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ABSTRACT 

The purpose of this research was to find a combination of poly (L-lactic 

acid), also known as poly-L-lactide or (PLLA) and antioxidants that would, 

together, produce a product whose degradation rate would be advantageous for use 

in biodegradable medical implants. Intrinsic viscosity tests were conducted on 

compression molded samples of PLLA that were molded at various processing 

parameters in order to find optimal parameters. The optimal processing 

parameters were found to be time 10 minutes, temperature 220°C, and pressure 

1000 psi. 

The molecular weight of PLLA sample was taken while pressure, time, and 

temperature were varied. As pressure increased, no significant change in molecular 

weight was noticed. When the time was increased, the molecular weight decreased. 

Then when temperature increased, the molecular weight of PLLA also decreased. 

Compression molded samples were also made with a mixture of PLLA and 

antioxidants. At 0.6% of concentration, antioxidants in this study did not prove any 

benefits for PLLA to reduce the molecular degradation. All samples with 0.6% 

antioxidants showed lower molecular weight than pure PLLA. 

Outcomes of this research provide a better understanding of biodegradable 

polymers and the factors that contribute to a successful mold. This research 

develops the best possible poly-L-lactic acid compression sample for further studies 

in the industry, including medical applications. 
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CHAPTER I 

INTRODUCTION 

PLLA & DEGRADATION 1 

Biomaterials have long been used by physicians in the medical field to repair, 

assist, or replace living tissue or organs in the human body that are functioning below an 

acceptable level (Kroshchwitz, 1998). Poly-L-lactide (PLLA) is a polymer that degrades 

in the human body. The biodegradability of PLLA is attractive for many implant 

applications where ceramics, metals, or other polymers are ineffective. 

During the early days of medicine, surgeons used stainless steel and metallic 

devices as staples, sutures, pins, rods, screws, and tacks in the human body. While their 

use was and continues to be important, implanting stainless steel provides a permanent 

fixture in the body. Just as the first surgical wound begins to heal, it is time for a surgeon 

to perform a second operation to physically remove the temporary implant from the body 

because it is no longer needed. Implants cannot be left in the body because all metallic 

materials corrode (Black, 1988). The second operation is inconvenient and unpleasant 

for the patient because they must wait even longer to fully heal. After removal of the 

device, the area of the body in which the device was implanted has the potential of 

becoming damaged again because it bears the stress and weight of the body all at once, 

rather than easing into it gradually. 

Ceramics are among the oldest materials. Their use in the world of medicine is 

quite new. Inertness and chemical resistance makes ceramics an excellent biomaterial 

because the chemical structure of ceramics does not noticeably change after implantation. 
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Currently, aluminum oxides, hydroxyapatite, and glass-ceramics are the three most 

prominent ceramics used in medical implants (Middleton & Tipton, 1998). 

Scientists studying polymers during the first half of the 20th century concluded 

that polymers synthesized from glycolic acid and other alpha-hydroxy acids were too 

unstable for long-term use. Alpha-hydroxy acids started to degrade as they were 

processed. However, the instability of these polymers has become very relevant for use 

with medical devices in society today. The fact that these polymers do degrade has 

rendered them much more useful today in specialized fields that rely on controlled 

degrading over a short period of time (Birmingham Polymers Applications, 2000). 

Biodegradable sutures were approved in the 1960s by the Federal Drug 

Administration (FDA). The significance of biodegradable implants is that they do not 

need to be retrieved from the body. Biodegradable materials decompose through the 

body's natural metabolic processes, allowing the tissue cells to re-form as the device 

degrades and permits the stress of the body to be slowly transformed. The FDA's 

approval of biodegradable sutures has led to the development of other biodegradable 

implants. 

Poly (L-lactic acid), also known as poly-L-lactide or PLLA, is manufactured or 

synthesized by combining of many lactic acid monomers that occur naturally and degrade 

slowly over time. PLLA has a high tensile strength and low elongation, which makes it 

more suitable for load-bearing applications, i.e., orthopedic fixations and sutures 

(Middleton & Tipton, 1998). PLLA is used as a biomaterial for sutures, clips, nets, and 

bandages (Boehringer lngelheim, 1999a). It reacts with water and aqueous acids or bases 

to form lactic acid (Purac Product Data, 1996). According to Boehringer Ingelheim 

(1999a), other applications of PLLA include wound closures such as staples, meshes, and 
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dressings; prosthetic devices such as bone screws, pins, rods, plates, tendons, ligaments, 

skin substitutions, vascular grafts, stints, nerve guides; and drug delivery systems, such as 

microspheres, rods, needles, hollow fibers, peptides, proteins, vaccins, hormones, and 

cytostatics. 

1.1 Statement of the Research 

The purpose of this research was to experiment with processing parameters and to 

identify effective antioxidants to minimize degradation of PLLA during processing. The 

experiment involved identifying the optimal balance of processing parameters, i.e., 

temperature, time, and pressure. After the optimum parameters were found for PLLA, 

antioxidants were introduced to reduce oxidative degradation during processing. The 

effects of pressure, time, temperature, and antioxidants on molecular degradation of 

PLLA were investigated. The molecular degradation was evaluated using the intrinsic 

viscosity method. 

1.2 Significance of the Research 

The problem with degradable materials, including PLLA, is that they degrade 

during the manufacturing process. Although degradation is exactly what scientists look 

for in biomaterials, the degradation that takes place during manufacturing needs to be 

minimized or eliminated altogether. 

A typical manufacturing process for biodegradable polymer products involves 

heating the polymer and forming the product under pressure. Thus, pressure, 

temperature, and process time are important parameters for processing biodegradable 

polymers. These parameters are also critical for controlling the polymer degradation 
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during processing. Therefore, an optimal combination of processing parameters needs to 

be identified to reduce degradation of biodegradable polymers during the molding 

process. 

During processing, the major degradation event is oxidation of the polymer, due 

to high temperature. Antioxidants can be introduced into the polymer as additives to 

reduce degradation of the polymer during processing. In order to retard oxidation, 

effective types and amounts of antioxidants need to be identified to provide optimal 

protection for the polymer. 

1.3 Hypotheses 

1. Incorporating a variety of antioxidants into compression molded PLLA specimens 

decreases the amount of degradation as measured by its molecular weight. 

2. Degradation is slowed by employing optimal processing parameters. 

1.4 Definition of Terms 

3-hydroxyanthranilic acid: HAA is a new antioxidant that was isolated from the 
methanol extract of tempeh (Esaki, 1996). 

Antioxidant: A substance that inhibits reactions with oxygen or 
peroxides. 

BHT: Butylated hydroxytolune, a low molecular weight food 
grade synthetic antioxidant. 

Compression molding: A process used to form a finished component from raw 
resin by applying pressure on the molds while heating. 

Fraxetin: The trade name for 7,8-dihydroxy-6-methoxycoumarin, 
98%. 

