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Abstract 

This thesis describes the synthesis of a trimetallic Rull complex 

[Rull(bpy){(bpyrm)Rull(NH3)4}2](PFs)s and its bimetallic analog 

[Rull(bpy)2(bpyrm)Rull(NH3)4](PFs)4 . The trimetallic species was designed to 

be the first in a series of complexes where the reduction potential of the 

"bridging" complex could be varied (relative to the "terminal" sites) through 

systematic variation in the metal (M) and/or ligand (LL) : 

where: 

[(NH3)4Rul'-bpyrm-Mll(LL)-bpyrm-Rull(NH3)4]6+ 

M =Ru or Os 

LL = 2,2'-bipyridine (bpy), 1, 10-phenanthroline, 

and derivatives. 

bpyrm = 2,2'-bipyrimidine. 

Generation of the [Ru11-M11-Ru111] "mixed-valence" complex would then allow 

observation of "end-to-end" intervalence charge transfer (IVCT) as a function of 

bridge potential. 

The initial bi- and trimetallic complexes were synthesized and 

characterized. In addition, the [2,3] and [3,2,3] "mixed-valence" forms of these 

complexes were generated and studied. However, a persistent impurity, 

originating from a side reaction of one of the starting materials, made it difficult 

to generate the target [2,2,3] mixed-valence form of the trimetallic species. 

Rigorous attempts to purify the complexes are described in detail. 
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Introduction 

Electron transfer reactions (ET) are fairly common in various inorganic, 

organic, and biological systems. For example, in photosynthesis a series of 

efficient light-induced ET reactions are used by green plants to produce high 

energy products. Recently, attempts to model these systems have involved 

redox-active transition metal complexes. In developing complexes that can be 

studied there are many properties that limit system selection. Ideally a system 

should contain: 1) two or more substitutionally inert metal complexes; 

2) bridging ligands which connect the metal centers and serve as routes for 

intramolecular ET ; 3) metal centers that are readily oxidized or reduced; and 

4) intermediates and/or products that are substitutionally inert. 

In the past 30 years, there has been a vast amount of theoretical and 

experimental work done in the area of long distance ET. This has led to a 

greatly increased understanding of how the efficiency of the process varies 

with distance, temperature, free energy (LlG), solvent properties, and molecular 

orientations. This study deals exclusively with attempts to synthesize and 

monitor intramolecular ET in "mixed-valence" M(ll) - M(lll) bridged complexes 

based on the d6-d5 metal centers of ruthenium. Insights gained by studying 

long distance ET reactions in these model systems may contribute to an 

increased understanding of other systems (photosynthesis) and to the design 

of increasingly efficient chemical solar energy conversion schemes. 

A typical mixed-valence species, such as: 
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can be produced by one electron oxidation of the Mall -- Mbll precursor. 

The two neighboring metal ions Mall and Mblll are each surrounded by a 

coordination environment which may consist of similar or different numbers 

and types of ligands, and are connected by a common ligand or bridge (--).1 

Mall and Mblll can be the same or different type of metal. As illustrated here, 

they usually differ by one unit in their oxidation states. The bridging group may 

be an aromatic heterocycle, an organic chain, a single atom, a metal-metal 

bond, or even a protein. The type of bridge greatly affects the efficiency of 

intramolecular ET between the metal centers in the complex. 

A mixed-valence, bimetallic species where the metal centers are identical 

(except, of course, for their oxidation state) can be represented as: 

Several important questions can be raised concerning this species. 

1) What is the rate of interconversion to the "redox isomer"? 

M"---Mlll <-------> M111---M11 

(In other words, what is the rate constant, kET,(s-1), 

of thermal intramolecular ET from Mii --> Miii). 

2) What is the activation energy, Ea. for this interconversion? 

3) How do the electronic characteristics of the bridge(---) between Mii 

and Miii affect the efficiency of intramolecular thermal ET? 

2 



According to Robin and Day2, mixed-valence systems can be divided into 

three different types or classes. Class I compounds show little or no electronic 

interaction between the metal centers (because the M11---M111 separation is 

large or because their immediate environments are very different). Class II 

compounds show a weak amount of interaction, and in Class Ill compounds 

the electronic interaction between the two metal centers is so great that the 

individual characteristics of each metal are nonexistent (the "odd" electron is 

considered to be de localized). The compounds in this thesis were designed to 

show Class II (weak interaction) behavior. 

An intramolecular electron transfer reaction in a symmetric mixed-valence 

M"---Mlll complex can be represented by the potential energy diagram in 

Figure 1-1 . The reactant (M11--M111) and product (MllL-Mll) states are 

depicted by one-dimensional slices of three-dimensional potential energy 

surf aces representing the nuclear positions and energies (including solvent) 

before and after ET takes place (Figure 1-1 is admittedly an oversimplification 

of the overall ET event. However, such representations are regularly used in 

the literature and are valuable for demonstrating the important parameters 

involved in the process.) 

In a Class II mixed-valence species, the small amount of electronic 

interaction does cause a finite "splitting" at the crossing point of the two 

potential surfaces. In Figure 1-1, this splitting is represented by 2Hab· (The 

magnitude of Hab is considered to be a measure of the "electronic 

communication" between the metal centers.) Electron transfer occurs at the 

intersection of the two curves because energy must be conserved and it is only 

at this point that the energies are the same immediately before and after ET. 

The electron transfer event ("thermal" ET) can be described (using Figure 1-1) 

as a passage of the system from the (M"--Mlll) state to the (Mlll--M") state. 
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Despite the fact that the overall free-energy change for the process is zero, an 

activation barrier (energy = Ea) does exist. This activation energy arises from 

both solvent (repolarization; Eout) and intramolecular (metal-ligand bond 

length changes; Ein) reorganization energies resulting from charge transfer. 

Thus, the total reorganization energy, Er= Ein + Eout =Ea. Additionally, 

(1) 

Eout = e2- (1'2a2 + 1'2as - 1/r) (1/Dop - 1/Ds) (2) 

Ein is the inner-sphere reorganization energy (due to metal-ligand bond length 

adjustments), where n is the number of ligands per metal center, and f2, f3 and 

d2, d3 are the force constants and equilibrium bond lengths, respectively, for 

the metal-ligand bonds for Mii and Miii. Eout is the outer-sphere (or solvent) 

reorganization energy, where e is the electronic charge, a2 and a3 are the 

"effective radii" of the Mii and Miii complexes, r is the separation between the 

metal centers, and Dop and 0 5 are the optical and static dielectric constants of 

the solvent. Thus ET would be slow (high Ea ) in a system where large metal

ligand bond length changes occurred and/or where Eout was large (usually 

due to a high Ds value: eg, polar solvents). 

A second ET pathway is shown in Figure 1-1. Electron transfer can occur 

through optical excitation of the M"--Mlll species to a vibrationally excited 

[Mlll--Mllf state. This optical transition, of energy E0 p, appears as a 

vertical transition in Figure 1-1 . This is called a metal to metal charge transfer 

(MMCT) or intervalence charge transfer (IVCT) transition. Hush3 has shown 

that, for a symmetric weakly coupled Class 11 mixed-valence complex : 

Ea= Eop/4 = Er/4 (3) 

4 



c.n 

Figure 1-1 : Potential Energy versus Nuclear Configuration for a Symmetric 
Mixed-Valence Complex. 

> 
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where Er is the total reorganization energy and Ea is the activation barrier for 

thermal ET. 

Hush's theory has also been used to relate Eop to Hab : 

Hab = 2.05 x 10-2 [emax /::,. v112 I Eop]112 (Eoplr} cm-1 (4) 

where: (5) 

Referring to the IVCT absorption, /::,. v112 is the bandwidth at half intensity and 

emax is the molar absorptivity (M-1 cm-1) at the band maximum. It can be 

noted (from Eq. 3 through 5) that if Eop is high and emax is low, then Ea will be 

high and Hab will be low, which would predict that the rate of thermal ET in Eq. 

6 would be low. 

On the other hand, if Eop is low and emax is high, Ea will be low and Hab will 

be larger (i.e. the rate of thermal ET will be high in Eq. 6). 

(6) 

Table 1-1 shows data obtained for two different symmetric mixed-valence 

bimetallic complexes. As can be observed from the data, when the distance 

between the metal centers increases, Eop increases, and both emax and Hab 

decrease. This would imply a smaller rate of thermal ET would result when the 

distance between the metal center increases - an expected result. 

When the two metal sites in a M11---M111 mixed-valence species are not 

equivalent ("asymmetric"), intramolecular ET occurs with a net free energy 

change. Figure 1-2 can be used to represent this situation. (It is common in 

the literature to assume that overall entropy changes for ET in these systems 
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Table 1-1 : lntervalence Spectra of Class II [Ru(bpy)2Cl]2L-L3+ in CH3CN.4 
0 

emax. M-1 cm-1 L-L r, A nm Lh.1112 cm-1 Hab. cm-1 Eop. cm-1 

---------- -------- ----------------- ------------- ------------ ------------
pyrazine 6.8 1300 450 5000 400 7692 

4,4'-bpy 11.3 980 100 4900 150 10,204 
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are zero; /lS::::: 0. The overall free energy change, /lG0 , is then approximated 

as /lE0 , where /lE0 equals the difference in the reduction potentials of the two 

metal sites). 

It should be noted that for an asymmetric mixed-valence species 

(Figure 1-2) : 

Additionally, it can be shown that : 

Ea (3,2 --> 2,3) = (Eop - 21lEo)2/ 4(Eop - llEo) 

Also for the asymmetric case : 

Hab = 2.05 x 10-2 [ (emax llvu2) I Eop ]1'2 (Eoplr) cm-1 

(7) 

(8) 

(9) 

The effect of introducing a llEo term on Eop can be seen by comparison of 

the reported IVCT bands for the following complexes : 

[(NH3)5Ru''-(4,4'-bpy)-Ru' 11(NH3)5]5+ 

( I ) 

[(bpy)2CIRu''-(4,4'-bpy)-Rulll(NH3)5]5+ 

( II ) 

where bpy = 2,2'-bypridine and 4.4'-bpy = 4,4'-bpyridine. For complex I, Eop = 
971 cm-1 and for complex II, Eop = 1441 cm-1. 
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Figure 1-2 : Potential Energy versus Nuclear Configuration for an Asymmetric 
Mixed-Valence Complex. 
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Recently, there has been an interest in examining trimetallic mixed-valence 

systems where the organic bridges in the bimetallic species are effectively 

replaced by metal complexes : 

M 11---M "---M Ill 

For example, Scandola et al.5 have reported the synthesis of the following 

mixed-valence, trimetallic species : 

[py(NH3)4Ru''-NC-Ru''(bpy)2-CN-Rulll(NH3)4py]S+ 

( Ill ) 

where py = pyridine. It should be noted that such a complex might show two 

IVCT transitions arising from two separate optical ET reactions : 

1. Central "Ru"(bpy)2" to terminal "Ru"'(NH3)4py"; RUc" -> Rut"' (Eop[1]) 

2. Terminal "py(NH3)4Ru"" to terminal "Ru' 11 (NH3)4py"; Rut" -> Rut"' (E0 p[2]). 

Not surprisingly, the first transition has a higher intensity ( emax) than the 

second, due to the difference in distances involved, 

(eg. E0p[1] = 13,300 cm-1 (emax = 2900 M-1cm-1) and Eop[2] = 8200 cm-1 

(emax = 350 M-1cm-1)).5 

Other trimetallic systems have also been synthesized, and these are listed 

in Table 1-2. Table 1-2 shows the energies and intensities of the IVCT 

transitions resulting from optically induced intramolecular ET between terminal 

Ru sites (Rut) in both cis and trans trimetallic complexes in the [2,2,3] oxidation 

10 



states. It can be seen from this data that the extent of electronic communication 

(as measured by the energy (Eop) and the intensity (emax) of the IVCT bands) is 

not a simple inverse function of "through-space" distance (rs) between the 

terminal Ru sites. As an example; Meyer et al.7 have observed no interaction 

between terminal Ru sites in the following complexes (rs = C? 1 o A) : : 

[(NH3)5Rul '-pz-Rull(bpy)2-pz-Rul I l(NH3)5] 7 + 

(IV) 

and 

[(NH3)5Rul '-< 4,4'-bpy)-Rull(bpy)2-( 4, 4'-bpy)-Rul I l(NH3)5) 7 + ; 

( v) 

where pz = pyrazine. However, Sutin et al. 6 have shown significant electron 

exchange in : 

[(NH3)5Rul '-< 4-CNpy)-Ru''(bpy)2-( 4-CNpy)-Rull l(NH3)5J7 + 

(VI) . 

