the Boltzmann

/DkT

constant Using the principle of 1inear superposition of
potential, the potentfal due to all the fons except the j-th
fon at r equals

f = —Z
WJ WJ Je/Dr (12a)

or, WJ' = (ZJe/Dr)[ exp(-K(r-a))/(1l+kKa) - 1] (12b)

Debye and Huckel regarded fons as hard inelastic spheres
carrying a point charge at i1ts center. Hence the Poisson
equation 1s applicable only for r>a. For r<a the right hand
side of the Poisson equation vanishes. Due to continuity of
the potential and {its derivative, solution of the Poisson

equation for r?a gives the electric potential due to fon



atmosphere at r < a

WJ' = - ZJe K/D(1+Ka) (13)
Excess free energy due to electrical interactions is
obtained by the "charging process". Gunte'lberg4 was the
first to propose this method, which is much simpler than the
original Debye-Huckel method. Here, a hypothetical fon with
zero charge 1s introduced in the solution and then charged

to its original value, Ze, against the ion atmospheric

potential. Mathematically, this 1s represented as

G__/N

ox -K/D(1+Ka) f,Q dQ

n (ZJe)z K/2DKT (1+Ka), (14)

2

or, In g = IZIZ e"/2DkT * K/(l+Ka) (15)

2'
where g = the mean activity coefficient. Replacing K by 1ts

definition, one obtains for 1n g :

.5)

In g = =Ay1Z,Z,11">/(1+BI (16)
where, I = ,5¢ 212 m,s the fonic strength
Ay = (21 N/1000)1 7263/ (k0372 (L/mo1e) !/ Z(deg k1372
B = (81 Ne2/10000kT)1 /2 (ecm)~1(L deg K/mole)l/?

This 1s the Debye-Huckel equation for activity coefficients
in dilute fonic solutions. For sufficiently dilute solutions
prediction of activity coefficients using the equation 1s in
agreement with experimental data. As concentration is
fncreased, deviation from experimental activity coefficients

increases. Thus, application of the equation to higher



concentrations yfelds poor results.

In the case of dilute solutions, the numerator relates
to the effects of long range electrostatic force and the
denominator relates to the partial effects of short range
forces on thermodynamic properties. For an extremely dfilute
solution, Ka<<l, therefore deviation from ideality 1s solely
ascribed to: the preseﬁce of long range electrostatic forces
between fons and the effects of short range forces 1s
neg1eéfed; At higher concentrations effects of short range
forces are too large to be fgnored, and theoretical
representation of short range forces by Debye and Huckel
with the simplest possible model fafls at higher
concentrations.

Extension of the Debye Huckel theory 1is 1imited by
mathematical complications since the above method outlined
takes care of only long range electrostatic forces.
Empirical extension is made possible by addition of terms 1n
concentration to fit activity or osmotic coefficient data.
Most of the extensions are 1imited to addition of a singie
term. The Dav1s5 equation 1s sufitable for 1l-1 and 1-2
electrolytes; the Guggenhe1m6 equation treats 1-1
electrolytes. Both equations are not valid for
concentrations higher than 0.1 M and hence have 1imited

applications.



Statement of the Problem

The primary objective of this research is to develop
empirically a system of equations for fitting experimental
activity and osmotic coefficients of pure and mixed
electrolytes in aqueous solutions to an ionic strength of
6M. A system of equations obtained in a semiempirical
manner for these coefficients has been developed by Pit:zer7-14
The equation for activity coefficients proposed by Pitzer is
in an inconvenient form for computational purposes. The
extent of nonideality of a solution is expressed in terms of
activity coefficients. Hence a simple eQuation for activity
coefficients reduces to an easier treatment of nonideality.
The Pitzer equation is the most recent semiempirical
extension of the Debye-Huckel theory. Pitzer's equations
fit experimental activity and osmotic coefficients of pure
and mixed electrolyte solutions to 6 M ionic strength. The
present research involves developing equations which
are empirical extensions of the Debye-Huckel theory
with similar capabilities to those of Pitzer's equations but
in a simpler form. The ability of the equation developed in
this research to fit experimental activity and osmotic
coefficients of single and mixed electrolytes will then be

assessed relative to the Pitzer equations.

10



Pitzer Equations

Fundamentally, the Debye-Huckel theory fails at higher
concentrations due to lack of proper representation of short
range forces between ions. Advances in the theory of 1iquid
mixtures has made 1t possible to apply newer {ideas to fonic
solutions. An advanced statistical mechanical treatment by

15

Mayer leads to a better representation of both long and

short range forces. Other theoretical approaches based on

16. Po1r1er17. and

statistical mechanics by Kirkwood
Fr1edman18 has made 1t possible to predict activity or
osmotic coefficients in the I to 2M range accurately for 1l-1
é]ectro1ytes. Most of the recent theoretical methods
require numerical technques such as the Monte Car]o19 method
fof computation of thermbdynam1c properties.

Statistical theory 1s extremely complex even for 1l-1
electrolyte systems. Hence it is difficult to obtain
working equations which are simpler to handle mathematically.
A semiempirical extention of the Debye-Huckel theory using
statistical mechanics as guidance has been made by P1tzer7.

Pitzer utilizes a method similar to the virial

expansion for the nonideal behavior of gases and modifies
these equations to account for coulombic interactfions 1n
fonic solutions. Virfal expansions for gases are generally
power series in pressure or volume, and coefficients of

pressure or volume are termed virfal coefficients. 1In the

case of real gases, virfal coefficients represent the short

11



range forces between molecules involved in binary, ternary
..0tc interactions. Representing the behavior of fonic
solutions with such expansions leads to difficulties which
are peculfar to fonic solutions due to the presence of
electrostatic forces between fons. The problem 1s solved by
assuming that one can combine the electrostatic term with a
virial expansfon in 1onic strength or concentration terms.
In such an approach the behavior of virial coefficients with
concentration must be determined. This problem can be
overcome by an improved analysis of the Debye-Huckel theory
using statistical mechanics as a guide.

Pitzer's approach utilizes the Debye-Huckel model for the
interionic potential.
Uyytr = Uy (n" +2,2,6%/0r (17)
where, U1j(r) is the potentfal of mean forcezz.
Here; tﬂe short range potential includes all the effects
which the long range potential by ftself is unable to
account for. The electrostatic term accounts for
interaction between ions when r 1s large. Effects related
to solvation, the assumption of dielectric continuum,
dispersion forces between fons and direct repulsion due to
electron cloud overlap when fons come into contact or in
close proximity are combined 1n U1J*(r). In order to obtain
the direct effect of short range forces on the thermodynamic

properties, Pitzer abandons the traditional "charging"

process and instead uses the "pressure"20 equation which

12



yields the pressure of a pure fluid or in the case of a

dilute solutfon {ts osmotic pressure. Macmillan and Mayer21

were the first to show that eduations applicable to
molecules in 1mpeffect.f1u1ds could be extended to solutes
in dilute solutfions where pressure {s equated to osmotic
pressure of the solutfon. The interfonic potential of mean
force and the radfal distribution of ions are required to
solve the "pressure" equation.

$ - 1= =(6ckT)™ I cyc,or dU,

2
1€y (r)/dr gijhﬂ'(4nr')dr (18)

J
u

= 4 o f°§ r < a
=2,2, e /Dr for r > a

)

13

where dU‘J(r)/dr is the mean force on the {fons, gij(r) is
the radfal distribution function, Ci'cj are the
concentration of specifes 1 and J respectively{ and ¢ {s the
total concentration. 1Introducing the potential of mean
force, the derivative of which gives the force on a fon or
particle averaged over the motion of other fons or particles
constituting the dielectric, the integral reduces to two
parts, one relating to the effects of long range forces and

the other to the effects of short range forces.

