
Eastern Illinois University
The Keep

Masters Theses Student Theses & Publications

1-1-2005

Design and Implementation of a Networked
Control System
Mi Chen
Eastern Illinois University
This research is a product of the graduate program in Technology at Eastern Illinois University. Find out more
about the program.

This Thesis is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters
Theses by an authorized administrator of The Keep. For more information, please contact tabruns@eiu.edu.

Recommended Citation
Chen, Mi, "Design and Implementation of a Networked Control System" (2005). Masters Theses. 1063.
http://thekeep.eiu.edu/theses/1063

http://thekeep.eiu.edu
http://thekeep.eiu.edu/theses
http://thekeep.eiu.edu/students
http://bit.ly/1QvfJ3C
http://bit.ly/1QvfJ3C
mailto:tabruns@eiu.edu

*****US Copyright Notice*****

No further reproduction or distribution of this copy
is permitted by electronic transmission or any other
means.

The user should review the copyright notice on
the following scanned image(s) contained in the
original work from which this electronic copy was
made.

Section 108: United States Copyright Law
The copyright law of the United States [Title 17,

United States Code] governs the making of
photocopies or other reproductions of copyrighted
materials.

Under certain conditions specified in the law,
libraries and archives are authorized to furnish a
photocopy or other reproduction. One of these
specified conditions is that the reproduction is not to
be used for any purpose other than private study,
scholarship, or research. If a user makes a request
for, or later uses, a photocopy or reproduction for
purposes in excess of "fair use," that use may be
liable for copyright infringement.

This institution reserves the right to refuse to
accept a copying order if, in its judgment, fulfillment
of the order would involve violation of copyright law.
No further reproduction and distribution of this copy is
permitted by transmission or any other means.

EIU Grad School Page 1 of 1

THESIS REPRODUCTION CERTIFICATE

TO: Graduate Degree Candidates (who have written formal theses)

SUBJECT: Permission to Reproduce Theses

The University Library is receiving a number of request from other institutions asking permission to reproduce dissertations for
inclusion in their library holdings. Although no copyright laws are involved, we feel that professional courtesy demands that
permission be obtained from the author before we allow these to be copied.

PLEASE SIGN ONE OF THE FOLLOWING STATEMENTS:

Booth Library of Eastern Illinois University has my permission to lend my thesis to a reputable college or university for the
purpose of copying it for inclusion in that institution's library or research holdings.

Author's Signature Date

I respectfully request Booth Library of Eastern Illinois University NOT allow my thesis to be reproduced because:

Author's Signature Date

This form must be submitted in duplicate.

http://www .ei u.edu/% 7Egraduate/thesisreproduce.htm 8/8/2005

DATE

Design and Implementation of a Networked

Control System
(TITLE)

BY

Mi Chen

THESIS

SUBMITIED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

Master of Science in Technology

IN THE GRADUATE SCHOOL, EASTERN ILLINOIS UNIVERSITY
CHARLESTON, ILLINOIS

2005
YEAR

I HEREBY RECOMMEND THAT THIS THESIS BE ACCEPTED AS FULFILLING
THIS PART OF THE GRADUATE DEGREE CITED ABOVE

THESIS DIRECTOR

THESIS COMMITTEE

Peter Ping Liu,
Ph.D., P.E., OCP, C.Q.E., and C.S.I.T.
Professor
Thesis Director
Graduate Coordinator
School ofTechnology

,xk~A~~
Sam Guccione, Ed.D, C.S.I.T
Professor
School ofTechnology

.~·~
D. elsel, Ed.D.

Professor
School ofTechnology

Date

()u(~J (0 Lo () ~/
Date

cfjJo;os
Date

Design and Implementation of a Networked Control System 2

Abstract

One of the major challenges faced by modem control systems is to integrate the

computing, communication, and control into different levels of operations and

information processes. The current practice to tackle these control problems

focuses on distributed implementation of control systems. A Networked Control

System (NCS) is one type of distributed control systems where the control loop is

operated over a communication network.

This thesis discusses the structure and hierarchical model of a typical NCS,

The prototype combines both network and control theory, addresses the detailed

procedures on design, configuration, integration and implementation of a process

control via communication network. The implementation considerations in

designed NCS include serial communication, network communication, human

machine interface programming, client/server modeling, and conformance testing,

etc. The designed system can be used for the further controller design to investigate

the interaction between network configuration and control parameters.

Design and Implementation of a Networked Control System 3

Acknowledgements

I would like to take this opportunity to thank all of people who have given me

helpful suggestions, motivation, and encouragement in my graduate study at the

Eastern Illinois University.

I would first like to express my utmost gratitude to my advisor, Dr. Ping Liu.

Dr. Ping Liu has continuously provided me with his inspiration, encouragement,

and support since I came to the Eastern Illinois University. He has also enriched my

research experiences and guided me from a person who was completely blind in the

research area to a person who knows a little more on how to use technical method to

perform a research work.

I would also like to thank Dr. Sam Guccione for his guidance, contributions

and help with this thesis. He has been a constant source of helpful questioning, and

a continual source of fresh ideas in the process of earning my degree.

I would also like to thank Dr. Larry Helsel for his valuable comments on this

thesis and be on my committee.

Furthermore, I gratefully acknowledge the CimQuest Inc for their support of

Serial DFI ActiveX Control Component with this study.

Finally, but most importantly, I would like to express my deepest appreciation

to my parents, Mr. Boan Chen and Mrs. Liru Fu, for their endless love, support,

understanding, and encouragement, and many other professors, colleagues and

friends that I could not mention them all here. Thank you!

Design and Implementation of a Networked Control System 4

Table of Contents

Abstract .. 2

Acknowledgements .. 3

Table of Contents ... 4

Introduction .. 11

1.1 Statement ofthe Problems .. 12

1.2 Statement of the Purpose ... 13

1.3 Definition ofTerms .. 13

1.4 Limitations ... 15

1.5 Delimitations .. 15

Literature Review ... 16

2.1 Modern Control Systems .. 16

2.2 Programmable Logic Control .. 17

2.3 Human Machine Interface ... 19

2.4 Serial Communication .. 20

2.5 Communication Protocol for Allen Bradley's PLCs 23

2.5.1 Data link layer .. 24

2.5.2 Application layer .. 25

2.6 Network Communication .. 31

2.6.1 Data network and control network .. 31

2.6.2 Token-passing network .. 32

Design and Implementation of a Networked Control System 5

2.6.3 CAN-based network ... 34

2.6.4 Ethernet-based network .. 37

2.7 Overview ofNetworked Control System .. .42

2. 7.1 Traditional communication architecture and its limitations42

2.7.2 Introduction to networked control system .. .42

2.8 Software Tools Implemented in the Designed NCS46

2.8.1. Visual Basic for HMI applications46

2.8.2. ActiveX Control for communication .. .48

Design Methods ... 56

3.1 System Configuration ... 56

3.2 Software Structure .. 58

3.3 Process Controller ... 58

3.4 Server Environment .. 61

3.4.1 Communication with PLC .. 62

3.4.2 Communication with client .. 64

3.5 Client Environment ... 65

Implementation .. 68

4.1 Process Controller ... 68

4.1.1 Process schematic .. 69

4.1.2 General sequence of operations .. 69

4.1.3 List of points .. 70

Design and Implementation of a Networked Control System 6

4.1.4 List of input/output terminals ... 71

4.1.5 Robot and PLC programming ... 74

4.2 Server Environment .. 76

4.2.1 Communication with PLC .. 76

4.2.2 Communication with client .. 79

4.3 Client Environment. .. 83

Analyses ... 87

5.1 System Functionality .. 87

5.2 Advantages ofNCS .. 87

5.3 Implementation Experience ... 88

5.3.1 Control process design ... 88

5.3.2 PLC communication .. 89

5.3 .3 Communication network .. 89

5.3.4 HMI Programming ... 89

5.4 General Procedure in NCS Design and Implementation 90

Summary .. 92

Recommendations for Future Work .. 93

References .. 94

Appendixes .. 98

Appendix A .. 98

Appendix B .. 103

Design and Implementation of a Networked Control System 7

Appendix C .. 107

Design and Implementation of a Networked Control System 8

List of Tables

Table 2-1 Typical Types of HMI Functionality ... 20

Table 2-2 Characteristics of Standard Ethernet .. 40

Table 2-3 Important Winsock Control Properties ... 51

Table 2-4 Important Win sock Control Methods ... 52

Table 2-5 Important Serial DFI ActiveX Control Properties 54

Table 2-6 Important Serial DFI ActiveX Control Methods 55

Table 3-1 Configuration in the Process Controller ... 58

Table 3-2 Configuration ofthe Server Environment.. ... 62

Table 3-3 Configuration of the Client Environment ... 65

Table 4-1 General Sequence of Operation for Material Sorting Process 68

Table 4-2 Point List for Robot Points File .. 71

Table 4-3 110 list between PLC Output and Robot Input.. 73

Table 4-4 Digital Inputs Monitored by the PLC ... 74

Table 4-5 N7: I Register Table ... 75

Table 4-6 N7:0 Register Table ... 76

Design and Implementation of a Networked Control System 9

List of Figures

Figure 2-1 Altitude Control System of an Airplane .. 17

Figure 2-2 A Serial Date Byte .. 22

Figure 2-3 Mode Of Data Communication between Server and PLC 24

Figure 2-4 Flowchart for Implementing Command Message Transaction 26

Figure 2-5 Flowchart for Implementing Reply Message Transaction 27

Figure 2-6 A Token-Passing Network .. 33

Figure 2-7 A Principle Used for The Bus Arbitration ... 37

Figure 2-8 The Process OfCSMA/CD Mechanism .. 39

Figure 2-9 A Typical Setup and Information Flow of a NCS 43

Figure 2-10 NCS Research Methodology .. .46

Figure 2-11 Winsock 2 Architecture .. 50

Figure 2-12 A Typical Client-Server Model.. ... 53

Figure 3-1 System Configuration of A NCS .. 57

Figure 3-2 Software Structure of the Designed NCS .. 58

Figure 3-3 Flowchart for Material Sorting Process ... 60

Figure 3-4 Client Environment Algorithm ... 67

Figure 4-1 Pegasus Robot .. 68

Figure 4-2 Schematic for A Material Sorting Process ... 69

Figure 4-3 Allen-Bradley Micrologix 1000 PLC .. 71

Figure 4-4 Interface Between PLC and Pegasus Robot 72

Design and Implementation of a Networked Control System I 0

Figure 4-5 Communication Driver Configuration .. 77

Figure 4-6 Human Machine Interface (HMI) on Client 84

Design and Implementation of a Networked Control System II

CHAPTER 1

Introduction

One of the major challenges faced by modem control systems is to integrate

the computing, communication, and control into different levels of operations and

information processes (Abdullah & Chatwin, 1994). These complex control

systems may include a large number of devices interconnected together to perform

the desired operations. Intelligence and decision making can be moved out of the

central control units and distributed into controllers located near the controlled

devices (Lian, Moyne, & Tilbury, 2000a).

For many years, the point-to-point architecture has been widely used in the

industrial and manufacturing control systems. This centralized communication

architecture had a single central control unit, in which each system controller is

directly wired to other devices, such as sensors, or actuators. However, this

centralized communication architecture is no longer suitable as it lacks a common

communication protocol and the levels of interoperability are generally not defined.

It is also difficult to handle expansion of physical setups and system functionality in

complex control applications.

The current practice to tackle modem manufacturing control problems focuses

on distributed implementation of control systems. Whereas a common control

algorithm is generally defined across the manufacturing system, individual physical

nodes can be operated independently (Lian, Moyne, & Tibury, 1999). These nodes

Design and Implementation of a Networked Control System 12

cooperate with one another, communicating through a shared data network channel.

These systems are able to accomplish various tasks with limited reconfiguration

and to provide a way to improve the efficiency of diagnostics and maintenance

(Altun, Topaloglu, Saygin, & Bayrak, 2001).

A Networked Control System (NCS) is one type of distributed control systems

where the control loop is operated over a communication network. With NCS,

decisions and control functions can be distributed among controllers on the network

(Lian, et al., 1999). In contrast to the traditional point-to-point communication,

NCS offers more efficient re-configurability, high system testability and better

resource utilization. It reduces not only the installation and maintenance cost of the

control system, but also the floor space needed for electrical cabinets. Moreover,

applications connected through a network can be remotely controlled from a

long-distance source, especially in environments where electronically controlled

machines are not closely located.

1.1 Statement of the Problems

It has been realized that the traditional point-to-point control architecture has

limited the development of modem manufacturing control systems. Implementing

a complex control application over a point-to-point architecture may cause a

number of problems, which can potentially degrade system effectiveness. Typical

limitations in point-to-point architecture are as follows:

I. Adding, deleting or interchanging system components are difficult.

Design and Implementation of a Networked Control System 13

2. Remote access is not accessible because of physical constraints.

3. Higher intelligence devices, such as smart sensors and actuators are not

supported.

4. Troubleshooting is time consuming.

5. Wiring work and maintenance costs are extremely high.

As an alternative to point-to-point architecture, Networked Control System has

received more and more attention recently because of its ability to offer more

efficient re-configurability, high system testability and better resource utilization.

1.2 Statement of the Purpose

The purpose of this research is to study the detailed procedures on designing

and implementing a Networked Control System. The designed system can be used

for the further controller design to investigate the interaction between network

configuration and control parameters.

1.3 Definition of Terms

1. ASCII - American standard code for information interchange, an 8-bit code

for character representation.

2. Client- A node or software program (front-end device) that requests

services from a server.

3. Client/Server model- A common way to describe network services and

model user processes ofthose services.

Design and Implementation of a Networked Control System 14

4. Ethernet- A baseband Local Area Network (LAN) specification invented

by Xerox Corporation and developed jointly by Xerox, Intel, and Digital

Equipment Corporation. Coaxial cable carries radio frequency signals

between computers at a rate of 10 megabits per second.

5. Programmable Logic Controller (PLC)- A device used to automate

monitoring and controlling of industrial processes. It can be used

stand-alone or in conjunction with a Supervisory Control and Data

Acquisition (SCADA) or other systems.

6. Human Machine Interface (HMI) - The user interface that allows

interaction between the user and the machine. The term HMI is typically

used in industrial and process control applications.

7. Binary Exponential Backoff(BEB)- In CSMA/CA (Carrier Sense

Multiple Access with Collision Avoidance) networks and in

CSMA/CD(Carrier Sense Multiple Access with Collision Detection)

networks, the algorithm used to schedule retransmission after a collision

such that the retransmission is delayed by an amount of time derived from

the slot time and the number of attempts to retransmit.