For complex VI, rs= 13.2 A (Table 1-2). The most dramatic comparisions can 

be made from the work of Taube et al.8, for the complex: 

trans-[(NH3)5Rul '-pz-Rul l(NH3)4-pz-Rul I l(NH3)5] 7 + 

(VII) . 

11 



Table 1-2 : IVCT Transitions for Trimetallic Complexes. 

-----------------------------------------------------------------------------------------------
complex .Amax (nm) em ax solvent rs. A ref. 

M-1 cm-1 
-- ---

[(pz)Ru114-NC-Rx-CN-Ru1115(pz)]5+ 
Rut-• Rut 1219 350 020 7.0 5 
RUc-• Rut 752 2900 

[(NH3)5Ru11-NC-Rx-CN-Ru111(NH3)5]5+ 
Rut-•Rut 1053 350 020 7.0 5 
RUc-• Rt,t 685 3250 

[(pz)Ru114-NC-Rx-CN-Ru111(NH3)5]5+ 
Rut-• Rut 1000 370 020 7.0 5 
RlJc-• Rt,t 680 3100 

[Ru11s-(4-CNpy)-Rx-(4-CNpy)-Ru'''sJ7+ 
Rut-• Rut 1090 20 CH3CN 13.2 6 
RUc-• Rt,t 625 400 

[(NH3)5Ru1'-pz-Rx-pz-Ru111(NH3)5]7+ 
Rut-• Rt,t not observed CH3CN -10 7 
RUc-• Rut not observed 

[R u11s-( 4,4'-bpy)-Rx-( 4, 4'-bpy)-Ru11 'sl7 + 
Rut-• Rut not observed CH3CN >10 7 
RlJc-• Rut not observed 

trans-[Ru''s-pz-Ru11(NH3)4-pz-Ru111s]7+ 
Rut-• Rut 1695 -1000 020 14.0 8 

rs= "though-space" distance between terminal Ru sites. 

Rx = Rull(bpy)2 

Rus = Ru(NH3)5 

Ru4 = Ru(NH3)4 

RlJc = central Ru 4,4'-bpy = 4,4'-bipyridine 

pz = pyrazine 

Rut= Ru of terminal Ru(NH3)52+/3+ unit 

4-CNpy = 4-cyanopyridine 

12 



Tn1s comp1ex snows strong e1ectrornc mteracuon oetween me 1ermma1 snes 

despite having the longest end-to-end distance (14 A). 

The data presented in Table 1-2 suggests that the amount of "electronic 

interaction" between terminal Ru sites in trimetallic complexes is affected by 

other factors besides distance. Taube et af.8 have proposed that the larger 

degree of end-to-end interaction in the trans complexes may be related to the 

more favorable "energy match" between the bridging and terminal positions. In 

other words, in complex (VII), the energy gap between the [2,2,3] and [2,3,2] 

state is not large (ie. the bridging complex is not much harder to oxidize than 

the terminal Ru sites). However, as seen in complexes (IV) and (V) the nd 

levels of the bridging "-Rull(bpy)2-" are much lower in energy relative to the 

terminal Rull sites (ie. the bridging complex is much harder to oxidize than the 

terminal sites). This can be illustrated quite simply in Figure 1-3. 

The synthesis and characterization of a series of trimetallic complexes 

where only the fiE112 value (Figure 1-3) varies might provide a way of testing 

the importance of an "energy match" across the complex. The general formula 

of the proposed trimetallic series is : 

where: 

[(NH3)4Rul'-bpyrm-Mll(LL)-bpyrm-Rull(NH3)4]6+ 

M =Ru or Os 

LL = polypyridyl derivatives . 

bpyrm = 2,2'-bipyrimidine 

Some advantages of this series would be: 1) the ruthenium, ammine, and 

polypyridyl chemistry is well known; 2) the polypyridyl groups lend stability to 

the complex; 3) the terminal Ru sites have strong a donating ammine ligands, 

preventing competition for electron density between the bridging and terminal 
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Figure 1-3 : Comparision of the Energy Difference in cis- versus trans

Complexes. 

nd 

E 

E nd 

bridging Rull 

((NH3)5RulLpz-Rull(bpy)z-pz-Rulll(NH3)5]7+ 

and 

[(NH3)5Rul '-< 4,4'-bpy)-Rull(bpy)2-( 4, 4'-bpy)-Rul I l(NH3)5] 7 + 

___ iaE112 
bridging Rull 

trans-[(NH3)5Rul '-pz-Rul l(NH3)4-pz-Rul I l(NH3)5] 7 + 
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ligands; 4) the make-up of the trimetallic species allows for synthetic variations 

on the bridge (M =Ru or Os; LL= various polypyridyl ligands) allowing 

systematic changes of the reduction potential of the bridging metal complex 

relative to the terminal Ru sites, (variation of aE112); 5) the distance (and 

orientation) between the terminal Ru" sites stays constant. 

This thesis deals with the synthesis and characterization of the first in this 

series of trimetallic species (M =Ru; LL= 2,2'-bipyridine) : 

[Rull(bpy){(bpyrm)Ru"(NH3)4}2](PFs)s. The structure of the [2,2,2] form is 

shown in Figure 1-4. 

The bimetallic species, [Ru 11(bpy)2(bpyrm)Ru 11(NH3)4](PF5)4, was also 

synthesized and characterized as an aid in understanding the electrochemical 

and spectroscopic characteristics of the trimetallic species. The bimetallic 

complex can be represented by the structure shown in Figure 1-5. 
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Figure 1-4: The structure of [Rull(bpy){(bpyrm)Rull(NH3)4)2]6+ in the [2,2,2) 
form. 

I " 6+ 
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Figure 1-5 : The structure of [Rull(bpy)2(bpyrm)Rull(NH3)4]4+ in the [2,2] form . 
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Experimental Section 

Materials. The following were purchased from Aldrich Chemical Co. and 

used as received: ruthenium(lll) chloride hydrate (RulllCl3 • x H20), 2,2'

bipyridine (bpy, 99+%), silver trifluoromethanesulfonate (AgTFMS, 99+%), 

trifluoromethanesulfonic acid (CF3S03H, 98+%), ethylene glycol (99.5%, gold 

label), 2,3-dihydroxynaphthalene (H~hn, 98 %), potassium 

hexafluorophosphate (KPFs. 98+%), acetonitrile (CH3CN, 99.5%, ACS reagent), 

dimethyl sulfoxide (DMSO, 99.9%, spectrophotometric grade), 

tetraethylammonium chloride hydrate (TEAC, dried for five days in a vacuum 

oven at 80°C), white quartz sand (50-70 mesh), N,N-dimethylformamide (DMF, 

99+%, spectrophotometric grade), and nitromethane (96%, spectrophotometric 

grade). Potassium chloride (KCI, reagent grade), neutral alumina (Al203, 80-

200 mesh), DMSO (ACS certified), and disodium ethylenediaminetetraacetate 

(Na2H2EDT A, ACS certified) were purchased from Fisher Chemical Co. and 

used as received. Polarographic grade tetraethylammonium perchlorate (TEAP) 

was purchased from GFS Chemicals and used as received. Polarographic 

grade tetrabutylammonium hexafluorphosphate (TBAH) was purchased from 

BAS Chemicals and used as received. High purity Burdick & Jackson CH3CN 

and propylene carbonate were purchased from Baxter Corp. and used as 

received. 2,2'-Bipyrimidine (bpyrm) was purchased from Lancaster Synth. Ltd. 

and used as received. All water used for reactions and columns was purified 

from a "Milli-Q ™ Water System". Most organic solvents used for electrochemical 

experiments were stored over 3A or 4A "Molecular Sieves" purchased from MCB 

Manufacturing Chemists. Argon gas was scrubbed with a column of "Oxy-Clear" 

purchased from Fisher Chem. Co. (removed oxygen to a limit less than 50 ppm). 

Chloropentaammine ruthenium (Ill) chloride ([Rulll(NH3)5Cl]Cl2) was 

purchased from Strem Chemicals Inc. and was recrystallized by dissolving 1 .4 
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grams in 240 ml of 0.1 M HCI at 40°C. The solution was then filtered hot and 

reprecipitated by addition of 2 ml of concentrated HCI. Cooling in an ice bath 

yielded bright yellow crystals. 

Methods. Visible, ultraviolet, and near-infrared spectra were recorded on a 

Shimadzu UV-3100 UV-vis.:NIR recording spectrophotometer. Electrochemical 

measurements were made using a saturated sodium chloride calomel electrode 

(SSCE) as a reference (room temperature) and are uncorrected for junction 

potential effects. A 1.5 mm platinum button electrode (for CH3CN) or a glassy 

carbon electrode (for H20) were used as the working electrodes and a platinum 

wire was used as the auxiliary electrode. The electrolyte was either 0.1 M TEAP 

or TBAH (for CH3CN) or KCI (for H2')). Cyclic voltammetry measurements were 

made with an EG&G PAR Model 173 potentiostat for potential control with a 

Model 175 universal programmer as a sweep generator. Voltammograms were 

recorded on a Houston Instruments Omnigraphic 2000 xy-recorder. The E112 

values from cyclic voltammetry were calculated from half the sum of the Ep 

(potential at current maximum) values for the anodic and cathodic waves. 

Elemental analyses were performed by Galbraith Laboratories Inc., Knoxville, 

TN, or by Atlantic Microlabs, Norcross, GA. 

Ru(bpy)Cl4 - The procedure of Krause 1 was followed. In a typical 

preparation Ru111c13 • 3 H20 (3.00 g, 11.5 mmol) and bpy (2.199 g, 14.1 mmol) 

were added to 15 ml of 1.00 N HCI. The suspension was stirred and the mixture 

was stoppered and left to stand 27 days in the dark. The product was collected 

on a medium glass frit, washed with 15 ml of cold water, and dried in vacuo. 

Yield : 4.04 g, 88%. (It is believed that the final product is actually 
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Rulll(bpy)Cl3(H20)2, rather than Ru(bpy)Cl4 as cited in the original work of 

Krause. In this case the yield = 92%). 

cis-Ru"(bpy)2Cl2 • 2H20 - The procedure of Meyer3 was followed with 

some slight modification. In a typical preparation, RulllCl3 • 3H20 (1.95 g, 7.45 

mmol), bpy (2.34 g, 15.0 mmol), and LiCI (2.10 g, 50 mmol) were heated at reflux 

with stirring in DMF (15 ml) for 8 hours. The reaction mixture was cooled to 

room temperature, 75 ml of reagent grade acetone was added and the solution 

was refrigerated at -5 °c overnight. The solution was filtered in a medium 

porosity glass frit which yielded a red filtrate and a black precipitate. The solid 

was washed three times with 25 ml portions of water followed by three 25 ml 

portions of diethyl ether, and then dried in vacuo. Yield: 66 %, 3.88 g. 

The crude product was purified by the method of Sprintschnik4. In a typical 

preparation, Rull(bpy)2Cl2 •2 H20 (2.5 g, 4.8 mmol) was heated at reflux with 

stirring in a 1 :1 ethanol/water mixture for 1 hour. The insoluble solids were 

filtered out through a medium glass frit and LiCI (48.0 g, 1.13 mol) was added 

prior to rotovapping off the excess ethanol. The solution was cooled in an ice 

bath for 30 minutes, and the product precipitated out as very fine, dark crystals. 

The product was collected on a medium glass frit, washed with a small amount 

of cold water and dried in vacuo. Yield: 2.29 g, 90%. 

