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Abstract 

We explore the development of hyperbolic geometry in the 18th and early 19th following 

the works of Legendre, Lambert, Saccheri, Bolyai, Lobachevsky, and Gauss. In their at­

tempts to prove Euclid's parallel postulate, they developed hyperbolic geometry without 

a model. It was not until later in the 19th century, when Felix Klein provided a method 

(which was influenced by projective geometry) for viewing the hyperbolic plane as a disk 

in the Euclidean plane, appropriately named the "Klein disk model". Later other mod­

els for viewing the hyperbolic plane as a subset of the Euclidean plane were created, 

namely the Poincare disk model, Poincare spherical model, and Poincare upper half­

plane model. In proving various theorems of hyperbolic geometry, the thesis focuses on 

the Klein disk model because this model allows us to view hyperbolic lines as Euclidean 

chords. We then establish the isomorphisms between the various models of hyperbolic 

geometry. And in the end, we consider a fifth model, the Minkowsky space-time model 

from the Special Theory of Relativity (STR), and its connection/isomorphism to the Klein 

disk and the Po in care disk models of hyperbolic geometry. 
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Chapter 1 

Introduction 

1.1 A Little Bit of History 

The development of non-Euclidean geometry evolved from the attempts of several 

prominent mathematicians of the 17th and 18th centuries to prove Euclid's 5th postu­

late. In the 4th century BC, a Greek mathematician, named Euclid, set out to formulate 

certain statements which could be accepted as indisputable truths, axioms, or postu­

lates. These axioms laid the foundation for the development of what today is known as 

Euclidean geometry. 

Euclid's five axioms are as follows: 

(£1) Any line contains at least 2 distinct points and any 2 points determine the line 

uniquely. 

(£2) Any segment can be extended as far as you wish. 

(£3) For every point 0 and for every line segment CD, there exists a circle c = c(O, OA) 

centered at point 0 of radius OA, where OA::: CD. 

(£4 ) Any two right angles are congruent to each other. 

(E5 ) For every line l and for every point P not lying on l, there exists a unique line m 

passing through P such that the lines m and l are parallel. 
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The first four Euclidean axioms are so natural that they are indeed indisputable. 

As for the 5th postulate, Euclid assumed that it had to be true, yet he was unable to 

prove it as a theorem from the first four postulates. He attempted to prove the fifth 

postulate, since unlike the first four postulates, the fifth postulate is not self-evident. 

All aspects of Euclidean geometry follow from these five postulates. Proving Euclid's 

parallel postulate became the focus of many mathematicians work for centuries to come. 

In Euclidean geometry there are two methods for constructing a rectangle. 

Method 1: 

Figure 1.1: Method 1 for constructing a rectangle. 

Start with the segment AB. Then erect the ray perpendicular to AB at A and take a 

point C lying on that ray. Now erect the ray perpendicular to the segment AB at point 

B and the ray perpendicular to the segment AC at point C. These two rays intersect 

at a point which we will call D. As a result, we obtain the quadrilateral ACDB. So, we 

know the measure of the three angles .LA= .LB = .LC= 90°, as well as the lengths of 

two adjacent sides AB and AC. To prove that the resulting quadrilateral is a rectangle, it 

2 



remains to show that CD= AB, BD =AC, and LD = go 0
• 

Begin by drawing the diagonal BC joining points Band C. Then we have two trian­

gles, 6ABC and 6BCD. We denote LACB =a, LABC = {3, LBCD = y, and LDBC = o. 

Since we are in Euclidean geometry, we know that the angle sum of each triangle is 180°: 

'[(6ABC) = '[(i:,.BCD) = 180°. Then from the angle sum of triangle 6ABC we find that 

:[(6ABC) =goo+ a+ f3 = 180° ===? a+ f3 = go 0
• 

Applying this result to the angle sum of triangle 6BCD, we find that 

L(l:,.,BCD) = y + 0 + LD = 180° 

= (go 0 - a) + (go 0 - /3) + LD = 180° 

===? LD =a+ f3 = go 0
• 

Therefore, !:,.ABC= !:,.BCD by the angle-side-angle axiom: a= o, BC= BC, and y = {3. 

Hence, CD= AB and AC= BD, as well as LA= LB= LC= LD = go 0
• We conclude that 

the quadrilateral ACDB is indeed a rectangle. 

Method2: 

Start with the segment AB. Erect the ray perpendicular to AB at point A, and take a 

point C lying in that ray. So, we have segment AC 1- AB. Now erect the ray perpendicular 

to AB at the point B, and along the ray layoff the segment BD from point B congruent 

to segment AC. Draw the line passing through the points C and D, we know such a line 

exists and is unique by the postulate (£1). Thus, we have constructed the quadrilateral 

ACDB. In our construction, we know the measure of two angles: LA= LB= go 0
, as well 

as the lengths of three adjacent sides: AC= BD, and the length of AB. To show that the 

quadrilateral ACDB is a rectangle, it remains to show that the segments CD and AB are 

congruent, and that the angles LC and LD are right angles: LC= LD = go 0
• 
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Figure 1.2: Method 2 for constructing a rectangle. 

Begin by drawing the diagonal AD. Then our quadrilateral is decomposed into two 

triangles: 6.ACD and 6.ABD. We denote the angles as follows: LEAD= a, LADE = f3, 

LADC = y, and LDAC = t5. Since we are in Euclidean geometry, we know that the angle 

sum of the triangle 6.ABD is 180°: 

L(6.ABD) = go0 +a+ f3 = 180° ==> a+ f3 = go0 

Additionally, we know that the LA= go0 = a+ t5. Subtracting these two relations 

we find that f3 = t5. Therefore, we know that the triangles 6.ABD ~ 6.ACD by the side­

angle-side axiom (AD =AD, f3 = t5, and AC= BD). Therefore, by congruent triangles 

we conclude that LC= LB= go0
, y =a, and CD= AB. Since go0 =a+ f3 = y + t5 = LD, 

it follows that LA= LB = LC= LD = go0
, and AB = CD, AC= BD. Therefore, we 

conclude that the quadrilateral ACDB is a rectangle. 

Two millennia after Euclid proposed his five postulates of geometry, an Italian 

mathematician, Giovanni Girolemo Saccheri (1667-1733) became one of the first math­

ematicians to make great progress in working with Euclid's 5th postulate. Shortly before 

his death, Saccherri published his work on non -Euclidean geometry encapsulating 
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the progress that he was able to make in working with Euclid's parallel postulate. Set­

ting out to validate Euclid's claim regarding the validity of the parallel postulate via a 

reductio ad absurdum argument, Saccheri first noticed that the parallel postulate was 

equivalent to stating that the angle sum of a triangle was equal to 180°. Continuing 

with his idea of proof by the absurd, Saccheri considered the negation of the statement 

"The angle sum of a triangle is equal to 180 °". In mathematical logic, the negation of the 

statement x = y is x f: y. As a result, there are two cases to consider: x < y or x > y. 

With this in mind, Saccheri arrived at the two cases: "The angle sum of a triangle is 

greater than 180°" or "The angle sum of a triangle are less than 180°". Saccheri quickly 

dispensed of the first statement (angle sum of a triangle is greater than 180°), proving 

that under this assumption lines would be finite, which he accepted as a contradiction. 

Today we understand that spherical geometry is consistent under this assumption. So, 

Saccheri then set off to find a contradiction in assuming that the angle sum of a triangle 

is less than 180°. To this end, Saccheri attempted to construct a rectangle following the 

procedure outlined in Method 2. Although he was able to prove that the summit angles 

of a rectangle are congruent, he could not arrive at a contradiction for having acute 

summit angles. 

Several decades later it was the Swiss mathematician Johann Heinrich Lambert 

(1728-1777) who set out to prove, like Saccheri, Euclid's parallel postulate by looking 

at quadrilaterals. Following the method of constructing a rectangle via Method 1, 

Lambert studied quadrilaterals having at least 3 right angles. If he could show that 

the measure of the fourth angle of the quadrilateral was necessarily 90°, then the 

parallel postulate would be proven. Despite his work, Lambert was unable to find a 

proof. He was, however, able to show that the measure of the fourth angle of such a 

quadrilateral was necessarily less than or equal to 90°. These quadrilaterals are called 

Lambert quadrilaterals. In fact, they are closely related to Saccheri quadrilaterals. 

Reflecting a Lambert quadrilateral across its side with two right angles will create an 

equal Lambert quadrilateral, and the union of these two Lambert quadrilaterals form 

a Saccheri quadrilateral. Moreover, Lambert was able to prove that if one accepted the 
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negation of Euclid's 5th postulate, the angle sum of a triangle is less than 180°, then it 

followed that similar triangles were in fact congruent, implying that there was an idea 

of a universal length in this new, non-Euclidean geometry. Additionally, he showed that 

the defect of a triangle is proportional to its area. 

Shortly after Lambert completed his progress, the stalwart researcher Adrien-Marie Legendre, 

a French mathematician (1752-1833), made numerous attempts to prove Euclid's par-

allel postulate, which he published in his textbook "Geometry". Each time after he 

published one of his proofs of (E5), he found an error in the proof. This caused Legendre 

to look for a new proof. In the end, after his 14th attempt, Legendre was unsuccessful 

in his many attempts to prove Euclid's parallel postulate. After all of his work, Legendre 

could only claim that the angle sum of a triangle is less than or equal to 180° in neutral 

geometry: l"JL.) :::: 180° in N2 . 

These three mathematicians, unbeknown to them, laid the groundwork for the 

development of non-Euclidean geometry. In the early 19th century, a Hungarian math­

ematician named Janos Bolyai (1802-1860) developed the theory of non-Euclidean 

geometry by using familiar constructions from Euclidean geometry and exploring simi­

lar constructions under the assumption that the angle sum of a triangle was strictly less 

than 180°. He published in 1831 his discovery as an appendix to his father's book the 

Tentament. The book itself was his father's attempt to prove Euclid's parallel postulate. 

Janos was able to develop non-Euclidean geometry and show that it was possible to 

have consistent geometries independent of the parallel postulate. 

At the same time that Janos was developing his theory, Carl Gauss (1777-1855), a 

German mathematician often called the greatest mathematician of his time (he had 

the title "King of Mathematicians"), also spent a great deal of time thinking about the 

consequences of negating Euclid's 5th postulate. Although he never formally published 

his ideas, Gauss claimed to have independently arrived at and developed the same 
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notions as Janos. Gauss said as much in a letter to Janos' father. 

A Russian mathematician named NikolaiLobachevsky (1792-1856), developed in­

dependently ofJanos Bolyai a non-Euclidean geometry. Completing his work in 1823, 

it largely remained unpublished until 1909. This provided Janos the opportunity to 

publish his own work several years later. Unlike Bolyai, Lobachesky only focused on one 

geometry, which is today called hyperbolic geometry or Lobachevskian geometry. His 

formulation stemmed from the negation of Euclid's fifth postulate: "There exists more 

than one line through any point P not on line l that is parallel to line l". Additionally, 

he formulated the idea of the angle of parallelism, and he showed that in hyperbolic 

geometry, often denoted H2 , the angle sum of a triangle is strictly less than 180°. 

1.2 The Postulate (E5 ), its Negation (H5), and the Formulation of 

Theorem I.I 

Euclid's first four postulates formulate what is called neutral geometry. Both Euclidean 

and hyperbolic geometry are contained in neutral geometry. As we will come to find 

out, it is in accepting either the statement (E5) or its negation that will lead to the 

different geometries, Euclidean and hyperbolic, respectively. Since these geometries are 

contained in N2 if we can prove a theorem in neutral geometry, then the theorem will 

be true in both Euclidean and hyperbolic geometry. These proofs are independent of 

models and are very strong formulations. We will keep this fact in mind as we develop 

hyperbolic geometry. 

Euclid's 5th postulate: 

For every line land for every point P not lying on l, there exists a unique line m passing 

through P such that the lines m and l are parallel. 
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The negation of this statement is: 

There exists a line land there exists a point P not lying on l, such that there are (at least) 

two distinct lines, m and n, passing through P parallel to l. 

There are strong and weak forms of (£5) in Euclidean geometry as well as of (H5) 

in hyperbolic geometry. The negation of the strong form of (£5) is the weak form of 

(H5) (the parallel postulate in hyperbolic geometry). Similarly, the negation of the weak 

form of (£5) is the strong form of (H5). It is quite evident that the strong form of each 

statement implies the weak form in the same geometry. On the other hand, for many 

statements the weak form does not imply the strong form; and, it is not obvious that 

we can recover the strong form of the parallel postulate in each geometry from its weak 

form. Here are the two forms of (£5) 

Figure 1.3: Euclid's parallel postulate in IE2 . 

Postulate 1.1 (Strong (£5)). 

For every line l and for every point P rt- l, there exists a unique line m II l. 

Postulate 1.2 (Weak (£5)). 

There exists a line lo and there exists a point Po rt- 10 such that there exists a unique 

line mo II lo through Po. 

Likewise, there are two forms of the postulate (H5). 
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Figure 1.4: The negation of Euclid's parallel postulate in 1Hl2 . 

Postulate 1.3 (Strong (Hs)). 

For every line land for every point P rt l, there exists at least two distinct lines m and 

n such that m 11 land n 11 l. 

Postulate 1.4 (Weak (H5)). 

There exists a line li and there exists a point P1 rt 11 such that there exists two distinct 

lines m1 and n1 such that m1 1111 and n1 11 li. 

Strong form (Es) ~ Weak form (H5 ) 

Weak form (£5) ~ Strong form (H5) 

Theorem 1.1 (Weak (£5) ~ Strong (£5)). If there exists a line lo and there exists a point 

Po rt 10 such that there exists a unique line mo II lo containing Po, then for every line l and 

for every point P rt l, there exists a unique line m 11 l containing P. 
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The proof that the Weak form of (Es) implies the Strong form of (Es) consists of 

several steps. We will first show that the Weak form of (Es) implies that there exists a 

triangle whose angle sum is 180°. Then we will show that if one such triangle exists, then 

every triangle has angle sum 180°. This implies that we can construct a special rectangle 

and then a rectangle. Then introducing the notion of the defect of a polygon, we will 

show that for any triangle one can construct a rectangle that contains this triangle; 

hence, the defect of the triangle is 0, and thus, the angle sum of the triangle is 180°. 

The proof of Theorem 1.1 is long; it takes the remaining sections (1.3, 1.4, 1.5, 1.6) of this 

chapter. Special notations will be used in our proof. 

1.2.1 Notations 

Throughout this paper will we appeal to using certain representations for the sake of 

brevity. We will use I:C.6.ABC) to denote the sum of the angles of triangle .6.ABC, and 

we will refer to it as "the angle sum of .6.ABC". By area(.6.ABC) and 6(.6.ABC) we 

denote the area and the defect of the triangle .6.ABC, respectively. From time to time, 

for example Lemma 1.2 and Theorem 1.4, we will need to discuss the ordering of points 
+----+ 

on the line l = AB. We denote a point HE ! lying between points A and B by A * H * B. 

Often times when discussing neutral geometry we will appeal to using the shorthand 

l\J2 to represent 2-dimensional neutral geometry. In a similar fashion we will denote 

2-dimensional Euclidean geometry by IE2 , and 2-dimensional hyperbolic geometry by 

IHl2. 

1.3 Proof of Theorem 1.1: The Beginning 

Lemma 1.2. The Weak form of (Es) implies that there exists a triangle such that the sum 

of its angles is 180°. 
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A 

Figure 1.5: Triangle .6.AP B has angle sum 180° as proved in Lemma 1.2 

Proof Suppose that Weak form of (E5 ) is true. Consider a line 10 and any two points on 

that line, A, B E 10 . Now take a point not lying on the line 10 , P ~ 10 • Begin by connecting 

points A, B with P to form the triangle .6.AP B = .6.0, as depicted in Figure 1.5. We denote 

the three angles of the triangle as follows L'.A by a, L'.B by {3, and L'.P by y. By our 

assumption, we know such a triangle exists. We will now show that the sum of the angles 

a+f3+r= 180°. 

By our assumption, we also know that there exists a unique line m0 through the 

point P which is parallel to the line 10 . We will construct two rays emanating from the 

point P, so that one ray will be laid off an angle a from the segment AP and the second 

will be by an angle /3 from the segment BP. We will then show that these two rays form 

the line mo. 