J&Tr d/dr(ZiZJeler)

2
(] -
gij(r) (41 r7)dr (1/6ckT)22c1cJ

fer drdriu, (r)'¢4T rl)dr (19)

p=- 1 = -(1/6ckT)22c1c
*y
37 91y

To solve the first integral, Pitzer uses the potential, "J'

at a point in a solution as derived in the Debye-Huckel

13



theory. He substitutes this into the Boltzmann distribution
law and expands the exponential in the Boltzman distribution
function to three terms. The third term 1in the expanded
form for charge density has a zero value in the case of
symmetrical electrolytes.

g1j(r) = exp(-Z1ewJ/KT) = exp(-q1J) (20a)

2
or, gij(r) ®-'] - 943 + (1/2)q1J (20b)

where, q, = Z1ZJezexp(-K(r-a))/DkT(1+Ka)r

Comparision of the three term form and the two term Debye-
Huckel radfal distribution approximations with exact Monte
Cario calculations shows a better approximation in the case
of the three term extended Debye-Huckel radial distribution
function. The exponential form 1s not used directly since
only a numerical solutfon to the integral {is possible. With
substitution of the coloumbic potent1a1 between two fons and
the expanded radial distribution function one observes the
effects of electrostatic interactions on the thermodynamic
properties in the first fintegral.

I, = -K>/C6Dkt(1 + Ka)] (21)

The first and third terms are zero 1n the charge density
equation. This 1s the Debye-Huckel electrostatic term
obtained using the pressure equation and reduces to the
1imiting law at low concentrations. Solut1on23 to the
seéond integral, which represents effects of short range
forces, equa1§

3

I,

-(2na"/3c) 22c1cJ gij(a)

14



Thus, the osmotic pressure of a solution after substitution
for g1j(a), 1s

3/3 + kY7481 c?(14ka)2)] (23)

$-1 = -k3/(6DkT(1+ka)) + c[21a
The first term is the electrostatic term. Comparison with
the Debye-Huckel electrostatic term for osmotic coeffcients,
which is obtained by c¢onverting the activity coefficient
equation using the Gibbs-Diuhem equation, 1s inconvenient to
use. Both of them, however, can be applied through the same
concentration range. The first term 1n the short range
interaction term represents the interaction at contact
between 1ons 1n the absence of any electrical effects.
Pitzer labels this as the "kinectic effect of hard core".
This term is equivaient to the second virfal coefficient of
a nonfdeal fluid.  -In addition one has the second term which
{s due to 1ncreased repulsive hard-core electrical
Inteiractions between fons. Application of the above
equation to electrolytes 1s valid to about 1 M, thus, an
improvement over the Debye-Huckel theory 1s achieved 1in a
very simple manner.

Approximations involved in deriving the equation here
are similar to those of Debye and Huckel since the
potentfal, W, at a point in the solution {is derived using
the 1inearized Boltzmann distribution law. To obtain
thermodynamic properties a three term expansion 1s used and
the derivation 1s further simpiified by utilftzing the

property of symmetrical. electrolytes.

The above equation, (23), 1s not sufitable for practical

15



thermodynamic calculations. First, 1t has only one
parameter, a, that can be adjusted to fit experimental data.
Second, the range of prediction 1s 1imited to 1 M {ionic
strength. In addition to the above difficulties,
approximations 1nv01med do not permit further mathematical
extensjon of the equation to higher concentration ranges in
a simplified form. Hence Pitzer utilizes the idea of virial
expansion where the second virial coefficient has a behavior
qualitatively similar to the short range interaction term in
his "approximate™ derivation. Substitution of functions
which have similar mathematical behavior but also have
greater flexibi]ity enabling extension to a higher
concentration range would be useful. In the virial expansion
for e1ectro1ytes.-the first term in concentration represents
the effect of electrostatic interactions and terms beyond
the first describe effects of short range interactions
between two,three .. etc 1ons, respectively.

Thus, Pitzer defines the excess Gibbs free energy as

1

ex _ - -2
G /n'RT = n'f(i) + (n“) EL1J n1nJ + {n') Tu n.n.,n

ijk "i"3"k

G®* 1s the excess Gibbs free energy. This represents the

departure from ideality due to additional 1interactions
present in an 1{onic solution from those not present 1in a
nonelectrolyte solution. Here f(1) is the electrostatic
term, Lij the two 1fon interaction coefficient, and which 1is

a function of 1onic strength, and uijk’ the three ion

16



fnteraction coefficient which under moderate concentrations
is assumed to be independent of concentration. Equations
for osmotic and activity coefficients are obtained by
differentiation of the excess Gibbs free energy function
with respect to Py and n,. After proper algebraic

1
arrangements, the osmotic and activity coefficient equations

are
_ (¢) (¢)
¢ -1 = IZmZxI f' "'+ m (2vmvx/v)B P +
2 3/72 ¢
m [Z(vax) /v]lC b (25)
- (g) ' (g)
In gmx IZmZxI f + m(2vmvx/v)8 Bl
' 2 3/72 (g)
m [Z(vax) /v]C = (26)
where
Y% Zop  wr LB Mw Gy D & E
mx mx mx m X mm mm
+ (vx/2vm)(Lxx + I L'xx).
(¢) B 172 i -
e - [3/(fmvx) ][vm /— + Vi umxx]'
(g) _ af($) 1 _(¢)
B Mx = B MX + (1/1)6 B mx(I)dI.
(g) =
C X = 3/2 C mx’ and
L'1J x dL1J/dI.

Bmx {s the second virial coefficient and me i{s the third

virial coefficient. The above equations are general 1in
nature and direct application to electrolyte solutions fis
not possible. This Is due to the equation involving a large
number of varfables, and these varfables cannot be

asertained from-exper1menta1 data. Also L and u are fon-fon

17



interaction parameters, and they do not take into account
ifon-solvent interactions directly. However such a treatment
makes extrapolation to mixed electrolytes simpler. Pitzer
chooses an exact form for the second virial coefficient by
comparison with experimental data.

To represent properties of electrolytes accurately Pitzer
tests six possible combination of f(i), the electrostatic
term and Bmx' the second virial coefficient. The
electrostatic functions considered are: a) Debye-Huckel

"charging", b) Debye Huckel osmotic derived from the

"pressure” equation, c) One due to G1ueckauf24. For the

second virial coefficient two forms are tested

. 0D 5 K10 1/2

B¢¢)(1) + exp(-ar1t/2) (27)

0 1/2

B (2) = b% + bl/(1 + ar1l’/2) (28)

where, a' is a fixed parameter, not related to, a, the
radius of the 1on. 1In the test the maximum concentration
of each solution 1s 1imited to 2 M ionic strength. The best

possible standard deviation is obtained in the case of the

Debye-Huckel "osmotic™ and 80(1). Thus, working equations

for the purpose of fitting osmotic or activity coefficient

data to an acceptable accuracy are

6-1 = -A‘¢’|zmzx|[11’2/c1 + b1l/2.)1 +

(0) b(l)

172
m(2vmvx/v)[b + )] +

exp(=-a'l
()

2 1.5
m [Z(vax} /v1C 8

(29)
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1/2 1/

N 2 1/2
g, = -A %z Z 10 177%/¢1 + b1/ #(2/601n (1 + b1M/D)]

(0) b(1)

+ 2m([b + (

/821301 - (1 $-a01l/2 _ (1/2)a'21yexp(-a111/2))7

2 1.5 (g)

/v)C m%

*(vavx/v) +m (Z(vax) (30)

Here, b and a' are fixed parameters with a value of 1.2 and
2.0 respectively, for all electrolytes ; bO' b1 and me are
the variable parameters and are different for different
electrolytes. Concerning the applicability of the
equations, all but the 2-2 electrolytes fit this equation.
The 2-2 electrolytes, due to extensive association even at
low concentrations, do not permit one to utilize these
equations. Pitzer modifies the equations by inclusfion of
two additional parameters. Basically, these parameters fit
the data at lower concentrations. Thus for 2-2 electrolytes
the following additional terms are added to the second

virial .coefficient:

for. B€¢)
©mx
b(Z) exp(a'zlllz)
for B(g)
mx
(2) 2 172 2
(2 b /a(z)' ID[1 - (1+ a(z)'I = (1/2)a(2)' I)

172

exp(-a(z)[l )]

where, a(
b(2)

2) is a fixed parameter having a value 12.0, and

is a varfable parameter.