8. ActiveX Control- A component program object that can be re-used by

many application programs within a computer or among computers in a

network. The technology for creating ActiveX controls is a part of

Design and Implementation of a Networked Control System 15

Microsoft's overall ActiveX set of technologies. Component Object Model

(COM) is a major part of this technology.

1.4 Limitations

The following is a list of limitations in this study.

1. Nondeterministic nature ofthe Ethernet-based network does not guarantee

that a particular message will not collide and eventually be dropped.

2. Time delay over the communication network may affect data transaction

between the controller and the control process.

1.5 Delimitations

The following lists delimitations in this study.

1. Ethernet-based network was used as the communication network.

2. The networked control system prototype consists of one process, one

server, and one client.

3. Operating environment of the server and client is based on Microsoft

Windows 2000.

4. Human Machine Interface was programmed using Microsoft Visual Basic.

5. The program needed for the PLC controller was written in the

RSLogix500 programming software.

6. The program controlling a robot was written in the PC robotics

programming software.

Design and Implementation of a Networked Control System I 6

CHAPTER2

Literature Review

2.1 Modern Control Systems

The current trend of modem control systems focuses on integrating computing,

communication, and control into different levels of operations and information

processes (Abdullah, et al., 1996). When integrated, processes are able to share

information, initiate actions, and accomplish various tasks with comparably small

reconfiguration work. A simple example of control systems is a robot controller

and a programmable logic controller (PLC) working together to control a single

machine. A complex example is an entire manufacturing· plant with hundreds of

workstations, including computer-numerically-controlled (CNC) machines,

computer-aided design (CAD) tools, supervisory controllers, and intelligent

monitoring devices.

Figure 2-l shows an altitude control system in aircraft control as another

typical example of a complex control system. In order to maintain the altitude

during an autopilot mode, various sensors and control surfaces among other control

components are distributed over the aircraft. Three subsystems including flaps, the

elevator, and the engine, must perform and collaborate together to achieve an

overall system task.

Design and Implementation of a Networked Control System 17

Subsystem: Elevator
Controller: Elevator controller
Sensor: Position o;ensor
Actuator: Hydraulic valve

Subsystem: Flap
Controller: Flap controller
Sensor: Poo;ition sensor
Acwator: Hych·aulic valve

Subsystem: Engine
Controller: Fuel injection controller
Sensor: Speed sensor
Actuator: Fuel injection nozzle

Figure 2-1. Altitude control system of an airplane (Tipsuwan, Y ., 2003, p. 17)

Common features of these complex control systems include a large number of

devices interconnected together to perform desired operations, and a large physical

area of coverage (Lian, 2001). Advanced control systems have been widely applied

in the industrial automation, building automation, office and home automation,

intelligent vehicle system, and advanced aircraft and spacecraft.

2.2 Programmable Logic Control

Prior to the development of electronic control solutions, electromechanical

relays were the standard means of sequential control. These relays allow power to

be switched on and off without a mechanical switch (Hugh, 2004). It is common to

use relays to make simple logical control decisions. However, additional

components and cross wiring could result in a substantial amount of downtime for

the production line and a potentially high cost to implement.

Design and Implementation of a Networked Control System 18

Programmable Logic Controller (PLC) revolutionized the control by

simplifying its process. PLCs are the control hubs for a wide variety of automated

systems and processes. They contain multiple inputs and outputs to simulate

switches and relays to control equipments. The advent ofPLC began in the 1970s

(Hugh, 2004), and it has become the most common choice for manufacturing

controls, and will probably remain predominant for some time to come.

PLC 1/0 channel specifications refer to total number of points, number of

inputs and outputs, ability to expand, and maximum number of channels. PLCs

may be specified by any possible combination of these values. Expandable units

may be stacked or linked together to increase total control capacity. Maximum

number of channels refers to the total number of input and output channels in an

expanded system.

PLC system specifications include scan time, number of instructions, data

memory, and program memory. Scan time is the time required by a PLC to check

the states of its inputs and outputs. Instructions are standard operations (such as

math functions) available to PLC software. Data memory is the capacity for data

storage. Program memory is the capacity for control software.

Possible inputs for PLCs may include DC, AC, analog, thermocouple,

frequency or pulse, and interrupt inputs. The inputs are electrically isolated from

the CPU power and the CPU data bus. Outputs for PLCs include DC, AC, relay,

analog, frequency or pulse. As it is with inputs, outputs are electrically isolated

Design and Implementation of a Networked Control System I 9

from the CPU power and the CPU data bus. PLCs may be programmed through

front panel, hand held interface, or a computer. They may also have computer

interface options and network ability.

2. 3 Human Machine Interface

Human machine interface (HMI) is where people and technology meet.

Typically, the term HMI is used to refer to devices that display machine or process

information and provide a means for entering data or commands. It retrieves

information from machines, which allows operators to monitor record and control

the system through interfaces such as image, keyboard, touch screen and so on.

The required functionality of an HMI will vary based upon the type and

complexity of product, the type ofmachine, the skills ofthe operator, and the

degree of automation of the machinery. Typical types of functionality stated by

Weber (1999) are shown in Table 2-1. For example, "Graphic Displays" function

provides information about machine operation and status to the operator.

Design and Implementation of a Networked Control System 20

Table 2-1

Typical Types of HMI Functionality

Functionality Purpose

To provide information about machine operation

and status to the operator in a format that allows for
Graphic Displays

easy interpretation and determination of needs for

action

To facilitate inputs from the operator to adjust

User Input machine operation, perform machine setups, and

respond to events

To provide for the storage of historical machine

operating data for part traceability and analysis of

Data Logging & Storage ways to improve quality, productivity, and uptime.

Also used to store and retrieve machine setup data

where needed.

To provide a means for visual analysis of data on
Trending

current or past machine operation

To provide notification to the operator of abnormal
Alarming

operating conditions and events.

2. 4 Serial Communication

Multiple control components may be used for complex processes. For these

controllers to work together, they must communicate with each other. The simplest

Design and Implementation of a Networked Control System 21

form of communication is a direct connection between two computers. Data can be

transmitted one bit at a time in series, which is known as serial communication.

All IBM PC and compatible computers are typically equipped with standard

serial ports. For example, keyboard port, RS-232 serial port, USB port, network

port, and modem port are all serial communication ports.

In serial communications, one single bit of data is sent at a time over the

medium. This only requires a single communication channel, as opposed to eight

channels to send a byte using a parallel port. While it takes eight times as long to

transfer each byte of data this way than parallel byte transfer, only a few wires are

required. In fact, two-way (full duplex) communications is possible with only three

separate wires - one to send, one to receive, and a common signal ground wire.

Serial communication is frequently characterized by parameters of baud rate,

parity, data bits, and stop bit. For example, a set of serial parameter of (9600, N, 8,

1) indicates a baud rate of9600 bps, no parity, 8 data bits, and 1 stop bit. A typical

serial data byte equal to 00010010 is shown in Figure 2-2.

Design and Implementation of a Networked Control System 22

Descriptiom:

before- tlus is a penod \Vhere no bit 1~ bemg sent and the line is tme.
start - a smgle blt to help get the ">ystems synchronized.
data -tills could be 7 or 8 btts, but is ahnost ahvays 8 now. The value shown here ts a

byte with the bmal)' \·alue 00010010 (the least sigruficant bit is sent first).
panty- this lets us check to <..ee if the byte was sent properly. TI1e most common

choices here are no parity bit, an even parity bit. or an odd parity btt. In this case
there are two bit<:. >et m the data byte. If we are usmg even parity d1e bit would be
tme. If we are usmg odd panty d1e btt would be false.

stop - the stop btts allow a pause at the end of d1e data. One or two stop bits can be
used.

tdle - a pen01:l of time where the lme ts tme before the next byte.

Figure 2-2. A serial date byte (Hugh, 1996, p.l21)

RS-232C is the most common standard defined by Electrical Industries

Association (EIA). RS-232 stands for Recommend Standard number 232 and Cis

the latest revision of the standard. Serial ports on most computers use a subset of

the RS-232C standard. The full RS-232C standard specifies a 25-pin "D" connector

of which 22 pins are used. Most of these pins are not needed for normal PC

communications, and indeed, most new PCs are equipped with male D type

connectors having only 9 pins.

A server computer is able to communicate with PLC through RS-232 serial

port. For example, PLCs of Allen-Bradley's MicroLogix family are capable of

serial communication at standard baud rates from 300 to 38400, with 9600 being

the default values specified by the factory. In a typical connection between PLC

Design and Implementation of a Networked Control System 23

and PC, the RS-232 cable may be connected to the channel serial connector on the

PLC processor, and to the COM 1 port on the computer.

2. 5 Communication Protocol for Allen Bradley's P LCs

Based on the Open System Interconnection (OSI) model, physical layer is a set

of cables and interface modules that provide a channel for communication between

nodes. A node is a connection point onto a network, typically containing a unique

address (Allen Bradley, 1996). At the physical layer level, Allen Bradley's

MicroLogix family PLCs can be communicated with the server computer by means

ofRS-232 communication port. The framework ofthe data packet transmitted

between a server and a PLC is constructed with ASCII control characters. In order

to talk to the PLC, the protocol for messaging of the PLC must be understood. The

protocol provides the structure that encapsulates the data bytes, ensuring that the

data bytes arrive undistorted at the correct destination (Leonik, 2000).

Figure 2-3 shows a data communication model between server computer and

PLC. Two layers of software are involved in this communication. They are

data-link layer and application layer. Details of the two layers are explained as

follows.

Design and Implementation of a Networked Control System 24

Server PLC

Application Layer Application Layer

Common Common
Application Application
Routines Routines

1!1 RS-232 Cable 1\ I RS-232 DF1

I

Data Link Layer 1\r v Data Link Layer

Figure 2-3. Mode of data communication between server and PLC

2. 5. 1 Data link layer

Data link layer controls the flow of communication over the physical link and

determines the encoding of data on the physical medium (Allen Bradley, 1996). In

order to connect a PLC to a computer, the proper protocol character sequences and

program driver on the physical link must be understood. DF1 protocol is an

Allen-Bradley data-link layer protocol that interprets signals transmitted over a

physical link. DF1 protocol encapsulates the date bytes from one end ofthe link to

the other, indicating failure with an error code. It has no concern for the content,

function, or the ultimate purpose of the message (Allen Bradley, 1996). The

transmission format is as follows:

Start bit-8 data bit (0~ 7)-no parity-stop bit

OF 1 protocol provides two modes of communication: full-duplex and

half-duplex. Full-duplex allows two-way simultaneous transmission over a

Design and Implementation of a Networked Control System 25

point-to-point link. Half-duplex is a multidrop protocol for master/ multiple slaves'

network, but communication only takes place in one direction at a time.

2.5.2 Application layer

Application layer controls and executes the actual commands specified in the

communication between nodes (Allen Bradley, 1996). Application layer interfaces

with user processes and databases, interprets commands, and formats user data into

packets. The application layer depends upon the type of node the application is

running on since it must interface with the user process and interpret the user

database.

All messages on a network have the same fundamental structure, regardless of

their function or destination. PLC messaging consists oftwo types of messaging

bytes: protocol bytes and data bytes. There are two types of application programs in

the application layer: command sender and command receiver (Allen Bradley,

1996).

Command sender sends command messages, specifying which command

function to execute at a particular remote node. Figure 2-4 shows the software logic

for implementing command message transaction. The command sender first sends

a command, initializes the timer, and waits for acknowledgment (ACK) from the

PLC. If an ACK is detected, the command sender then starts to process data.

Otherwise, it proceeds to transmit out the next request.

Design and Implementation of a Networked Control System 26

Send

Enable timeout
timer

,-------~Send Request
Wait for ACK

No

Time out
this poll?

Yes

Notify the user
Process data
Disable timer

Figure 2-4. Flowchart for implementing command message transaction

The command receiver sends reply messages. It is responsible for interpreting

and executing command messages. Each command message requires one reply

message.

Figure 2-5 shows the software logic for implementing reply message

transaction. The command receiver first sends a command to request the reply

message and enable the timer. Upon receipt of a message, the integrity of the

message is verified by checking the cyclic redundancy check (CRC). If the CRC

checking is failed, the command receiver transmits out another request. If the CRC

checking is passed, the command receiver proceeds to generate the response and

Design and Implementation of a Networked Control System 27

wait for ACK. If an ACK is received, the command receiver routes reply into the

database. Otherwise, it proceeds to wait for the next request.

Yes

No

Time out this
poll?

No

~------'-Y_,e,_,s< Time out this
poll?

Notify the user

No

No

Receive message

Send request

Enable timeout
timer(1)

Generate
response

Disable timeout
timer(1)

Initialize timer(2)
WaitforACK

Disable timer(2)
Send reply

Figure 2-5. Flowchart for implementing reply message transaction

Design and Implementation of a Networked Control System 28

The command message and reply message provide extra data integrity by

making sure that a required action always returns a proper reply. The

application-layer protocol distinguishes a command from a reply. The unprotected

write command and the unprotected read command (Allen Bradley, 1996) permit

access to the PLC's data memory. The address fields of unprotected reads and

unprotected writes are used as word addresses in MicroLogix Family.

Unprotected write command.

Unprotected write command writes data to a common interface file (CIF).

This command is implemented as a protected file read by MicroLogix processors

and is used by non- MicroLogix devices to read information from MicroLogix

devices. The message packet is constructed as follows:

Write Command Message:

CMD DATA
DST SRC STS TNSl TNS2 ADDL ADDH

(8) (max. 234 bytes)

Reply Message:

I
CMD
(48) . STS TNS 1 TNS2

Where

DST is the destination node, containing receiving message.

SRC is the source node, containing sending message.

CMD is the command byte. For command message, CMD = 8 Hex; for reply

message, CMD = 48 Hex.

Design and Implementation of a Networked Control System 29

STS indicates the status of the message transaction, which typically equals to

zero.

TNS 1 and TNS2 are bytes that contain a unique 16-bit transaction value. The

protocol requires that each command have a unique transaction value that is

different from the previously issued command. In order to generate this number,

the developer can simply set up a 16-bit counter, increment the counter each time

the command sender sends message, and store the value in the two bytes ofTNS.

TNS1 is the low byte ofthe 16-bit value; TNS2 is the high byte ofthe 16-bit value.

ADDL and ADDH are bytes that contain a 2-bytes address of memory location

since the PLC register is 2-bytes wide. ADDL is the low order address byte.