Draw the ray PX such that L'.XPA = L'.PAB = a. Similarly, draw the ray PY such that 

L'. Y PB= L'.P BA= {3. By the Exterior Angle Theorem we know that both rays are parallel 

to the line 10 . That is we have that PX II lo and PY II lo. Since there exists a unique line mo 
.....__ 

parallel to the line lo through the point P, then it follows that X * P * Y and XPY =mo. 

This implies that L'.XPY = 180°. But L'.XPY = L'.XPA + L'.APB + L'.BPY = 180°1 which 
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implies that a+ f3 + y = 180°. Hence the angle sum of our triangle L: (.6.o) = 180° = a+ f3 + 

y= LA+LB+LP. D 

In the preceding Lemma 1.2 we made use of the Exterior Angle Theorem. We will 

now formulate the Exterior Angle Theorem in neutral geometry. 

Definition 1.3. For a given triangle .6.ABC we say that the exterior angle for the angle 

LA is ex t(LA) = <p := 180° - LA= 180° - a, where LA= a. 

c 

A B 

Figure 1.6: The exterior angle <p of the triangle .6.ABC. 

Theorem 1.4. For the triangle .6.ABC with angles LA= a, LB= {3, LC= y, and exterior 

angle ext(LA) = <p, then the exterior angle is greater than an interior remote angle; that 

is, the following inequalities hold: <p > y and <p > {3. 

Proof There are two main instruments for this proof: 

1. The axiom (E1): the uniqueness of a geodesic, for any point A and for any point B 
.......... 

there exists a unique line AB. 

2. Triangle inequality: for every triangle, .6.ABC, the sum of the length of any two 

sides is greater than the length of the third, a+ b > c for sides a, b, c. 
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We will construct a proof of Theorem 1.4 by contradiction, assuming that the exterior 

angle is smaller than or equal to the remote interior angles, f3 or y. Since this proof is the 

same for either angle f3 or y then without loss of generality we may consider the angle (3. 

Suppose that the exterior angle <p ::s (3. Then there are two cases that we must consider, 

the case when <p = {3, and the case when <p < (3. In both cases, it is our goal to arrive at 

contradicting statements. 

Case 1: The exterior angle equals a remote interior angle, <p = f3 

Figure 1.7: Case 1: the exterior angle <p equals the remote interior angle f3 leads to a 
contradiction. 

Consider the triangle 6ABC. Begin by laying off the segment AA' on the ray CA so 

that the points are situated as C *A* A' and the segments AA'= BC= a. Then connect 

the points B and A', forming a new triangle 6ABA1• We see that 6ABC = 6ABA' by 

the side-angle-side axiom. By construction we have that the segment BC= a = AA', 

by assumption the angle f3 = <p, and the shared side BA= c = AB. Since the triangles 

are similar, it follows that the segment BA' = b = AC. Now since B is not contained 

in the line CA, B rt- CA, then clearly B is not contained in the ray CA, and hence, B 
------> 

is not contained in the ray CA', B rt- CA'. So, the triangle inequality for the triangle 

6CBA' holds and we have that CB+ BA'> CA'. But by similar triangles we have that 
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CB+ BA'= a+ b, and we have that CA'= b +a by construction. So, CB+ BA'= CA'. But 

this contradicts the axiom (Ei), the uniqueness of a line through two points. Therefore, 

our assumption is false, and <p :j:. f3. 

Case 2: The exterior angle is less than a remote interior angle, cp < f3 

Figure 1.8: Case 2: the exterior angle <p is less than the remote interior angle f3 leads to a 
contradiction. 

------> 

Draw the ray BC' such that L.ABC' = ext(L.A) = <p. This is possible since <p < f3. 
------> 

Moreover, the ray BC' is inside L.ABC. This implies that BC' n CA :f:. cp, and in fact their 
------> 

intersection is a point, BC' n CA= C'. We also know that the points on CA are situated 

so that C' lies between C and A, C * C' *A. For the triangle ~ABC', we find that the 

exterior angle ext(L.A) = <p = L.ABC'. But this contradicts Case l. Thus, our assumption 

that <p < f3 is false, and thus, <p-/. f3. 

In conclusion, neither Case l nor Case 2 can take place. Therefore, we conclude that 

the exterior angle of a triangle is strictly greater than a remote interior angle, <p > /3; and, 

hence, <p >a. D 
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We have just shown the proof of the Exterior Angle Theorem in neutral geometry 

which will help us prove our next theorem. In Euclidean geometry, we know that every 

triangle has angle sum of 180°. Additionally, it was shown by Legendre that the angle sum 

of a triangle is ::::: 180° in neutral geometry. Later, Lobachevsky stated that in hyperbolic 

geometry the angle sum of a triangle is strictly less than 180°. So, we have seen cases 

in which the angle sum of a triangle could be less than 180°, or equal to 180°. The third 

case is the angle sum of a triangle is greater than 180°. This case corresponds to spher­

ical geometry, which we will not discuss in this text. One question to think about is the 

possibility of having two triangles in the same geometry satisfying different angle sum 

restrictions? For example, is it possible to have a triangle whose angle sum is strictly less 

than 180° and a triangle whose angle sum is equal to 180° exist in the same geometry? 

The following theorem provides us with insight to this question. 

Theorem 1.5. If there exists a triangle Li.0 with angle sum I:(Li.0) = 180°, then for every 

triangle Li., the angle sum I: (Li.) = 180°. 

Figure 1.9: Construction of a right triangle with angle sum 180°. 

Proof The proof of this theorem will require several steps, requiring the formulation of 

several lemmas and theorems below. Our first step is to show that the assumption "there 
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exists a triangle .6.o such that the angle sum of triangle .6.0 is 180° 11 implies that "there 

exists a right triangle whose angles sum to 180°". 

Consider the triangle .6.o = .6.ABC. Let AB be the side of greatest length. Then we 

have that c =AB~ b =AC, c =AB~ a= BC. Then from vertex C drop the perpendicular 

segment CH .l AB. We claim that the point HE AB. 

Claim 1: HE AB and A* H * B 

Figure 1.10: The foot point of the altitude CH is situated outside the triangle ABC. 

We will show this by contradiction. Suppose without loss of generality that 

A* B * H, as depicted in Figure 1.10. Then the triangle .6.BCH is a right triangle 

with LCHB = go0 , since the segment CH .l AB. Then considering triangle .6.BCH, the 

angle LCBA = ext(LCBH). So, by Theorem 1.4 the angle LCBA > LCHB = go0 • But 

from our assumption we know that triangle .6.ABC has angle sum LA+ LB+ LC= 180°. 

Moreover, the side c ~ b which implies that LC~ LB= go 0
• It follows that the angle sum 

of triangle .6.ABC is now L(.6.ABC) = LA+ LB+ LC> LA+ go 0 + go 0 > 180°. But this 

contradicts our initial assumption that L(.6.ABC) = 180°. Therefore, our assumption 

that A* B * His false. Thus, HE AB and A* H * B. 
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Claim2: L(.6.ACH) = 180° and L(.6.BCH) = 180° 

c 

c H 

Figure l.ll: The foot point of the altitude CH of triangle .6.ABC lies between the points 
AandB. 

Let LACH= cp1 and LBCH = cpz, so that LC= cp1 + cpz. Since L(.6.ABC) = 180°, it 

follows that LA+ cp1 + cp2 +LB= 180°. This implies that 

l:).6.ACH) + L).6.BCH) = (LA+ cp1+90°) +(LB+ cp2 + 90°) 

= (LA+ cp1 + cpz +LB) + 90° + 90° 

= 180° + 90° + 90° 

= 360° 

So, we have l:(.6.ACH) + L(.6.BCH) = 360°. Then by Legendre-Saccheri's Theorem 

(see Theorem 1.6 below), we have the angle sum of the triangles l:(.6.ACH) :5 180° and 

L(.6.BCH) :5 180°. This implies that L(.6.ACH) + L(.6.BCH) :5 360°, where the equality 

L(.6.ACH) + l:(.6.BCH) = 360° holds if and only if l:(.6.ACH) = l:(.6.BCH) = 180°. In­

deed, if say L(.6.ACH) < 180°, then L(.6.BCH) > 180° which contradicts the inequality 

L(.6.BCH) :5 180°. Therefore, the angle sum L(.6.ACH) = l:(.6.BCH) = 180°. D 
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We have just shown that given a triangle whose angle sum is 180°, there exists a 

right triangle whose angle sum is 180°. One key element in this proof was the Legendre­

Saccheri Theorem in N2 , which we will now prove. 

Theorem 1.6 (Legendre-Saccheri Theorem). In neutral geometry, N2 , for every triangle 

!::., the sum of its angles does not exceed 180°: L(l::.) ~ 180°. 

Proof We prove by contradiction. Suppose that there exists a triangle 6 0 E: N2 such 

that L(t::.0 ) > 180°. Then we can say that the triangle has the angle sum of 180° plus 

an additional amount E; that is L(!::.0 ) = 180° + E, where E > 0. Consider the triangle 
+------> 

!::.ABC = t::.0 and the line l = AC. We denote the side lengths of triangle !::.ABC by 

BC= a, AC= b, and AB= c and its angles by LA= a, LB= {3, and LC= y. We want to 

construct a chain of triangles identical to !::.ABC along the line l. 

Figure 1.12: A chain of n - 1 congruent triangles for the proof of Theorem 1.6. 

Using compass and straightedge we construct the next triangle in our chain 

t::.A1B1 C1. Along the line l from the point C = A1 layoff a segment of length equal 

to the length of the segment AC, terminating at a point C1 and resulting in the segment 

A1C1. To find the point B1, draw the circles c(A1,AB) and c(C1,BC). Then, these two 

circles intersect at a point, B1, above the line l. Joining the points A1B1 and B1 C1, 

we construct the triangle D.A1B1 C1. In fact, by the side-side-side axiom, the triangle 

t::.A1B1 C1 = !::.ABC since AB = A1B1, AC = A1 C1, and BC = B1 C1 by construction. 

Therefore, LB1A1 C1 =LA= a, LA1B1 C1 =LB= (3, and LA1 C1B1 =LC= y. In a similar 

fashion, we construct a chain of n - 1 triangles where l::.AnB n Cn is the (n - l)st triangle. 
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Note that Ci = At+ 1. As a result, we have a chain of congruenttriangles 

Draw the segments joining the points Bi to Bi+l for 1:::; i < n, and forming the triangles 

L::,.BCB1, L::,.B1 C1B2, ... , L::,.Bn-1 Cn-1Bn. Then by the side-angle-side axiom 

since BC= B1 C1 = ... = Bn-1 Cn-1, CB1 = C1B2 = ... = Cn-1Bn, and LBCB1 = LB1 C1B2 = 

... = LBn-1 Cn-1Bn = /3'. Then r + /3' +a = 180°, r + f3 +a= 180° + E. From these two 

equations it follows that f3 > f3'. So, the angle measure /3' = 180° - a - y. Comparing the 

triangles l:,.ABC and L::,.BCB1 we find a relation between the side lengths band b'. 

Observe that the angles LABC and LBCB1 have legs of equal length, BC= BC and 

AB= CB1. Then since f3 > /3' it follows that AC> BB1, that is b > b1. So, we may write 

b' = b - o for some o > 0. Applying the triangle inequality on the chain of triangles, we 

find that 

So, we compute 

c + nb' +a> (n + l)b => c + n(b-o) +a> nb + b 

=> c + nb- no+ a> nb + b 

0 < c + a - b > no v n 

But for some n, no > c + a - b, a contradiction. Therefore, our supposition that there 

exists a triangle with angle measure greater than 180° is false. Thus, Vt:,., the angle sum 

L, (t:,.) :::; 180°. D 

We have thus shown that the angle sum of a triangle in r\12 is :::; 180°. 
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1.4 The Defect of a Triangle and of a Polygon 

In neutral geometry 1\12 following from Theorem 1.6 triangles can have angle sum of at 

most 180°. There is, however, the opportunity for triangles to have angle sum less than 

180°. For such a triangle having angle sum less than 180°, it is helpful to know by how 

much the angle sum of the triangle differs from the expected angle SUIJl of 180°. It is this 

difference that we now look to define. 

Definition I. 7. The defect of a triangle /:::,,, denoted 6 (/:::,,), is defined as 

6(t::,,) = 180°- [Ct::,,) 

It follows from Theorem 1.6 that the defect is non-negative, 6(1:::,,);:::: 0. An immediate 

consequence of the defect of a triangle pertains to its additive nature. 

Theorem 1.8 (Additivity of the defect). !fa triangle/:::,, is made up of finitely many smaller 
N 

triangles,/:::,,= U t::,,i, then its defect equals the sum of the defects of the smaller triangles: 
i=l 

N 
6(t::,,) = I: 6(t::,,i). 

i=l 

Proof We will prove this theorem via induction. Consider the triangle /:::,, = !:::,,ABC which 

is made up of two smaller triangles t::,, 1 = /:::,,ABH and t::,, 2 = t::,,CBH. 

Then the defect of triangle /:::,, is 

6(/:::,,) = 180° - (a+ /31 + /32 + y) 

adding in and subtracting out the supplementary angles <p and 1f! we find that 

6(/:::,,) = 180° - (a+ /31 + <p) - (/32 + r +'If!)+ (<p +'If!) 

= [180° - (a+ /31 + <p)] + [180° - C/32 + y +'If!)] 
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Figure 1.13: The base case in proving the additivity of the defect of the triangle lo.ABC, 

Theorem 1.8. 

Now we need to prove the inductive step. Suppose that the triangle .6. is comprised 
n+l 

of n + 1 smaller triangles, ,6. = U .6.i. Here the triangle ,6.i has the angles Gtzi-1, ltzi, and 
i=l 

'Pi. 

Figure 1.14: The inductive step proving the additivity of the defect of a triangle, Theorem 
1.8. 
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Then the defect of this triangle is 

6(.6.) = 180° - (a1 + az + ... +an+ ... + azn+l + azn+2) 

We know that the angle sum <p1 + <p2 + ... + 'Pn = 360°. So, adding in and subtracting out 

the 'Pi we find that 

6(.6.) = 180° - (a1 + ... + azn+2) - (<p1 + ... +(/Jn)+ (<p1 + ···<fJn) 

= [180° - (a1 + az + ... + azn-3 + azn-2 +'Pl+ ... + 'Pn-1)] + 

+ [180° - (a2n-1 + azn + <fJn)l + [180°- (a2n+1 + azn+2 + (/Jn+1)] 

n-1 
= L 0(.6.i) + 0(.6.n) + 0(.6.n+1) 

i=l 
n+l 

= :L o(.6.i) 
i=l 

D 

Now we wish to generalize the notion of the defect of a triangle to that of a polygon. 

Definition 1.9. Given an n-sided polygon pCnl, its defect is the non-negative quantity 

where I:(pCnl) denotes the sum of the angles of the polygon pCnl (shortly: "the angle sum 

of pCnl"). 

Similar to the case of triangles, we can dissect a polygon into finitely many smaller 

disjoint polygons and consider the sum of the defects of these smaller polygons. We 

expect that this sum is equal to the defect of the whole polygon pCnl. The following 

theorem justifies our expectation. 

N N 
Theorem 1.10. If P is a polygon and P = U Pi, then o(P) = L o(Pi)· 

i=l i=l 
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Figure 1.15: The additivity of the defect of a polygon, Theorem 1.10. 

We will not prove the additivity of the defect of a polygon. Note only that the defect 

o(P) does not depend on the dissection of the polygon Pinto pieces (polygons). 

The next ingredient in proving Theorem 1.5 is showing a relation between the exis­

tence of right triangles whose angle sum is 180°, and the existence of rectangles in our 

geometry. 

1.5 The Existence of Rectangles 

Lemma 1.11. If there exists a right triangle, .61, and the angle sum I:(.61) = 180°, then 

there exists a rectangle R1 = ABCD with 4 right angles: LA= LB= LC= LD = 90°. 