The equation for the Gibbs free energy permits one easily to
extend the method of interionic attraction/repulsfion to

mixed electrolytes. In a mixed electrolyte solution additional
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interactifons between cations and anions of all electrolytes
1s considered. The general equations for osmotic and

activity coefficients of mixed electrolytes are

= -1 (¢) ($)
¢ -1 = (£m1) { 21+ #ZZchma [Bca +

1/2 (9) ' '
(zmZ/(Z_Z) ) G l+zizmm_, [ecc, 18 o FERE

+ ZZmama,

L e + Ie' + zmc ¥

N " Jio o (31)

caa'

(g)

1n G ™ IZmlef - (2vm/v}£2[ BHa + EmZ)CMa +

(vx/vm)e Xa] + {2vx/v)2 mc[ ch + (I mZ)ch + (vm/vx) BMc] +

' -1
2% mcma{lzmlee ca hv [vaZcha VY q’mca\ vy ¢cax]} F

(1/72) zzm m_,LCv /v) ¥,

Lt1zzore 1+ (1/2xrmm ,

[(vm/v)w waai ¥ 12 ZT.10 ] (32)

aa'
Here, the additional parameters. for mixing "¢ " and "¢ "
represent {interactions between different 1ons having the
same charge sign and interactions between three {fons, where
two of the fons have the same charge sign, respectively.
Interactions between three fons having the same charge 1s
assumed to be negligible. Generally, additional terms for
mixing are small or even negligible in certain cases but are
often required to fit data within experimental accuracy.
Evaluation of osmotic coefficient data with a maximum
fonic strength of 6 M for single electrolyte solutions fis

done using a least squares fit program. Coefficients for

300 single and mixed electrolytes have been evaluated.
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Present Research

Most of the extensions of the Debye Huckel theory,
whether empirical or semiempirical, can be represented as a
combinat1on of electrostatic and statistical terms. A
fundamental 1dea behind such an approach {is to obtain a
working equation for activity or osmotic coefficients for
single electrolyte solutions. The advantage of having
working equations of an empirical nature rather than a
comp1ete theoretical approach {is that i1t allows one to to
fit experimental data with a minimum of adjustable
parameters. In addition to fitting data the equation has to
have the capabi1lity for extrapolation to multicomponent
solutions.

In thé simplest empirical treatment the mean fonic activity
coefficient {is represented as

g(m) = g(el)*g(stat) (33)
where, g(el) represents the effects of long range forces,
g(stat) the effects of short range forces. The equation for
g(el) 1s theoretically derived from the behavior of dilute
solutions with the assumption that g(stat) approaches unity
under such circumstances. The most widely used form for the
electrostatic portion 1s the one derived by Debye and

Huckel, or other der1vat1ons]'5’18

which reduce to the Debye-
Huckel form under dilute conditions. At higher

concentrations g(el) fails to represent the behavior of
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fonic solutions. This {s due to the presence of other
forces or interactions. Also at such concentration levels
one does not know whether the equation for g(el) truly
represents the nature of electrostatic forces. Thus for an
empirical treatment of activity or osmotic coefficients at
higher concentrations one requires additional terms., the
form of which would absorb all the shortcomings 1n g(el).
The g(stat) term, therefore does not solely represent
effects of ‘short range forces. Factors to be included in
its form, most of which are implicit, range from
1ﬁtérdepeﬁdence of short and long range force between {fons,
solvation of 1fons, solvent-ion interactions and hosts of
other minor interactions. To treat statistically solutions
at high concentrations with so many .variables to consider fis
a éomp1ex task and does not provide a feasible method for
routine computations.
Generally, the form adopted for representing g(stat) is a
power series in concentration.

1n g(stat) = g g,C' (34)
where 91'5 are general interaction parameters, the
subscripts determining the number of ions involved in
interaction. This definition for 9, 1s strictly true in the
case of dilute gases where interactions are 1imited to short
range forces, and the medium is not so dense as in the case
of ionic solutions. The power series in concentration can

efther be in increasing integral values , half integrals or
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a cambinatfon of both. Thus, the mean fonic activity
coefficient 1s

In g(m) = In glel) + 15g,C (35)
.For n = 1, the Davies and the Guggenheim equations are

obtained:~ The general interaction parameter, 9, in these

equations {is different. 1In the Davies equation 9,

a N 0
-.l*lZmle and in the Guggemheim equation 9, (2v1v2)*812 ’
where 8120 is a constant. For n = 4 one obtains the

Scatchard25 equation, 9, = (n+1/2n)*h"mxzmzxa(")mx where, h

- (n)
= .S*IZmlev and a

e m3 1s a fitting parameter. Similarly

0 1

for n =2 one obtains the Pitzer equation, 9, = b™ + b *exp(-

al*®) and g, = 3(v,v,0>’ 2 c_ /v.

Comparing the appliicabiliity of these equations to higher
concentrations one finds that-both the Davies and the
Guggenheim equatfons do not fit experimental data beyond 0.1
M fonic strengfh.. The Scatchard equation fits experimental
data to higher concentrations 1imits, but f{ts apbl1cab11ty
is 1imited due to 1ts complexity in the case of the mixed
electrolytes.

In the Guggenheim equation the parameter 9, represents
binary interactions between ions of the same and opposite
cﬁarge types. This {is basically an extension of the
Bronsted40 pr1n§1ple of specific 1fon 1nteraction. The
1n$decuacy in the Guggenheim theory, as pointed out by
Pitzer, 1s that g, or the first virfial coefficient in

g(stat) 1s not a constant but a function of concentration,

and this leads to a much improved treatment of fonic
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solutions. Pitzer's treatment of fonic solutions, as
discussed previously, is the best avaflable "semi{ empirical™
equation. The d1ff1ch1ty or inconvnience 1in the Pitzer
method {1s that the equation for activity coefficients has a
form which is not simple for computational purposes. 1In the
relation, g(m) = g(el)g(stat) Pitzer uses an improved Debye-
Huckel electrostatic term and an empirical g(stat) term.
Since one 1s dealing with g(stat) empirically the assumption
1s that g(stat) would take care of fitting data at higher
concentrations as well as the shortcomings in the
approximations used in deriving g(el). Therefore "sl1ight"
improvements in g(el) 1s not going to make much of a
difference in fitting data at higher concentrations. The

equation for g(m) suggested in the present research {s

172

I g(m) = =AJ1Z Z 11/ 2/14p112) ¢ B 1 an(D) 43 T

1
+ 3, 13/2 (36)

where, E, J1. Jz are fitting parameters; b is a fixed
parameter having a value of 1.8. The corresponding equation
for the osmotic coefficient is obtained through the Gibbs-

Duhem equation.

. 3 1/2
6= 1= -CA;1Z 2 176> 11 QoI Z) + €01 1n(D) + 30 T +
3/2
3,1
where, Q(bIY/2) = [(L + x) ~ (1/(1 + »x)) = 2 1n (L + x) 1,
.5

bl

x
2 E' =E, (2 Jl' - E") = Jl’ (5/73) J2 = JZ

In the original Debye-Huckel theory, b was related to the
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distance of closest approach or dfameter of an {fon. Such a
definitfon, ascribing to b a physical description, {is not
always possible since different 1fons have different radifi
and 1n solution a given 1on may have a radfus different from
1ts gaseous.value due to solvation. Futhermore, there are
-no experimental techniques to obtain these radii for all the
fons. Hence, one treats b simply as a fixed parameter {n
the extensions of the Debye-Huckel theory- in order to fit
the observed experimental data. Any deviation from the
actual b "value™ would be taken care of by the floating
parameters. In the set of equations proposed in the present
research only the electrostatic term in the osmotic
coefficient is in an inconvenient form, but the statistical
terms {n both the cases are similar and much simpler to
handle. Using these equations for 2-2 electrolytes leads to
-the same problem as Pitzer faced: they do not work. The
problem 1s solved by one additional parameter instead of the
two utilized by Pitzer. The equation for 2-2 electrolytes

5

1s obtained by addition of the following term, E' I In

2
(I) to the osmotic coefficient equation. Using the Gibbs-
Duhem equation one obtains the corresponding equation for
the activity coefficient. Initially 1t was hoped in
addition to b being fixed, that E could be fixed. Then one
could Just float Jl and JZ. This was possible in the low
concentration ranges, typically under 1M fonic strength.

