Eastern Illinois University The Keep

Masters Theses

Student Theses & Publications

1-1-2010

Ditopic Dithiophosphonates And Their Related Rotaxanes

Robert Ray Baum Jr.

Eastern Illinois University

This research is a product of the graduate program in Chemistry at Eastern Illinois University. Find out more about the program.

Recommended Citation

Baum, Robert Ray Jr., "Ditopic Dithiophosphonates And Their Related Rotaxanes" (2010). Masters Theses. 83. http://thekeep.eiu.edu/theses/83

This Thesis is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact tabruns@eiu.edu.

THESIS MAINTENANCE AND REPRODUCTION CERTIFICATE

TO: Graduate Degree Candidates (who have written formal theses)

SUBJECT: Permission to Reproduce Theses

The University Library is receiving a number of request from other institutions asking permission to reproduce dissertations for inclusion in their library holdings. Although no copyright laws are involved, we feel that professional courtesy demands that permission be obtained from the author before we allow these to be copied.

PLEASE SIGN ONE OF THE FOLLOWING STATEMENTS:

Booth Library of Eastern Illinois University has my permission to lend my thesis to a reputable college or university for the purpose of copying it for inclusion in that institution's library or research holdings.

Author's Signature	6/14/2010
Author's Signature	Date
I respectfully request Booth Library of Eastern because:	n Illinois University NOT allow my thesis to be reproduc
Author's Signature	Date

This form must be submitted in duplicate.

(TITLE	E)
ВУ	
Robert Ray B	aum. Jr.
T. 100	
THES	015
SUBMITTED IN PARTIAL FULFILLM FOR THE DE	
Master of Science	e in Chemistry
IN THE GRADUATE SCHOOL, EASTI CHARLESTON	
201	0
YEAR	
I HEREBY RECOMMEND THAT THIS TH THIS PART OF THE GRADUAT	
Lonenius 05/06/2010	San 1/2 6/14/
HESIS COMMITTEE CHAIR DATE	DEPARTMENT/SCHOOL CHAIR DATE OR CHAIR'S DESIGNEE
Mark & M. Juie 5/6/2010	79 Alyh 5/6/10
THESIS COMMITTEE MEMBER DATE	THESIS COMMITTEE MEMBER DATE
Sea Precious 5/6/2010	

Ditopic Dithiophosphonates and their Related

Rotaxanes

Robert R. Baum, Jr.

ABSTRACT

Grafting dithiophosphonate groups onto a naphthalenediimide core yields anionic axles, which in conjunction with the 15DN38C10 crown ether and cationic metallic systems generate neutral bimetallic rotaxanes. The association constant for the rotaxane system was calculated by the single-point method using ¹H NMR spectroscopy. Metallic systems reacted with our anionic axles were SnMe₃, SnPh₃, Cu(PPH₃)₂, SnMe₂, and SnPh₂. The structures of several axle-metal complexes and one rotaxane were obtained by X-ray crystallography.

ACKNOWLEDGEMENTS

I would like to thank Dr. Radu Semeniuc for being an excellent mentor over the past 18 months. I would also like to thank Dr. Mark McGuire, Dr. Sean Peebles, and Dr. Kraig Wheeler for being on my committee. This research was funded in part by the American Chemical Society Petroleum Research Fund (48039-GB3). The author is grateful to the donors of the Sidney R. Steele Student Summer Award for assistance during the summer of 2009.

TABLE OF CONTENTS

Introduction	1
Experimental	10
Results and Discussion	23
Conclusion and Future Work	44
Appendix 1: Annotated NMR spectra	45
Appendix 2: Crystallographic Data	57

LIST OF FIGURES

Figure 1: Illustration of the various methods for rotaxane synthesis	2
Figure 2: Examples of motion in rotaxanes and catenanes	2
Figure 3: A molecular level plug/socket device	3
Figure 4: A molecular shuttle system	4
Figure 5: Schematic diagram for a generic three-pole supramolecular switch	5
Figure 6: ¹ H NMR spectrum of NDI-[CH ₂ CH ₂ OH] ₂	11
Figure 7: ¹ H NMR spectrum of NDI-[CH ₂ CH ₂ OCH ₂ CH ₂ OH] ₂	11
Figure 8: ¹ H NMR spectrum of NDI-[CH ₂ CH ₂ O(An)PS ₂ NH ₄] ₂	12
Figure 9: ¹ H NMR spectrum of NDI-[CH ₂ CH ₂ OCH ₂ CH ₂ O(An)PS ₂ NH ₄] ₂	13
Figure 10: ¹ H NMR spectrum of NDI-[CH ₂ CH ₂ O(An)PS ₂ (SnMe ₃) ₂] ₂	14
Figure 11: ¹ H NMR spectrum of NDI-[CH ₂ CH ₂ O(An)PS ₂ (SnPh ₃) ₂] ₂	15
Figure 12: ¹ H NMR spectrum of NDI-[CH ₂ CH ₂ O(An)PS ₂ (Cu(PPh ₃) ₂] ₂	16
Figure 13: ¹ H NMR spectrum of NDI-[CH ₂ CH ₂ OCH ₂ CH ₂ O(An)PS ₂ (SnMe ₃) ₂] ₂	17
Figure 14: ¹ H NMR spectrum of NDI-[CH ₂ CH ₂ OCH ₂ CH ₂ O(An)PS ₂ (SnPh ₃) ₂] ₂	18
Figure 15: ¹ H NMR spectrum of NDI-[CH ₂ CH ₂ OCH ₂ CH ₂ OH] ₂ -[Cu(PPh ₃) ₂] ₂	19
Figure 16: ¹ H NMR spectrum of NDI-[CH ₂ CH ₂ O(An)PS ₂] ₂ -[SnPh ₂] ₂	20
Figure 17: ¹ H NMR spectrum of NDI-[CH ₂ CH ₂ OCH ₂ CH ₂ OH]-[SnPh ₂]	21
Figure 18: ¹ H NMR of the association of axle and crown	25
Figure 19: ¹ H VT-NMR spectra for the association of axle and crown	27
Figure 20: van't Hoff plot for NDI-[CH₂CH₂OCH₂CH₂O(An)-PS₂NH₄]₂⊂15DN38C10	28

Figure 21: Rotaxane formation starting from preformed bimetallic axles and crown 15DN38C10.	
	30
Figure 22: Molecular structure of NDI-[CH ₂ CH ₂ O(An)PS ₂ (SnPh ₃) ₂] ₂	33
Figure 23: Molecular structure of NDI-[CH ₂ CH ₂ O(An)PS ₂ (Cu(PPh ₃) ₂] ₂	34
Figure 24: Molecular structure of NDI-[CH ₂ CH ₂ OCH ₂ CH ₂ O(An)PS ₂ (SnPh ₃) ₂] ₂	35
Figure 25: Molecular structure of NDI-[CH ₂ CH ₂ OCH ₂ CH ₂ O(An)PS ₂ (SnPh ₃) ₂] ₂ ⊂15DN38C10	
	36-37
Figure 26: Hydrogen bonding between water and crown ether in NDI-	
$[CH_2CH_2OCH_2CH_2O(An)PS_2(SnPh_3)_2]_2 \hspace{-0.5cm} \subset \hspace{-0.5cm} 15DN38C10$	37
Figure 27: Relative coordination of aromatic region of crown ether and NDI core in the two forms of	
$NDI-[CH_2CH_2OCH_2CH_2O(An)PS_2(SnPh_3)_2]_2 \subset 15DN38C10$	38
Figure 28: Molecular structure for (NDI-[CH ₂ CH ₂ O(An)PS ₂] ₂)-[SnPh ₂] ₂	40
Figure 29: Clarified Molecular structure for (NDI-[CH ₂ CH ₂ O(An)PS ₂] ₂)-[SnPh ₂] ₂	40
Figure 30: π-π stacking among unit cells of (NDI-[CH ₂ CH ₂ O(An)PS ₂] ₂)-[SnPh ₂] ₂	41
Figure 31: Molecular structure for NDI-[CH ₂ CH ₂ OCH ₂ CH ₂ O(An)PS ₂] ₂ -[SnPh ₂]	41
Figure 32: Clarified Molecular structure for NDI-[CH ₂ CH ₂ OCH ₂ CH ₂ O(An)PS ₂] ₂ -[SnPh ₂]	42
Figure 33: π-π interaction of two unit cells of NDI-[CH ₂ CH ₂ OCH ₂ CH ₂ O(An)PS ₂] ₂ -[SnPh ₂]	42
Figure A1: Annotated ¹ H NMR spectrum of NDI-[CH ₂ CH ₂ OH] ₂	45
Figure A2: Annotated ¹ H NMR spectrum of NDI-[CH ₂ CH ₂ OCH ₂ CH ₂ OH] ₂	46
Figure A3: Annotated ¹ H NMR spectrum of NDI-[CH ₂ CH ₂ O(An)PS ₂ NH ₄] ₂	47
Figure A4: Annotated ¹ H NMR spectrum of NDI-[CH ₂ CH ₂ OCH ₂ CH ₂ O(An)PS ₂ NH ₄] ₂	48
Figure A5: Annotated ¹ H NMR spectrum of NDI-[CH ₂ CH ₂ O(An)PS ₂ (SnMe ₃) ₂] ₂	49
Figure A6: Annotated ¹ H NMR spectrum of NDI-[CH ₂ CH ₂ O(An)PS ₂ (SnPh ₃) ₂] ₂	50
Figure A7: Annotated ¹ H NMR spectrum of NDI-[CH ₂ CH ₂ O(An)PS ₂ (Cu(PPh ₃) ₂] ₂	51

Figure A8: Annotated ¹ H NMR spectrum of NDI-[CH ₂ CH ₂ OCH ₂ CH ₂ O(An)PS ₂ (SnMe ₃) ₂] ₂	52
Figure A9: Annotated H NMR spectrum of NDI-[CH2CH2OCH2CH2O(An)PS2(SnPh3)2]2	53
Figure A10: Annotated ¹ H NMR spectrum of NDI-[CH ₂ CH ₂ OCH ₂ CH ₂ OH] ₂ -[Cu(PPh ₃) ₂] ₂	54
Figure A11: Annotated ¹ H NMR spectrum of NDI-[CH ₂ CH ₂ O(An)PS ₂] ₂ -[SnPh ₂] ₂	55
Figure A12: Annotated ¹ H NMR spectrum of NDI-[CH ₂ CH ₂ OCH ₂ CH ₂ OH]-[SnPh ₂]	56

LIST OF TABLES

Table 1: Association constants (K_a/M^{-1}) and free energies of complexation (ΔG^o) for rotaxan	es NDI
[CH ₂ CH ₂ OCH ₂ CH ₂ O(An)PS ₂ NH ₄] ₂ ⊂15DN38C10 and NDI-[CH ₂ CH ₂ OCH ₂ CH ₂ O(An)-	
PS ₂ (SnMe ₃)] ₂ ⊂15DN38C10 at 25°C.	28-29
Table 2: Crystal data and details for NDI-[CH ₂ CH ₂ O(An)PS ₂ (SnPh ₃)] ₂ , NDI-[CH ₂ CH ₂ O(An)-
$PS_2(Cu(PPh_3)_2)]_2, NDI-[CH_2CH_2OCH_2CH_2O(An)PS_2(SnMe_3)]_2, and \ NDI-[CH_2CH_2O(An)-CH_2CH_2O(An)PS_2(SnMe_3)]_2, NDI-[CH_2CH_2O(An)-CH_2CH_2O(An)PS_2(SnMe_3)]_2, NDI-[CH_2CH_2O(An)-CH_2CH_2O(An)PS_2(SnMe_3)]_2, NDI-[CH_2CH_2O(An)PS_2(SnMe_3)]_2, NDI-[$	
PS ₂ (SnMe ₃)] ₂ ⊂15DN38C10.	32
Table 3: Crystal data and details for NDI-[CH ₂ CH ₂ O(An)PS ₂] ₂ -[SnPh ₂] ₂ and NDI-[CH ₂ CH ₂ CH ₂ O(An)PS ₂] ₃ -[SnPh ₂] ₂ and NDI-[CH ₂ CH ₂ O(An)PS ₂] ₃ -[SnPh ₂] ₃ and NDI-[CH ₂ CH ₂ O(An)PS ₂] ₃ -[SnPh ₂] ₃ and NDI-[CH ₂ CH ₂ O(An)PS ₂] ₃ -[SnPh ₂] ₃ and NDI-[CH ₂ CH ₂ O(An)PS ₂] ₃ -[SnPh ₂] ₃ and NDI-[CH ₂ CH ₂ O(An)PS ₂] ₃ -[SnPh ₂ O(An)PS ₂ O(A	D-
$CH_2CH_2O(An)PS_2]_2-[SnPh_2]$	39
Table A1: Fractional atomic coordinates and isotropic or equivalent isotropic displacement	
parameters (Å ²) for NDI-[CH ₂ CH ₂ O(An)PS ₂ (SnPh ₃) ₂] ₂	57-58
Table A2: Atomic displacement parameters (Ų) for NDI-[CH2CH2O(An)PS2(SnPh3)2]2	59-60
Table A3: Geometric parameters (Å, °) for NDI-[CH ₂ CH ₂ O(An)PS ₂ (SnPh ₃) ₂] ₂	60-63
Table A4: Fractional atomic coordinates and isotropic or equivalent isotropic displacement	
parameters (Å ²) for NDI-[CH ₂ CH ₂ O(An)PS ₂ (Cu(PPh ₃) ₂] ₂	63-66
Table A5: Atomic displacement parameters (Ų) for NDI-[CH ₂ CH ₂ O(An)PS ₂ (Cu(PPh ₃) ₂] ₂	66-68
Table A6: Geometric parameters (Å, °) for NDI-[CH ₂ CH ₂ O(An)PS ₂ (Cu(PPh ₃) ₂] ₂	68-74
Table A7: Fractional atomic coordinates and isotropic or equivalent isotropic displacement	
parameters (Å ²) for NDI-[CH ₂ CH ₂ OCH ₂ CH ₂ O(An)PS ₂ (SnPh ₃) ₂] ₂	74-77
Table A8: Atomic displacement parameters (Ų) for NDI-[CH2CH2OCH2CH2O(An)PS2(SnF	h ₃) ₂] ₂
	78-80
Table A9: Geometric parameters (Å, °) for NDI-[CH ₂ CH ₂ OCH ₂ CH ₂ O(An)PS ₂ (SnPh ₃) ₂] ₂	80-88
Table A10: Fractional atomic coordinates and isotropic or equivalent isotropic displacemen	t
parameters (Å ²) for NDI-ICH ₂ CH ₂ OCH ₂ CH ₂ O(An)PS ₂ (SnPh ₃) ₂ ₂ =15DN38C10	88-94

Table A11: Atomic displacement parameters (Å ²) for NDI-[CH ₂ CH ₂ OCH ₂ CH ₂ O(An)PS ₂ (Sn	-
Ph ₃) ₂] ₂ ⊂15DN38C10	94-97
Table A12: Geometric parameters (Å, °) for NDI-[CH ₂ CH ₂ OCH ₂ CH ₂ O(An)PS ₂ (SnPh ₃) ₂] ₂	
⊂15DN38C10	97-110
Table A13: Hydrogen-bond geometry (Å, °) for NDI-[CH ₂ CH ₂ OCH ₂ CH ₂ O(An)PS ₂ (SnPh ₃) ₂]	2
⊂15DN38C10	110
Table A14: Fractional atomic coordinates and isotropic or equivalent isotropic displacement	t
parameters (Å ²) for NDI-[CH ₂ CH ₂ O(An)PS ₂] ₂ -[SnPh ₂] ₂	110-113
Table A15: Atomic displacement parameters (Ų) for NDI-[CH ₂ CH ₂ O(An)PS ₂] ₂ -[SnPh ₂] ₂	113-114
Table A16: Geometric parameters (Å, °) for NDI-[CH ₂ CH ₂ O(An)PS ₂] ₂ -[SnPh ₂] ₂	114-120
Table A17: Fractional atomic coordinates and isotropic or equivalent isotropic displacement	
parameters (Å ²) for NDI-[CH ₂ CH ₂ OCH ₂ CH ₂ O(An)PS ₂] ₂ -[SnPh ₂]	120-123
Table A18: Atomic displacement parameters (Ų) for NDI-[CH ₂ CH ₂ OCH ₂ CH ₂ O(An)PS ₂] ₂ -[SnPh ₂]	
	123-124
Table A19: Geometric parameters (Å, °) for NDI-[CH ₂ CH ₂ OCH ₂ CH ₂ O(An)PS ₂] ₂ -[SnPh ₂]	125-130

Chapter 1: INTRODUCTION

The last decades witnessed an increased interest in the synthesis and characterization of molecular machines and devices. ¹⁻⁶ Mechanically interlocked molecules, such as rotaxanes ⁷⁻¹² and catenanes, ¹³⁻¹⁷ have become the representative class of active components in devices at the molecular level. These devices are held together *via* a mechanical bond. A mechanical bond can be described as an interaction in which two or more molecular components become mechanically interlocked in some way.

A catenane is a mechanically interlocked compound in which two or more molecular loops are joined together, while a rotaxane is a mechanically interlocked compound which consists of an axle, a rotor, and a cap or stopper on each end of the axle. The axle contains one or more recognition sites (guests) that can interact with the rotor (host). Typical guests include tetrathiafulvalenes²¹, naphthalenediimides¹⁰, and pyromelliticdiimides¹⁰. Typical rotors include neutral crown ethers such as 1,5-dinaphtho[38]crown-10 (1,5DN38C10)¹⁰ and ionic compounds such as tetracationic cyclophane cyclobis(paraquat-p-phelylene)²¹. The rotor can also be referred to as the macrocycle. Stoppers can include organometallic complexes such as trialkyl tin compounds.

The synthetic methods leading to the formation of rotaxanes are summarized in Figure 1. The capping approach to rotaxane synthesis involves combining the axle and rotor and then adding the stoppers to the resulting pseudorotaxane. The clipping approach involves removing a piece of the rotor to allow for assembly with the capped axle follower by reassembling the rotor.

Rotaxanes can also be prepared by the slippage approach. In this method, the axle is first capped.

A solution of the capped axle is then heated in the presence of the rotor to enable the rotor to slip onto the axle. This requires caps that are small enough to allow the rotor to move over them when heated yet large enough to prevent the rotor from slipping off when the system has cooled.

The active template approach to rotaxanes involves the use of a catalyst that complexes with the rotor. The two pieces of the stoppered axle are then assembled at the catalyst to form a rotaxane.

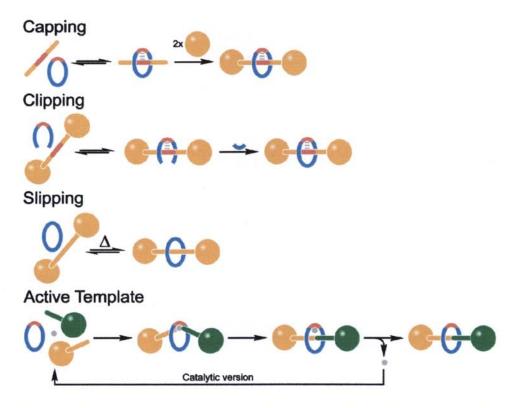


Figure 1: Illustration of the various methods for rotaxane synthesis. (From reference 18)

Multistation rotaxanes are particularly promising since their topology allows the macrocyclic component to undergo a reversible translational motion when subjected to appropriate stimuli, thus behaving as a molecular shuttle or switch.^{1-6, 10} Another possible motion in rotaxanes is ring rotation,¹⁹ which can also be present in catenanes. These are described in Figure 2.

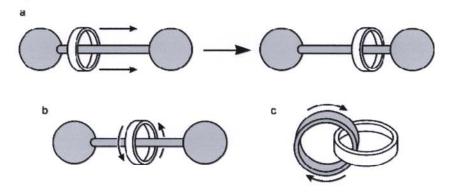


Figure 2: Examples of motion in rotaxanes and catenanes. a) ring shuttling in rotaxanes. b) ring rotation in rotaxanes. c) ring rotation in catenanes. (from reference 19)

There are several different kinds of molecular devices that can be made from rotaxanes, pseudorotaxanes, and catenanes. Pseudorotaxanes can be used as a molecular plug and socket device. ^{20, 21} A binapthocrown ether can be threaded onto a (9-anthracenyl)benzylammonium ion. Trifluoromethanesulfonic acid is used to protonate the nitrogen on the "plug", forming a complex with the crown, as seen in figure 3. Transfer of light energy occurs from the binaphthyl group to the anthracenyl group. The pseudorotaxane can be unplugged by adding tributylamine. The plugging/unplugging action is reversible. Controlling the flow of electrons is essential for any electronic device.

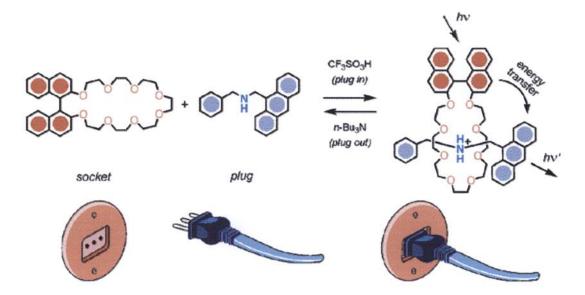


Figure 3: A molecular level plug/socket device (figure from reference 21).