Proof Start with the right triangle ..6.AHC, where LH = 90°. Then we draw segments AD 

and CD such that AD = CH and CD = AH, note that this can be accomplished using a 
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Figure 1.16: Rectangle of the proofofLemma 1.11. 

compass. What results is triangle 6.ADC. Then by side-side-side axiom, we know that 

6.AHC = 6.ADC. Since the triangles are congruent, it follows that LDCA = LCAH =a, 

LDAC =LACH= y, and LD = LH = 90°. Summing the angles of triangle 6.AHC we 

find that a+ y + 90° = L:(6.AHC) = 180°, by assumption. This immediately implies that 

a +y = 90°. So, LA= a+y = 90° and LC= a+y = 90°. Therefore, LA= LB= LC= LD = 

90° which implies that ADCH is a rectangle. D 

Now that we are able to construct a rectangle given that there exists a right triangle 

whose angle sum is 180°, it would be beneficial to be able to construct a rectangle of 

any size. For if such a construction is possible, then for any triangle in our geometry we 

could always find a rectangle which contains it. Then the defect of the triangle would be 

at most equal to the defect of the rectangle. 

Lemma 1.12. There exists a rectangle Rz of arbitrary size: the side lengths of Rz can be as 

big as one wishes. 

Proof Begin with a rectangle R1 = ADC H, following from Lemma 1.11. To show that we 

can construct a rectangle of arbitrary size, we will show that we can tile the plane with 

rectangles of equal size. Extend the segments AH, DC, CH, and AD, so that we now 
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Figure 1.17: Tiling the plane with rectangles, Lemma 1.12. 

have two pairs of parallel lines containing the segments of the rectangle. Denote the 

line containing segment DC by m, and the line containing the segment AH by l. Since 

AH = DC, layoff segment DC from points C and H, along lines m and l, respectively, 

obtaining points D' and A'. We need to show that L'.A' = L'.D' = go 0 • 

First we draw the diagonals HD' and CA', which intersect at the point E. Then 

L'.ECH = L'.EHC = <p since 6.A' HG = 6.D' CH by side-angle-side axiom: A' H = D' C, 

L'.C = L'.H, and CH= HG. So the triangle 6.ECH is an isosceles triangle which implies 

that EC = EH. Moreover, L'.ECD' = L'.EHA' = go - <p. So, it follows by the side­

angle-side axiom that 6.EHA' = 6.ECD', since EH= EC, L'.EHA' = L'.ECD' =go- <p, 

CD'= HA'. Then the angle HA'E = L'.CD'E = /3 and A'E = D'E. This implies that 

L'.A' D' E = L'.D' A' E = -l. But L'.A' = /3 + ,l = L'.D'. Thus, angle L'.A' = L'.D'. Let a = /3 + ,l. 

Then by Legendre-Saccheri Theorem (Theorem 1.6) in neutral geometry 1\12 we have 

that 2a + 2 · go 0 :5 360°. This implies that the angle a :5 go 0
• We know that in Euclidean 

geometry IE2 the angle a= go0 and in hyperbolic geometry ll-112 the angle a< go0 • Since 

we are working in IE2 , it follows that L'.D' = L'.A' = L'.H = L'.C = go 0
• Therefore, HCD' A' is 
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a rectangle. 

This argument can be extended so that we can construct a rectangle in the horizontal 

strip. Additionally, we can apply a similar method to show that the quadrilateral DEFC 

is a rectangle. Here the segments DE= CF are obtained by laying off the segment AD 

from the points D and C along the lines k and n, respectively. Then we can extend the 

argument to obtain any rectangle in the vertical strip as well. The last case that remains 

to be verified is that of constructing a rectangle that is diagonal to the rectangle ADCH . 

.. 

Figure 1.18: The quadrilateral LMAK diagonal to the rectangle ADCH is a rectangle. 

Consider the quadrilateral LMAK and its neighboring rectangle KAHN. Immedi­

ately, we have that LM =LA= LK = 90°. Additionally, from our previous arguments we 

know that the segments MA= AH= KN and AK= HN. We begin by constructing the 

diagonals MK and K H. If we can show that the segment AK is the perpendicular bisec­

tor of the segments MH and LN, then we will be done. By the side-angle-side axiom, 

we have that the triangles £:,.MAK= I::,.HAK: LA= LA, MA= HA, AK= AK. It follows 

that LKHA = LKMA = 90-<p, and that LMKA = LHKA = 90-A =¢.Then we have by 

complimentary angles that the angle LKML = LKHN = <p, and LMKL = LHKN =A. 

To see that the segment AK is the perpendicular bisector to the segment LN, consider 

the set of points S = {P I PM= PH}. We begin by noting that LN1- c S. 

Next consider a point X rt LN1-. Without loss of generality we may take X rt LNJ_ as 

shown, that is XE: KAHN. Then we see that MXnLN1- = P. So we have that MX = 

MP+ PX. Connecting the points Hand P, then by the triangle inequality for £:,.HP X we 
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H 

Figure 1.19: The set S coincides with the perpendicular bisector LNJ_. 

have that 

MX=MP+PX=HP+PX> HX 

Thus, MX -:j:. HX. Since we're working in IE2 , then 'f.(l:,LMK) = 180° which implies that 

L.L = 180° - <p-..t and 'f.(i::,.NHK) = 180° which implies L.N = 180° - <p- ..t. So, L.L = 

L.N = 90°. Thus, by angle-side-angle axiom, l:,LMK = L::,.NHK. By congruent triangles 

we have that LK =KN and ML= HN. Therefore, the quadrilateral LMAK is a rectangle. 

By extension of the same type, we can now construct a rectangle of arbitrary size. D 

1.6 Proof of Theorem 1.1 

We now return to the proof of Theorem 1.5. At the onset of this proof, we made the 

assumption that there exists a triangle i::,.0 such that 'f.(i::,.0 ) = 180°. Following from 

the preceding Theorems and Lemmas, we can construct an arbitrarily large rectangle. 

Now we want to prove that for every triangle, l:,., the angle sum of this triangle is 180°: 

'f.(l:,.) = 180°. To prove this, construct a rectangle R =ii::,. (we know that from 1.12 such 

a rectangle exists). Then comparing the defect of the rectangle R and the defect of 

the triangle i::,. yields o(R) ::::: 6(i::,.) by Theorem 1.10. Also, the defect of the rectangle 

o(R) = 180(4 - 2) - 'f.(R) = 180(2) - 90(4) = 0. But we know from Legendre-Saccheri's 

Theorem that 6(i::,.) ::::: 0. Thus 0 = o(R) ::::: 6(i::,.) ::::: 0 which implies 0::::: 6i::,.::::: 0, and thus, 
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O(L'o.) = 0. Therefore, every triangle in our geometry has the angle sum 180°: L(L'o.) = 180°. 

1.6.l The End of the Proof of Theorem I.I 

Proof From the preceding Lemmas and Theorems, we see that the Weak form of (£5 ) 

C:llo :JPo rt lo, :l!mo II lo, Po E mo) implies that for every triangle Lo. its angle sum is 

L(L'o.) = 180° by the uniqueness of the line m II l. We need to show that changing the 

quantifiers :Jl0 and :JP0 rt 10 for lef land lef P rt l gives the strong form of (£5 ): for any line l 

and any point P rt l, there exists a unique line m II l such that m passes through P. We 

first show the existence of such a line, and then we will prove its uniqueness. 

Existence of m II l 

Figure 1.20: The existence of the line m through the point P parallel to the line l. 

Now for a given line-point pair (!, P) construct an arbitrary triangle lo.APB with 

A, B E l. Then from the preceding step we know that any such triangle has angle sum 

Lo.APB = 180°. For convenience we denote LA= a, LP= y, and LB = f3. Draw the ray 

PX such that angle LXPA =a, and the ray PY such that the angle LYPB = f3. Then 
-----+ -----+ 

by the Exterior Angle Theorem (Theorem 1.4) we know that the rays PX II l and Y P II Z. 

Since the angle sum of the triangle L(L'o.AP B) = 180°, then we see that a+ f3 + y = 180°. 

But this means that LXPY =a+ f3 +y = 180°. So, X * P * Y which implies that XPY = m 
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is a line parallel to the line l. Thus the existence of the line m 11 l is proved. 

Uniqueness of m II l 

-
Figure 1.21: The uniqueness of the line m through the point P parallel to the line l. 

To prove the uniqueness of the line m II l, PE m, we drop the perpendicular line 
.__.. 
PQ J_ l where Q E l. Then force the point Q to move along the line l. Here, as de-

picted in Figure 1.21, we send point Q to the right. We can think of point Q(t) as the 

point Q moving along the line l for t E [0, +oo), where Q(O) = Q. Then denote the angle 

L_PQ(t)Q = <p(t). 

Theorem 1.13 (Legendre's Angle Theorem). When the foot point Q(t), with t E [0, +oo), 

moves along the line l from Q = Q(O) to infinity, the angle L_PQ(t)Q = <p(t) tends to zero: 

<p(t) ~o as t~oo. 

Proof of Legendre's Angle Theorem. Instead of considering the whole continuous trace of 

the point Q(t) on l, we consider only a very special, discrete sequence of points Q1, 

Q2 , Q3 , .. ., E l for which we will prove that L_PQnQ ~ 0 as n ~ oo. This sequence 

is sufficient for us to prove the theorem, for if Qn ~ oo, then for any point Q(t), with 

Q < Qn < Q(t), we have (by the Exterior Angle Theorem) L_PQ(t)Q < L_PQnQ ~ 0 as 

n~oo. 
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p 

Q 

Figure 1.22: The first three points of the sequence {Qn} corresponding to Legendre's 
Trick. 

To prove Legendre's Angle Theorem, we will employ Legendre's Trick which we now 

describe. Since every triangle .6. has angle sum L:(.6.) = 180°, then we have the following: 

(a1) For .6.PQQ1 :2<.po = 180° - 90° ==> <.po = 45°; 

1 
(a2) For .6.PQ1 Qz :2<.p1 =<.po ==> <.p1 = - · 45°; 

2 
1 1 

(a3) For .6.PQ2Q3 :2<.pz = <.fJ1 ==> <.pz = - · <.p1 = -2 · 45°; 
2 2 

1 1 
(an) For .6.PQn-1 Qn :2<.pn = <.fJn-1 ==> <.fJn = -<.fJn-1 = - · 45°. 2 2n 

We see that <.fJn ------+ 0 as n ------+ oo, and the sequence of angles {<.fJn} approaches 0 as a 

geometric sequence with the common ratio ~. So, 1f! n = <.po + <.p1 + <.p2 + ... + <.fJn and 1f! n = 

45°(1 + ~ + J2 + ... + }n ). It follows that 

n 

1/1 = um r, <.fJk 
n-ook=l 

00 1 
=45°· '[-

k=02k 

= 45°·2 = 90°. 

D 
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----+ 

So, <p(t) __. 0 means that the limiting position of the ray PQ(t) (that intersects line 

l at Q( t)) is exactly the ray r+. Hence, there exists only one right ray, namely r+, which 

is parallel to l passing through P. This means that the right limiting ray r+ is unique. 

The same reasoning shows that the left limiting ray, r-, is also unique. Then the union 

of the two limiting rays, r- Ur+, is determined uniquely. But since the two rays make the 

right angle with PQ, and 90° + 90° = 180°, we conclude that m = r- Ur+ is the unique line 

parallel to l. Thus, Theorem 1.1 is proved. 

D 
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Chapter2 

Theorems on [J--(] 2 

By taking constructions from Euclidean geometry, we set out to formulate the results 

that we obtain by performing similar constructions in hyperbolic geometry. In IJ-02 , the 

negation of Euclid's 5th postulate tells us that given a line land a point P not on l, then 

there are many lines passing through point P which are parallel to line l. Since we no 

longer have a unique parallel line as in the Euclidean case, we need to understand now 

how our parallel lines behave. As we will come to find there are two types of parallel 

lines in hyperbolic geometry, asymptotically parallel and divergently parallel. 

Q 

Figure 2.1: Asymptotically parallel lines in hyperbolic geometry. 
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Given a line l, a point Q E l, and a point P rt. l such that PQ is perpendicular to line l. 

Consider the part of line l to the right of the line PQ, call it l+. Draw rays out of point P 

and to the right. We call r+ the first ray that is parallel to line l. Repeat the same process 

for the left side of PQ, and denote the left part of l by l-. The two rays, r+ and r-, form 

a an angle L_r- Pr+ with the vertex P. Extend the rays r- and r+ to the two lines? and 

r+. They are called, respectively, the left and right asymptotic parallellines to l. The ray 

PQ splits the angle L_r-Pr+ into two acute angles: (/JI = L_QPr+ and <p2 = L_QPr-. It 

turns outthat PQ is, actually, the angle bisector of the angle L_r- Pr+. 

Lemma2.l. The two acute angles from the rightand left asymptotic parallel lines<pI and 

<p2, respectively, are equal: (/JI = <p2. 

Figure 2.2: The angles (/JI and <p2 are equal. 

Proof Suppose that (/JI i- <p2. Without loss of generality, let ({J2 >(/JI. Then draw the ray 

pq inside the angle L_QPr- such that L_QPq =(/JI. Since r- is the asymptotic parallel ray 

to l, we conclude that the ray pq must intersect at some point R E l-. Now reflect the 

triangle 6PQR in the line PQ and we get 6PQR', where R' E z+, congruent to 6PQR. 

Hence, L_QP R' =(/JI which means that the point R' lies on the ray r+. Thus we get that 
.._.. 

ray r+ meets line lat point R'; that is, r+ is not parallel to l, a contradiction. Hence, the 

angles (/JI = ({J2. D 

33 



This Lemma allows us to give the following fundamental definition. 

Definition 2.2. The angle L_QPr+ =<pis said to be the angle of parallelism for the pair 

(P, l). 

As a consequence, every line m through point P that does not intersect the angle 

L_ r- Pr+ and its vertical angle is called divergently parallel to line l. 

By the homogeneity of the hyperbolic plane, the angle of parallelism <p = <p(P, l) does 

not depend on the position of the pair (point P, line l) as a rigid body in the plane. It 

depends only on the distanced between P and l; that is, <p = function(dist(P, l)). De­

noting dist(P, l) = d, we obtain, due to Lobachevsky's notation, the function TI: 

<p = TI(d) (2.1) 

The function TI is called the Bolyai-Lobachevsky function. Thus, TI(d) is the angle of 

parallelism for the pair (P, l); and therefore, L_r- Pr+ = 2Il(d). 

The following question arises: is the distanced a function of the angle of parallelism? 

That is, does there exist a function TI-1 such that d = TI-1 (<.p)? In other words, is the 

Lobachevsky function TI a one-to-one function? The following theorem answers this 

question affirmatively. 

Theorem 2.3 (Bolyai-Lobachevsky). 'ef distanced 3! angle <p = TI(d), the angle of paral­

lelism. Hence: 'ef <p E (0, ~) 3! d such that<p = TI(d); that is d = n-- 1 (<p). 

Moreover, the function TI has the following additional properties: 

1. TI (d) is a strictly decreasing function; that is, 
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0 

Figure 2.3: The Bolyai-Lobachevskyfunction for the angle of parallelism. 

3. The function II satisfies the following two equivalent relationships: 

cos(cp) = tanh(d) and 

tan(~)= e-d 

We will not prove this theorem now, instead we will only show the equivalency of 

these two equations. 

Proof We want to show the equivalency of the equations 

So, we compute 

tanh(d) = cos(cp) 

ed - e-d 

sinh(d) 2 
tanh(d) = = ---

cosh(d) ed + d-d 

=---
ed + e-d 
e2d _ 1 

=---<1 
e2d + 1 
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(2.2) 

(2.3) 



e2d -1 
Lett= tanh(d) = ---u--· Then we have that 

e + 1 

e2d-1 = t(e2d + l) 

~ e2d - 1 = te2d + t 

~ e2d(l-t)=l+t 

2d 1 + t 
~ e =--

1-t 

Now we want to show that plugging t = cos(<p) from equation (2.2) into the left hand 

side (LHS) of equation (2.3) yields the right hand side (RHS) of equation (2.3). From 

equation (2.2) we have that 

1- cos(<p) 

1 + cos(<p) 

2sin2 (~) 

2cos2 (~) 

sin(.<!?.) (IP) 
= --+ =tan - = RHS(2.3) 

cos(-2) 2 

The proof of the equivalency of equations (2.2) <==:::;> (2.3) is complete. 
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Chapter3 

Geometric Structure of Lines and 

Special Curves of 0-02 

In Chapter 1 we introduced the idea of two types of special quadrilaterals, the Sac­

cheri quadrilateral and the Lambert quadrilateral. The Saccheri quadrilateral had two 

right angles, and one pair of opposite congruent sides. On the other hand, the Lam­

bert quadrilateral had three right angles. Moreover, these quadrilaterals will be used to 

establish the geometric structure of IHJ 2 • Our first step is to make precise their definitions. 