However, as concentration increased the fit deteriorated.

In the case of 2-2 electrolytes introduction of effective
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fonic strength or an associfation constant into the Pitzer or
the present equations fafls at higher concentrations,
probabfly due to triple-1ion or four-ion assocfatfon. In any
case introductfon of association constants {in such empirical
extensions complicates the equation rather than simplifying
them. The addition of a single parameter increases the
concentration range to a great extent, and one can thus
ignore association.

A1l these mechanistic or empirical equations under very
dilute conditions reduce to the Debye-Huckel 1imiting law.
In the present case the 1fonic strength, I, converges to zero
faster than 1n(I) approaches negative infinity. Thus the
second term approaches zero as I approaches zero, and the
problem of an indefinite value at I = 0 does not exist.
Considering the applicatifon of these equations beyond 6M
fonic strength one finds that they would give acceptable
results, but with slighty higher deviations.

The present set of equations can be used to fit mixed
electrolyte solutions. Most of the data fitted ylfeld
acceptable results. In mixed electrolyte solutions one
needs to consider additfonal interactions between fons of
different electrolytes. Thus to obtain osmotic or activity
coefficients in mixed electrolyte solutions the parameters
for pure electrolytes plus the additional {interaction
parameters must be coﬁs1dered. The additional parameters

are obtained by plotting or fitting by the method of least
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squares differences in experimental values of these
coefficifents versus a function in 1onic strength and the
fraction of the electrolyte in the mixture. For a simple
mixture of the same charge type electrolytes, the equation
for osmotic coefficients is

Ymix = Ya 908 + ¥y #0 + (C+D Dy y 1 (37)

The above equation can be extended in treating mixtures

having three or more similar electrolytes. For mixtures
involving a 2-1 and 1-1 electrolytes with or without a

common fon, the method suggested by Scatchard26

is utilized.
The equation for such mixtures is

(L +y ) . =Y, ¢°a & e oob + (C + DD)y,y, 1 (38)
Equations for activity coefficient of mixtures where the
composition is not fixed have not been investigated in the
present research. A direct conversion of the above osmotic
equation:using the Gibbs-Duhem equation is not possible.
In order to estimate the parameters for single electrolyte
solutions a simple nonlinear least squares fit computer
program is used. The program weights all the data points
equally. Before consideration of the program itself, a few
points need to be mentioned. Both osmotic and activity
coefficients are fitted separately, even though knowing the
parameters for one of them enables computation of the other
through the Gibbs-Duhem equation. This {§s done to compare

the present set of equations with the Pitzer equations.

Pitzer fits only osmotic coefficients and one uses the
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parameters obtafned from them to compute the activity
coefficients. For electrolytes at higher concentrations
experimental determinations generally involves obtaining
osmotic coefficients by the isopfestic techniqu927.

Activity coefficients are then obtained using the Gibbs-
Duhem equation efther numerically, {.e by fitting to a power
series in I, or by plotting (¢ -1)/m'5 verses m‘s. The
{sopfestic technique involves determining the osmotic
coefficient of an electrolyte relative to a known
electrolyte. The acéuracy of this method is about 0.1%, and
measurements below 0.lM are seldom done. The reason for
this 1s due to a long equflibrium period, and the accuracy
detorifates rapidly with decreasing concentration. Hence at
lower concentrations one has to resort to potentiometric or
colligative properties of solutions to determine these
coefficients. Hence conversions between these coefficients
involve some error, and when one fits both these
coefficients the parameters obtained would not be exactly
related as the Gibbs~Duhem equation predicts. Most of the
data on electrolytes 1nvolving these coefficients are

compiled by Robinson and Stokes28

in their monograph. Both
osmotic and activity coefficients are given with rounded-off
molalities. Pitzer uses most of the data from this source;
so has the present research. If one utilizes the Pitzer
parameters obtained from osmotic coefficients to determine

activity coefficients, there would be a sl1ight descrepancy

from the one given by Robinson and Stokes even though they
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have used the same set of osmotic coefficients to determine

activity coefficients. This is mainly due to the different

approaches involved; that {s different computational

methods. Therefore assessing which is the superior approach

is very difficult.

The computer program language {s Fortran 77. A flowsheet

of the program {is as follows:

a) Read data from a separate file. The data file has the

ifnitial guess values for the parameters

b) Find the difference between experimental and calculated
values using the guess values.

c) Use the difference t6 perform a least squares fit and
obtain the differential 1n the parameter values.

d) Add the differential to the {nitial guess value and use this
as the new value for the parameters and repeat from (c) |

e) A contro1-statemeht determines the condition for
minimfzation. When the difference in standard deviation
between the (n=1)th and nth cycle is less than .0001, the
program terminates and prints out the final results.

Calculations using the computer program for single and mixed

electrolytes for both activity and osmotic coefficients have

been done. The general method {is the same for all these

coefficients. The only differences among the several

programs are in the equations themselves.
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Results

The results for osmotic coefficients are tabulated in the

following tables

Table 1 - 1-1 Electrolytes

Present

work Pitzer
Electrolyte E Jq J, sd Max M sd max M
HC1 .0297  .1282 -.0121 .002 6 .002 6
HBr .00352 .1132 .0372  .001 3 == B
HI -.0201 .1451 .0453  .002 3 -— 3
HC10,, .00207 .0716 .0489 .002 6 .002 5.5
HNO .0143  .0499  .00513 .001 3 .001 3
Licl .00951 .00705 .0225 .002 6 .001 6
LiBr -+ .0293 .1143 -.000305 .002 2.5 .002 2.5
LiI © -.0768 .00917 .1463  .003 3 .006 1.4
LiOH - .1269 .0615 -.1243 .005 4 == 4
LiClo, -.00630 .1263 .0246 .002 4 .002 3.5
'LiNo, .0369 .1133 -.0402 .002 - 6 .001 6
NaF .0473 -.0185 =-.0320 .001 1 .001 1
NaCl .0233  .0108 .00126 .001 6 .001 6
NaBr .0222  .0346 .000306 .00l 4 .001 4
NaTl .00690 .0510 .0155 .002 3.5 .001 3.5
NaOH -.0101 -.0147 .0473  .005 6 - 6
NaC10, .0323 -.0306 -.0121 .00l 3.5 .001 3.5
NaC10} .0259  .00164 -.0114 .00l 6 .001 6
NaBroj .0448 -.0794 -.0105 .00l 2.5 .001 2.5
NaCNS .0101  .0498 -.00493 .001 4 .001 4
NaNO .0447 -.0492 -.0231 .002 6 .001 6
Nanzﬁo4 .0582 -.1435 .000927 .002 6 .003 6
KF .0411  .0252 -.0175 .001 4 .001 2
KC1 .0408 -.00305 -.0228 .0004 4.5 .0005 4.5
KBr .0398  .00962 -.0259 .001 5 .001 5.5
KI .0376 .0372 -.0338 .001 4.5 .001 4.5
KCNS .0392 -.00249 -.0285 .0015 5 .001 5
KNO .0791 -.1292 -.0384 .0015 3.5 .001 3.5
KH2BO .00539 -.1197 .0293  .001 1.8 .003 1.8
RbF (39)  .0266 .0864 -.0433 .00l 3.5 <002 3.5
RbC1 .0549 ~.00263 -.0357 .001 5 .001 5
RbBr .0546 =-.00538 -.0372 .001 5 .001 5
RbI .0588 -.00539 -.0595 .001 5 ,001 5
RbNO,, .0835 -.1415 -.0365 .001 4.5 .001 4.5
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1-1 Electrolytes (cont)