Rotaxanes can be used as molecular shuttles²². Figure 4 shows a molecular shuttle that contains two different stations on the axle of the rotaxane. The ring of the rotaxane is dibenzo-24-crown-8 (DB24C8). One station is a dialkylammonium center. The other station is a 4,4'-bipyridinium unit. The behavior of this system in an acetonitrile solution has been tested. The hydrogen bonding interactions between the macrocycle and the ammonium center are much stronger than the charge transfer interaction between the macrocycle and the bipyridimium station. When the ammonium station is deprotonated by a base such as tribuytlamine, the macrocycle moves to the bipyridinium station due to the loss of hydrogen bonding. Reprotonation allows for the macrocycle to return to the ammonium position. This is a reversible reaction that could be used in computer memory because of its binary logic behavior.

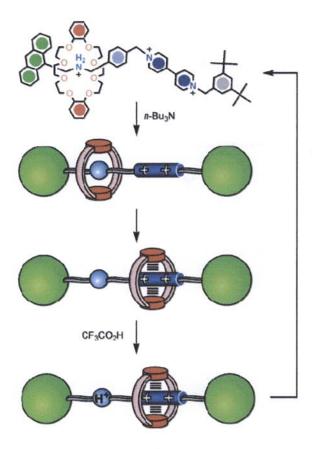


Figure 4: A molecular shuttle system (from reference 21)

Supramolecular systems can also be used as molecular switches.²³ Stoddart and colleagues have prepared a three-pole supramolecular switch with tetrathiafulvalene (TTF) as the guest and two host molecules: cyclophane cyclobis(paraquat-p-phenylene) (CBPQT⁴⁺) and 1,5-dinaptho[38]crown-10 (1,5DN38C10). Neutral TTF forms a complex with CBPQT⁴⁺. The TTF dication (TTF²⁺) forms a complex with 1,5DN38C10. The radical monocation TTF^{+•} does not form complexes with either host molecule. Molecular shuttles such as the one seen in the previous paragraph can also be used as two-pole molecular switches. A scheme for a generic three-pole supramolecular switch is given in Figure 5.

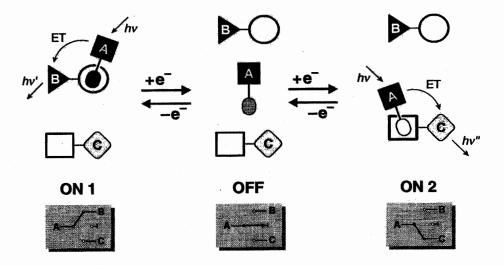


Figure 5: Schematic diagram for a generic three-pole supramolecular switch. (from reference 23)

An important research direction in this field is the use of rotaxanes as ligands, ^{24, 25} with the ultimate goal of synthesizing functional Metal-Organic-Rotaxane-Frameworks (MORFs). ²⁶⁻³⁰ MORFs are a particular class of Metal-Organic-Frameworks (MOFs) with rotaxanes acting as linkers between metal nodes, thus generating crystalline materials comprised of interlocked molecular components.

Metal-Organic-Frameworks (MOFs) consist of metal ions or clusters connected through bridging organic ligands into extended 1-, 2-, or 3-dimensional frameworks. Omar Yaghi, currently of the University of California at Los Angeles, prepared numerous examples of MOFs that are porous and can be used for gas storage.^{31, 32}

MOFs can also be prepared from rotaxanes. These Metal-Organic-Rotaxane-frameworks (MORFs) are necessary to create ordered arrays of molecular machines.²⁷ However, many discrete rotaxane systems rely on counterions. These counterions make molecular motion more difficult, especially in MORFs.

While several examples of MORFs are known, ²⁶⁻³⁰, ³³⁻³⁶ they lack the necessary features to allow molecular motion. Ideally, such a MORF should be built on a two station rotaxane and should consist of a robust, porous, and overall neutral crystalline material, free of counter-ions and solvent molecules that would interfere with the translational movement of the wheel between the rotaxane stations.

An elegant strategy toward this goal was recently suggested by Loeb, ²⁶ employing zwitterionic rotaxanes^{9, 12, 26} as ligands and connecting them to neutral metallic nodes.

These zwitterionic rotaxanes consist of a 1,2-bis(4,4'-bipyridinium)ethane dication as the axle and negatively charged crown ethers as the rotor.

Loeb's one-dimensional MORFs use Cu₂(BnO₄) paddlewheel units as the neutral linkages²⁶. The lone pairs on the nitrogens of the terminal pyridine groups bind to the two open coordination sites of the Cu(II) paddlewheel.

We propose here an alternative method for the synthesis of counter-ion free MORFs, based on anionic axles with donor capabilities that would produce a neutral network upon threading and coordination to cationic metal-containing nodes. Such an approach raises two questions: is it possible to synthesize anionic axles with donor properties that would still maintain a strong recognition site for rotaxane formation and what would be the stability of such rotaxanes during the coordination process? To answer these questions we investigated the formation of *discrete* rotaxanes rather than MORFs, to avoid solubility problems that could arise from the latter species.

The synthetic path toward neutral bimetallic rotaxanes is described in Scheme 1.

Scheme 1. Reaction scheme for the synthesis of our axles, complexes, and rotaxanes.

The research described in this thesis involves anionic axles. Our axles consist of a naphthalenediimide (NDI) station joined to a phosphorus-1,1-ditholate (PS₂) anionic donor at each end by either one or two ethoxy linkages. Our rotor is 1,5DN38C10. The interaction between these two moieties has been successfully used in directing the formation of mechanically interlocked systems. ^{10,11,13} Initial research involved the reaction of the two axles with metallic centers containing one or two coordination sites to study the coordination behavior of the anionic axle. The next step was to prepare neutral rotaxanes.

REFERENCES

- 1. Stoddart, J. F. Chem. Soc. Rev., 2009, 38, 1802.
- Crowley, J. D.; Goldup, S. M.; Lee, A.-L.; Leigh, D. A.; McBurney, R. T. Chem. Soc. Rev, 2009, 38, 1530.
- 3. Dichtel, W. R.; Miljanic, O. S.; Zhang, W.; Spruell, J. M.; Patel, K.; Aprahamian, I.; Heath, J. R.; Stoddart, J. F. Acc. Chem. Res., 2008, 41, 1750
- Badjic, J. D.; Ronconi, C. M.; Stoddart, J. F.; Balzani, V.; Silvi, S.; Credi, A. J. Am. Chem. Soc.,
 2006, 128, 1489
- 5. Champin, B.; Mobian, P.; Sauvage, J.-P. Chem. Soc. Rev., 2007, 358
- Balzani, V.; Silvi, S.; Credi, A.; Venturi, M. Molecular Devices and machines Concepts and Perspectives for the Nanoworld; Wiley-VCH: Weinheim, 2008
- Ashton, P. R.; Chrystal, E. J. T.; Glink, P. T.; Menzer, S.; Schiavo, C.; Spencer, N.; Stoddart, J. F.;
 Tasker, P. A.; White, A. J. P.; Williams, D. J. Chem. Eur. J., 1996, 2, 709
- 8. Loeb, S. J.; Wisner, J. A. Angew. Chem. Int. Ed., 1998, 37, 2838
- 9. Hoffart, D. J.; Tiburico, J.; de la Torre, A.; Knight, L. K.; Loeb, S. J. Angew. Chem. Int. Ed., 2008, 47, 97
- Vignon, S. A.; Jarrosson, T.; Iijima, T.; Tseng, H.-R.; Sanders, J. K. M.; Stoddart, J. F. J. Am. Chem. Soc., 2004, 126, 9884
- Pascu, S. I.; Naumann, C.; Kaiser, G.; Bond, A. D.; Sanders, J. K. M.; Jarrosson, T. *Dalton Trans.*,
 2007, 3874
- 12. Lestini, E.; Nikitin, K.; Mueller-Bunz, H.; Fitzmaurice, D. Chem. Eur. J., 2008, 14, 1095
- 13. Hamilton, D. J.; Davies, J. E.; Prodi, L.; Sanders, J. K. M. Chem Eur. J., 1998, 608
- Li, Q.; Zhang, W.; Miljanić, O. Š.; Knobler, C. B.; Stoddart, J. F.; Yaghi, O. M. Chem. Commun.,
 2010, 46, 380
- 15. Nierengarten, J.-F.; Dietrich-Buchecker, C. O.; Sauvage, J.-P. J. Am. Chem. Soc., 2004, 116, 375
- Amabilino, D. B.; Ashton, P. R.; Balzani, V.; Boyd, S. E.; Credi, A.; Lee, J. Y.; Menzer, S.;
 Stoddart, J. F.; Venturi, M.; Williams, D. J. J. Am. Chem. Soc., 1998, 120, 4295
- 17. Faiz, J. A.; Heitz, V.; Sauvage, J.-P. Chem. Soc. Rev., 2009, 38, 422

- File:Rotaxanes-synthesis-methods.png. http://en.wikipedia.org/wiki/File:Rotaxanes-synthesis-methods.png (accessed April 21, 2010)
- 19. Balzani, V.; Credi, A.; Silvi, S.; Venturi, M. Chem. Soc. Rev, 2006, 35, 1135
- 20. Ishow, E.; Credi, A.; Balzani, V.; Spadola, F.; Mandolini, L. Chem. Eur. J., 1999, 5, 984.
- 21. Ballardini, R., Balzani, V., Credi, A., Gandolfi, M. T., Venturi, M. Acc. Chem. Res., 2001, 34, 445
- Ashton, P. R.; Ballardini, R.; Balzani, V.; Baxter, I.; Credi, A.; Fyfe, M. C. F.; Gandolfi, M. T.;
 Gomez-Lopez, M.; Martinez-Diaz, M.-V.; Piersanti, A.; Spencer, N.; Stoddart, J. F.; Venturi, M.;
 White, A. J. P.; Williams, D. J. J. Am. Chem. Soc., 1998, 120, 11932
- Ashton, P. R.; Balzani, V.; Becher, J.; Credi, A.; Fyfe, M. C. T.; Mattersteig, G.; Menzer, S.;
 Nielsen, M. B.; Raymo, F. M.; Stoddart, J. F.; Venturi, M.; Williams, D. J. J. Am. Chem. Soc.,
 1999, 121, 3951
- 24. Loeb, S. J. Chem. Soc. Rev., 2007, 36, 226
- 25. Davidson, G. J. E.; Loeb, S. J.; Passaniti, P.; Silvi, S.; Credi, A. Chem. Eur. J., 2006, 12, 3233
- 26. Knight, L. K.; Vukotic, V. N.; Viljoen, E.; Caputo, C. B.; Loeb, S. J. Chem. Commun., 2009, 5585
- 27. Loeb, S. J. Chem. Commun., 2005, 1511
- 28. Hoffart, D. J.; Loeb, S. J. Angew. Chem. Int. Ed., 2005, 44, 910
- 29. Davidson, G. J. E.; Loeb, S. J. Angew. Chem. Int. Ed., 2003, 42, 74
- 30. Hoffart, D. J.; Loeb, S. J. Supramol. Chem., 2007, 19, 89
- 31. Eddaoudi, M.; Moler, D. B.; Li, H.; Chen, B.; Reinike, T. M.; O'Keefe, M.; Yaghi, O. M. Acc. Chem Res., 2001, 34, 319
- 32. O'Keefe, M.; Peskov, M. A.; Ramsden, S. J.; Yaghi, O. M. Acc. Chem. Res., 2008, 41, 1782
- 33. Roh, S.-G.; Park, K.-M.; Park, G.-J.; Sakamoto, S.; Yamaguchi, K.; Kim, K. Angew. Chem. Int. Ed., 2003, 42, 74
- 34. Whang, D.; Jeon, Y.-M.; Heo, J.; Kim, K. J. Am. Chem. Soc., 1996, 118, 11333
- 35. Whang, D.; Park, K.-M.; Heo, J.; Ashton, P.; Kim, K. J. Am. Chem. Soc., 1998, 120, 4899
- 36. Kim, K. Chem. Soc. Rev., 2002, 31, 96

EXPERIMENTAL

2.1 Instrumentation

Operations requiring inert (nitrogen) atmosphere were carried out using standard Schlenk techniques and an MBraun LabStar dry-box. Elemental analyses were performed by Robertson Microlit Laboratories, NJ. NMR spectra were recorded by using a 400 MHz Bruker Avance FT-NMR Spectrometer and a Varian Mercury/VX 400 Spectrometer.

2.2 Materials

Dimethylformamide (DMF) was distilled before use and stored over molecular sieves.

(Ph₃P)₂CuNO₃¹ and the 15DN38C10² crown ether were prepared according to published procedures. All other reagents were purchased from commercial suppliers and used as received.

2.3 Syntheses

2.3.1 Synthesis of NDI-[CH2CH2OH]2

A 250-mL flask was charged with a stirring bar, 1,4,5,8-naphthalenetetracarboxylic dianhydride (2.682 g, 0.01 mol) and 75 mL dry DMF. To this mixture was added, under stirring, a solution of 2-aminoethanol (1.222 g, 0.02 mol) in 50 mL dry DMF. The mixture was stirred overnight at 120° C. After cooling at room temperature, the mixture was poured into 600 mL ice cold water and the resulting precipitate was filtered, washed with water (100 mL), ethanol (75 mL) and diethyl ether (75 mL), to afford the desired product (3.21 g, 90.6 %) as a pink powder. 1 H-NMR (400 MHz, DMSO-d₆): $\delta = 8.68$ (s, 4H, *NDI*), 4.86 (t, J = 6.3 Hz, 2H, -OH), 4.18 (t, J = 6.2 Hz, 4H, -CH₂-), 3.66 (m, 4H, -CH₂-).

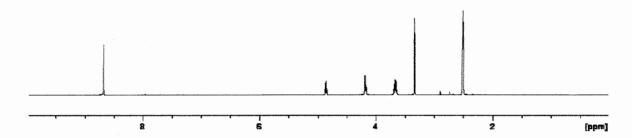


Figure 6: ¹H NMR spectrum of NDI-[CH₂CH₂OH]₂

2.3.2 Synthesis of NDI-[CH2CH2OCH2CH2OH]2

This compound was prepared as described above for NDI-[CH₂CH₂OH]₂, using 1,4,5,8-naphthalene-tetracarboxylic dianhydride (2.682 g, 0.01 mol) in 75 mL dry DMF and a solution of 2-(2-aminoethoxy)-ethanol (2.103 g, 0.02 mol) in 50 mL dry DMF. The compound (3.94 g, 89.1 %) was isolated as a pale pink powder. 1 H-NMR (400 MHz, DMSO-d₆): δ = 8.66 (s, 4H, *NDI*), 4.57 (t, J = 5.3 Hz, 2H, -OH), 4.26 (m, 4H, -CH₂-), 3.69 (m, 4H, -CH₂-), 3.48 (m, 8H, -CH₂-).

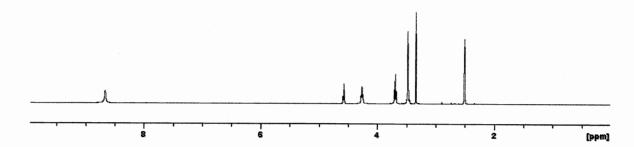


Figure 7: ¹H NMR spectrum of NDI-[CH₂CH₂OCH₂CH₂OH]₂

2.3.3. Synthesis of NDI-[CH₂CH₂O(An)PS₂NH₄]₂

A 250 mL flask was charged with a stirring bar, NDI-[CH₂CH₂OH]₂ (1.771 g, 5.0 mmol), 1,3,2,4-dithiadiphosphetane-2,4-bis(4-methoxyphenyl)-2,4-disulfide (Lawesson's Reagent, L.R.) (2.022 g, 5.0 mmol) and 150 mL benzene. The mixture was stirred for 90 min. at 80° C, and allowed to cool at room temperature. Then dry NH₃ gas (prepared from NH₄OH dropped onto NaOH and dried by passing it through a tower filled with powdered NaOH) was bubbled through the cold solution. The resulting voluminous precipitate was filtered, washed with cold benzene (50 mL) and then ether (100 mL) to afford an orange product (3.08 g, 77.7 %), identified as NDI-[CH₂CH₂O(An)PS₂NH₄]₂ · 1/2 C₆H₆. ¹H-NMR (400 MHz, Acetone-d₆/D₂O 5:0.6 v/v): δ = 8.67 (s, 4H, *NDI*), 7.83 (m, 4H, MeO-C₆H₄-P), 7.33 (s, 3H, C₆H₆), 6.44 (m, 4H, MeO-C₆H₄-P), 4.39 (t, J = 6.9 Hz, 4H, -CH₂-), 4.15 (m, 4H, -CH₂-), 3.58 (s, 6H, -O-CH₃); Anal. Calcd. for C₃₂H₃₄N₄O₈P₂S₄ · 1/2 C₆H₆: C = 50.53, H = 4.48, N = 6.73; Found: C = 50.26, H = 4.46, N = 6.57.

Figure 8: ¹H NMR spectrum of NDI-[CH₂CH₂O(An)PS₂NH₄]₂

2.3.4 Synthesis of NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂NH₄]₂

This compound was prepared as described above for NDI-[CH₂CH₂O(An)PS₂NH₄]₂, using NDI-[CH₂CH₂OCH₂CH₂OH]₂ (2.212 g, 5.0 mmol), L.R. (2.022 g, 5.0 mmol) and 150 mL benzene. The procedure afforded an orange product (3.28 g, 74.5 %), identified as NDI-[CH₂CH₂OCH₂CH₂O-(An)PS₂NH₄]₂. ¹H-NMR (400 MHz, Acetone-d₆/D₂O 5:0.6 v/v): δ = 8.72 (s, 4H, *NDI*), 7.96 (m, 4H, MeO-C₆H₄-P), 7.33 (s, 1H, C₆H₆), 6.75 (m, 4H, MeO-C₆H₄-P), 4.36 (t, J = 6.8 Hz, 4H, -CH₂-), 3.91 (m, 4H, -CH₂-), 3.74 (m, 10H, -CH₂- and -O-CH₃), 3.66 (m, 4H, -CH₂-); Anal. Calcd. for C₃₆H₄₂N₄O₁₀P₂S₄: C = 49.08, H = 4.81, N = 6.36; Found: C = 48.82, H = 5.00, N = 6.20.

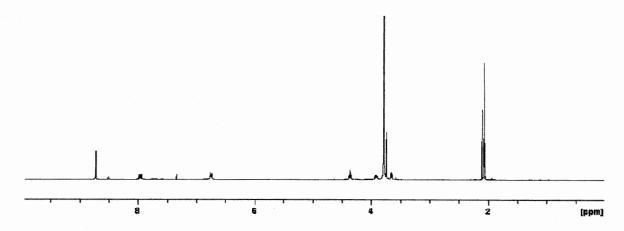


Figure 9: ¹H NMR spectrum of NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂NH₄]₂

2.3.5 Synthesis of NDI-[CH₂CH₂O(An)PS₂(SnMe₃)₂]₂

A 250-mL flask was charged with a stirring bar and a solution of Me₃SnCl (0.0498 g, 0.25 mmol) in DCM (75 mL). To this colorless solution was added, under vigorous stirring, an orange aqueous solution of NDI- $[CH_2CH_2O(An)PS_2NH_4]_2$ (0.0991 g, 0.125 mmol) in 75 mL water, and the mixture was stirred for an additional 12 hours. The completion of the reaction was indicated by the loss of the color of the aqueous phase and the appearance of a pink color in the organic phase. The organic phase was separated, and the aqueous phase extracted with DCM (3 x 25 mL). The combined organic phases were dried over anhydrous Na₂SO₄ and removed under reduced pressure, to afford the desired compound as an orange solid (0.0722 g, 53.3 %). 1 H-NMR (400 MHz, CDCl₃): δ = 8.73 (s, 4H, *NDI*), 7.80 (m, 4H, MeO-C₆H₄-P), 6.82 (m, 4H, MeO-C₆H₄-P), 4.61 (m, 4H, -CH₂-), 4.46 (m, 4H, -CH₂-), 3.79 (s, 6H, -O-CH₃), 0.53 (s, J_{Sn-H} = 27.8 Hz, 18H, Sn(CH₃)₃). Anal. Calcd. for C₃₈H₄₄N₂O₈P₂S₄Sn₂: C = 42.09, H = 4.09, N = 2.58; Found: C = 42.21, H = 3.89, N = 2.77.

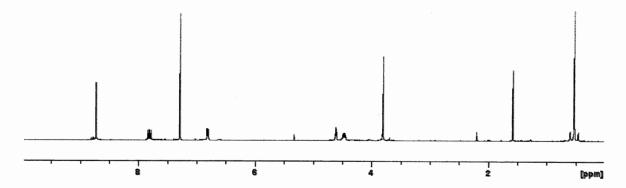


Figure 10: ¹H NMR spectrum of NDI-[CH₂CH₂O(An)PS₂(SnMe₃)₂]₂

2.3.6 Synthesis of NDI-[CH₂CH₂O(An)PS₂(SnPh₃)₂]₂

This compound was prepared as described above for NDI-[CH₂CH₂O(An)PS₂(SnMe₃)₂]₂, using Ph₃SnCl (0.0964 g, 0.25 mmol) and NDI-[CH₂CH₂O(An)PS₂NH₄]₂ (0.0991 g, 0.125 mmol), to afford the desired compound as an orange solid (0.1192 g, 65.5 %). ¹H-NMR (400 MHz, CDCl₃): δ = 8.58 (s, 4H, *NDI*), 7.60-7.52 (m, 16H, 4H MeO-C₆H₄-P overlap with 12H, Sn-(C₆H₅)₃), 7.35 (m, 18H, Sn-(C₆H₅)₃), 6.67 (m, 4H, MeO-C₆H₄-P), 4.49 (m, 4H, -CH₂-), 4.31 (m, 4H, -CH₂-), 3.76 (s, 6H, -O-CH₃). Anal. Calcd. for C₆₈H₅₆N₂O₈P₂S₄Sn₂: C = 56.06, H = 3.87, N = 1.92; Found: C = 55.74, H = 3.69, N = 1.91.

