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Abstract 

Statistical measures of spatial interaction between multiple types of entities are commonly 
assessed against a null model of either toroidal shift (TS), which controls for spatial structure of 
individual subpopulations, or random labeling (RL) which controls for spatial structure of the 
joint population. Neither null model controls for both types of spatial structure simultaneously, 
although this may sometimes be desirable when more than two subpopulations are present.  To 
address this, we propose a flexible framework for specifying null models that we refer to as 
restricted random labeling (rRL). Under rRL, a specified subset of individuals is restricted, and 
other individuals are randomly relabeled. Within this framework two specific null models are 
proposed for pairwise analysis within populations consisting of three or more subpopulations, to 
simultaneously control for spatial structure in the joint population and one or the other of the 
two subpopulations being analyzed. Formulas are presented for calculating expected nearest 
neighbor counts and co-location quotients within the proposed framework. Differences between 
TS, RL and rRL are illustrated by application to six types of generating processes in a simulation 
study, and to empirical datasets of tree species in a forest and crime locations in an urban 
setting. These examples show that rRL null models are typically stricter than either TS or RL, 
which often detect “interactions” that are an expected consequence either of the joint population 
pattern or of individual subpopulation patterns.   
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1 Introduction 

The spatial interaction between populations of individuals belonging to different categories is a 
fundamental, but often overlooked aspect of geographical analysis (Cromley et al. 2014). It has 
been used to understand patterns of a wide variety of spatial entities, including biological 
species (Wiegand et al. 2007), disease occurrences (Souris and Bichaud 2011), businesses (Leslie 
and Ó hUallacháin 2006, Ó hUallacháin and Leslie 2013), and even astronomical objects (Stoica 
2010).  The concept goes by several different names in the literature, including spatial 
dependence (Liu et al. 2007), spatial interaction (Goreaud and Pélissier 2003, Fuller and 
Enquist 2012), bivariate spatial association (Souris and Bichaud 2011) and co-location (Huang 
et al. 2006, Leslie and Kronenfeld 2011). The term spatial segregation (Ceyhan 2009) is also 
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used to refer to negative interaction. In what follows, the term spatial interaction is used 
generally due to its popularity in the literature, but we also refer to a specific metric of co-
location as defined in Leslie and Kronenfeld (2011). The concept of spatial interaction as used 
here is distinct from cross-correlation in that it relates to qualitative marks (i.e. categories, 
species or subpopulations) rather than numerical values. 

An important challenge for researchers investigating patterns of spatial interaction is 
determining an appropriate null model. When three or more categorical populations are 
present, null model selection is complicated by the existence of multiple, confounding processes, 
including processes that affect the entire joint population (Ceyhan 2008, Getzin et al. 2008), 
subpopulations individually (Wiegand et al. 2007) and pairs of subpopulations  (e.g. spatial 
interaction). An appropriate null model should randomize those elements of the problem that 
pertain to the research question, while holding unrelated elements constant. Failure to isolate 
the specific effect of interest to the researcher will result in a hypothesis test that is likely too 
liberal, leading to Type I statistical errors (Fuller and Enquist 2012).  

Two commonly used null models are toroidal shift (TS) and random labeling (RL), which 
constrain the characteristics of individual subpopulations and the joint population, respectively. 
These null models are straightforward in their definition and easy to implement. When more 
than two subpopulations are present, however, it may be necessary to constrain characteristics 
of both types of patterns simultaneously. For example, a researcher investigating the spatial 
interaction between two tree species in a heterogeneous forest might wish to exclude the effects 
of the overall forest pattern, as well as the tendency for one species to grow in clusters. In such 
situations, an approach that combines the characteristics of TS and RL would be useful. At 
present, this can only be accomplished with more sophisticated methods such as pattern 
reconstruction (Wiegand and Moloney 2014), which requires detailed modeling of the spatial 
characteristics of the joint population and each subpopulation. We seek a simpler generic 
approach that is broadly applicable to exploratory and confirmatory analysis. 

Randomization restrictions are a powerful tool for developing alternative null models (Manly 
1991). In a Monte Carlo simulation environment, randomization defines the process by which 
the null sampling distribution is determined empirically. Thus, changes to the randomization 
process have the effect of changing the null model.  RL restricts the randomization process to 
retain the locations in the joint pattern. Fuller and Enquist (2012) further restrict label 
randomization to predefined cells to identify departures from randomness at a local rather than 
global scale. In a study of plant-plant interactions, Wiegand et al. (2007) restricted one species 
while randomly relocating plants of other species to distinguish between first- and second-order 
effects. These randomization restrictions have enabled a more nuanced interpretation of spatial 
pattern than CSR or RL. Nevertheless, a general theory of randomization restrictions and their 
use in null model specification is lacking.  

In this study, we introduce a generalized method of restricted random labeling (rRL) that 
allows specification of a range of null models for co-location analysis. rRL allows for any subset 
of the population to be restricted, and a general formula is presented to compute the expected 
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nearest neighbor count for any restriction set. We suggest two useful specifications of rRL 
appropriate for populations consisting of more than 2 subpopulations, which entail restricting 
the first and second subpopulation, respectively, in each pairwise analysis. Envisioning the set of 
pairwise analyses as a matrix with subpopulations assigned to rows and columns, we refer to 

these two specifications as  ܮܴݎ ௥௢௪  and ܮܴݎ ௖௢௟ . These variants provide a useful combination of 
the properties of TS and RL, exposing only those interaction patterns that are not logically 
implied by either the joint population pattern or the patterns of individual subpopulations. 

To demonstrate the proposed null models, we first review methods of co-location analysis for 
marked point patterns in Section 2. Next we define rRL and derive a general formula to compute 
expected nearest neighbor counts under each model in Section 3. Specific formulas and 

significance testing procedures for ܮܴݎ ௥௢௪  and ܮܴݎ ௖௢௟  are also introduced. To illustrate the type 
of knowledge that can be gained from rRL analysis, Sections 4 and 5 describe a case study 
comparing rRL with both TS and RL for three simulated pattern types and two empirical 
datasets. Spatial interaction is reported as a restricted co-location quotient comparing expected 
nearest neighbor counts under each null model with observed counts, along the lines of Leslie 
and Kronenfeld (2011), and significance testing is implemented through Monte Carlo 
simulation. 

We conclude with a discussion of potential uses and limitations of rRL and suggest 
opportunities for future research. The methods presented in this paper are implemented in a 
software package that is freely available from the authors upon request. 

2 Spatial Interaction Statistics 

Different approaches have been developed to measure co-location for data with different 
geometries. For example, the join count statistic is commonly used to measure co-location in 
polygon data (Cliff and Ord 1981). We are interested in qualitatively marked point patterns, 
where individual points are classified using a finite set of labels. Examples of marked point 
patterns used in co-location analysis include locations of different types of businesses (Leslie 
and Ó hUallacháin 2006), biological species (Law et al. 2009) and disease occurrences 
(Leibovici et al. 2011, Souris and Bichaud 2011). For our purposes, we refer to a marked point 
pattern as a (joint) population consisting of several groups or subpopulations of identically 
marked individuals. 