Figure 3.1: The quadrilateral ABCD is a Saccheri quadrilateral. 

Earlier, we saw that there are two methods for constructing a rectangle in IE2 . We 

learned that Saccheri used the construction outlined in Method 2 in his attempt to prove 
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c 

D 

B 

A 

Figure 3.2: The quadrilateral ABCD is a Lambert quadrilateral. 

(E5 ), ultimately finding the Saccheri quadrilateral. Start with a base segment, called AD, 

and two perpendicular segments of equal length called AB and CD. After joining the 

vertices Band C by segment BC, we have constructed the quadrilateral ABCD having 

the following two properties: 

{
l) AB =CD 

2) LA = LD = 90° 

In IE2 , we saw that LB= LC= 90° and BC= AD. What remains to be understood is 

if in 1Hl2 there is any relation between the two remaining angles, LB and LC, as well as 

what is the relation between the segment BC and the segment AD. As a matter of taste, 

we refer to angles LA and LD as the base angles of the quadrilateral, the segment AD as 

the base, and the segment BC as the summit. Right away we can see that the base and 

summit are not of equal length, for if it were the case, then we would have an Euclidean 

rectangle. So, we need to see if the summit is oflength greater than or less than the length 

of the base. As for the angles, LB and LC, intuition might lead you to believe that these 
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angles are equal; and in fact, the following theorem will show that this is precisely the 

case. 

Theorem 3.1. The two summit angles, LB and LC, of a Saccheri quadrilateral, ABCD, 

are congruent: LB= LC. 

8 c 

0 

Figure 3.3: The summit angles, LB and LC, of a Saccheri quadrilateral are equal. 

Proof Consider the Saccheri quadrilateral ABCD with LA= LD = 90°, and AB= CD. 

Construct the diagonals AC and BD. These two diagonals intersect at a point, called 

E. Observe that if we can show that the triangles !::,.ABC and !::,.DCB are congruent, 

then we are done. In the resulting figure, we know that LA= LCAB + LCAD and 

LD = LBDA + LBDC. Then the triangles l::,.ACD and l::,.ABD are congruent by the 

side-angle-side axiom: CD= AB, LA= LD, and AD= AD. As a result, we know that 

LCAD = LBDA, and that AC = BD. Now since LCAD = LBDA = <p, it follows that 

LCAB = 90°-<p = LBDC. 

Now consider the triangles !::,.ABC and !::,.DCB. These two triangles are also con­

gruent by the side-angle-side axiom, since AC= BD, LCAB = LBDC, and AB= CD. 

Therefore, we can conclude that the angles LB = LC. D 
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We have shown that the two summit angles of a Saccheri quadrilateral are equal. 

In N2 , it follows from Legendre's Theorem (Theorem 1.6) applied to the two triangles 

1::;.ABD and !::;.DCB that 2a + 2 · 90°:::; 360°. Solving this equation for a, we find that a:::; 

go0 • This reduces to two cases. If a= go0 , then the quadrilateral ABCD is a rectangle, 

and we are in IE2 • On the other hand, if a < go0 , then we are in IHl2 , and we have a Saccheri 

quadrilateral. Formalizing our result, a Saccheri quadrilateral ABCD is a quadrilateral 

in IHl2 satisfying the properties: 

l)AB =CD 

2)L'.A = L'.D = go0 

3)L'.B = L'.C < go0 

The other method for constructing a rectangle, Method 1, was used by Lambert in his 

attempt to prove Euclid's parallel postulate, ultimately creating the Lambert quadrilat-

eral. To build such a quadrilateral, first take a segment AD which will function as the base 

of our quadrilateral. Construct the unique perpendicular lines to segment AD through 

each of the points A and D. Choose some point B on the perpendicular line passing 

through point A, and from there erect the perpendicular line to AB passing through B. 

This new perpendicular line will intersect the perpendicular line through the point D, 

and we denote this point of intersection C. The resulting figure ABCD is a quadrilateral 

having the following properties: 

{
l) L'.A=L'.B=L'.D=go0 

2) L'.C<go 0 

In Euclidean geometry IE2 , we saw that following this construction the angle measure 

L'.C = 90° and pairs of opposite sides had equal length. Since the angle measure L'.C is 

now less than go 0 in this new setting, there is reason to believe that the pairs of oppo-

site sides are no longer congruent. Indeed, the following theorem explains the relations 

between the side lengths of opposite sides. 
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Theorem 3.2. Given a Lambert quadrilateral ABCD. The following inequalities hold: 

{
l) BC>AD 

2)CD>BA 

Figure 3.4: The Saccheri quadrilateral D' C' CD obtained via the reflection of the Lambert 
quadrilateral ABCD. 

Proof We will prove the first inequality for a Lambert quadrilateral, BC> AD; proving 

the second inequality CD> BA follows similar steps. Reflect the Lambert quadrilateral 

ABCD across the line segment AB to obtain the Saccheri quadrilateral D'C'CD where 

L.D' = L.D = go0 and L.C' = L.C =a. We denote the summit BC bys= BC and the base 

AD by b = AD. Moreover, the segments C' B =BC and D' A= AD. We will show that 

(BC> AD) ~ (C' C > D' D), or s > b. We construct a proof by contradiction. Suppose 

that s ":f b. Then either s = b ors< b. We consider both cases. 

Case 1 (s = b) 

Suppose that s = b. Then construct the diagonal C' A. By the angle-side-angle ax­

iom, the triangles !::::,.AD'C' =!:::,.ABC' since AD'= b = s =BC', L.D' = go 0 = L.ABC', and 

L.AC'D' = L.BAC'. As a result, the angle L.D' AC'= BC' A. But we know that 

go 0 = L.A = L.BAC' + L.D' AC'= L.BC' A+ L.AC' D' = L.C' 

41 



Figure 3.5: The summit length s equals the base length b leads to a contradiction. 

Since the quadrilateral D' C' CD is a Sachheri quadrilateral, then by definition L.C = 

L.C' = 90°. Therefore, the quadrilateral ABCD is a rectangle which implies that we are 

in Euclidean geometry IE2 . But this is a contradiction with our initial assumption that we 

are in IHl2 . Thus, L.C' =a:/; 90°; hence, s :/; b. 

Case2 (s < b) 

Figure 3.6: The summit length s is less than the base length b leads to a contradiction. 

Suppose thats< b. Then we construct a Saccheri quadrilateral X1X2 Y1 Y2 and re-

fleet it across X2 Y2, yielding the equal Saccheri quadrilateral X2X3 Y2 Y3. Again we reflect 

the quadrilateral X2X3 Y2 Y3 across X3 Y3, and we continue reflecting the quadrilaterals in 

this fashion until we have a chain of n - 1 equivalent quadrilaterals (the last one being 

Xn-l Xn Yn- l Yn). Then by the triangle inequality we know that the shortest distance be­

tween two points in the plane is the straight line distance. So, the length of the broken 
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line is longer than the length of the bottom segment, 

and each of the angles L'.Yi =a+ a< 90° + 90° = 180°. Then we have that 

2h + ns > nb 

b-s 
==> h > n-- = nE 

2 
h 

==>n<­
E 

b-s 
Vn EN. Here we denote E = -- which is non-negative since b > sand Eis a fixed 

2 
h h 

number. Also, h is a fixed number. So, the quantity - is a fixed number. Take no > - as 
E E 

b-s b-s 
n. We know such an n EN exists. Then we will have that h < n0--. Buth> n--, a 

2 2 

contradiction. Thus, s I- b. Combining the results from Case 1 and Case 2 we conclude 

that since the summit length does not equal the base length, s f:- b, and the summit 

length is not less than the base length, s I- b, then summit length is greater than the base 

length, s > b, in a Saccheri quadrilateral. Therefore, we conclude that BC > AD in the 

Lambert quadrilateral ABCD since BC= ~s > ~b =AD. 

D 

Having established the relations between side lengths of opposite sides of a Lambert 

quadrilateral, we now formalize the requirements of a Lambert quadrilateral. We say that 

a quadrilateral ABCD is a Lambert quadrilateral ifit satisfies the following properties: 

l)L'.A = L'.B = L'.D = 90° 

2)L'.C < 90° 

3)BC> AD 

4)CD>BA 
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We now explore the connections between the two types of quadrilaterals in hyper-

bolic geometry, Lambert quadrilateral and Saccheri quadrilateral. 

Theorem 3.3. The only common perpendicular segment for the base and summit of a 

Saccheri quadrilateral is MN, where Mis the midpoint of BC, and N is the midpoint of 

AD. 

c 

Figure 3.7: The segment MN is the perpendicular bisector of the Saccheri quadrilateral 
ABCD. 

Proof Let ABCD be a Saccheri quadrilateral. Let M and N be the midpoints of seg­

ments BC and AD, respectively. Then BM= CM and AN= DN. Draw the segment 

MN which joins the two midpoints. Our first goal is to show that MN is perpen­

dicular to both BC and AD. We will do this by proving that the resulting angles 

L.BMN = L.CMN = L.ANM = L.DNM = go0 • Then we will show that MN is the unique 

common perpendicular. 

The next step in showing that the segment MN is perpendicular to both BC and 

AD is to construct the two diagonal segments BN and CN. Since ABCD is a Saccheri 

quadrilateral, we know that L.B = L.C =a, L.A = L.D = go0
, and BA= CD. The triangles 
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Figure 3.8: The segment MN is perpendicular to the sides BC and AD. 

L.BAN and 6.CDN are congruent by the side-angle-side axiom, since BA= CD, LA= 

LD = 90°, and AN = DN. It follows that the angles LABN = LDCN = <p, LDNC = 

LANE= fl, and BN = CN. Observe that the angles LNBM = LNCM = a-<p. Then we 

see that the triangles L.NMB = L.NCM by the side-angle-side axiom, since BN = CN, 

LNBM = LNCM =a - <p, and BM= CM. As a result, the angles LBMN = LCMN and 

LBNM = LCNM = 1f!. Combining the last statement with the result above we find that 

LANM= LANB+LBNM=ll+1f!=LDNC+LCNM= LDNM 

The last step is to show that the segment MN lies on the line perpendicular to BC, called 

BC-1. 

Construct the line perpendicular to BC through the point M. We need to show that 

the intersection BC-1 nAD = N. Let the set of points equidistant from the points Band 

C be the set S = {PI PB =PC}. We will show that Sis the perpendicular bisector to 

BC. Let P be a point such that PE: BC-1. Then after drawing the segments BP and PC 

we have two congruent triangles L.BP M ~ L.CP M by the side-angle-side axiom, since 

BM= CM, LEMP= LCMP, and MP= MP is a shared side. Therefore, we know that 
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B c 

A 
D 

Figure 3.9: The set of points S equidistant to the points Band C coincides with the per­
pendicular bisector to BC. 

the sides BP= PC. Hence, the set S::) BC1-. To show that Sc BC1-, we will prove that 

contrapositive statement that if a point X ft. BC1-, then BX f:. CX. 

Let X be a point not on B c1-. Without loss of generality we may assume that the point 

X lies as shown in Figure 3.10. Then draw the segments BX and CX. The segment BX 

intersects the line BC1- at some point P. So, we can say that BX= BP+ PX. Since Pis a 

point on BC1-, then from the preceding argument we know that BP= PC. Substituting, 

into the relation for BP we find that BX= PC+ PX. Applying the triangle inequality on 

triangle £::,.PCX we find that PC+ PX> CX. So, BX= PC+ PX> CX; and hence, X ft. S. 

Therefore, S c BC1-. Having shown containment in both directions, we can conclude 

that S = BC1-. More importantly, we see that since CN = BN, we conclude that LANM = 

L_DNM=90°. D 
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Figure 3.10: The segment MN is the perpendicular bisector of segment BC. 

After drawing the common perpendicular, MN, for the base and summit of a Sac-

cheri quadrilateral, ABCD, we create two quadrilaterals, ABMN and DCMN. These 

two quadrilaterals are congruent and are in fact Lambert quadrilaterals. This idea leads 

us to our next discovery: starting with a Lambert quadrilateral, ABMN, and reflecting 
+------> 

it in the line MN yields another Lambert quadrilateral, DCMN. And together, these 

two quadrilaterals form a Saccheri quadrilateral. So, we have established a connection 

between Lambert quadrilaterals and Saccheri quadrilaterals in ~2 . 

Corollary 3.4. Given Saccheri quadrilateral ABCD and the common perpendicular seg-

ment MN to the base and the summit, MN< AB= CD. 
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3.1 Perpendicular in Saccheri Quadrilateral 

In a Saccheri quadrilateral ABCD, the two summit angles, LB = LC= a, have angle 

measure less than 90°. Something to consider is at what point on the line AB does the 

line perpendicular to AB passing through C intersect the line AB. Does this intersec­

tion point lie above or below the point B? Suppose that B' = AB-1 nAB lies above B. 

Then by the exterior angle theorem (Theorem 1.4) on D.B B' C the angle a > 90° = LB'. 

But this is a contradiction since a< 90°. Thus, we conclude that the point B' lies below B. 

Figure 3.11: The location of the line perpendicular to the segment AB passing through 
the point C of a Saccheri quadrilateral. 

Extending this construction to a Lambert quadrilateral, ABCD with LC= a< 90°, 
+--------> 

we deduce that the intersection point between the line CD and the line perpendicular 

to CD passing through B lies below the point C, such that B * C * D. Call this point of 

intersection C', then we have two Lambert quadrilaterals, namely ABCD and ABC'D 

with LABC' =a'< 90°. What is the relation between the angle measure a and a'. We 

48 



explore this relation in the following construction. 

Figure 3.12: Successive perpendiculars in a Lambert quaderilateral. 

We are interested in taking successively perpendiculars in a Lambert quadrilateral. 

Consider the Lambert quadrilateral QQ1S1P as depicted in Figure 3.12. Let a1 = ~. 

Construct the line perpendicular to S1 Q1 through the point P1. We know from above that 

this line, call it az, lies below 51. What is the relation between the angles a 1 = LQ151 P 

and a~= LQPR1? 

From the defect of a quadrilateral we have that area(QPS1 Q1) > area(QPR1 Q1). It 

follows that 
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Erect the perpendicular at Q2, then we have the Lambert quadrilateral Q1R1S2Q2. 

Construct the perpendicular line to S2Q2 through P. Then we can show that a;> a2 , as 

depicted in Figure 3.12. 

Question: Does h > h' => a~ < a~ 

p 

o, 

Figure 3.13: The angle La~ is greater than the angle La~. 

Prior to answering this question, note that the defect of a Lambert quadrilateral can 

be simplified 

Consider the Lambert quadrilaterals Q P R1 Q1 and Q1 R1 S~ Q~. Then we have that 

6(QPR1Q1) > 6(Q1R1 S~Q~). This follows from reflecting the quadrilateral QPR1Q1 

across the segment R1 Q1 resulting in the mirrored Lambert quadrilateral Q1R152 Q2. So, 

it follows that 
n n 
- - a' > - - a" => a" > a' 2 1 2 1 1 1 

and S2 Q2 = PQ = h > h" > m where mis the common perpendicular between the lines 

a2 and b. For a subsequent height h"', we first need to reflect the quadrilateral QP R1 Q1 
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across R1 Q1 to yield the mirrored Lambert quadrilateral Qr R152 Qz. Then we determine 

which quadrilateral has the larger defect (area) which in turn yields the following cases: 

{ 
h > h111 ==> a' < a'" 1 1 

h"' > h ==> a"' < a' 1 1 

This observation yields the following theorem. 

Theorem 3.5. If the lines a and bare divergently parallel, then the orthogonal projection 

of the hyperbolic line a onto the hyperbolic line b, denoted pro jba, is such that pro jba Eb 

and the following properties of the angle a(t), depicted in Figure 3.13, hold: 

n 
1. a(t) increases monotonically to - on the left of the common perpendicular MN. 

2 

n 
2. a(t) = - on the common perpendicular MN. 

2 

3. a(t) decreases monotonically to 0 on the right of the common perpendicular MN. 

Theorem 3.6. projz(m) =an open intervalc l. 