Electrolyte E

CsF (29)
CsCl
-CsBr
Csl
CsNO3
AgNO3

Table 2 -

Electrplyt

Li Acetate
Na acetate
K acetate
Rb acetate
Cs acetate
Tl aqetate

.0445
.0809
.0839
.0939
.0885
.0689

Salts of Carboxylic acids (1-1 type)

e E

.0400
.0233
.0261
.0191
.0129
.0828

91
.1158
.00818

-.1657

Jy

.0797
.1079

.1303 -

.1231
1215
-.0341

Jo

-.0551
-.0538
-.0566
-.0851
- =.0323
-.0159

Jo

-.0401
-.0288
-.0220
-.0165
-.0589

Present

work
sd Max M
.003 3.5
.001 6
.001 5
.001 3.0
.001 1.4
.001 6

Present
Work
sd Max M

.0005 4
.001 3
.001 3
.001 3
3
6

L] L] L]
(G N N, NV,

.001
.001

Pitzer

sd Max M
.002 3.5
.002 B
.002 5
.001 3
.002 1.4
.001 6

Pitzer

sd Max M
.001 4
.001 r N
.001 3.5
.001 345
.001 3.5
.001 6

Table 3 - Tetraalkylammonium Halides (Data from ref 30 & 31)

Electrolyt

Me
Et
Pr

NF
NF
NF
Bu ,NF
Me ,NC1

Et4NC1
Pr4NC1
Bu4NC1
Me4NBr
Et ,NBr

Pr:NBr
Bu4NBr

[ Y N

e E

.0375
-.0804
-.0423
-.0586

.0976

1269

.1475

.2360

.1240

1572

.2513

.1860

J

.2111
.1357
.2434
.4233
.0362
.0702
.3883
-.0592
-.0997
-.0634

)
1923
.2095
1077

-.0514

-.0641

-.3691

-.0690

-.0691

-.1661

-.1482
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Present
work
sd Max M

.002
.001
.002
.004
.001
.003
.005
.005
.005
.002
.005
.009

e o o °
(G N0, N0 ] U o

Wk WNDNMDWWHMLDDLW

°
(9,

sd

Pitzer

.002
.002
.002
.005
.005
.002
.002
.001
.004
.001
.003
.007

Max M

e o o [}
(S N0, T, D

BWEBWNDNMWWHENDODW
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Table 4 - 1Inorganic Compounds of 2-1 type

Present
work Pitzer

Electrolyte E J J sd Max M sd Max
MgC1, .00838  .0287  .0287 .003 3 .003
MgBrZ .00912 .0734 .0207 .002 3.5 .004
Mgl -.00722 .0825 .0424  .004 2 .003
Mg(€10,), -.0324 .0752  .0660 .003 2 .002
Mg (NO, .0235 .0597 -.00781 .002 2 .003
caCl, .00970 .0156 .0207  .002 3 .003
CaBrZ .0113 0446 .0191 .001 2 .002
Cal -.00526 .0671 .0333 .002 2 .001
ca(é10 ), =.0185 .0619 .0451  .001 2 .005
Ca(No3?2 .0406  -.00634 -.0218 .002 2 .002
src1, .0251 .0179 .00282 .0057 4 .003
Srar2 .00164 0179 .0299  .0015 2 .001
Srl -.0127 .0452  .0429 .002 2 .001
sr(é10 ), +0263 .0852 -.00632 .00l14 2.5 .003
Sr(NOB?Z .0393 -.0447 -.0186 .002 2 .002
BaCl, .0314 .0134 -,0132 .00l 1.8 .00l
BaBr2 .0241 .0330 -.00469 .002 2 .001
Bal .00849 .0737 .00956 .002 1.8 .003
Ba(€10,), .0289 .0683 -.0216 .00l 2  .003
MnC1, .0435  ,0582 -.0294 .005 2.5  .003
FeC12 .0252 .0362 .000672 .002 2 .002
CoC12 .0429 .0649 -.0223 .005 3 .004
CoBr2 .00834 .0642 .0225 .002 2 .002
Col .00860 .110 .0183 .01 2 .01
00(303)2 .0180 .0302 .00456 .001 2 .003
NiC1, .00235 .410 .00445 .002 2.5 .002
CuCl .0526 .0500 =-.500  .002 2 .003
Cu(N33)2 .0386 .0416 -.0216 .001 2 .002
ZnC1, -.0429  -.0514 .0462 .006 2. .006
ZnBrZ .0370 .1600 -.0817 .006 2 .007
ZnI -.0229 . 0839 .0422 .003 .8 .002
Zn(€10 ), =.0212 .0727 .0615 .003 2 .003
cd(no_ ¢ .0265 .0377 -.0186 .001 2.5 .002
Pb(C18 ?2 0177 .0436 .00230 .002 3. .004
Pb(No3?2 .1226  -.1353 -.0620 .003 2 .002
U0 ,,C1 .0298 .1083 -.0298 .002 2 .001
uoz(c?o ), -.0394 .1220 .0790 .004 2.5 .003
uoz(No3?2 .0306 .1183 .0258 .003 2 .002
L1250, .0470  -.0533 -.0131 .001 3 .002
Na 2SO0 .0509  -.1184 -.00608 .002 4 .003
NaZs 63 .0416 -.0944 -.00112 .0015 3.5 .002
Nazc?o4 .0320  -.0820 .00337 .002 2 .002
Na 2HPO§ .0155 -.1747 .0405 .001 1 .001
K28r04 .0479  -.0837 -.0107 .002 3.5 .003
kZHPog .00539 -.1197 .0293  .001 1 .002
Rﬁzso4 .0577  -.0928 -.0171 .00l 1.8 .00l
CsZs0; .0609  -.0723 -.0252 .00l 1.8 .00l
(N34)zso4 .0790 -.1073 -.0312 .006 5.5 .004
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Table 5 - Inorganic Compounds of Type 3~1

Present
work Pitzer
Electrolyte E J1 Jz sd Max M sd Max M
R1013 -.0234 .00985 .0516 .005 1.8 .005 1.6
Scc13 .0118 .0279 .0121 .006 1.8 .005 1.8
YC1 .00527 .0111 .0194 .003 1.8 .007 1.8
Laca3 .00616 .00780 .0154 . 004 1.8 .007 1.8
09013 .00372 .00761 .0175 .003 1.8 .01 1.8
PrC13 .00826 .00425 . 0153 .005 1.8 .006 2
Nd013 .00825 .00583 .0154 .004 1.8 .007 1.8
SmC'I3 .00525 . 00958 .0173 . 005 1.8 .01 1.8
EuC]3 .00676 .01063 .0164 .003 1.8 .007 1.8
CrCl . 0205 .0385 .00316 . 007 | - .005 1.2
Cr(NG,)
Ga(013433 -.0409  .0373 .0726 .01 2 .008 2
Na3P0 .0341 ~-,1421 .00969 .001 ol .003 o7
Na A564 .0377 -.1167 .00280 .001 o7 .001 o7
KBEO .0411 ~.0700 -.,0117 .001 o7 .001 o7
K3A56 .0262 -.0292 ~-.0113 .001 "7 ool .7
K3Fe(éN)6 .0217 -.,0712 .00556 .003 1.4 .003 1.4
Table 6 - 4:1 electrolytes
Present
work Pitzer
E Jl J2 sd Max M sd Max M
ThC1 -.0174 .00925 .0291 .004 1 .006 1
Th(N& ) .0128 -.0257 .00477 .,004 1 .01 1
K4Fe(éN*6 .0294 -.0935 -.00053 .002 .9 .008 .9
K4MotCN)8 .0159 -.0994 .0110 .002 .8 .01 .8
Table 7 = 2:2 electrolytes (Data from ref 32 and R & S)
Present
work Pitzer
E1 E2 J1 32 sd Range sd Range
MgSO4 .0475 .114 -.,255 .0170 .002 .005-3 .004 .006-3
N1504 .0593 .116 -.287 .0158 .003 .00l1-2.5 .005 .005-2.5
CuSO4 .0798 .127 ~.277 -.00661 .002 .001-1.4 .003 .005-1.4
ZnSO4 .0626 .110 -~.275 .0115 .004 .001-3.5 .004 .005-3.5
CdSO4 .0790 .126 -.280 -.00547 .003 .001-3.5 .002 .005-3.5
BeSO4 .0712 .118 -.236 -.00389 .003 .1-4 .004 .1-4
MnSO, .0716 .107 -.261 -2.95E-3 .003 .001-3 .003 .1-4
U02564.1076 .155 -,280 -.0305 .002 .1=5 .003 «1=5
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Table 8 - Mixed Electrolyte Solution