ADDH is the high order address byte.

DATA contains data values being transmitted by the message. The size is

implied by the number of data bytes sent. For MicroLogix processors, the valid

range is 0-234 bytes. The following example describes how to write a 2357 Hex

into the contents of register N7:0. N7 is the PLC memory location which is 16 bits,

or 2 bytes wide.

Write Command Message:

CMD STS TNSI TNS2 ADDL ADDH DATA
(max. 234 bytes)

8 0 23 34 0 0 57 I 23

Reply Message:

CMD STS TNSI TNS2

48 0 23 34

Design and Implementation of a Networked Control System 30

Unprotected read command.

Unprotected read command reads data from a common interface file (CIF).

This command is implemented as a protected file read in MicroLogix processors

and is used by non- MicroLogix devices to read information from MicroLogix

devices. The message packet is constructed as follows:

Read Command Message:

DST SRC CMD STS TNSI TNS2 ADDL ADDH SIZE
(I)

Reply Message:

CMD STS TNSI TNS2 DATA
(41) (max. 234 bytes)

In contrast of write command message, read command message specifies the

size field, not the data field at the end of the packet. The SIZE byte specifies the

number of data bytes to be transferred by a message. This field should be an even

value because PLC words are 2-bytes wide. The low order byte is always

transferred first. In addition, for read command message, CMD = 1 Hex; for reply

message, CMD = 41 Hex. The following example illustrates how to write two data

bytes (2211) starting at the contents of register N7: 1.

Read Command Message:

CMD STS TNSI TNS2 ADDL ADDH SIZE

I 0 34 56 2 0 4

Design and Implementation of a Networked Control System 31

Reply Message:

CMD STS TNS I TNS2 DATA

41 0 34 56 II 22

2. 6 Network Communication

2. 6.1 Data network and control network

Generally speaking, computer networks can be divided into two categories,

namely data networks and control networks (Raji, 1994). Data networks use large

data packets and relatively infrequent transmission over a wide area with high data

rates to support the transmission of large data files (Lian, eta!., 2000a). Control

networks, on the other hand, must shuttle countless small, but frequent packets

among a relatively large set of nodes to meet the time-critical requirements (Lian, et

a!.). The key element that distinguishes control networks from data networks is the

capability to support time-critical applications. Data networks do not have hard

time-critical constraints (Raji). Hence, the communication of control systems

should be implemented only through control networks.

A wide variety of networks are commercially available. Every type of

network has particular strengths and weaknesses, depending upon their basic

designs. Three types of control networks commonly implemented in industrial

control systems are Token-passing, CAN-based, and Ethernet-based network.

Design and Implementation of a Networked Control System 32

2.6.2 Token-passing network

Token-passing network was originally developed by IBM. PROFIBUS,

ControlNet, and MAP are typical examples of token-passing networks. In a

Token-passing network, individual hosts are connected in a ring, as shown in Figure

2-6. A small data frame, called a token, circulates around the ring. During

operation of the network, the station with the token is granted the right to transmit

data. If a node runs out of data frames to transmit, or has no message to send, it

passes the token to the successor on the network. Each station can hold the token

for a certain period oftime, depending on the token rotation time that has been

implemented. The physical location ofthe next station on the ring is not important,

because the token is sent to the logical neighbor. In this manner, only one station

may have control on the network at a specific point of time. Other stations on the

ring cannot transmit data at this moment. They must wait for the token to become

available.

Design and Implementation of a Networked Control System 33

Figure 2-6. A token-passing network

Priority system.

Token-passing networks have a sophisticated priority system that permits

certain stations with high priority to use the network more frequently. Priority is

defined by the frame's priority and reservation fields. Only stations with a priority

equal or higher than the priority field of the token can seize that token. After the

token is captured and changed to an information frame, only stations with a priority

higher than that of the transmitting station can reserve the token for the next pass

around the network. When the next token is generated, it includes the higher

reserving station. Stations must reinstate the priority back to its previous value after

their transmission has been completed.

Design and Implementation of a Networked Control System 34

Management mechanisms.

In order to detect and correct network faults, Token Ring networks may

dedicate a station for monitoring frames which are circling around without being

dealt with. This monitor removes such frames and allows the network to function in

a normal manner all over again.

Advantages and disadvantages.

Token-passing networks are deterministic. In other words, one can calculate

the maximum time that will pass before any end station will be capable of.

transmitting (Cisco System, Inc., 2001). This feature provides excellent throughput

and efficiency at high network loads, which makes Token-passing networks ideal

for applications in which any delay must be predictable and robust network

operation is important.

Token-passing systems, however, have some disadvantages. Token passing

protocols are much more complex than contention-based protocols. It may require

that a node with an urgent or critical message wait to receive the to~en.

Furthermore, when there are a large number of nodes in one logical ring, a large

percentage of the bandwidth has to be used in passing the token between nodes

(Koubias & Papadopoulos, 1995).

2. 6. 3 CAN-based network

CAN (Controller Area Network) protocol was originally developed in 1983 by

a German company Robert Bosch for use in automotive industries (Yodyium, 2003).

Design and Implementation of a Networked Control System 35

It is also being used increasingly in industrial automation technology and in a large

number of embedded systems in various fields of applications - from coffee

machines to kidney stone lithotripters. CANopen and DeviceNet are typical

examples of CAN-based networks (Zeltwanger, 2000). CANopen is the dominant

standard for applications in embedded networks whereas DeviceNet is used

especially in industrial automation in the environment by Rockwell Automation.

CAN-based networks have a series of special features compared with other system

solutions.

Access and collisions.

Each node of a CAN network can initiate the transmission of a message as

soon as the bus is free and then starts to send the identifier of its message bit by bit.

As it may happen that more than one network node begins with the transmission of

a message at the same time, an arbitration process is necessary, which ensures only

one node actually continues with the transmission of its message.

Figure 2-7 shows the principle used for the bus arbitration. When the nodes

start to transmit their respective messages, each bit of the identifier is written onto

the bus and also read back by each node. If two nodes want to send message at the

same time, they first continue to send the message frame and then listen to the

network. If one of them receives a bit different from the one it sends out, it will stop

transmitting its message and the other wins the arbitration. This arbitration is called

Design and Implementation of a Networked Control System 36

Carrier Sense Multiple Access with Collision Resolution (CSMA/CR). With this

method, the process ensures "lossless" bus access.

Transmits: 00101100

Receives: 00100011

Transmits: 00100011

Receives: 00100011

CAN Bus

Node B Wins Arbitration

Figure 2-7. A principle used for the bus arbitration

Multi-cast message transmission.

The CAN-based network was designed as a multi-master architecture with a

maximum transfer rate of 1 Mbit/sec, that is, all CAN nodes are able to transmit data

and several CAN nodes can request the bus simultaneously. Unlike other types of

networks, transmitted data in a CAN message does not necessarily contain

addresses of either the source or the destination of the message. It is the data not the

node that is given an identifier unique through the network. The message is

broadcast to the network where other nodes pick up or reject message depending

upon the configuration of mask filters for the identifier. For example, in a car, one

node may be transmitting signals of wheel speed, which may be picked up

simultaneously by the ABS unit, the instrument cluster and the engine management

Design and Implementation of a Networked Control System 37

system. But none of these data receivers has knowledge of where the information

came from.

Advantages and disadvantages.

The CAN-based network is optimized for short messages and utilizes an

arbitration-on-message-priority media access method (Lian, eta!., 1999). These

features provide shorter latency times for high-priority messages and the ability to

transmit even in environments with high fault-intensity.

One of major disadvantages of CAN, compared with the other networks, is the

slow data rate (Lian, et a!., 1999). The maximum data rate in DeviceNet is 500

Kbps. This also limits the maximum bus length (network extension) because the

protocol requires different stations to be synchronized within a bit time. Moreover,

a maximum of 8 bytes of data can be transmitted with one CAN message. Hence,

the CAN network is not suitable for transmission of message of large data sizes,

although larger data blocks can be transmitted by a series of consecutive CAN

messages.

2. 6. 4 Ethernet-based network.

Ethernet is the most widely used local area network (LAN) technology. It was

designed to fill the middle ground between long-distance, low-speed networks and

specialized, computer-room networks carrying data at high speed for very limited

distances (Cisco System, Inc., 200 I). Because of its availability, high

Design and Implementation of a Networked Control System 38

communication rates, and well-established infrastructure, Ethernet has become a

primary network control candidate for control applications.

The first experimental Ethernet system was developed in the early 1970s by

Bob Metcalfe and David Boggs ofthe Xerox Palo Alto Research Center (PARC).

This was used as the basis for the Institute of Electrical and Electronic Engineers

(IEEE) 802.3 specification released in 1980.

Access and collisions

Ethernet devices compete for access to the network using Carrier Sense

Multiple Access with Collision Detection (CSMA/CD) mechanism for resolving

contention on the communication medium. CSMA/CD is an access method that

allows only one station to transmit at a time on a shared medium. Standard Ethernet

using CSMA/CD takes into consideration all the transmission requests and

determines what devices can transmit and when they can transmit for all devices to

receive adequate service (Cisco Systems, Inc., 2001).

Figure 2-8 shows a typical process of CSMA/CD. Similar to the CSMA/CR

used in the CAN-based network, when a node at Ethernet networks wants to initiate

the transmission of a message, it first listens to the network to see if there are any

signals on the networking media. After the node determines that the network is idle,

it can begin to transmit data. Iftwo network nodes begin with the transmission of a

message simultaneously, a collision detection method will be applied. With

CSMA/CR mechanism used in the CAN-based network, the high priority node will

Design and Implementation of a Networked Control System 39

continue sending messages while the low priority node will stop initiating

transmission and start listening to the network. With CSMA/CD mechanism used

in Ethernet, in contrast, both nodes stop sending data and retry their transmission

after a randomly chosen delay period. This random time is determined by the

standard Binary Exponential Backoff (BEB) algorithm (Lian, et al., 1999).

CARRIER
SENSE

MULTIPLE
ACCESS

COLLISION
DETECTION

CSMAICD ..

• .. I.
,.1.]
I '

r-ll.!
I

Ill J•i•i ~~'
Figure 2-8. The process of CSMA/CD mechanism

Advantages and disadvantages.

...

There are many advantages of Ethernet with the most compelling advantages

as its availability. Almost all personal computers sold today are equipped with

Ethernet connectivity. This fact translates into low cost and high availability.

Ethernet components are commodity items. Network cable, interface cards,

network analysis tools, and management software offer significant lower cost

compared with components used in other type of networks. Ethernet is

Design and Implementation of a Networked Control System 40

well-established in office networks. Thus, extending it to the factory floor will be

relatively easier than other types of network.

Another major advantage of Ethernet is its flexibility. Table 2-2 describes

some critical characteristics of a standard Ethernet. It is able to transmit messages

from a minimum size of 72 bytes to a maximum of 1500 bytes over a length of2500

meters (Otanez, Parrott, Moyne, & Tilbury, 2000).

Table 2-2

Characteristics of Standard Ethernet

Configuration Parameters Standard Ethernet

Data Rate (Mbps) 10

Bit Time(J.Js) 0.1

Max Length (meter) 2500

Max Data Size (byte) 1500

Min Message Size (byte) 72

Typical Tx Speed (m/s) coaxial cable: 10

Because of low media access overhead, Ethernet uses a simple algorithm for

operation of the network and has almost no delay at low network loads (Lian,

Moyne, & Tilbury, 2000b). In addition, the multi-drop nature of Ethernet provides

a straightforward expansion path on networks.

The major disadvantage of standard Ethernet with respect to control system

networking is that it can not guarantee the delivery of time critical information

because of its nondeterministic nature of communication. Network protocols

Design and Implementation of a Networked Control System 41

employ CSMA/CD mechanisms to prevent message collisions from happening.

When a collision occurs, the transmitting nodes wait a random length of time to

retry transmission. This random time is determined by the standard BEB algorithm.

Based on BEB algorithm, if sixteen collisions are detected, the transmitting node

discards the message and reports an error. Therefore, there is no guarantee that a

particular critical message will not collide and eventually be dropped.

Message collisions significantly compromise network performance by

increasing time delays or causing message loss (Otanez, et al., 2000). These time

delays come from the time sharing of the communication medium as well as the

computation time required for physical signal coding and communication

processing. The characteristics of time delays could be constant, bounded, or even

random, depending on the network protocols adopted and the chosen hardware

(Lian, 2001). For networks with low traffic and high data rates, time delays are

relatively small and under some conditions can be neglected when the controller is

designed for most networks (Walsh & Ye, 2001). However, the uncertainty in the

magnitude of network and device delays hinders the performance ofNCSs and has

raised questions concerning what quality of control performance can be expected of

distributed networked control systems (Otanez, 2002).

Design and Implementation of a Networked Control System 42

2. 7 Overview of Networked Control System

2. 7.1 Traditional communication architecture and its limitations

For many years, point-to-point architecture is the traditional communication

architecture widely operated in industrial and manufacturing control systems. This

centralized communication architecture had a single central control unit. Each

system controller is directly wired to other devices, such as sensors, or actuators.

Complex control systems, however, cover large plant areas and connect a large

number of components by means of computationally intense algorithms. Hence, a

large amount of direct electrical wiring is required to connect system components

like sensors, actuators, and contr?llers together. That usually results in a huge

project, especially when many subsystems are not closely located.

From this point of view, it is unrealistic to implement the traditional

point-to-point architecture in these complex systems. In the point-to-point

architecture, there is a lack of common communication protocol and component

interchangeability (Lian, 2001). Moreover, it is difficult to add, delete or

interchange components in complex systems, which may make it difficult to expand

physical setups and system functionality.

2. 7.2 Introduction to networked control system

As an alternative to point-to-point, a Networked Control System (NCS) is one

type of distributed common-bus control system where the control loop is operated

over a communication network. Figure 2-9 illustrates a typical setup and

Design and Implementation of a Networked Control System 43

information flow of a NCS. The defining feature of an NCS is its control

components (i.e., sensors, actuators, and controllers) are distributed and

interconnected by communication networks.

Actuator
in ut

Plant

Sensor
out ut

Communication Network Channel

Controller

Figure 2-9. A typical setup and information flow of a NCS

In contrast to point-to-point communication, NCS can improve efficiency,

offers better resource utilization, and also reduces installation, maintenance time

and costs. Moreover, this type of architecture supplies higher intelligence at nodes

for modularization of functionality and standard interfaces for interchangeability

and interoperability (Koren, 1999). Intelligence and decision making can be moved

out of the central control units and distributed into controllers located near the

Design and Implementation of a Networked Control System 44

controlled devices (Lian, eta!., 2000). Hence, the processing load on single central

control unit can be assigned into several small processors.