Free Radical: An unstable molecule that contains an unpaired electron 
(Strong, 1996). 
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Isophorone diisocyanate, 98%: IPDI or 3,5-di-tert-butyl-4-hydroxyl benzyl 
hexamethylene dicarbamate with a molecular weight (MW) 
of 640. A hindered phenol group with higher MW 
synthesized by direct addition reaction of 2,6-di-tert-butyl-
4-hydroxyl methyl phenol (DBHMP) and isocyanates. 

Molecular weight: 

Oxidation: 

PLLA: 

Polymer: 

Quercetin: 

TBHQ: 

Vitamin E: 

Viscosity: 

The average mass of a molecule of a compound compared 
to 1112 the mass of carbon 12; the sum of the atomic 
weights of the constituent atoms. 

The process of reaction with oxygen (Strong, 1996). 

Poly (L-lactic acid), also known as poly-L-lactide is a 
biodegradable polymer with about 37 % crystalline, a 
melting point of 175-178 °C and a glass-transition 
temperature of 60-65 °C (Middleton & Tipton, 1998). 

A chemical compound or mixture of compounds formed by 
polymerization and consisting essentially of repeating 
structural units called monomers. 

A natural flavonoid antioxidant that has been isolated from 
many plants. 

Tertiary butylhydroquinone, a synthetic phenolic 
antioxidant. 

Tocopherol, fat-soluble phenolic compound with 
varying degrees of antioxidant vitamin E activity 
obtained from germ oils or by synthesis. 

The resistance to flow in a fluid or semi-fluid. 
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1.5 Assumptions 

In this research the following will be assumed: 

1. The antioxidants used in this research were close to their original condition 

and in compliance with industry standards. 

2. PLLA is consistent and uniform throughout. 

3. Antioxidants are evenly distributed throughout the polymer matrix. 

4. Viscosity is an accurate predictor of molecular weight. 

1.6 Limitations 

The findings in this research have the following limitations: 

1. Human error and accuracy of the testing equipment can affect the accuracy of 

the test results. 

2. The quality of the PLLA and antioxidants is controlled by the suppliers. 

3. Changes in ambient temperature and the associated rate of cooling between 

the compression molded specimens can affect research results. 

4. Characteristics of PLLA and antioxidant combinations can affect the 

compression molding process. 

5. Changes can occur in humidity after drying and before compression molding. 
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1. 7 Delimitations 

The research is bound to the following parameters: 

1. The type of PLLA used in this research is limited to Purac biochem, a family 

of homopolymers of PURASORB. 

2. Molecular weight is determined using intrinsic viscosity. The evaluation of 

all polymer specimens was performed using an intrinsic viscosity constant 

temperature bath. 

3. Compression pressure was applied using a press by Buehler. 

4. Temperature in the compression molding of PLLA was maintained by an 

Athena XT16 temperature controller. 

5. The amount of time the sample was held was measured using a stopwatch. 

6. Antioxidants used in this research included the following: Quercetin, TBHQ 

(tertiary butylhydroquinoe ), IPDI (isophorone diisocyanate ), HAA (3-

hydroxyanthranilic acid), and Fraxetin. 
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This review of literature includes sources related to the significance of and 

problems associated with biodegradable polymers, antioxidants, and processing 

parameters. The past and current use of implantable polymers is discussed. Past 

research describing the benefits of antioxidants will be discussed. 

2.1 Polymers 

Polymers are chemical compounds or mixtures of compounds formed by 

polymerization, essentially consisting ofrepeated structural units called 

monomers. Polymers are used by various industries, including food and 

beverage, foundry, lumber, bulk materials handling, transportation, mining, 

mineral processing, paper, recreational equipment, textiles, and medical implants. 

2.2 Processing 

Thermoplastic polymers can be melted and processed by conventional 

means such as extrusion, injection molding, and compression molding. Each 

process is different and has its advantages and disadvantages. 

Extrusion begins when polymer resin from a hopper is fed into a chamber. 

After the resin is in the chamber, an oscillating ram arm forces the resin material 

into a die. Heat is applied to the material, making the polymer expand and causing 

resistance to the ram. It is a continuous process that produces bar stock of varying 

cross-sections (Biomet, 1996). Other typical extruded products include profiles, 

bars, rods, and pipes. 
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Injection molding is a key process in the polymer processing industry. 

The process is economical and efficient. An injection molding machine consists 

of an injection unit, a mold clamping unit, a hydraulic unit, and a control unit. 

Shearing and heating the injection unit melts resin material. The melted material 

is injected with pressure into a mold that is held by the clamping unit. As the 

polymer cools, it solidifies into the shape of the mold. Figure 1 shows a basic 

injection molding machine (Gao and Tian, 1999). Injection molding provides 

excellent product consistency. 

Screw Displacement 

Mold 

Servo-valves 

Solenoid Val.ves 

Oil Tank 

~av·:w .m;n 
Figure 1 Illustration of basic injection molding process. 

Compression molding is used to form complete pieces from raw material 

resin by compressing molds being heated. Figure 2 is a typical compression 

molding process. The outer rod diameter and inner sleeve diameter are the same. 

To mold a material, the bottom rod is placed into the sleeve and a known amount 
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of material resin is placed into the mold. The mold is capped with a rod with the 

same diameter, then pressed and cycled through specific temperatures, times, and 

pressures. The compression mold is allowed to cool before de-molded and 

trimmed. Compression molding wastes the least amount of material by leaving 

little unused material out of the mold, thus is better for large parts. Resin quality 

and surface roughness can be controlled during processing (Ramani and Parasnis, 

1998). The disadvantages of compression molding are material inconsistency and 

low production rate (Compression Moldi_ng, 2001). 

i.-J==·••i 
~ 

G-.~ ====:::::V 

Figure 2 Illustration of a typical compression molding process. 
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2.3 Biodegradable Polymers 

Biodegradable polymers have a wide range of mechanical properties and 

degradation rates. All polymers degrade and consequently material properties 

deteriorate. During degradation, the chain length of polymer molecules decreases. 

This process is known as molecular degradation. Because of their ability to 

degrade, biodegradable polymers are used in the human body as temporary 

devices. The significance of biodegradable polymer implants in humans is that a 

second operation is not needed for removal, allowing an individual more freedom 

to heal without reintrusion. 

Middleton and Tipton (1998) stated that orthopedic fixation devices made 

from synthetic biodegradable polymers have advantages over metal implants 

because they transfer stress over time to the damaged area. This allows healing of 

the tissues and eliminates the need for a subsequent operation for implant 

removal. Current materials have not exhibited sufficient stiffness to be used as 

bone plates for support of long bones, such as the femur. Rather, they have found 

applications where lower-strength materials are sufficient. For example, they are 

being used as interference screws in ankle, knee, and hand areas; as tacks and pins 

for ligament attachment and minuscule repair; as suture anchors, rods, and pins 

for fracture fixation. 
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2.4 Physiological Compatibility of Biodegradable Polymers 

Boehringer lngelheim (1999a) stated that various types of polymers are 

nontoxic and are well tolerated by organisms. A number of animal tests and 

clinical trials have verified this with lactic and glycolic acid. PLLA is easily 

metabolized and excreted by the human body or by animals (Boeinger Ingelheim, 

1999a). 