Present
Electrolyte work Pitzer
Mixture C D Max I sd Max I sd Ref

NaC1-L1C1 .00770 -.00187 6 .0014 6 .001 33
Na-L{ acetate .0287 -.00990 4 .001 3.5 .002 33
K=Na nitrate -.0140 -.00132 3.7 .001 3.3 .001 34
Na-L{f " .00567 -.00568 6 .002 6 .002 33
Na-K sulphate -.116 .0235 3.6 .004 3.6 .004 35
NaCl1-NaNO03 .0234 -.00764 5.7 .002 5 .001 34
KC1-KNO3 -.0659 -.00732 4 .002 4 .002 34
KC1-NaNO03 -.0659 .00370 4 .002 4 .002 34
Na-K-Ba-C1 .279 -.113 4.5 ,003 4.5 .003 36
Na-L{-Ba-C1 262 -.0410 3.3 .002 3.3 .001 36
Li-Na-K=C1 -1.505 .433 3 .001 3 .004 36
Li-Na-Cs-C1 -.307 -.0699 5.2 .002 5.2 .004 36
Li-Ba-C1 -.0764 -.000343 4.3 .002 4.3 .002 37
Cs-Ba-C1 -.000357 -.,0210 4 .003 4 .003 37
K=-Ca=Cl .0314 -.00988 5 .002 5 .003 38
Na-Mn-C1 .0437 -.124 5 .002 5.5 .003 39
NaCl1-K sulph =-.146 .00891 3.3 .003 3.6 .003 35
KCl1-K @ -.0509 .00839 2.3 .002 2.3 .002 35
KC1-Na " -.0798 .0118 3 .005 3.6 .003 35
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The results for activity coefficients are tabulated in the

following tables

Table 9 - 1-1 Electrolytes

Electrolyte E Jl J2 sd Max M
HC1 .0548 .2223 -,0147 .003
HBr .00675 .2158 .0652 .001
HI ~.0305 .3133 .0679 .003
HC‘IO4 .00424 ,1383 .0892 .004
HNO .0281 .0885 .00783 .001
Lic? .0344 .1382 .0224 .003 .5
LiBr .0485 .1904 -,0121 .002 .5
L1I -.0987 .1471 .1757 .005
L{1OH .2949 .0259 -.2527 .004
L1ClO4 -.0296 .2343 .0668 .001 o
L1N03 .0721 .1863 -.,0645 .002
NaF .0842 -,1068' =-,0297 .001

NaC1 .0502 3.7E-5 -.00141 .00l

NaBr .0541 - .0552 -.0106 .00l

Nal .0392  .1125 -.00198 .002 o5
NaOH -.0393 -.00389 .0264  .007

NaC10, 0542 ~.,0217 =-.0211 = .00l

NaBro3 .0826 -.0210 -.00863 .00l .5
NaCNS$ .0303  .0959 -.0188  .002

NaNO .0903. -.1419 -.0396 .00l

NaH2;04 .1087 -.3486  .00907 .00l

KF .0821  .00934 -.0291 .00l

KCY .0825 -.0456 -.0393  .0004 5
KBr .0794 -.0207 -.0430 .0005

KI .0682  .0305 -.0482 .00l 35
KCNS .0844 -.0414 -.0534 .00l

KNO .1429 -.3481 -.0470 .00l 5
KH2P0 .1239 -.4892 .0446 .00l .8
RbF (99)  .1539  .2047 -.1736  .005 N

RbC1 . 1095 .0599 -.,0595 .001
RbBr .1106 -.0651 -.0632 .001
RbI .1160 .0698 -.0645 .0005
RbNO .1582 -.3720 -,0514 .001
CsF(§9) .0890 .1501 -.0665 .008

e AUUMWERLLWULAULAMAOOOCARNO OO WAROOHFOWARAWNEAWOWWLWOO
(3,

U e

3
CsC1 .1492 -~.,1096 -.0782 .001 6
CsBr .1493 -.,1208 -.0772 .001 5
CsI 1571 .1061 -.1036 .001 3.0
CsNO3 .1299 -.4670 -.0235 .001 1.4
AgNO3 .1388 -.3999 -.0273 .0005 6
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Table 10 - Salts of Carboxylic acids (1-1 type)

Electrolyte E J1 J2 sd Max M
Li Acetate .0737 .1036 -.0551 .001 4
Na acetate .0586 .2014 -,0616 .001 3.5
K acetate .0490 .2272 -.0516 .001 3.5
Rb acetate .0544  ,2305 -.0439 .001 3.5
Cs acetate .0351 .2390 -.0388 .00l 3.5
T1 acetate .1551 =-.1536 -.0890 .00l 6
Table 11 - 1Inorganic Compounds of 2-1 type
Electrolyte E J1 J2 sd Max M
MgCl, .0216 .0514 .0391  .003 3
MgBrZ .0195 .1364 .0344  .003 2.5
MgI., -.0413 .1701 .0929  .005 2
Mg (€10 ), =.0712 .1826 .1151  .005 2
Mg(No, ¥ 2 L0600 .0974 -.0235 .00l 2
caC1, .0335 .0201 .0240 .002 3
CaBr2 .0285 .0795 .0267 .00l 2
Cal -.0139 .1360 .0600 .002 2
ca (€10 ), -.0321 .1421 .0714 .001 2
ca(No$. 2 1016 -.0496 -.0537 .00l 2
src1, .0425 .00722 .01182 .002 3
Srer2 .0159 .0350 .0400 .001 2
Srl -.0214 .1034 .0685 .002 2
sr(é10 ), .0673 .1454 -.0226 .001 2
Sr(N03?2 .0989 -.1241 -.0488 .00l 2
BaCl, .0683 -.00239 -.0271 .001 1.8
BaBr2 .0548 .0441 -.0137 .001 2
Bal .0381 .1463 =-.0035 .002 1.8
Ba(810‘)2 .0608 .1060 -.0377 .002 2
FeCl, .0502 . 0456 .0019 .00z 2
CoC12 .0522 .0666 -.0029 .002 2
CoBr .0224 .1224 .0321 .002 2
Co(N33)2 .0487 .0493 -.0048 .001 3
NiC1, .0433 .0521 .0129 .00l 2
CuCl .0961 .0656 =-.0763 .001 2
Cu(N53)2 .0780 .0463 -.0372 .00l 2
ZnC1, -.0424 -.0528 .0404  .003 2.
ZnBr2 .0596 .2800 -.1240 .003 2
Znl -.126 . 484 -.216 .007 2
zn (810 ), =.0479 .1618 .1090 .003 1.8
Cd (NO .0530 .0493 -.0312 .001 2
Pb(C18 ?2 .0342 .0655 .0064 .001 2
Pb(No3?2 .2900  -.3866 ~-.142 .002 2
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2-1 Electrolytes (cont)

Electrolyte E J1 Jz sd Max M
U0,C1 .0535 .1858 -.0446 .002 2
uoztc?o ), -.103 .270 .15 .005 2
qu(No3?2 .0508 .2027 -.0340 .005 2
L12s0, .1026  -.1546 -.0282 .00l 3
Na2s0 .1184  -.2960 -.0203 .002 4
NaZs 63 .1089 -.2238 =-.0247 .00l 2
Nazc?-o4 .0702  -.1965 8.3E-3 .001 2
Rb2S0, .1269 -.2408 -.0385 .00l 1.6
Cs 250, .0609  -.0302 .0428 .004 1.6
(N34)2504 .2083 -.311  -.0848 .004 4

Table 12 - Inorganic Compounds of Type 3-1

Electrolyte E J1 Jz sd Max M sd Max M
A1013 -.0143 .0264 .0663 .002 1.8
ScC13 .0524 .0307 .00238 .001 1.8
YC] .0467 -.00207 .0105 .001 1.8
LaC%3 .0461 -.00726 .0510 .001 1.8
CeC13 .0525 -.00972 .00132 .002 1.8
PrC13 .0499 -.0161 .00497 .001 1.8
NdCl3 .0523 -.0149 .00401 .001 1.8
SmC13 .0446 -.00297 .00802 .001 1.8
Eu013 .0344 -.00224 .0150 .001 1.8
CrC1 .0298 .0504 .0159 .003 1.2
Cr(Na3)3 .0546 .0385 -.00927 .001 1.4