Proof The proof of this theorem will be provided in Chapter 4 with the help of the Klein 

model. D 

Theorem 3.7. If the line mis asymptotically parallel to line l, then projz(m) is a ray. 

Theorem 3.8. If the line m intersects line l, then the projection projz(m) is an open in-

terval. 
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Chapter4 

Klein Model of [l-{]2 

Up to this point we have developed the theory of hyperbolic geometry by extending 

various constructions used in Euclidean geometry (such as constructing a rectangle). 

Additionally, we have attempted to understand what hyperbolic geometry looks like 

by considering the special curves of 1Hl2 . Taking it a step further, it would be nice to 

be able to visualize the hyperbolic plane in terms of something with which we are 

familiar, namely the Euclidean plane. One way to accomplish this goal is through the 

use of a model. Here a model is a subset of the Euclidean plane IE2 , or the typical plane 

~2 . Formally speaking, there is a function, f, which maps the hyperbolic plane to the 

Euclidean plane: f : 1Hl2 ____, IE2 , taking the entire hyperbolic plane and mapping it to a 

subset of IE2 . There are, however, some caveats to this visualization process. We are not 

able to recover the entire structure of the hyperbolic plane within our model. As a result, 

there are different models which preserve different aspects of the hyperbolic plane. The 

information that interests us determines which model we use. 

Since we will often talk about these models, we adopt the following shorthand 

notation: the Klein disk model - rr< 2 ; the Po in care spherical model - § 2 ; the Po in care 

disk model - IFD2 ; the Poincare upper half-plane model - llJ2 ; and finally, the Minkowski 

hyperboloid model - M2 . When discussing a hyperbolic line in a particular model, we 

will use the shorthand k-line for a hyperbolic line in the Klein disk model, p-line for a 

hyperbolic line in the Poincare disk model, u-line for a hyperbolic line in the Ponicare 
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upper half-plane model, and m-line for a hyperbolic line in the Minkowski hyperboloid 

model. 

The first model that we will consider is called the Klein disk model, and it is a 

model which preserves Euclidean lines, but distorts the hyperbolic angles. We denote 

the disk of the Klein model by w, and its boundary by aw. The advantage of working 

in the Klein model is that we can imagine hyperbolic lines as typical Euclidean lines; 

however, when two of these lines in our model intersect, for the most part, the angles 

that they form are not the actual hyperbolic angles that we would see in IHl 2 • The case 

when the Euclidean angle in the Klein disk model agrees with the hyperbolic angle in the 

hyperbolic plane occurs when the vertex of the angle is located at the center of the disk w. 

Figure 4.1: The regular lines AB and CD in the Klein disk model. 

For a pair of lines in the Klein disk model, we want to know where their point of 

intersection can occur. Consider two distinct lines, m and l, in the Klein model. These 

two lines intersect at a point, Q. So, there are three cases to consider: Q lies inside w, Q 

lies on the boundary aw of the disk w, or Q lies outside w. According to these three cases, 

we say that the lines m and l are regular (Figure 4.1), asymptotically parallel (Figure 4.2), 

and divergently parallel (Figure 4.3), respectively. 
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Figure 4.2: The asymptotically parallel lines AB and CD in the Klein disk model. 

Figure 4.3: The divergently parallel lines AB and CD in the Klein disk model. 

Understanding now how two lines can intersect in the Klein model, it is now time to 

consider if given a k-line, how to construct a line that is perpendicular to it. The following 

definition explains a nice property of the set of perpendicular lines to a given k-line. 

Definition 4.1. Given a k-line 1:0. in the Klein model, the pole of the k-line 1:0., de­

noted P(1:0.), is the point through which extensions of all lines perpendicular to 1:0. pass 

through. It is the point of intersection of the lines tangent to the disk at points 1: and 0.. 
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Figure 4.4: Point Pis the pole of the k-line :LO, here LB= LG= 90°. 

Note that if the k-line is a diameter, then the two tangent lines are parallel and do 

not intersect. In this case, the lines that are perpendicular to the diameter in the Klein 

model coincide with the Euclidean lines perpendicular to the diameter. The pole is an 

instrumental tool in working in the Klein model, and we will rely heavily upon it during 

subsequent constructions and proofs. 

4.1 Projection 

Orthogonal projection of h-lines in 1Hl2 understood through the Klein model II< 2 . We will 

snow that for two divergently parallel lines a and b, the orthogonal projection of a onto 

b, pro}b(a), is an open interval in b. Showing this fact will prove Theorem 3.6. 

Let's consider the diameter :LO and a k-line :L'O' as depicted in Figure 4.5 . We 

denote a= :L'O' and b =:LO. To project a point X in the k-line a onto b, we construct 
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Figure 4.5: The orthogonal projection of a k-line. 

the unique line passing through X perpendicular to b. Constructing the pole P = PCH1) 

of the k-line .H2 allows us to do just that. Note that the k-line bis a diameter, so its pole 

is located at infinity. So, the k-lines perpendicular to b coincide with the Euclidean lines 

perpendicular to b. Then the projection of X onto b is the point Y E b such that the 

Euclidean perpendicular to b passing through x intersects b at Y. 

Performing an orthogonal projection of the k-line I'D' onto the diameter ID, we 

construct the pole of the k-line I'D'. Observe that only a portion of the le-line I'D' 

projects onto the diameter ID. This can be seen since the points S' projects onto I and 

T' projects onto D. The observation to be made here is that we can project the le-line 

I'D' onto the entire diameter. From this example, we now want to consider the two 
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possible orthogonal projections between two arbitrary le-lines. 

Let a and b be two arbitrary, divergently parallel le-lines, with a= I.'D' and b = I.D. 

Construct the pole for each of the le-lines a and b, yielding the points P(a) and P(b), 

respectively. Then the common perpendicular, the line passing through the points 

P(a) and P(b), projects orthogonally the point M onto N. That is we have the relation 

between the hyperbolic angles a and fJ: L'.a = L'.f3 = 90°. As in the previous case, we 

want to see what portion of the le-line a onto the le-line b. Drawing the Euclidean lines 

passing through the pole P(a) and each of the endpoints, I. and D, of the line b, we see 

that P(a)I.na = S' and P(a)Dna = T'. Since the point S' projects orthogonally onto 

the point at infinity a and the point T' projects orthogonally onto the point at infinity 

D, it follows that we can project the segment S'T' ca onto the entire le-line b. On the 

other hand, erecting the le-lines perpendicular to b passing through the endpoints, I.' 

and D', of the le-line a, we find that P(b)I.'nb =Sand P(b)D'nb = T. So, we can only 

project the le-line b up to some barriers, here the points S and T. This follows from 

S and T are mapped to the points at infinity of the le-line a; every point Y E a where 

I.'* Y * D' must be the image under orthogonal projection of a point XE b where S * X * T. 

Above, we saw that in IK 2 you can always drop the perpendicular passing through a 

point Pin the le-line a to the le-line b; that is, the projection of the le-line a spans the 

entire le-line b. On the other hand, you can only erect the perpendicular to the le-line 

b up to some barrier; that is, we can only project the points on the hyperbolic segment 

ST c b onto the le-line a. Every point on the le-line b that lies outside the segment ST is 

mapped under orthogonal projection outside of the disk w. 

4.2 Reflection 

4.2.l Reflection in a k-line 

Suppose that we are in the Klein model and we want to reflect a point about a given le­

line. Recall the case of the Euclidean plane. Consider a point A about an arbitrary line l, 
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Figure 4.6: The reflection of a point in the Klein model. 

where A rt. l. To reflect the point A about the line l, drop the perpendicular line from A to 

l. This perpendicular line, lj_, intersects lat a point Q E: l. Lay off from point Q a segment 

oflength AQ along the line lj_. Then the end of this segment is called A' = CT z (A). Note 

that CTI = CT z ·CT z = id, performing a reflection through the same line twice is equal to the 

identity, i.e. not performing a reflection at all. 

Now in the Klein model, we are going to employ a similar method. Namely, given 

a k-line, l = 'ID, and a point A rt. ID, find the line which is perpendicular to ID that 

passes through A. Then reflect this point A through the line ID to get the point A'. 

First, we construct the pole of the k-line ID, P(ID). Since the extensions of the le-lines 

orthogonal to ID all pass through the pole P(ID), we can draw the line k which passes 

through P(ID) and A. Now, we know that the point A'= CTz(A), the mirror image of A 

about the k-line l, lies somewhere on this line k. Next we draw the asymptotic parallel 
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line through A and D (note that we could just as easily have chosen :L and A), call it 

m. Then m intersects the boundary aw of the Klein model at the point r. Since r is a 

point at infinity, then we know that its reflection, u 1(f) = r', is a point r' which is also 

at infinity (i.e. f' lies on aw). Now we connect r' and D, and this k-line intersects the 

k-line k at the point uz(A) =A'. Here we note that the reflection uz(D) = D. The point A' 

is the reflection of the point A through the k-line :LD. 

Above, when we reflected the point A about l to find A', we projected the points r to 

r' and D to D. In actuality we projected the entire line m = fD through the line l, and 

found the line r' D. With this in mind, we can generalize the preceding construction of 

reflecting a point through a line so that we can reflect any k-line containing the point A. 

Figure 4.7: The reflection of a k-line through another k-line. 
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Consider the k-line m = r 1r 2 that passes through A (this is one of many possible 

k-lines). We know that the reflection through the line l of the point A is contained in 

the reflection through l of the line m, A'= crz(A) E crz(m). So, we have that r~ = crz(f1) 

and r; = er z (f 2). Since [ 1 and [ 2 are both located at infinity, then their reflections 

r~ and r; are both also at infinity. Joining the points r~ and r;, we find cr 1(m). Now 

A' A E PA since there is a unique perpendicular passing through A and A'; and, the pole 

P = P(2:D) contains all of the extensions of the le-lines orthogonal to l. It follows that 

A' =crz(m)nPA. 

4.2.2 Reflection of an Angle 

Suppose that we are given an angle a whose vertex is not the origin of our disk. Then our 

angle is distorted from the angle that we would measure in H2 . If we could reflect the 

angle so that its vertex was at the origin, then we would find its actual hyperbolic angle. 

We now describe such a method. 

Figure 4.8: The reflection of a distorted h-angle to its actual h-angle. 

Consider the diameter Z:D and a point A E Z:D which is the vertex of angle a= L.BAC. 

We want to reflect angle a so that its vertex is at the origin. 
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1. We want to construct the k-line perpendicular to ID at the point 0 (the origin). So, 

we construct the Euclidean perpendicular line to IO at 0. Since the pole P(ID) 

is at oo, then the perpendicular le-line coincides with the Euclidean perpendicular 

line. We denote the resulting line VW. 

2. Then we construct the Euclidean line perpendicular to ID through the point A, 

and call the resulting line XY. 

3. To find the mirror in which the point A reflects to the origin 0, we connect the 

points VY and WX. 

4. These two lines, VY and W X, intersect the line ID at a point called M. We now 

construct the Euclidean line perpendicular to ID at the point M, called I'D'. 

5. The line Z:'D' is the mirror through which we will reflect the angle a. We now con­

struct the pole of the line I'D'. One way to do this is to draw the lines tangent to 

the disk at points I' and D', and find their point of intersection P(I'D'). Another 

way follows from realizing that when reflecting through a mirror a point at infinity 

must be sent to another point at infinity. So, Y goes to W, and X goes to V. Ex­

tending the lines YW and V X, they intersect at a point, which is the pole of the 

k-line I'D', P(I'D'). 

6. To reflect the angle a through the mirror I'D', we project the points A, B, and C 

through the pole P(I'D'). So, we draw the rays P(I'D')A, P(I'D')B, and P(I'D')C. 

Then A maps to the origin 0, B maps to B', and C maps to C'. 

7. Connect the points forming the lines OB' and OC'. These lines form the legs of the 

angle L_B' OC' = {3. The angle f3 is the undistorted hyperbolic angle of angle a. 

4.3 Distance in the Klein Model 

Recall in Euclidean geometry, the distance between two points X, YE IE2 is the absolute 

value of the difference: dist[2 =IX - YI. We will see that a similar distance between two 
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points exists in H2 . From Lobachevsky's formula 

(<p) d 1 
tan Z = e- = ed 

Note that tan(¥) f:. QR in the right hyperbolic triangle L:;.PQR. Instead, tan(¥)= e-d 
QP 

corresponds to the triangle in the Euclidean plane IE2 with a vertex at the center of the 

circle and corresponding angle ¥. 

Figure 4.9: The distance between two points in the Klein disk model is given by the cross­
ratio. 

Suppose we have a le-line L:Din IK2 , and two points P, Q EID. How can we determine 

the hyperbolic distance between points P and Q? We first need to consider each point P 

and Q as a coordinate. Regarding point P, we can describe "coordinate" (P) as a ratio of 

L:P and DP as follows: 
L:P 

0 < "coordinate" (P) = - < oo 
DP 

Here L:P and DP denote the Euclidean length of the segments in the Klein disk model. 

Note that the coordinate changes from 0 to oo, but the coordinate must have the range 

(-00,00). This can be achieved by involving the natural logarithm, In, in our considera-
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tion: 

-oo < "coordinate" (P) = ln ( ~:) < oo 

So, we have Xp = ln ( ~:), and XQ = ln ( ~6). Now, we can define the hyperbolic dis­

tance between points P and Qin the standard way as the absolute value of the difference 

of the coordinates P and Q: 

. 1 
dzst1H12 = 21xp-XQI 

= ~ j1n(~: )-in (~6 )I (4.1) 

= ~ j1n( 'LP : 'LQ )I:= ~lln(H2: PQ)I 
2 DP O.Q 2 

Here ('LO., PQ) = (PQ, 'LO.):= cross-ratio for the pair (P, Q) c ('L, 0.), defined by 

'LP 'LQ 'LP O.Q 'LP DP 
(PQ, 'LO.) = DP : O.Q = DP . 'LQ = 'LQ : O.Q 

This establishes a method for computing distance in IK 2. 

4.4 The Butterfly Theorem 

Consider the k-line 'LO. in IK2, and two points A, BE 'LO.. Let aw denote the boundary 

of the Klein model. Our goal is to lay off a segment AB along 'LO. from point B. In other 

words, starting at point B construct a segment oflength equal to AB along the k-line 'LO.. 

We begin by constructing the pole P('LO.) = P. Then we draw the ray PA which 

intersects aw at points 0.1 and 0.2. Then we draw the unique k-lines containing the 

points 0.1 and B, and 0.2 and B. The k-line containing 0.2 and B intersects aw at the 

point r 1. Similarly, the line containing 0.1 and B intersects aw at the point f 2· Note that 

0.2r 1 is the mirror image of 0.1f 2 through 'LO.. By construction we have P * 0.1 *A* 0.2, 

which implies 0.2 * B * r 1 and0.1 * B * f2. It follows that P * f1 * f2. We will now show 
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Figure 4.10: The Butterfly Theorem in the Klein disk model. 

+----------> 

In Figure 4.10, the rays BD1 and BD2 are limiting rays of the le-line 0 10 2 . From 

Chapter 2, recall the discussion about the angle of parallelism, specifically Lemma 2.1. It 

follows that the angles L'.01BA = L'.02BA = <p. Additionally, by vertical angles we deduce 

the following equality: 

L'.f2BC = L'.D1BA = <p = L'.D2BA = L'.f1BC 

where c =PG nz:n. Then the triangle 6D1BA = 6f1BC, and thus, AB= BC. 
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In the preceding paragraph, we claimed that the triangles .6.01 BA and .6.f 1 BC were 

equal. This result follows from two ideas. First, the theorem regarding similar triangles 

in IHl2 • 

Theorem 4.2. In IHl2 , there does not exist similar triangles, with k f:- 1. That is, if two 

triangles are similar in IHl2 , then they are equal (if .6.1 ~ .6.2 , then .6. 1 = .6.2 ). 