2.5 Failure of Polymers 

Most polymers begin to degrade as soon as they are made. Moisture, 

temperature, and gamma-radiation increase the degrading process. Boehringer 

lngelheim (1999b) suggest that contact with moister cause PLLA to degrade 

quickly. This includes improper drying of the polymer. The second way to cause 

failure of polymers is to subject them to higher temperatures than needed for 

drying purposes. Processing polymers requires a very accurate temperature 

control since the material degrades considerably even in the pellet form. 

Processing temperatures have to be as low as possible, as thermal damage is 

significant. When not in use polymers should be stored in a freezer at a 

temperature below 10 °C. Costa, Luda, Trossarelli, Brach del Prever, Crova & 

Gallinaro (1998) stated that the last significant cause of failure of polymers is the 

sterilization method used by medical device manufacturers. Gamma-radiation 

breaks polymer molecular chains, resulting in generation of free radicals, which 

leads to oxidation and accelerated wear. 
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2.6 Biodegradation 

Biodegradation is the process in which a material is broken down from its 

original state. Hydrolysis is one form of degradation for glycolide, E

caprolactone, and lactide polymers. After water or moisture is introduced to the 

material, random hydrolysis begins, and fragments of the material are split from 

one another causing phagocytosis. Phagocytosis is a process of diffusion and 

metabolism. Hydrolysis is affected by the size, the crystallinity, pH, and 

temperature of the environment (Birmingham Polymers Applications, 2000). 

The degradation rate depends on the molecular weight, surface quality, 

composition of the polymers, and environmental conditions. The hydrolytic 

degradation of polymers leads first to a decrease in molecular weight. Only at 

the end of the degradation time can a loss in mass be observed, which leads to the 

complete decomposition of the polymer (Boehringer Ingelheim, 1999a). 

2.7 Evaluation of Molecular Degradation 

Polymeric degradation causes deterioration in material properties. The 

degradation in the molecular structure of polymers is of critical importance for 

many applications. One of the important measures for polymer structure is 

molecular weight, which is decreased as a result of polymer chain scission. The 

molecular weight of a polymer is related to its intrinsic viscosity (limiting 

viscosity number) according to the following Mark-Houwink-Sakurada equation 

(Kumar & Gupta, 1998): 

Mv=(n/k)l/a 
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Where n is intrinsic viscosity. Mv is known as viscosity-average molecular 

weight and k and a are empirical constants that are determined by polymer type 

and experimental conditions. For biodegradable poly(L-lactide), k and are 5.45 x 

10A4 dL/g and 0.73, respectively. A viscometer can be used to measure the 

viscosity, or molecular weight, of a polymer (Ciesielska & Liu, 1998). 

Ciesielska and Liu (1998) stated: Nred = (tc - t0 ) I (t0 C) where Nred is 

reduced viscosity, tc is efflux time for polymer solution at concentration C, and t0 

is efflux time for solvent. The reduced viscosity Nred can be calculated for each 

solution in order to measure the intrinsic viscosity of plastic. A graph of reduced 

viscosity vs. polymer concentration can be plotted. Intrinsic viscosity can be 

extrapolated as the reduced viscosity at zero concentration. Thus, molecular 

chain length or molecular weight can be measured in terms of intrinsic viscosity. 

2.8 Processing Parameters and Equipment 

PLLA is the family of homopolymers ofL, L(-)-lactide. According to 

PURAC's product data sheet, PLLA is supplied in the standard form of white 

granules suitable for conventional processing methods. PLLA can be essentially 

stable when stored at low temperatures, e.g., freezer in an inert atmosphere. The 

sealed bag needs to be warmed up to room temperature before opening. PLLA 

reacts with water and aqueous acids or bases to form lactic acid (Purac Product 

Data, 1996). 
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2.9 Drying 

PLLA homopolymer resin must be dried before processing in order to 

avoid unnecessary degradation during molding. The drying is performed in a 

vacuum oven at 120° C for five hours. Boehringer concluded that when using the 

drying temperature of 140° C, no significant molecular weight decrease was 

observed after a period of 24 hours. However, it has been proven that increasing 

the drying temperature has detrimental effects on the material. Effects of drying 

depends more on the drying temperature than on the drying time. Drying values 

approach an asymptotic limit depending on the temperature applied. Drying can 

be done in a vacuum oven or in an absorption-circulating drier (Boehringer 

Ingelheim, 1999b ). 

2.10 Compression Molding 

The processing parameters for polymers are pressure, time, and 

temperature. Ramani and Parasnis (1998) state that compression molding 

involves the application of pressure and temperature in a proper sequence to 

provide parts of highest quality. Heat is applied to start melting the sample, and 

as the sample starts to melt and pressure is applied, voids are eliminated. The 

plastic powder mixture turns into a well-consolidated sample. During 

compression molding, the mixture is placed into the mold, heated above melting 

point, and allowed to cool to an ambient temperature. 
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2.11 Antioxidants 

Antioxidants are used to improve the thermal stability of various 

polymers, however, are yet to be used consistently in biodegradable polymers. 

Oxygen reacts with free radicals in the material, thus repelling the oxygen away 

from the biodegradable material. In order to function well, an antioxidant 

molecule must react with oxygen more rapidly than the oxygen can react with the 

biodegradable material. The products of the reaction with free radicals must not 

be pro-oxidant (Aim, 2000). 

The most widely used antioxidants in foods include: butylated 

hydroxyanisole (BHA), butylated hydroxytoluene (BHT), propyl gallate (PG), 

and tert-butylhydroquinone (TBHQ) (Shahidi, 2000). Henry, et al. (1998) 

demonstrated butylated hydroxytoluene (BHT) to be effective in the suppression 

of oxidation in safflower oil during heat-catalyzed oxidation. They compared 

BHT with ~-carotene, and found that BHT prolonged the onset of oxidation 

significantly more than ~-carotene. Papas (1999) stated that a-tocopherol, or 

vitamin E, is an effective antioxidant for neutralizing free radicals that are 

generated within the human body. Dougherty (1993) showed high temperature 

data, which indicated stability of a-tocopherol. Research by Tomita, et al. (1999) 

pointed out that the addition of vitamin E to gamma irradiated UHMWPE molds 

stopped the development of surface cracking and particulate debris generation in 

vitro testing. Gamma irradiation resulted in hardening of the grain boundary in 

the polymer that was subjected to sliding fatigue. 
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2.11.1 Natural and Synthetic Antioxidants 

Cadenas and Packer (1996) acknowledged that ~-carotene may be a very 

effective antioxidant or protective compound for human photosensitivity 

disorders. Shahidi (2000) stated that naturally occurring inhibitors of oxidation in 

foods generally originate from plant-based ingredients. These may be produced 

as a result of process-induced chemical changes in foods or are extracted from 

non-food ingredients. The use of synthetic antioxidants in foods dates back to the 

1940's, when butylated hydroxyanisole (BRA) was found to retard oxidation and 

the effectiveness of several alkyl esters of gallic acid. Bagchi, Garg, Krohn, & 

Bagchi (1997) studied Grape Seed Proanthocyanidin Extract (GSPE), vitamin C, 

and vitamin E succinate (VES). Chemiluminescence and cytochrome reduction 

determined the oxygen free radical scavenging abilities. GSPE was superior for 

scavenging oxygen free radicals over both vitamins C and E. 