Traditionally, communication networks used in NCS applications are specific

industrial networks. Controller Area Network (CAN) protocol, for example, was

one type of industrial network protocol, which was originally developed in 1983 for

automobile industry. Profibus is a broadcast bus protocol that operates as a

multi-master/slave system, developed by six German companies and five German

institutes in 1987. Many other industrial network protocols including Foundation,

Fieldbus and DeviceNet were also developed about the same period (Yodyium,

2003). Meanwhile, technologies on general computer networks especially Ethernet

have progressed very rapidly. With the decreasing price, increasing speed,

widespread usages, numerous software and applications, and well-established

infrastructure, Ethernet networks have become major competitors to the industrial

networks for control applications (Kaplan, 2001).

Depending on the network protocol, a network system may also provide

attractive features with respect to different communication models supported.

These include client/server, master/slave, and publisher/subscriber (Lian, 2001).

Because all devices are interconnected by a common-bus network, information

generated by a single unit is easily shared by other devices.

Regardless ofthe type of network used, however, implementing control

applications over a communication network may cause a number of problems,

Design and Implementation of a Networked Control System 45

which can potentially degrade control system effectiveness and possibly cause

system instability. One challenging problem is network delay. The time to read a

sensor measurement and to send a control signal to an actuator through the network

depends on network characteristics (i.e., topologies, routing schemes, etc). These

time delays come from the time sharing of the communication medium as well as

additional functionality required for physical signal coding and communication

processing (Lian, et. al., 200 l). These inevitable time delays, if not dealt with

properly, can greatly influence system performance and even cause system

instability.

The study ofNCS combines both network and control theory. Lian (2001)

represented a NCS research methodology model as shown in Figure 2-10. In this

model, control application is utilizing networks for communication and computers

for processing. Thus, three major issues should be considered in the study of any

NCS, including: network systems, networked devices and control systems. In a

summary, "the overall NCS study should first research the characteristics of the

network application systems and networked devices, and then parameterize all key

factors that impact the stability and performance of both network and control

systems" (Lian, 2001, p.19).

Design and Implementation of a Networked Control System 46

Timing
Analysis,

Modeling, &
Design

Network
Syste!1Js,

Control

Networked
Control
Systems

Ne~,l\~'*
Devices

Stability
&

Performanoe

· ; 1l()nfr6f't1 i
Systems

Figure 2-10. NCS research methodology (Lian, 2001, p. 4)

2.8 Software Tools Implemented in the Designed NCS

2.8.1. Visual Basic for HMI applications

Visual Basic (VB) is an application development tool designed specially for

the Microsoft Windows operating systems. The language is designed for a broader

audience with less formal programming experience and training than lower level

languages such as Cor C++. VB provides a powerful and flexible environment

where the developer is able to write diverse programs for a wide range of

application with minimal effort.

Design and Implementation of a Networked Control System 47

The primary goal of a HMI is to assist the operator in running a machine and

managing a process. A HMI will increase the productivity of the operator and

machine, increase uptime, and assist in providing consistent product quality. With

many off-the-shelf HMI software packages available, Visual Basic can be used

effectively for creating HMI applications for the following reasons.

1. Many HMI applications only require a few user screens and simple data

logging. In the case of these applications, VB provides the optimum

solution with additional flexibility and choice that may be required to meet

further operational requirements. Until recently, the use of Visual Basic

for industrial HMI applications was limited by the performance of

interpreted code at runtime and the lack of tools for industrial applications

such as control system hardware connectivity and data visualization

(Weber, 1999). However, new technologies based on ActiveX have

removed these barriers by extending the suite oftools and objects available

to VB developers. With these barriers gone, VB can be used to quickly

create simple HMI applications.

2. From the standpoint of maintenance and budget, VB is the clear winner

over proprietary industrial automation software. By creating applications

in VB, developers can distribute their compiled application royalty free.

No per-machine runtime licenses are required for the actual VB code or the

built-in objects (text boxes, command buttons, etc). Although developers

Design and Implementation of a Networked Control System 48

do use some third party plug-ins, those controls have either only require

nominal per machine fees or no distribution licensing fees at all.

3. VB is one ofthe most widely used development environment in the world.

More than three million programmers worldwide know Visual Basic

language. Developers are able to easily find someone with the aptitude

and skills to understand the application source code and minimize the

learning curve.

2.8.2. ActiveX Control for communication

An ActiveX control is a component program object that can be added to Visual

Basic. The main technology is based on the Component Object Model (COM).

ActiveX controls can be used for any common task by an application program in the

latest Windows and Macintosh environments. In implementation, an ActiveX

control is a dynamic link library (DLL) module.

A number of ActiveX controls have emerged in the general marketplace for

the Visual Basic developer to handle connectivity. Two different ActiveX controls

will be introduced in this section. The first is Winsock control provided by

Microsoft, and the other is known as Serial OF 1 ActiveX Control provided by

CimQuest Inc.

MS Winsock for network communication.

The Winsock control shipped with Visual Basic acts as the middleware

between Windows applications (such as ftp, a Web browser, Telnet, and so forth)

Design and Implementation of a Networked Control System 49

and the Internet protocol. It is the lowest level network programming protocol, and

defines a network programming interface for Microsoft Windows. The Winsock

control allows the user to handle the network protocol issues, and background

processing without having to worry about the details ofTCPIUDP standard or to

call low level of application programming interface (API).

The latest version of Winsock is Winsock 2. The Windows Open System

Architecture (WOSA) compliant WinSock 2 architecture is illustrated in Figure

2-11. It defines two interfaces: an API which shields application developers from

underlying layers, and a service provider interface (SPI) which allows transparent

extensions to a Winsock stack. With this architecture, it is no longer necessary for

each stack vendor to supply their own implementation of Win Sock 2 DLL since a

single WinSock 2 DLL must work across all stacks. The WinSock 2 DLL should

thus be viewed in the same light as an operating system component (International

Center for Theoretical Physics, 1996).

Design and Implementation of a Networked Control System 50

WinSock2
Application

WinSock 2 API ------------------

WinSock2
Transport SPI

Transport
SeiVice

Provider

Transport Functions Name Space Functions

The WinSock 2 DLL

WS2_32DLL (32 b1t)

Transport
SeiVice

Provider

Name Space
SeiVice

Provider

WinSock2
Name Space SPI

Name Space
SeiVice

Provider

Figure 2-11. Winsock 2 architecture (ICTP, 1996, ~3)

By setting properties and invoking control methods, a remote machine can be

connected. It is possible to exchange data in both directions over various network

transport protocols and client-server implementations.

Some important Winsock control properties are described in Table 2-3. Those

properties make it possible to set the communication protocol, the IP address of the

remote unit, remote and local port to use, and the current state of control when

establishing a communication link. For example, "RemoteHost" property can be

set as a server IP address "139.67.139.21 ".

Design and Implementation of a Networked Control System 51

Table 2-3

Important Winsock Control Properties

Winsock Property Description

Remote Host Returns the name/IP address of the server computer.

Remote Port Returns or sets the remote port number

Local Port Returns or sets the local port number

Returns or sets the protocol, either TCP or UDP, used by the

Protocol
Winsock control.

Identifies whether the control is closed, open, listening,

State
connected, error,etc.

Table 2-4 describes the important methods of the Winsock control. For

example, "Connect" method is used to establish a connection to the server. The

orders they appear in the table are typically the order in which they are used.

Generally, an application will establish connection using "Connect" method before

it is able to listen or accept requests. "Close" method will be used to terminate the

application.

Design and Implementation of a Networked Control System 52

Table 2-4

Important Winsock Control Methods

Winsock Method Description

Connect Requests a connection to a remote server (invoked on the

client application only).

Listen Waits for a TCP/UDP request for connection from a client

system (executed by the server application only).

Accept Accepts the request for connection from the client system

(used in the server application only).

SendData Dispatches data to the remote computer (used for both the

client and server application).

GetData Retrieves data from remote commuter (used for both the

client and server application).

Close Close an open socket (used for both the client and server

application).

Winsock enables developers to create a client-server application. The client

program here is the one that requests a network connection, and the server program

is the one that listens for a connection request.

Figure 2-12 illustrates a typical client-server model which indicates a series of

events that occur during the lifetime of a client-server application. The left column

refers to the client application, and the right column refers to the server application.

Time proceeds from the top of the diagram to the bottom. Both client and server

applications start with creating a socket and end up with the "Close" method.

1

Design and Implementation of a Networked Control System 53

Client

Create a socket

Set server address and server port

Request a connection

Send data

Receive data

Close the socket

Server

Create a socket

Listen for connection request from client

Accept a connection

Receive data

Send data

Close the socket

Figure 2-12. A typical client-server model

DFl ActiveX Control for communication with PLCs.

The framework of the data packet transmitted between server PC and PLC is

constructed with ASCII control characters through RS-232 serial port. Serial DFl

ActiveX Control provided by CimQuest Inc. can be used to handle this connectivity.

The control application handles all low level protocol formatting, hardware

interfacing, and error checking needed to communicate to a PLC. Similar to

Winsock control, DFl ActiveX control for VB also has properties and methods.

Properties define the exact functionality the control will perform.

Some important control properties are listed and briefly described in Table 2-5.

For example, "Host" property can be set as a specific IP address "139.67.139.1" for

PLC.

Design and Implementation of a Networked Control System 54

Table 2-5

Important Serial DF 1 ActiveX Control Properties

Property Description

Host Sets or returns the IP Address of the PLC Module

Adapter Sets or returns the communication adapter number to be used.

Sets or returns the type of data transaction the control will
Function

perform

Sets or returns the starting data point to read or write in the
FileAddr

PLC

Sets or returns the number of data table elements the control
Size

will read or write

Table 2-6 illustrates several critical methods that a developer invokes to make

the control perform its functions. For example, "Trigger" method can be used to

invoke a PLC read function. The orders they appear in the table are typically the

order in which they are used.

Design and Implementation of a Networked Control System 55

Table 2-6

Important Serial DF 1 ActiveX Control Methods

Property Description

Trigger Invokes the control to read or write to PLC

Automatically invokes the Trigger Method at the given
Auto Poll

interval

Used to reference the controls internal data array as 16-bit
WordVal

values.

ClearControl Clears the contents of the controls internal data array

Design and Implementation of a Networked Control System 56

CHAPTER3

Design Methods

In order to gain an understanding on the implementation of networked control

system (NCS), a prototype was used to present the structure and hierarchical model

of a typical NCS. The designed prototype combined both network and control

practice, addressed the detailed procedures on design, configuration, integration

and implementation of a process control via communication network.

3.1 System Configuration

The prototype was composed ofthree parts: (a) client, (b) server, and (c)

process controller, as illustrated in Figure 3-1. The client and the server were

physically located at different locations and they were linked by Ethernet.

Design and Implementation of a Networked Control System 57

lnternet/Ethernet

Client Environment Server Environment

Robot Programmable
Logic Controller

Process Controller

Figure 3-1. System configuration of a NCS

In this environment, the role of the client was to convey the control related

commands and user messages to the server. The server was used as an interface

between client and process, which processed the incoming process related data and

sent them to the client. It also transmitted the user and/or client-originated

commands to the process controller. A programmable logic controller (PLC) was

used to communicate with the server and regulate a robot to perform desired tasks.

Design and Implementation of a Networked Control System 58

3.2 Software Structure

A high level functional model of software structure is shown in Figure 3-2. A

user is able to regulate the process through a HMI, which is a Visual Basic-based

interface. Communication between client and server was established using

Microsoft Winsock control via Ethernet. The server controls the PLC via RS-232

serial port with the help ofDFl ActiveX control.

Client PC

Visual Basic- based
Interface

,---~------

!
I

Personal
computer robot
programming

software

PLC
Rslogix 500

Program Editor

u
I Winsock I

)>

~~Server PC
ro
X

t---

Figure 3-2. Software structure ofthe designed NCS

3. 3 Process Controller

A basic material sorting process was designed, with the hardware and software

listed in Table 3-1. An Amatrol Pegasus robot driven by a PLC was used to execute

the desired actions. The robot was assembled from a pre-existing kit and some

Design and Implementation of a Networked Control System 59

modification was made in order to add sensory capability and to process the control

related commands from the server.

Table 3-1

Configuration in the Process Controller

Component Model Quantity

Pegasus robot 880-RA2 1

Robot operator controller 88-A1 1

Parts feeder 88-F1 1

Parts bin 88-P1 2

Programmable Logic Controller MicroLogix 1 000 1

Personal Computer (PC) robot
Robot programming 1

programming software

RSLogix500 program editor PLC programming 1

The robot was programmed to perform a task of material sorting. Robot

programs in this study can be broken down into two parts: program sequence file

and point file. The program sequence file contains the commands used to create the

robot's sequence of operation. Figure 3-3 describes the flowchart of this sorting

application. The robot driven by the PLC gets an object from parts feeder, and then

places the object into the inspection station to test for the presence of a hole. If a

hole is detected in the object, the object is accepted and moved into the bin for

accepted parts. Otherwise the object is rejected and moved into the reject bin. For

each step or operation the robot performs, a separate command was used.

Design and Implementation of a Networked Control System 60

Start

1 1
Gets the object from

parts feeder

I
I

~

Moves the object to
the inspection station

Is No Places the object into
inspection

the rejected bin
r---

assed?

Yes

I Places the object into
I the accepted bin

Figure 3-3. Flowchart for material sorting process

Before a robot program sequence can be executed, it is important to have robot

program know the location of each point to which it will move. The point file stores

the location of each point. Seven location points were defined in the sorting

process.

Design and Implementation of a Networked Control System 61

An Allen-Bradley MicroLogix I 000 PLC was used to communicate with the

robot. Firstly, PLC conveys the control related commands from the server and

signals from the sensor to the Pegasus robot. In order to perform this application,

the PLC outputs were directly wired to the terminals of the robot input. Secondly,

the PLC processes incoming process related data and sends them back to the server.

Robot outputs were used to transmit control feedback to the PLC. A limit switch

resided in the inspection station was used to test for the presence of a hole in the

object and to send the result signals to the PLC. Moreover, a built-in RS-232 port

on the PLC was used for an operator interface/programming port to provide

connectivity to the server computer.

3. 4 Server Environment

The server computer acts as an interface between client and the controlled

process. The hardware and software to be used in the server environment are listed

in Table 3-2.