In addition, to the standard theorems that we have in Euclidean geometry for prov­

ing two triangles are equal, Theorem 4.2 allows us prove equivalent triangles in IHl 2 via the 

angle-angle-angle axiom for similar triangles. Returning our attention to the previous 

proof, we will show that the triangles .6.01 BA and .6.f 1 BC are equal via the angle­

angle-angle axiom. From previous arguments we know that L'.01BA = L'.f 1BC = lfJ, 

and L'.01AB = L'.f 1 CB= 90°. It remains to show that L'.A01B = L'.Cf1B. This is quickly 

remedied by realizing that Bf 1 and Cf 1 are asymptotically parallel lines; hence, the 

angle Bf 1 C = 0°. A similar argument can be made for the lines A01 and B01. Therefore, 

L'.A01B = L'.Cf 1B = 0°. We conclude that the triangles .6.01BA and .6.f1BC are similar 

in IHl2 , and thus by Theorem 4.2, they are equal. 

The Butterfly Theorem as described above is a special case of a more general theo-

rem. 

Theorem 4.3. Generalized Butterfly Theorem. 

Construction: Consider the points consider the points L, L 1, 0, O' E aw, the k-lines 

joining these points :LL:', O:L', 00', and :LO'. Let M denote the point of intersection of 

the le-lines O:L' and :LO'; that is, M = :L'ono':L. Now draw the k-line XY such that it 

intersects the four existing k-lines at 4 distinct points. Let A= XYn:L:L', B = XYno:L', 

c = xYnL:o', and D = XYnoo'. We will now show AB= CD. 

Proof We will compute the hyperbolic length of segments AB and CD, and show that 

these two lengths are equal. Draw the le-lines XL:', YL:', XO', and YO'. Then angle 

L'.XL:' B = L'.XO' C = a since they subtend the same arc, XL: = 2a. Similarly, L'AL:' B = 
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Figure 4.11: The Generalized Butterfly Theorem. 

L.CD'D = {3, L.BI.'Y = L.DD'Y = y, and m = 2{3, and ITT= 2y. Now we compute the 

hyperbolic lengths of AB and CD. 

llABll1H12 = ~ lin(-X_A: _Y_A)\ 
2 XE YB 

=~1 r~xA·h. ~YA·h)I In i .-1--
2 -zXB·h 2YB·h 

= ~\in ( area(L::,,XI.' A) : area(/::,, YI.' A)) I 
2 area(L::,,XI,' B) area(/::,, YI.' B) 

11 ( ~I.'X·I.'Asina ~I.'Y·I.'Bsiny ll 
= 2 In ~I.'X·I.'Bsin(a+{J). ~I.'Y·I.'Asin({J+y) 

1 \ i ( sin a sin y ) I 
= 2 n sin(a + {3) . sin({J + y) 

Similarly, we compute the hyperbolic length of the segment CD. 
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11cD11~2 = i \1n(~~: ~~)\ 
=~11n(~xe-h': ~Ye-h')I 

2 1.XD·h' 1.YD·h' 2 2 

= ~ \ln ( area(D.XD' C) : area(D. YD' C)) I 
2 area(D.XD' D) area(D. YD' D) 

11 ( ~D'X·D'Csina ~D'Y·D'Dsiny ) 

= Z ln ~D'X·D'Dsin(a+/3). ~D'Y·D'Csin(f3+y) 
1 I l ( sin a sin y ) I 

= 2 n sin(a + /3) . sin(/3 + y) 

Therefore, we conclude llABll1H12 = llCDll1H12· D 

The hyperbolic lengths are a function of the angles a, p, and y. This means (keeping 

the points L:, D, and D' fixed) that we have the freedom to move the point L:' along the 

boundary aw of the disk until it coincides with the point D'. As L:' moves towards the 

point D', the point A moves along the k-line XY to the point C. Similarly, the point B 

moves along XY towards point D. At the moment when L:' meets D', then the points 

A= C and B = D. Thus, showing that the segments AB and CD have equal hyperbolic 

length. 

4.4.l Shifting a segment on a k-line 

We have formulated all of the tools that we will need to successfully shift a segment 

along a k-line in the Klein model II<. 2 . 

Construction: In the 11<. 2 model, start with a k-line XY and points A, BE XY. We are 

interested in shifting the segment AB some distance we will call AA' along XY. That 

is we want to shift the points A and B to A' and B', respectively, so that A' B' =AB. To 

complete this shift, we will lay off a segment of length AA' from point B along the k-line 

XY. 

Proof Take another k-line L:D. The one depicted in Figure 4.12, for example. Then draw 

the k-lines XD and YL:, extending them until they intersect at a point, call it S. Draw 

the unique le-line contained in SA. Then the line SA intersects the absolute aw at two 
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Figure 4.12: Shifting the hyperbolic segment AB along the k-line XY by a distance AA'. 

points, denoted :L 1 and :L2 . Draw the k-lines :L 1B and :L2 A'. Observe that :L 1B intersects 

ow at Dz, and :L2A' intersects ow at 0 1. As the last step of this construction, draw the line 

D1D2. This line intersects XY at a point: 0 10 2 nxY = B'. 

Claim: AA'= BB' 

Indeed, this result follows from the Butterfly Theorem. Therefore, we conclude that 

AB =A' B', A' B is a shared segment of the segments AB and A' B' (A' B =AB n A' B'). 0 

In summary, we have developed the construction ofreflecting a point in a k-line. Ad­

ditionally, we discussed a method of reflecting an angle so that its vertex is at the center 

of the disk w. This reflection allows us to measure the undistorted hyperbolic angle. As 

in Euclidean geometry, we found that the hyperbolic distance between two points in the 

Klein model was of the form of the absolute value of the difference of the two points. 
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Chapter5 

Some Hyperbolic Theorems 

Established with the Klein Model 

In Euclidean geometry we are familiar with the often used Pythagorean Theorem, Law of 

Sines, and Law of Cosines. We seek to formulate the equivalent theorems in hyperbolic 

geometry through the use of the Klein model. 

Lemma 5.1. A segment of length x in the hyperbolic plane has Euclidean length tanh(x) :5 

1 in the Klein disk, whenever it is laid off from the center of the diskw. 

Lemma 5.2. Given a right Euclidean triangle .6.ABC in the Klein disk IK. 2 with a vertex at 

the origin, A= ({J, llBClla-o2 =a, llACllD-02 = b, the Euclidean side length of the leg BC is given 

by llBCllF = tanh(a) · sech(b). 

Proof Given a right triangle .6.ABC in the hyperbolic plane IHl2 with known hyperbolic 

side lengths AB= c, BC= a, and AC= b. We want to find the corresponding Euclidean 

side lengths of the Euclidean triangle (which we denote for the sake of simplicity by the 

same letters A, B, and C) in the Klein model IK2 • Placing the vertex A at the center ({j 

of the disk w, then immediately we have two of the side lengths llACll1E2 = tanh(b) and 

llABll1E2 = tanh(c). It remains to compute the Euclidean length of the side BC in the Klein 

model. 
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Figure 5.1: The triangle tc,.ABC is a right triangle in the Klein disk model. 

Extend the segment BC to the chord Ar and draw IDT, creating the triangle tc,.@Cr 

with ll@fll1E2 = 1. Then using the Pythagorean Theorem for tc,.ABC in the Klein model, we 

compute the Euclidean side length Cr: 

llCfll1E2 = Vl-AC2 

= J l-tanh2 (b) 

cosh2 (b) - sech2 (b) 
= 

1 
= = sech(b) 

cosh(b) 

1 
By symmetry it follows that CA= Cr= . Now we compute the Euclidean 

cosh(b) 

length x = llBCll1E2 of the segment BC via its hyperbolic length a= llBCll1H12: 
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a= llBClllHl2 = ~ l1n(AB: rB)I 
2 AC re 
~11n(AC-x ·~)I 
2 AC rc+x 

(fC"" AC by symmetry) = 

= 

= 

~lnrc+x 
2 rc-x 

1 
---+x 

~ln cosh(b) 
2 1 

----x 
cosh(b) 

Solving for x in terms of a and b, we find that 

1 
+x 

cosh(b) e2a = 1 

cosh(b) 
-x 

1 e2a 1 
~ +x = -e2ax 

cosh(b) cosh(b) 

x(e2a + 1) (e2a -1) 
1 

~ = cosh(b) 
e2a_ 1 1 

~ x = e2a + 1 cosh(b) = tanh(a) 
1 

cosh(b) 

Therefore, the Euclidean side length BC in the Klein model IK2 is expressed as 

tanh(a) 
x = llBCll1E2 = h = tanh(a) · sech(b) 

cos (b) 

We have thus proven Lemma 5.2. 

5.1 The Hyperbolic Pythagorean Theorem 

D 

Applying the Euclidean Pythagorean Theorem to the right Euclidean triangle .6.ABC in 

the Klein model IK2 , which is the image of the hyperbolic triangle .6.ABC in HJ2 , we obtain 

tanh2 (b) + x2 = tanh2 (c) . 
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In IK2, the Euclidean triangle 6.ABC has side lengths llACll1E2 = tanhb, llBCll1E2 = x, and 

llABll1E2 = tanhc. 

Substituting for x from Lemma 5.2, we find the first form of the hyperbolic 

Pythagorean Theorem for the hyperbolic triangle 6.ABC: 

2 tanh2(a) 
tanh (b) + 2 = tanh2 (c) 

cash (b) 
(5.1) 

This expression is very close to the Euclidean Pythagorean Theorem, but it has a little 

bit more complicated form with respect to the standard formula a2 + b2 = c2. Now we 

drastically simplify the expression (5.1) to get the simple expression (5.2) in the form of 

the theorem. The Pythagorean Theorem for a right hyperbolic triangle does not have the 

same form as the Euclidean Pythagorean Theorem. 

Theorem 5.3 (Pythagorean Theorem). Let 6.ABC be a right hyperbolic triangle with the 

legs BC= a, AC= b, and the hypotenuse AB= c, then 

cosh(c) = cosh(a) · cosh(b) (5.2) 

Proof Subtracting 1 from both sides of Equation 5.1 leads us finally to the desired for-

mula 5.2: 

tanh2(a) 
===> (tanh2(b)- l) + 2 = tanh2(c)- l 

cash (b) 

-1 tanh2(a) -1 
===> + =---

cosh2(b) cosh2(b) cosh2(c) 

1 - tanh2 (a) 1 
===> ---- = ---

cosh2 (b) cosh2 (c) 
1 

cosh2(a) 1 
===> =---

cosh2 (b) cosh2 (c) 
1 1 

===> =---
cosh2 (a) cosh2 (b) cosh2 (c) 

===> cosh(c) = cosh(a) · cosh(b) 

D 
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5.1. l Trigonometric Relationships for a Right Hyperbolic Triangle 

For an arbitrary triangle 6.ABC we formulate the equivalent hyperbolic trigonometric 

rules. Drop the perpendicular AH from point A to segment BC. Then His the foot 

point of the altitude AH; denote h = llAHll11-112. Additionally, we denote lkl = llHCll11-112. The 

hyperbolic directed length of the segment HC is positive, zero, or negative depending on 

the measure of angle LC defined by: 

HC = k > 0 <=>LC< 90° 

HC= k= 0 <=>LC= 90° 

HC = k < 0 <=>LC> 90° 

Figure 5.2: Case 1: The hyperbolic directed length HC = k is greater than zero. 

Figure 5.3: Case 2: The hyperbolic directed length HC = k is equal to zero. 
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Figure 5.4: Case 3: The hyperbolic directed length HC = k is less than zero. 

We formulate the trigonometric relations that express the angles A and B of a right 

triangle £:,.ABC with L. C = 90° in terms of the Euclidean side lengths. Then we switch the 

roles and find the trigonometric relations that express the side lengths via the angles A 

andB. 

. llBCllF tanh(a)sech(b) sinh(a) cosh(c) sinh(a) 
1. s1nA= = = = __ _ 

llAB lliF tanh(c) cosh(a) cosh(b) sinh(c) sinh(c) 

In JEZ, sin A = % ; however, in IHlz we have to add sinh to both the numerator and the 
. . . . sinh(b) 

denommator. Similarly, we see that smB = . h . 
sm (c) 

llACll1E2 tanh(b) 
2. cosA= =---

llABll1E2 tanh(a) 

In JEZ, cos A= ~; in IHlz we have to add tanh to both the numerator and denomina­
tanh(a) 

tor. Likewise, cos B = . 
tanh(c) 

llBCll1E2 tanh(a)sech(b) tanh(a) tanh(a) 
3. tanA = = = . = 

llACll1E2 tanh(b) smh(b) cosh(b) sinh(b) 
cosh(b) 

In JEz, tanA =~;and, in IHlz we have to add tanh to the numerator and sinh to the 
tanh(b) 

denominator. Likewise, tanB = . 
sinh(a) 

Now we look to formulate the relations between the side lengths of the right hy­

perbolic triangle £:,.ABC and the angles A and B. We will use the second form of 

the hyperbolic Pythagorean Theorem, cosh(c) = cosh(a) cosh(b). 
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tanh(b) 
cosh(c) sinh(b) cosh(c) sinh(c) tanh(c) cos A 

4. llBCll[z = cosh(a) = = · = = 
cosh(b) cosh(b) sinh(c) sinh(b) sinh(b) sinB 

sinh(c) 

tanh(a) 

5. llAClliF = cosh(b) = cosh(c) = t~nhh(c) = cosB 
cosh(a) sm (a) sinA 

sinh(c) 

cosA cosB 1 
6. llABlllF = cosh(a)cosh(b) = -.- · -.- = = cotAcotB 

smB smA tanAtanB 

The trigonometric relationships defined in relations 4., 5., and 6. do not have equiv-

alent relations for a right Euclidean triangle. The values h and k will play crucial roles in 

the following proofs of the Law of Sines and the 1st Law of Cosines, respectively. 

5.2 Law of Sines 

Theorem 5.4. Let a, b, c be the side lengths of the hyperbolic triangle .6.ABC, and A, B, 

and C be its interior angles. Then 

Proof 

It follows that 

Then we arrive at 

sinh(a) sinh(b) sinh(c) 
---= =---

sin A sinB sinC 

. sinh(h) 
smB=--­

sinh(c) 

. sinh(h) 
smC=--­

sinh(b) 

sinh(c) sin(B) = sinh(b) sin(C) = sinh(h) 

sinh(c) sinh(b) sinh(a) = =---
sin(C) sin(B) sin(A) 

(5.3) 

or, multiplying throughout by the quantity 2n we have another formulation of the Law 

of Sines: 
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O(a) O(b) O(c) 
= = 

sin(A) sin(B) sin(C) 

where O(x) = 2n sinh(x) is the circumference of a circle of radius x. D 

5.3 The Two Hyperbolic Laws of Cosines 

5.3.1 The First Hyperbolic Law of Cosines 

cosh(c) = cosh(a) cosh(b) - sinh(a) sinh(b) cos(C) (5.4) 

Proof Suppose we have an arbitrary hyperbolic triangle L-.ABC as depicted in the Figure 

5.2. After dropping the perpendicular AH from A to segment BC, we consider the right 

hyperbolic triangle ABH. Then applying the Pythagorean Theorem to triangle L-.ABH 

we obtain cosh(c) = cosh(h) · cosh(a- k). Similarly, for triangle L-.ACD we get cosh(b) = 

cosh(h) · cosh(lc). Then solving for cosh(c) we compute 

cosh(b) 
cosh(c) = h · cosh(a - k) 

cos (le) 

cosh(b) · (cosh(a) cosh(k) - sinh(a) sinh(k) 

cosh(k) 

= cosh(a) cosh(b) - sinh(a) cosh(b) tanh(k) 

= cosh(a) cosh(b) - sinh(a) sinh(b) tanh(b)cos(C) 

= cosh(a) cosh(b) - sinh(a) sinh(b)cos(C) 

D 

5.3.2 The Second Hyperbolic Law of Cosines 

The first law of cosines provided a method for determining the side lengths (a, b, and c) 

of the triangle ABC from its angles (A, B, and C). Unlike in Euclidean geometry, there is 

a second formulation of the law of cosines which provides a method for computing an 

angle from the side lengths. We will not derive the second hyperbolic law of cosines. 

cos C = -cosAcosB + sinAsinBcosh(c) (5.5) 
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Chapter6 

The Conformal Poincare Models 

The Klein disk model allowed us to visualize the hyperbolic plane as a disk in the Eu­

clidean plane where hyperbolic lines were Euclidean lines. There was a cost, however, 

the angles that we measured in the model were not equal to the actual hyperbolic angles 

(except when the vertex of the angle was located at the center of the disk). Suppose that 

we want to have a model which preserves angles; what would it look like? Such a model 

is called conformal. 