37



Figure 1

1.00 1 a) Pitzer

b) Experimental
c) This Work

950 L )\
50 \\

.900 4

. ¢e1,

. 850 \ b

L

|
.800 \ l | | ! 5

f !
ol .2 3 .4 .5 .6

Plot of osmotic coefficiedt verses ..I for NaCl and CaCl,
(for the electrostatic term only)
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Discussion

The fundamental {dea behind proposing aﬁ equation
containing a 1ogar1th1m1c.term 1s the s1mp11c1ty.u1th which
single or mixed electrolyte solutions can be treated.
Comparison of our equation to Pitzer's, on the basis of
fitting experimental data fs certainly 1mpoftant. but a few
additfonal factors need to be éons1dered. Pitzer's
computation fnvolves weighting of data to obtain acceptable
results, while our results are based on an unweighted data.
Now the question immidiately arises whether weighting is
absolutely ne&essary. The data in Robinson and Stokes book
1s given 1n terms of rounded off molalities and hence fis
partially smoothed data. By weighting one 1s further
smoothing the data, which might result in over- or under-
estimation of the relfability of certain points. Of
immediate concern 1s whether the equations proposed by us
are comparable to Pitzer's equations and yfeld acceptable
results. If one compares Pitzer's weighted results and
ours, one observes his results for 2-1 electrolytes are
slightly better than ours, the 1l-1's are comparable, but
higher electrolytes are certainly better in our case. 1In
most of the cases the differences in standard deviation of
the calculated osmotic coefficient do not exceed .002. 1In
any case, whether one uses the Pitzer equation unweighted or

ours weighted, the overall result should not change by a
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significant magnitude. Results for mixtures were computed by
our equatfons using parameters obtained for pure electrolytes
and are comparable to Pitzer's results for the ones treated
here. Only a few mixtures were examined, mostly mixtures
consisting of 1-1 electrolytes or 1-2 and 1-1 mixtures either
having a common ion or no common ion. Treatment of mixtures
involving 3~1 and 1-1 electrolytes or other systems with no
common fon or with common 1on requires consideration of
additional unsymmetrical mixing effects.

Comparision of the electrostatic term with a b value of
1.8 ylields an excellent approximation of the Debye-Huckel
equation, and the results obtained are closer to the

172 for NaCl

experimental values. A plot of (el) versus I
and CaC12 1s shown in figure 1. Thus treating b as a
parameter leads to a reasonable result. Statistical terms on
the other hand are difficult to assess and compare. The
reason, in simple terms, 1s that these terms are fitting
functions for higher concentrations, and the numerical
accuracy achieved distinguishes the different statistical
terms. Basically one can interchange different statistical
terms with the electrostatic terms and obtain reasonable
results; that is one can use the Pitzer statistical terms
with the Debye-Huckel equation or our statistical terms with
the Pitzer electrostatic terms and get similar results

provided one adjusts the b value.

An example of future applications of our equation {is the
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very simple form reqd1réd for'obtaid ng a relationship
between activity coefficients and partial molal heat
content, or heat capacity. 1In the Pitzer approach one would
surely have problems 1n using the activity coeff1cient

L}

eqhatidﬁ. Instéad one has to utilize the expression for the
excess Gibbs free energy. The electrostatic term 1is similar
to ours but the statistfcél term {s {inconvenient to use.
Thys, the equations for the above thermodynamic properties
represent an improvement 1n ease of use and in devising a

scale of single 1on activities for use 1n computer modeling

of natural water systems,
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001r00C
00150C
00200C
00250C
00300C
00350C
00400C
00450C
00500C
00550C
00800C
00850C
.G0700C
00750C
00800C
00850C
00900C
00950C
01000C
01050C
01100C
01150C
01200C
01250C
01300C
01350C
01400C
01450C
01500C
01550C
01600C
01850C
01700C
01750C
01800C
01850C
01900C
01850C
02000C
02050C
02100C
02150C
02200C
02250C
02300
02350+
02400C
02450C
02500C
02550C

APPENDIX
THIS PROGRAM PERFORMS A LEAST SQUARKS
FIT TO DETERMINE PARAMETERS FOR ACTIVITY
OR OSMOTIC COEFFICIENTS FOR EQUATIONS
DEVELOPED IN THE PRESENT RESEARCII.

EQUATIONS FOR ACTIVITY AND OSMOTIC COEFFICIENTS
ARE AS FOLLOWS:

(GAMMA)= - [(Z1%Z2)%AD* I¥x.5/(1+BxIx%_.5)] |
+EXxI % (I) + J1*I + J2%I*%%x1_5

Q-1 .= -[(Z21%Z2)*AD*(1/B*%3%1 )% ((1+B*I*x_5)
& (Y/41+BxIxx_5)) - 2*LN(1+BxI*x_5))]
+ E'*IXLN(I) + J1’*I+ J2’*I**1.5

WHERE, Z1 AND Z2 ARE CHARGES ON THE IONS.

AD : THE DEBYE-HUCKEL CONSTANT WHICH HAS A VALUE OF
1.1786.

B : A FIXED PARAMETER HAVING A VALUE OF 1.8.

I : EQUALS TO THE IONIC STRENGTH OF THE SOLUTION.
LN : THE NATURAL LOGARITHM. (=ALOG)

E, J1, J2 ARE PARAMETERS FOR THE COEFFICIENT.
PARAMETERS FOR THE ACTIVITY AND OSMOTIC
COEFFICIENTS ARE RELATED THROUGH THE GIBBS-DUHEM
RELATIONSHIP, AND HENCE THEY DO NOT HAVE SAME
VALUES.

GAMMA IS THE ACTIVITY COLF¥F!CIENT, AND Q@ THE
OSMOTIC COEFFICIINT.

* THE TERM IN BRACKETS [..] REPRESENI'S THK

ELECTROSTATIC TERM.
NONBRACKETED T S REPRESEN1T STATISTICAIL
TERMS .

DATA FOR 'ffIKSE COEFFICIENTS HAVE ‘'O DBE READ
THROUGH A SEPARATE FILE. BKFORE RUNNING THE
PROGRAM ONI& SHOULD CALL THE DATA FTLIL.

DATA FILES DO NOT HAVE Z AND A VALUES

HENCE BEIFORIT RUNNING T PROGRAM USE APPPOPRLIATE
VALUES IN LINE NUMBERS ............

Al AND A2 ARE THE NUMBER OF MOLIS OF CATION AND
ANIONS OBTAINED ON DISSOCOATION OF ONE MOLE OF
THE ELECTROLYTE.

PROGRAM CMR (INPUT,OUTPUT,QKCl., YTAPES=INPUT,
TAPES=0UTPUT, TAPE7=QKCL )
BEFORE RUNNING DIFFERENT DATA FILES. FILE NAME 1IN

ABOVE STATEMENT SHOULD BE CHANGED OTHERWISE
THE COMPUTER WOULD TERMINATE THE PROGRAM
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02600C
02650C
02750C
02800C
‘02850C
02800C
02850C
03000C
030560C
03100C
03150C
03200C
032560C
03450
035600
03560
03800
03850C
03700C
03780C
03800C
03880C
-03800C
03880C
04000C
04050C

04100C

04150C
04200C
04250C
04300C
04350C
04400C
04480C
04500C
04550C
04600C
04650

04700

04750

04800

04860

04900C
04950C
05000C
06060C
06100C

05160C.