[Rull(bpy)2(bpyrm)](Pfa}2 • H20 - The procedure of Rillemas and 

coworkers was followed with some modifications. In a typical preparation 

Rull(bpy)2Cl2 • 2H20 (.300 g, .576 mmol) was reacted for 45 minutes with 

AgTFMS (.296 g, 1.152 mmol) under a nitrogen blanket in 50 ml of reagent 

acetone that had previously been deaerated with N2 for 30 minutes. The AgCI 

that was formed was filtered through a medium glass frit. Bpyrm (.2733 g, 1.728 
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mmol) was added to the maroon filtrate and the solution was heated at reflux 

under nitrogen for 24 hours. The appearance of a fine yellow-brown solid was 

noted throughout the reaction. The solution was allowed to cool to room 

temperature and was filtered to remove solid impurities. KPFs (.2333 g, 1.267 

mmol) was added to the red-orange filtrate and the solution was reduced in 

volume to -15 ml on a rotary evaporator. The desired complex was precipitated 

by addition of diethyl ether dropwise into the solution. The dark-red solid was 

collected on fine glass frit, washed with 30 ml of diethyl ether, and dried in 

vacuo. 

The compound was purified by column chromatography. The crude 

compound (.400 g) was redissolved in a minimum quantity of CH3CN and 

chromatographed on an alumina column (4 inches x 2.7 cm) previously 

developed with CH3CN. The sample was loaded on the column with CH3CN 

followed by 20 ml of reagent acetone. At this point, pink and green impurity 

bands were observed. The main product was eluted (as an orange band) with a 

1 :3 CH2Cl2 I CH3CN solution. Three distinct impurity bands remained on the 

column after elution. A band stuck to the top of the column and changed from 

dark brown to purple when the solvent was switched from CH3CN to acetone. A 

dark orange band was noticed trailing the main cut. The eluent was reduced to 

10 ml and diethyl ether was added dropwise to precipitate the compound. The 

compound was isolated by use of a fine glass frit, washed with 30 ml of diethyl 

ether, and dried in vacuo. Yield : 0.218 g, 43% based on Ru"(bpy)~l2 • 2H~. 

[Ru'~bpyrm)2(bpy}](PF&)2 - The procedure developed by Rillemas and 

coworkers was followed with some modifications. In a typical preparation 

Ru(bpy)Cl4 (.399 g, 1 mmol) and bpyrm (.949 g, 6 mmol) were suspended in 20 

ml of ethylene glycol. Upon heating and stirring at reflux for 30 minutes, the 
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blue-green solution turned to a red-orange color. The solution was cooled to 

room temperature. About 3 ml of an aqueous, saturated KPFs solution was then 

added to precipitate the orange complex as the hexafluorophosphate salt. After 

20 ml of water was added, the precipitate was collected on a fine glass frit, 

redissolved in a minimum of CH3CN, and then precipitated by addition of diethyl 

ether dropwise to the solution. The crude compound was dried in vacuo. 

The compound was redissolved in a minimum quantity of CH3CN and 

chromatographed on an alumina column (4 inches x 4.5 cm) previously 

developed with CH3CN. The main product (an orange band) was separated 

with a very slow drop rate from a brown band at the top of the column. The 

eluent was then rotary evaporated to -7 ml and was precipitated by addition of 

diethyl ether dropwise into the solution. The orange solid was collected on a 

fine glass frit, washed with 30 ml of diethyl ether, and dried in vacuo. 

Yield : 0.440g, 51%. 

[cis-Rull~NH3)4Cl2]CI - The procedure of Clarke? and coworkers was 

followed with slight modification. In a typical preparation [Rulll(NH3)sCl]Cl2 

(1.90 g, 6.49 mmol) (purchased or prepared from [Ru"(NH3)s]Cl2 following the 

procedure of Vogt? and coworkers) was added to 19 ml of water. The solution 

was heated to 55 °C with a water bath and 2,3-dihydroxynaphthalene (H2dhn) 

(2.07 g, 12.9 mmol) which had been dissolved in 17 ml of 1 :1 water-ethanol at 

55 °C, was added with constant stirring. The reaction mixture was adjusted to 

pH 9.5 with fresh 3M NaOH. The solution turned a deep blue and was heated 

for an additional 40 minutes. The reaction mixture was filtered on #1 filter paper 

and evaporated to dryness on a rotary evaporator in a 400 ml round bottom 

flask (care must be taken to avoid foaming of solution). The blue residue was 

scraped out of the f task and the solid remaining in the flask was removed by 
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dissolution in a minimum quantity of water. All of the solid product was 

combined and dissolved in a minimum quantity of water. Concentrated HCI (15 

ml) was added and the mixture was stirred and heated to 50 °c for 15 minutes. 

The red-violet solution was allowed to cool to room temperature and a white 

solid impurity (H2(1hn) was filtered out. The solution was then extracted three 

times with 15 ml portions of CH3CI in a separatory funnel. The aqueous (violet) 

layer was transferred to a beaker and an equal volume of absolute ethanol was 

added (-30 ml). The solution was refrigerated (-5 °C) for two hours, and the 

product precipitated out as a flocculent dull yellow solid. The product was 

collected on a fine glass frit, washed with CH3CI, ethanol, and diethyl ether, and 

then dried in vacuo. Yield of crude product: 0.748 g, 42°/o. 

The compound was purified by dissolving the crude product in a minimum 

amount of concentrated HCI (care must be taken to avoid using an excess 

amount of HCI) followed by addition of three volumes of absolute ethanol and 

then cooling the solution in a freezer at -2°C to facilitate the precipitation of a fine 

yellow solid. Overall yield: 0.524 g, 29%. 

[Rull(bpy)2(bpyrm)Rull(NH3)4](PF&)4 - In a typical preparation 

[Ru"(bpy)2(bpyrm)](PFs)2 • H20 (.100 g, .114 mmol) and [Ru"'(NH3)4Cl2]CI (.095 

g, .345 mmol) were added to two separate 3-necked flasks containing 40 ml of 

reagent acetone and 20 ml of water respectively. Both flasks (and solvents) had 

previously been deaerated for 30 minutes with argon. The two flasks were 

connected via a stainless steel cannula while an inert atmosphere was 

maintained. The argon gas was passed through a solution of reagent acetone 

via a bubble frit prior to reaching the reaction vessels. See Figure 2-1. 

After the reactants were added to their respective flasks they were allowed to 

stir under argon for 20 minutes. The red-orange [Ru"(bpy)2(bpyrm)](PFs)2 
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Figure 2-1 : Experimental set-up for synthesis of 
[Ru11(bpy)2(bpyrm)Ru11(NH3)4](PFs)4 and 
[Rull(bpy){(bpyrm)Rull(NH3)4}2](PFs)s . 

[Rull(bpy)2(bpyrm)]2+ 
or 

[Ru 11( bpy)( bpyrm)2]2+ 

Zn/Hg amalgam 

[Ru Ill( N Ha)4 Cl 2]+ 

Argon 

Acetone 



- acetone solution was heated to 40°C, while Zn/Hg amalgams was added to the 

solution containing [Rulll(NH3)4Cl2]+ monomer and allowed to react for 30 

minutes. As the [Ru"'(NH3)4Cl2]+ species was reduced to [Rull(NH3)4(H20)2]2+ 

the color changed from a pale creme to a characteristic golden yellow. The 

[Ru"(NH3)4(H20)2.J2+ was transferred via cannula under argon to the solution 

containing Rull(bpy)2(bpyrm) upon which the resulting mixture immediately 

changed to a very dark green-blue color. The mixture was stirred under argon at 

40°C for 2 hours.* The solution was then rotary evaporated to -1 O ml and the 

crude product was precipitated by the dropwise addition of a saturated solution 

of NH4PFs while cooling in an ice bath. The green solid was collected on a fine 

glass frit, washed with a few drops of cold water and dried in vacuo. 

Yield : 168 mg. 

The crude sample was then dissolved with stirring in 20 ml of reagent 

acetone, and then filtered through a fine glass f rit to remove a small amount of 

insoluble solid. A 70/30 methanol/acetone saturated solution of TEAC was 

added dropwise to the solution to precipitate the dimer as the chloride salt (it is 

important not to add too much TEAC). The green precipitate was collected on a 

fine glass frit and washed with cold acetone until the filtrate no longer showed 

signs of the unreacted [Ru"(bpyrm)(bpy)zJ2+ which has a characteristic yellow

orange color. The solid was then dried in vacuo. Yield : 131 mg. 

The chloride salt of the dimer was then redissolved in 5 ml of water and 

filtered through a 2 ml fine glass frit to remove insoluble impurities. The dimer 

was then reprecipitated as the PFs- salt by the dropwise addition of a saturated 

solution of NH4PFs while cooling in an ice bath. The dimer was then collected 

on a fine glass frit, washed with a few drops of cold water, diethyl ether, and 

finally dried in vacuo. 

*Appendix I details numerous attempts to optimize the synthetic procedure. 
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The process of "salt-switching" was then repeated twice more in order 

to remove the majority of unreacted monomers and reaction side products. 

Yield : 119 mg. Overall Yield : 54%. Calculated. for 

[R ull(bpy)2(bpyrm )R ull(NH3)4](PF 4)4 : 

Calc'd : C, 25.46; H, 2.59; N, 12.73. 

Found : C, 21.38; H, 2.97; N, 13.96 .. 

[Rull(bpy){(bpyrm)Rull(NH3)4}2](PFe)6 - The trimer was prepared in a 

similar manner as the dimer. In a typical preparation [Ru"(bpyrm)2(bpy)](PFs)2 

(.100 g, .116 mmol) and [Ru"'(NH3)4Cl2]CI (.191 g, .695 mmol) were added to 

two separate 3-necked flasks containing 50 ml of reagent acetone and 20 ml of 

water respectively. Both flasks and solvents had previously been deaerated for 

30 minutes with argon. The two flasks were connected via a stainless steel 

cannula while an inert atmosphere was maintained. The argon gas was passed 

through a solution of reagent acetone via a bubble frit prior to reaching the 

reaction vessels. See Figure 2-1. 

The reactants were allowed to stir under argon for 30 minutes. The red

orange [Ru"(bpyrm)2(bpy)](PF6)/acetone solution was heated to 40°C, while 

Zn/Hg amalgams was added to the solution containing [Ru(NH3)4(Cl)2]+ and 

allowed to react for 30 minutes. The [Rufl(NH3)4(H20)2]2+ produced was 

transferred over via cannula under argon to the solution containing 

[Rull(bpyrm)2(bpy)]2+ upon which the resulting mixture immediately changed to a 

very dark green-blue color. The mixture was stirred under argon at 40°C for 2 

hours.· The solution was then rotary evaporated to -10 ml and the crude 

product was precipitated by the dropwise addition of a saturated solution of 

NH4PFs while cooling in an ice bath. The green solid was collected on a fine 
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glass frit, washed with a few drops of cold water and dried in vacuo. 

Yield : 354 mg. 

The crude trimer was then dissolved with stirring in 20 ml of reagent acetone, 

and then filtered through a fine glass frit to remove a small amount of insoluble 

solid. A 70/30 methanol/acetone saturated solution of TEAC was added 

dropwise to the solution to precipitate the trimer as the chloride salt. The green 

precipitate was collected on a fine glass frit and washed with cold acetone until 

the filtrate no longer showed signs of the unreacted [Rull(bpyrm)2(bpy)]2+ which 

has a characteristic red-orange color. The solid was then dried in vaccuo. 

Yield : 168 mg. 

The chloride salt of the trimer was then redissolved in 5 ml of water and 

filtered through a 2 ml fine glass frit to remove insoluble impurities. The trimer 

was then reprecipitated as the PF5- salt by the dropwise addition of a saturated 

solution of NH4PF5 while cooling in an ice bath. The trimer was then collected 

on a fine glass frit, washed with a few drops of cold water, diethyl ether, and 

finally dried in vacuo. 

The process of "salt-switching" was then repeated twice more in order to 

remove the majority of unreacted monomers and reaction side products. 

Yield : 196 mg. Overall Yield : 76%. 