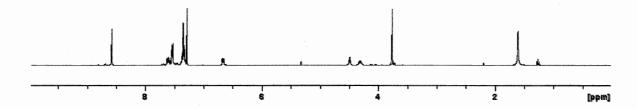


Figure 11: ¹H NMR spectrum of NDI-[CH₂CH₂O(An)PS₂(SnPh₃)₂]₂

2.3.7 Synthesis of NDI-[CH₂CH₂O(An)PS₂(Cu(PPh₃)₂]₂

This compound was prepared as described above for NDI-[CH₂CH₂O(An)PS₂(SnMe₃)₂]₂, using (Ph₃P)₂CuNO₃ (0.1625 g, 0.25 mmol) and NDI-[CH₂CH₂O(An)PS₂NH₄]₂ (0.0991 g, 0.125 mmol), to afford the desired compound as a dark orange solid (0.1922 g, 79.5 %). ¹H-NMR (400 MHz, CDCl₃): δ = 8.59 (s, 4H, *NDI*), 7.76 (m, 4H, MeO-C₆H₄-P), 7.31 (m, 36H, -P(C₆H₅)₃), 7.17 (m, 24H, -P(C₆H₅)₃), 6.64 (m, 4H, MeO-C₆H₄-P), 4.46 (m, 4H, -CH₂-), 4.21 (m, 4H, -CH₂-), 3.73 (s, 6H, -O-CH₃). Anal. Calcd. for C₁₀₄H₈₆Cu₂N₂O₈P₆S₄: C = 64.62, H = 4.48, N = 1.45; Found: C = 64.38, H = 4.35, N = 1.57.

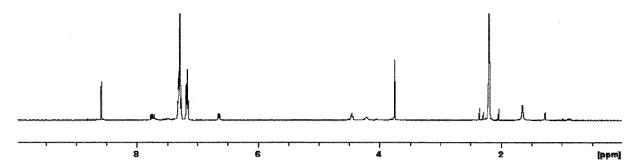


Figure 12: ¹H NMR spectrum of NDI-[CH₂CH₂O(An)PS₂(Cu(PPh₃)₂]₂

2.3.8 Synthesis of NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂(SnMe₃)₂]₂

A 250-mL flask was charged with a stirring bar and a solution of Me₃SnCl (0.0498 g, 0.25 mmol) in DCM (75 mL). To this colorless solution was added, under vigorous stirring, an orange aqueous solution of NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂NH₄]₂ (0.110 g, 0.125 mmol) in 75 mL water, and the mixture was stirred for an additional 12 hours. The completion of the reaction was indicated by the loss of the color of the aqueous phase and the appearance of a pink color in the organic phase. The organic phase was separated, and the

aqueous phase extracted with DCM (3 x 25 mL). The combined organic phases were dried over anhydrous Na₂SO₄ and removed under reduced pressure, to afford the desired compound as an orange solid (0.0952 g, 64.9 %). ¹H-NMR (400 MHz, CDCl₃): δ = 8.69 (s, 4H, *NDI*), 7.81 (m, 4H, MeO-C₆H₄-P), 6.84 (m, 4H, MeO-C₆H₄-P), 4.47 (m, 4H, -CH₂-), 4.14 (m, 4H, -CH₂-), 3.88-3.83 (m, 10H, 4H -CH₂- overlap with 6H - O-CH₃), 3.77 (m, 4H, -CH₂-), 0.59 (s, J_{Sn-H} = 28.2 Hz, 18H, Sn(CH₃)₃). Anal. Calcd. for C₄₂H₅₂N₂O₁₀P₂S₄Sn₂: C = 43.02, H = 4.47, N = 2.39; Found: C = 43.39, H = 4.38, N = 2.62.

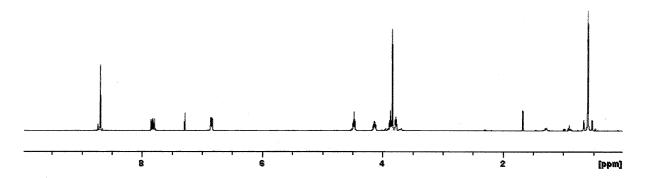


Figure 13: ¹H NMR spectrum of NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂(SnMe₃)₂]₂

2.3.9 Synthesis of NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂(SnPh₃)₂]₂

This compound was prepared as described above for NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂(SnMe₃)₂]₂, using Ph₃SnCl (0.0964 g, 0.25 mmol) and NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂NH₄]₂ (0.110 g, 0.125 mmol), to afford the desired compound as an orange solid (0.1427 g, 73.9 %). ¹H-NMR (400 MHz, CDCl₃): $\delta = 8.61$ (s, 4H, *NDI*), 7.71-7.57 (m, 16H, 12H Sn-(C₆H₅)₃ overlap with 4H, MeO-C₆H₄-P), 7.41 (m, 18H, Sn-(C₆H₅)₃), 6.67 (m, 4H, MeO-C₆H₄-P), 4.42 (m, 4H, -CH₂-), 3.96 (m, 4H, -CH₂-), 3.82-3.76 (m, 10H, 6H, -CH₂-)

O-C H_3 overlap with 4H, -C H_2 -), 3.56 (m, 4H, -C H_2 -). Anal. Calcd. for $C_{72}H_{64}N_2O_{10}P_2S_4Sn_2$: C = 55.98, H = 4.18, N = 1.81; Found: C = 55.59, H = 3.90, N = 1.99.

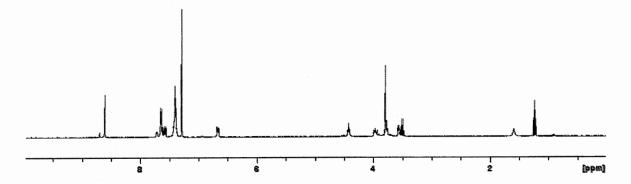


Figure 14: ¹H NMR spectrum of NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂(SnPh₃)₂]₂

2.3.10 Synthesis of NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂(Cu(PPh₃)₂]₂

This compound was prepared as described above for NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂(SnMe₃)₂]₂, using (Ph₃P)₂CuNO₃ (0.1625 g, 0.25 mmol) and NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂NH₄]₂ (0.110 g, 0.125 mmol), to afford the desired compound as a dark orange solid (0.2011 g, 79.6 %). ¹H-NMR (400 MHz, CDCl₃): δ = 8.57 (s, 4H, *NDI*), 7.65 (m, 4H, MeO-C₆H₄-P), 7.33 (m, 36H, -P(C₆H₅)₃), 7.23 (m, 24H, -P(C₆H₅)₃), 6.68 (m, 4H, MeO-C₆H₄-P), 4.46 (m, 4H, -CH₂-), 3.87-3.79 (m, 14H, 8H -CH₂- overlap with 6H -O-CH₃), 3.56 (m, 4H, -CH₂-). Anal. Calcd. for C₁₀₈H₉₄Cu₂N₂O₁₀P₆S₄: C = 64.18, H = 4.69, N = 1.39; Found: C = 63.85, H = 4.34, N = 1.62.

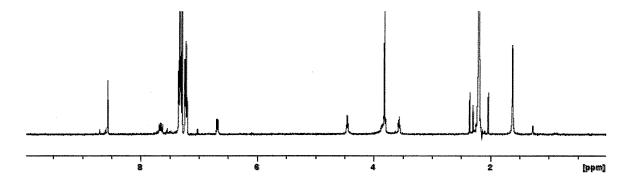


Figure 15: ¹H NMR spectrum of NDI-[CH₂CH₂OCH₂CH₂OH]₂-[Cu(PPh₃)₂]₂

2.3.11 Synthesis of (NDI-[CH₂CH₂O(An)PS₂]₂)₂-[SnPh₂]₂

A 250 mL flask was charged with a stirring bar and a solution of Ph₂SnCl₂ (0.0429 g, 0.125 mmol) in DCM (75 mL). To this colorless solution was added, under vigorous stirring, an orange aqueous solution of NDI-[CH₂CH₂O(An)PS₂NH₄]₂ (0.0991 g, 0.125 mmol) in 75 mL water, and the mixture was stirred for an additional 12 hours. The completion of the reaction was indicated by the loss of the color of the aqueous phase and the appearance of a pink color in the organic phase. The organic phase was separated, and the

aqueous phase extracted with DCM (3 x 25 mL). The combined organic phases were dried over anhydrous Na₂SO₄ and removed under reduced pressure, to afford the desired compound as a pale orange solid (0.0491 g, 38.1 %). ¹H-NMR (400 MHz, CDCl₃): δ = 8.57 (s, 8H, *NDI*), 7.70 (m, 8H, Sn-(C₆H₅)₂), 7.61 (m, 8H, MeO-C₆H₄-P), 7.50 (m, 8H, Sn-(C₆H₅)₂), 7.35 (m, 4H, Sn-(C₆H₅)₂), 6.66 (m, 8H, MeO-C₆H₄-P), 4.49 (m, 8H, -CH₂-), 4.31 (m, 8H, -CH₂-), 3.76 (s, 12H, -O-CH₃).

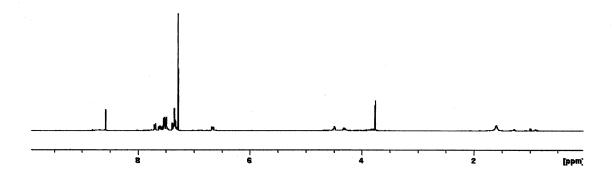


Figure 16: ¹H NMR spectrum of NDI-[CH₂CH₂O(An)PS₂]₂-[SnPh₂]₂

2.3.12 Synthesis of NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂]₂-[SnPh₂]

The compound was prepared as described above for using NDI-[CH₂CH₂OCH₂CH₂O(An)-PS₂NH₄]₂ (0.1188 g, 0.134 mmol) to afford the desired compound as an orange solid (0.0237 g, 15.8%). ¹H-NMR (400 MHz, CDCl₃): δ = 8.59 (s, 4H, *NDI*), 7.60 (m, 4H, Sn-(C₆H₅)₂), 7.48 (m, 4H, MeO-C₆H₄-P), 7.32 (m, 6H, Sn-(C₆H₅)₂), 6.93 (m, 4H, MeO-C₆H₄-P), 4.53 (m, 4H, -CH₂-), 3.98 (m, 4H, -CH₂-), 3.93 (s, 6H, -O-CH₃), 3.64 (m, 4H, -CH₂-), 3.53 (m, 4H, -CH₂-).

Figure 17: ¹H NMR spectrum of NDI-[CH₂CH₂OCH₂CH₂OH]-[SnPh₂]

General procedure for rotaxane synthesis and crystal growing procedure.

Acetone-water solutions of the axle and crown (0.1 mmol each) were stirred for 2 hours in an ice-water bath. To the red solutions, solid R_3 SnCl (R = Me, Ph) or ($Ph_3P)_2$ CuNO₃ was added, and the stirring was continued overnight. The resulting red solutions were transferred in vials which were subsequentely placed in larger vials already filled with ca. 10 mL of diethyl ether. The large vials were tightly closed and kept at 0 °C for several days, during which time red crystals formed and used for single crystal X-ray diffraction analysis.

Crystallographic studies.

The X-ray data were collected at 100 K on a Bruker SMART APEXII CCD diffractomer equipped with Cu Kα radiation. Intensities were collected using phi and omega scans and were corrected for Lorentz polarization and absorption effects. The X-SEED software platform,³ equipped with SHELXS and SHELXL modules on a PC computer,⁴ was used for all structure solution and refinement calculations and molecular graphics. The structure was solved by direct methods, and refined by anisotropic full-matrix least-squares for all non-hydrogen atoms. All hydrogen atoms were placed in calculated positions and refined using a riding model with fixed thermal parameters.

REFERENCES

- 1. Cotton, F.A.; Goodgame, D. M. L., J. Chem. Soc., 1960, 5267.
- 2. Hamilton, D. J.; Davies, J. E.; Prodi, L.; Sanders, J. K. M. Chem Eur. J., 1998, 608
- 3. Barbour, L. J. Supramol. Chem., 2001, 1, 189
- 4. Sheldrick, G. M. Acta Crystalogr., 2008, A64, 112

RESULTS AND DISCUSSION

Section 3.1: Synthesis and Characterization

In our design of an anionic rotaxane ligand, we have selected a dithiophosphonate group as the donor set towards metallic centers, ¹ and the 1,4,5,8-naphthalenetetracarboxylic diimide (NDI) / 1,5-dinaphtho-38crown10 (15DN38C10) pair as complementary recognition sites, since the interaction between these moieties has been successfully used in directing the formation of mechanically interlocked systems. ¹⁻³ The general approach is presented in Scheme 2.

Scheme 2. Two possible synthetic pathways toward neutral bimetallic rotaxanes starting from our anionic axles.

The ditopic dithiophosphonate axles were synthesized by the reaction of 1,4,5,8-naphthalenetetracarboxylic dianhydride with two equivalents of either 2-aminoethanol or 2-(2-aminoethoxy)ethanol in DMF, followed by the reaction of the resulting diols with Lawesson's Reagent in benzene. The ammonium salts $NDI-[CH_2CH_2O(An)PS_2NH_4]_2$ and $NDI-[CH_2CH_2O-CH_2CH_2O(An)PS_2NH_4]_2$ (An = anisole) were then precipitated by passing a stream of dry gaseous NH₃ through the cold benzene solution of the dithiophosphonic acids.

Characterization of the intermediate NDI-[CH₂CH₂OH]₂ was carried out by ¹H NMR (Figure 6) in DMSO-D₆. The singlet at 8.68 ppm was assigned to the four hydrogens on the NDI central piece. The triplet at 4.86 ppm was assigned to the two hydroxyl groups. The triplet at 4.18 ppm was assigned to the hydrogens on the carbon adjacent to the nitrogen on the NDI. The multiplet at 3.66 ppm was assigned to the hydrogens on the carbon adjacent to the hydroxyl group. The ¹H NMR spectrum of NDI-[CH₂CH₂OCH₂CH₂OH]₂ (Figure 7) is similar to that of NDI-[CH₂CH₂OH]₂, with two additional resonances corresponding to the additional CH₂-O-CH₂ hydrogens.

The ¹H NMR spectrum for NDI-[CH₂CH₂O(An)PS₂NH₄]₂ (Figure 8) as well as the elemental analysis indicate one-half equivalent solvated benzene. A sample of this axle was also prepared in acetonitrile. The axle prepared in acetonitrile did not contain the solvated benzene according to elemental analysis and NMR.

The reaction of these ditopic ligands with R₃SnCl (R = Me, Ph) or (Ph₃P)₂CuNO₃ (Scheme 2) yielded the bimetallic compounds NDI-[CH₂CH₂O(An)PS₂(SnMe₃)₂]₂; NDI-[CH₂CH₂O(An)PS₂(SnPh₃)₂]₂; NDI-[CH₂CH₂O(An)PS₂(Cu(PPh₃)₂]₂; NDI-[CH₂CH₂OCH₂-CH₂O(An)PS₂(SnMe₃)₂]₂; NDI-[CH₂CH₂OCH₂-CH₂O(An)PS₂(SnPh₃)₂]₂ and NDI-[CH₂CH₂O-CH₂CH₂O(An)PS₂(Cu(PPh₃)₂]₂. The structure of these bimetallic compounds was confirmed by ¹H NMR spectroscopy and elemental analysis.

3.2 Solution NMR studies

Both routes toward bimetallic rotaxanes were investigated (Scheme 2): a) pseudorotaxane formation followed by stoppering with metallic centers and b) slippage of the crown onto the preformed neutral metallic axles. Upon mixing equimolar solutions of NDI-[CH₂CH₂O(An)-PS₂NH₄]₂ or NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂NH₄]₂ and 15DN38C10 in acetone-d₆:D₂O (5:0.6, v/v), the slow rate of association and dissociation of the components on the NMR timescale at room temperature permits the observation of three different sets of peaks in their NMR spectra (Fig. 18), corresponding to the free axles and crown ether, and the [2]pseudorotaxane complexes. The rotaxane formation is indicated by the upfield shift of the NDI (H_a) and the crown aromatic peaks (H_{d-f}) due to aromatic shielding effects resulting from

the NDI-crown interaction, while the anisole peaks (H_{b-c}) shifted downfield, indicative of an "outer sphere" interaction of this group with the crown 15DN38C10.

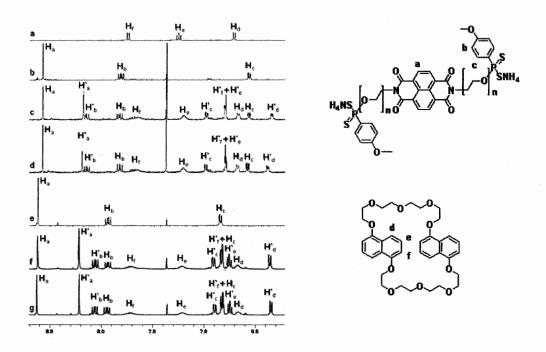


Figure 18: Partial 1 H-NMR spectra of a) crown 15DN38C10, b) axle NDI-[CH₂CH₂O(An)PS₂NH₄]₂, c) rotaxane NDI-[CH₂CH₂O(An)PS₂NH₄]₂ \subset 15DN38C10/excess NH₄ ${}^{+}$, e) axle NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂NH₄]₂, f) rotaxane NDI-[CH₂CH₂O-CH₂CH₂O(An)PS₂NH₄]₂ \subset 15DN38C10/excess NH₄ ${}^{+}$; H and H' represent uncomplexed and complexed species, respectively (for proton labeling mode see Scheme 2); the peak at 7.33 ppm is C₆H₆ carried on from the synthesis of the axles.

The observation of signals for the resonances of threaded and unthreaded species in the NMR spectra of NDI-[CH₂CH₂O(An)PS₂NH₄]₂ or NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂NH₄]₂ and 15DN38C10 allows the measurement of their association constants (K_a) and free energies of complexation (ΔG^o) using the convenient single-point method (Table 1).⁴

The $^1\text{H-NMR}$ spectra were obtained at 25° C in acetone-d₆ / D₂O = 5 / 0.6 (v/v), using equimolar solutions (1.66·10⁻³ M) of naphthalenediimide based axles and 15DN38C10 crown-ether. The concentrations of the free axle, free crown and of their corresponding pseudorotaxanes were determined using the initial axle and crown concentrations and the integration of the NDI resonance of free and complexed species. The errors are estimated to be 10% or less. The free energies of complexation were then routinely calculated, using the formula $\Delta G^{\circ} = -RT \ln K_a$.

The association constants were calculated using the formula

$$Ka = \frac{I(R)}{I(A) * (c(C) - \frac{I(R)}{I(A) + I(R)}c(A))}$$

where I(A) is the integral of the NDI hydrogen of the free axle, I(R) is the integral of the NDI hydrogen of the rotaxane, c(C) is the initial concentration of 15DN38C10, and c(A) is the initial concentration of the axle. For the association constant for NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂NH₄]₂ and 15DN38C10, the calculation was as follows:

$$Ka = \frac{1.03}{1 * (0.00106 - \frac{1.03}{1 + 1.03} 0.00147)}$$

resulting in a K_a of 1259.1 M⁻¹.

It should be emphasized that the apparent K_a values for rotaxanes NDI-[CH₂CH₂O-(An)-PS₂NH₄]₂ \subset 15DN38C10 and NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂NH₄]₂ \subset 15DN38C10 were calculated considering a 1:1 reaction of the anionic axles with the [15DN38C10·NH₄]⁺ inclusion complex. All our attempts to replace the NH₄⁺ counter-ion with non-interacting R₄N⁺ (R=Me, *n*-Pr, and *n*-Bu) cations resulted in the decomposition of the axle.

Since the dissolution of the axle produces two equivalents of NH₄⁺ ions, it is reasonable to assume that the formation of the [15DN38C10·NH₄]⁺ complex is essentially complete. When the NMR spectra of the axles NDI-[CH₂CH₂O(An)PS₂NH₄]₂ and NDI-[CH₂CH₂OCH₂CH₂O-(An)PS₂NH₄]₂ and crown 15DN38C10 were recorded in the presence of excess NH₄PF₆ (Fig. 18 d and g), only a small decrease of

the K_a values was observed (Table 1), as expected according to the Le Chatelier principle, while VT-NMR studies performed on NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂NH₄]₂ \subset 15DN38C10 (1b·3 in Fig. 19) and NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂(SnMe₃)]₂ \subset 15DN38C10 (2b-[SnMe₃]₂·3 in Fig. 19) showed that the association constants increase with decreasing the temperature.