2.1 Pairwise Metrics 

Two common and intuitive measures of co-location can be derived from alternate definitions of 
proximity. If proximity is defined in terms of raw distance, co-location measurement entails 
counting the number of individuals from one group that are found within a specified distance h 
of another group. This is the basis for the cross K-function, a variation of Ripley’s K-function 
(Lotwick and Silverman 1982). More will be said about the cross K-function and its variants 
below. 
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An alternative to distance-based neighborhood definition is to define proximity in terms of 
nearest neighbor relations (Pielou 1961, Cuzick and Edwards 1990). The observed frequency of 
nearest-neighbor instances among all pairs of groups can be captured in a nearest neighbor 
contingency table (NNCT) (Dixon 1994). A single cell in the NNCT denotes the nearest neighbor 
count between the row and column subpopulations, or more specifically, the number of 
individuals in the row subpopulation that have an individual in the column subpopulation as 
their nearest neighbor. Leslie and Kronenfeld (2011) extend this definition to allow for multiple 
equidistant nearest neighbors: if an individual has n equidistant nearest neighbors, then each 
contributes 1/n to the corresponding cell in the NNCT. In this manner, all row individuals 
effectively contribute one neighbor to the total nearest neighbor count. As noted by Pielou 
(1961), for a given individual I, there is a maximum of five other individuals for whom I will be 
the (exclusive) nearest neighbor due to geometric constraints. This affects the maximum degree 
of spatial interaction that can be observed using NNCT analysis (Leslie and Kronenfeld 2011).  

Conventional reporting methods for distance- and neighbor-based metrics of co-location differ. 
Results of cross K-function analysis are typically presented for one pair of classes at a time as a 
graph over the range of distance values, overlaid onto upper and lower bounds of the simulation. 
The result is a set of three lines, one representing the observed level of co-location at different 
scales, and the others showing the simulation envelope under the null model. Observed values 
outside the envelope provide evidence to reject the null hypothesis, though proper inferential 
analysis must take into account the problem of multiple hypothesis testing (Loosmore and Ford, 
2006). In contrast, NNCT counts are usually presented in tabular form to show all pairwise 
relations simultaneously. To aid in interpretation, a co-location quotient (CLQ) for each cell can 
be computed as the ratio of observed to expected counts (Leslie and Kronenfeld 2011). The CLQ 
always has the same expected value (=1) allowing for consistent interpretation across class pairs, 
and is analogous to the location quotient from which its name is derived (Florence 1944). 

Despite differences in reporting methods, Dixon (1994) noted that distance- and neighbor-based 
definitions of proximity are related and usually yield similar results, especially when the overall 
population is evenly distributed over space. However, some important differences exist. When 
density is inhomogeneous, isolated individuals will have relatively less influence on the cross K-
function than the CLQ, while individuals in clusters will have relatively more influence. Also, 
unlike the cross K-function, the CLQ is theoretically asymmetrical: the observed number of A 
individuals with B as their nearest neighbor can be different from the number of B individuals 
with A as their nearest neighbor. This asymmetry may seem counterintuitive at first, but 
effectively captures asymmetrical relations between groups that differ substantially in size or 
spatial isolation (Leslie and Kronenfeld 2011). 

2.2 Null Models 

To determine if a bivariate pattern of spatial association is significantly different from chance, it 
is necessary to compare an observed metric value with the corresponding expectation under an 
appropriate null model. Although the expectation can sometimes be calculated analytically, this 
is not always the case and in practice Monte Carlo simulation is typically used to determine the 
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sampling distribution (e.g. Liu et al. 2007). Three common null models for determining 
expected association patterns are complete spatial randomness (CSR), population independence 
(PI) and random labeling (RL). Of these, CSR is often considered unrealistic, and PI and RL are 
generally favored.  

In PI, the null hypothesis is that the processes generating each population are independent 
(Lotwick and Silverman 1982).  One common method for implementing PI is toroidal shift (TS), 
in which each subpopulation is shifted by a randomly distance and direction, treating the study 
area as a torus (Lotwick and Silverman 1982). TS is limited in that the study area must be 
rectangular, and even then can produce artifacts at study area edges (Wiegand and Moloney 
2014). 

A more flexible approach to implementing PI is to use a specific point generating process fitted 
to reproduce the structure of each subpopulation independently. Parametric point processes can 
be used (e.g. Wiegand and Moloney 2004, John et al. 2007), but it can be quite challenging to 
identify a process that provides a good fit to the observed pattern. An alternative approach is to 
attempt to reconstruct the pattern by identifying important summary statistics and then using a 
non-parametric algorithm to generate point patterns that match these statistics within some 
defined degree of allowable deviation. Wiegand and Moloney (2014) show that such an 
approach can successfully match a wide array of empirical point patterns when conditioned on 
an intensity function to capture broad-scale spatial structure. Further, they found that the 
required summary statistics were largely consistent across patterns, meaning that the approach 
can be generally applied.  

While the reconstruction approach is more generally applicable than parametric process fitting, 
it does has some drawbacks. Considerable expertise is required to select summary statistics, 
designate an acceptable deviation limit and implement an annealing algorithm. Conditioning on 
the intensity function is necessary to replicate inhomogeneous patterns, but the results are 
affected by the scale at which the intensity function is defined. Also, the algorithm requires 
iterative replacement of individual points and thus is computationally demanding, which may 
limit application to large datasets.  

In RL, the null hypothesis is that locations are generated by a single common process but 
individuals are randomly assigned to subpopulations (Goreaud and Pélissier 2003). Unlike the 
null hypothesis of PI, which can be implemented in many ways including but not limited to TS, 
the concept and implementation of RL are rarely separated. The name indicates the simulation 
procedure in which observed locations are held constant, but class marks are randomly 
reassigned to each location.  

Some variations on RL have been developed that have similarities to the general method we 
propose below. Trivariate random labeling (de la Cruz et al. 2008, Wiegand and Moloney 2014) 
involves random labeling of two groups while holding a third group constant. Proposed as a 
means to investigate whether a pattern of event labels (e.g. mortality) in one group (e.g. 
seedlings) is affected by the locations of another group (e.g. mature trees), the method has not 
been generalized or extended to scenarios involving more than three groups. Researchers have 



6 

 

also combined elements of RL and PI. For example, Wiegand et al. (2007) developed a 
procedure to assess 2nd order spatial interaction by restricting the locations of individuals of one 
species and randomizing the locations of the other using a heterogeneous Poisson process. As 
with the reconstruction approach described above, this procedure requires expertise in 
determining an appropriate intensity function for the joint population. 

2.3 Choosing between PI and RL 

Demonstrating substantial differences between TS and RL for several simulated and empirical 
datasets, Goreaud and Pélissier (2003) proposed a framework for choosing between PI and RL 
that forms the basis for null model selection in many research studies (de la Cruz et al. 2008), 
based on the temporal sequence in which locations and marks are established in the 
hypothesized generating process. In a priori marked point processes, individual marks are 
determined prior to location establishment, whereas in a posteriori marked processes categories 
are assigned (or re-assigned) after locations have already been established. Under this 
framework, PI and RL are considered appropriate for a priori and a posteriori marked 
processes, respectively. 

Although the distinction between a priori and a posteriori marking processes is useful for 
selecting a null model, limitations exist. Not all patterns can be clearly identified as resulting 
from a priori or a posteriori processes. Ambiguities can arise due to lack of knowledge as well as 
the presence of multiple processes at work simultaneously (Goreaud and Pélissier 2003). These 
issues can be subtle and may be perspective dependent. For example, if commercial real estate 
transactions are analyzed, commercial industry analysts might consider the business activity 
(i.e. marks) as being determined a priori, and wish to evaluate the locations in which businesses 
choose to site these activities. From the perspective of a city planner, however, it may be the 
locations that are seen as being determined a priori. In any case, the distinction is largely made 
on theoretical grounds. As far as we are aware, no empirical test exists to discriminate between a 
priori and a posteriori marked patterns. 

Even if a pattern can be clearly identified as resulting from an a priori process, it can be difficult 
to implement the TS model due to boundary effects. TS effectively splits each subpopulation 
along the original boundaries, which cross through the interior of the subpopulation after it has 
been shifted. When the study area is not rectangular, the method becomes ill-defined. Goreaud 
and Pélissier (2003) suggest shifting only one subpopulation in a pairwise analysis, but it is not 
clear how this addresses the problem of defining a toroid from a non-rectangular region.  