Calculated. for Rull(bpy){(bpyrm)Rull(NH3)4}2](PF4)5 : 

Calc'd: C, 17.53; H, 2.59; N, 12.73. 

Found: C, 13.54; H, 2.77; N, 13.16. 

*Appendix II details numerous attempts to optimize the synthetic procedure. 
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Results and Discussion 

Characterization of Starting Materials 

cis-Ru'~bpy)2Cl2 • 2H20 - The UV-vis spectrum (Figure 3-1) was taken 

in CH3CN and the following absorption maxima were observed : 551.0 nm and 

377.0 nm (dn[Ru"J --> n*[bpy] MLCT) and 241.0 nm and 297.0 nm (both 

bpy n --> n*). The dn[Rull] --> n*[bpy] transitions are formally called metal-to

ligand charge transfer (MLCT) bands. The transitions are assigned from the 

work of Crutchley and Lever1a (and references therein). 

Table 3-1 compares the observed absorbance maxima (and absorption 

coefficients, e) with those found by Crutchley and Lever1a. Thee values for this 

work were determined using only a single concentration. The two waters of 

hydration are included on the basis of previous literature results 1 b and the 

similarity of the observed e values with those from ref. 1 a. 

A cyclic voltammogram (Figure 3-2) in 0. 1 M TBAH/CH3CN showed a 

reversible Ru(lll)/Ru(ll) couple at E112 = 0.326 V vs. SSCE. The literature 

value1, 0.31 V, was taken in 0.1 M TEAP/CH3CN vs. SSCE (Table 3-2). 

[Rul~bpy)2(bpyrm)](PF&)2 • H20 - The UV-vis spectrum (Figure 3-3) 

was taken in CH3CN, and the following absorptions were observed (transitions 

assigned according to the work of Rillema2 and Meyer3- see Table 3-1): 423.0 

nm (dn[Rull] --> n*[bpyrm] MLCT), 361.0 nm (dn[Ru"] --> n*[bpy] MLCT), 288.0 

nm (ligand n --> n*) and 239.0 nm (ligand n --> n*). The low energy shoulder 

at 472.0 nm is most likely due to a MLCT transition to the more easily reduced 

bipyrimidine ligand. 

Thee values (determined from a single concentration), compare quite well 

with the literature values. Therefore, the complex is written with one water of 

hydration, as in ref. 2 . 
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A cyclic voltammogram (Figure 3-4) in 0.1 M TEAP/CH3CN displayed a 

reversible Ru(lll)/Ru(ll) couple at E1t2 = 1.372 V vs. SSCE. This compares to 

1.40 V reported by Rillema2 in the same medium4 (Table 3-2). 

[Rul~bpyrm)2(bpy)](PFs)2 - The UV-vis spectrum (Figure 3-5) was 

taken in CH3CN and the following absorptions were observed (transitions 

assigned according to the work of Meyer and Rillema3 - see Table 3-1): 458.0 

nm (sh), 420.0 nm, 369.0 nm and 330.0 nm (overlapping 

(drt[Rull] --> n*[bpy/bpyrm]) MLCT bands); 283.5 nm and 258.0 nm (both 

ligand n --> n*). 

Although the absorption maxima from this work and ref. 3 show fair 

agreement, thee values reported for this work appear to be consistently low. 

This could be due (in part) to waters of hydration present in this preparation. 

Another possible explanation might be contamination by an "inert" material 

such as excess salt (NH4PFs) which would lower the calculated e values. 

The cyclic voltammogram (Figure 3-6) in 0.1 M TEAP/CH3CN displayed a 

reversible, one electron Ru(lll)/Ru(ll) couple at E1t2 = 1.501 V vs. SSCE. This 

compares to 1.55 V reported by Meyer and Rillema3 in the same medium4 

(Table 3-2). 

[Ru"~NH3)4Cl2]CI - The UV-vis spectrum (Figure 3-7) was taken in 

water and the following absorptions were observed {transitions assigned 

according to the work of Clarke5a and Ford5b - see Table 3-1): 342.5.0 nm and 

301.0 nm (both ligand-to-metal-charge-transfer bands, LMCT); 251.0 nm 

(ligand n --> n*). 

As can be observed from Table 3-1, there is a consistent 7 - 9 nm difference 

between the absorption maxima reported here and those in ref. 5 (due to 

inaccurate instrument calibration). However, e values for the maxima agree 

quite well with those in the literature. 
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A cyclic voltammogram (Figure 3-8), recorded in 0.1 M KCl/H20 vs. SSCE, 

showed irreversible behavior with peak separations of 263 mV between the 

cathodic and anodic waves - see Table 3-2. Ford5c,d has shown that when 

[Ru"'(NH3)4Cl2]+ is reduced to Ru"(NH3)4Cl2 in aqueous solution, a very rapid 

aquation reaction takes place. Therefore, unless the scan rate is extremely 

rapid, reoxidation (during the reverse sweep) of [Ru"(NH3)4(H20)2]2+ takes 

place, and not reoxidation of [Rull(NH3)4Cl2]. In fact, it was only at scan rates 

of 2.5 Vis that Ford5c,d was able to show reversible behavior for the 

[Ru"'(NH3)4Cl2]+1[Ru''(NH3)4Cl2]0 couple. At lower scan rates, (-500 mV/s) 

irreversible behavior was observed (ie [Ru"'(NH3)4Cl2J+l[Ru"(NH3)4(H20)2]2+). 

In this work, the cyclic voltammogram of [Ru"'(NH3)4Cl2]+ was recorded at a 

scan rate of 100 mV/s, far slower than even the "slow" rate used by Ford5c,d. 

Therefore, it is expected that this work would show irreversible behavior for the 

complex, with a reduction peak (for [Ru"'(NH3)4Cl2]+) close to that reported by 

Ford5c.d and a reoxidation wave close to that reported for 

[Ru"(NH3)4(H20)2]2+. The observed reduction peak (-0.369 V vs SSCE) 

compares well with that reported by Ford5c,d for [Rulll(NH3)4Cl2]+ (-0.388 V vs 

SSCE) and the reoxidation wave (-0.106 V vs SSCE) agrees well with that 

reported for [Rull(NH3)4(H20)2]2+ (-0.118 v vs SSCE)5C. 

The overall reaction can thus be written as : 

rapid 
[Rull(NH3)4Cl2]0 -------------------> [Ru"(NH3)4(H~)2]2+ 

-2 Cl- +2 H~ 

[Rull(NH3)4(H~)2]2+ -------> [Ru'"(NH3)4(H~)2]3+ + 1 e 

32 



Characterization of bimetallic and trimetalllc complexes 

[Rull(bpy)2(bpyrm)Ru'~NH3)4](PF5)4 • [2,2] form : The UV-vis 

spectrum (Figure 3-9) was taken in CH3CN, and the absorption bands that 

were observed are listed in Table 3-3 along with transition assignments. The 

MLCT bands and other transitions were assigned on the basis of the intensities 

and energies of previously reported6,7 Ru(ll)-ammine and Ru(ll)

bipyridine(bpy) complexes. 

As seen in Table 3-3, the transition observed at 687.0 nm is assigned as a 

low energy MLCT band, which arises from a transition (intramolecular ET) from 

the easily oxidized Ru(ll)-ammine to the easily reduced bpyrm bridging ligand. 

This compares well with the low energy dn[Ru"-ammine] --> n*[bpyrm] MLCT 

(697.0 nm) reported by Ruminski et al.6 (in H20) for the bimetallic species 

[Rull(NH3)4(bpyrm)Rull(NH3)4]4+. The absorption shoulder at 498.0 nm is 

assigned as a dn[Ru"-bpy] --> n*[bpyrm] MLCT. This is red shifted compared to 

the equivalent transition (472.0 nm) assigned to Rull(bpy)2(bpyrm)2+ (Table 

3-1 ). The red shift is probably due to coordination of the -Rufl(NH3)42+ 

fragment to the bpyrm and subsequent lowering of the n* energy level of the 

bpyrm ligand. 

The absorption envelope centered at 423.0 nm in the bimetallic 

[Rufl(bpy)2(bpyrm)Ru''(NH3)4]4+ is assigned as arising from a summation of 

dn[Ru"-bpy] --> n*[bpy] MLCT's, and a second. dn[Rull-ammine] --> n*[bpyrm] 

MLCT band. (Ruminski et a1s reports both low and high energy MLCT bands 

for the bimetallic complex [(NH3)4Rufl(bpyrm)Ru"(NH3)4]4+.) 

The ultraviolet region of the spectrum of [Rufl(bpy)2(bpyrm)Rull(NH3)4]4+ is 

characterized by intense absorption bands at 282. O nm and 245. O nm. These 

bands are characteristic of n --> n* transitions of the bpy and bpyrm ligands. a 
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Redox properties were determined by cyclic voltammetry, and the cyclic 

voltammogram (Figure 3-10 - three consecutive scans on the same sample) 

was taken in a CH3CN solution containing 0.1 M TEAP as the supporting 

electrolyte. The E1t2 values are listed in Table 3-5. A scan out to + 1.550 V 

showed a fairly reversible wave (bEp = 70 mV) centered at E112 = +0.899 V. 

This wave is assigned as a one-electron (metal-centered) oxidation of the 

(bpyrm)Rull(NH3)42+ portion of the dimer. This compares with an E112 = +0.66 

V (bEp = 58 mV) for [(bpyrm)Rull(NH3)4](PFs)2 in the same solvent (Table 3-

5). 9 The +0.239 V shift in E112 for [Rull(bpy)2{bpyrm)Rull(NH3)4]4+ is thus due 

to the effect of coordination of a second Rull center on the bridging bpyrm 

ligand. 

A scan out to + 1 .900 V produced a second oxidation that was centered at 

E112 = +1.626 V (bEp = 128 mV). This is assigned as a one-electron (metal

centered) oxidation of the (bpy)2Ru"(bpyrm)2+ portion of 

[Rull(bpy)2(bpyrm)Ru"(NH3)4]4+.9 This second oxidation wave was shifted 

anodically (harder to oxidize) from that measured for the monometallic 

complex (Ru"(bpy)2(bpyrm)]2+ (Table 3-2) in the same solvent.2.3 This anodic 

shift in E1t2 is not surprising since the Rull center being oxidized at +1.6 Vin 

the bimetallic complex would be attached to an electron deficient 

-Rulll(NH3)43+ fragment. 

Figure 3-10 also shows that the Rulll1Rulll species generated (at E > 1.6 v) 

was unstable, as a decomposition peak was observed in the reverse scan at 

+1.270 V. As shown in Figure 3-10, this decomposition wave was only 

observed if the complex was allowed to undergo a second oxidation to the 

Rulll!Rulll (or [3,3)) species. Ruminski et a1s have reported that 

[Ru"(NH3)4(bpyrm)Rull(NH3)4]4+ also shows decomposition after a second 

oxidation to the [3,3) form. For [Ru"(bpy)2(bpyrm)Ru"(NH3)4]4+, the 
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decomposition peak is very close to the reduction potential reported for 

[Rulll(bpy)2(bpyrm)]3+ in Table 3-2. Therefore, decomposition can be attributed 

to the cleavage of the dimer into two monomeric species: 

[(bpy}2Rulll(bpyrm}Rulll(NH3}4]6+ --> [(bpy)2Rulll(bpyrm)J3+ + [Rulll(NH3)4(CH3CN)2]3+ 

(caused by bridge rupture to yield monometallic species) 

and/or 

Both [(bpy)2Rulll(bpyrm)]3+ and [(bpy)2Rulll(CH3CN)2]3+ would give reduction 

peaks in the +1.2 to +1.3 V range (vs SSCE). 

Figure 3-1 O also reveals two additional (and quite small) waves at -0. 7 V 

(on the anodic sweep) and -0.6 V (on the reverse cathodic sweep). These 

peaks have been assigned as the oxidation and re-reduction of a small 

amount of impurity present. One possible source of this impurity could have 

been simply unreacted [(NH3)4Rull(H20)2]2+ which would probably take the 

form [(NH3)4Rull(CH3CN)2]2+ in CH3CN. Moreover, the cathodic wave at 

-+0.6 V does appear to be slightly enhanced, and this could have been due to 

small amounts of [(bpyrm)Rull(NH3)4]3+ present after bridge rupture of the 

bimetallic species at E > +1.6 V (the E112 of [(bpyrm)Ru"(NH3)4]2+ in CH3CN 

was previously measured to be +0.66 V vs SSCE). 