Our goal is to construct a conformal model of ll-02 . Start with the Klein disk model, 

and attach a hemisphere below the disk. Lines in the Klein model (k-lines) are Euclidean 

chords. Consider one such k-line lying in our disk. Then intersect the hemisphere 

with the vertical plane which intersects the disk along the given k-line. The resulting 

intersection of the plane with the hemisphere is a semicircle which is orthogonal to the 

disk. Repeating this process for any line in our disk, we see that the intersection with 

the hemisphere always results in a semicircle on that hemisphere. Now our goal is to 

create a model which preserves angles, so we need to see how the angle formed by the 

intersection of two k-lines in our disk changes when we determine the corresponding 

angle on the hemisphere. 

Suppose we have two k-lines, land m, in our disk which intersect forming angle a. 

To map them on the hemisphere, we take the two planes (the vertical plane containing 
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l, and the vertical plane containing m) and intersect them with the hemisphere. Two 

intersecting semicircles are formed, denoted l' and m'. The intersection of l' and m' 

forms an angle f3: this is the angle between the tangent lines to l' and m' in the tangent 

plane to the hemisphere at the intersection point = l' nm'. Note that this angle is equal 

to the angle between the two vertical planes which is equal to the angle between the two 

k-lines in IK 2 . So, we have an equal angle on the hemisphere. 

Now, add the hemisphere above the disk so that we have an entire sphere. Consider 

the plane, TI, tangent to the sphere at the south pole S. From the north pole N, project 

stereographically the southern hemisphere onto the plane TI. If our sphere has radius 

r, then southern hemisphere projects to a disk, w, on the plane whose radius is R = 2r 

(which follows from considering similar triangles). The equator of the sphere projects to 

the boundary aw of the disk w in that plane. This boundary, aw, represents the absolute 

of our model. The lines (semicircles) that we had constructed earlier on the southern 

hemisphere project to circular arcs on the plane which are perpendicular to aw, or they 

project to diameters of w, which correspond to arcs through the south pole of the sphere. 

Since stereographic projection is a mapping that preserves angles, the angle f3 between 

the arcs on the hemisphere is projected to an angle f3 between the projected arcs in the 

disk. This new model is called the conformal Poincare disk model, denoted by ll:D2 . 

A couple of differences to note between the Klein disk model and the Poincare disk 

model are examined in Table 6.1. 

Table 6.1: The differences between the Klein disk model and the Poincare disk model. 
Klein Model (IK. 2) Poincare Disk Model (ll:D2 ) 

Angles Distorts hyperbolic angles Preserves hyperbolic angles 
Lines Euclidean chords circular arcs and Euclidean diameters 
Distance distPAz = ~llnCH2,PQ)I distlDz = JlnCH2,PQ)I 

One subtle difference highlighted in the table is that of the distance between two 

points P and Q on the respective hyperbolic line LD. Observe that unlike in the 

Klein model, there is no ! factor in computing the distance between two points in the 
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Figure 6.1: Poincare lines intersecting at regular points. 

Poincare disk model. The rationale behind this comes from our earlier construction of 

the Poincare disk model. Recall that when we projected the southern hemisphere onto 

the disk w located in the tangent plane II, the equator of the sphere projected to the 

boundary of the disk, ow, a circle of twice the radius of the equatorial circle, and also the 

sphere. 

6.1 Isomorphisms between the Three Models 

The three models, IK 2 , § 2 , and [])2 , provide different perspectives of the hyperbolic plane 

in the Euclidean plane. One question that arises is since we have these different ways of 
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Figure 6.2: Asymptotically parallel lines in the Poincare disk model. 

viewing the hyperbolic plane, is it possible to move freely between these different mod-

els? The quick answer is yes. Now in order to move between two hyperbolic models, we 

will map one into the other, preserving the underlying structure of the hyperbolic plane. 

That is such a map should send hyperbolic points to hyperbolic points, preserve hyper-

bolic angles, and send h-lines to corresponding h-lines. This last criterion is necessary 

since there are three types of lines in hyperbolic geometry, namely regular, asymptoti-

cally parallel, and divergently parallel lines. A map between two models satisfying these 

criteria has a special name. 

Definition 6.1. We say that there exists an isomorphism between two models (or two 

models are isomorphic) if there is a map between the two models satisfying the following 

criteria: 

{ 
1) one-to-one correspondence between objects 

2) relation between objects is preserved 
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Figure 6.3: Divergently parallel lines in the Poincare disk model. 

The first condition of Definition 6.1 requires for example that points are sent to 

points and hyperbolic lines are sent to hyperbolic lines. As for the second condition, for 

example, it requires two congruent angles in one model to have under an ismorphism 

images which are also congruent in the second model. Note that this last condition does 

not require for an angle and its image under an isomorphism to be congruent. 

We have already been exposed to one isomorphism, the one between the Klein disk 

model IK2 and the Poincare disk model IID2 discussed in the construction of IID2 . 

IK 2 vertical planes §2 stereographic projection IID2 

Another isomorphism between the Klein disk model and the Poincare disk model 

is the radial isomorphism. Since IK 2 and IID2 both take place in disks, it would make 
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sense that we could go directly from one model to the other without having to use the 

intermediate step of the sphere. The following construction provides us with some 

insight in how to move between the Klein model and the Poincare disk model via a radial 

isomorphism. 

6.1.1 The Radial Isomorphism between IK 2 and IED2 

Figure 6.4: The radial isomorphism between the Klein disk model and the Poincae disk 
model. 

Take a line LD in the Klein model. We denote the center of the disk by <!J and the 

absolute by aw. Construct the pole of the k-line LD, P = P(LD). Then construct the 
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lines IliJ and Dl!J. We want to find the Poincare line, p-line, which corresponds to the 

k-line LD. Draw the circle, c(P, PL), centered at the pole P of radius PL. The p-line is 

the arc LD which is the portion of the circle c(P, PL) located inside of the disk w. For any 

point XE p-line, the corresponding point Yin the k-line is the point of intersection of 

the radius through X and the chord LD: Y = OXnLD. This process is bijective, every 

point in the p-line is mapped to a unique point in the k-line, and vice-verse. So, we have 

established a bijection between the points of these two types of hyperbolic lines. A fact 

which we will not prove is that the radial isomorphism preserves hyperbolic angle. 
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Chapter7 

The Poincare Upper Half-Plane 

Model 

Up until now, we have developed several models in Euclidean space to aid us in viewing 

and understanding the hyperbolic plane H2 . Two of the models, the Klein disk model 

and the Poincare disk model in the Euclidean plane, allowed us to view the hyperbolic 

plane H2 as disks in IE2 provided that certain properties were met. The main distinction 

between these two models was that of conformality. The Poincare disk model afforded 

us a way to see hyperbolic angles in the Euclidean plane by taking lines in the disk to be 

diameters and circular arcs orthogonal to the absolute. In both cases, the models viewed 

H2 as a bounded subset of IE2 . That is the planar structure of the hyperbolic plane was 

more difficult to see in the disk models. Suppose now that we want to use the Euclidean 

planar structure for the hyperbolic plane. It would be especially beneficial if we could 

eventually obtain the structure of the standard complex plane. What would this new 

model look like? In fact, this new model will be a conformal model, which views the 

hyperbolic plane as the upper half-plane in IE2 . 
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7.1 Construction of the Poincare Upper Half-Plane Model 

7.1.1 The Projection of the Poincare Disc 

Start with a sphere, with the north and south poles labeled N and S respectively, along 

with the plane II tangent to the sphere at S. On the sphere, we draw the prime meridian 

(0th meridian) and its antimeridian (180th meridian) forming a great circle passing 

through the north and south poles. For simplicity, from here on when we discuss the 

prime meridian, we are in fact referring to the great circle containing the prime merid­

ian. Additionally, unless otherwise stated, when we talk about a meridian in general, 

we are considering the great circle containing the meridian in question. Consider 

circular arcs whose center resides on the prime meridian and are located in the right 

hemisphere. For visualization purposes, we are considering the sphere discussed in 

the construction of the Poincare disk model which has been rotated 90°. Then from 

the north pole N, we project stereographically onto the plane II. As a result, the prime 

meridian projects to a line l, and the north pole projects itself to some point at infinity. 

So, the circular arcs on the sphere will project to semicircles in the plane centered on 

the line l or to lines perpendicular to l. The latter case occurs when the circular arc on 

the sphere contains the north pole. The semicircles appear because the stereographic 

projection preserves angles; hence, the circular arcs on the sphere must be projected to 

circular arcs orthogonal to line l in the plane, i.e. they must be semicircles with centers 

on the line l. 

Let's understand to what we have projected the right hemisphere. Suppose for a 

moment that we have a sphere, with north and south poles N and S, and a plane IT 

tangent to the sphere at S. If we were to project stereographically from N the entire 

sphere onto II, then we would project onto the entire Euclidean plane with an additional 

point at infinity, corresponding to the stereographic projection of the north pole itself. 

In the plane, we can view the south pole as the origin. Additionally, two orthogonal 

meridians will project to orthogonal lines in the plane. Choosing them nicely, we can 

view these two lines in the plane as the x and y axes. Returning to our construction 
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above, if we choose the prime meridian to project stereographically onto the x-axis in 

the plane, then every point in the right hemisphere projects to points above the x-axis. 

Thus, we get all of the projections located in the Euclidean upper half-plane. 

7.1.2 Lines in the Upper Half-Plane Q} 

In this new setting, by "plane" we mean the upper half-plane of IE2 ; that is the set of 

points { (x, y) : y > O}. Note that the line l is not a part of this model and is called the 

absolute, as the projection of the absolute of the Poincare model. A hyperbolic "point" 

is a Euclidean point which lies above the x-axis (the absolute). A hyperbolic "line" is 

a ray with its vertex on the absolute and perpendicular to the absolute, or a semicircle 

centered on the absolute. The next concept that we need to verify is the very first axiom 

belonging to any geometry: there exists a unique line through any two points. We have 

to consider this statement as a theorem because of the unusual concept of a point and a 

line in this setting. 

There are two cases to consider: 

Case 1 : A hyperbolic line passes through two points in IU2 having the same x-coordinate. 

These two points lie on the same vertical ray, which is a hyperbolic line. Hence, the 

hyperbolic line is unique in this case. 

Case 2: Two points in IU2 with different x-coordinates. 

These two points lie on the same semicircle. To see this, suppose that P and Q are two 

such points and draw the segment PQ. At the midpoint M of PQ erect the perpendicular 

line PQJ_. This line intersects the absolute at a point C = PQJ_ n l, equidistant to both P 

and Q. Hence, C is the center of the circle through P and Q. Then the unique hyperbolic 

line containing the points P and Q is the semicircle, c(C, QC), centered at the point CE: l 

having radius QC. 
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From now on, we will call all hyperbolic lines in the upper half-plane u-lines for 

simplicity. Also, any geometric object in the upper half-plane considered as a hyperbolic 

object we will call a u-object. In the upper half-plane, two u-lines (as described above) 

intersect at either a point in the plane, or at a point on the absolute, or do not intersect 

in the plane at all. Two u-lines which intersect at a point on the absolute are called 

asymptotically parallel. There are three possibilities, two semicircles, or a semicircle and 

a vertical ray, or two vertical rays can be asymptotically parallel. On the other hand, two 

lines which do not intersect and are not both vertical rays are called divergently parallel. 

Later we will see that these correspond directly with asymptotically parallel and diver­

gently parallel lines in the other models. 

For anypointP in the upper half-plane, we can draw a bundle of semicircles, passing 

through the point P. 

7.1.3 Circles in u_P 

Let's draw a Euclidean circle c located completely in the upper half-plane. We show now 

that c is also a hyperbolic circle in the upper half-plane 11J2, but its hyperbolic center dif­

fers from its Euclidean center. First of all, c is a hyperbolic circle because c is the image 

of a circle on the sphere under stteographic projection, and stereographic projection 

maps circles to circles. Now we need to determine the location of the hyperbolic center 

of the hyperbolic circle. If we find a point from which all of the points on the circle c 

are located at an equal hyperbolic distance, then this point will be the hyperbolic center 

of the circle c. In fact, the hyperbolic center of c turns out to be closer to the absolute 

than the Euclidean center. Here is a construction of the hyperbolic center of a given 

circle c in the upper half-plane model QJ 2 . Draw the vertical u-line p containing the 

Euclidean center <5'1 . By symmetry, the hyperbolic center must lie on the line p. This 

u-line p intersects the absolute at a point, call it Q. Then construct the two Euclidean 

lines through point Q which are tangent to c, denoting the tangent points on the circle 

Z:: and .Q. Draw the semicircle c(Q, QL.) centered at Q with radius QL.. The resulting 
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intersection of the semicircle and the u-line pis a point @2 . We claim the point @2 is in 

fact the hyperbolic center of the hyperbolic circle c. 

Claim: @2 is the hyperbolic center of circle c. 

Figure 7.1: A circle contained entirely in the upper half-plane model, Q_J2. 

Proof Recall the fact that two diameters intersect at the center of a circle. Also, we know 

that a stereographic projection preserves angles, so this means that diameters will be 

mapped to diameters. In order to show that @2 is the hyperbolic center of circle c, we 

need to show that the arc rn is a diameter. From the construction above, recall that the 

Euclidean line containing the segment QD is tangent to the circle c at D. Moreover, the 

radius @1D is tangent to the circle c(Q, QD), centered at point Q having radius QD, at the 

point D. For any circle we know that a radius and a tangent meeting at a point on a circle 

are orthogonal. Then by symmetry of intersecting circles we conclude that the arc L:D is 

orthogonal to the circle c. Thus, L:D is a diameter of the hyperbolic circle c; hence, the 

intersection point of the two diameters L:1D1 nL:D = @2 is the hyperbolic center of the 

hyperbolic circle. D 
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We have shown a method of determining the hyperbolic center of a hyperbolic circle 

located completely in the upper half-plane QJ 2 . 

7 .2 Isomorphism between the two Poincare Models 

The isomorphism between the Poincare upper half-plane model and the Poincare disk 

model follows from the composition of two stereographic projections. This procedure is 

described in two steps. 

Step 1: 

Consider the Poincare disk model w with center (fJ in the plane TI. Without loss of 

generality, we assume that the radius of the disk w equals 2. Then we place the sphere of 

unit radius tangent to the plane TI so that the south pole of the sphere, S, and the center 

of the disk (fJ coincide. Then we project stereographically the Poincare disk model onto 

the southern hemisphere (the boundary of the disk, ow, maps to the equator) and its 

complement including the point at infinity onto the other hemisphere. Recall that in the 

Po in care disk [D2 , a p-line is either a diameter or a circular arc. And circular arcs are the 

portions of the circle c(P, PI) centered at the pole P = P(ID) having radius PI. Then the 

complement of the circular arc is the portion of this circle exterior to the disk w. We can 

view a diameter in [D2 as the portion of a circle of infinite radius inside w. So, we have via 

stereographic projection the Poincare disk model and its complement mapped on the 

unit sphere. 

Step 2: 

Project stereographically onto any vertical plane tangent to the equator of the sphere, 

say at point Q, from the antipodal point of point Q. Then the equator projects onto 

an infinite line (which we denote the x-axis). And the northern hemisphere projects to 

points lying above the x-axis. Indeed, this projection gives the upper half-plane. Recall 

that the absolute of the Poincare disk [D2 mapped to the equator on the sphere, so this 
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infinite line is the absolute in our upper half-plane model. 

In this procedure we made use of two facts which we will not prove here: the 

stereographic projection and its inverse are conformal maps; the composition of two 

stereographic projections is still a conformal map. 

7.3 One-to-One Correspondence between Hyperbolic Lines of 

the Four Models of Hyperbolic Geometry 

Having established the isomorphisms between the four models of hyperbolic geometry 

(Klein disk JK2, Poincare disk [))2 , Poincare sphere § 2, and the Poincare upper half-plane 

QJ2), the one-to-one correspondence between lines of the various models is explored. In 

Chapter 4, when discussing the Klein model, we discovered that there are three types of 

lines in hyperbolic geometry, namely regular, asymptotically parallel, and divergently 

parallel lines. And in each subsequent model, we described what lines looked like. Table 

7 .1 reviews the lines in each model. 