The above limitations suggest the need for additional null models to handle real-world data. To 
motivate our own proposal, we offer an alternative interpretation of the empirical results of 
Goreaud and Pélissier (2003), and in particular the large differences they found between TS and 
RL for some datasets.  
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2.4 Joint Population vs. Subpopulation Patterns 

Our interpretation is based on the well-established concept of restricted randomization (Manly 
1991), in which a null model is generated by randomizing some aspects of the pattern of interest 
while holding other aspects constant. In the context of multitype marked point patterns, three 
aspects should be considered: (a) the pattern of the joint population, (b) the patterns of each 
individual subpopulation, and (c) patterns of interaction between subpopulations. Patterns of 
type (c) are of primary interest in spatial interaction analysis and so must be randomized, but 
can be strongly affected by patterns of types (a) and (b). The null models of TS and RL differ as 
to whether (a) or (b) are restricted during the randomization process.  Under RL the pattern of 
the joint population is held constant, since point locations are not altered. However, the patterns 
of individual subpopulations are randomized in the relabeling process. In contrast, except for 
the effect of the study area boundary mentioned above, patterns of individual subpopulations 
are held constant under TS while the pattern of the joint population is allowed to vary. 

To support the utility of this interpretation, we use it to interpret the results of Goreaud and 
Pélissier (2003). First, we consider the expected value of the interaction metric L12 they used, 
estimated empirically as 

෠ଵଶܮ  = ඨܥଵଶ(ܴ)ߨ ଵܰߣଶ − ݎ . (1) 

where ଵܰ is the number of Type 1 individuals, ߣଶ = ଶܰ ܵ⁄  is density of Type 2 individuals within 
the study area (of size ܵ), and ܥଵଶ(ܴ) is the number of Type 1 – Type 2 pairs of individuals within 
distance r of each other; we omit edge correction factors for simplicity. Under TS the 
expectation of ܮ෠ଵଶ is zero because following randomization of pattern 1, each Type 1 individual 
will have on average ݎߨଶߣଶ Type 2 individuals within radius r. Under RL, on the other hand, for 
a binary marked population the expectation of ܮ෠ଵଶ is entirely determined by the pattern of the 
joint population. Thus, one would expect the envelopes of ܮ෠ଵଶ under TS vs. RL to be similar 
when the joint population is random, but to differ substantially when the joint pattern departs 
strongly from CSR. Indeed, we note that in all examples in which Goreaud and Pélissier (2003) 
found substantial differences between TS and RL, the pattern of the joint population appears to 
be significantly different from random: in their simulated stands B and E, the joint pattern is 
highly clustered and the simulated values of L12 is much higher for RL than TS; conversely, their 
simulated stands C and F appear more uniform than random, and the simulated value of L12 is 
lower for RL than TS for these stands. This interpretation is also consistent with Ceyhan’s 
(2008) observation that differences between CSR and RL are small when the joint population 
closely resembles a random pattern. 

The above interpretation is not entirely dissimilar to the distinction between a priori and a 
posteriori marking made by Goreaud and Pélissier (2003). However, it provides more flexibility 
because the effects of the joint population and individual subpopulations are considered 
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independently. In particular, if TS and RL respectively hold constant the patterns of individual 
subpopulations and of the joint population, the obvious question arises as to whether it is 
possible to hold both types of patterns constant simultaneously. Such a null model would 
answer the question, is the observed pattern of spatial association between A and B different 
from what would be expected given both the pattern of the joint population and the patterns of 
each subpopulation individually?  

There are many situations in which such a null model might be useful. For example, consider 
the relationships between different housing types, businesses or crimes. All of these are strongly 
related to the artificial landscape, creating a priori constraints on the joint population. At the 
same time, individual types of housing, businesses and crimes often tend to cluster in space. A 
researcher seeking to understand the spatial interaction between two different types of housing, 
businesses or crimes would likely want to account for this tendency for individual types to 
cluster.  Similarly, in biological settings, individual subpopulations will obviously cluster in 
space due to shared biological traits, but there may also be environmental characteristics that 
affect all subpopulations simultaneously, such as water bodies, variations in soil fertility, etc. 
Indeed, the need to restrict randomization of the joint population has been acknowledged in 
contexts that are not strictly a posteriori marked. For example, in case-control designs 
commonly used in epidemiological studies, controls are taken from the population at large 
rather than the complete spatial domain to account for environmental factors common to all 
subpopulations (Wiegand and Moloney 2014). 

3 Restricted Random Labeling  

We seek to understand the effects that spatial structure of the joint population and individual 
subpopulations has on our understanding of spatial interaction between subpopulations. Our 
approach builds on the fact that the joint population pattern is not perturbed in random labeling 
(RL). The objective is to further restrict RL so as to hold constant the subpopulation pattern(s) 
of interest.  

To begin, let ܮܴݎ ௌ  denote a null model in which individuals in an arbitrarily defined population 
subset S are restricted during the random labeling process. The restriction subset is considered 
to be a component of the null model. The term restricted random labeling (rRL) is proposed to 
refer generally to random labeling with any such restriction set. 

As an example of rRL, consider the marked point pattern shown in Fig. 1a, in which 
subpopulation C (black circles) is dispersed throughout the lower right half of the study area. 
When RL is used as a null model, the observed pattern is compared to patterns created by 
randomly rearranging all point labels (see Fig. 1b). In contrast, random labeling with 

subpopulation C restricted (denoted ܮܴݎ ஼ ; see Fig. 1c) compares the observed pattern to 
simulations in which all point labels except for subpopulation C (the restriction set) are 
rearranged. This partially mimics the effect of TS, in which each subpopulation’s internal 
structure is held constant, but unlike TS the fixed subpopulation is not allowed to shift  
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Fig. 1:   Illustration of random labeling and restricted random labeling. Given an observed marked 
point pattern (a), random labeling (b) implies that all point labels are randomly assigned. 
In contrast, restricted random labeling (c) implies that labels are randomly assigned to 
all individuals except for those in the restriction set, enclosed in square boxes. 

randomly. In effect, ܮܴݎ answers the question, are the observed co-location patterns unusual 
given the spatial pattern of the joint population and the restriction set? Note that while this 
example uses a restriction set consisting of a single, entire subpopulation, it is possible to define 
the restriction set to include any subset of individuals. 

3.1 Expected Neighbor Counts 

To determine if the observed pattern of spatial association between two subpopulations A and B 
is higher or lower than expected, a common method is to compare the observed count of B 
within a defined neighborhood surrounding each A individual with the expected count under the 
appropriate null model. The following variables are defined similar to Leslie and Kronenfeld 
(2011): ܰ	 the	total	number	of	individuals	in	all	subpopulations,	݊஺, ݊஻	 the	number	of	individuals	in	populations	A	and	B,	respectively,	݊′஻	 ݊஻ − 1	if	ܣ = 		஺→஻ܥ	,otherwise	஻݊	;ܤ the	total	weighted	count	of	B	individuals	within	the	defined	neighborhood	of	all	A	individuals.	
If the neighborhood is defined as the distance to the nearest neighbor and there are no 
equidistant nearest neighbors, then ܥ஺→஻ is simply the number of A individuals whose nearest 
neighbor is B. Equidistant nearest neighbors can be handled by assigning fractional weights to 
each equidistant nearest neighbor (Leslie and Kronenfeld 2011). Cromley et al (2014) describe 
the use of weights to define other types of neighborhoods, including distance neighborhoods, 
topological neighborhoods derived from Thiessen polygons, and k-nearest neighbor 
neighborhoods. For simplification purposes, we assume a weighting scheme in which the 
weights of all neighbors of a given point sum to one. The term ݊′஻ indicates the number of B 
individuals that can potentially be in the neighborhood of each A individual, and is one less than ݊஻ when ܣ =   .because an individual cannot be it’s own neighbor ܤ
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 B restricted B unrestricted 
A 

restricted 
ܥ ஺ → ஻  ൫ܥ ஺ →௉ෘ൯ ݊஻ෘܰ௉ෘ  

A 
unrestricted 

൫ܥ௉ෘ→ ஻ ൯ ݊஺ෘܰ௉ෘ  ൬݊஺ෘ × ௉෰ܥ →௉෰ܰ௉ෘ ൰ ݊′஻ෘܰ௉෰ − 1 

Table 1:  Expected counts of A→B nearest neighbor pairs for combinations of restricted and 
unrestricted portions of each subpopulation. 