Design and Implementation of a Networked Control System 62

Table 3-2

Configuration of the Server Environment

Component Description

CPU Intel Pentium processor 500 MHz

RAM 128MB

RS-232 COM port

Ethernet adapter 3Com Ether Link XL 10/100 PCI

Operating system Microsoft Windows 2000 Service Pack 4

Programming software Microsoft Visual Basic 6.0

The role of the server computer is to retrieve data from process, to control

process, and send response from process to the client. Therefore, communication is

the major function of the server environment. The communication implemented in

this study included two parts: one was the communication with the PLC, the other

with the client.

3.4.1 Communication with PLC

The PLC communicates with the server computer through a RS-232

communication port, which was handled by DF1 ActiveX Control. This ActiveX

control provides the ability to write control related commands to the PLC and read

response data from the PLC. To perform the connectivity, the communication

driver was configured by a built in utility provided by DF1 ActiveX control.

Although it is applicable to perform "Write" and "Read" function in the same object,

Design and Implementation of a Networked Control System 63

two instances ofDFI ActiveX control were used on this application for "Write" and

"Read" functions respectively, which left "Read" function uninterrupted.

Basic steps of retrieving data from the PLC are as follows:

I. Create a DFI control.

2. Set the function to read using Function property.

3. Set the starting point that the server will read from the PLC using

FileAddr property.

4. Set the number of data elements the server will read using Size property.

5. Invoke Trigger method at the given interval using AutoPoll method.

6. Clear the contents of internal data array in the DFI control using

ClearControl method.

To write data to the PLC requires the same actions but in reverse. The

following steps were performed:

I. Create a DFI control.

2. Set the function to write using Function property.

3. Set the starting point that the server will write from the PLC using

FileAddr property.

4. Set the number of data elements the server will write using Size property.

5. Set the data value the server will write using WorVal method.

6. Invoke control to write the PLC using Trigger method.

Design and Implementation of a Networked Control System 64

3.4.2 Communication with client

The communication between client and server can be established by using

Microsoft Winsock control. Two separate applications were developed in this

study. One application resided in the server computer and the other in client

computer. Both client application and server application interacted with each other

to exchange data.

Client application.

The client application requests a connection to the server. It also provides

ability to send and receive data from the server. Specific steps of implementing the

client application are as follows:

I. Create a Winsock control.

2. Specify server address and server port using RemoteHost and

RemotePort properties, respectively.

3. Request a connection using Connect method.

4. Receive and send data using GetData and SendData methods,

respectively.

5. Close the Winsock control using Close method.

Server application.

The server application listens for client and connects it to the application.

Similar to the client application, the server application is capable of getting data

Design and Implementation of a Networked Control System 65

from the client and returning the request data. Basic steps in the server application

are as follows:

1. Create a Winsock control.

2. Listen for connection requests on the specified port using Listen method

and LocalPort perperty.

3. Accept connection using Accept method.

4. Send and receive data from the client using SendData and GetData

method, respectively.

5. Close the Winsock control using Close method.

3.5 Client Environment

The client environment was implemented as an interface that not only connects

the user to the server via Internet but also allows user to control online process

remotely through server. The software and hardware used in the client environment

are listed in Table 3-3.

Table 3-3

Configuration of the Client Environment

Component Description

CPU Intel Pentium processor 500 MHz

RAM 128MB

Ethernet adapter 3Com Ether Link XL 101100 PCI

Operating system Microsoft Windows 2000 Service Pack 4

Programming software Microsoft Visual Basic 6.0

Design and Implementation of a Networked Control System 66

The design and implementation ofthe client environment was based on the

algorithm shown in Figure 3-4. At the client site, a Visual Basic based human

machine interface (HMI) asks for the address of the remote server to be connected.

After the user verifies connection, the control program takes over to execute the

remote control process.

Two control modes were designed, which can be selected by the user. A

manual mode allows the user to remotely control the process step by step. The auto

mode executes the entire sorting process sequence automatically. The control

program is terminated when the user shuts down the connection.

Yes

Design and Implementation of a Networked Control System 67

Start

Is
connection

anted?

Yes

Establish
connection to

the server

Get dynamic
values from
the server

Auto

Send auto
command to

the server

Is
connection

active?

No

Close

No

Manual Send manual
command to
the server

Figure 3-4. Client environment algorithm

Design and Implementation of a Networked Control System 68

CHAPTER4

Implementation

This chapter presents details of a typical Networked Control System designed

for this research. The prototype can be technically decomposed into three parts: (a)

process controller, (b) server, and (c) client.

4.1 Process Controller

To perform the designed material sorting process, a Pegasus robot was used

for this study, which is shown in Figure 4-1. The Pegasus robot was assembled

from a kit and some modification was made in order to add sensory capability and

process the control related commands from the server.

Figure 4-1. Pegasus robot

Design and Implementation of a Networked Control System 69

The detailed procedure implemented in the process controller is as follows:

4.1.1 Process schematic

Figure 4-2 illustrates a schematic for the material sorting process. It provides

an overview that shows the robot, equipments it interacted with, and parts to be

handled.

PARTS
FEEDER

ACCEPTED
PARTS BIN

INSPECTION
STATION

MATERIAL SORTING
PROCESS
(ASSEMBLY FIXTURE)

Figure 4-2. Schematic for a material sorting process

4.1. 2 General sequence of operations

The program sequence file contains the commands used to create the robot's

sequence of operation. Table 4-1 lists the series of steps to perform the designed

material sorting process. The robot picks up, moves, and drops off the objects

Design and Implementation of a Networked Control System 70

according to commands sent from the PLC. A separate command was used for each

step or operation the robot performs.

Table 4-1

General Sequence ofOperationfor Material Sorting Process

Step Description

1 Robot waits for command to start operation

2 Robot picks up the block from part feeder.

3 Robot places the block into the inspection station to test

for the presence of a hole

4a lfthe block has a hole, it passes the inspection and is

placed into the bin of accepted parts.

4b If the block has no hole, it fails the inspection and is placed

into rejected parts bin

5 The cycle repeats as long as the stop command is not

triggered.

4.1.3 List of points

The point file stores the location of each point by storing each encoder value in

memory. The points used in this material sorting process are listed in Table 4-2. For

example, "Point 1" indicates the robot is at "wait position".

Design and Implementation of a Networked Control System 71

Table 4-2

Point List for Robot Points File

Point Description

1 Robot wait position

2 Feeder approach/avoidance point

3 Feeder pickup point

4 Inspection station approach/avoidance point

5 Inspection station pickup/dropoff point

6 Accepted parts bin dropoff point

7 Rejected parts bin dropoff point

4.1.4 List of input/output terminals

An Allen-Bradley MicroLogix 1000 PLC was used for this research, as shown

in Figure 4-3. This MicroLogix 1000 has ten discrete 24V DC inputs, six relay

outputs.

• '"""""'""""'""""'""'"""''......:""''"'''""' '"''''"•'""'·)lo,'lo.ilo.""'-"-''"""'-~""""''--~""' ,_,,,, •• t•w..,-.._,,,,, ,...._'-"'-''-''"'"'-'"'"'!•i'lo.'-~"'"''o.""-'~'"
-~"""""'""""'""'""'o.""'""-"''''"'""'":'""'''"'""""'"""""""""""""~~ ~"~

Figure 4-3. Allen-Bradley MicroLogix 1000 PLC

The PLC was used to control the overall operation, which interfaced with the

robot, as shown in Figure 4-4. The Pegasus robot uses relay contact type outputs.

This allows the PLC inputs to be wired directly. Moreover, the PLC outputs can be

Design and Implementation of a Networked Control System 72

directly interfaced to the terminals of the robot inputs because PLC's outputs are

relay contacts.

I
Robot
Conn·olltr

Figure 4-4. Interface between PLC and Pegasus robot

The PLC outputs were used to transmit the control related commands from the

server to the robot and signals from the sensor to the robot as well. Table 4-3 briefly

describes the 1/0 list between PLC outputs and robot inputs.

Design and Implementation of a Networked Control System 73

Table 4-3

1/0 list between P LC Output and Robot Input

PLC Robot Description

Output Input

00 I6 Identify inspection passed/failed status

01 11 Switch auto/manual mode

02 I2 Start getting the block from the part feeder

03 13 Start moving the block to the inspection

station

04 I4 Start moving the block to the rejected bin

05 I5 Start moving the block to the accepted bin

PLC inputs were used to process incoming equipment related data and send

them back to the server. Table 4-4 list those digital inputs the PLC ~onitored. The

robot outputs were used to transmit control feedback as the PLC inputs. A limit

switch resided in the inspection station was used to test for the presence of a hole in

the block and to send the result signals to the PLC.

Design and Implementation of a Networked Control System 74

Table 4-4

Digital Inputs Monitored by the PLC

Sources
PLC

Robot Limited Description
Input

Output Switch

IO 02 The status of step 2

II 04 The status of step 3

I2 06 The status of step 4b

I3 05 The status of step 4a

I4 010 The status of step I

I5 LSI The inspection result

Note. Detailed information regarding particular steps can be found in Table

4-1

4.1. 5 Robot and P LC programming

After the robot and controller are wired correctly as described above, programs

need to be written to implement the process sequence. The general sequence of

operations (see Table 4-I) listed each action or communication that took place in

order for the robot to perform the designed task. The specific programming code

along with the corresponding sequence of operations can be found in Appendix A.

In this system, the PLC acted as an input/output interface between robot and

server computer. Each discrete input signal was directed to the N7: I register for

Visual Basic program to read. Table 4-5 summarizes the inputs and descriptions of

Design and Implementation of a Networked Control System 75

their corresponding locations. N7 is a type of integer data table file, which is used

to store numeric values or bit information. N7: I is an element address, where the

colon separates the file type and number from the element. Since N7 files have

!-word elements, the address N7:1 points to word #I in integer file #7. In this

manner, six discrete input signals were occupied in N7: I register from Bit 0 to Bit 5.

Table 4-5

N7: I Register Table

Read Registers

Bit 0 Bit I Bit2 Bit 3 Bit4 Bit 5 Bit 6 Bit 7

10 II 12 13 14 15

Step 2 Step 3 Step 4b Step 4a Step I Inspection Not Not
N7:1

Status Status Status Status Status Result Used Used

Bit 8 Bit 9 Bit 10 Bit II Bit 12 Bit 13 Bit 14 Bit 15

Not Not Not Not Not Not Not Not

Used Used Used Used Used Used Used Used

Similar to the input operations, control commands have been written to their

corresponding PLC outputs from Register N7:0. Table 4-6 summarizes the PLC

outputs and descriptions of their corresponding locations. Six output signals were

occupied in N7:0 register from Bit 0 to Bit 5.

Design and Implementation of a Networked Control System 76

Table 4-6

N7:0 Register Tab!?

Write Registers

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

00 01 02 03 04 05 Not Not

N7:0 Used Used

Bit 8 Bit 9 Bit 10 Bit 11 Bit 12 Bit 13 Bit 14 Bit 15

Not Not Not Not Not Not Not Not

Used Used Used Used Used Used Used Used

4.2 Server Environment

4.2.1 Communication with PLC

The communication between server and PLC is conducted in ASCII format

through RS-232 serial port, which was enabled by DF1 ActiveX Control. The

fundamental idea in this part was to retrieve data from a PLC and to send user

related command back to the same controller. Two instances ofDFl ActiveX

control by the name of "ABCTL I" and "ABCTL3" were used on this application

for "Write" and "Read" functions, respectively. Following software components

were defined to perform PLC connectivity function.

Driver configuration.

In order for DFI ActiveX Control to function, the driver must be configured.

Figure 4-5 illustrates the configuration of the communication driver. It provides

Design and Implementation of a Networked Control System 77

the capability to apply hardware and communication characteristics which is

independent ofthe ActiveX. In this study, SLC/MicroLogix Family PLC with

baud rate of9600 bps at COM 1 port was selected.

CimQuest IN-GEAR32 - AB Studio Configuration ~ ~r"" pf

Settings
Hardware, Communications -------,

Adapter jo .:.1 P' Enabled PLC Type I SLC/Micrologix Famil3 ApplY

Device Type I Serial DF1

CommPort

Base Address 112
1/0 Port 1250 3

3

3

Link Speed 19600

Checksum r.' CRC r BCC

Timeout 13000

Station ID 13~;, ·. ··. 3
MaxNodes· f:r'c!.,*':::J
Term. Name IMM 'f1

Figure 4-5. Communication driver configuration

Read data from the PLC.

Done

Help ...

About ...

In order to retrieve data from the PLC, code was created in the Visual Basic

editor as shown in Listing 4-1. It sets the user input data for the read function (value

0), memory address, number of words, and poll rate and maps them into the

appropriate properties in the ABCTL3 ActiveX control. Then it invokes the

AutoPoll method and passes the poll rate.

Design and Implementation of a Networked Control System 78

ABCTL3.Function = 0 ' Set the function to read
ABCTL3.FileAddr = "N7:1" 'Start at register N7: 1

ABCTL3.Size = 1 'Read one word(16 bits)
ABCTL3.AutoPoll 500 'Poll every 50 0ms
ABCTL3.ClearControl

'Clear the content of control arrays

Listing 4-1. Programming Code for Retrieving Data from PLC

When the ABCTL3 control receives data back from the PLC, the

"ABCTL3 _ OnReadDone" event is automatically triggered which indicates that the

controller has completed a "read" function successfully. Listing 4-2 illustrates the

code segment to receive one word of data requested by the user.

Private Sub ABCTL3_0nReadDone ()

lblReadResult.Caption = ABCTL3.WordVal (0)

'Append data in the ABCTL3 to the caption of the label
"lblReadResult"

End Sub

Listing 4-2. Programming Code for Onreaddone Method

Write data to the PLC.

In order to leave Read function uninterrupted, a different instance ofDFI

ActiveX control by the name of ABSTLI was used on the form for Write function.

To write data to the PLC requires the same actions as described above but in

reverse.

The code segment used to write data to the PLC is listed in Listing 4-3. This

code retrieves the address that the data will write to, sets the "Function" property to

write (value I), puts the data value into control's data array, and invokes the

"Trigger" method to write data one time.