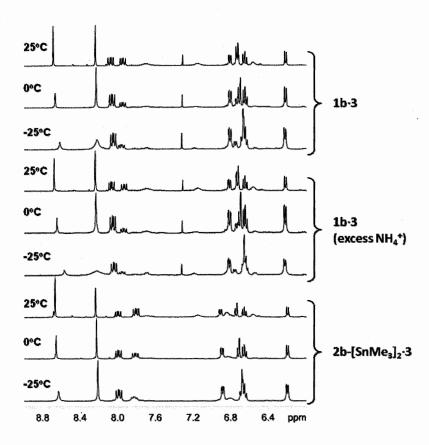
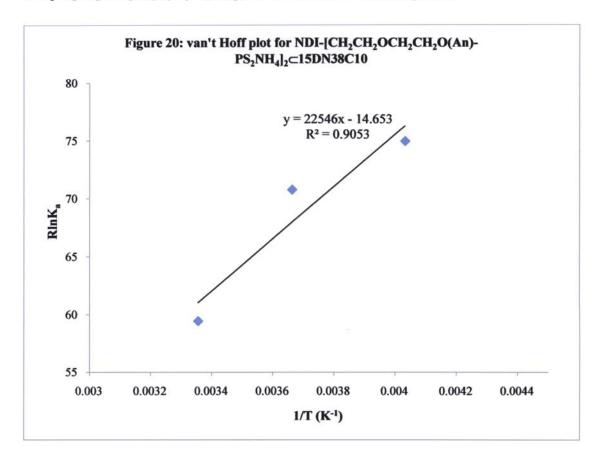



Figure 19: ¹H VT-NMR spectra showing the association of the axle and crown with decreasing temperature

The enthalpic (ΔH°) and entropic ($-T\Delta S^{\circ}$) contributions to the free energy of complexation (ΔG°) can be calculated by determining the K_a values for the association of the axle and crown over a large temperature range, then building a van't Hoff plot ($R\ln K_a$ vs. T^{-1}) which should produce a straight line with a slope of $-\Delta H^{\circ}$ and an intercept of ΔS° . Broad peaks were observed starting around 0° C in all cases, as shown in Fig 19 for NDI-[CH₂CH₂OCH₂CH₂O-(An)PS₂NH₄]₂ \subset 15DN38C10, NDI-[CH₂CH₂OCH₂CH₂O-(An)PS₂NH₄]₂ \subset 15DN38C10 in presence of excess NH₄⁺ ions and NDI-[CH₂CH₂OCH₂CH₂O(An)-PS₂(SnMe₃)]₂ \subset 15DN38C10. The broadening of these peaks increased the errors in measuring the free

axle/complexed axle ratio, thus of the K_a values at those temperatures. These errors translated into poor van't Hoff plots, hence no reliable data could be extracted from these experiments. The van't Hoff plot for NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂NH₄]₂ \subset 15DN38C10 can be seen in figure 20.

Table 1 Association constants $(K_a/M^{-1})^a$ and free energies of complexation $(\Delta G^\circ)^b$ for rotaxanes NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂NH₄]₂ \subset 15DN38C10 and NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂(Sn-Me₃)]₂ \subset 15DN38C10 at 25°C.

Solvent	Rotaxane	$K_{\rm a}({\rm M}^{-1})$	ΔG° (kJmol ¹)
Acetone-d ₆ :D ₂ O	NDI-[CH ₂ CH ₂ O(An)PS ₂ NH ₄] ₂ ⊂15DN38C10	896.5	-16.9
5.0/0.6 (v/v)	NDI-[CH ₂ CH ₂ O(An)PS ₂ NH ₄] ₂ C15DN38C10 ^c	758.7	-16.4
	NDI-[CH ₂ CH ₂ OCH ₂ CH ₂ O(An)PS ₂ NH ₄] ₂ C15DN38C10	1259.1	-17.7
	NDI-[CH ₂ CH ₂ OCH ₂ CH ₂ O(An)PS ₂ NH ₄] ₂ C15DN38C10 ^c	1131.5	-17.4

	NDI- [CH ₂ CH ₂ OCH ₂ CH ₂ O(An)PS ₂ (SnMe ₃)] ₂ ⊂15DN38C10	562.7	-15.7
CDCl ₃	NDI-[CH ₂ CH ₂ O(An)PS ₂ (SnMe ₃)] ₂ ⊂15DN38C10	88.3	-11.1
	NDI- [CH ₂ CH ₂ OCH ₂ CH ₂ O(An)PS ₂ (SnMe ₃)] ₂ ⊂15DN38C10	787.8	-16.5
	NDI-[CH ₂ CH ₂ O(An)PS ₂ (SnPh ₃) ₂] ₂ ⊂15DN38C10	66.1	-10.4
	NDI- [CH ₂ CH ₂ OCH ₂ CH ₂ O(An)PS ₂ (SnPh ₃) ₂] ₂ ⊂15DN38C10	95.9	-11.3
	NDI-[CH ₂ CH ₂ O(An)PS ₂ (Cu(PPh ₃) ₂] ₂ ⊂15DN38C10 ^d	0.0	-
	NDI- [CH ₂ CH ₂ OCH ₂ CH ₂ O(An)PS ₂ (Cu(PPh ₃) ₂] ₂ ⊂15DN38C10 ^d	0.0	-

^a Determined by the single-point method using initial concentrations of axle and wheel of $1.66 \cdot 10^{-3}$ M and the integral values of the H_a resonances for threaded and unthreaded axles; errors are estimated to be 10% or less; ^b calculated using the formula $\Delta G^{\circ} = -RT \ln K_a$; ^c measured in the presence of excess of NH₄PF₆; ^d no rotaxane peaks were observed, the (An)PS₂[Cu(PPh₃)₂] group being too large to allow threading.

Rotaxane formation starting from the neutral, bimetallic axles was studied in CDCl₃ (Fig. 21). As a general trend, the coordination of the -PS₂ donor set to the metallic centers leads to very low K_a values or no rotaxane formation at all, NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂(Sn-Me₃)₂]₂ \subset 15DN38C10 being the only exception to the rule, see Table 1.

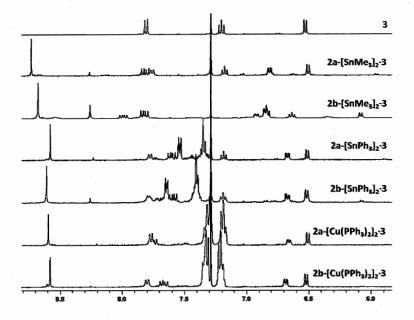


Figure 21: Rotaxane formation starting from preformed bimetallic axles and crown 15DN38C10.

These results suggest that there are two factors influencing rotaxane formation: the *size* of the stopper and the *length* of the side-arms of the axles. While for both anionic axles NDI- $[CH_2CH_2O(An)PS_2NH_4]_2$ and NDI- $[CH_2CH_2OCH_2CH_2O(An)PS_2NH_4]_2$ the size of the $(An)PS_2$ group alone is not big enough to prevent threading, in the case of NDI- $[CH_2CH_2O(An)PS_2NH_4]_2$ the shorter side-arms of the axle place its terminuses in close proximity to the NDI core, thus protecting it from the crown ether 15DN38C10, which has as a consequence a lower K_4 value for NDI- $[CH_2CH_2O(An)PS_2NH_4]_2$ =15-DN38C10 compared to that for NDI- $[CH_2CH_2OCH_2CH_2O-(An)PS_2NH_4]_2$ =15DN38C10 (896 M⁻¹ vs. 1259 M⁻¹). In the case of the NDI- $[CH_2CH_2O(An)-PS_2(Cu(PPh_3)_2]_2$ and NDI- $[CH_2CH_2OCH_2CH_2O-(An)PS_2(Cu(PPh_3)_2]_2$ axles, the stoppers are big enough to prevent the slippage of crown 15DN38C10 regardless of the length of the side-arms. In the case of NDI- $[CH_2CH_2O(An)PS_2(SnPh_3)_2]_2$ and NDI- $[CH_2CH_2OCH_2O(An)PS_2(SnPh_3)_2]_2$ axles, the size of the $(An)PS_2SnPh_3$ groups permits to some extent the threading process. However, the length of their side-arms has little influence over the K_4 values (66 M⁻¹ vs. 95 M⁻¹), suggesting that in this case the size of the stopper is the principal limiting factor in rotaxane formation. In the case of NDI- $[CH_2CH_2O(An)PS_2(SnMe_3)_2]_2$ and NDI- $[CH_2CH_2OCH_2CH_2O-(An)PS_2(SnMe_3)_2]_2$ axles, the smaller size of the $(An)PS_2SnMe_3$ stopper makes threading possible, as

indicated by the K_a value of 787 M⁻¹ for the NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂(Sn-Me₃)₂]₂ \subset 15DN38C10 rotaxane. However, NDI-[CH₂CH₂O(An)PS₂(SnMe₃)₂]₂ \subset 15DN38C10 shows a very small K_a value (88 M⁻¹), explained by the shorter side-arms of the axle which would place the (An)PS₂SnMe₃ stoppers in the vicinity of the NDI core, thus hampering the rotaxane formation. Comparing the association constants for the NDI-[CH₂CH₂OCH₂CH₂O-(An)PS₂NH₄]₂ \subset 15DN38C10 / NDI-[CH₂CH₂OCH₂CH₂O(An)-PS₂(SnPh₃)₂]₂ \subset 15DN38C10 pair in the acetone-water solvent system, it can be observed that the coordination of the -PS₂ group to the Me₃Sn(IV) center (and consequently the increase in size of the axle terminuses) significantly lowers the K_a value (1259 M⁻¹ vs. 562 M⁻¹).

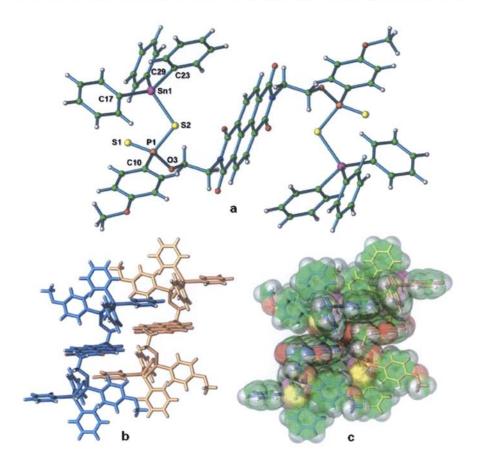
3.3 Solid state studies

Addition of the metallic salts to the acetone-water solutions of the anionic pseudorotaxanes resulted in the formation of mixtures of unthreaded bimetallic axles and bimetallic rotaxanes.

To further study our system, we attempted to grow crystals. Crystals for the unthreaded bimetallic compounds were grown by layering a solution of the compound in dichloromethane with hexanes.

Diffusion from the layering produced orange single crystals. In the case of NDI-[CH₂CH₂OCH₂CH₂O(An)-PS₂(SnPh₃)₂]₂C15DN38C10, vapor diffusion of Et₂O into an aqueous acetone solution of the components produced deep red single crystals, which were used in X-ray diffraction experiments.

Crystallographic details for compounds NDI-[CH₂CH₂O(An)PS₂(SnPh₃)₂]₂, NDI-[CH₂CH₂O-(An)PS₂(Cu(PPh₃)₂]₂, NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂(SnMe₃)₂]₂, and NDI-[CH₂CH₂O(An)-PS₂(SnMe₃)₂]₂c15DN38C10 are summarized in Table 2. The X-ray data were collected at 100 K on a Bruker SMART APEXII CCD diffractomer equipped with Cu Kα radiation. Intensities were collected using phi and omega scans and were corrected for Lorentz polarization and absorption effects. The X-SEED software platform, equipped with SHELXS and SHELXL modules on a PC computer, was used for all structure solution and refinement calculations and molecular graphics. The structure was solved by direct methods, and refined by anisotropic full-matrix least-squares for all non-hydrogen atoms. All hydrogen atoms were placed in calculated positions and refined using a riding model with fixed thermal parameters.


Table 2: Crystal data and details for NDI-[CH₂CH₂O(An)PS₂(SnPh₃)₂]₂, NDI-[CH₂CH₂O(An)-PS₂(Cu(PPh₃)₂]₂, NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂(SnPh₃)₂]₂, and NDI-[CH₂CH₂OCH₂CH₂O-(An)PS₂(SnPh₃)₂]₂=15DN38C10.

	NDI-[CH ₂ CH ₂ O- (An)PS ₂ (SnPh ₃) ₂] ₂	NDI-[CH ₂ CH ₂ O- (An)PS ₂ (Cu(PPh ₃) ₂] ₂	NDI-[CH ₂ CH ₂ OCH ₂ - CH ₂ O(An)PS ₂ (SnPh ₃) ₂] ₂	NDI-[CH ₂ CH ₂ O- CH ₂ CH ₂ O(An)PS ₂ (Sn Ph ₃) ₂] ₂ ⊂15DN38C10
Empirical Formula	C ₆₉ H ₅₆ Cl ₄ N ₂ O ₈ P ₂ S ₄ Sn ₂	C ₁₀₆ H ₉₀ C ₁₄ Cu ₂ N ₂ O ₈ P ₆ S ₄	C ₇₂ H ₆₄ N ₂ O ₁₀ P ₂ S ₄ Sn ₂	C ₂₁₆ H ₂₂₀ N ₄ O ₄₂ P ₄ S ₈ Sn ₄
FW, g · mol ⁻¹	1610.52	2102.74	1544.81	4399.24
Crystal System	Triclinic	Triclinic	Monoclinic	Triclinic
Space Group	P 1	PI	Pc	P 1
T (K)	173	173	100(2)	100(2)
a, (Å)	9.1473(9)	9.2045(1)	13.7321(2)	11.6038(4)
b, (Å)	13.3655(12)	11.5410(2)	10.5102(2)	16.3167(6)
c, (Å)	14.7118(13)	23.4034(4)	23.2601(3)	27.3486(9)
a, (°)	75.801(4)	85.150(1)	90	88.799(2)
β, (°)	78.668(5)	89.605(1)	97.740(1)	78.172(2)
γ, (°)	87.853(5)	75.421(1)	90	83.306(2)
V, (Å ³)	1709.6(3)	2397.19(6)	3326.48(9)	5033.6(3)
Z, Z'	1	1	2	1
$D_{\rm x}$ (mg·m ⁻³)	1.564	1.457	1.542	1.451
F(000)	810	1084	1568	2268
R/R_w^2 (obs data)	0.123/0.323	0.041/0.108	0.037/0.093	0.054/0.138
S	1.05	1.02	01.07	1.05
no. of refins/param s	5944/426	8375/596	8953/832	17677/1330
Δρ _{max/min} (e·Å ⁻³)	2.71/-1.67	0.53/-0.61	0.70/-0.61	00.98/-0.61

I. NDI-[CH₂CH₂O(An)PS₂(SnPh₃)₂]₂.

The molecular structure of NDI-[CH₂CH₂O(An)PS₂(SnPh₃)₂]₂consists of two -(An)PS₂ moieties coordinated to two -SnPh₃ metallic centers in a monodentate fashion (Fig. 22a). The -SnPh₃ groups flank the NDI central core on both sides, with no significant non-covalent interactions between the two. The

crystal packing of NDI-[CH₂CH₂O(An)PS₂(SnPh₃)₂]₂ is based on a combination of $\pi - \pi$ stacking and C-H··· π interactions between two adjacent molecules (Fig. 22 b and c), involving a phenyl (-SnPh₃) ring from one molecule and the central NDI core and another phenyl ring from an adjacent molecule.

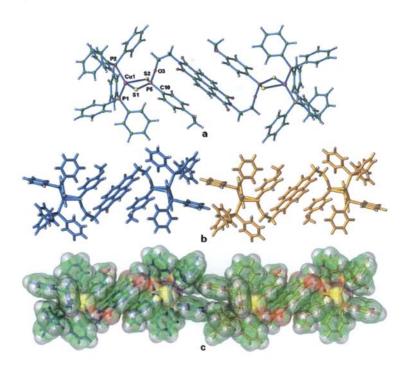


Figure 22: a) Molecular structure of NDI-[CH₂CH₂O(An)PS₂(SnPh₃)₂]₂; selected bond lengths (Å) and angles (°): Sn1-S2=2.450(4); Sn1-C17=2.175(16); Sn1-C23=2.172(13); Sn1-C29=2.145(17); S1-P1=1.938(7); S2-P1=2.080(4); P1-O3=1.587(12); P1-C10=1.772(15); S2-Sn1-C17=109.4(4); S2-Sn1-C23=97.8(4); S2-Sn1-C29=116.0(4); Sn1-S2-P1=105.12(19); S1-P1-S2=115.2(2); color code: carbongreen; hydrogen-gray; phosphorus-orange; sulfur-yellow; metal atom (tin)-purple; b) packing of two adjacent molecules; c) space filling representation of the same two building blocks.

II. NDI-[CH₂CH₂O(An)PS₂(Cu(PPh₃)₂]₂.

The molecular structure of NDI-[CH₂CH₂O(An)PS₂(Cu(PPh₃)₂]₂consists of two -(An)PS₂ moieties coordinated to two -Cu(PPh₃)₂ metallic centers in a bidentate fashion (Fig. 23a). The anisole groups are involved in a π - π stacking interaction with the central NDI core, with several C – C distances between 3.4

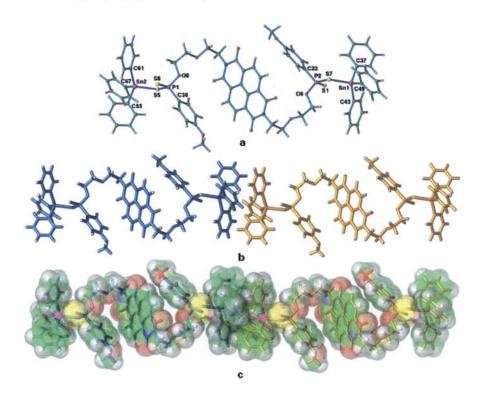

and 3.6 Å. The crystal packing of NDI-[CH₂CH₂O(An)PS₂(Cu-(PPh₃)₂]₂is based on a combination of $\pi - \pi$ stacking and C-H··· π interactions involving both -PPh₃ groups coordinated to the Cu(I) atom (Fig. 23b and c).

Figure 23: a) Molecular structure of NDI-[CH₂CH₂O(An)PS₂(Cu(PPh₃)₂]₂; selected bond lengths (Å) and angles (°): Cu1-S1=2.3870 (8); Cu1-S2=2.5484 (9); Cu1-P1=2.2676 (8); Cu1-P2=2.2714 (8); S1-P5=1.9957 (10); S2-P5=1.9850 (11); P5-O3=1.615 (2); P5-C10=1.808 (3); S1-Cu1-S2=85.30 (3); P1-Cu1-P2=124.12 (3); S1-Cu1-P1=114.62 (3); S1-Cu1-P2=112.68 (3); S2-Cu1-P1=101.19 (3); S2-Cu1-P2=110.69 (3); S1-P5-S2=114.39 (5); O3-P5-C10=103.54 (13); color code: carbon-green; hydrogen-gray; phosphorus-orange; sulfur-yellow; metal atom (copper)-purple; b) packing of two adjacent molecules; c) space filling representation of the same two building blocks.

III. NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂(SnPh₃)₂]₂.

As with NDI-[CH₂CH₂O(An)PS₂(SnPh₃)₂]₂, the molecular structure of NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂(SnPh₃)₂]₂consists of two -(An)PS₂ moieties coordinated to two -SnPh₃ metallic centers in a monodentate fashion (Fig. 24a). The geometric parameters around the tin atom are virtually the same as in the case of NDI-[CH₂CH₂O(An)PS₂(SnPh₃)₂]₂, showing that the coordination behavior of the -(An)PS₂ moieties are independent of the length of the side arms attached to the central NDI core. The crystal packing of NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂(Sn-Ph₃)₂]₂is driven by phenyl embraces of the -SnPh₃ groups (Fig. 24b and c).

Figure 24: a) Molecular structure of NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂(SnPh₃)₂]₂; selected bond lengths (Å) and angles (°): Sn1-S7=2.440(2); Sn1-C37=2.109(8); Sn1-C43=2.113(6); Sn1-C49=2.143(7); Sn2-S5=2.4326(17); Sn2-C55=2.138(7); Sn2-C61=2.123(6); Sn2-C67=2.156(7); S1-P2=1.929(3); S7-P2=2.077(2); S5-P1=2.085(2); S8-P1=1.934(2); P1-O8=1.597(5); P1-C30=1.804(7); P2-O6=1.594(5); P2-C23=1.784(7); S7-Sn1-C37=109.0(2); S7-Sn1-C43=116.24(19); S7-Sn1-C49=96.0(2); Sn1-S7-P2=103.92(9); S1-P2-S7=115.45(11); O6-P2-C23=99.9(3); S5-Sn2-C55=110.8(2); S5-Sn2-C61=115.78(19); S5-Sn2-C67=97.1(2); Sn2-S5-P1=102.22(8); S5-P1-S8=114.79(11); O8-P1-C30=100.4(3); color code: carbon-green; hydrogen-gray; phosphorus-orange; sulfur-yellow; metal atom (tin)-purple; b) packing of two adjacent molecules; c) space filling representation of the same two building blocks.

IV. NDI-[CH2CH2OCH2CH2O(An)PS2(SnPh3)2]2⊂15DN38C10.

The structure of this rotaxane (Fig. 24) shows a similar arrangement of the NDI and 15DN38C10 pair to that observed for related systems, 1,7 with the π -rich aromatic regions of 15DN38C10 stacked around

the π -deficient NDI core. There are two independent molecules in the unit cell, both having the -PS₂ groups coordinated in a monodentate fashion to the tin atom, virtually identical with the unthreaded NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂(SnPh₃)₂]₂counterpart. A notable difference is that in one molecule, the Sn center is tetra-coordinate (Fig. 25a), while in the other, a water molecule expands the tin coordination number to five (Fig. 25b) and is involved in hydrogen bonding with two oxygen atoms from a neighboring crown ether macrocycle (Fig. 26). This leads to different orientation of the side-arms with respect to the central NDI/ 15DN38C10 core, with the SnPh₃ and anisole moieties oriented toward the outer region of the crown 15DN38C10, respectively. The naphthalene rings are π -stacked on both sides of the NDI central core. In the case of the tetracoordinate tin rotaxane, the perpendicular distance between the NDI and 15DN38C10 rings is 3.50 Å and for the pentacoordinate tin rotaxane is 3.48 Å.