To distinguish between restricted and unrestricted subsets of the population and of individual 

subpopulations, additional notation is necessary. We use a box (e.g. ܣ  ) to denote sets of 

restricted individuals and a breve (e.g. ܣም) to denote sets of unrestricted individuals in 
subpopulations (e.g. A and B) as well as the joint population (P), so that: ܣ , ܤ , ܲ 	 the	sets	of	restricted	individuals	in	A,	B	and	P,	respectively,	ܣም, ෰ܤ , ෰ܲ	 the	sets	of	unrestricted	individuals	in	A,	B	and	P,	respectively.	
This notation is used in subscripts as above. For example, ݊ ஺  denotes the number of restricted 

individuals in subpopulation A, and ܥ௉ෘ→ ஻  denotes the number of unrestricted individuals in the 

entire population P whose nearest neighbor is a restricted individual from subpopulation B.  
Note that any (sub)population can be partitioned into restricted and unrestricted subsets, so 
that ݊஺ = ݊ ஺ + ݊஺ෘ and ௉ܰ = ܰ ௉ + ܰ௉ෘ . 
Using this notation, the expected neighbor count from A to B can be derived from permutation 
theory as follows: 

(஺→஻ܥ)ܧ  = ܥ ஺ → ஻ + ൫ܥ ஺ →௉ෘ൯ ݊஻ෘܰ௉ෘ + ൫ܥ௉ෘ→ ஻ ൯ ݊஺ෘܰ௉ෘ + ൬݊஺ෘ × ௉෰ܥ →௉෰	ܰ௉ෘ	 ൰ ݊′஻ෘܰ௉෰	 − 1	. (

2) 

Each of the four terms in Eq. (2) represents the expected weighted count of A→B neighbor pairs 
in one of four non-overlapping subsets: the sets of restricted and unrestricted individuals of 
subpopulation A whose neighbors are restricted or unrestricted individuals of subpopulation B. 
Within each such subset, the randomization process is equivalent to a random sample, without 
replacement, of a set of labeled elements (Dixon 1994). The portions of Eq. (2) pertaining to 
each subset are shown in Table 1. A more detailed derivation and sample calculation are 
provided in the appendices. 

3.2 Restriction Options 

Equation (2) is generally applicable to any restriction set, and can be used to test null models 
tailored to specific research questions. To address the goal of ascertaining (sub)population 
independence in situations with three or more subpopulations, a natural approach is to restrict 
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one of the two subpopulations for each pairwise interaction. The first option, designated ܮܴݎ ௥௢௪  

(equivalently ܮܴݎ஺→஻஺ ), is to restrict the row subpopulation in each pairwise test. This is similar 
to the restricted randomization described in Wiegand et al. (2007), but without requiring a 

spatial distribution model to randomize locations. Specifically, ܮܴݎ ௥௢௪  tests the hypothesis that 
row-category individuals tend to locate near column-category individuals, given the spatial 

distribution of row-category individuals. The converse, ܮܴݎ ௖௢௟  (equivalently ܮܴݎ஺→஻஻ ), restricts 
the column subpopulation and thus tests the same hypothesis given the spatial distribution of 
column-category individuals. These null models are only applicable when analyzing spatial 
interaction between non-identical subpopulations (i.e  ݓ݋ݎ ≠   .(݊݉ݑ݈݋ܿ

The expected neighbor counts for ܮܴݎ ௥௢௪  and ܮܴݎ ௖௢௟  can be derived from Eq. (2). Under ܮܴݎ ௥௢௪ , only the second term in Eq. (2) is applicable. Given that the restriction set is the first 
subpopulation, the expected value of the neighbor count ܥ஺→஻ reduces to 

(஺→஻ܥ)ܧ  = (݊஺ − (஺→஺ܥ ݊஻ܰ − ݊஺ . (3) 

Similarly, the expected value under ܮܴݎ ௖௢௟  is 

(஺→஻ܥ)ܧ  = (݊஻ − (஻→஻ܥ ݊஺ܰ − ݊஻ . (4) 

When weights are equal to one (i.e. exactly one neighbor for each point), the distribution of 
neighbor counts is equivalent to a random sample without replacement of ݊஺ −  ஺→஺ elementsܥ
from a set with ܰ − ݊஺ elements, of which ݊஻ are from subpopulation B. The distribution is 

hypergeometric with variance under ܮܴݎ ௥௢௪  equal to 

(஺→஻ܥ)ݎܸܽ  = (݊஺ − (஺→஺ܥ ݊஻(ܰ − ݊஺) (ܰ − ݊஺ − ݊஻)(ܰ − ݊஺) (ܰ − 2݊஺ + ܰ)(஺→஺ܥ − ݊஺ − 1)  (5) 

and variance under ܮܴݎ ௖௢௟  equal to 

(஺→஻ܥ)ݎܸܽ  = (݊஻ − (஻→஻ܥ ݊஺(ܰ − ݊஻) (ܰ − ݊஻ − ݊஺)(ܰ − ݊஻) (ܰ − 2݊஻ + ܰ)(஻→஻ܥ − ݊஻ − 1) 	. (6) 

3.3 Co-Location Quotient 

Leslie and Kronenfeld (2011) defined the asymmetrical co-location quotient (CLQ) between two 
subpopulations A and B under random labeling (RL) as 
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஺→஻ܳܮܥ  = ஺→஻݊஺ܥ ݊′஻ (ܰ − 1)⁄ . (7) 

The denominator of Eq. (7) is equal to the expected neighbor count from A to B under random 
labeling (RL): 

(஺→஻ܥ)ܧ  = ݊஺݊′஻ (ܰ − 1)⁄ . (8) 

Therefore, under RL the CLQ can be re-written as 

஺→஻ܳܮܥ  = (஺→஻ܥ)ܧ஺→஻ܥ . (9) 

Equation (9) shows that the CLQ is naturally interpreted as the ratio between observed and 
expected neighbor counts, where the expected count is determined under a null model of RL.  

If a null model other than RL is used, the expected neighbor count will differ from Eq. (8), and 
therefore the CLQ as defined by Leslie and Kronenfeld (2011) will not be appropriate. We define 

the generalized co-location quotient ܳܮܥ஺→஻ௌ  as the ratio between the observed and expected 

neighbor counts under the null model of ܮܴݎ ௌ . Generalized equations for computing CLQs 

under ܮܴݎ ௥௢௪  and ܮܴݎ ௖௢௟  are given by: 

஺→஻஺ܳܮܥ  = ஺→஻(݊஺ܥ − (஺→஺ܥ ௡ಳேି௡ಲ , (10) 

஺→஻஻ܳܮܥ  = ஺→஻(݊஻ܥ − (஻→஻ܥ ௡ಲேି௡ಳ . (11) 

The generalized CLQ under any null model has an expected value of one. Values greater than 
one indicate a higher degree of spatial interaction than expected by chance, while values less 

than one indicate the opposite. In particular, ܳܮܥ஺→஻ௌ =  indicates that β times as many  ߚ

individuals of subpopulation B are found within the defined neighborhood of subpopulation A 
as would be expected given the constraint set S. 