In the article "Antioxidative Effects of Some Natural Antioxidants in 

Sunflower Oil" by Marinova and Y anishlieva (1996), antioxidant effectiveness 

was measured. Antioxidants fraxetin, caffeic acid, and esculetin or 3,4-

dihydroxycinnamic acid were compared. Fraxetin was shown to have the greatest 

oxidative stability of the group. Fraxetin is two and a half times more effective 

than butylated hydroxytoluene (BHT) in sunflower oil at 25 and 100 °C. Fraxetin 

has a melting point of230-231 °C and a molecular weight of208.17. 

Lau, Pan, and Liu investigated antioxidants octadecyl isocyanate (01), 

hexamethyl diisocyanate (HMDI), toluene-2,4-diisocyanate (TDI), isophorone 

diisocyanate (IPDI), and methylene diphenylene diisocyanate (MDI). All five 

antioxidants were new hindered phenol antioxidants which were synthesized by 
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direct addition reaction of 2,6-di-tert-butyl 4-hydroxyl methyl phenol (DBHMP) 

and isocyanates. The five antioxidants have high molecular weights and are more 

effective than butylated hydroxytoluene (BHT) at 140 °C. Table 1 shows the 

chemical name, melting temperature (Tm) and molecular weight (Mv) of each 

antioxidant. 

TABLE 1 
Selected Physical Properties of Antioxidants 

Chemical Name Abbreviation Tm Mv 
octadecy1 isocyanate 01 54.5- 55.5 531 
Hexamethy1 liisocyanate HMDI 105-106 640 
toluene-2,4-diisocyanate TOI 135-136 646 
lsophorone diisocyanate IPDI 82 694 
Methylene diphnylene diisocyanate MDI >270 722 
Buty1ated hydroxytoluene BHT 69-70 220 

Esaki, Onozaki, Kawakishi, & Osawa compared the antioxidant 3-

hydroxyanthranilic acid (HAA) with 6, 7 ,4' -trihydroxyisoflavone and butylated 

hydroxytoluene (BHT). HAA is an extract of Tempeh that exhibits strong 

antioxidative activity in water/ethanol, rabbit erythrocyte membrane ghost 

systems, and soybean oil and soybean powder. The researchers indicated that 

HAA was tested at room temperature. The induction period for HAA was less 

than BHT in the water/ethanol system, but (100 and 200 µg) HAA was better in 

the soybean oil test. HAA has a melting temperature of 240 °C and a molecular 

weight of 153.14. 

In "Flavonoids Quercetin, Myricetin, Kaemferol and (+)-Catechin as 

Antioxidants in Methyl Linoleate" (Heinonen, Hopia, and Pekkarinen, 1999), 
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antioxidant effectiveness was measured on flavonoids. Flavonoids are a group 

from the plant kingdom and occur most often as glycosides. The antioxidants 

myricetin, Quercetin, a-tocopherol, (+)-catechin, kaemferol, and rutin were 

compared. Oxidation was measured by conjugated diene and by determining the 

formation ofhydroperoxide isomers by HPLC. Myricetin and Quercetin showed 

the greatest amount of hydroperoxide formation. The article concluded that 

myricetin and Quercetin were the most effective antioxidants for inhibiting the 

hydroperoxide formation for methyl linoleate. Quercetin dihydrate has a 

molecular weight of 338.3 and myricetin has a molecular weight of 318.24, both 

having a melting temperature of>300 °C. 

Gordon and Roedig-Penman (1998) compared the antioxidant activities of 

myricetin 10-3 M, BHT at .02 %, myricetin 10-4 M, Quercetin 10-4 on sunflower 

oil. Myricetin 10-3 M was determined to be the strongest free radical scavenger of 

the chemicals at 60 °C during Peroxide Value (PV) in (meq/kg) changes, with a 

strength almost 3 times that ofBHT. 
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For this research, poly-L-lactic acid (PLLA) Purac biochem was provided 

by Gorinchem (Holland) in solid white granules. Purac's specifications are: 

intrinsic viscosity 3.8-4.2 (dl/g, CHCL3, 25 °C), melting rage 170-195 {°C), heat 

of fusion min. 30 (Jig), specific rotation (-155)-(-160) (degree, CHCL3, 20 °C, 

Molecular weight of approx. 200.000 (g/Mole), residual solvent max. 0.01 (%) 

and residual monomer max. 0.10 (%). The molecular formula is [O-CH(CH3)

CO]n. The PLLA received was of high crystallinity, Tm= 170 °C, Tg = 56 °C, 

Tdc = 240 °C, modulus (Gpa) 8.5, and elongation of 25% (Purac Product Data, 

2000). Normal packaging of PLLA consisted of an inner bag of PE-PA laminate, 

an intermediate bag of aluminum coated polyester-polyethylene laminate, and an 

outer bag of polyethylene (PE). The bags are shipped in PE-containers for added 

protection. Figure 3 is a photograph of the antioxidants and PLLA samples used 

in compression molding process. Antioxidants used in this research were 

purchased from the Sigma/ Aldrich Chemical Company, St. Louis, MO. They 

include the following: Quercetin, tertiary butylhydroquinoe (TBHQ), octadecyl 

isocyanate (01), isophorone diisocyanate (IPDI), 3-hydroxyanthranilic acid 

(HAA), and Fraxetin. 
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Figure 3 A photograph of the antioxidants and PLLA samples used in 
compression molding. 

3.2 Test Specimens 

Test specimens were produced by compression molding samples of PLLA 

at different processing parameters. After the optimal processing parameters were 

found, PLLA was mixed with various antioxidants according to the following 

processes: Storage, Weighing, Drying, Mixing, Vacuum, and Compressing. 

3. 3 .1 Storage. Remove PLLA from the freezer where it is stored at - 10 C0 

and allow the bag to reach room temperature before opening. All samples and 

materials that are stored are encased in plastic bags with nitrogen gas. 
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3.3.2 Weighing. The PLLA and antioxidant sample is weighed using a 

Denver Instrument M-220D electronic balance as shown in Figure 4. 

Figure 4 Denver Instrument M-220D electronic balance. 

3.3 .3 Drying. The mixture of PLLA sample is placed into a flask. Figure 5 

is a phot9graph of the glass flask inside an oven connected to a vacuum pump. 

The inside lip of the beaker is coated with a thin coat of grease. The grease creates 

an air tight seal between the beaker and the vacuum line. The beaker is then 

placed inside the environmental chamber and is connected to a vacuum hose. The 

vacuum hose leads outside the environmental chamber to a vacuum pump. The 

vacuum pump is turned on pulling a vacuum on the beaker. The environmental 

chamber is preheated to 120 °C. After the vacuum is pulled, the valve on the 

vacuum line is opened, creating a vacuum in the beaker. The vacuum is 

maintained during the entire drying process. The sample of PLLA is dried for 

five hours. The vacuum valve is shut off, releasing the pressure, and the beaker is 

twisted off the vacuum line. 
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Figure 5 Photograph of a glass flask inside oven connected to a vacuum pump. 