Design and Implementation of a Networked Control System 79

ABCTL1.Function = 1 'Write to PLC

ABCTL1. FileAddr = "N7: 0" 'Write data to register N7: 0

ABCTL1.Size = 1 'Set size to one word

ABCTL1.WordVal (0) = 1 'Set data value

ABCTL1.Trigger 'Invokes the control to write PLC

Listing 4-3. Programming Code for Writing Data to PLC

Similar to "OnReadDone" event, the "ABCTLI_ On WriteDone" event is

automatically triggered, indicating that the control has completed successfully

function "Write" after the ABCTLI control writes data back to the PLC.

4.2.2 Communication with client

The communication between client and server was established by using

Microsoft Winsock control. Two separate applications were created for the

communication. The first application was resided in the server computer, and the

other in client computer. Both client and server applications interacted with each

other to exchange data.

Client application.

The code segment required to connect to the server is listed in Listing 4-4.

"RemotePort" and "RemoteHost" properties are initialized when form is loaded.

The port on which the server program will be listening is set in "RemotePort"

property. Port number 1600 was used in this study. "RemoteHost" property can be

set as either the host name or IP address of the server computer. In this case, an IP

address of "Local Host" (192.67.1.1) was used. Once the "Connection" button is

Design and Implementation of a Networked Control System 80

pushed, the state of the Winsock control is first checked. If it is not closed, "Close"

method is called to terminate prior connection.

Private Sub Forrn_Load()
WinsockClient.RemotePort = 1600

'Set client port number to 1600

WinsockClient.RemoteHost =192.67.1.1
'Set server IP to 192.67.1.1

End Sub

Private Sub cmdConnect_click()
If WinsockClient. State <>

WinsockClient.Close
sckClosed

'If winsock is not closed, then close it

WinsockClient.Connect
'Invoke connect method

End Sub

Listing 4-4. Programming Code for Connecting to Server Application

Then

Next, data needs to be sent to the server application using "SendData" method.

Code segment in this procedure is listed in Listing 4-5. All data received will be

initiated with the "Data Arrival" event. To copy the data into a variable, "GetData"

method is used. The "Click" event procedure for the "cmdExecute" button is used

to accomplish the task of sending a "CommandData" with value 5. The "Data

Arrival" event is used to fire the "GetData" method to retrieve all data into

"ResponseData" variable. These data are then appended to the caption of the

''lblStatus" label.

Design and Implementation of a Networked Control System 81

Private Sub cmdExecute_Click()
Dim CommandData As String

CommandData = 5
'Set "CommandData" with value 5

WinsockClient.SendData CommandData
'Invoke "Senddata" method to send "CommandData"

End Sub

Private Sub Winsockclient_DataArrival (ByVal bytesTotal As
Long)

Dim RsponseData As String
WinsockClient.GetData ResponseData

'Invoke "GetDa ta" method to retrieve all data into

"ResponseData" variable.

lblStatus.Caption = ResponseData

'Append all data to the caption of the label

"lblReadResul t"

End Sub

Listing 4-5. Programming Code for Sending/Receiving Data to Server Application

Server application.

The server listens for a connection request on its assigned port. Codes in this

action are listed in Listing 4-6. The "LocaiPort" property is initialized when form is

loaded. In this research, the initialization code sets the server port to 1600 and

invokes "Listen" method.

Design and Implementation of a Networked Control System 82

Private Sub Form_Load()

WinsockServer.LocalPort = 1600

'Set server port number to 1600
WinsockServer.Listen

'Invoke listen method to listen for a connection
request

End Sub

Listing 4-6. Programming Code for Connection to Client Application

When a client program executes "Connect" method with a server port number,

the server's "ConnectionRequest" event procedure is executed to fire the "Accept"

method with the "requestiD" passed to the "ConnectionRequest" event procedure.

Codes implemented in this operation are listed in List 4ing-7. The state ofthe

Winsock will be checked first, making sure that any prior connection is terminated.

The connection is accepted by invoking "Accept" method.

Private Sub Winsockserver_ConnectionRequest(ByVal
requestiD As Long)

If WinsockServer.State <> sckClosed Then
WinsockServer.Close

'If winsock is not closed, then close it

WinsockServer.Accept requested

'Invoke "Accept" method to accept connection request
End Sub

Listing 4-7. Programming Code for Connection to Client Application

Receiving and sending data in the server is identical to the client. Codes listed

in Listing 4-8 accomplish this task.

Design and Implementation of a Networked Control System 83

Private Sub Winsockserver_DataArrival (ByVal bytesTotal As

Long)
Dim buffer As String
WinsockServer.GetData buffer
Textl.Text =buffer
, Invoke "GetDa ta" method to retrieve data to "buffer"

variable
WinsockServer.SendData temper
, Invoke "SendDa ta" method to send the value of "temper"

variable
End Sub

Listing 4-8. Programming Code for Sending/Receiving Data to Client Application

Once the client terminates the connection, "Close" event procedure of the

server is fired, which is listed in Listing 4-9. This event is used to reinitiate

listening.

Private Sub WinsockServer_Close()

If WinsockServer.State <> sckClosed Then
WinsockServer.Close
'If winsock is not closed, then close it

End Sub

Listing 4-9. Programming Code for Reinitiating Listening in Server Application

The detailed codes for the server programming can be found in Appendix B.

4.3 Client Environment

Client environment allows user to monitor or control the networked process

remotely through a server. Using Visual Basic programming, a human machine

interface (HMI) was designed and developed on the client for this research. The

data display and input, as well as animations of the control performance were

Design and Implementation of a Networked Control System 84

accomplished using built in objects such as text boxes, labels, lists, and command

buttons.

Figure 4-6 illustrates the human machine interface running on the client

computer. Details of this layout are explained as follows.

"" Cl1ent_for:a

Frame1

SeNer IP jWServer

Port Number !txtPort

Frame2

Wait Pos~ion ..

@

bit.
Feeder Point

Online Information List

Frame3

Inspection Point

·~"/
Rejected Bin

-

Accepted Bin

I Inspection Result

Figure 4-6. Human machine interface (HMI) on client

Frame 1 was used to set the communication parameters. Servers IP address

and port numbers are defined in the "txtServer" and "txtPort" textbox, respectively.

"Connection" button is used to send connection request to the server. After

"Execute" command button is pushed, the control program takes over to execute the

designed process remotely.

Design and Implementation of a Networked Control System 85

Frame 2 allows users to monitor the whole process step by step. " Home",

"Point2", "Point3", "Point4", "PointS" labels correspond to the "Wait Position,"

"Feeder Point," "Inspection Point," "Accepted Bin," and "Rejected Bin" points in

the Robot Point File, respectively. The color of the label changes from grey to

green when robot moves into the corresponding position. Arrows activated by

timer flash in the process of a specific action to help the user better understand the

current status. For example, when the robot is moving from "Wait Position" to

"Feeder Point", the arrow between these two points flashes until the desired task is

completed.

"Inspection Result" text box will pop up and indicate the inspection result

when the robot drops the object into the inspection station. A smile face icon and an

upset face icon express the results of "Inspection Passed" and "Inspection Failed,"

respectively. "On-Line Information List" provides dynamic text information for the

status of the robot, and on-line help. For example, after "Execute" button is pushed,

the content of text in the "On-Line Information List" will changed to "Loading

program to PLC, the robot is ready for your command. Please select auto or manual

mode."

Frame 3 was used to allow user to control online process remotely through

server. The user can change system control mode by pushing either "Auto" or

"Manual" command button. The robot can be manually regulated with the use of

commands through "Point2", "Point3", "Point4", and "PointS" command buttons.

Design and Implementation of a Networked Control System 86

Indicators and color-coding were used to reflect the state changes of a particular

command button.

The detailed programming code for the client environment can be found in

Appendix C.

Design and Implementation of a Networked Control System 87

CHAPTER 5

Analyses

This study discusses the structure and hierarchical model of a networked

control system (NCS). Issues addressed in this research include serial

communication, network communication, human machine interface programming,

and client/server programming.

5.1 System Functionality

A NCS prototype was designed and implemented in this study. The functions

can be accomplished with designed system are as follows:

1. An operator is able to remotely regulate a robot to perform a material

sorting process through a Human Machine Interface (HMI).

2. Position, along with the current action of the robot can be monitored.

3. The server computer is able to receive and process commands transmitted

from the client and subsequently forward instructions to the robot.

5.2 Advantages of NCS

Based on the prototype above, major advantages ofNCS in contrast to

traditional point-to-point communication can be identified as below:

1. Remote control of processes is accessible and controllable. The idea

proposed here can be applied to industrial automation under health-critical

or dangerous conditions.

2. Adding and deleting a client is feasible since Intemet/Ethemet has been

Design and Implementation of a Networked Control System 88

used as the communication channel. In fact, the client can be resided at

anywhere as long as an Internet connection is accessible.

3. In stead of direct electrical wiring between one and another, control

components can be interconnected by a common network channel, which

offers better resource utilization, and also reduces installation,

maintenance time and costs.

5. 3 Implementation Experience

The designed prototype combined both network and control practices,

providing knowledge in hardware, software, control design and implementation.

Some of major knowledge gained during the designing and implementing process

are summarized below:

5. 3.1 Control process design

A basic material sorting process was designed and implemented in this study.

A PLC was used as the process controller to communicate with server and regulate

a Pegasus robot to perform the desired task.

The procedure used in the implementation of this control process is as below:

I. Draw a process schematic for designed process.

2. Write the general sequence operation.

3. Specify inputs/outputs terminal.

4. Programming.

5. Module and Integrating test.

Design and Implementation of a Networked Control System 89

5.3.2 PLC communication

In order to talk to the PLC, the protocol for messaging of the Allen Bradley's

PLC was studied. Two layers of software were involved in this communication

including data-link layer and application layer. Data link layer handles the flow of

communication over the physical link. The transmission format is as follows:

Start bit-8 data bit (0-7)-no parity-stop bit

Application layer interprets commands, and formats user data into packets.

The unprotected write command and the unprotected read command have been

used to access to the PLC's data memory. The address fields of unprotected reads

and unprotected writes were used as word addresses.

5.3.3 Communication network

Because of its low cost, availability, and higher communication rates, Ethernet

was selected as the communication network. The communication between client

and server was established using Microsoft Winsock control.

By setting properties and invoking control methods, a client-server application

has been applied in this study. The client application is the one that requests a

network connection, and the server listens for a connection request. Both client and

server applications interacted with each other to exchange data.

5.3.4 HMI Programming

On the client side, a Human Machine Interface (HMI) was programmed to

retrieve information from controller, which allowed operators to monitor and

Design and Implementation of a Networked Control System 90

control the system. In this study, Visual Basic was used as the programming

language for HMI. The data input and process status display were accomplished

using built in objects such as text boxes, labels, lists, and command buttons.

5. 4 General Procedure in NCS Design and Implementation

In general, a NCS design shall proceed through the following phases: (a)

requirements definition, (b) design, (c) implementation, and (d) testing. It is not

necessary to fully complete one phase before beginning the next. It may, for

example, be useful to implement certain key features of the system before the entire

design is complete. In addition, it may be necessary to reiterate to an earlier phase

to make modifications if additional information is discovered during a subsequent

phase. A general procedure used for NCS design and implementation is described

below:

1. System's operational requirements. In this step, the operational

requirement for the designed system has been indentified. It is generally

defined with the reference to: Functionality and Interfaces.

2. System definition. In this step, the requirements of the system are

analyzed. Overall system architecture design is performed and behavior

specifications are made.

a) Hardware configuration. In this step, the controller hardware along

with control platform, machine tools, and communication network to

be used are specified.

Design and Implementation of a Networked Control System 91

b) Software configuration. In this step, a high level functional model of

software structure including operation system, programming software

is defined.

3. Implementation. Software and hardware are developed to meet the design

objectives at this stage.

4. Module test and system integration. In this step, all the individual

components are tested, and then they are combined and integrated

together to ensure that the original design requirements are met.

Design and Implementation of a Networked Control System 92

CHAPTER6

Summary

This study provides details on designing and implementing a Networked

Control System (NCS). This prototype combines both network and control

practices, encompassing an expansive understanding in hardware, software, control

design and implementation.

A client/server prototype was designed to perform a remote process control via

Ethernet. Through the human machine interface, an operator is able to remotely

regulate and monitor a material sorting process.

Major issues considered in NCS design and implementations include:

1. Control process. The detailed procedure implemented in the process

controller along with hardware configuration, application software

programming have been discussed.

2. PLC communication. The communication between server and PLC which

was enabled by OF! ActiveX Control was explored.

3. Network communication. The communication between client and server

which was established by Microsoft Winsock control has been presented.

4. Human Machine Interface (HMI) programming. A HMI developed with

Visual Basic program has been introduced.

Design and Implementation of a Networked Control System 93

CHAPTER 7

Recommendations for Future Work

Study ofNCS (Networked Control System) is related to both network and

control system. This research provided a prototype for a typical NCS. The

designed system can help guide future controller design to investigate topics within

control system designs and interaction between network configuration and control

parameters. Some potential topics may include:

1. Key timing parameters stemming from the network architecture and the

major impact of time delay on control applications.

2. Impact of network architecture and device performance on control

performance in NCSs.

3. Design considerations related to control quality of performance as well as

network quality of service.

Design and Implementation of a Networked Control System 94

References

Abdullah, H. A. , & Chatwin, C. R. (1994). Distributed c3 environment for small to

medium-sized enterprises. Integrated Manufacturing Syst., 5(3), 20-28.

Allen Bradley. (1996). DFJ protocol and command set. [Reference Manual].

Mayfield Hts., OH: Author.

Altun, Z. G., Topaloglu U. M., Saygin A. V., & Bayrak, C. (2001). Process

control via internet. Integrated Design and Process Science, 5(2), 111-122.

Cisco Systems, Inc. (2001). Layer 2: Technologies. In J. Wait (Eds.), Cisco

networking academy program: first-year companion guide (pp. 239-280).

Indianapolis, IN: Cisco Press.

Etkin, B., & Reid. (1996). Dynamics of flight: stability and control. New York:

Wiley.

Hugh, J. (1996). Integration and automation of manufacturing _systems. Retrieved

Mar. 27, 2005, from Books Page Web site:

http://claymore.engineer.gvsu.edu/~jackh/books/integrated/.

Hugh, J. (2004). Automating manufacturing systems with PLCs. Retrieved Mar. 27,

2005, from Books Page Web site:

http://claymore.engineer.gvsu.edu/~jackh/books/plcs/.

International Center for Theoretical Physics, (1996). Windows sockets 2

application programming interface. Retrieved Mar. 28, 2005, from

Networking and Radio communications Web site:

http://www. ictp.trieste.it/~radionet/nuc 1996/ref/winsock/wsapi22.htm.