Other evidence, however, suggests that the origin of the impurity is more 

complicated than simply the presence of either unreacted starting material or 

decomposition products from bridge rupture. First, repeated attempts to 

separate the impurity from the bimetallic species by both ion-exchange and 
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size exclusion chromatography failed. This implies that the problem species is 

of similiar size and charge to that of the bimetallic complex. Secondly, when a 

control experiment was performed where the preparation of the bimetallic 

complex was carried out without addition of [Rull(bpy)2(bpyrm)](PFs)2, the 

[Rull(NH3)4(H20).2]2+ species generated was observed to undergo several 

color changes even in the absence of o2 . In fact, [Rull(NH3)4(H20).2]2+, 

generated in the absence of 02 by reduction over Zn-amalgam, is known to be 

unstable.Se Third, elemental analysis of [Rull(bpy)2(bpyrm)Rull(NH3)4](PF4)4 

consistently showed low carbon. 

Calc'd: C, 25.46; H, 2.59; N, 12.73. 

Found : C, 21.38; H, 2.97; N, 13.96. 

The above information seems to imply that the impurity could have been 

some sort of bimetallic Ru-ammine species (lacking any polypyridyl ligands) 

formed from a competing side-reaction (decomposition) of the 

[(NH3)4Rull(H20).2]2+ species generated during the preparation. This same 

impurity seems to appear in the preparation of the trimetallic species (vide 

infra) which was prepared by a very similiar procedure. 

[Rul~bpy){(bpyrm)Rull(NH3)4}2)(PF&)& • [2,2,2] form : The UV-vis 

spectrum (Figure 3-11) was taken in CH3CN, and the absorption bands that 

were observed are listed in Table 3-4 along with transition assignments. The 

assignments have been made based on comparisions with the bimetallic 

species [Rull(bpy)2(bpyrm)Rull(NH3)4]4+, and with the spectral assignments of 

previously reported analogous compounds. 6, 7 

The transition observed at 694.0 nm can be assigned as a 

drr [Rull-ammine] --> n"[bpyrm] MLCT band. This represents a slight red-shift 

from the equivalent absorption in the bimetallic species. It could be argued 

that this small shift is due to each bpyrm feeling the effects of two Rull centers 
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(one adjacent and one remote), thus lowering then* LUMO energy slightly. 

This point can not be pressed, however, since the broad low absorption 

represented here may cause some uncertainty in exact peak maximum. What 

is significant about the maximum at 694 nm for the trimetallic species is that its 

absorptivity value is approximately double that of the bimetallic species (Table 

3-3). This is exactly what would be expected (ie. two ctn [Ru"-ammine] --> 

n*[bpyrm] transitions per molecule). 

The absorption envelope centered at 435.0 nm most likely arises from 

overlapping transitions assigned as dn[Ru''-bpy] --> n*[bpy] MLCT, 

ctn[Rull-bpy] --> n*(bpyrm] MLCT ,and ctn [Rull-ammine] --> n*[bpyrm] "high

energy" MLCT bands. The shift of the maximum of this absorption envelope to 

lower energy is consistent with a lowering of energy of the n* LUMO's of bpyrm 

in the trimetallic species (as compared to the bimetallic complex). This is the 

same conclusion that was hinted at from the shift (687 --> 694 nm) mentioned 

previously. 

As in the bimetallic complex, the trimetallic species also exhibits intense 

ultraviolet absorption bands (272.0 nm and 246.0 nm). These bands are 

characteristic of n --> n* transitions of the bpy and bpyrm ligands. a 

Redox properties were determined by cyclic voltammetry, and the cyclic 

voltammogram (Figure 3-12) was taken in a CH3CN solution containing 0.10 M 

TEAP as the supporting electrolyte. The results are listed in Table 3-5. A scan 

out to +1.300 V showed a wave (AEp = 100 mV) centered at E112 = +0.917 V. 

This wave is assigned as a one-electron (metal-centered) oxidation of ugh of 

the (bpyrm)Ru"(NH3)42+ portions of the complex (net two-electron process). 

The measured peak separation (AEp = 100 mV) is much larger than expected 

for a reversible, two-electron process (30 mV). Therefore, it seems likely that 

this oxidation wave is actually formed as a result of two very closely spaced, 
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sequential one-electron oxidations of each end of the trimetallic complex. 

Scans out to + 1 . 900 V revealed no new oxidation waves. Apparently, the 

central -[(bpyrm)Rull(bpy)(bpyrm)]- "bridging" complex is much more difficult to 

oxidize than the monometallic Rull(bpyrm)2(bpy)2+ (E112 = +1.50 V) due to the 

fact that the bridging complex is attached to two electron deficient 

-Ru"'(NH3)43+ fragments. 

As in the bimetallic species, Figure 3-12 also shows that the 

[Ru"(bpy){(bpyrm)Rull(NH3)4)2]6+ solution was contaminated with an easily 

oxidized impurity. Since the methods of preparation for the bimetallic and 

trimetallic complexes were similiar, it is reasonable to assume that it is a 

similiar impurity (arising from side reactions of Rull(NH3)4(H20)22+ and 

containing no bpyrm). The elemental analysis of 

[Ru"{bpy){{bpyrm)Ru"(NH3)4}2](PF4)s. shown below, is consistent with this (low 

carbon). Once again, rigorous attempts at purification, documented in the 

experimental section and in the appendices, failed to yield a sample of 

analytical purity. 

Calculated. for Ru"{bpy){(bpyrm)Ru"(NH3)4}2](PF4)s : 

Calc'd: C, 17.53; H, 2.59; N, 12.73. 

Found: C, 13.54; H, 2.77; N, 13.16. 

Generation and Characterization of Mixed-Valence Complexes 

[Rull(bpy)2(bpyrm)Rull~NH3)4]5+ - [2,3] form : 

[Ru"{bpy)2(bpyrm)Rulll(NH3)4]5+, referred to as [2,3], was produced by 

exhaustive oxidation of [Rull(bpy)2(bpyrm)Ru"(NH3)4]4+ in 0.1 M TBAH/CH3CN 

at a Pt mesh electrode (+1.200 V vs SSCE) using a quartz cell fused to a three 

compartment electrochemical cell (University of North Carolina at Chapel Hill -

Chemistry Department Glass Shop). All of the data collected for the [2,2] and 
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[2,3] ions were from freshly prepared solutions and were taken over relatively 

short time periods (30 - 60 minutes). Re-reduction of the [2,3] ion back to [2,2] 

(0.0 V vs SSCE) resulted in C? 75% recovery of 

[Rull(bpy)2(bpyrm)Rull(NH3)4]4+, based on absorption measurements. 

The UV-vis spectrum of the mixed-valence complex [2,3] (Figure 3-13) was 

characterized by the loss of the low energy MLCT band (drt[Rull-ammine] --> 

n*[bpyrm]) found at 697.0 nm in the [2,2) complex. This was an expected result 

based on the fact that at +1.2 V the RulLammine portion of the complex has 

been oxidized to Ru'll-ammine (Figure 3-10). The dn[Rull-bpy] --> n*[bpyrm] 

MLCT band at 498.0 nm in the [2,2) form was red shifted to 581.0 nm in the 

[2,3) complex. This shift was due to the lowering of the energy of the n* orbital 

on bpyrm due to its attachment to Rulll (Table 3-6). In addition, the absorption 

envelope centered at 423.0 nm in the [2,2] ion showed a loss of intensity (and 

an apparent blue-shift to 411.0 nm) due to loss of the second 

dn[Rull-ammine] --> n*[bpyrm) MLCT band.9 

An intervalence charge-transfer (IVCT) transition would be possible for 

[Rull(bpy)2(bpyrm)Rulll(NH3)4]5+. Using data for the asymmetric mixed-

valence species [Ru'l(bpy)2Cl-pyrazine-Ru'll(NH3)5]5+ reported by Meyer et 

a1.10, we can estimate where the IVCT band for the [2,3) dimer should be 

observed. 

The energy of the IVCT band (Eop) for an asymmetric mixed-valence 

species can be estimated9 as : 

Eop = aEo + EFC (1) 

where aE 0 is the difference in internal energy between the thermally 

equilibrated ion [Rull(bpy)2(bpyrm)Ru"'(NH3)4]5+ and its oxidation state isomer 
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[Rulll(bpy)2(bpyrm)Rull(NH3)4]5+, and EFc is the Franck-Condon energy (EFc = 
Er = Ein + Eout = total reorganization energy).10 ttE0 can now be written as: 

~Eo = E1/2 {[Rulll(bpy)2(bpyrm)Rull(NH3)4]5+ --> [Rull(bpy)2(bpyrm)Rull(NH3)4]4+} --

E112 {[Rull(bpy)2(bpyrm)Rulll(NH3)4]5+ --> [Rull(bpy)2(bpyrm)Rull(NH3)4]4+} (2) 

or as: (3) 

E2 has been measured to be +0.899 V vs SSCE (Table 3-5), and E1 can be 

estimated from the E 112 value of the symmetrical dimer 

[Rull(bpy)2(bpyrm)Rull(bpy)2]4+; E1 = +1.49 V vs SSCE (the average of values 

reported in refs 7 and 11 ). Therefore, ttE0 = E1 - E2 = +0.591 V. EFc can be 

estimated from the observed IVCT band (in CH3CN) reported by Meyer et a1.1 o 

for [Ru"(bpy)2Cl-pyrazine-Rulll(NH3)5]5+ where EFc = 8000 cm-1. From this 

data Eop for [Rull(bpy)2{bpyrm)Rull(NH3)4](PFs)4 can be estimated as 1.28 x 

104 cm-1 or 780 nm. An extremely low intensity IVCT band could be hidden 

(in the 600-800 nm range) by the long-wavelength tail of the 581.0 nm band in 

Figure 3-13 or could be indistinguishable from residual absorption of 

unoxidized [Rull(bpy)2(bpyrm)Rull(NH3)4]4+ around 700 nm. However, scans 

out to -1600 nm revealed no evidence for an IVCT transition. 

[Rull(bpy){{bpyrm)Rulll(NH3)4}2]8+ - [3,2,3] form : 

[Rull(bpy){(bpyrm)Ru"'(NH3)4}2]8+, referred to as [3,2,3], was produced by 

exhaustive oxidation of [Rull(bpy){(bpyrm) Ru"( N H3)4}2]6+ in 0.1 M 

TEAP/CH3CN at a Pt mesh electrode (+1.150 V vs SSCE). Re-reduction of the 

[3,2,3] ion back to [2,2,2] at 0.0 V vs SSCE resulted in ;2: 95% recovery of 

[Rull(bpy){(bpyrm)Rull(NH3)4}2]6+ based on absorption measurements. 
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The UV-vis spectrum of the mixed-valence complex [3,2,3] (Figure 3-14) 

was characterized by the loss of the low energy MLCT band 

(dn[Rull-ammine] --> n*[bpyrm]) found at 694.0 nm in the [2,2,2]. Also, there 

was a red-shifting of the dn[Ru"-bpy] --> n*[bpyrm] MLCT band from -490.0 nm 

(in the (2,2,2) complex) to 533.0 nm (in the [3,2,3] complex); (Table 3-7). It 

should be noted that the absorption coefficient of this transition (6.4 x 1 o-3 M-1 

cm-1) was found to be approximately double that of the same transition in the 

[2,3] species (2.6 x 10-3 M-1 cm-1). This further supports the assertion that the 

trimetallic species [Rull(bpy){(bpyrm)Rulll(NH3)4}2]8+ was actually synthesized 

since this structure would have two areas from which this transition could 

occur. The total absorption intensity in the 400 nm region of the [3,2,3] species 

was much less intense when compared to the [2,2,2] spectrum. This was due 

to the loss of the second (higher energy) dn[Ru"-ammine] --> n *[bpyrm] MLCT 

band which arises from both ends of the [2,2,2) species. 