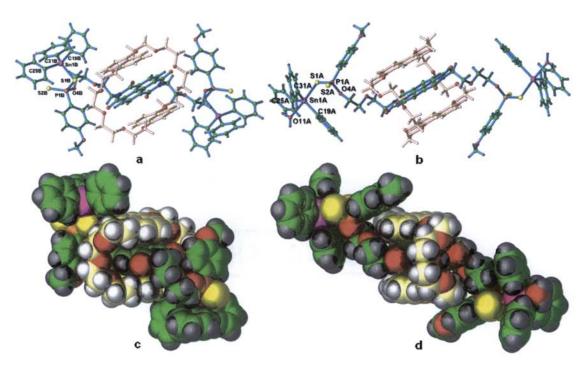


Figure 25: Molecular structures of the two independent molecules of NDI-[CH₂CH₂OCH₂CH₂O(An)-PS₂(SnPh₃)₂]₂⊂15DN38C10: a) the four-coordinate and b) the five-coordinate tin atom; selected bond lengths (Å) and angles (°): Sn1A-S1A=2.5626(14); Sn1A-O11A=2.457(4); Sn1A-C19A=2.132(5); Sn1A-C25A=2.140(5); Sn1A-C31A=2.136(5); S1A-P1A=2.0462(19); S2A-P1A=1.934(2); Sn1B-C31B=2.128(5); Sn1B-S1B=2.4427(14); Sn1B-C19B=2.135(6); Sn1B-C25B=2.116(5); S1B-

P1B=2.0758(19); S2B-P1B=1.9387(19); S1A-Sn1A-C19A=101.35(14); S1A-Sn1A-C25A=90.58(13); S1A-Sn1A-C31A=99.05(15); S1A-Sn1A-O11A=175.54(9); S1A-P1A-S2A=117.18(10); S1B-Sn1B-C31B=111.35(14); S1B-Sn1B-C19B=100.82(15); S1B-Sn1B-C25B=109.68(15); S1B-P1B-S2B=115.00(8); c) and d) space filling representation of the two independent molecules.

The hydrogen atoms from the water molecule coordinated to the tin atom is involved in two hydrogen bonds with two oxygen atoms within a crown ether wheel from a neighboring rotaxane molecule. The O···H distances are 1.91 Å and 1.73 Å, with the O-H-O angles of 173.8° and 170.1° respectively. This interaction contributes to the different orientation of the side-arms of the rotaxanes.

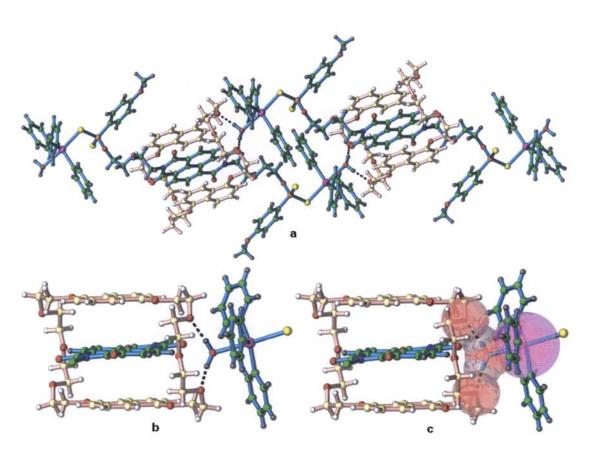


Figure 26: Hydrogen bonding involving the coordinated water molecule and the crown ether: a) two rotaxanes held together by hydrogen bonding; b) detail of the hydrogen bonds; c) space filling of the atoms involved in hydrogen bonding.

Another consequence of the hydrogen bonding is the different orientation in the solid state of the central NDI core relative to the aromatic region of the crown ether (Fig. 27). This orientation can be measured by the torsion angle defined by the $N_{NDI}-Ct_{NDI}-Ct_{15DN38C10}-C_{15DN38C10}$ angle.⁸ In the case of the tetracoordinate tin rotaxane, the torsion angle is 86.8° and for the pentacoordinate tin rotaxane is 78°.

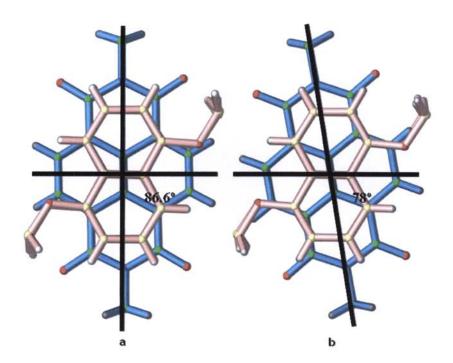


Figure 27: The different relative orientation between the NDI core relative and the aromatic region of the crown ether: a) the tetracoordinate tin rotaxane; b) the pentacoordinate tin rotaxane.

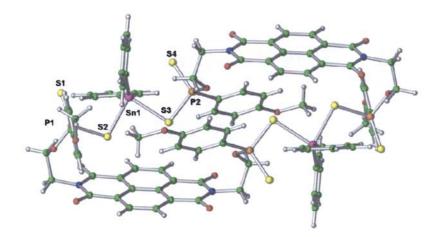

To make a step further toward our goal to prepare MORFs, we also studied the coordination of the axles to metal centers with an overall 2⁺ charge, that is Ph₂SnCl₂. The solid state structures of these two compounds are presented in Figures 28 and 31.

TABLE 3 : Crystal data and details for NDI-[CH₂CH₂O(An)PS₂]₂-[SnPh₂]₂ and NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂]₂-[SnPh₂]

	(NDI-[CH ₂ CH ₂ O(An)PS ₂] ₂) ₂ -[SnPh ₂] ₂	NDI-[CH ₂ CH ₂ OCH ₂ CH ₂ O(An)PS ₂] ₂ -[SnPh ₂]
Empirical Formula	C ₄₅ H ₃₈ Cl ₂ N ₂ O ₈ P ₂ S ₄ Sn	C ₄₈ H ₄₄ N ₂ O ₁₀ P ₂ S ₄ Sn·2(CH ₂ Cl ₂)
FW, g · mol ⁻¹	1114.54	1287.57
Crystal System	Triclinic	Triclinic
Space Group	P	P
T (K)	100	100
a, (Å)	10.9684 (2)	12.3562 (3)
b, (Å)	12.3642 (2)	13.0479 (2)
c, (Å)	17.6112 (3)	18.2453 (4)
α, (°)	87.540 (1)	91.405 (1)
β, (°)	88.133 (1)	105.836 (1)
γ, (°)	71.074 (1)	105.259 (1)
V, (Å ³)	2256.71 (7)	2715.40 (10)
Z, Z'	2	2
$D_{\rm x}$ (mg·m ⁻³)	1.640	1.575
F(000)	1128	1308
R/R_w^2 (obs data)	0.027/0.074	0.045/0.119
S	1.06	1.19
no. of reflns/params	8339/579	9540/671
Δρ _{max/min}	0.93/-0.33	1.80/-1.27
(e·Å-³)		

The structure for (NDI-[CH₂CH₂O(An)PS₂]₂)₂-[SnPh₂]₂ showed that the short axle forms a dimer when reacted with Sn₂Ph₂Cl. π - π stacking is evident when multiple unit cells are aligned together (Fig. 30).

The NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂]-[SnPh₂] structure formed a monomer in which both PS₂ groups on the axle are bound to the same tin atom. This was made possible due to the longer "arms" between the NDI central piece and the PS₂ ligands. Two unit cells have π - π stacking with each other when aligned with each other.

Figure 28: Molecular structure for (NDI-[CH₂CH₂O(An)PS₂]₂)₂-[SnPh₂]₂; selected bond lengths (Å) and angles (°): Sn1-S2= 2.5111(7); Sn1-S3=2.4996(6); S1-P1=1.9370(9); S2-P1=2.0627(8); S3-P2= 2.0508(8); S4-P2=1.9704(8); S1-P1-S2=114.76(4); S2-Sn1-S3=84.11(2); Sn1-S3-P2=93.87(3); S3-P2-S4=109.22(4); color code: carbon-green; hydrogen-gray; phosphorus-orange; sulfur-yellow; metal atom (tin)-purple

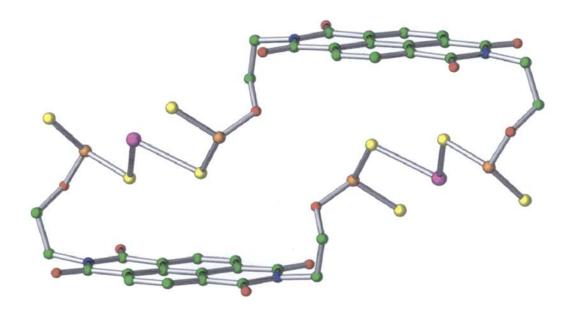


Figure 29: Molecular structure for (NDI-[CH₂CH₂O(An)PS₂]₂)₂-[SnPh₂]₂ with hydrogens, anisole groups of the axle, and phenyl ligands removed for clarity.

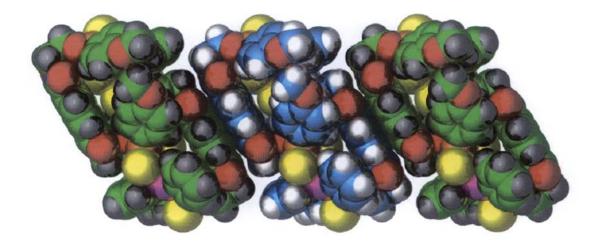


Figure 30: Multiple unit cells for (NDI-[CH₂CH₂O(An)PS₂]₂)₂-[SnPh₂]₂ showing π - π stacking

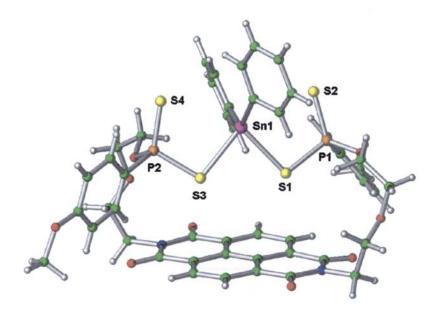


Figure 31: Molecular structure for NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂]-[SnPh₂]; selected bond lengths (Å) and angles (°): S2-P1=1.942(1); S1-P1=2.075(2); S1-Sn1=2.473(1); Sn1-S3=2.490(1); P2-S3=2.061(1); S4-P2=1.952(1); S4-P2-S3=112.21(7); P2-S3-Sn1=97.60(5); S3-Sn1-S1=83.74(4); Sn1-S1-P1=97.51(5); S1-P1-S2=111.29(7); color code: carbon-green; hydrogen-gray; phosphorus-orange; sulfur-yellow; metal atom (tin)-purple

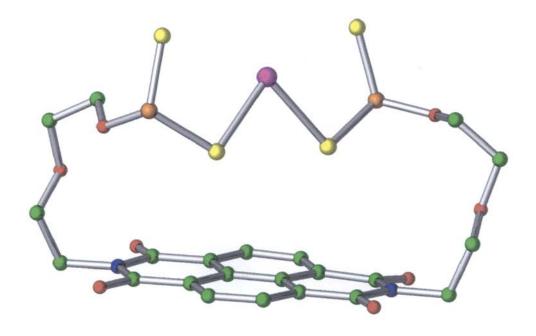


Figure 32: Molecular structure for NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂]-[SnPh₂] with hydrogens, anisole groups on axle, and phenyl ligands removed for clarity

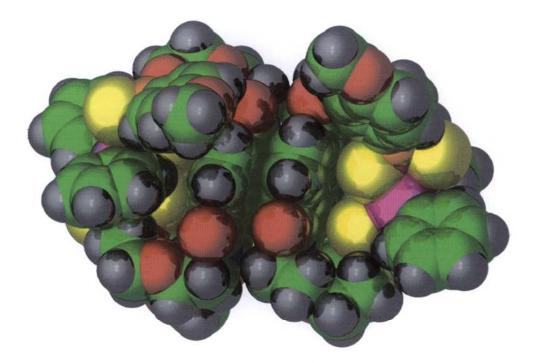


Figure 33: π - π interaction of two unit cells of NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂]-[SnPh₂]

REFERENCES

- 1. Hamilton, D. J.; Davies, J. E.; Prodi, L.; Sanders, J. K. M. Chem Eur. J., 1998, 608-620
- Vignon, S. A.; Jarrosson, T.; Iijima, T.; Tseng, H.-R.; Sanders, J. K. M.; Stoddart, J. F. J. Am. Chem. Soc., 2004, 126, 9884
- Pascu, S. I.; Naumann, C.; Kaiser, G.; Bond, A. D.; Sanders, J. K. M.; Jarrosson, T. *Dalton Trans.*,
 2007, 3874
- Ashton, P. R.; Chrystal, E. J. T.; Glink, P. T.; Menzer, S.; Schiavo, C.; Spencer, N.; Stoddart, J. F.;
 Tasker, P. A.; White, A. J. P.; Williams, D. J. Chem. Eur. J., 1996, 2, 709
- 5. Barbour, L. J. Supramol. Chem., 2001, 1, 189
- 6. Sheldrick, G. M. Acta Crystalogr., 2008, A64, 112
- 7. Pascu, S. I.; Naumann, C.; Kaiser, G.; Bond, A. D.; Sanders, J. K. M.; Jarrosson, T. Dalton Trans., 2007, 3874
- Roh, S.-G.; Park, K.-M.; Park, G.-J.; Sakamoto, S.; Yamaguchi, K.; kim, K. Angew. Chem. Int. Ed., 1999, 38, 638

Conclusion

NDI-[CH₂CH₂O(An)PS₂NH₄]₂ and NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂NH₄]₂ have been successfully synthesized and their structures established by ¹H NMR. Complexes of our axles bound to SnMe₃, SnPh₃, and Cu(PPh₃)₂ have also been successfully obtained, proving that the dithiophosphonate group on the axle is an effective ligand.

In conclusion, we have successfully designed, synthesized, and characterized ditopic anionic axles with donor properties and used them for the preparation of neutral metallo-rotaxanes. The synthesis of neutral rotaxanes from anionic axles and cationic metal building blocks is a major step towards creating neutral MORFs. While it was clear *a priori* that the metallic systems used here would generate discrete rotaxanes rather than MORFs, they were chosen to serve as "proof-of-principle" experiments and because their solubility would allow a better characterization of the system. The use of metallic systems with an overall charge of 2⁺ should yield at least one-dimensional MORFs through the coordination of two -PS₂ groups from two different rotaxanes to the metal, since the side-arms of the axles are not long enough to allow the formation of their topological isomers, the corresponding monometallic catenanes. The NDI group can be easily functionalized with other negatively charged side-arms with donor properties, thus opening the door for the synthesis of a large variety of neutral interlocked arrays, either discrete species self-assembled *via* secondary bonds or "classic", coordinatively bounded MORFs.

FUTURE WORK

Synthesis of one-dimensional MORFs has been attempted but no crystals have been obtained yet for X-ray diffraction analysis. Without a solid state structure, it is impossible to determine if MORFs or discrete rotaxanes are formed. Two- and three- dimensional MORFs would also be excellent synthetic targets.

Addition of a second guest on the axle, possibly a pyromellitic dianhydride, will enable the rotaxanes and hence their MORFs to be used as molecular switching devices or memory for computers.

Figure A1: Annotated ¹H NMR spectrum of NDI-[CH₂CH₂OH]₂

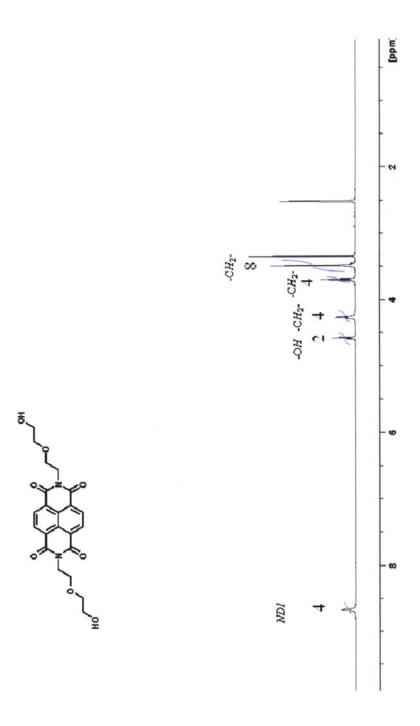


Figure A2: Annotated ¹H NMR spectrum of NDI-[CH₂CH₂OCH₂CH₂OH]₂

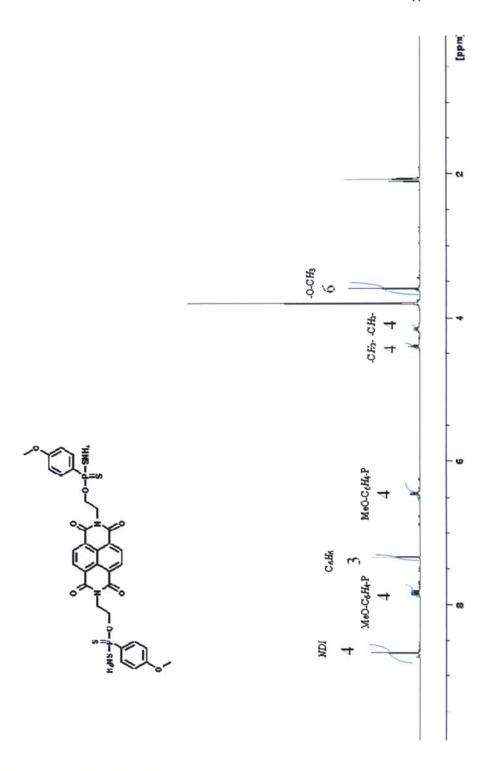
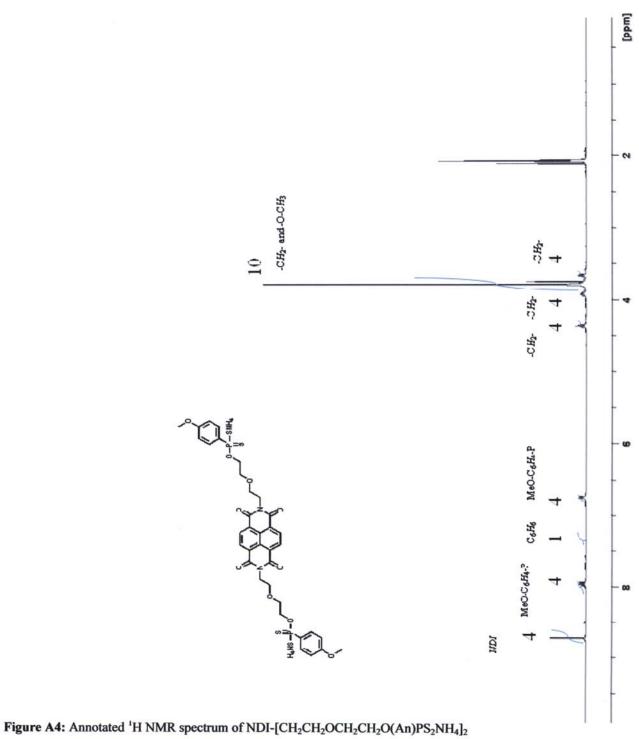



Figure A3: Annotated ¹H NMR spectrum of NDI-[CH₂CH₂O(An)PS₂NH₄]₂

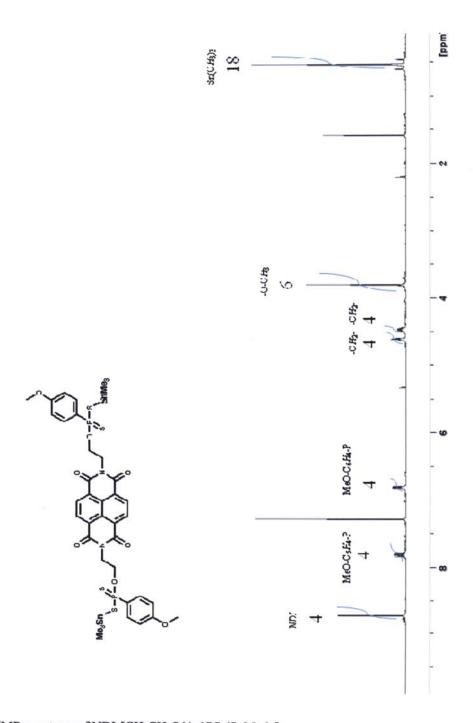


Figure A5: Annotated 'H NMR spectrum of NDI-[CH₂CH₂O(An)PS₂(SnMe₃)₂]₂

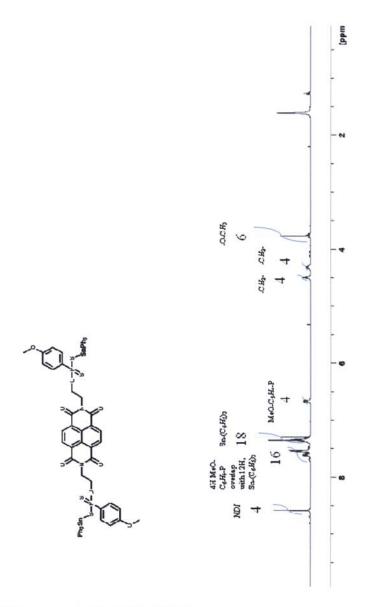


Figure A6: Annotated ¹H NMR spectrum of NDI-[CH₂CH₂O(An)PS₂(SnPh₃)₂]₂

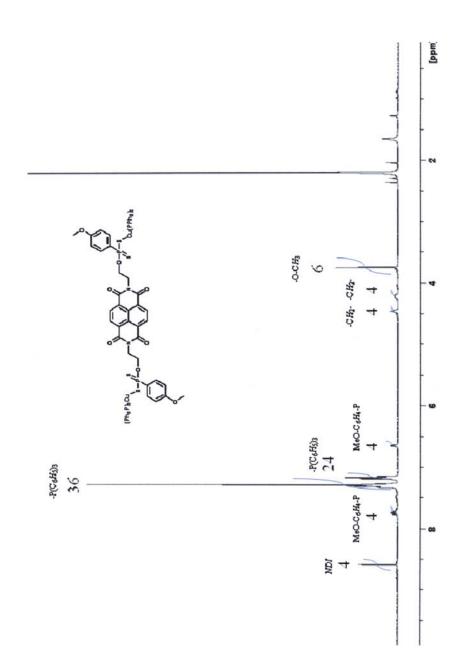


Figure A7: Annotated ¹H NMR spectrum of NDI-[CH₂CH₂O(An)PS₂(Cu(PPh₃)₂]₂

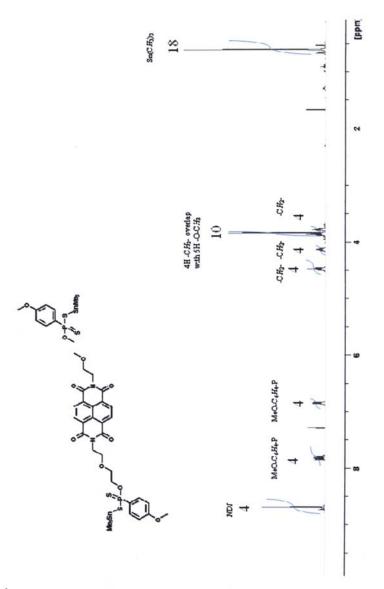


Figure A8: Annotated ¹H NMR spectrum of NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂(SnMe₃)₂]₂