3.3.4 Mixing Antioxidants with Ethonol. Figure 6 represents the mixing 

equipment used to prepare compression molding samples. Ethanol alcohol was 

utilized as a solvent to enhance the incorporation of antioxidants into PLLA. The 

first step in making a uniformly mixed sample was to place an antioxidant into a 

2-cup container with 20mL of ethanol alcohol and agitate it until the antioxidant 

was dissolved. PLLA was added into this solution and mixed using a stir rod for 

seven to ten minutes, scraping the sides of the container to ensure a homogenous 

mixing of ingredients. The mixture was then placed in a vacuum and heated to 

70°C in order to remove all solvent and moisture. 
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Figure 6 Supplies used to prepare compression molding samples. 

3.3 .5 Vacuum. A vacuum oven was used to pull all solvent and moisture 

out of the PLLA and antioxidant mixture. The mixture was placed in a flask 

connected to a vacuum. The vacuum was pulled for an hour at 70 °C. 

3.3 .6 Compressing. Figure 7 represents a basic compression molding 

process with a temperature controller. After the 1. 5 gram sample of 

PLLNantioxidant mixture was dried in a vacuum, the sample was compression 

molded. The sample was then poured out of the beaker into a compression mold. 

Figure 7 Basic compression molding process with temperature controller. 
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The first step in the compression molding process was to experiment with 

the pressure. Figure 8 shows possible schematic of applied pressure as a function 

of time. Proper starting pressure was experimented with to avoid excessive 

leakage of the polymer from the mold. 

The second step was to experiment with compression time on molecular 

degradation of polymers. The following times were used: 1, 5, 10, 30, and 60 

minutes. A visual inspection of the molding quality of polymer disks was 

performed. Then, an evaluation of the molecular weight via intrinsic viscosity 

was performed. 

Ambient 

Temperatu 
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Pressure: 

120 c 

750 si 

2Min 

Tum Heater Off 

_h 
~~ 

1000 psi 

Until Demolding 
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Figure 8 Schematic of temperature and pressure in compression molding. 
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The third step was to study the effect of compression temperature on 

molecular degradation of polymers. Molding plastic at various temperatures (190, 

200, 210, 220, and 230 °C) caused different degradation on the polymer. 

3. 3. 7 Demolding. Figure 9 represents both PLLA powder in a package 

and a processed PLLA sample. After molding, the core was extracted from the 

mold by a ram arm on the press. The molded sample was connected to the two 

pieces of the inner core, which needed to be separated. The mold was then scored 

with a razor knife along the boundary with the sample. The small end of the core 

was placed in the vice between two copper plates. Copper plates were used so as 

not to damage the molds in the vice. Pressure was applied to large end of mold, 

breaking the sample out of the mold. The razor knife was used to break the other 

half of plastic from the mold. A razor knife was also used to trim any excess of 

polymer that has squeezed between the mold. 

Figure 9 PLLA powder in package and compression molded sample. 
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3.3.8 Preparation for Intrinsic Viscosity Evaluation. Figure 10 shows a 

processing jogger used to mix the prepared compression molded sample with 

chloroform. Intrinsic viscosity was measured on diluted solutions of PLLA 

polymer in chloroform. The molecular weight of a polymer was related to its 

intrinsic viscosity (limiting viscosity number) according to the following Mark-

Houwink-Sakurada equation (Kumar & Gupta, 1998): 

Mv = (n!k/la 

Where n was intrinsic viscosity, which was also referred to as limiting viscosity 

number. Mv is known as viscosity-average molecular weight and k and a are 

empirical constants that are determined by polymer type and experimental 

conditions. For biodegradable poly(L-dactide), k and are 5.45 x IOA 4 dL/g and 

0. 73, respectively. 

Figure 10 Processing jogger used to mix the prepared compression molding 
sample with chloroform. 

\ 
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Table 2 shows the solution concentration, amount of PLLA, and the 

volume of chloroform used in the tests. Diluted solutions were prepared by 

adding the polymer into the solvent. Five different solution concentrations were 

made: 0, 0.04, 0.1, 0.16 and 0.20 grams per deciliter. Chloroform (99 .9%, ACS 

HPLC grade) was used to dissolve each sample. Separate flasks of the 

concentration were closed with a glass stopper. The flasks were then shaken for 

two hours. After the polymer was dissolved into the solvent completely, the 

solution was loaded into the glass viscometer, which was then placed in the 

constant temperature bath equilibrated at 25 °C. 

Table 2 
PLLA Concentration Plan for Intrinsic Viscosity Measurement 

Solution Concentration Amount of PLLA Volume of Chloroform 
(g/dl) (g) (ml) 

0.00 0.00 20 
0.04 0.02 50 
0.10 0.05 50 
0.16 0.08 50 
0.20 0.10 50 

3.3 Testing Procedure for Intrinsic Viscosity 

The viscosity bath was turned on and the temperature was set for 25°C. 

The bath was maintained at this temperature for at least thirty minutes before the 

viscometers were placed into the bath. The viscometer was placed in the constant 

temperature bath and the solution sample was allowed to equilibrate for 15 

minutes. A photograph of a viscometer is shown in Figure 11. 

L_ .. 
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Figure 11 Constant temperature bath used in measuring intrinsic viscosity. 

Using a pipette, each solution was loaded from the flask into the 

viscometer, Figure 12 is a schematic of a glass viscometer used in measuring 

intrinsic viscosity. The solution level must be between the upper and lower marks 

(A & B). A finger was placed on an opening (N), closing the main exit of the 

solution. A rubber bulb was inserted in the entrance of the viscometer and 

pressure was applied (L). The solution was raised to fill the bulb (C). Then, the 

finger was removed, which created an atmospheric pressure in the bottom end of 

the capillary. 

Effiux time was taken by simultaneously opening the hole the finger was 

covering (N) and releasing the pressure from the bulb (B). A stopwatch was 

started when the liquid level was at the top of the viscometer bulb (F). The 

stopwatch was stopped after all the solution was out of the viscometer bulb (E). 

The time taken for the liquid level to move from the top of the viscometer bulb 

(F) to the bottom of the bulb (E) was effiux time in seconds. This procedure was 

duplicated five times for each solution and the average effiux time was calculated. 
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The average efflux time of the solutions and of the solvent was recorded and the 

reduced viscosity was calculated. 

L 

Figure 12. Schematic of a glass viscometer used in measuring intrinsic viscosity. 

A graph of reduced viscosity versus solution concentration was plotted 

using the recorded data. The line of best fit was found using the least squares 

method. An extrapolation was used to obtain intrinsic viscosity. The viscosity

average molecular weight of the polymer was calculated using the relative 

viscosity equation. 
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The optimal pressure, time, temperature, antioxidant, and concentration of 

antioxidant for compression molding process of PLLA was identified by limiting 

the change of degradation. The effect of pressure in the compression molding 

process was evaluated by keeping the temperature and time constant with no 

antioxidant. Then, time or temperature was varied by keeping the other 

parameters constant. Changing only one variable at a time permitted the effect of 

each parameter to be fully understood. Keeping all other variables constant, the 

optimal processing parameters for compression molding PLLA sample was found. 