An IVCT transition for (Rull(bpy){(bpyrm)Rulll(NH3)4}2]S+ in CH3CN is 

theoretically possible. The IVCT band in this [3,2,3] species would arise from 

the transition of an electron from the "center" ruthenium (Rullc) to either one of 

the "terminal" ruthenium's (Rulllt) : 

dn[-(bpyrm)Rull(bpy)(bpyrm)-] --> dn[-Ru'"(NH3)4] 

AUc --> Rut IVCT 

It is possible to predict where this IVCT band might occur by viewing the 

symmetric trimetallic complex as an "asymmetric" bimetallic species: 

[Rulll(NH3)4(bpyrm)Ru"(bpy)(bpyrm)] - [-Ru"'(NH3)4] . 
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From Eq. 1 : Eop = aEo + EFC 

aEo = E112 { [3,3]-[2] --> [3,2]-[2] } - E112 { [3,2]-[3] --> [3,2]-[2] } (4) 

where: 

or simply: 

[3,3]-[2] = [Rulll(NH3)4(bpyrm)Rulll(bpy)(bpyrm)] - [-Rull(NH3)4] 

[3,2]-[3] = [Rulll(NH3)4(bpyrm)Rull(bpy)(bpyrm)] - [-Rulll(NH3)4] 

[2,2]-[2] = [Rull(NH3)4(bpyrm)Rull(bpy)(bpyrm)] - [-Rull(NH3)4] , 

(5) 

E2 has been measured to be +0.917 V vs SSCE (Table 3-5). E1 is estimated 

to be -+1.95 V vs SSCE, which is the solvent limit in the cyclic voltammogram 

of the trimetallic species in Figure 3-12. Therefore, aEo = E 1 - E2 == + 1. 03 V, 

and for [Rull(bpy){(bpyrm)Rulll(NH3)4}2]8+: 

Eop == 1.03 V+ EFC (6) 

EFc can be estimated from the observed IVCT bands (in CH3CN) reported by 

Scandola et al .12 for : 

[pyridine(NH3)4Ru11LNC-Rull(bpy)2-CN-Rulll(NH3)4pyridine]6+ 

for this complex : Eop = aEo + EFc = 13,600 cm-1 (7) 

aEo = E112 {(3,3,2] --> [3,2,2]} - E1t2 {[3,2,3) --> (3,2,2]} (8) 
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[3,3,2] = [pyridine(NH3)4Ru11LNC-Rulll(bpy)2-CN-Rull(NH3)4pyridine]6+ 

[3,2,3] = [pyridine(NH3)4Ru11LNC-Rull(bpy)2-CN-Rulll(NH3)4pyridine]6+ 

[3,2,2] = [pyridine(NH3)4Rulll-NC-Rull(bpy)2-CN-Rull(NH3)4pyridine]5+ . 

From data reported by Scandola et a1.12, E2 = +0.15 V and an estimated upper 

limit for E1 = +1.35 V. 

l1Eo = E1 - E2 = +1.35 V - 0.15 V = +1.20 V . (9) 

In order to simplify units +1.20 V can be converted to 9671 cm-1 (1 V = 8065.48 

cm-1 ). From Eq. 7 : 

Eop = l1Eo + EFc = 13,600 cm-1 

= 9671 cm-1+EFc=13,600 cm-1 

EFG = 3921 cm-1 . (10) 

The measured EFc value for Scandola's trimetallic [3,2,3] complex can now be 

substituted into Eq. 6: 

Eop = 1.033 V + EFc 

= 8332 cm-1+3921 cm-1 

= 1.23 x 104 cm-1 

=816nm 

Therefore, .A 1vcr = 816 nm for the Rullc --> Rulllt IVCT band for the mixed

valence trimetallic complex [Rull(bpyX(bpyrm)Rulll(NH3)4}]8+. 

A definitive absorption -800 nm was not observed for the [3,2,3] species. If 

the IVCT band did exist, it could remain undetected for reasons similiar to that 

given for the [2,3] bimetallic complex : 
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1) Extremely low absorption coefficient. 

2) The band could be hidden under residual absorption around 700 nm 

from unoxidized [2, 2, 2] . 

[Rull(bpy){(bpyrm)Ru1Vlll(NH3)4}2]8+ - [2,2,3) form : 

Electrochemical and/or chemical oxidation of the [2,2,2] trimetallic complex 

to the one-electron oxidized [2,2,3] mixed-valence species was not attempted. 

Generation of and subsequent UV-Vis-NIR measurements on this species 

would obviously be necessary to test for "end-to-end" IVCT. However, 

generation of such a species requires precise knowledge of the concentration 

of the original [2,2,2] form in solution. Since the [2,2,2] form was never 

obtained in an analytically pure form, the partial oxidation was not carried out. 

An exact knowledge of concentration was not as necessary for generation of 

the [3,2,3] species, described in earlier sections. 

Future Directions 

Obviously the first order of business would be to find a purification method 

that would yield analytically pure samples of the bimetallic and trimetallic 

complexes. An analytically pure sample of the bimetallic species has recently 

been obtainecf9 by restructuring the synthetic scheme. With this new method, 

[Ru'"(NH3)4Cl2]CI was replaced with [Ru"(NH3)4(bpyrm)](PFs)2 in order to 

eliminate the possible formation of the bimetallic Ru-ammine complexes 

previously discussed. This synthetic scheme is outlined below : 
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2 Ag+ 
cis-Rull(bpy)2Cl2 • 2H~ ------------> cis-Rull(bpy)2(acetone)~+ ------> 

N2. acetone 

[Rull(NH3)4{bpyrm)](PFs)2 
--------------------------> [Rull(bpy)2(bpyrm)Rull(NH3)4]4+ . 

An analytically pure sample (PFs- salt) was obtained and it had the following 

elemental analysis (as trihydrate) : 

Calc'd : C, 24.46; H, 2.93; N, 12.23. 

Found : C, 24.58; H, 2.86; N, 12.06. 

Based on these recent results, a new synthetic route for the trimetallic 

[Rull(bpy){{bpyrm)Rull(NH3)4}2)(PFs)s could be formulated. As in the previous 

example, [Rulll(NH3)4Cl2]CI could be replaced by [Rull(NH3)4(bpyrm)](PFs)2 in 

order to eliminate the side reactions associated with [Rull(NH3)4(H20)2]2+. 

Also, [Rull(bpyrm)2(bpy)](PFs)2 could be replaced by Rulll(bpy)Cl3(H20). The 

trimetallic species might then be formed in a manner analogous to the 

synthesis of [Ru"{bpyrm)2(bpy))(PF6)2 described in the experimental section. 

Summary 

The previous discussions have shown that both the bimetallic 

[Ru''{bpy)2(bpyrm)Ru11(NH3)4)(PFs)4, 

and trimetallic 

[Rull(bpy){(bpyrm)Rull(NH3)4}2](PFe)e 
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species were synthesized. Despite the presence of an inseparable impurity, 

we did generate and measure the spectrophotometric properties (UV-vis-NIA) 

of both: 

[Rull(bpy)2(bpyrm)Rulll(NH3)4]5+ 

and 

[Rull(bpy){(bpyrm)Rulll(NH3)4)2]8+ . 

Recent investigations9 have produced a new synthetic technique that has 

yielded pure [Rull(bpy)2(bpyrm)Rull(NH3)4](PFs)4. In light of this discovery, it 

is possible that a reworked synthesis of the trimetallic species could be found 

in order to characterize the properties of : 

If this [3,2,2] form of the trimetallic species is obtained in pure form and an 

"end-to-end" IVCT is observed, this complex would begin a series of interesting 

electron transfer model compounds. 
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Table 3-1 : Summary of Starting Materials UV-vis Data 

Complex Solvent Observed Literature 
nm (ex 10-3 M-1 cm-1) nm (ex 10-3 M-1 cm-1) 

551.0 (8.64) 

(sh) 486.0 (4.52) 

3n.o (8.48) 

297.0 (47.9) 

(sh) 291.0 (37.6) 

241.0 (20.8) 

547.0 (8.91) ref.1 

376.0 (8.71) 

298. 0 (50.1) 

241.0 (21.4) 

[Rull(bpy)2(bpyrm)](PF5)2 • H20 CH3Q\J (sh) 472.0 (5.7) (sh) 480.0 ref.2,3 

[Rull(bpyrm)2(bpy)](PF5)2 CH3Q\J 
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423.0 (9.7) 

361.0 (6.4) 

288.0 (47.4) 

239.0 (36.4) 

(sh) 458.0 (6.05) 

420.0 (6.69) 

369.0 (7.28) 

330.0 (9.91) 

283.5 (17.1) 

258.0 (31.3) 

422.0 (9.7) 

360.0 (6.4) 

294.0 (48.0) 

236.0 (40.0) 

(sh) 460.0 

420.0 (9.40) 

368.0 (9.80) 

326.0 (12.0) 

283.0 (28.0) 

255.0 (39.0) 

ref.3 



Table 3-1 : cont. 

Complex Solvent Observed Literature 
nm (ex 10-3 M-1 cm-1) nm (ex 10-3 M-1 cm-1) 

-----

[Rulll(NH3)4Cl2]CI H2') 342.5 (1.40) 350.0 (1.48) ref.5 

301.0 (1.19) 308.0 (1.28) 

251.0 (.430) 260.0 (.460) 
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Table 3-2 : Summary of Cyclic Voltammetry Data for Starting Materialsa 

Complex Observed Literature 

---------------- ----------------- ----------------

cis-Ru 11(bpy)2Cl2 • 2H20 0.326 (72)b 0.31 ref.1 

[Ru 11(bpy)2(bpyrm)](PFs)2 • H20 1.372 (66)C 1.40 ref.2,3 

[Rull(bpyrm)2(bpy)](PFs)2 1.501 (66)C 1.55 ref.3,4 

[Rulll(NH3)4Cl2]CI -0.11 (irreversible)d -0.11 ref.5 

ap1atinum (for CH3CN) or freshly polished glassy carbon (for aqueous solutions) working electrodes 
were used, along with a Pt auxiliary electrode, and a saturated sodium chloride calomel (SSCE) 
reference electrode. Potentials are in volts. Scan rate was 100 mV/s. Values in brackets indicate 
peak separations (~Ep = Eanodic - Ecathodid in mV. bo.1M TBAH/CH3CN. co.1M TEAP/CH3CN. 
do.1M KCl/H20. 
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Table 3-3 : UV-vis Data of [Ru''(bpy)2(bpyrm)Ru 11(NH3)4](PF5)4 in the 
[2,2] Oxidation State in CH3CN. 

Observed 
nm (ex 10-3 M-1 cm-1) 

687.0 (3.1) 

498.0 (5.3) 

423.0 (13.2) 

282.0 (31.6) 

254.0 (18.0) 

245.0 (18.0) 

50 

Transition 
assignments 

ctn [Ru''-ammine] -> n*[bpyrm] MLCT 

dn [Rull-bpy] -> n*[bpyrm] MLCT 

dn [Rull-bpy] -> n*[bpy] MLCT 
dn[Rull-ammine] -> n*[bpyrm] MLCT 

ligand n -> n*[bpy & bpyrm] 

ligand n -> n *[bpy & bpyrm] 

ligand n-> n*[bpy & bpyrm] 



Table 3-4 : UV-vis Data of [Ru"(bpy){(bpyrm)Rull(NH3)4}2](PF6)6 in the 
[2,2,2] Oxidation State in CH3CN. 