3.4 Significance Testing 

Two approaches to significance testing are possible. An analytic approach uses parametric 
formulas that represent the sampling distribution either approximately or exactly to determine 
the likelihood of the observed metric under the given null model. Alternatively, a simulation 
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approach entails generating a large number of potential realizations of the null model to 
estimate the distribution of the test statistic.  

Analytic formulas for sampling distributions of pairwise nearest-neighbor counts under RL were 
given by Dixon (2002), who showed that these are approximately normal when the expected 
nearest neighbor count is larger than ten. Ceyhan (2008) suggested that Monte Carlo simulation 
is only necessary when the expected nearest neighbor count is four or less. We are not aware of 
research indicating how large the expected neighbor count needs to be for the normal 
approximation to hold in the case of multiple neighbors with varying weights. In any case, 
Monte Carlo simulation under rRL is computationally efficient and can be used in any scenario 
to estimate statistical significance. To create realizations of the rRL null model, marks of 
unrestricted individuals are randomly shuffled in the same manner as RL, and individuals in the 
restriction set are kept in their original location.  

4 Case Studies 

To illustrate restricted random labeling and to ascertain its ability to disentangle joint-
population, within-group and between-group effects, three types of simulated point patterns 
and two empirical dataset were analyzed. For comparison purposes, co-location quotients and 

significance values were calculated under null models of TS, RL, ܮܴݎ ௥௢௪  and ܮܴݎ ௖௢௟  for all 
examples. Statistical significance was assessed by Monte Carlo simulation of the corresponding 
null model, with two-tailed p-values calculated as two times the proportion of simulations for 
which the test statistic was more extreme than the observed statistic. This method has been 
found to be more conservative than inverting a single two-sided test, especially in situations 
with small sample sizes (Agresti and Min 2001). For TS, we follow Goreaud and Pe ́lissier 
(2003), and shift all subpopulations except for the first in each pairwise analysis. Since the 
expected neighbor count cannot be derived analytically for TS, we used the simulated mean 
value.  

Although Manly (1991) suggests at least 1,000 simulations for significance testing at α=0.05, we 
found this impracticable due to the computation time of TS. Because TS results in a new set of 
point locations, neighbor relations must be recalculated for each MC simulation, which is 
computationally expensive especially for large datasets. An advantage of RL and rRL is that 
point locations do not change from the original pattern, eliminating the need to recalculate 
neighbor relations. Therefore, we performed only 100 Monte Carlo simulations for all analyses. 
This may have increased uncertainty regarding statistical significance in some cases, but our 
purpose was not to assess statistical significance but rather to compare null models. Variation in 
results was assessed for a representative sample of simulated patterns and was found to be at 
least an order of magnitude less than the observed differences between null models.  

All analyses were performed using custom software developed in Visual Studio.Net (Microsoft 
Corp.), available upon request from the authors. 
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Fig. 2:  Examples of simulated patterns used to compare null models of spatial interaction. 

4.1 Simulated Patterns 

To illustrate different patterns of aggregation in the joint population, aggregation of individual 
subpopulations, and spatial interaction between subpopulations, six generating processes were 
defined in a 3-by-2 matrix. An example pattern from each process is shown in Fig. 2. Each 
process consisted of three subpopulations, and was initialized by construction of one of two 
types of joint population patterns (random or clustered), followed by a marking process defined 
to create a pattern with no spatial interaction, clustering of individual subpopulations, or 
interaction between subpopulations. For each process, 100 pattern instances were generated on 
a one-unit-square region.  

For the joint population, random patterns were generated using a Poisson process with density 
300. Clustered patterns were generated with a Thomas process (Illian et al. 2008) with 30 
parent clusters per square unit and ten daughters per parent distributed in a Gaussian kernel 
with σ=0.0325.   

To simulate absence of interaction, each point was randomly assigned one of three 
subpopulations {A, B, or C}. To simulate clustering of individual subpopulations, each point was 
then selected in sequence and replaced with an individual recruited from the subpopulation of 
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the nearest neighbor. This was repeated 1,000 times. The effect of this procedure was to create 
new members of each subpopulation near to the locations of existing members. The nearest 
neighbor in this process can be thought of as a reproductive agent that reseeds nearby locations 
with self-similar individuals when they become vacant. Note that, beyond favoring neighbors 
from the same subpopulation, the process is random with respect to interaction between non-
identical subpopulations. Finally, to simulate interaction between subpopulations, the process 
was defined in a similar manner as above, except that 50% of the time individuals with nearest 
neighbors from subpopulations A were replaced with an individual from subpopulation B and 
vice versa. This introduced an explicit interaction component, simulating positive interaction 
between A and B as well as within-group aggregation of all subpopulations. 

For analysis purposes, nearest-neighbor analysis was used (i.e. the neighborhood around each 
point was defined as the distance to the nearest neighbor). It should be noted that the above 
generating processes conform to an a posteriori model according to the classification of 
Goreaud and Pélissier (2003). It would have been preferable to also include an a priori marked 
generating process designed to create both the desired spatial interactions and a consistent 
degree of clustering in the joint population. Although in theory this could be achieved using 
pattern reconstruction methods, it would require a metric of spatial interaction that could be 
interpreted independently of any null model (since we apply different null models to each 
pattern and examine the results). Our simulation procedures are designed such that the 
presence or absence of spatial interaction can be interpreted in context from the procedure 
itself. 

4.2 Savannah River Trees 

Next, we evaluate an empirical dataset originally compiled by Good and Whipple (1982), 
consisting of the locations and species of 734 trees in a one-hectare (50×200m) forest plot along 
the Savannah River in South Carolina, USA (see Fig. 3). The joint population of this dataset is 
random at all scales. Tree species are usually considered an a posteriori marking and thus PI is 
recommended as a null model (Goreaud and Pe ́lissier 2003), although RL can be justified by the 
recognition of a shared environmental factor (Wiegand and Moloney 2014). Dixon (2002) 
previously used RL to examine spatial interaction of species in this dataset, and found three 
significant types of patterns: (a) positive within-species interaction for all species except  

 

Fig. 3:  Locations of tree species in the Savannah River forest plot. Data from Dixon (2002). 



16 

 

 

Fig. 4:   Locations of murders (large red dots) and other documented crimes (gray dots) in 
Spokane, WA, USA from 2008 to 2012. 

baldcypress, (b) negative interaction of most non-identical species pairs, and (c) positive 
interaction between baldcypress and Carolina ash. We followed Dixon in using nearest neighbor 
analysis, and compared our NNCT counts and RL results with his to ensure computational 
agreement. 

4.3 Crimes in Spokane 

The last dataset consists of crimes committed between 2008 and 2012 in Spokane, WA, USA 
(see Fig. 4). Of interest is the possible spatial interaction between murders (n=73) and nine 
other crime categories. To make the data more compact, 78 crimes in outlying areas were 
removed, and the study area was defined as the minimum bounding rectangle around the 
remaining 124,951 crimes. The joint population is highly clustered at local scales and contains 
overlap, with as many as 973 crimes recorded for the same location. 23.2% of points were 
coincident with 25 or more other points. Crime density also varies from neighborhood to 
neighborhood, but generally increases with population density toward the center of the city. In 
addition, crimes exhibit a pattern clearly related to, but not constrained by the road network. It 
is not obvious whether crimes should be considered a priori or a posteriori marked data, since 
some crimes are premeditated while others are opportunistic in nature.  
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 No Interaction   Clustering   Interaction 	  A B C  A B C  A B C TS	 A 1.01 1.01 0.98  1.31 0.62 0.63  0.98 1.44 0.50 
B 0.99 1.02 1.00  0.63 1.29 0.65  1.44 0.98 0.52 
C 0.99 1.00 1.01  0.61 0.65 1.30  0.54 0.57 1.41 	              RL 
A 1.02 1.00 0.98  2.22 0.42 0.43  1.30 1.34 0.38 
B 0.98 1.01 1.01  0.42 2.19 0.44  1.34 1.30 0.39 
C 0.99 1.00 1.01  0.41 0.44 2.23  0.38 0.40 2.46 