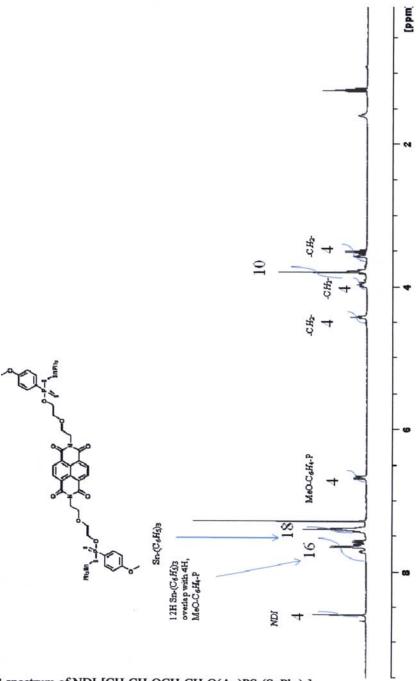
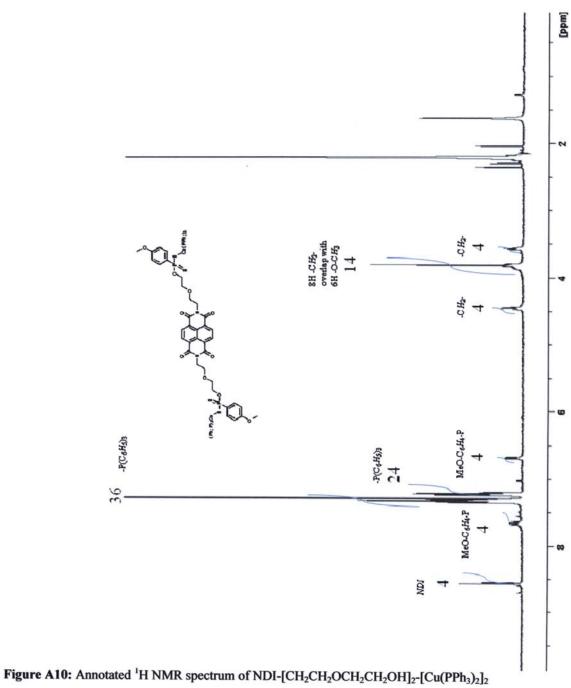



Figure A9: Annotated ¹H NMR spectrum of NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂(SnPh₃)₂]₂

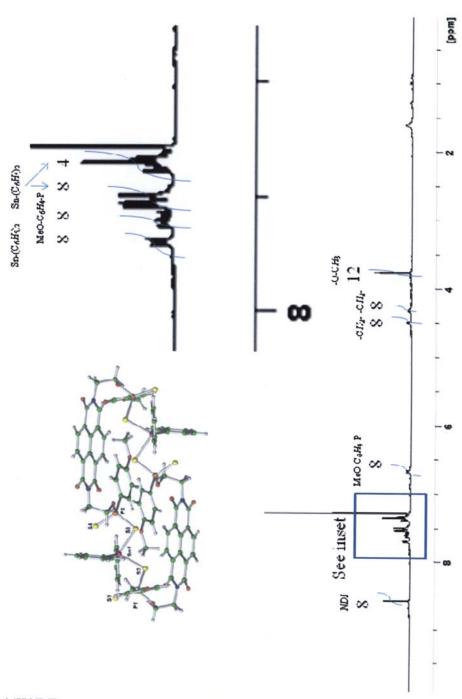


Figure A11: Annotated 'H NMR spectrum of NDI-[CH₂CH₂O(An)PS₂]₂-[SnPh₂]₂

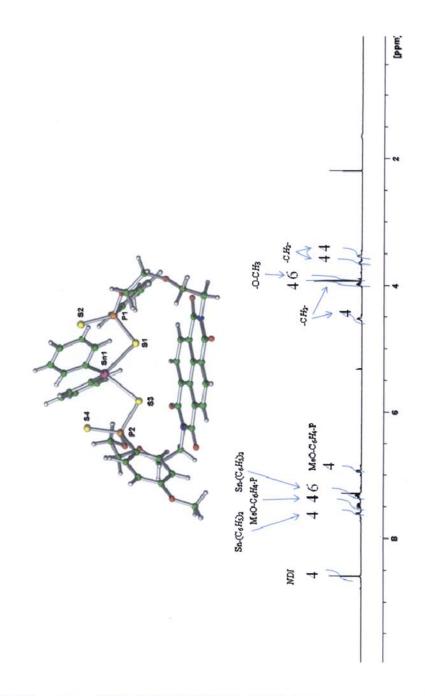


Figure A12: Annotated ¹H NMR spectrum of NDI- [CH₂CH₂OCH₂CH₂OH]-[SnPh₂]

Appendix 2: Crystallographic Data

Table A1: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^2) for NDI-[CH₂CH₂O(An)PS₂(SnPh₃)₂]₂

	x	y	z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Sn1	0.45548 (12)	0.34884 (8)	0.37897 (7)	0.0380 (3)	
Clia	0.092 (2)	0.010 (4)	0.943 (2)	0.31 (4)*	0.25
CliB	0.192 (2)	-0.0984 (8)	1.0103 (10)	0.049 (4)*	0.25
CIIC	0.241 (3)	-0.1003 (9)	1.0095 (15)	0.086 (8)*	0.25
CliD	0.3991 (13)	-0.0125 (13)	0.9984 (11)	0.058 (4)*	0.25
Cl2A	0.3953 (17)	0.053 (4)	0.975 (3)	0.27 (3)*	0.25
Cl2B	0.2336 (19)	0.1254 (9)	0.9116 (9)	0.046 (4)*	0.25
Cl2C	0.1882 (14)	0.1166 (8)	0.9069 (6)	0.019 (3)*	0.25
Cl2D	0.140 (2)	0.081 (3)	0.9106 (12)	0.127 (11)*	0.25
S1	0.6406 (5)	0.2951 (4)	0.1490 (3)	0.0564 (12)	
S2	0.3414 (4)	0.2151 (3)	0.3268 (2)	0.0399 (9)	
P1	0.4442 (5)	0.2313 (3)	0.1846 (2)	0.0426 (10)	
O1	0.1482 (14)	-0.0341 (10)	0.2234 (8)	0.065 (4)	
O2	0.4544 (12)	-0.0706 (8)	0.4381 (8)	0.055 (3)	
O3	0.4373 (12)	0.1160 (8)	0.1749 (6)	0.046 (3)	
O4	0.0246 (12)	0.4076 (9)	-0.0699 (8)	0.057 (3)	
N1	0.2994 (19)	-0.0471 (9)	0.3307 (9)	0.059 (4)	
C1	0.159 (2)	-0.0300 (12)	0.3003 (11)	0.056 (5)	
C2	0.0401 (18)	-0.0078 (11)	0.3736 (11)	0.044 (4)	
C3	-0.099 (2)	0.0161 (12)	0.3494 (11)	0.053 (5)	
Н3	-0.1125	0.0190	0.2863	0.064*	
C4	0.0590 (19)	-0.0090 (11)	0.4660 (10)	0.047 (4)	
C5	0.2036 (17)	-0.0294 (10)	0.4915 (11)	0.042 (4)	
C6	0.2180 (18)	-0.0354 (11)	0.5840 (11)	0.045 (4)	
Н6	0.3115	-0.0533	0.6021	0.054*	
C7	0.328 (2)	-0.0524 (11)	0.4208 (12)	0.050 (5)	
C8	0.424 (2)	-0.0623 (13)	0.2589 (14)	0.069 (6)	
H8A	0.3876	-0.0798	0.2057	0.083*	
H8B	0.4846	-0.1207	0.2868	0.083*	
C9	0.5186 (19)	0.0326 (13)	0.2219 (12)	0.058 (5)	
Н9А	0.5522	0.0515	0.2756	0.069*	-
н9В	0.6080	0.0193	0.1765	0.069*	
C10	0.3173 (16)	0.2889 (12)	0.1107 (10)	0.044 (4)	
C11	0.3595 (17)	0.3751 (13)	0.0359 (10)	0.047 (4)	
H11	0.4550	0.4055	0.0271	0.056*	
C12	0.2652 (17)	0.4173 (12)	-0.0259 (9)	0.044 (4)	
H12	0.2964	0.4759	-0.0770	0.053*	

C13	0.1249 (16)	0.3740 (12)	-0.0131 (10)	0.042 (4)	
C14	0.078 (2)	0.2883 (14)	0.0622 (13)	0.063 (5)	
H14	-0.0173	0.2580	0.0714	0.076*	
C15	0.1768 (19)	0.2480 (13)	0.1239 (11)	0.054 (5)	
H15	0.1454	0.1909	0.1764	0.064*	
C16	0.0695 (19)	0.4922 (13)	-0.1487 (11)	0.053 (5)	
H16A	0.0870	0.5527	-0.1257	0.079*	
H16B	-0.0090	0.5074	-0.1867	0.079*	
H16C	0.1616	0.4751	-0.1884	0.079*	
C17	0.4338 (18)	0.4982 (12)	0.2824 (10)	0.048 (4)	
C18	0.5273 (16)	0.5755 (11)	0.2824 (9)	0.038 (4)	
H18	0.5990	0.5639	0.3225	0.046*	
C19	0.5138 (19)	0.6735 (13)	0.2207 (12)	0.054 (5)	
H19	0.5790	0.7284	0.2178	0.065*	
C20	0.4071 (18)	0.6896 (12)	0.1652 (11)	0.048 (4)	
H20	0.3971	0.7561	0.1253	0.057*	
C21	0.3148 (18)	0.6109 (13)	0.1665 (12)	0.055 (5)	
H21	0.2404	0.6229	0.1283	0.066*	
C22	0.3308 (18)	0.5117 (12)	0.2249 (10)	0.045 (4)	
H22	0.2710	0.4554	0.2243	0.054*	
C23	0.2990 (17)	0.3396 (10)	0.5126 (9)	0.039 (4)	
C24	0.2143 (17)	0.4272 (12)	0.5235 (11)	0.046 (4)	
H24	0.2283	0.4890	0.4742	0.055*	
C25	0.1104 (18)	0.4231 (11)	0.6067 (10)	0.042 (4)	
H25	0.0532	0.4819	0.6156	0.050*	
C26	0.0920 (18)	0.3333 (13)	0.6753 (10)	0.048 (4)	
H26	0.0199	0.3301	0.7321	0.057*	
C27	0.1752 (17)	0.2449 (12)	0.6655 (10)	0.046 (4)	
H27	0.1612	0.1835	0.7152	0.055*	
C28	0.2776 (16)	0.2488 (12)	0.5825 (9)	0.041 (4)	
H28	0.3331	0.1893	0.5735	0.049*	
C29	0.6712 (19)	0.3145 (11)	0.4147 (10)	0.047 (4)	
C30	0.6798 (17)	0.3077 (9)	0.5083 (10)	0.038 (4)	
H30	0.5926	0.3170	0.5524	0.045*	
C31	0.8146 (17)	0.2873 (11)	0.5392 (11)	0.045 (4)	
H31	0.8185	0.2807	0.6045	0.055*	
C32	0.9413 (17)	0.2770 (11)	0.4755 (11)	0.045 (4)	
H32	1.0344	0.2661	0.4956	0.054*	
C33	0.9328 (18)	0.2825 (11)	0.3817 (12)	0.048 (4)	
Н33	1.0194	0.2722	0.3375	0.058*	
C34	0.7973 (16)	0.3030 (11)	0.3524 (11)	0.041 (4)	
H34	0.7929	0.3092	0.2873	0.049*	
C36	0.2028 (16)	0.0311 (8)	1.0241 (19)	0.073 (11)*	0.50

Table A2: Atomic displacement parameters (\mathring{A}^2) for NDI-[CH₂CH₂O(An)PS₂(SnPh₃)₂]₂

	U^{11}	U^{22}	U ³³	U ¹²	U^{13}	U^{23}
Sn1	0.0382 (5)	0.0372 (5)	0.0368 (5)	-0.0018 (4)	-0.0069 (4)	-0.0057 (4)
S1	0.060 (3)	0.068 (3)	0.041 (2)	-0.010 (2)	-0.0024 (18)	-0.0166 (19)
S2	0.053 (2)	0.0355 (18)	0.0281 (16)	-0.0082 (17)	0.0043 (15)	-0.0096 (14)
P1	0.053 (2)	0.048 (2)	0.0277 (16)	-0.0022 (19)	-0.0006 (16)	-0.0154 (16)
O1	0.072 (8)	0.075 (8)	0.045 (6)	-0.008 (7)	-0.009 (6)	-0.008 (6)
O2	0.043 (7)	0.050 (6)	0.066 (7)	0.008 (5)	-0.011 (5)	-0.003 (5)
O3	0.053 (6)	0.054 (6)	0.037 (5)	0.013 (5)	-0.009 (4)	-0.026 (4)
O4	0.053 (7)	0.060 (7)	0.057 (6)	0.011 (6)	-0.021 (5)	-0.004 (5)
N1	0.102 (12)	0.034 (7)	0.042 (7)	0.011 (7)	-0.011 (7)	-0.014 (6)
C1	0.095 (14)	0.030 (8)	0.043 (9)	-0.016 (9)	-0.018 (9)	-0.006 (7)
C2	0.050 (9)	0.030 (7)	0.050 (8)	-0.008 (7)	-0.008 (7)	-0.008 (7)
C3	0.077 (12)	0.039 (8)	0.041 (8)	-0.005 (9)	-0.016 (8)	0.000 (7)
C4	0.068 (11)	0.026 (7)	0.038 (8)	-0.018 (7)	0.008 (7)	-0.002 (6)
C5	0.041 (9)	0.021 (6)	0.059 (9)	-0.004 (6)	-0.011 (7)	-0.001 (6)
C6	0.042 (9)	0.038 (8)	0.053 (9)	-0.009 (7)	-0.016 (7)	0.002 (7)
C7	0.059 (11)	0.023 (7)	0.056 (9)	0.008 (7)	0.005 (8)	0.001 (7)
C8	0.090 (15)	0.046 (10)	0.067 (11)	0.007 (10)	-0.014 (10)	-0.010 (9)
С9	0.050 (10)	0.070 (11)	0.053 (9)	0.030 (9)	-0.009 (8)	-0.023 (8)
C10	0.035 (8)	0.048 (8)	0.046 (8)	-0.015 (7)	0.014 (6)	-0.018 (7)
C11	0.030 (8)	0.072 (11)	0.037 (7)	-0.008 (8)	-0.009 (6)	-0.005 (7)
C12	0.044 (9)	0.059 (9)	0.027 (7)	-0.004 (8)	0.006 (6)	-0.013 (7)
C13	0.026 (8)	0.050 (9)	0.045 (8)	-0.002 (7)	-0.004 (6)	-0.005 (7)
C14	0.053 (11)	0.059 (11)	0.074 (11)	0.000 (9)	-0.025 (9)	-0.001 (9)
C15	0.060 (11)	0.049 (9)	0.045 (9)	-0.007 (9)	-0.002 (8)	-0.003 (8)
C16	0.050 (10)	0.067 (11)	0.044 (8)	0.010 (9)	-0.012 (7)	-0.016 (8)
C17	0.056 (10)	0.045 (9)	0.031 (7)	-0.010 (8)	0.000 (7)	0.009 (7)
C18	0.034 (8)	0.050 (8)	0.037 (7)	0.003 (7)	-0.016 (6)	-0.018 (6)
C19	0.050 (10)	0.046 (9)	0.059 (10)	-0.017 (8)	0.003 (8)	-0.006 (8)
C20	0.045 (9)	0.035 (8)	0.055 (9)	0.007 (7)	-0.009 (7)	0.003 (7)
C21	0.043 (9)	0.060 (10)	0.056 (9)	0.001 (9)	-0.025 (7)	0.008 (8)
C22	0.049 (10)	0.042 (8)	0.048 (8)	-0.003 (7)	-0.002 (7)	-0.022 (7)
C23	0.058 (9)	0.025 (6)	0.023 (6)	-0.008 (7)	0.018 (6)	-0.005 (5)
C24	0.045 (9)	0.048 (9)	0.045 (8)	0.003 (8)	-0.008 (7)	-0.012 (7)
C25	0.056 (10)	0.038 (7)	0.041 (7)	0.000 (7)	-0.012 (7)	-0.024 (6)
C26	0.051 (10)	0.072 (10)	0.025 (6)	-0.002 (8)	-0.002 (6)	-0.023 (7)
C27	0.044 (9)	0.051 (9)	0.038 (8)	0.001 (8)	-0.008 (7)	-0.005 (7)
C28	0.043 (8)	0.052 (8)	0.038 (7)	-0.010 (7)	-0.015 (6)	-0.024 (6)
C29	0.065 (11)	0.029 (7)	0.038 (8)	-0.012 (7)	0.001 (7)	0.003 (6)
C30	0.053 (9)	0.016 (6)	0.042 (7)	-0.013 (6)	-0.004 (7)	-0.005 (6)
C31	0.048 (9)	0.035 (8)	0.056 (9)	-0.011 (7)	-0.031 (7)	0.003 (7)

C32	0.034 (8)	0.039 (8)	0.062 (9)	-0.007 (7)	-0.017 (7)	-0.006 (7)
C33	0.039 (9)	0.033 (8)	0.066 (10)	-0.007 (7)	0.004 (7)	-0.010 (7)
C34	0.039 (8)	0.036 (8)	0.044 (8)	-0.008 (7)	-0.014 (7)	0.001 (6)

Table A3: Geometric parameters (Å, °) for NDI-[CH₂CH₂O(An)PS₂(SnPh₃)₂]₂

Sn1—C29	2.145 (18)	C11—C12	1.38 (2)
Sn1—C23	2.172 (12)	C11—H11	0.9500
Sn1C17	2.175 (14)	C12—C13	1.39 (2)
Sn1—S2	2.450 (4)	C12—H12	0.9500
Cl1A—C36	1.79 (2)	C13—C14	1.40 (2)
Cl1A—Cl1Ai	2.11 (5)	C14—C15	1.40 (2)
Cl1B—C36	1.799 (19)	C14—H14	0.9500
Cl1C—C36	1.83 (2)	C15—H15	0.9500
Cl1D—C36	1.862 (18)	C16—H16A	0.9800
Cl1DCl1D ⁱⁱ	1.90 (3)	C16—H16B	0.9800
Cl2A—C36	1.77 (2)	C16—H16C	0.9800
C12B—C36	1.80 (2)	C17—C22	1.36 (2)
Cl2CC36	1.85 (2)	C17—C18	1.37 (2)
Cl2D—C36	1.83 (2)	C18—C19	1.42 (2)
S1P1	1.938 (6)	C18H18	0.9500
S2P1	2.080 (5)	C19—C20	1.37 (2)
P1—O3	1.587 (11)	C19—H19	0.9500
P1—C10	1.773 (17)	C20—C21	1.37 (2)
O1—C1	1.171 (19)	C20—H20	0.9500
O2—C7	1.24 (2)	C21—C22	1.41 (2)
O3—C9	1.426 (18)	C21—H21	0.9500
O4—C13	1.352 (18)	C22—H22	0.9500
O4—C16	1.413 (18)	C23—C28	1.376 (18)
N1—C7	1.38 (2)	C23—C24	1.40 (2)
N1—C1	1.43 (2)	C24—C25	1.39 (2)
N1C8	1.44 (2)	C24—H24	0.9500
C1—C2	1.45 (2)	C25—C26	1.36 (2)
С3—Н3	0.9500	C25—H25	0.9500
C2—C3	1.40 (2)	C26C27	1.40 (2)
C2—C4	1.40 (2)	C26—H26	0.9500
C3—C6 ⁱⁱⁱ	1.37 (2)	C27—C28	1.38 (2)
C4—C4 ⁱⁱⁱ	1.38 (3)	C27—H27	0.9500
C4—C5	1.44 (2)	C28—H28	0.9500
C5—C6	1.37 (2)	C29—C34	1.35 (2)
C5—C7	1.46 (2)	C29—C30	1.38 (2)
С6—Н6	0.9500	C30—C31	1.39 (2)
C6C3 ⁱⁱⁱ	1.37 (2)	C30—H30	0.9500