05200

08250 22

06900

i . . b |

[ b4 A
+ FOLLOWING VARIABLES ARE USED.
- D
.YE:: THE SUM OF THE EXPT LN(GAMMA) OR Q-1.
AND THEIR RESPECTIVE ELECTROSTATIC TERM.
PBI8 SUM EQUALS THE STATISTISCAL TERMS.
NC : CALCULATBD RALUER OF SYATISTICAL TERMS.
DY: : DIFFERENCE BEIWEEN YE AND YC. THE
PROGRAY MENIMISES DY'S VALUES BEFORE
PRINTING RESULTS.
8D :STANDARD DEVIATION
DA : THE DIFFERENTIAL IN PARAMETER VALUE
OBTAINED BY PERVORMING A LEAST SQUARES FIT
DIMENBION YE(50),YC(50),AL(50),X(50),DY(50)
DIMENSION SD(50),DA(50),Q(50),D(50),DH(50)
DIMENSION W(50),Y(50),P(50),QC(50),XE(50)
DIMERSION DB(60),AC(50),DP(560)
IN FOLLOWING STATEMENTB DATA’S ARE READ
FROM THR DATA FILE.
BXEE, M THE NUMBER OF DATA IN THE FILK.
N : THE MAXIMUM NOMBER OF CYCLE THE
FROGRAM IS ALLOWED TO ROUN FOR A GIVEN SET OF DATA
N IS8 USED TO AVOID THE COMPUTER
GETTING INTO AN INFINITE LOOP DUE TO INADVERTANT
ERRBORS8 IN PRDGRAMMING.

Q : ACTIVITY OR OSMOTIC DATA

NUMBER OF DATA POINTS IS EQUAL TO M

XE IS THE MOLALITY FOR THEK CORRESPONDING ACTIVITY
OR OSMOTIC DATA.

AL(K)’8 ARE INITIAL GUESS VALUES

FOR PARAMKTERS.

AL(1) = E IN THE EQUATION
AL(2) = J1 " *~ N
AL(®) = J2.* " =
BRAD(7.x) M
READ(7,%x) N

READ(7,*) (Q(K),K=1,M)
RERAD(7,%) (XE(K),K=1,M)
EEAD(7,%)(AL(J),J=1,3)

TO KKEP. TRACK OF ELECTROLYTES FOR
WBICH THE RESOULTS ARE PRINTED OUT ONE
S85O0MRL  BAVE APPROPRIATE FORMULAE IN THE
JOLIOWING WRITE STATEMENT.
WRITE(@, 22) "MGBR2(Q) “

FORH%!(ZOX.AIS) -

B=1.
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05350
‘05400 23
05450
05500
05550
05600
05650
05700C
05750C
05600C
05860C
05800C
05960
08000
06060
068100C
06150C
06200C
0682580C
06251C
a6282C
06253C
06300C
06350
06400
08460+
Q8500+
068550 3
088510
08552C
G6800
08660C
Q6T00C
068750C
068900
06980
07000
070850
07260
07251C
072%2C
072863C. -
07284C
07300
073560
07351+
07400
07450
-07800 20
07580
07600
07810C

WRITE('S, 23)("B=",BY ' < i %
FORHAT(A4?F4‘2)~'FJRW
ZXz1l. )

Z2=1. ! Kok
AT8E. s A R A N
AR%1.

SB61)=10.

' THR-FOLLOWING DO LOOP DETERMINES IONIC
- SYHEBGTH OF SOLUTIONS USING APPROPRIATE

21,82,A1 AND A2 VALUES.

“. DO 4 K=1,M

X(B)=.5%(21%%2%A1*XE (K)+22**2%xA2*XE(K))

4 OCONYINUE

YR I8 DETERMINED IN THE DO LOOP 3

FOR ACTIVITY CALCULATION8 USE ALOG(Q(K))

INSTEAD OF (Q-1.)

OBR PEOPER EKLBCTEHOSTATIC TERMS WHILE CALCULATING
THE REQUIRED COERFFICIENT.

DO 3 K=1,M
YE(K)=(Q(R)-1.)+(Z1%Z2%1.176)%(i./(B**3%X(K)))
¥((1.+BSX(K)*%.5)-(1./(1.+B*X(K)*%.5))

-2.*ALOG(1. +B*X(K)**.5))

CONTINUR

OPTIMIZATIONOYF PARAMETERS BEGINS:
‘DO 10 I=2,N

INITIALIZR DA;DETD, SUMA

DA(T y=0-.
DA(Z)=0.
DA(.3)=0.
DETD=0.
80MA=0.

CALCULATION OF THE STATISTICAL TERM USING
GUESS VALUE OF THE PARAMETERS.
DO 20 K=1,M
YC(K)=AL(1 )®X(K)*ALOG(X(K) )+AL(2)*X(K)+
+AL(3)%X(K)*21+.5
DY (K)=YE(K)-YC(K)
sma-.:mmr(x)-uz
CONTINOD
e
Bﬂ(T)t(SU!!A/(m 3.))*%x.5

3 .“{ ‘; gy
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07620C
07621C
07650
07651C: .
07852C
07663C
07700
Q7750
07800 "
07850
07900
07960
08000
08060
08100
08150
08200
08250
08300
08350
08400
08450
08500
08550
08600
08650
08700
08750
08800 40
08850
08900+
08950
09000+
09050
09100+
09150
09200+
09250
09300
09350
09400 10
09450 500
09500
09501C
09502C
09503C
09550
09600
09601+
09650+
09700
09750

E
tt

P
v

CONTROL STATEMENT COMPARES (N-1) AND N CYCLES
STANDARD DEVIATION

IP{ABO(SD(I)-SD€I~2)).LT..0001) GOTO 500
PNIYIALIZATION OF ELEMENTS IN THE DETERMINANT.
THE DETERMINANT IS SYMMETRICAL MENCE A12=A21,
A132Kk31, A23-A32.

SUM% =0

S4B=0',

SUM3=0"

A11=0.

A12=0.

A13=0."

A22z0.

A23=0.

A33=0.

DO 40 K=1,M

Y(K)=X(K)*ALOG(X(K))

W(K)=X(K)

P(K)=X(K)*x1.5

SUM1=SUM1+DY (K)* Y (K)

SUM2=SUM2+DY (K ) *W (K)

SUM3=SUM3+DY (K)*P(K)

Al11=A11+Y(K)*%x2

A12=A12+Y (K)*W(K)

A13=A13+Y(K)*P(K)

A22=A22+W (K)*%x2

A23=A23+(W(K)*P(K))

A33=A33+P(K)*P(K)

CONTINUE

DETD=A11%(A22%A33-A23%%2)--A12% (A12*A33

~A13%A23)+A13%(A12%A23-A13%A22)

DA(1)=(SUM1%x(A22%A33-A23%%2)-A12%( SUM2*A33
-A23%SUM3 ) +A13%(SUM2%A23-SUM3%*A22 ) ) /DETD

DA(2)=(A11*(SUM2%A33-SUM3%A23)~SUM1x(A12*A33

-A13%A23 )+A13%(A12%SUM3-SUM2%A13)) /DETD

DA(3)=(A11%(A22%SUM3-SUM2%A23)-A12*(A12*xSUM3

-A13%SUM2 )+SUM1*(A12*xA23-A13%A22) ) /DETD

AL(1)=AL(1)+DA(1)

AL(2)=AL(2)1DA(2)

AL(3) AL(J)+DA(3)

CONTINUE

SUM=0.

SDI=0.

CALCULATED VALUE OF OSMOTTC CORFFICIENT USING
THE PARAMETERS.

DO 15 K=1,M

QC(K)=1.-21%22%x1.176%(1./(B**x3xX(K)))

x((1.+BxX(K)*x.5)

-(1./(1.+BxX(K)*%*.5))~2.*xALOG (1. +B*xX(K)**_.5))
D(K)=Q(K)-QC(K)
SUM=SUM+D(K)*x*2
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09800 15 CONTINUE

- 09850 SDI=(SUM/(XM-3.))%%_.5
09900 WRIT (6,61)("MOLALITY", “EXP'l 0S", “CALC 0S","DIFF")
09950 61 FORMAT(A10,68X,A8,10%,A8,15X,A6)
10000 WRIT (6,62)((XE(K),Q(K),QC(K),D(K)),K=1,M)
10050 62. AT(2X,F7.5,6X,¥7.5,6X,E18.10,6X,E18.10)
10100 (6,%)"P %
10150 TE(6,63)(AL(J),J=1,3)
10200 63 T(E18.10)
10250 WRITE(6,*)"“STANDARD DEVIATION"
10300 WRIT (6,64)SDI
10360 64 MAT (E18.10)
10400 © TP
10450 END
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