ܮܴݎ               ௥௢௪  
A X 1.01 0.99  X 1.00 1.01  X 1.58 0.44 
B 0.99 X 1.01  1.00 X 1.01  1.58 X 0.45 
C 1.00 1.00 X  0.97 1.04 X  0.97 1.03 X 

 
ܮܴݎ              ௖௢௟  
A X 1.00 0.99  X 1.00 1.01  X 1.56 0.98 
B 0.99 X 1.01  1.03 X 1.01  1.57 X 1.02 
C 1.01 1.00 X  0.99 1.01 X  0.44 0.46 X 

Notes: X indicates ܮܴݎ ௥௢௪  and ܮܴݎ ௖௢௟  not applicable when row = column 

Table 2:  Average pairwise co-location quotients for three simulated types of interaction 
within a random joint population pattern under each of four null models. Greyscale 
indicates number of trials out of 100 in which observed CLQ value was significant:    
0 to 5, 6 to 10, 11 to 20, 21 to 50, 51 to 100. 

We assessed spatial interaction between murders (M) and each other type of crime (X) by 

calculating pairwise co-location quotients ܳܮܥெ→௑ under TS, RL and ܮܴݎ௑ . Due to the low 

number and lack of clustering of murders, we did not calculate ܮܴݎெ . Given the large number of 
coincident points, simple nearest-neighbor analysis would have included anywhere between one 
and 973 nearest neighbors; to reduce this variability, analysis was performed on a 25-nearest-
neighbor neighborhood.  

5 Results 

5.1 Simulated Patterns 

Average pairwise CLQ values for the three simulated pattern types derived from a random joint 
population are shown in Table 2 for each null model. Trials in which significant interaction was 
found more frequently are indicated by darker font. When subpopulations were distributed 
randomly (first column), all null models behaved as expected: CLQ values were close to unity, 
and these values were found to be statistically significant (p<0.05) in approx. 5% of trials. When 
clustering within subpopulations was simulated (second column), both TS and RL detected 
positive aggregation within subpopulations but also negative interaction between 

subpopulations, with more extreme values under RL. In contrast, ܮܴݎ ௥௢௪  and ܮܴݎ ௖௢௟  both 
resulted in CLQ values near unity, suggesting that interaction patterns were no different than 
would be expected given the observed aggregation of individual subpopulations.  

When positive interaction between A and B were specifically simulated (third column), this 
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No Interaction Clustering Interaction TS 

 A B C  A B C  A B C 
A 0.42 2.99 2.97  0.82 1.97 2.02  0.54 5.08 1.34 
B 2.94 0.44 2.91  2.04 0.82 1.98  4.90 0.54 1.32 
C 2.95 2.96 0.43  1.97 2.07 0.83  1.40 1.50 0.92 

      RL 
A 0.98 1.00 1.03  2.12 0.44 0.45  1.34 1.34 0.31 
B 1.00 1.02 0.99  0.46 2.17 0.44  1.34 1.34 0.30 
C 1.02 0.99 0.99  0.44 0.45 2.19  0.29 0.30 2.69 

ܮܴݎ       ௥௢௪  
A X 0.99 1.02  X 1.00 1.01  X 1.62 0.36 
B 1.01 X 0.99  1.03 X 0.99  1.63 X 0.35 
C 1.01 0.99 X  0.98 1.02 X  0.97 1.02 X 

ܮܴݎ       ௖௢௟  
A X 1.00 1.02  X 1.00 1.01  X 1.63 1.01 
B 0.99 X 0.98  1.04 X 1.00  1.63 X 0.99 
C 1.01 1.00 X  0.96 1.02 X  0.35 0.35 X 

Notes: X indicates ܮܴݎ ௥௢௪  and ܮܴݎ ௖௢௟  not applicable when row = column 

Table 3:  Average pairwise co-location quotients for three simulated types of interaction 
within a clustered joint population pattern under each of four null models. 
Greyscale indicates number of trials out of 100 in which observed CLQ value was 
significant: 0 to 5, 6 to 10, 11 to 20, 21 to 50, 51 to 100.  

interaction was detected by all null models in more than 50% of trials (TS=72.5%, RL=57%, ܮܴݎ ௥௢௪ ܮܴݎ ,95.5%= ௖௢௟ =96%). The strength of interaction was slightly higher under both forms 
of rRL (ܳܮܥ = 1.56	to	1.58) than either TS (ܳܮܥ = 1.44) or RL (ܳܮܥ = 1.34). Negative spatial 
interaction was detected in all pairs involving subpopulation C under both TS and RL. Under 
rRL, negative interaction with subpopulation C was found when subpopulation C was not 
restricted, but was not found when subpopulation C was restricted.  

Results for clustered joint population patterns are shown in Table 3. The results are nearly 

identical to Table 2 for RL, ܮܴݎ ௥௢௪  and ܮܴݎ ௖௢௟ . However, under TS every pairwise analysis 
results in substantial negative interaction within subpopulations and positive interaction 
between subpopulations, with many interactions significant in more than 50% of trials (darkest 
font). This is due to the fact that Monte Carlo simulations under the TS null model effectively 
dispersed the subpopulations, removing the original aggregation pattern of the joint population 
(see Fig. 5). Thus, distances between individuals from different subpopulations are increased in 
the Monte Carlo simulation in comparison to the original pattern, while distances between 
members of the same subpopulation remain constant by definition. Positive interaction between 
A and B was again detected by all null models in more than 50% of trials (TS=100%, RL=58%, ܮܴݎ ௥௢௪ ܮܴݎ ,93.5%= ௖௢௟ =95.5%). 

5.2 Savannah River Trees 

The NNCT for the Savannah River plot matched Dixon (2002) exactly except for one swamp 
tupelo tree for which we found two equidistant nearest neighbors. Our computed statistical 
significance also matched Dixon closely, with slight differences attributable to random 
variability in the Monte Carlo simulation process.  
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Fig. 5:   Effects of toroidal shift on joint population pattern. Original pattern (a) is the same 
as lower left pattern (d) in Fig. 2. Toroidal shift of subpopulations A and B (b) 
results in a joint population that is less aggregated than the original. 

CLQ values under each model are shown in Table 4, with darker fonts indicating greater 
statistical significance. Within-group aggregation was statistically significant for two of five 
species under TS and four of five species under RL, with CLQ values ranging from 1.3 to 7.0. 
Under TS, positive interaction was found in both directions between Taxodium distichum (TD) 

and Fraxinus caroliniana (FX). Under both ܮܴݎ ௥௢௪  and ܮܴݎ ௖௢௟ , this relationship was 
significant when FX was restricted (p<0.05) but only marginally significant when TD was 
restricted (p<0.1). Since TD was less clustered than FX, the difference between RL and rRL was 
less pronounced when TD was restricted than when FX was restricted. 

In RL, the relationship was only marginally significant in one direction (p<0.1), and 
insignificant in the other. In contrast with other null models, negative spatial interaction was 
found for most other subpopulation pairs, and was statistically significant in half of all pairwise 
tests (p<0.05). This apparent negative interaction can largely be attributed to within-group 
aggregation, which is accounted for in the other null models but not RL.  