Design and Implementation of a Networked Control System 95

Kaplan, G. (2001). Ethernet's winning ways. IEEE Spectrum, 38(1), 113-115.

Koren, Y. (1999). The third year report: 1998-1999 (Tech. Rep.). University of

Michigan, NSF-Engineering Research Center for Reconfigurable Machining

Systems.

Koubias, S., & Papadopoulos, G. (1995). Modern fieldbus communication

architectures for real-time industrial application. Computers in Industry, 26(3),

243-252.

Leonik, T. E. (2000).Serial communication basics. In Gurdian, W. (Ed.), Home

automation basics: Practical application using visual basic 6 (pp. 37-76).

Indianapolis, IN: Prompt Publication.

Lian, F. (2001). Stability analysis of networked control systems. Unpublished

doctoral dissertation, University of Michigan, Ann Arbor.

Lian, F, Moyne, J. R., & Tibury, D. M. (1999). Performance evaluation of control

networks: Ethernet, controlnet and devicenet. ASME Dynamic Systems and

Control Division, Vol. 67., pp.853-860, Nashville, TN.

Lian, F, Moyne, J. R., & Tibury, D. M. (2000a, July). Implementation of networked

machine tools in reconfigurable manufacturing systems. Proceeding of

Japan-USA Symposium on Flexible Automation, Ann Arbor, MI.

Lian, F, Moyne, J. R., & Tibury, D. M. (2000b). Performance evaluation of control

networks: ethernet, controlnet, and devicenet.,. IEEE Control Systems, 21(1),

66-83.

Design and Implementation of a Networked Control System 96

Lian, F, Moyne, J. R., & Tibury, D. M. (2001, November). Time delay modeling

and sample time selection for networked control systems. Proceeding of ASME

Dynamic Systems and Control Division, Symposium conducted at the meeting

of International Mechanical Engineering Congress and Exposition, New York,

NY.

Otanez, P. (2002). Performance optimization of networked control systems.

Unpublished doctoral dissertation, University of Michigan, Ann Arbor.

Otanez, P.G, Parrott, J. T., Moyne, J.R. & Tilbury, D.M. (2000).The implications of

ethernet as a control network (Tech. Rep.). University of Michigan,

Engineering Research Center for Reconfigurable Manufacturing Systems.

Raji, R. (1994). Smart networks for control. IEEE Spectrum, 31(6), 49-55.

Tipsuwan, Y. (2003). Gain scheduling for networked control system. Unpublished

doctoral dissertation, North Carolina State University, Raleigh.

Yodyium, T. (2003). Gain scheduling for networked control system. Unpublished

doctoral dissertation, North Carolina State University.

Walsh, G., & Ye, H. (2001). Scheduling of networked control systems. IEEE

Control Systems Magazine, 21(1), 57-65.

Weber, J. (1999, April). Applying visual basic for human machine interface

applications. Presented on the International Manufacturing Software Show,

Orlando, FL.

Zeltwanger, H. (2000, Octobers). State-of-the-art can applications and future

requirements. Presented on the 7th International CAN Conference,

Design and Implementation of a Networked Control System 97

Amsterdam, Netherlands.

LABELl:

DELAY 100

WRITEO 10,1

WRITEO 2' 0
WRIT EO 4' 0
WRITEO 5' 0
WRITEO 6' 0

IF INP(l)

CALL AUTO

ENDIF

Design and Implementation of a Networked Control System 98

Appendixes

Appendix A

Robot Programming Code

1 THEN

IF INP(l)=O AND INP(2)=1 THEN

CALL GETPART

WAITI 2,0

CALL INSPECT

WAITI 3,0

IF INP(4)=1 THEN

CALL SOLIDBIN

WAITI 4,0

ENDIF

IF INP(5)=1 THEN

CALL HOLEBIN

WAITI 5,0

ENDIF

ENDIF

BRANCH LABELl

SUB AUTO

SPEED 100

DELAY 100

PMOVE TP [31]

PMOVE TP [32]

SPEED 50

PMOVE TP [33]

Design and Implementation of a Networked Control System 99

GRASP

PMOVE TP[32]

SPEED 100

PMOVE TP[31]

WRIT EO 101 0
WRIT EO 21 1
WRITEO 41 0
WRIT EO 510

WRITEO 61 0

SPEED 100

DELAY 100

PMOVE TP[31]

PMOVE TP[34]

SPEED 30

PMOVE TP[35]

RELEASE

WRIT EO 101 0
WRIT EO 210

WRIT EO 41 1
WRIT EO 51 0
WRITEO 61 0

IF INP(6)=1 THEN

SPEED 30

DELAY 100

PMOVE TP[35]

GRASP

PMOVE TP[34]

WRITEO 14 1 0

SPEED 50

PMOVE TP [37]

RELEASE

WRIT EO 210

WRIT EO 41 0
WRIT EO 510

WRITEO 6 1 1

PMOVE TP [31]

DELAY 100

WRITEO 10 11

WRITEO 6 10

DELAY 200

ELSE

SPEED 30

DELAY 100
PMOVE TP[35]

GRASP

PMOVE TP [34]
SPEED 50

PMOVE TP[31]

PMOVE TP[36]
RELEASE

WRITEO 2,0

WRITEO 4,0

WRITEO 5,1

WRITEO 6,0

PMOVE TP [31]

DELAY 100

WRITEO 10,1

WRITEO 5,0

DELAY 200

ENDIF

RETURN

SUB GETPART

SPEED 100
DELAY 100
PMOVE TP [31]

PMOVE TP[32]

SPEED 50
PMOVE TP[33]

GRASP

PMOVE TP[32]
SPEED 100

PMOVE TP[31]

WRIT EO 10,0

WRIT EO 2' 1
WRIT EO 4' 0
WRIT EO 5' 0
WRIT EO 6' 0
RETURN

Design and Implementation of a Networked Control System I 00

SUB INSPECT

SPEED 100

DELAY 100

PMOVE TP[31]

PMOVE TP[34]

SPEED 30

PMOVE TP [35]

RELEASE

WRIT EO 10,0

WRIT EO 2' 0
WRIT EO 4' 1
WRIT EO 5' 0
WRIT EO 6' 0
RETURN

SUB HOLEBIN

SPEED 30

DELAY 100

PMOVE TP[35]

GRASP

PMOVE TP[34]

SPEED 50

PMOVE TP [31]

PMOVE TP [36]

RELEASE

WRITEO 2,0

WRITEO 4,0

WRITEO 5,1

WRITEO 6,0

PMOVE T P [31]

DELAY 100

WRITEO 10,1

WRITEO 5,0

DELAY 200

RETURN

SUB SOLIDBIN

SPEED 30

DELAY 100

PMOVE TP[35]

GRASP

PMOVE TP [34]

Design and Implementation of a Networked Control System 101

WRITEO 14,0

SPEED 50

PMOVE TP [37]
RELEASE
WRITEO 2,0

WRITEO 4,0
WRITEO 5,0
WRITEO 6,1

PMOVE TP [31]

DELAY 100

WRITEO 10,1
WRITEO 6,0

DELAY 200
RETURN

Design and Implementation of a Networked Control System 102

Design and Implementation of a Networked Control System 103

Appendix B

Programming Code for the Server Environment

'**

Private Sub Form Load()

lblHostiD.Caption = WinsockServer.LocalHostName

lblAddress.Caption = WinsockServer.LocaliP

WinsockServer.LocalPort

local port number
1600 'sets or returns the

WinsockServer.Listen 'wait for a TCP request

Winsock1.Loca1Port 1300

Winsock1.Listen

End Sub

Private Sub BtnClose Click()

End

End Sub

'**

'winsock programming section

Private Sub WinsockServer Close()

WinsockServer.Close

End Sub
'close

Private Sub Winsockserver_ConnectionRequest(ByVal
requestiD As Long)

'judge if the connectin is closed, before make a new
connect in

If WinsockServer.State <> sckClosed Then

WinsockServer.Close

WinsockServer.Accept requestiD

ABCTL3.Function

ABCTL3.FileAddr

0 'read PlC for one word(l6 bits)

"N7:1" 'start at N7:1

Design and Implementation of a Networked Control System I 04

ABCTL3.Size = 1 '

ABCTL3.AutoPoll 500 'poll every 500ms

ABCTL3.ClearControl
End Sub

Private Sub Winsockserver DataArrival (ByVal bytesTotal As
Long)

Dim buffer As String

WinsockServer.GetData buffer
Text1.Text =buffer

Select Case buffer

Case 0 'send getpart command
ABCTL1.FileAddr = "N7:0"
ABCTL1.Function = 1 'Write to PLC
ABCTL1.Size = 1 'write one word

ABCTL1.WordVal(0) = 1 ' decimal= 00001
ABCTL1.Trigger 'trigger

'lblResult.Caption = "Light is On!"
Case 1

ABCTL1.FileAddr = "N7:0"
ABCTL1.Function = 1 'Write to PLC

ABCTL1.Size = 1 'write one word

ABCTL1.WordVal(0) = 2 ' decimal= 00010
ABCTL1.Trigger 'trigger

'lblResult.Caption = "Light is On!"
Case 2

ABCTL1.FileAddr = "N7:0"
ABCTL1.Function = 1 'Write to PLC

ABCTL1.Size = 1 'write one word

ABCTL1.WordVal(O) = 4 ' decimal= 00100
ABCTL1.Trigger 'trigger

'lblResult.Caption = "Light is On!"
Case 3

ABCTL1.FileAddr "N7:0"

ABCTL1.Function 1 'Write to PLC

ABCTL1.Size = 1 'write one word

ABCTL1.WordVal(O) = 8 ' decimal= 01000
ABCTL1.Trigger 'trigger
'lblResult.Caption = "Light is On!"

Case 4
ABCTL1.FileAddr "N7:0"

ABCTL1.Function 1 'Write to PLC

Design and Implementation of a Networked Control System 105

ABCTL1.Size = 1 'write one word

ABCTL1.WordVal(O) = 16 ' decimal= 10000

ABCTL1.Trigger 'trigger

'lblResult.Caption ="Light is On!"
Case 5

ABCTL1.FileAddr = "N7:0"

ABCTL1.Function = 1 'Write to PLC

ABCTL1.Size = 1 'write one word

ABCTL1.WordVal(O) = 0 ' decimal= 00000

ABCTL1.Trigger 'trigger

'lblResult.Caption = "Light is On!"
Case Else

ABCTL1.FileAddr = "N7:0"

ABCTL1.Function = 1 'Write to PLC

ABCTL1.Size = 1 'write one word

ABCTL1.WordVal(O) = 0 ' decimal= 00000

ABCTL1.Trigger 'trigger

'lblResult.Caption = "Light is On!"
End Select

End Sub

' see if command is sent to PLC successfully

Private Sub ABCTL1 OnErrorEvent(ByVal nErrorCode As
Integer)

lblWriteResult.Caption = "Write Error" & nErrorCode
End Sub

Private Sub ABCTL1 OnWriteDone()

lblWriteResult.Caption ="Write Done!"
End Sub

Private Sub lblWriteResult Change()

WinsockServer.SendData lblWriteResult.Caption

'senddate method

End Sub

'**

' Read data from PLC

Private Sub cmdRead Click()

Design and Implementation of a Networked Control System 106

ABCTL3.Function

ABCTL3.FileAddr

ABCTL3.Size = 1 '

0 'read PlC for one word(l6 bits)

"N7:1" 'start at N7:1

ABCTL3.AutoPoll 500 'poll every 500ms

ABCTL3.ClearControl

End Sub

Private Sub ABCTL3 OnReadDone()

' Refer to Data Access Methods/BitVal

lblReadResult.Caption = ABCTL3.WordVal(O)

End Sub

Private Sub ABCTL3 OnErrorEvent(ByVal nErrorCode As
Integer)

lblReadResult.Caption = "Read Error" & nErrorCode

End Sub

'**

'Send data to Client

Private Sub Winsockl Close()

Winsockl.Close

End Sub
'close

Private Sub Winsockl ConnectionRequest (ByVal requestiD As

Long)

'judge if the connectin is closed, before make a new

connect in

If Winsockl.State <> sckClosed Then Winsockl.Close
Winsockl.Accept requestiD

End Sub

Private Sub lblReadResult Change()

Winsockl.SendData lblReadResult.Caption 'senddate

method

End Sub

Design and Implementation of a Networked Control System 107

Appendix C

Programming Code for the Client Environment

Private Sub txtMoniter Change()

txtMoniter.Refresh

'Timerl.Enabled =True

'If lblBmp.Visible = False Then

'lblBmp.Visible =True

'Else

'lblBmp.Visible

'End If

End Sub

False

'**

' Test Program

'***

'Arrow animation

Private Sub Timer2 Timer()

Timer2.Interval = 200

Call lblArrow2.UpdateValue(Not lblArrow2.Value)

End Sub

Private Sub Timer3 Timer()

Timer3.Interval = 200

Call lblArrow3.UpdateValue(Not lblArrow3.Value)

End Sub

Private Sub Timer4 Timer()

Timer4.Interval = 200

Call lblArrow4.UpdateValue(Not lblArrow4.Value)
End Sub

Private Sub TimerS Timer()

Timer5.Interval = 200

Call lblArrowS.UpdateValue(Not lblArrowS.Value)
End Sub

Design and Implementation of a Networked Control System I 08

'***

Private Sub Form Load()

WinsockClient.RemotePort = 1600 'winsockclient
handles sending commands to client

WinsockClient.RemoteHost = txtHost.Text

Winsock1. Remote Port = 1300 'winsock3 handles getting

response from client

Winsock1.RemoteHost txtHost.Text

lblBlock.Visible = False

lblBlockStatus.Visible = False

Timer3.Enabled

Timer2.Enabled

Timer4.Enabled

Timer5.Enabled

False

False

False

False

cmdExecute.Enabled = False

cmdManual.Enabled = False

cmdAuto.Enabled = False

cmdPT2.Enabled False

cmdPT3.Enabled False

cmdPT4.Enabled False

cmdPTS.Enabled False

txtMoni ter. Text = "This system is designed to remotely

control a pegasus robot by the nickname of Chico. Please

start the system by pushing Connection button above."