Observed 
nm ( e x 10-3 M-1 cm-1) 

694.0 (7.2) 

435.0 (25.2) 

(sh) 382.0 

272.0 (47.8) 

246.0 (37.2) 

51 

Transition 
assignments 

dTl [Ru''-ammine] -> rt [bpyrm] MLCT 

dTl [Ru"-bpy] -> r{ [bpyrm] MLCT 
c:tn[Ru"-ammine] -> TI*[bpyrm] MLCT 
dTl [Rull-bpy]-> TI* [bpy] MLCT 

ligand TI-> TI*[bpy & bpyrm] 

ligand TI-> TI*[bpy & bpyrm] 



Table 3-5 : Summary of Cyclic Voltammetry Data a 

Complex 

[Rull(bpy)2(bpyrm)Rull(NH3)4](PF5)4 

[Rull(bpy){(bpyrm)Ru 11(NH3)4}2](PF5)5 

[Rull(NH3)4(bpyrm)](PF5)2 

Solvent 

CH3CN/0.1 M TEAP 

CH3CN/0.1 M TEAP 

CH3CN/0.1 M TBAH 

+o.899 (70) 
+1.626 (128) 

+o.917 (100) 

+o.660 (58)b 

8Platinum (for CH3CN) or freshly polished glassy carbon (for aqueous solutions) working electrodes 
were used, along with a Pt auxiliary electrode, and a saturated sodium chloride calomel (SSCE) 
reference electrode. Potentials are in volts. Scan rate was 100 mV/s. TEAP = tetraethylammonium 
perchlorate. TBAH = tetrabutylammonium hexafluorophosphate. Values in brackets indicate peak 
separations (lY:p = Eanodic - Ecathodid in mV. b Reference 9. 
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Table 3-6 : UV-vis Data of [Rull(bpy)2(bpyrm)Rull(NH3)4](PF6)4 in the 
[2,2] and [2,3] Oxidation State in CH3CN. 

[2, 2] Observed [2,3] Observed [2,3] Transition 
nm (ex 10-3 M-1 cm-1) nm (ex 10-3 M-1 cm-1) assignments 

687.0 (3.1) 
498.0 (5.3) 581.0 (2.6) dn [Rull-bpy] -> n*[bpyrm] MLCT 

423.0 (13.2) 411.0 (10.6) dn [Rull-bpy] -> n*[bpy] MLCT 

282.0 (31.6) 279.0 (32.3) ligand n -> n*[bpy & bpyrm] 

254.0 (18.0) 

245.0 (18.0) 247.0 (22.1) ligand n -> n*[bpy & bpyrm] 
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Table 3-7 : UV-vis Data of[Rull(bpy){(bpyrm)Rull(NH3)4}2](PF6)6 in the 
[2,2,2] and [3,2,3] Oxidation State in CH3CN. 

[2,2,2] Observed [3,2,3] Observed [3,2,3] Transition 
nm (ex 10-3 M-1cm-1) nm (ex 10-3 M-1cm-1) assignments 

694.0 (7.2) 
435.0 (25.2) 533.0 (6.4) ctn [Ru''-bpy] _, n* [bpyrm] MLCT 

(sh) 382.0 380.0 (16.1) ctn [Ru"-bpy]-> Tl* [bpy] MLCT 

272.0 (47.8) 265.0 (49.3) ligand TI-> n*[bpy & bpyrm] 

246.0 (37.2) 246.0 (40.0) ligand TI_, n*[bpy & bpyrm] 
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Figure 3-2 : Cyclic Voltammogram of cis-Ru"(bpy}2Cl2 • 2H20 

in 0.1 M TBAH/CH3CN. 
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Figure 3-4: Cyclic Voltammogram of [Ru"(bpy}2{bpyrm)](PFs)2 • H20 in 

0.1 M TBAH/CH3CN. 
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Figure 3-6 : Cyclic Voltammogram of [Rull(bpy)(bpyrm)2](PFs)2 in 

0.1 M TEAP/CH3CN. 
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Figure 3-8 : Cyclic Voltammogram of [Rulll(NH3)4Cl2]CI in 0.1 M KCl/H20 . 
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Figure 3-10: Cyclic Voltammogram of [Rull(bpy)2(bpyrm)Rull(NH3)4){PF5)4 

in 0.1 M TEAPICH3CN. 
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Figure 3-12 : Cyclic Voltammogram of [Rull(bpy){(bpyrm)Rull(NH3)4}2](PFs)s 

in 0.1 M TEAP/CH3CN. 
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Method Description 

A) RuN4 and Ru1 were added to separate flasks containing 10 mL of water 

and 50 mL of a 1 :4 acetone/abs. EtOH solution, respectively. Both 

solvents had previously been deaerated for 30 minutes with argon. See 

Figure 2-1 for reaction set-up. While an inert atmosphere was 

maintained, Zn/Hg amalgam and AgTFMS were added to the flask 

containing RuN4. Immediately after adding the AgTFMS, a dark grey 

precipitate formed. The reactant was allowed to stir over the amalgam 

for 30 minutes. The RuN4 was then transferred via a stainless steel 

cannula thru a glass frit into the flask containing Ru1 . The solution 

gradually turned from an orange-red to a dark red color. The solution 

was heated to reflux for 2.5 hours, and then cooled to room temperature 

and KPFs (.1008 g, .548 mmol) was added. The dark green solution 

was then rotovapped to dryness. 

B) RuN4, Ru1, and AgTFMS were added to separate flasks containing 15 

mL of water, 60 mL of a 1 :5 acetone/abs. EtOH solution, and air, 

respectively. All solvents had previously been deaerated for 30 minutes 

with argon. While an inert atmosphere was maintained in all flasks, 

Zn/Hg amalgam was added to the flask containing RuN4 and stirred for 

30 minutes. The RuN4 was then transferred via a cannula to a flask 

containing AgTFMS, and stirred for 45 minutes. The silver-grey solid 

that was formed was allowed to settle, and the solution was then 

transferred via a cannula thru a glass frit to a flask containing the Ru1 . 

The mixture was heated to reflux for 5 hours. The reaction mixture was 

then transferred via a cannula to a flask containing a fresh Zn/Hg 
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amalgam and stirred for 1 hour. When the solution was transferred back 

from the amalgam to the reaction vessel, a green precipitate was 

collected off of the amalgam with EtOH. The solution was heated to 

reflux and allowed to stir for 18 hours and became very dark almost 

black in color. The solution was cooled to room temperature, KPFs 

(.128 g, .696 mmol) was added, and then rotovapped to dryness leaving 

a black solid. 

C) RuN4 and Ru1 were added to separate flasks containing 12 ml of 

water and 40 ml of a 8:1 abs.EtOH/acetone solution respectively. Both 

solvents had previously been deaerated for 30 minutes with argon. See 

Figure 2-1 for reaction setup. While an inert atmosphere was 

maintained Zn/Hg amalgam was added to the flask containing RuN4, 

and stirred for 30 minutes. The RuN4 was then transferred via a 

cannula into the reaction vessel containing the Ru1. The solution 

immediately turned a very dark color. The mixture was heated to a 

gentle reflux for 7.5 hours. The solution was cooled to room 

temperature, KPFs (.1214 g, .660 mmol) was added, and then 

rotovapped to dryness. 

D) RuN4 and Ru1 were added to separate flasks containing 20 ml of water 

and 50 ml of acetone respectively. Both solvents had previously been 

deaerated for 20 minutes with argon. See Figure 2-1 for setup. While 

an inert atmosphere was maintained, Zn/Hg amalgam was added to the 

flask containing RuN4. The reactant was allowed to stir over the 

amalgam for 30 minutes, and the color had changed from an orange

yellow to a golden yellow. At the same time as the amalgam was 
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added, the flask containing Ru1 was heated to 40°C. The RuN4 was 

then transferred over via a cannula into the reaction vessel containing 

Ru1. The solution immediately turned from an orange-red color to 

black. The solution was heated at 40°C for 8 hours. The reaction 

mixture was cooled to room temperature and rotovapped until only 

-1 O ml of water remained. A saturated solution of NH4PFs was added 

dropwise until a dark green precipitate formed. The product was 

collected on a glass frit and dried in vacuo. 

E) The procedure was followed as described in D except for: Ru1 was 

dissolved in 40 ml of acetone; a three-fold excess of RuN4 was used; 

the reaction was heated to 40°C for 2.5 hours; and the precipitated 

product was washed with a few drops of ice cold water. 

F) The procedure was followed as described in D except for: RuN4 was 

dissolved in 15 ml of water; and the reaction mixture was heated to 

30°C for 45 minutes. 

G) The procedure was followed as described in F except the reaction 

mixture was heated to 40°C for 4 hours. 
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Purification Description 

AA) The crude compound from Method A (50 mg) was redissolved in a 

minimum amount of acetone and purified by column chromatography. 

The sample was chromatographed on a column of alumina (1.1 cm x 8 

inches) previously developed with acetone. The flow rate was fast. The 

column was loaded and a dark main band stuck to the upper two inches 

of the column. The first band was eluted off with a 40160 

CH3CN/acetone solution and was yellow in color. The second band 

was eluted off with CH3CN and was light green in color. The main band 

was eluted off with a 50/50 EtOH/CH3CN solution, evaporated to 

dryness, and stored in vacuo. 

AB) The crude compound from Method A (30 mg) was redissolved in a 

minimum amount of 0.1 M KCI and purified by column chromatography. 

The sample was chromatographed on a column of G-1 O (1.1 cm x 20 

inches) previously developed with .1 M KCI. The column was loaded 

and two separate bands were formed. The main product was eluted (as 

a dark band), followed by a yellow impurity band. The main product was 

reduced in volume, upon which a cyclic voltammogram was taken. 

AC) The crude compound from Method A ( 45 mg) was redissolved in a 

minimum amount of a 50/50 MeOH/acetone solution. The sample was 

chromatographed on a LH-20 column (1.1 cm x 13.5 inches) previously 

developed with a 50/50 MeOH/acetone solution. A very slow drop rate 

was used. The sample was loaded onto the column and the main band 
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was eluted followed by a yellow-brown band. The fractions were 

collected, evaporated, and stored in vacuo. 

AD) The rest of the crude product from Method A and fraction #2 and #3 from 

AC were treated as described in AC except the column length was 1.1 

cm x 23.5 inches. 

AE) The crude compound was redissolved in a minimum amount of a 50/50 

MeOH/acetone solution. The sample was chromatographed on a LH-20 

column (2.7 cm x 14 inches) previously developed with a 50/50 

MeOH/acetone solution. The column was loaded and the main band 

was eluted at a drop rate of 1 drop every 9 seconds. A "main band" was 

eluted but the entire column was left stained. 

AF) The crude compound was redissolved in a minimum amount of water. 

The product was precipitated out by the dropwise addition of a saturated 

solution of KPF6 while being cooled in an ice bath. The precipitate was 

collected on a fine glass frit and dried in vacuo. 

AG) The crude product was redissolved in a minimum amount of acetone 

and filtered with very little solid collected. The filtrate was dripped into 

swirling ether to precipitate the green product. The precipitate was then 

collected on a fine glass frit, washed with ether and dried in vacuo. The 

compound was then dissolved in a minimum amount of acetone and a 

saturated solution (70'30 MeOH/acetone) of TEAC was added dropwise 

until almost all of the product had precipitated. The light green 

precipitate was collected on a fine glass frit (filtrate should be slightly 
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yellow or it hasn't worked) and dried in vacuo. The chloride salt of the 

compound was then redissolved in a minimum amount of water and a 

saturated solution of NH4PFs was added dropwise until the green 

precipitate formed. The precipitate was collected, and washed with 

ether. The product was then dried in vacuo. The dried product was then 

redissolved in a minimum amount of acetone and dripped into -80 ml 

of swirling ether. The green precipitate was collected on a fine glass frit, 

washed with ether, and dried in vacuo. This process of "salt-switching" 

was then repeated two more times. 

AH) The crude product was treated as described in AG. 

Al) The product (that was collected in AH) was redissolved in a minimum 

amount of acetone and purified by column chromatography. The 

sample was chromatographed on a column of LH-20 (1.1 cm x 4.5 

inches) previously developed with acetone. The column was loaded 

and a dark green band stuck to the top. The main cut (dark green) was 

eluted, followed by an orange-brown band. The main band was 

evaporated to dryness and stored in vacuo. 

AJ) The crude product was treated as described in AG. 

AK) The crude product was treated as described in AG. 
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Method Description 

A) Reactants were added to 20 ml of ethanol that had previously been 

deaerated for 30 minutes with argon. While an inert atmosphere was 

maintained Zn/Hg amalgam was added to the reaction vessel. 