No antioxidants were used in finding the optimal pressure, time, and temperature 

in the compression molding process until each variable was set. After the optimal 

processing parameters were found for compression molding, antioxidants were 

added to determine if they have any effect on the change in molecular 

degradation. Antioxidant concentrations were evaluated to determine if the 

amount of antioxidant effects the molecular weight of the polymer. 

3.4 Analysis 

The analysis of the results for each PLLA compression mold sample was 

based on the change in molecular degradation during processing. The decrease in 

molec~lar weight was an indication of molecular degradation. The molecular 

weight of each sample was determined by intrinsic viscosity. A decrease in 

molecular weight will decrease intrinsic viscosity. Figure 13 shows the 

relationship between intrinsic viscosity and molecular weight. 
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Figure 13. Relationship between physical change in viscosity and molecular 
weight. 

3.5 Data Analysis 

The following questions were addressed during the analysis process: 

1. Will degradation decrease when the optimal temperature, time, and 

pressure for processing PLLA is found? 

2. With the optimal parameters will the antioxidants Quercetin, Tertiary 

Butylhydroquinoe, isophorone diisocyanate, 3-hydroxyanthranilic acid, 

and Fraxetin at in compression molded samples decrease molecular 

degradation measured by molecular weight? 

3. Will the concentration of the best antioxidant affect molecular degradation 

measured by molecular weight? 
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CHAPTER IV 

PRESENTATION AND INTERPRETATION OF THE DATA 

4. I Effect of Pressure on Molecular Weight and Degradation 

4. I . I Quality of Sample with Varying Pressure 

Pressure was experimented with to prevent significant leakage of the 

polymer melt from the mold. In order to accomplish this task, three samples with 

no antioxidants were made. Pressure was varied between 500 and I,500 psi and 

the temperature and compression time were kept constant. Figure I4 was a SOX 

magnification picture of a PLLA sample compression molded under 500 psi of 

pressure at 220°C for 10 minutes. 

Figure I 4 PLLA compression molded sample under 500 psi, at 220°C for IO 
minuets under a magnification of SOX. 
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Each sample was visually inspected and observations were recorded in a 

notebook. Table 3 shows results from visual inspections of PLLA compression 

molded samples under different pressures. The 500 psi sample was clear, with 

small cracks and one or two white spots ofunmelted PLLA. The sample did not 

come out of the compression mold onto the cylinder walls. The sample molded at 

compression of 1,000 psi was even clearer, with no cracks, and only had one or 

two white spots, and the sample was not cloudy. Some of the material did, 

however, start to come out of the compression mold onto the cylinder walls. The 

sample was stuck to the mold even after a vise was used to pull the two ends of 

the mold apart. The last sample, compressed at 1,500 psi., was also clear with no 

cracks, but more than two white spots were present. The sample also started to 

come out onto the cylinder walls of the mold, which made demolding the sample 

harder. 

TABLE 3 
Results of Visual Inspections of PLLA Samples Compression Molded at Different 
Pressures. 

Pressure Characteristics 
500 psi Clear, small cracks, and one or two white spots 

1,000 psi very clear, no cracks, one or two white spots, and not cloudy 
1,500 psi Clear, no cracks, more than two white spots 

4.1.2 Differences in Molecular Weight of Samples with Varying Pressure 

Figure 15 demonstrates the variation of molecular weight and degradation 

due to the effect of pressure on different samples of compression molded PLLA 

while being processed. This graph shows that pressure may not be a significant 
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cause in the increase or decrease in molecular weight of PLLA. Although the 

molecular weight was clearly higher at 1,000 psi, it was not significant enough to 

rule out other causes. 

Mv Vs. Pressure 
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Figure 15. Variation of molecular weight and degradation due to the effect of 
pressure on different samples of compression molded PLLA. 

4.2 Effect of Holding Time on Molecular Weight and Degradation 

4.2.1 Quality of Samples Varying the Duration of Hold Time 

The quality of the PLLA sample was directly affected by hold time during 

compression molding process when the temperature and pressure with no 

antioxidants were held constant. Five molds were prepared using the following 

times: 1, 5, 10, 30, and 60 minutes. Figure 16 shows a SOX magnified photograph 

of a PLLA sample compression molded for one minute while the sample was held 

at 200°C and under 1,000 psi of pressure. The small spots in this photograph 

were unmelted PLLA surrounded by uniformly melted PLLA. 
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Figure 16 PLLA sample compression molded for one minute while sample was 
held under 1,000 psi. of pressure at 220°C under a magnification of SOX. 

Visual inspection was performed after compression molding and Table 4 

depicts the results from visual inspections of PLLA samples molded at different 

compression times. The first sample was held for one minute and can be described 

as clear, with more than two small white spots, and the sample was cloudy. At 

five minutes the mold was still not clear, and a lot of bigger white spots made the 

sample even cloudier. This sample clearly was not processed completely. The 

third sample held for ten minutes was very clear with no cracks. Only one or two 

white spots were seen, and the mold was not cloudy. This sample did look like it 

was completely processed. Sample number four at thirty minutes was also very 

clear, small cracks were present and there were no white spots. The sample was 

not cloudy and looked like it was fully processed. The last mold, at sixty minutes, 

turned out very clear, containing cracks. With no white spots and not appearing 

cloudy, it appears as though the 60 minute compression was fully melted if not 
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overly processed. The first two sample were definitely not processed fully. The 

10, 30, and 60 minute samples all passed the visual inspection. 

TABLE4 
Results of Visual Inspections of PLLA Samples Molded at Different Compression 
Times 

Compression Time Characteristics 

1 min clear, small white spots, and cloudy 
5 min not clear, big white spots, and cloudy 
10 min very clear, no cracks, one or two white spots, and not 

cloudy 
30 min very clear, small cracks, no white spots and not 

cloudy 
60 min very clear, medium cracks, no white spots and not 

cloudy 

4.2.2 Differences in Molecular Weight of Samples with Varying Hold Time 

Figure 1 7 shows the relationship between the duration of compression 

molding and the molecular weight of PLLA. As the duration increased, the 

molecular weight of PLLA decreased. 
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Figure 17 Variation of molecular weight with different holding times during 
compression molding process. 

4.3 Effect of Temperature on Molecular Weight 

4.3.1 Quality of Samples at Varying Temperatures 

70 

To provide a basic understanding of the effect of the proper temperature 

on compression molded PLLA, five samples were prepared at different 

temperatures from 190 to 230 °C, while holding pressure and compression time 

constant, with no antioxidants. Figure 18 shows how a typical PLLA sample 

appears under at SOX magnification. Although the sample was not shown as 

white in color, unmelted specks of PLLA are visible under the SOX magnification. 
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Figure 18 PLLA sample compression molded at 200°C for 1 O minutes while 
holding the sample under 1,000 psi of pressure (50X). 

A visual inspection was done after each sample was made. In Table 5 the 

characteristics of each sample was reported for easy referencing. The 190°C 

sample can be described as non-transparent, white in color, cloudy, which had 

lines or cracks. The 200°C mold had cracks, cloudiness, and was white in color. 