End Sub

Private Sub cmdExit click()

End

End Sub

'***

' Send command to server

Private Sub cmdConnect click()

'If WinsockClient.State <> sckClosed Then

WinsockClient.Close

Design and Implementation of a Networked Control System 109

WinsockClient.Connect

remote computer

Winsockl.Connect

'request a connectin to the

cmdConnect.Enabled
End Sub

False

'WinsockClient--show if command is sent to PLC succefully

Private Sub Winsockclient_Connect()

lblConnect.OnColor &HFFOO&

cmdExecute.Enabled = True

txtMoniter.Text = "Connection to Server is set up!"
End Sub

Private Sub WinsockClient Close()

WinsockClient.Close
End Sub

Private Sub Winsockclient DataArrival (ByVal bytesTotal As
Long)

Dim RsponseData As String

WinsockClient.GetData RsponseData

lblStatus.Caption = RsponseData

End Sub

Private Sub cmdExecute Click()

cmdManual.Enabled = True

cmdAuto.Enabled = True

cmdExecute.Enabled = False

cmdPT2.Enabled

cmdPT3.Enabled

cmdPT4.Enabled

cmdPT5.Enabled

False

False

False

False

Dim CommandData As String

Design and Implementation of a Networked Control System II 0

CommandDa ta = 5

for command

'set motor to home postion, wait

WinsockClient.SendData CommandData

txtMoniter.Text = "Loading program to PLC, Chico is

ready for your command. Please select auto or manual mode."

End Sub

Private Sub cmdAuto Click()

If lblManual.Value = True Then 'when system is at

manual mode

move

lblAuto.Value True

lblManual.Value False

cmdAuto.Enabled False

cmdManual.Enabled =True

cmdPT2.Enabled False

Timer2.Enabled =True

Dim CommandData As String

CommandData = 4 ' set motor to auto mode,start

WinsockClient.SendData CommandData

txtMoniter. Text = "Chico is grabbing a block from

part feeder "

Else

cmdManual.Enabled = True

cmdAuto.Enabled False

'cmdPT2.Enabled False

'cmdPT3.Enabled

'cmdPT4.Enabled

'cmdPTS.Enabled

False

False

False

lblAuto.Value =True

lblManual.Value = False

Timer2.Enabled =True

'Timer3.Enabled

'Timer4.Enabled

'Timer5.Enabled

False

False
False

Design and Implementation of a Networked Control System Ill

'Dim CommandData As String

CommandData = 4 ' set motor to auto mode, start move

WinsockClient.SendData CommandData

txtMoni ter. Text = "Chico has been changed to the Auto
mode!"

End If

End Sub

Private Sub cmdManual Click()

If lblAuto.Value =True Then

s $ = MsgBox ("Chico will be switched to the Manual

mode after this aumation period is finished")

'If Home <> 1 Then

'cmdPT2.Enabled = False

'End If

'If Home= 1 Then

'cmdPT2.Enabled =True

'End If

cmdManual.Enabled False

Else

lblAuto.Value False

lblManual.Value = True

cmdManual.Enabled = False

'cmdAuto.Enabled =True

cmdPT2.Enabled True

cmdPT3.Enabled False

cmdPT4.Enabled

cmdPTS.Enabled

False

False

Dim CommandData As String

CommandData = 5 'set motor to home postion, wait

for command

WinsockClient.SendData CommandData

End If

End Sub

,,
·I

il

~~~ 
•, 



Design and Implementation of a Networked Control System 112 

Private Sub cmdPT2 Click() 

'button animation 

cmdPT2.FaceColor = &H80FF80 

cmdPT2.CaptureColor = &H80FF80 
cmdPT2.FocusColor = &HBOFFBO 

'enable/disble other buttons 
cmdAuto.Enabled = False 

cmdPT2.Enabled =False 
'cmdPT3.Enabled 
'cmdPT4.Enabled 
'cmdPTS.Enabled 

True 
False 
False 

'enable/disable timer to control arrow animation 
Timer2.Enabled True 

Timer3.Enabled False 

Timer4.Enabled 
TimerS.Enabled 

False 

False 

txtMoni ter. Text = "Chico is grabbing a block from part 
feeder ............ " 

'send control command 

Dim CommandData As String 
CommandData = 0 

WinsockClient.SendData CommandData 
End Sub 

Private Sub cmdPT3 Click() 

cmdPT3.FaceColor = &H80FF80 

cmdPT3.CaptureColor = &H80FF80 
cmdPT3.FocusColor = &H80FF80 

'cmdPT2.Enabled = False 
cmdPT3.Enabled = False 

cmdAuto.Enabled 

'cmdPT4.Enabled 

'cmdPTS.Enabled 

False 

True 

True 

Timer3.Enabled =True 

txtMoniter.Text = "Chico is moving the block to the 
inspection station ............ " 



Timer2.Enabled 
Timer4.Enabled 

Timer5.Enabled 

Design and Implementation of a Networked Control System I 13 

False 

False 

False 

Dim CommandData As String 
CommandData = 1 

WinsockClient.SendData CommandData 
End Sub 

Private Sub cmdPT4 Click() 

cmdPT4.FaceColor = &H80FF80 

cmdPT4.CaptureColor = &H80FF80 
cmdPT4.FocusColor = &H80FF80 

'cmdPT2.Enabled True 

'cmdPT3.Enabled False 
cmdAuto.Enabled False 
cmdPT4.Enabled False 

cmdPT5.Enabled False 

Timer4.Enabled =True 

txtMoni ter. Text = "Chico is moving the rejected block 
to the rejected bin ............ " 

Timer2.Enabled 
Timer3.Enabled 
Timer5.Enabled 

False 
False 

False 

Dim CommandData As String 

CommandData = 2 

WinsockClient.SendData CommandData 
End Sub 

Private Sub cmdPT5 Click() 

cmdPTS.FaceColor = &H80FF80 

cmdPT5.CaptureColor = &H80FF80 
cmdPT5.FocusColor &H80FF80 

'cmdPT2.Enabled 
'cmdPT3.Enabled 

cmdAuto.Enabled 

True 
False 

False 



cmdPT4.Enabled 

cmdPT5.Enabled 

Design and Implementation of a Networked Control System 114 

False 

False 

Timer5.Enabled =True 

txtMoni ter. Text = "Chico is moving the accepted block 

to the accepted bin ............ " 

Timer2.Enabled 

Timer4.Enabled 

Timer3.Enabled 

False 

False 

False 

Dim CommandData As String 

CommandData = 3 

WinsockClient.SendData CommandData 

End Sub 

'******************************************** 

'Read data from server 

' winsockl--read robot response 

Private Sub Winsockl_Close() 

Winsockl.Close 

End 

End Sub 

Private Sub Winsockl DataArrival(ByVal bytesTotal As 

Long) 

Dim buffer As String 

Dim reply As String * 6 

Dim PT2, PT3, PT4, PT5, Home, block As String 

Winsockl.GetData buffer 

txtDecimal = buffer 

txtBinary.Text = 

Format(DecimalToBinary(CLng(buffer)), "000000") 

reply= DecimalToBinary(CLng(buffer)) 

'mid$(y,n,m) mid$("abcde",2,1) = b 

PT2 = Mid(Format(reply, "000000"), 6, 1) 'get IO 

l 



Design and Implementation of a Networked Control System 115 

PT3 Mid(Forrnat(reply, "000000"), 5, 1) ' get I1 

PT4 Mid(Forrnat(reply, "000000"), 4, 1) 'get I2 

PTS Mid(Forrnat(reply, "000000"), 3, 1) ' get I3 

Horne= Mid(Forrnat(reply, "000000"), 2, 1) 'get I4 

block_= Mid(Forrnat(reply, "000000"), 1, 1) 'get IS 

If PT2 = 1 Then 'Getpart done 
lblPT2.FaceColor = &HCOOO& 

lblPT2.CaptureColor = &HCOOO& 

lblPT2.FocusColor = &HCOOO& 

txtMoni ter. Text = "Chico has finished grabbing the 
block from part feeder." 

Else 

Tirner2.Enabled = False 

'Dim CornrnandData As String 

'CornrnandData = 5 

'WinsockClient.SendData CornrnandData 

lblPT2.FaceColor = &HEOEOEO 

lblPT2.CaptureColor = &HEOEOEO 

lblPT2.FocusColor = &HEOEOEO 

End If 

If PT3 = 1 Then 'Inspect done 
lblPT3.FaceColor &HCOOO& 

lblPT3.CaptureColor = &HCOOO& 

lblPT3.FocusColor &HCOOO& 

lblBlock.Visible = True 

lblBlockStatus.Visible 

Tirner3.Enabled = False 

True 

If Tirner4.Enabled = False Then 

txtMoniter.Text = "Chico has finished 

moving the block to the inspection station." 

End If 

'CornrnandData = 5 

'WinsockClient.SendData CornrnandData 



Design and Implementation of a Networked Control System 116 

Else 

lblPT3.FaceColor = &HEOEOEO 

lblPT3.CaptureColor = &HEOEOEO 
lblPT3.FocusColor = &HEOEOEO 

lblBlock.Visible = False 
lblBlockStatus.Visible 

End If 

If PT4 = 1 Then 

False 

lblPT4.FaceColor = &HCOOO& 

lblPT4.CaptureColor = &HCOOO& 
lblPT4.FocusColor = &HCOOO& 

'solidbin done 

txtMoniter.Text = "Chico has finished moving the 
rejected block to the rejected bin" 

Else 

'CommandData = 5 

'WinsockClient.SendData CommandData 

Timer4.Enabled = False 

lblBlock.Visible = False 

lblBlockStatus.Visible False 

lblPT4.FaceColor = &HEOEOEO 

lblPT4.CaptureColor = &HEOEOEO 

lblPT4.FocusColor = &HEOEOEO 
End If 

If PT5 = 1 Then 

lblPT5.FaceColor = &HCOOO& 
lblPT5.CaptureColor = &HCOOO& 

lblPT5.FocusColor = &HCOOO& 

txtMoniter.Text = "Chico has finished moving the 

accepted block to the accepted bin." 

'CommandData = 5 
'WinsockClient.SendData CommandData 



Design and Implementation of a Networked Control System 117 

Else 

Timer5.Enabled = False 

lb~Block.Visible = False 
lblBlockStatus.Visible False 

lblPTS.FaceColor = &HEOEOEO 

lblPTS.CaptureColor = &HEOEOEO 

lblPTS.FocusColor &HEOEOEO 
End If 

If Home = 1 Then 

lblHome.FaceColor = &HCOOO& 
lblHome.CaptureColor = &HCOOO& 

lblHome.FocusColor &HCOOO& 

txtMoniter.Text ="Chico is back to wait postion." 

'CommandData = 5 

'WinsockClient.SendData CommandData 
Else 

lblHome.FaceColor = &HEOEOEO 

lblHome.CaptureColor = &HEOEOEO 
lblHome.FocusColor &HEOEOEO 

End If 

If block = 0 And Timer4. Enabled= False And PT3 = 1 Then 
lblBlock.Value =True 

lblBlockStatus.Caption 
End If 

"Inspection passed" 

If block = 1 And PT3 = 1 Then 
lblBlock.Value = False 

lblBlockStatus.Caption = "Inspection Failed" 
End If 

'Auto mode****************************** 

If lblAuto.Value = True Then 

If Home= 1 And Timer2.Enabled 
cmdManual.Enabled = False Then 

False And 



d 

Design and Implementation of a Networked Control System 118 

Dim CommandData As String 
CommandData = 5 

WinsockClient.SendData CommandData 

lblAuto.Value = False 
lblManual.Value True 
cmdAuto.Enabled = False 

End If 

If Home = 1 And lblManual.Value = False Then 
Timer2.Enabled =True 

txtMoniter.Text = "Chico is grabbing a block 
from part feeder ............ " 

End If 

If PT2 = 1 Then 

Timer2.Enabled 

Timer3.Enabled 
False 

True 

txtMoniter.Text = "Chico is moving the block 
to the inspection station ............ " 

End If 
If lblBlock.Visible =True And lblBlock.Value 

True And Timer4.Enabled =False Then 

Timer5.Enabled = True 

txtMoniter.Text = "Chico is moving the 

accepted block to the accepted bin ............ " 
End If 

If lblBlock.Visible =True And lblBlock.Value 
False Then 

Timer4.Enabled =True 

txtMoniter.Text = "Chico is moving the 

rejected block to the rejected bin ............ " 

PT2 

End If 

End If 

'manual mode************************************** 

If lblManual.Value =True Then 'Manual mode 

If Home <> 1 Or PT3 
1 Then 

cmdPT2.Enabled 

1 Or PT4 = 1 Or PT5 = 1 Or 

False 



1 Then 

Design and Implementation of a Networked Control System 119 

cmdPT3.Enabled 

cmdPT4.Enabled 

cmdPTS.Enabled 

End If 

False 

False 

False 

If Home = 1 And PT3 <> 1 And PT4 <> 1 And PT5 <> 

cmdPT2.Enabled =True 

'cmdPT3.Enabled 

'cmdPT4.Enabled 

'cmdPTS.Enabled 

End If 

False 

False 

False 

If Timer3.Enabled = False And PT2 = 1 And PT3 <> 

1 And PT4 <> 1 And PT5 <> 1 And Home <> 1 Then 

'cmdPT2.Enabled = False 

cmdPT3.Enabled = True 

'cmdPT4.Enabled False 

'cmdPTS.Enabled = False 

End If 

If PT3 = 1 And PT2 <> 1 And PT4 <> 1 And PT5 <> 1 

And Home <> 1 And block = 0 And Timer4. Enabled = False Then 

cmdPT4.Enabled False 

cmdPTS.Enabled = True 

End If 

If PT3 = 1 And PT2 <> 1 And PT4 <> 1 And PTS <> 1 

And Home <> 1 And block = 1 And TimerS. Enabled = False Then 

cmdPT4.Enabled True 

cmdPTS.Enabled = False 

End If 

If cmdPT2.Enabled True Then 

cmdAuto.Enabled = True 

End If 

If lblAuto.Value =True Then 

CommandData = 4 

WinsockClient.SendData CommandData 

End If 

End If 



Design and Implementation of a Networked Control System 120 

End Sub 

'***************************************************** 

'convert decimal to binary 

Private Function DecimalToBinary(DecimalNum As Long) As 

String 
Dim tmp As String 

Dim n As Long 

n DecimalNum 

tmp Trim(Str(n Mod 2)) 

n = n \ 2 

Do While n <> 0 

Loop 

tmp Trim(Str(n Mod 2)) & tmp 

n n \ 2 

DecimalToBinary tmp 

End Function 
'****************************************************** 

****** 


	Eastern Illinois University
	The Keep
	1-1-2005

	Design and Implementation of a Networked Control System
	Mi Chen
	Recommended Citation


	tmp.1364918616.pdf.lA4dj