Immediately a large amount of solid was noticed. After 25 minutes 

10 ml of acetone was added. The solution changed from a red-orange 

color to black. The reaction was allowed to proceed for 80 minutes. 

B) Reactants were combined, stirred, and deaerated for 20 minutes with 

argon. While an inert atmosphere was maintained, Zn/Hg amalgam was 

added to the reaction vessel. The reaction was allowed to proceed for 

1.5 hours. The solution was dark blue in color. 

C) Reactants were combined, stirred, and deaerated for 30 minutes with 

argon. While an inert atmosphere was maintained Zn/Hg amalgam 

(amalgam was washed with deaerated acetone upon which a grey 

layer appeared on the surface of the amalgam) was added to the 

reaction vessel and refluxed for 1 hour. Reaction was allowed to 

continue for 4 hours without heat. In an effort to keep fresh amalgam 

exposed to the reaction mixture, argon was bubbled thru the amalgam. 

The solution changed from a yellow-orange color to dark green. 

D) RuN5 and Ru were added to separate flasks containing 30 ml of Abs. 

EtOH and 30 ml of acetone respectively. Both solvents had previously 

been deaerated for 30 minutes with argon. See Figure 2-1 for reaction 

setup. While an inert atmosphere was maintained, Zn/Hg amalgam was 
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added to the flask containing RuN5. The reactant was allowed to stir 

over the amalgam for 30 minutes, and the color changed 

from pale yellow to lime-green. The RuN5 was then transferred via 

a stainless steel cannula into the flask containing Ru. The solution 

immediately turned from an orange-red to a dark red color, and 60 ml of 

deaerated acetone was then added to the flask. The solution was 

heated to 35°C for 90 minutes, and then cooled to room 

temperature and allowed to stir for 2.5 hours. The solution was then 

reduced in volume to -15 ml. 

E) RuN5 was added to 50 ml of MeOH that had been deaerated for 30 

minutes with argon. While an inert atmosphere was maintained Zn/Hg 

amalgam was added to the reaction vessel (MeOH did not react with the 

surface of the amalgam). After 30 minutes, Ru was added and the 

reaction mixture was stirred and heated to reflux. After 15 minutes, the 

reaction mixture had changed from a deep red color to black. The 

reaction was allowed to continue under reflux for 5 hours. The solution 

was cooled to room temperature and reduced in volume to -5 ml. 

F) RuN4 and Ru were added to separate flasks containing 7 ml of water 

and 5 ml of acetone respectively. Both solvents had previously been 

deaerated for 30 minutes with argon. See Figure 2-1 for reaction setup. 

While an inert atmosphere was maintained Zn/Hg amalgam was added 

to the flask containing RuN4, and stirred for 50 minutes. The RuN4 was 

then transferred via a cannula into the reaction vessel containing the Ru. 

The solution turned an ugly black color. The mixture was heated to 

reflux and after 30 minutes KPFs (.107 g, .58 mmol) was added. 

A2-5 



Refluxing was continued for 3.5 hours, after which more KPFs (.107 g) 

was added to the reaction mixture. Refluxing was continued for 3 more 

hours, upon which the solution was then cooled to room 

temperature. The solution was then filtered thru a medium glass frit (no 

precipitate was collected) and then rotovapped to dryness. The 

resulting solid was not soluble in CH3CN, but slightly soluble in 

acetone. 

G) RuN4 and Ru were added to separate flasks containing 20 ml of water 

and 1 O ml of acetone respectively. Both solvents had previously been 

deaerated for 30 minutes with argon. See Figure 2-1 for setup. While 

an inert atmosphere was maintained, Zn/Hg amalgam was added to the 

flask containing RuN4. The reactant was allowed to stir over the 

amalgam for 35 minutes, and the color had changed from an 

orange-yellow to a golden yellow. At the same time as the amalgam 

was added, 50 ml of deaerated abs. EtOH was added to the flask 

containing the Ru and the solution was heated to near reflux. The RuN4 

was then transferred over via a cannula into the reaction vessel 

containing the Ru. The solution immediately turned from an orange-red 

color to black. The solution was heated to near reflux for 8 hours, then 

KPFs (.2119 g, 1.15 mmol) was added. The reaction mixture was 

cooled to room temperature and rotovapped to dryness and dried in 

vacuo. 

H) The procedure was identical to G except for: Ru was dissolved in 50 ml 

of acetone; the reaction was heated to 40°C for 8 hours; and the 

mixture was rotovapped until only -10 ml of water remained. 
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Purification Description 

AA) The reaction mixture was purified by column chromatography. The 

mixture (-25 ml) was chromatographed on a lH-20 column (27 mm x 

23 cm) previously developed with EtOH. The flow rate was fast. The 

sample was loaded onto the column and a red-brown precipitate stuck 

to the top. The main product was eluted as a dark green band, followed 

by a yellow-orange impurity band. The main band was reduced to 

1 O ml and then added dropwise into swirling ether to precipitate the 

compound. The product was collected on a fine glass frit, washed with a 

small amount of water causing most of the precipitate to dissolve. The 

product that was left was dried in vacuo. 

AB) The reaction mixture (-20 ml) was chromatographed on a lH-20 

column (34 mm x 28 cm) previously developed with a 2:1 EtOH/acetone 

solution. The flow rate was fast. The sample was loaded onto the 

column and eluted in a similar manner as AA. However, a dark grey 

band preceded the main band off of the column. The main band was 

reduced to1 O ml, whereupon solid KPFs (.039 g, .212 mmol) was 

added. The solution was added dropwise into swirling ether to 

precipitate green product. The precipitate was collected on a fine glass 

frit and dried in vacuo. 

AC) The crude compound from AB was added to 25 ml of swirling ether, 

and -50 ml of acetone was added until all the solid was redissolved. 

The solution was cooled to -2 °C for 2 hours. Since no solid had 

formed, 50 ml of ether was added and cooling continued for 1 more 
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hour. The dark green precipitate was isolated by use of a fine glass frit, 

the yellow-orange filtrate was discarded and the product dried in vacuo. 

AD) The crude compound from Method B (40 mg) was redissolved in a 

minimum amount of water and purified by column chromatography. The 

sample was chromatographed on a column of G-10 (1.1cmx12 inches) 

previously developed with water. The column was loaded and a dark 

precipitate (most of the sample) stuck to the top. Three distinct bands 

were collected. The first band eluted very fast and was light green in 

color. The second band was dark green in color and eluted at a 

moderate rate while the third orange band eluted very slowly. After the 

bands were collected the solvent was switched to 0.1 M KCI and the 

remainder of the sample was collected. 

AE) The crude compound from Method B was redissolved in a minimum 

amount of 0. 1 M KCI and purified by column chromatography. The 

sample was chromatographed on a column of G-1 O (1.1 cm x 11 inches) 

previously developed with 0.1 M KCI. The column was loaded and a 

orange-brown precipitate (eventually dissolved) stuck to the top. The 

main product was eluted (as a dark green band), followed by an orange

yellow impurity band. The main product was reduced in volume upon 

which a cyclic voltammogram was taken. 

AF) KPFs (.0684 g, .371 mmol) was added to the reaction mixture. The dark 

green solution was reduced to -7 ml and then added dropwise into 

swirling ether to precipitate the compound. The product was collected 

on a fine glass frit and dried in vacuo. 
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AG) The crude compound from AF was slowly redissolved in a minimum 

amount of CH3CN. The solution was added dropwise into swirling ether 

that was cooled in a ice bath. The muddy, dark green product was 

collected on a fine glass frit and dried in vacuo. 

AH) The crude compound from AF (50 mg) was redissolved in 1 ml of water 

and filtered. The filtrate was chromatographed on a Sephadex Sp-C25-

120 column (1.1 cm x 12 inches) previously developed with water. The 

sample was loaded onto the column where it proceeded to stick to the 

top. An orange-brown band started to elute when the solvent was 

changed to 0.2M HCI. A red band started to elute when the 

concentration was increased to 0.3M. The main band remained 

stationary as the solvent concentration was gradually increased to 0. 7M 

HCI. The main band remained near the top of the column and was 

removed along with the Sephadex it was bound to. Fractions were 

collected and reduced to -2 m L. 

Al) The remaining compound from AF was redissolved in a minimum 

quantity of acetone and chromatographed on a Fluorosil column (1.0 cm 

x 7 inches) previously developed with acetone. The sample was loaded 

on the column where a dark green band formed and proceeded to stick 

to the top. The solvent was switched to 5% MeOH/acetone and 

increased gradually to 100% MeOH. However the green band did not 

elute. The solvent was then switched to 10% H20/MeOH and 

increased gradually to 100% water, while the band continued to stick 

to the top. The main band later eluted with a weak solution of HCI. 
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AJ) The reaction mixture was purified by column chromatography. The 

mixture (-15 ml) was chromatographed on a lH-20 column (27 mm x 

9 inches) previously developed with a 1 :1 EtOH/acetone solution. The 

sample was loaded onto the column and eluted as described in AA. 

The main product was then treated as described in AB. 

AK) The reaction mixture (-5 ml) was chromatographed on a lH-20 column 

(27 mm x 3 inches) previously developed with a 50/50 MeOH/acetone 

solution. The sample was loaded onto the column and the main band 

eluted followed by a brown band that stained the entire column. The 

main band was reduced to -5 ml, whereupon KPFs (4 drops of a 

saturated solution) was added. The solution was dripped into ether to 

precipitate the black product. The precipitate was collected on a fine 

glass frit and dried in vacuo. 

AL) The crude compound was redissolved in a minimum amount of water 

that was heated to 35°C, and KPFs (.2354 g, 1.28 mmol) was then 

added. The solution was cooled to -2°c overnight, and the green 

precipitate that formed was collected on a fine glass frit and dried in 

vacuo. 

AM) The crude compound from AL (55 mg) was redissolved in 3 ml of water 

and was filtered thru a medium glass frit to remove insoluble matter. 

The solution was then purified by column chromatography. The sample 

was chromatographed on a column of G-15 (1.1 cm x 50 cm) previously 

developed with water. The column was loaded and initially the majority 
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of sample eluted very slowly. Two separate bands formed and were 

collected and rotovapped to dryness. The column was cleaned with a 

0.1 M KCI solution. 

AN) The crude compound from AL (50 mg) was redissolved into 3 ml of 

0.1 M KCI and purified by column chromatography. The sample was 

chromatographed on a column of G-15 (1.1 cm x 20 inches) previously 

developed with 0. 1 M KCI. The column was loaded and a brown 

precipitate stuck to the top. The main product (dark green band) was 

eluted, followed by a yellow-green impurity band. KPFs (.243 g, 1.32 

mmol) added to the main band and the precipitate that formed was 

collected on a fine glass frit and dried in vacuo. 

AO) The crude compound was slowly redissolved in -25 ml of water. The 

product was precipitated out by the dropwise addition of a saturated 

solution of KPFs. The precipitate was collected on a fine glass frit and 

dried in vacuo. It was noticed that the filtrate was still very dark in color. 

AP) The reaction mixture -1 O m L was cooled in an ice bath and the product 

was precipitated out in a manner described in AO. The crude product 

was then dissolved in a minimum amount of acetone and filtered. The 

filtrate was dripped into swirling ether to precipitate the green product. 

The precipitate was then collected on a fine glass frit, washed with 

ether, and dried in vacuo. The compound was then dissolved in a 

minimum amount of acetone and a saturated solution (70/30 

MeOH/acetone) of TEAC was added dropwise until almost all of the 

product had precipitated. The light green precipitate was collected on 
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a fine glass frit and dried in vacuo. The chloride salt of the compound 

was then redissolved in a minimum amount of water and a saturated 

solution of NH4PFs was added dropwise until the green precipitate 

formed. The precipitate was collected, and washed with EtOH and 

ether. The product was then dried in vacuo. The dried product was then 

dissolved in a minimum amount of acetone and dripped into -80 ml of 

swirling ether. The green precipitate was collected on a fine glass frit, 

washed with ether, and dried in vacuo. This process of "salt-switching" 

was then repeated twice more. 
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