The 210°C sample was clearer, had cracks, was less cloudy, and had white spots. 

At 220°C, the sample was very clear, which had no cracks and had one or two 

white spots. The last sample melted at 230°C, was very clear, had no cracks, and 

contained more than two white spots. The 220°C sample, which remained at 

constant pressure, compression time, with no antioxidants, was the best in sample 

quality. 
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TABLES 
Results of Visual Inspections of PLLA Samples Compression 
Molded at Different Temperatures 

Temperature Characteristics 
190°C not clear, white color, cloudy and lines or cracks 
200°c clear, cracks, cloudy and white in color 
210°C clear, some cracks, less cloudy, and spots 
220°C very clear, no cracks, one or two white spots and not cloudy 
230°C very clear, no cracks, more then two white spots and not cloudy 

4.3.2 Differences in Molecular Weight of Samples with Varying Temperature 

Figure 19 shows the relationship between molecular weight and 

temperatures for compression molded PLLA The graph shows the molecular 

weight decreases as the temperature of the process increases. 
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Figure 19. Variation of molecular weight with processing temperatures for 
compression molded PLLA samples. 
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4. 4 Effect of Antioxidants on Molecular Weight and Degradation 

4.4.1 Quality of Sample with Different Antioxidants at 0.6% 

The effect of antioxidants on molecular weight degradation was 

experimented under 1,000 psi, at 220°C for 10 minutes. A 0.6 % concentration of 

antioxidants was chosen for the first round of experimentation. Figure 20 is a 50X 

magnification photograph of PLLA with 0.6 % of isophorone diisocyanate, which 

was compression molded at 220°C for 10 minutes at 1,000 psi of pressure. This 

figure shows a thoroughly uniform sample of PLLA with the antioxidant. Only 

one piece of PLLA was not melted, thus this sample shows a good combination of 

melting temperature, time, and pressure. 

Figure 20 PLLA with 0.6 % of isophorone diisocyanate compression molded at 
220°C for 10 minutes under 1,000 psi of pressure. 
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A visual inspection was also conducted on all six samples. The results of 

the visual inspections of PLLA samples compression molded with different 

antioxidants mixed are shown in Table 6. The first sample with 3-

hydroxyanthranilic, was clear with a yellow tint. Only one or two white spots 

were present, and small cracks were present. The sample with Quercetin was 

yellow in color, clear, and with no cloudiness. Only one or two yellow spots or 

white cracks can be seen. The third sample with the antioxidant 7 ,8-dihydroxy-6-

methoxy-coumarin, (98%) was clear, with small cracks, still no cloudiness, and 

no white spots. The tert-butylhydroquinone mold was translucent, very cloudy, 

and a lot of cracks and spots could be seen. The sample was clear but also had 

spots that made the mold cloudy. The sample had a couple of different phases 

that were contradictory to each other. The sampl(4 with isophorone diisocyanate 

was clear, which had bubbles or pools and small cracks, with no cloudiness. By 

comparison, the no-antioxidant sample had one or two small white spots 

connected by white cracks. The sample without antioxidant was very clear and 

very well processed. 
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TABLE 6 
Results of Visual Inspections of PLLA Sample with Different Antioxidants 

0.6% Antioxidant Characteristics 
Clear, yellow tint, one or two white 

3-hyd roxyanthranilic spots, no cloudiness, and small cracks 

Yellow in color, clear, no cloudiness, 
Quercetin and one or two yellow spots with white 

spots 

7,8-dihydroxy-6- Small cracks, no cloudiness, and no 
methoxy-coumarin, 98% white spots 

Clear, very cloudy, a lot of cracks, and 
Tert-butylhydroquinone spots 

Clear in color, bubbles or pools are 
lsophorone diisocyanate seen, small cracks, and no cloudiness 

Very clear, no cracks, one or two 
No Antioxidants (PURE PLLA) white spots, and not cloudy 

4.4.2 Differences in Molecular Weight of Samples with Varying Antioxidants 

Figure 21 shows molecular weight of PLLA samples with different types 

of antioxidant at 0.6%. All samples had lower molecular weight than pure PLLA 

sample. 
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Figure 21 Molecular weight of samples with different types of antioxidants at 
0.6% concentration. 

4.5 Effect of Ethanol on Molecular Weight 

4.5.1 Quality of Samples with Ethanol and Different Antioxidants at 0.6% 

Each sample used ethanol in order to mix the antioxidant into the PLLA 

uniformly. The effect of ethanol on molecular weight was investigated. 

Comparing the mixture of antioxidants and PLLA with ethanol to different 

samples with the same concentrations without the ethanol would show any 

relationship, if present. Samples were made without ethanol using the same 

parameters of the samples with ethanol. Figure 22 is a SOX magnification 

photograph of PLLA, 0.6 % of isophorone diisocyanate that has not been mixed 
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with ethanol. The mold was compressed for 10 minutes at 220°C at 1,000 psi., of 

pressure. This photograph shows the PLLA and antioxidant were not uniform. 

The antioxidants are, however, surrounding the pieces ofPLLA creating an 

antioxidant barrier. 

Figure 22 PLLA, with 0.6 % of isophorone diisocyanate that has not been mixed 
with ethanol. 

A visual inspection was also done on all six samples with ethanol, 

including the control mold that had no mixed antioxidants. Table 7 shows results 

of visual inspections of PLLA samples with different antioxidants without and 

with ethanol. The sample 3-hydroxyanthranilic mold is clear, with no yellow tint, 

has one white spot, shows no cloudiness, and contains small white cracks. 

Quercetin was transparent yellow in color with no cloudiness or yellow spots. 

This sample mold does have pools or voids with white cracks. Sample 7,8-

dihydroxy-6-methoxy-coumarin, (98%) was not processed fully . Antioxidants are 

still very visible, like specks of pepper. The mold has a transparent yellow tint, 

small cracks and pools, no cloudiness, and has spots. The tert-butylhydroquinone 
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mold was clear with cloudy spots, and has a lot of cracks and pools. The 

isophorone diisocyanate mold is not clear, and pools of PLLA are seen suggesting 

the antioxidant fully coated every piece. There are small cracks between each 

pool, and the sample was cloudy with white spots. The sample with no 

antioxidant was very clear, contains no cracks, and had one or two white spots. 

TABLE? 
Results of Visual Inspections of PLLA Containing Different Antioxidants with 
and without Ethanol. 