C8—C9	1.49 (2)	C31—C32	1.37 (2)
C8—H8A	0.9900	C32—H32	0.9500
C8—H8B	0.9900	C31—H31	0.9500
С9—Н9А	0.9900	C32—C33	1.38 (2)
			1.39 (2)
C9—H9B	0.9900	C33—C34	· · · · · · · · · · · · · · · · · · ·
C10—C15	1.37 (2)	C33—H33	0.9500
C10—C11	1.39 (2)	C34—H34	0.9500
C29—Sn1—C23	106.7 (6)	Cl2A—C36—Cl2B	68.0 (18)
C29—Sn1—C17	116.2 (6)	Cl1A—C36—Cl2B	66.2 (18)
C23—Sn1—C17	108.9 (5)	Cl2A—C36—Cl1B	98 (2)
C29—Sn1—S2	116.0 (4)	Cl1A—C36—Cl1B	62.5 (19)
C23—Sn1—S2	97.8 (4)	Cl2B—C36—Cl1B	112.5 (16)
C17—Sn1—S2	109.4 (5)	Cl2A—C36—Cl2D	95.5 (19)
C36—Cl1A—Cl1Ai	87.1 (17)	Cl1B—C36—Cl2D	89.9 (17)
C36—C11D—C11Dii	145.7 (17)	Cl2AC36Cl1C	85 (2)
P1S2Sn1	105.14 (18)	Cl1AC36Cl1C	73 (2)
O3—P1—C10	99.5 (7)	Cl2B—C36—Cl1C	112.2 (17)
O3P1S1	115.8 (5)	Cl2DC36Cl1C	96.4 (18)
C10-P1-S1	114.7 (5)	Cl2A—C36—Cl2C	81.0 (18)
O3P1S2	101.1 (4)	Cl1AC36Cl2C	52.9 (17)
C10—P1—S2	108.9 (5)	C11C—C36—C12C	108.8 (16)
S1P1S2	115.2 (3)	Cl1B—C36—Cl1D	74.0 (11)
C9—O3—P1	124.4 (11)	Cl2DC36C11D	108.8 (16)
C13O4C16	116.4 (12)	Cl1C—C36—Cl1D	60.3 (11)
C7N1C1	127.6 (15)	Cl2CC36Cl1D	100.6 (13)
C7—N1—C8	116.9 (16)	С6 ^{ііі} —С3—Н3	120.0
C1N1C8	115.6 (15)	C2C3H3	120.0
01C1N1	121.0 (17)	С5—С6—Н6	119.0
O1C1C2	126.0 (18)	С3 ^{ііі} —С6—Н6	120.0
N1C1C2	113.0 (14)	N1C8H8A	110.0
C3—C2—C4	119.2 (15)	C9—C8—H8A	109.0
C3—C2—C1	117.6 (15)	N1—C8—H8B	110.0
C4C2C1	123.2 (15)	С9—С8—Н8В	109.0
C6 ⁱⁱⁱ —C3—C2	120.5 (15)	H8A—C8—H8B	108.0
C4 ⁱⁱⁱ —C4—C2	121 (2)	O3—C9—H9A	109.0
C4 ⁱⁱⁱ —C4—C5	118.8 (19)	С8—С9—Н9А	109.0
C2—C4—C5	120.2 (14)	О3—С9—Н9В	110.0
C6—C5—C4	119.2 (14)	С8—С9—Н9В	110.0
C6—C5—C7	121.7 (15)	Н9А—С9—Н9В	108.0
C4—C5—C7	118.9 (15)	C12—C11—H11	119.0
C3 ⁱⁱⁱ —C6—C5	121.1 (15)	C10-C11-H11	119.0
O2C7N1	120.9 (15)	C11—C12—H12	120.0
O2C5	122.2 (16)	C13—C12—H12	120.0
	122.2 (10)	015 012 1112	120.0

N1—C7—C5	116.8 (16)	C13—C14—H14	121.0
N1—C8—C9	110.8 (16)	C15—C14—H14	121.0
		C10—C15—H15	120.0
O3C9C8	110.6 (15)		120.0
C15—C10—C11	118.4 (15)	C14—C15—H15	
C15—C10—P1	121.1 (12)	04—C16—H16A	109.0
C11—C10—P1	120.5 (12)	O4—C16—H16B	109.9
C12—C11—C10	121.3 (14)	H16A—C16—H16B	109.0
C11—C12—C13	119.8 (14)	O4—C16—H16C	109.0
O4—C13—C12	125.0 (13)	H16AC16H16C	110.0
O4—C13—C14	114.7 (14)	H16B—C16—H16C	109.0
C12—C13—C14	120.3 (15)	C17—C18—H18	121.0
C13—C14—C15	118.2 (16)	C19—C18—H18	121.0
C10—C15—C14	121.9 (15)	C20—C19—H19	120.0
C22—C17—C18	122.7 (14)	C18—C19—H19	120.0
C22C17Sn1	120.3 (12)	C21—C20—H20	120.0
C18—C17—Sn1	117.1 (11)	C19—C20—H20	120.0
C17—C18—C19	117.9 (14)	C20—C21—H21	120.0
C20—C19—C18	120.2 (15)	C22C21H21	120.0
C21—C20—C19	120.8 (14)	C17—C22—H22	120.0
C20—C21—C22	119.6 (15)	C21—C22—H22	120.0
C17—C22—C21	118.8 (15)	C24C25H25	121.0
C28—C23—C24	120.9 (12)	C25—C26—H26	119.0
C28—C23—Sn1	120.9 (10)	C27—C26—H26	119.0
C24—C23—Sn1	118.1 (9)	C28—C27—H27	121.0
C25—C24—C23	119.6 (13)	C26—C27—H27	121
C26—C25—C24	118.7 (14)	C27C28H28	119.0
C25—C26—C27	122.5 (13)	C23—C28—H28	120.0
C28C27C26	118.8 (14)	C29—C30—H30	119.0
C23—C28—C27	119.5 (14)	C31—C30—H30	120.0
C34—C29—C30	118.7 (16)	C32—C31—H31	120.0
C34—C29—Sn1	125.4 (12)	C30—C31—H31	120.0
C30—C29—Sn1	115.9 (11)	C31—C32—H32	120.0
C29—C30—C31	120.8 (15)	C33—C32—H32	120.0
C32—C31—C30	119.9 (15)	C32—C33—H33	120.0
C31—C32—C33	119.4 (15)	C34—C33—H33	120.0
C32—C33—C34	119.6 (14)	C29—C34—H34	119.0
C29—C34—C33	121.4 (15)	C33—C34—H34	119.0
Cl2A—C36—Cl1A	115 (2)		
C23—Sn1—S1—P1	15.4 (12)	S1—Sn1—C17—C18	-104.2 (12)
C17—Sn1—S1—P1	-104.0 (5)	C22C17C18C19	1 (2)
C29—Sn1—S1—P1	137.8 (4)	C17—C18—C19—C20	4 (2)
Sn1—S1—P1—O3	-133.7 (4)	C18C19C20C21	-1 (3)
Sn1S1P1C10	111.3 (6)	C19—C20—C21—C22	-3 (3)
	(5)		- (0)

Sn1—S1—P1—S2	-16.3 (2)	C18C17C22C21	-3 (2)
C10—P1—O3—C9	-180.0 (12)	C20C21C22C17	3 (2)
S2—P1—O3—C9	-67.7 (11)	C17—Sn1—C23—C24	-3.9 (14)
S1—P1—O3—C9	57.4 (12)	C29—Sn1—C23—C24	122.3 (12)
C5 ^{iv} —C1—C2—C3	0.7 (17)	S1—Sn1—C23—C24	-118.8 (13)
C1—C2—C3—C3 ^{iv}	-1.1 (15)	C29—Sn1—C23—C28	-61.2 (13)
C3iv—C3—C4—C5	3 (3)	S1—Sn1—C23—C28	58 (2)
C2—C3—C4—C5	4 (2)	C28—C23—C24—C25	2 (2)
C3—C4—C5—C1 ^{iv}	-2 (2)	Sn1—C23—C24—C25	178.2 (12)
C5—C4—C6—O2	-3 (3)	C23—C24—C25—C26	0 (2)
C1—C2—C7—O1	-0.8 (8)	C24—C25—C26—C27	3 (2)
P1—O3—C9—C8	139.3 (13)	C25—C26—C27—C28	-3 (2)
O3—P1—C10—C11	-126.1 (13)	C24—C23—C28—C27	-2 (2)
S2P1C10C11	128.7 (12)	Sn1—C23—C28—C27	-179.5 (11)
S1—P1—C10—C11	-2.0 (15)	C26C27C28C23	1 (2)
O3P1C10C15	51.9 (14)	C23—Sn1—C29—C30	-8.8 (12)
S2—P1—C10—C15	-53.3 (15)	C17—Sn1—C29—C30	112.9 (11)
C15—C10—C11—C12	-2 (2)	S1—Sn1—C29—C30	-172.1 (11)
C10—C11—C12—C13	1 (2)	C23—Sn1—C29—C34	173.7 (13)
C16—O4—C13—C12	-1 (2)	C17—Sn1—C29—C34	-64.6 (15)
C11—C12—C13—C14	1 (3)	S1—Sn1—C29—C34	10.4 (13)
C12C13C14C15	-1 (3)	C34—C29—C30—C31	1 (3)
C13—C14—C15—C10	-2 (3)	Sn1—C29—C30—C31	-179.0 (11)
C11C10C15C14	2 (3)	C29—C30—C31—C32	0 (3)
C23—Sn1—C17—C22	-86.9 (13)	C30—C31—C32—C33	-1 (3)
C29—Sn1—C17—C22	152.6 (12)	C31—C32—C33—C34	1 (3)
S1—Sn1—C17—C22	75.6 (12)	C32—C33—C34—C29	0 (2)
C23—Sn1—C17—C18	93.3 (12)	C30—C29—C34—C33	-1 (2)
C29—Sn1—C17—C18	-27.2 (14)	Sn1—C29—C34—C33	178.9 (11)
Symmetry codes: (i) -x, -y, -z+2; (i	i) -x+1, -y, -z+2;	(iii) -x, -y, -z+1; (iv) -x, -y, -z.	

 $\label{eq:Table A4: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters \\ (\mathring{A}^2) \ for \ NDI-[CH_2CH_2O(An)PS_2(Cu(PPh_3)_2]_2$

	x	y	z	$U_{\rm iso}^*/U_{\rm eq}$
Cu1	0.01745 (5)	0.81093 (4)	0.294382 (18)	0.01873 (12)
Cl1	0.32008 (11)	0.19499 (9)	0.17802 (4)	0.0442 (2)
Cl2	0.15977 (12)	0.15583 (8)	0.07839 (4)	0.0435 (2)
S1	0.25447 (8)	0.83414 (7)	0.26042 (3)	0.02095 (17)
S2	0.02714 (9)	0.67745 (7)	0.21236 (3)	0.02293 (17)
P1	0.03117 (8)	0.67577 (6)	0.37160 (3)	0.01646 (16)
P2	-0.16884 (8)	0.98220 (7)	0.27892 (3)	0.01635 (16)
P5	0.20183 (9)	0.74649 (7)	0.19684 (3)	0.01961 (17)

			de la composition della compos	
O1	0.0425 (2)	0.6571 (2)	0.02193 (10)	0.0283 (5)
O2	0.4030 (2)	0.85799 (18)	0.04049 (9)	0.0233 (5)
O3	0.1720 (3)	0.8410 (2)	0.14062 (9)	0.0264 (5)
O4	0.7567 (3)	0.3922 (2)	0.13217 (11)	0.0345 (6)
N1	0.2229 (3)	0.7577 (2)	0.02971 (10)	0.0193 (5)
Cl	0.1754 (3)	0.6544 (3)	0.02053 (13)	0.0220 (7)
C2	0.2926 (3)	0.5463 (3)	0.00924 (12)	0.0196 (6)
C3	0.4444 (3)	0.5510 (3)	0.00625 (12)	0.0179 (6)
C4	0.4865 (3)	0.6582 (3)	0.01570 (12)	0.0187 (6)
C5	0.3721 (3)	0.7654 (3)	0.03008 (12)	0.0197 (6)
C6	0.6349 (3)	0.6614 (3)	0.01156 (13)	0.0220 (7)
Н6	0.6626	0.7335	0.0174	0.026*
C7	0.2548 (3)	0.4404 (3)	0.00116 (13)	0.0232 (7)
Н7	0.1531	0.4367	0.0043	0.028*
C8	0.1051 (3)	0.8655 (3)	0.04121 (13)	0.0226 (7)
H8A	0.0208	0.8757	0.0137	0.027*
H8B	0.1461	0.9370	0.0351	0.027*
C9	0.0473 (3)	0.8582 (3)	0.10132 (13)	0.0239 (7)
Н9А	-0.0289	0.9331	0.1079	0.029*
Н9В	-0.0002	0.7901	0.1073	0.029*
C10	0.3690 (4)	0.6352 (3)	0.17940 (13)	0.0234 (7)
C11	0.5071 (4)	0.6613 (3)	0.18411 (15)	0.0291 (7)
H11	0.5110	0.7356	0.1979	0.035*
C12	0.6400 (4)	0.5828 (3)	0.16932 (15)	0.0292 (7)
H12	0.7333	0.6028	0.1730	0.035*
C13	0.6339 (4)	0.4748 (3)	0.14910 (13)	0.0260 (7)
C14	0.4974 (4)	0.4445 (3)	0.14549 (14)	0.0266 (7)
H14	0.4946	0.3689	0.1330	0.032*
C15	0.3655 (4)	0.5242 (3)	0.16011 (13)	0.0246 (7)
H15	0.2725	0.5035	0.1570	0.030*
C16	0.8991 (4)	0.4221 (4)	0.13472 (17)	0.0402 (9)
H16A	0.8948	0.4963	0.1103	0.060*
H16B	0.9781	0.3566	0.1212	0.060*
H16C	0.9215	0.4339	0.1744	0.060*
C17	0.2487 (3)	0.4910 (3)	0.32702 (14)	0.0242 (7)
H17	0.2174	0.5335	0.2908	0.029*
C18	0.3596 (3)	0.3841 (3)	0.32957 (15)	0.0275 (7)
H18	0.4023	0.3534	0.2951	0.033*
C19	0.4089 (4)	0.3216 (3)	0.38199 (16)	0.0312 (8)
H19	0.4850	0.2485	0.3835	0.037*
C20	0.3466 (4)	0.3663 (3)	0.43176 (16)	0.0313 (8)
H20	0.3806	0.3242	0.4678	0.038*
C21	0.2334 (3)	0.4734 (3)	0.42951 (14)	0.0249 (7)

H21	0.1909	0.5034	0.4641	0.030*
C22	0.1823 (3)	0.5368 (3)	0.37690 (13)	0.0181 (6)
C23	0.0490 (3)	0.7350 (3)	0.44087 (12)	0.0204 (6)
C24	0.1755 (4)	0.7758 (3)	0.45059 (15)	0.0302 (8)
H24	0.2495	0.7724	0.4218	0.036*
C25	0.1941 (4)	0.8216 (3)	0.50231 (15)	0.0381 (9)
H25	0.2816	0.8483	0.5089	0.046*
C26	0.0866 (5)	0.8287 (3)	0.54435 (15)	0.0378 (9)
H26	0.1009	0.8594	0.5797	0.045*
C27	-0.0424 (4)	0.7909 (3)	0.53472 (14)	0.0303 (8)
H27	-0.1179	0.7976	0.5630	0.036*
C28	-0.0600 (4)	0.7432 (3)	0.48308 (13)	0.0221 (7)
H28	-0.1472	0.7159	0.4766	0.027*
C29	-0.1394 (3)	0.6223 (3)	0.37796 (13)	0.0180 (6)
C30	-0.1541 (4)	0.5267 (3)	0.41640 (13)	0.0243 (7)
H30	-0.0698	0.4812	0.4386	0.029*
C31	-0.2908 (4)	0.4981 (3)	0.42230 (14)	0.0283 (7)
H31	-0.3002	0.4331	0.4486	0.034*
C32	-0.4147 (4)	0.5641 (3)	0.38986 (15)	0.0287 (7)
H32	-0.5094	0.5461	0.3950	0.034*
C33	-0.4000 (4)	0.6549 (3)	0.35044 (15)	0.0278 (7)
H33	-0.4838	0.6986	0.3274	0.033*
C34	-0.2635 (3)	0.6830 (3)	0.34417 (13)	0.0223 (7)
H34	-0.2539	0.7452	0.3162	0.027*
C35	-0.3269 (3)	0.9886 (2)	0.32740 (12)	0.0176 (6)
C36	-0.2917 (4)	0.9665 (3)	0.38582 (13)	0.0219 (6)
H36	-0.1902	0.9517	0.3983	0.026*
C37	-0.4033 (4)	0.9659 (3)	0.42586 (13)	0.0246 (7)
H37	-0.3786	0.9526	0.4656	0.030*
C38	-0.5512 (4)	0.9848 (3)	0.40773 (14)	0.0266 (7)
H38	-0.6277	0.9833	0.4350	0.032*
C39	-0.5865 (4)	1.0055 (3)	0.35060 (15)	0.0284 (7)
H39	-0.6881	1.0188	0.3384	0.034*
C40	-0.4755 (3)	1.0075 (3)	0.30976 (14)	0.0234 (7)
H40	-0.5015	1.0217	0.2701	0.028*
C41	-0.2498 (3)	1.0028 (3)	0.20649 (12)	0.0182 (6)
C42	-0.3037 (3)	0.9098 (3)	0.18707 (13)	0.0222 (7)
H42	-0.3023	0.8403	0.2122	0.027*
C43	-0.3590 (4)	0.9180 (3)	0.13155 (14)	0.0267 (7)
H43	-0.3972	0.8550	0.1191	0.032*
C44	-0.3589 (4)	1.0172 (3)	0.09424 (13)	0.0270 (7)
H44	-0.3961	1.0223	0.0561	0.032*
C45	-0.3041 (4)	1.1097 (3)	0.11274 (13)	0.0258 (7)

H45	-0.3038	1.1781	0.0872	0.031*
C46	-0.2497 (3)	1.1022 (3)	0.16845 (13)	0.0216 (6)
H46	-0.2121	1.1656	0.1807	0.026*
C47	-0.1283 (3)	1.1273 (3)	0.28721 (12)	0.0202 (6)
C48	-0.2439 (4)	1.2308 (3)	0.29076 (14)	0.0239 (7)
H48	-0.3454	1.2260	0.2902	0.029*
C49	-0.2118 (4)	1.3404 (3)	0.29511 (14)	0.0296 (8)
H49	-0.2910	1.4109	0.2968	0.035*
C50	-0.0641 (4)	1.3471 (3)	0.29702 (15)	0.0335 (8)
H50	-0.0420	1.4221	0.3008	0.040*
C51	0.0501 (4)	1.2462 (3)	0.29353 (17)	0.0360 (9)
H51	0.1514	1.2514	0.2946	0.043*
C52	0.0183 (4)	1.1360 (3)	0.28839 (15)	0.0289 (7)
H52	0.0981	1.0662	0.2857	0.035*
C53	0.2475 (5)	0.0902 (3)	0.14386 (18)	0.0413 (9)
H53A	0.3301	0.0194	0.1369	0.050*
H53B	0.1740	0.0626	0.1691	0.050*