 

 TS	 	 RL ܮܴݎ  ௥௢௪ ܮܴݎ   ௖௢௟  
 FC NS NA TD OT  FC NS NA TD OT  FC NS NA TD OT  FC NS NA TD OT 
FC 1.0 0.9 0.9 1.6 0.9  2.5 0.5 0.5 1.0 0.5  X 0.9 0.8 1.8 0.8  X 0.8 0.9 1.4 0.7
NS 0.8 1.3 0.8 0.6 0.6  0.6 2.0 0.6 0.6 0.5  1.0 X 1.1 1.0 0.8  0.8 X 1.1 0.8 0.8
NA 1.0 0.9 1.1 0.9 1.2  0.6 0.7 1.8 0.7 0.8  0.9 1.0 X 1.0 1.2  0.9 1.0 X 0.9 1.3
TD 1.6 1.1 0.7 0.7 1.0  1.4 1.1 0.7 1.1 0.9  1.4 1.1 0.7 X 0.9  1.9 1.6 1.1 X 1.3
OT 0.7 0.7 0.7 1.3 1.3  0.4 0.5 0.4 0.9 7.0  0.8 1.0 0.8 1.8 X  0.5 0.7 0.7 1.1 X 

Notes: X indicates ܮܴݎ ௥௢௪  and ܮܴݎ ௖௢௟  not applicable when row = column 

Table 4:  Pairwise co-location quotients for Savannah River dataset under four different null 
models. FC: Fraxinus caroliniana (Carolina ash); NS: Nyssa sylvatica (black gum); 
NA: Nyssa aquatica (swamp tupelo); TD: Taxodium disticum (baldcypress); OT: all 
other species.  Greyscale indicates p-value: p>0.1, 0.05<p≤0.1, 0.01<p≤0.05, p≤0.01. 
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For this dataset, TS and rRL yielded similar results. This can be attributed to the fact that, 
although rRL (but not TS) holds the pattern of the joint population constant, the joint 
population was random and thus generally modeled well by TS.   

5.3 Crimes in Spokane 

Pairwise CLQ values between murder and other types of crime are shown in Table 5. Under TS, 
no relationships are significant or marginally significant. This is due to high variability in the 
nearest neighbor counts under TS simulations, which are not constrained to conform to the joint 
population pattern of city streets and higher crime density downtown. Thus, for example, 
although the number of murder-assault neighbor pairs in the observed data is 1.78 times higher 
than the average TS simulation, 18% of simulations result in an even higher number of assaults 
among the 25 nearest crimes around each murder.  

Second Subpopulation TS	 RL ܮܴݎ ௖௢௟
Arson 0.43 1.26 1.24 
Assault 1.78 1.66 1.77 
Burglary 0.74 0.89 0.96 
Drugs 0.81 1.31 1.39 
Malicious Mischief 0.98 0.96 0.99 
Robbery 0.94 1.44 1.46 
Theft 1.23 0.86 1.04 
Vehicle Prowling 0.69 0.76 0.84 
Vehicle Theft 0.89 0.81 0.85 

Table 5:  Pairwise co-location quotients for murder in the Spokane crime dataset under three 
different null models. Greyscale indicates p-value: p>0.1, 0.05<p≤0.1, 0.01<p≤0.05, 
p≤0.01. 

Results of RL and rRL were similar but with some notable differences. Positive associations with 
assault, drugs and robbery were stronger but less significant under rRL in comparison to RL, 
suggesting higher variability of rRL simulations. Negative associations significant under RL 
became only marginally significant (vehicle prowling) or disappeared entirely (theft, vehicle 
theft) under rRL. This again suggests that much of the negative spatial interaction detected by 
RL can be explained by aggregation of individual crime types.  

In general across all pairs of subpopulatons, TS resulted in strongly negative aggregation within 
subpopulations, with CLQ values averaging 0.20 times that of RL (data not shown). In contrast, 
CLQ values between non-identical pairs of categories averaged 1.53 times that of RL (data not 
shown). In other words, TS suggested that all individual types of crimes were dispersed but most 
non-identical pairs of crime types had positive spatial association. This runs counter to 
intuition, but can be explained by the fact that TS simulations disperse points across the study 
region, removing the clustering of the original joint population. This leads to fewer non-identical 
neighbors in simulations, making the observed non-identical neighbor counts appear large in 
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comparison. In contrast, RL signifies that each crime type is clustered within the already 
clustered pattern of the joint population.  

5.4 Discussion 

Null models of population independence and random labeling have provided a foundation for 
spatial interaction analysis for several decades, but choosing the appropriate null model is not 
always straightforward. In recent years, the consensus has been to use population independence 
for a priori marking and random labeling for a posteriori marking (Goreaud and Pe ́lissier 
2003). However, several limitations to this framework exist. Although the distinction is useful, it 
is not always unambiguous and involves some degree of subjectivity. Implementing population 
independence using toroidal shift (TS) is not straightforward for non-rectangular study regions, 
and TS is computationally intensive for large datasets due to the need to recompute 
neighborhood relations in each simulation. We also note that toroidal shift produces joint 
population patterns that differ from the observed pattern in a consistent way, especially when 
the joint population is clustered. This can lead to unintuitive results. 

An alternative conceptual approach to choosing a null model is to randomize those elements of 
the problem that pertain to the research question while holding unrelated elements constant 
(Manly 1991, Fuller and Enquist 2012). The functional procedures of RL and TS provide an 
obvious foundation for this approach, as they hold constant the patterns of the joint population 
and of individual subpopulations, respectively. This mirrors the distinction made by some 
authors in the economic literature between joint-localization and co-localization (see e.g., 
Duranton and Overman 2005).  

Restricted random labeling is a natural extension of TS and RL, as it seeks to hold constant both 
the patterns of the joint population and of individual subpopulations simultaneously. It is 
appropriate in situations where clustering of both the joint population and individual 
subpopulations is expected a priori, and the researcher seeks to understand spatial interactions 
that are not logically implied by either pattern. Such situations are not uncommon. For example, 
housing types, businesses and crime are strongly related to the artificial landscape, while 
different types of housing, businesses and crime all tend to cluster in space. In biological 
settings, individual subpopulations will obviously cluster in space due to shared biological traits, 
but there may also be environmental characteristics that affect all subpopulations 
simultaneously, such as water bodies, variations in soil fertility, etc.  

Restricted random labeling is only applicable to point patterns with three or more types of 
marks (subpopulations), as restriction of one of two subpopulations eliminates all possibility of 
randomization. In addition, the rRL statistic is designed to reveal between-group association or 
disassociation, but cannot be used to assess within-group aggregation.  

In our analyses, rRL generally provided a more stringent test of negative pairwise interaction 
than RL, as the latter “discovered” negative interactions that could be interpreted as the natural 
consequence of aggregation within subpopulations. As a corollary, positive pairwise interaction 
was identified more often by rRL than by RL. These differences had a pronounced impact on 
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interpretation of the Savannah River dataset: whereas RL indicates strong aversion of most 
species pairs, the lack of any such indication under rRL suggests that this may simply be the 
result of aggregation tendencies within species.  

rRL was more similar to TS than to RL when the joint population was randomly distributed (see 
Table 2 and Table 4). However, when the joint population was clustered, TS results were highly 
variable. These results may be influenced somewhat by the choice of metric (i.e. fixed distance 
neighborhood vs. number of nearest neighbors), but are ultimately due to the fact that the joint 
population of simulations under TS can have a very different structure than the observed joint 
population. For example, if the joint population is strongly aggregated, simulations under TS 
will tend to be less aggregated, causing a systematic reduction in simulated neighbor counts and 
thus resulting in inference of positive spatial interaction. Since such results primarily reflect the 
clustering of the joint population, employing rRL to constrain the joint population pattern will 
provide a more logical interpretation in many cases.  

The present study did not assess other, more sophisticated methods for implementing PI such as 
the use of parametric point processes and non-parametric pattern reconstruction. In theory, 
pattern reconstruction methods could be designed to simultaneously account for the spatial 
structure of the individual subpopulations and joint population, thus eliminating the problem of 
heterogeneity in the joint population pattern observed with TS. Pattern reconstruction methods 
allow locations to vary while preserving the general characteristics of the point pattern, offering 
analytical flexibility (Wiegand and Moloney 2014). This advantage comes at the expense of 
greater required expertise and computation time in comparison to rRL.  