0.6% Antioxidant Characteristics Without Characteristics With 
Ethanol Ethanol 

Clear, no yellow tint, one white Clear, yellow tint, one or 
3-hydroxyanthranilic spot, no cloudiness, and small two white spots, no 

white cracks cloudiness, and small 
cracks 

Yellow in color, clear, no Yellow in color, clear, no 
Quercetin cloudiness, and no white or cloudiness, and one or two 

yellow spots yellow spots with white 
spots 

Antioxidant was visible, yellow Small cracks, no 
7,8-dihydroxy-6- tint, clear, small cracks and cloudiness, and no white 

methoxy-coumarin, pools, no cloudiness, and has spots 
98% spots 

Clear, cloudy, a lot of cracks, Clear, very cloudy, a lot of 
Tert- pools, and a lot of spots cracks, and spots 

butylhydroquinone 
Not clear, no cracks, one or Clear in color, bubbles or 

lsophorone two white spots, and not cloudy pools are seen, small 
di isocyanate cracks, and no cloudiness 

Very clear, no cracks, one or Very clear, no cracks, one 
No Antioxidants two white spots, and not cloudy or two white spots, and not 
(PURE PLLA) cloudy 
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4.5.2 Differences in Molecular Weight of Samples with and without Ethanol. 

Figure 23 shows molecular weight of PLLA samples with and without 

ethanol and different types of antioxidant at 0.6% concentration. All samples 

have lower molecular weight than pure PLLA sample. All samples without 

ethanol have higher Molecular Weights except tert-butylhydroquinone, which had 

a lower Molecular Weight. 

~lie Q.ertelln 7,60~ T~tydoq.irnne lsoptaone flb~(P\RE 

~I\ cllooc:y.vtaje PUA) 

118% 

Antioxidants 

Figure 23 . Molecular weight of PLLA samples with and without ethanol and 
different types of antioxidant at 0.6% concentration. 
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4.6 Effect of Different Concentrations of Antioxidants on Molecular Weight. 

The effect of concentration of isophorone diisocyanate on molecular 

weight was investigated. Concentrations ofO, 0.1, 0.2, 0.4, and 0.6 percent were 

tested with the pure form of PLLA. 

4.6.1 Quality of Sample with Different Concentrations oflsophone Diisocyanate 

Figure 24 was a SOX magnification photo of PLLA having, 0.4 % of 

isophorone diisocyanate that has not been mixed with ethanol. The mold was 

compressed at 220°C for 10 minutes while holding the sample at 1,000 psi,. of 

pressure. Small specks of antioxidants are also seen. This picture shows the PLLA 

and antioxidant were not uniform. 

Figure 24 PLLA, sample with 0.4 % of isophorone diisocyanate that has not been 
mixed with ethanol. The mold was compressed at 220°C for 10 minutes while 
holding the sample under a pressure of 1,000 psi. 
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A visual inspection was also performed on all five samples with no 

ethanol, including the control mold that had no antioxidants. Table 8 shows 

results from visual inspections of PLLA compression molded samples at different 

percentages of isophorone diisocyanate. The pure PLLA sample is very clear, has 

no cracks, and has one or two white spots. The 0.1 % sample is very clear, has no 

cracks, and no white spots. The .02% mold was clear, minimal amount of cracks, 

more than two white spots, and has cloudy spots. The 0.4% mold is clear, 

minimal amount of cracks, one or two white spots, and was not very cloudy. The 

0.6% sample is cloudy, has pools of PLLA. This fact suggests that antioxidants 

fully coated every piece, and there are small cracks between pools. White spots 

are also present. 

TABLE 8 
Results from Visual Inspections of PLLA Compression Molded Samples at 
Different Percents of Isophorone Diisocyanate. 

% of lsophorone Diisocyanate Characteristics 
Without Ethanol 

0% isophorone diisocyanate Very clear, no cracks, one or two white 
spots, and not cloudy Clear, no yellow 
tint, one white spot, no cloudiness, and 
small white cracks 
Very clear, no cracks, no white spots 

0.1 % isophorone diisocyanate and not cloudy 

Clear, minimal amount of cracks, more 
0.2% isophorone diisocyanate then two white spots and was cloudy. 

Clear, minimal amount of cracks, one 
0.4% isophorone diisocyanate or two white spots and was not very 

cloudy 
Not clear, no cracks, one or two white 

0.6% isophorone diisocyanate spots and not cloudy 
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4.6.2 Differences in Molecular Weight of Samples with Varying Concentrations 

of Isophorone Diisocyanate 

Figure 25 shows molecular weight of PLLA as a function of isophorone 

diisocyanate concentration. The graph shows the concentration of the antioxidant 

isophorone diisocyanate was not a significant factor in changing the molecular 

weight. As the concentrations increase from 0% to 0.6% on the left of the graph, 

the molecular weight fluctuates by approximately 170,000 g/Mole. 
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Figure 25. Variation of molecular weight of PLLA with percentage of isophorone 
diisocyanate. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDY 

5 .1 Conclusions 

A study of effects of compression processing parameters and antioxidants 

on molecular degradation of biodegradable poly-L-lactide (PLLA) was 

performed. The following conclusions were found: 

1. Degradation does not significantly increase or decrease with the 

optimal pressure for processing compression molds. At 500 psi, the sample did 

not look fully processed. At 1,500 psi, the melted sample came out of the mold 

onto the cylinder walls. So, at 1,000 psi, the quality of the sample looked the best 

overall and no excess amount of melted sample came out of the mold. 

2. Molecular weight of PLLA decreased significantly when the time of the 

compression molds process increased. The mold quality was satisfactory at 10 

minutes or above with a high molecular weight of 187,000 g/Mole. 

3. The molecular weight degraded with increasing temperature. The 

compression molded PLLA sample at 190°C had a molecular weight above 

300,000 g/Mole and went below 200,000 at 230 °C. The best quality sample was 

produced at 220 °C. 

4. At 0.6% of concentration, antioxidants, 3-hydroxyanthranilic acid, 

Quercetin, 7 ,8-dihydroxy-6-methoxy-coumarin, (98% ), tert-butylhydroquinone, 

isophorone diisocyanate, did not provide any benefits for PLLA in reducing 
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molecular degradation. (All samples with antioxidants showed lower molecular 

weight than pure PLLA.) 

5. Ethanol used as a solvent helped even distribution of antioxidants in 

PLLA polymer. Their effects on molecular degradation of PLLA are not very 

significant, which may vary depending on the types of antioxidants used. 

6. The effect of isophorone diisocyanate concentration on the molecular 

weight of PLLA did not prove to be significant. 

5.2 Recommendations for Further Study 

While this research was thoroughly planned, prepared, and executed, 

the conclusions show there is room for future research in this area. Samples that 

were created by adding PLLA and antioxidants together before processing should 

be tested to find the combination that will provide an acceptable mixture for the 

purpose of creating biodegradable medical implants. The chemistry, composition, 

and statistics of this mixture should also be further studied in such manners: 

1. The basic structure of PLLA and how the molecular weight is found for a pure 

sample has been discovered with this research; however, a greater 

understanding of the chemistry of the PLLA, antioxidants, and ethanol needs 

to be understood. Free radicals that repel oxygen from PLLA and act as an 

antioxidant for biomaterials should be studied. How does ethanol affect the 

structure of PLLA or the antioxidants used? 
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2. Composition and interface of PLLA and antioxidants needs to be further 

investigated. Two distinct phases were seen in samples of PLLA and 

antioxidants. Does the composition of the samples effect the molecular 

weight? Are the samples being uniformly mixed and in turn combining all 

phases of the sample. 

3. The research data needs to be further analyzed to provide statistical 

significance. 
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