Table 7.1: Hyperbolic lines in the models 
Model Notation Line 
Klein disk JK2 Euclidean chords 
Poincare disk [))2 Euclidean diameters and circular arcs 
Poincare sphere §2 semicircles 
Po in care upper half-plane QJ2 vertical rays and semicircles 

Let's consider the three types of lines (regular, asymptotic, and divergent) in each 

of the four models and understand their connection to one another. One move that 

we will use throughout is the stereographic projection of the northern hemisphere of 

the Poincare sphere onto a vertical plane tangent to the sphere at a point located on 

the equator. Once a point on the equator is chosen as the point from which the stere­

ographic projection of the northern hemisphere will be performed, then this points an-
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tipodal point (also located on the equator) is the point where the vertical plane onto 

which the stereographic projection occurs is tangent to the sphere. 

7 .3.1 Regular Hyperbolic Lines 

In the Klein model, we said that two lines were regular if they intersected inside of the 

disk w at a regular point. Suppose that we have two such lines in w, then under the 

radial isomorphism between rr< 2 and lfD2 , the corresponding p-lines also intersect at a 

point inside w. Note that a diameter in the model rr< 2 is also a diameter in the model IID2 , 

and a non-diameter in rr< 2 relates to a circular arc in IID 2 . Then under the stereographic 

projection, regular p-lines in IID2 together with their complements map to circles on the 

Poincare sphere § 2 having two points of intersection for each pair of circles. Observe that 

on the sphere the images of the two regular lines have 4 ends located at the equatorial 

circle. Since we must project stereographically the northern hemisphere from a point on 

the equator to obtain the upper half-plane, there are two cases to consider. 

Case l: (Non end point) 

In the first case, we perform a stereographic projection from a point different from one of 

those 4 ends. This results in the intersection of two semicircles in the upper half-plane. 

Figure 7.2: Case 1: The intersection of two regular semicircles in QJ 2 . 

Case 2: (End point) 

On the other hand, if we project from one of the four ends, then the point we project 

from is sent to infinity. Thus, we obtain the intersection of a semicircle and a vertical ray 

in the upper half-plane, case 2. These two cases describe the two types of regular u-lines 

which can occur in QJ2 . 
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Figure 7.3: Case 2: The intersection of a vertical ray and a semicircle in QJ 2 . 

7 .3.2 Asymptotically Parallel Lines 

Recall that in IK 2 we said that two lines were asymptotically parallel if they intersected at 

a point on aw. This extends to two circular arcs or a circular arc and a diameter meeting 

at a point on aw in the Poincare disk model. Then in the Poincare sphere model two 

asymptotically parallel lines are circular arcs which intersect at a point on the equator. 

This can be seen after applying a stereographic projection of two asymptotically parallel 

lines in []]) 2 . Now, these two circular arcs meet the equator at three distinct points (two 

points of degree 1 and one point of degree 2). As a result, there are three potential ways 

for the asymptotically parallel lines to project onto the upper half-plane. 

Case 1: (Non end point) 

Choose a point on the equator which is not an end of any of the semicircles. Then 

projecting stereographically the northern hemisphere from this point will produce two 

semicircles which intersect at some common point on the absolute of QJ2 . 

Figure 7.4: Case 1: First possible orientation of two asymptotically parallel semicircles. 
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Figure 7.5: Case 1: Second possible orientation of two asymptotically parallel semicir­
cles. 

Case 2: (Non-shared end point) 

Choose one of the two ends of the semicircles. Then project stereographically the north-

em hemisphere from this point. This will yield the upper half-plane with one vertical 

ray and one semicircle meeting at a point on the absolute. 

Figure 7 .6: Case 2: A vertical ray and a semicircle are asymptotically parallel. 

Case 3: (Shared end point) 

Choose the point on the equator where both semicircles meet. Projecting stereograph-

ically the northern hemisphere from this point will yield the upper half-plane with two 

vertical rays which meet at infinity. 

Therefore in the Poincare upper half-plane model QJ2 there are three types of asymp-

totically parallel lines. 
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Figure 7.7: Case 3: Two vertical rays are asymptotically parallel. 

7.3.3 Divergently Parallel Lines 

Divergently parallel lines in the Klein disk model IK2 are two lines which intersect at a 

point exterior to the disk w. From the radial isomorphism, we see that in [])2 divergently 

parallel lines are the circular arcs that do not intersect in w and the pairs of diameters 

and circular arcs which do not intersect. Then using the stereographic projection onto 

the sphere, we see that divergently parallel lines on the Poincare sphere are the pairs of 

circular arcs which do not intersect on the sphere. As in the case of regular lines, these 

two circular arcs intersect the equator at 4 distinct points, meaning that there are two 

scenarios we have to consider when we stereographic project the northern hemisphere. 

Case 1: (Non end point) 

Choose a point on the equator that does not coincide with either of the two ends of each 

semicircle. From this point project stereographically the northern hemisphere onto the 

vertical plane tangent to the sphere at the antipodal point. Then we obtain the upper 

half-plane IU 2 with two disjoint semicircles. 

Figure 7.8: Case 1: Two non-meeting semicircles are divergently parallel. 
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Case 2: (End point) 

Choose one of the four ends of the semicircles located on the equator. We project 

stereographically the northern hemisphere from this point. Then the semicircle which 

contains the ends from which we performed the stereographic projection is mapped to 

a vertical ray and the other semicircle is mapped to a semicircle so that the intersection 

of both u-lines is empty. 

Figure 7.9: Case 2: A non-meeting vertical ray and semicircle are divergently parallel. 

Via the isomorphisms between the four models, we have established the one-to-one 

correspondence between the various types of lines in each of the models. 
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Chapter8 

Equidistant Curves and Horocycles 

In Euclidean geometry the idea of an equidistant curve to a line is a curve whose points 

have the same orthogonal distance to a line. One might realize that such a curve is 

in fact a parallel line. We look to develop a similar notion of equidistant curves in the 

setting of hyperbolic geometry. 

Definition 8.1. An equidistant curve is a curve whose points have the same orthogonal 

distance from a given line. 

Let's consider a p-line I:Q in [D2 and a point P rt. I:O. We want to construct the 

equidistant curve to the line I:Q containing the point P. As it turns out, this curve is the 

portion of the Euclidean circle containing points I:, 0, and P lying in the disk w. The 

construction of the circle follows from the straight-edge and compass construction of 

a circle containing three given points. Join two pairs of the three points, say PI: and 

PO. Find the median of each of the resulting segments. Erect the lines perpendicular 

to each of the segments at the median. These perpendicular lines intersect at a point, 

say Q, which is the center of the circle. Draw the circle c(Q, QP) centered at Q of radius 

QP. The portion of the circle inside the disk w is the equidistant curve to the line I:Q 

containing the point P. 
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Figure 8.1: The circular arc is the equidistant curve passing through point P of the p-line 
:LD. 

A couple of items to note. The equidistant curve is not orthogonal to the boundary 

aw of the disk. Additionally, if P, l:, Dare collinear (in the Euclidean sense), then the 

resulting equidistant curve is the Euclidean chord between :L and D. So, in the Poincare 

disk model, equidistant curves can either be Euclidean chords, or circular arcs. 

In the Poincare upper half-plane we determine equidistant curves. Since there are 

two types oflines in a_P (vertical rays and semicircles), we treat the equidistant curve in 

each case separately. 

Case 1: (semicircle) 

Suppose that we have a semicircle with points P and Q on the absolute, and a point R 

not on the semicircle. To find the equidistant curve to the semicircle that contains the 

point R, we construct the Euclidean circle which contains the points P, Q, and R. 
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Case 2: (vertical ray) 

Suppose that we have a vertical ray, l, meeting the absolute at the point Q, and a point P 

not contained in this vertical ray. Then the equidistant curve to the line l through point 

P is the ray emanating from point Q passing through the point P. 

In the Poincare disk model, a "circle" is a Euclidean circle. We call "circle" a hyper­

bolic, or a p-circle and its hyperbolic center by p-center. The only difference being that 

the p-center of the circle is not the Euclidean center. In fact, the hyperbolic center is 

closer to the absolute than the Euclidean center. Symmetry allows us to remove some 

of the ambiguity of the location of the hyperbolic center of the circle since the p-center 

must lay on the radius containing the Euclidean center. Now suppose that we move this 

circle as a rigid Euclidean body along the radius containing the disk's center towards 

the absolute. Then as the boundary of the circle approaches the absolute, the p-center 

gets closer and closer to the absolute and to the boundary of the moving circle. At the 

moment when the circle is tangent to the disk at a point T on the absolute, the center 

of the circle is on the absolute as well. More importantly, the center of the p-circle is 

the tangent point T. Now our p-circle is no longer a circle in [])2 , yet it has another 

significance. This limiting Euclidean circle, as it will follow from the Statement below, is 

a horocycle (a curve satisfying Definition 8.2). 

Definition 8.2. A horocycle is a curve in [])2 such that every geodesic through point Tis 

orthogonal to the horocycle. 

Statement: The limiting Euclidean circle is a horocycle. 

Proof Take any p-line l passing through T and limiting Euclidean circle y at T. We 

have to prove that l _l_ y at the intersection point M = l ny. Together p-line l with its 

complement forms a Euclidean circle c(P, PT) centered at point P having radius PT. 

Since PT is tangent to the limiting Euclidean circle y at T, then the Euclidean radius 

OT is perpendicular to PT at T. Moreover, by symmetry, the two angles formed by the 

intersection of two circles are equal. Therefore, the line l is perpendicular to y at M. D 
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Figure 8.2: The horocycle to the disk w at boundary point C with center F. 

As for the Poincare upper half-plane QJ2 , there are two types of horocycles. One 

horocycle is a "circle" which is tangent to the absolute (x-axis) at a point, T. The other 

possibility is a Euclidean line parallel to the absolute (x-axis). These two cases can be 

seen by composing two stereographic projections taking a horocycle from the Poincare 

disk ~2 to the Poincare upper half-plane QJ2 . The first stereographic projection maps the 

horocycle in ~2 to a circle on the Poincare sphere § 2 tangent to the equator at a point, 

T. As we discovered above in showing the one-to-one correspondence between lines 

in the models, there are two possible points from which we can perform the second 

stereographic projection taking the Poincare sphere § 2 to the Poincare upper half-plane 

QJ2. 

Case 1: (non-tangent point) 

Choose a point on the equator different from the tangent point T and perform a stereo­

graphic projection of the northern hemisphere onto the upper half-plane. This results 
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in taking the circle tangent to the equator at T to a curve in the upper half-plane tangent 

to the absolute at the projection of point T, for simplicity we also denote it T. All u-lines 

passing through point T, including the unique vertical ray, are all orthogonal to this 

curve. 

Case 2: (tangent point T) 

From point T project stereographically the northern hemisphere of § 2 onto the upper 

half-plane QJ2 . Under this projection, the point Tis mapped to infinity. As a result, the 

circle on § 2 is projected onto a Euclidean line in QJ2 that is parallel to the absolute. The 

only u-lines passing through the projection of point Tare vertical rays, which we know 

are orthogonal to the absolute; hence, they are parallel to any Euclidean line parallel to 

the absolute. 
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Chapter9 

Unifying the Models of Hyperbolic 

Geometry 

Up to this point, we have seen four different models of the hyperbolic plane: the Klein 

disk model IK 2 ; the Poincare disk model [[}2 ; the Poincare spherical model § 2 ; and finally, 

the Poincare upper half-plane model IU2 . These models allowed us to visualize different 

properties of the hyperbolic plane in the familiar Euclidean plane. In Chapters 7 and 

8, we constructed isomorphisms connecting these four models. Here we discuss a fifth 

model, called the Minkowsld model, of hyperbolic geometry from which we will con­

struct another isomorphism between the Minkowski model, the Klein disk model, and 

the Poincare disk model. The Minkowski model is closely related to Einstein's Special 

Theory of Relativity. 

The Minkowski model of IHl2 is the upper sheet of the two-sheeted hyperboloid given 

by the equation 

x2 + y2 - z2 = - R2 

We arrive at this equation from the standard equation of a 3-sphere, x 2 + y2 + z2 = R2 

by making the substitution z >---> iz and R >---> iR which yields x 2 + y2 + (iz) 2 = (iR) 2. The 

hyperboloid has a north pole Nat (0, 0, 1) and a south pole Sat (0, 0, -1). So, we see that 

points that lie on the sheet above the plane z = 0 satisfy the conditions 

101 



{ 
x2 + y2 _ 2 2 = _ R2, 

z>O, 

while points that lie on the hyperboloid sheet below the plane z = 0 satisfy the conditions 

{ 
x2 + y2 _ 2 2 = _ R2, 

z<O. 

Now taking R = 0, we arrive at a double cone, or two cones with their apexes meeting 

at the origin. In physics, this resulting cone figure is called the light cone: x2 + y2- z2 = 0. 

Note that the light cone is a sphere of radius 0 in Minkowski space. Placing the observer 

at the origin, the light cone is used to distinguish events, both future and past, which can 

be reached by the observer when traveling at speeds less than the speed of light. Points 

that occur on the light cone are called light-like, in physics, they correspond to moving 

photons. In order to reach such an event, the observer would have to travel at the speed 

of light. Points in the interior to the light cone are called time-like, meaning that the 

observer can reach such an event in time traveling at a speed less than the speed oflight. 

These correspond to the events which you can reach. On the other hand, points lying in 

the exterior of the light cone are called space-like, meaning that the observer is unable 

to reach such an event traveling at any speed less than the speed of light. 

Returning to the task at hand, let's understand what hyperbolic lines look like in the 

Minkowski model. In this model, hyperbolic lines are the geodesics on the hyperboloid 

formed from the intersection of the upper sheet of the hyperboloid with a plane passing 

through the origin; for brevity we denote such lines m-lines. We now construct the 

isomorphism between the Minkowski model M2 and the Klein disk model ll<.2 . Then we 

will construct the isomorphism between the Minkowski model M2 and the Poincare disk 

model [])2 . 

102 



Take the plane z = 1 and consider its intersection with the light cone x 2 + y2 - z2 = 0. 

The intersection is a disk centered at the north pole, N = (0, 0, 1), in the plane z = 1 whose 

boundary is a circle on the light cone. In fact, this disk is the disk, w, of the Klein disk 

model ll<. 2 . To see that this is the case, recall that an m-line resulted from the intersection 

of a plane passing through the origin (fJ with the hyperboloid. For a given m-line, the 

unique plane containing it intersects the disk win a chord, a k-line. Readily, we see that 

there is a bijection between points, and m-lines are mapped to k-lines. Thus, we have 

an isomorphism between the Minkowski model and the Klein disk model. 

If one were to make a stereographic projection of the Minkowski model M2 (consid­

ering the upper sheet of the hyperboloid as a unit (northern) hemisphere in Minkowski 

space M3 with the center ({J) from the south pole S = (0, 0, -1) onto the (x, y)-plane z = 0, 

we obtain the Poincare disk model [])2 in the disk x2 + y2 = 1 in the (x,y)-plane. There 

is a bijection between points, m-lines are mapped onto p-lines, and stereographic pro­

jection is a conformal mapping. This mapping also preserves hyperbolic angles, a fact 

which we will not prove here. Thus, the isomorphism between the Minkowski hyper­

boloid model M2 and the Poincare disk model [])2 is established. 

9.1 Conclusion 

In the first part of this dissertation we considered hyperbolic geometry without models 

following the works of Saccheri, Lambert, Legendre, Bolyai, Lobachevsky, and Gauss. We 

build hyperbolic geometry from Euclid's first four postulates and from the negation of 

the parallel postulate. Then in an effort to visualize hyperbolic geometry, we considered 

the models of Klein, Poincare, and Minkowski. Throughout the dissertation, we placed 

greater emphasis on the geometric presentation of the information rather than algebraic. 

As a result, we presented pictorially the geometries through numerous figures which al­

lowed us to visualize the strange behavior of straight lines both with and without models. 

In terms of the models themselves, we gathered the five models (the Klein disk model ll<. 2 , 

the Po in care disk model [])2 , the Poincare spherical model § 2 , the Poincare upper half-
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plane model QJ2 , and the Minkowski hyperboloid model M2 ) of the hyperbolic plane IHl2 

and established the isomorphisms between them. The theorems, such as the hyperbolic 

Pythagorean theorem, were proved in the Klein disk model IK 2 in easier ways than in the 

Poincare disk model [))2 . 
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