One weakness of rRL is that only one subpopulation can be restricted at a time. In simulations, 

the influence of within-group aggregation was effectively filtered in either ܮܴݎ ௥௢௪  or ܮܴݎ ௖௢௟ , 
but not in both. Greater differences from RL are obtained if the subpopulation with the 
strongest pattern of clustering is restricted. A conservative approach is to consider a relationship 

statistically significant only if it is significant under both ܮܴݎ ௥௢௪  and ܮܴݎ ௖௢௟ .  

The examples in this paper employ topological metrics of spatial interaction. Topological 
metrics are less popular than distance-based metrics, due to the fact that the latter uses a 
constant neighborhood size. However, nearest neighbor metrics give equal weight to each 
individual in the base (row) population. In any case, the choice of null model is separate from 
that of neighborhood definition, and rRL could be used to evaluate to distance-based metrics of 
spatial interaction.  

Our presentation of spatial interaction tables follows previous work using nearest neighbor 
metrics (e.g. Dixon 2002), but differs from the standard presentation of distance-based metrics 
of spatial interaction over a range of scales in a single graph (e.g. Liu et al. 2007). Such graphs 
implicitly place the focus on a single pairwise relation, while tabular results emphasize the 
complete set of pairwise relations but restrict focus to a single scale of analysis.  
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While rRL was able to detect simulated spatial interaction in more than 90% of trials, it may not 
be the most powerful method of analysis if a priori knowledge of certain aspects of the 
population and subpopulations under investigation, such as first-order spatial trends, allow for 
randomization of locations as well as labels. Designation of a restriction set effectively reduces 
sample size and thus decreases statistical power in comparison to RL, although not in 
proportion to the percentage of individuals restricted. Large sample sizes may be crucial to 
effective analysis and null model comparison, since small sample sizes may have large standard 
deviations that prevent meaningful comparisons with null models during spatial analysis (Perry 
et al. 2006), and previous literature has shown that the significance of small departures from the 
null model should be interpreted with caution (Blanco et al. 2008).  

6 Conclusions and suggestions for future research 

Restricted random labeling (rRL) of each population in pairwise analysis provides a useful 
mechanism for discerning patterns of spatial interaction when multiple (n>2) populations are 
constrained by a set of common environmental factors. Our simulation experiment found rRL to 
be unbiased in the presence of non-random structure in either the joint population or individual 
subpopulations, or both.  In addition, rRL showed greater statistical power than TS and RL 
when these were also unbiased, and is computationally faster than TS, which is advantageous for 
large datasets. A drawback of rRL is that only one population can be constrained at a time. 

Therefore, we recommend that both ܮܴݎ ௥௢௪  and ܮܴݎ ௖௢௟  be assessed unless a reasonable 
justification exists for disregarding the effect of one population’s structure (as in our analysis of 
Spokane crime data). 

One suggestion for future research is to characterize the degree of correspondence between rRL 
and pattern reconstruction methods (Wiegand and Moloney 2014). Although more complex, 
these can also be used to constrain patterns of both the joint population and individual 
subpopulations. In particular, the sensitivity of spatial interaction analysis to small 
perturbations in event locations should be explored.  
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Appendix A: Detailed Derivation of Expected Nearest Neighbor Counts [Eq. (2)] 

The first term in Eq. (2), ܥ ஺ → ஻ , is the number of restricted A individuals that have restricted B 

individuals as their nearest neighbor. This is defined by the restriction pattern and remains 
fixed under randomization. The remaining three terms are derived from counting arguments. 

The second term derives the expected count ܧ൫ܥ ܣ  ൯ of restricted-A-unrestricted-B nearestܤු→

neighbor pairs by taking the number of restricted A individuals that have an unrestricted 

individual of any type as their nearest neighbor ൫ܥ ஺ →௉ෘ൯, and multiplying by the proportion of B 

among all unrestricted individuals ൬௡ಳෙ௡ುෙ൰. Similarly, ൫ܥ௉ෘ→ ஻ ൯ ௡ಲෙேುෙ computes the expected 

count	ܧ൫ܣුܥ→ ܤ ൯ of unrestricted-A-restricted-B nearest neighbor pairs by taking the number of 

restricted B individuals that are the nearest neighbor of an unrestricted individual from any 
subpopulation (ܥ௉ෘ→ ஻ ) and multiplying by the proportion of A among all unrestricted individuals ൬௡ಲෙேುෙ൰.  Finally, the last component, ܥ௉ෘ→௉ෘ ேಲෙேುෙ ேᇱಳෙ൫ேುෙିଵ൯, is the expected count ܧ(ܥ஺෰	→஻෰	) of 

unrestricted-A-unrestricted-B nearest neighbor pairs, and is computed by taking the number of 
unrestricted A individuals (݊஺ෘ), multiplying by the proportion of unrestricted individuals that 

have another unrestricted individual as their nearest neighbor ൬஼ು෱	→ು෱	ேುෙ	 ൰ to determine the expected 

count ܧ(ܥ஺෰	→௉෰	) of unrestricted A individuals that will have another unrestricted individual from 

any subpopulation as a nearest neighbor, and then multiplying again by the proportion ൬ ௡ᇱಳෙேು෱	ିଵ൰ 

of B among all unrestricted individuals, excluding the original A individual. 

Appendix B: Applied Example  

In this example, we investigate a situation where we are interested in the co-location of 
categories within the dataset given a fixed set of points inside the grey region (Fig. B-1). In this 
situation we have 20 total points, eight of which are in the locked region (see Table B-1).  

 

Fig. B-1:  Sample spatial population for 
calculation. 

  Restricted Free 
X 2 2 
Y 4 7 
Z 2 3 
P 8 12 

Table B-1:  Counts of restricted and free 
individuals in each 
subpopulation (X,Y,Z) and 
the joint population (P). 

 

  



 X Y Z 
X 0 2 2 
Y 3 5 3 
Z 3 2 0 

Table B-2:  Actual nearest-neighbor 
counts. 

 X Y Z 
X 0.17 1.33 1.50 
Y 3.17 5.08 2.75 
Z 1.67 2.58 0.75 

Table B-3:  Expected nearest-neighbor 
counts. 

 

Actual first nearest neighbor counts (݊ ௑ , ݊௑ෘ ,	etc.) are shown in Table B-2. We differentiate 

which relationships come from restricted points and which from unrestricted using the notation 
found elsewhere in the paper. Important to this calculation is the distinction of whether the 
nearest neighbor is also restricted or free.  

Expected counts for this data are shown in Table B-3. These are calculated using Eq. (1) from the 
article. For instance, the calculation of E(C௑→௒) is derived as follows: 

E(C௑→௒) = C ௑ → ௒ + ൫C ௑ →௉ෘ൯ ݊௒ෘܰ௉ෘ + ൫C௉ෘ→ ௒ ൯ ݊௑ෘܰ௉ෘ + ൬݊௑ෘ × C௉෰	→௉෰	ܰ௉ෘ	 ൰ ݊′௒ෘܰ௉෰	 − 1 

E(C௑→௒) = 0 + (0) 712 + (1) 212 + ൬2 × 1112൰ 711 = 0 + 0	 +	13 + 1 = 1.33 

The lowest expected count is of Y individuals with other Y individuals as nearest neighbors, 
while the weakest is of X individuals with other X individuals as nearest neighbors. These 
expectations are cemented partially by the existing restricted spatial structure, and also by the 
quantity of free Y points. Calculating the restricted CLQ for this dataset is a matter of dividing 
the actual counts by the expected counts. 
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