Table A5: Atomic displacement parameters (Ų) for NDI-[CH₂CH₂O(An)PS₂(Cu(PPh₃)₂]₂

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cul	0.0168 (2)	0.0198 (2)	0.0177 (2)	-0.00231 (18)	0.00297 (17)	0.00260 (17)
Cl1	0.0427 (5)	0.0487 (6)	0.0448 (5)	-0.0196 (5)	-0.0099 (4)	0.0014 (4)
Cl2	0.0595 (6)	0.0318 (5)	0.0387 (5)	-0.0103 (4)	-0.0084 (4)	-0.0028 (4)
S1	0.0177 (4)	0.0246 (4)	0.0212 (4)	-0.0057 (3)	0.0025 (3)	-0.0045 (3)
S2	0.0213 (4)	0.0255 (4)	0.0234 (4)	-0.0085 (3)	0.0017 (3)	-0.0018 (3)
P1	0.0149 (4)	0.0174 (4)	0.0161 (4)	-0.0033 (3)	0.0015 (3)	0.0016 (3)
P2	0.0153 (4)	0.0171 (4)	0.0156 (4)	-0.0029 (3)	0.0009 (3)	0.0007 (3)
P5	0.0200 (4)	0.0203 (4)	0.0189 (4)	-0.0059 (3)	0.0023 (3)	-0.0011 (3)
O1	0.0194 (12)	0.0270 (13)	0.0399 (14)	-0.0066 (10)	0.0003 (10)	-0.0084 (10)
O2	0.0257 (12)	0.0197 (11)	0.0256 (12)	-0.0074 (10)	0.0020 (9)	-0.0029 (9)
O3	0.0311 (12)	0.0304 (13)	0.0197 (11)	-0.0132 (10)	-0.0032 (9)	0.0020 (9)
O4	0.0315 (13)	0.0301 (14)	0.0365 (14)	0.0016 (11)	0.0088 (11)	-0.0022 (10)
N1	0.0200 (13)	0.0196 (13)	0.0180 (13)	-0.0047 (11)	0.0026 (10)	-0.0012 (10)
C1	0.0207 (16)	0.0291 (17)	0.0171 (15)	-0.0089 (14)	-0.0001 (12)	0.0001 (12)
C2	0.0201 (15)	0.0233 (16)	0.0159 (15)	-0.0063 (13)	0.0023 (12)	-0.0019 (12)
C3	0.0205 (15)	0.0198 (15)	0.0138 (14)	-0.0061 (12)	0.0000 (11)	0.0002 (11)
C4	0.0214 (15)	0.0210 (16)	0.0139 (14)	-0.0063 (13)	0.0015 (12)	0.0003 (11)
C5	0.0251 (16)	0.0222 (16)	0.0128 (14)	-0.0085 (14)	0.0002 (12)	0.0009 (11)
C6	0.0240 (16)	0.0220 (16)	0.0229 (16)	-0.0109 (14)	0.0013 (13)	-0.0025 (12)
C7	0.0174 (15)	0.0303 (18)	0.0251 (17)	-0.0120 (14)	0.0022 (13)	-0.0021 (13)
C8	0.0213 (16)	0.0199 (16)	0.0238 (16)	-0.0007 (13)	-0.0038 (13)	-0.0001 (12)
С9	0.0190 (16)	0.0256 (17)	0.0240 (17)	-0.0002 (13)	-0.0006 (13)	-0.0009 (13)

				T-3		
C10	0.0245 (16)	0.0234 (17)	0.0219 (16)	-0.0060 (14)	0.0043 (13)	0.0000 (12)
C11	0.0237 (17)	0.0250 (18)	0.040 (2)	-0.0071 (14)	0.0096 (15)	-0.0084 (14)
C12	0.0220 (17)	0.0300 (19)	0.0347 (19)	-0.0043 (15)	0.0060 (14)	-0.0041 (14)
C13	0.0261 (17)	0.0259 (18)	0.0202 (16)	0.0022 (14)	0.0036 (13)	0.0038 (13)
C14	0.0338 (19)	0.0169 (16)	0.0281 (18)	-0.0049 (14)	0.0056 (14)	-0.0017 (13)
C15	0.0266 (17)	0.0239 (17)	0.0241 (16)	-0.0080 (14)	0.0036 (13)	-0.0018 (13)
C16	0.0253 (19)	0.045 (2)	0.043 (2)	0.0051 (17)	0.0051 (16)	-0.0052 (17)
C17	0.0191 (16)	0.0244 (17)	0.0268 (17)	-0.0012 (14)	-0.0024 (13)	-0.0018 (13)
C18	0.0192 (16)	0.0264 (18)	0.0360 (19)	-0.0026 (14)	0.0024 (14)	-0.0085 (14)
C19	0.0197 (16)	0.0191 (17)	0.052 (2)	-0.0016 (14)	0.0012 (15)	0.0038 (15)
C20	0.0210 (17)	0.0305 (19)	0.037 (2)	-0.0023 (15)	0.0008 (15)	0.0142 (15)
C21	0.0163 (15)	0.0285 (18)	0.0274 (17)	-0.0041 (14)	0.0053 (13)	0.0062 (13)
C22	0.0127 (14)	0.0156 (15)	0.0253 (16)	-0.0041 (12)	0.0030 (12)	0.0029 (12)
C23	0.0273 (17)	0.0175 (15)	0.0151 (15)	-0.0042 (13)	-0.0009 (12)	0.0016 (11)
C24	0.0337 (19)	0.0342 (19)	0.0255 (18)	-0.0158 (16)	0.0029 (14)	0.0029 (14)
C25	0.048 (2)	0.048 (2)	0.0294 (19)	-0.0317 (19)	-0.0046 (17)	0.0002 (16)
C26	0.063 (3)	0.035 (2)	0.0213 (18)	-0.0227 (19)	-0.0038 (17)	-0.0005 (14)
C27	0.041 (2)	0.0266 (18)	0.0210 (17)	-0.0045 (16)	0.0051 (15)	-0.0010 (13)
C28	0.0224 (16)	0.0206 (16)	0.0216 (16)	-0.0031 (13)	0.0013 (13)	0.0016 (12)
C29	0.0172 (15)	0.0178 (15)	0.0185 (15)	-0.0023 (12)	0.0035 (12)	-0.0045 (11)
C30	0.0210 (16)	0.0297 (18)	0.0218 (16)	-0.0073 (14)	-0.0039 (13)	0.0030 (13)
C31	0.0287 (18)	0.0318 (19)	0.0265 (17)	-0.0142 (15)	0.0009 (14)	0.0046 (14)
C32	0.0193 (16)	0.0335 (19)	0.0361 (19)	-0.0106 (15)	0.0023 (14)	-0.0068 (15)
C33	0.0199 (16)	0.0206 (17)	0.040 (2)	0.0007 (14)	-0.0074 (14)	-0.0028 (14)
C34	0.0217 (16)	0.0183 (16)	0.0256 (17)	-0.0039 (13)	-0.0013 (13)	0.0011 (12)
C35	0.0198 (15)	0.0120 (14)	0.0190 (15)	-0.0006 (12)	0.0039 (12)	-0.0001 (11)
C36	0.0223 (16)	0.0216 (16)	0.0216 (16)	-0.0050 (13)	-0.0002 (13)	-0.0018 (12)
C37	0.0314 (18)	0.0278 (17)	0.0150 (15)	-0.0088 (15)	0.0053 (13)	-0.0003 (12)
C38	0.0299 (18)	0.0239 (17)	0.0270 (17)	-0.0082 (14)	0.0141 (14)	-0.0057 (13)
C39	0.0183 (16)	0.0332 (19)	0.0343 (19)	-0.0073 (14)	0.0042 (14)	-0.0049 (14)
C40	0.0211 (16)	0.0273 (17)	0.0202 (16)	-0.0038 (14)	0.0005 (13)	-0.0003 (12)
C41	0.0133 (14)	0.0215 (16)	0.0176 (15)	-0.0010 (12)	0.0030 (11)	-0.0001 (12)
C42	0.0216 (16)	0.0220 (16)	0.0226 (16)	-0.0058 (13)	0.0013 (13)	0.0020 (12)
C43	0.0253 (17)	0.0286 (18)	0.0268 (17)	-0.0076 (15)	-0.0016 (14)	-0.0034 (13)
C44	0.0298 (18)	0.0324 (19)	0.0160 (16)	-0.0033 (15)	-0.0037 (13)	-0.0006 (13)
C45	0.0317 (18)	0.0240 (17)	0.0180 (16)	-0.0014 (14)	0.0026 (13)	0.0021 (12)
C46	0.0215 (16)	0.0221 (16)	0.0202 (16)	-0.0038 (13)	0.0038 (12)	-0.0010 (12)
C47	0.0248 (16)	0.0220 (16)	0.0139 (14)	-0.0063 (13)	-0.0004 (12)	0.0000 (11)
C48	0.0213 (16)	0.0219 (17)	0.0267 (17)	-0.0020 (14)	0.0071 (13)	-0.0032 (13)
C49	0.0361 (19)	0.0215 (17)	0.0295 (18)	-0.0035 (15)	0.0072 (15)	-0.0053 (13)
C50	0.048 (2)	0.0249 (19)	0.0329 (19)	-0.0162 (17)	0.0069 (16)	-0.0098 (14)
C51	0.0269 (19)	0.035 (2)	0.051 (2)	-0.0156 (17)	0.0033 (17)	-0.0116 (17)
C52	0.0228 (17)	0.0268 (18)	0.037 (2)	-0.0034 (15)	0.0008 (14)	-0.0080 (14)

- 1							
	C53	0.042 (2)	0.033 (2)	0.048 (2)	-0.0106 (18)	-0.0082 (18)	0.0073 (17)
		()				, ,	

Table A6: Geometric parameters (Å, °) for NDI-[CH₂CH₂O(An)PS₂(Cu(PPh₃)₂]₂

	·		
Cu1—P1	2.2676 (8)	C20—C21	1.399 (5)
Cu1—P2	2.2714 (8)	C20—H20	0.9500
Cu1—S1	2.3870 (8)	C21—C22	1.398 (4)
Cu1—S2	2.5484 (9)	C21—H21	0.9500
Cu1—P5	2.8710 (9)	C23—C24	1.388 (4)
C11—C53	1.768 (4)	C23—C28	1.395 (4)
C12C53	1.757 (4)	C24—C25	1.389 (5)
S1—P5	1.9957 (10)	C24—H24	0.9500
S2—P5	1.9850 (11)	C25—C26	1.383 (5)
P1—C29	1.827 (3)	C25—H25	0.9500
P1—C22	1.835 (3)	C26—C27	1.390 (5)
P1—C23	1.836 (3)	C26—H26	0.9500
P2—C41	1.829 (3)	C27—C28	1.397 (4)
P2C35	1.829 (3)	C27—H27	0.9500
P2C47	1.830 (3)	C28—H28	0.9500
P5O3	1.615 (2)	C29—C34	1.391 (4)
P5—C10	1.808 (3)	C29—C30	1.396 (4)
O1—C1	1.216 (4)	C30—C31	1.383 (4)
O2C5	1.217 (4)	C30—H30	0.9500
O3C9	1.439 (4)	C31C32	1.390 (5)
O4—C13	1.363 (4)	C31—H31	0.9500
O4C16	1.440 (4)	C32—C33	1.369 (5)
N1C5	1.398 (4)	C32—H32	0.9500
N1—C1	1.402 (4)	C33—C34	1.379 (4)
N1—C8	1.473 (4)	С33—Н33	0.9500
C1—C2	1.471 (4)	С34—Н34	0.9500
C2—C7	1.379 (4)	C35—C40	1.390 (4)
C2—C3	1.413 (4)	C35—C36	1.395 (4)
C3—C3i	1.403 (6)	C36—C37	1.387 (4)
C3—C4	1.420 (4)	С36—Н36	0.9500
C4C6	1.378 (4)	C37—C38	1.386 (5)
C4—C5	1.471 (4)	С37—Н37	0.9500
C6—C7 ⁱ	1.398 (5)	C38—C39	1.365 (5)
С6—Н6	0.9500	C38—H38	0.9500
C7C6 ⁱ	1.398 (5)	C39—C40	1.397 (5)
С7—Н7	0.9500	С39—Н39	0.9500
C8C9	1.504 (4)	C40—H40	0.9500
С8—Н8А	0.9900	C41C46	1.391 (4)
С8—Н8В	0.9900	C41—C42	1.400 (4)

[Topoo	Loss Gas	1.00(4)
С9—Н9А	0.9900	C42—C43	1.386 (4)
С9—Н9В	0.9900	C42—H42	0.9500
C10—C11	1.386 (4)	C43—C44	1.381 (5)
C10—C15	1.402 (4)	C43—H43	0.9500
C11—C12	1.388 (5)	C44—C45	1.390 (5)
C11—H11	0.9500	C44—H44	0.9500
C12C13	1.384 (5)	C45—C46	1.388 (4)
C12—H12	0.9500	C45—H45	0.9500
C13—C14	1.391 (5)	C46H46	0.9500
C14—C15	1.386 (5)	C47—C52	1.379 (4)
C14—H14	0.9500	C47—C48	1.394 (4)
C15—H15	0.9500	C48—C49	1.381 (4)
C16—H16A	0.9800	C48—H48	0.9500
С16—Н16В	0.9800	C49—C50	1.382 (5)
C16—H16C	0.9800	C49—H49	0.9500
C17—C18	1.387 (4)	C50—C51	1.366 (5)
C17—C22	1.396 (4)	C50—H50	0.9500
C17—H17	0.9500	C51—C52	1.390 (5)
C18—C19	1.387 (5)	C51—H51	0.9500
C18—H18	0.9500	C52—H52	0.9500
C19—C20	1.377 (5)	C53—H53A	0.9900
C19—H19	0.9500	C53—H53B	0.9900
P1—Cu1—P2	124.12 (3)	C19—C20—C21	120.3 (3)
P1Cu1S1	114.62 (3)	C19C20H20	119.9
P2Cu1S1	112.68 (3)	C21—C20—H20	119.9
P1—Cu1—S2	101.19 (3)	C22—C21—C20	120.7 (3)
P2Cu1S2	110.69 (3)	C22—C21—H21	119.7
S1Cu1S2	85.30 (3)	C20C21H21	119.7
P1Cu1P5	119.79 (3)	C17C22C21	118.1 (3)
P2—Cu1—P5	114.70 (3)	C17C22P1	119.6 (2)
S1—Cu1—P5	43.41 (2)	C21—C22—P1	122.3 (2)
S2Cu1P5	42.45 (2)	C24—C23—C28	119.2 (3)
P5—S1—Cu1	81.32 (3)	C24—C23—P1	117.9 (2)
P5—S2—Cu1	77.49 (3)	C28—C23—P1	122.9 (2)
C29—P1—C22	103.53 (13)	C23—C24—C25	120.1 (3)
C29—P1—C23	104.29 (14)	C23—C24—H24	120.0
C22P1C23	101.83 (14)	C25—C24—H24	120.0
C29P1Cu1	111.18 (10)	C26—C25—C24	120.7 (3)
C22—P1—Cu1	119.69 (10)	C26—C25—H25	119.6
C23—P1—Cu1	114.63 (10)	C24—C25—H25	119.6
C41—P2—C35	105.59 (13)	C25—C26—C27	119.9 (3)
C41—P2—C47	102.78 (13)	C25—C26—H26	120.1
C35—P2—C47	101.05 (13)	C27—C26—H26	120.1
	1-51.00 (10)	020 1120	120.1

C41—P2—Cu1	112.94 (10)	C26C27C28	119.4 (3)
C35—P2—Cu1	113.44 (9)	C26—C27—H27	120.3
	119.40 (10)	C28—C27—H27	120.3
C47—P2—Cu1		C23—C28—C27	120.7 (3)
O3—P5—C10	103.54 (13)		
O3—P5—S2	111.11 (9)	C23—C28—H28	119.6
C10—P5—S2	112.80 (11)	C27—C28—H28	119.6
O3—P5—S1	106.35 (9)	C34—C29—C30	118.1 (3)
C10—P5—S1	107.89 (11)	C34—C29—P1	118.2 (2)
S2—P5—S1	114.39 (5)	C30—C29—P1	123.6 (2)
O3—P5—Cu1	117.00 (9)	C31—C30—C29	120.3 (3)
C10—P5—Cu1	138.81 (10)	C31—C30—H30	119.8
S2P5Cu1	60.06 (3)	C29—C30—H30	119.8
S1P5Cu1	55.28 (3)	C30—C31—C32	120.2 (3)
C9—O3—P5	124.56 (19)	C30—C31—H31	119.9
C13—O4—C16	117.1 (3)	C32—C31—H31	119.9
C5—N1—C1	125.4 (3)	C33C32C31	119.9 (3)
C5—N1—C8	117.9 (2)	C33—C32—H32	120.0
C1—N1—C8	116.7 (2)	C31—C32—H32	120.0
O1C1N1	120.0 (3)	C32—C33—C34	119.9 (3)
O1C2	123.1 (3)	С32—С33—Н33	120.0
N1—C1—C2	116.9 (3)	C34—C33—H33	120.0
C7C2C3	119.8 (3)	C33—C34—C29	121.4 (3)
C7—C2—C1	120.3 (3)	C33—C34—H34	119.3
C3—C2—C1	119.9 (3)	C29—C34—H34	119.3
C3 ⁱ —C3—C2	119.8 (3)	C40C35C36	118.9 (3)
C3 ⁱ —C3—C4	119.3 (3)	C40—C35—P2	124.6 (2)
C2—C3—C4	120.9 (3)	C36—C35—P2	116.4 (2)
C6C4C3	119.9 (3)	C37—C36—C35	120.7 (3)
C6C4C5	120.0 (3)	C37—C36—H36	119.7
C3—C4—C5	120.1 (3)	C35—C36—H36	119.7
O2—C5—N1	120.7 (3)	C38—C37—C36	119.9 (3)
O2C5C4	122.6 (3)	C38—C37—H37	120.1
N1—C5—C4	116.6 (2)	C36—C37—H37	120.1
C4—C6—C7i	120.7 (3)	C39—C38—C37	119.9 (3)
C4C6H6	119.7	C39—C38—H38	120.1
C7 ⁱ —C6—H6	119.7	C37—C38—H38	120.1
C2C7C6 ⁱ	120.5 (3)	C38—C39—C40	121.0 (3)
C2C7H7	119.7	C38—C39—H39	119.5
C6 ⁱ —C7—H7	119.7	C40—C39—H39	119.5
N1—C8—C9	112.3 (2)	C35—C40—C39	119.7 (3)
N1—C8—H8A	109.1	C35—C40—H40	120.2
С9—С8—Н8А	109.1	C39—C40—H40	120.2
N1—C8—H8B	109.1	C46—C41—C42	118.6 (3)
00 11010	105.1		116.0 (3)

C9—C8—H8B	109.1	C46—C41—P2	123.1 (2)
H8A—C8—H8B	107.9	C42—C41—P2	118.2 (2)
O3C9C8	108.3 (2)	C43—C42—C41	120.6 (3)
O3C9H9A	110.0	C43—C42—H42	119.7
C8—C9—H9A	110.0	C41—C42—H42	119.7
O3—C9—H9B	110.0	C44—C43—C42	120.3 (3)
С8С9Н9В	110.0	C44—C43—H43	119.8
Н9А—С9—Н9В	108.4	C42—C43—H43	119.8
C11C10C15	118.2 (3)	C43C44C45	119.7 (3)
C11—C10—P5	118.7 (2)	C43—C44—H44	120.2
C15—C10—P5	123.1 (2)	C45—C44—H44	120.2
C10C11C12	122.3 (3)	C46—C45—C44	120.1 (3)
C10-C11-H11	118.9	C46—C45—H45	119.9
C12C11H11	118.9	C44—C45—H45	119.9
C13—C12—C11	118.7 (3)	C45—C46—C41	120.7 (3)
C13—C12—H12	120.6	C45—C46—H46	119.7
C11—C12—H12	120.6	C41—C46—H46	119.7
O4—C13—C12	123.7 (3)	C52—C47—C48	118.9 (3)
O4—C13—C14	115.9 (3)	C52—C47—P2	120.0 (2)
C12—C13—C14	120.3 (3)	C48—C47—P2	121.0 (2)
C15—C14—C13	120.3 (3)	C49—C48—C47	120.4 (3)
C15C14H14	119.9	C49—C48—H48	119.8
C13—C14—H14	119.9	C47—C48—H48	119.8
C14—C15—C10	120.2 (3)	C48C49C50	119.8 (3)
C14—C15—H15	119.9	C48—C49—H49	120.1
C10C15H15	119.9	C50C49H49	120.1
O4—C16—H16A	109.5	C51—C50—C49	120.3 (3)
O4C16H16B	109.5	C51C50H50	119.8
H16AC16H16B	109.5	C49—C50—H50	119.8
O4C16H16C	109.5	C50—C51—C52	120.1 (3)
H16A—C16—H16C	109.5	C50—C51—H51	120.0
H16BC16H16C	109.5	C52—C51—H51	120.0
C18—C17—C22	120.8 (3)	C47C52C51	120.5 (3)
C18—C17—H17	119.6	C47—C52—H52	119.8
C22—C17—H17	119.6	C51—C52—H52	119.8
C19—C18—C17	120.5 (3)	C12—C53—C11	110.4 (2)
C19C18H18	119.7	Cl2—C53—H53A	109.6
C17C18H18	119.7	C11—C53—H53A	109.6
C20C19C18	119.6 (3)	C12—C53—H53B	109.6
C20—C19—H19	120.2	Cl1—C53—H53B	109.6
C18—C19—H19	120.2	H53A—C53—H53B	108.1
P1Cu1S1P5	108.11 (4)	P5C10C11C12	-177.3 (3)
P2Cu1S1P5	-102.54 (4)	C10C11C12C13	0.1 (5)
			J *** (°)

			_
S2Cu1S1P5	7.94 (3)	C16—O4—C13—C12	-1.3 (5)
P1—Cu1—S2—P5	-122.28 (4)	C16O4C13C14	179.1 (3)
P2Cu1S2P5	104.41 (4)	C11—C12—C13—O4	178.5 (3)
S1Cu1S2P5	-8.08 (3)	C11—C12—C13—C14	-2.0 (5)
P2Cu1P1C29	56.00 (11)	O4—C13—C14—C15	-178.1 (3)
S1Cu1P1C29	-158.62 (10)	C12—C13—C14—C15	2.4 (5)
S2Cu1P1C29	-68.69 (10)	C13C14C15C10	-0.9 (5)
P5—Cu1—P1—C29	-109.81 (10)	C11—C10—C15—C14	-1.0 (5)
P2Cu1P1C22	176.64 (11)	P5C10C15C14	177.7 (2)
S1Cu1P1C22	-37.98 (11)	C22C17C18C19	-1.2 (5)
S2Cu1P1C22	51.95 (11)	C17—C18—C19—C20	0.1 (5)
P5—Cu1—P1—C22	10.84 (12)	C18—C19—C20—C21	0.6 (5)
P2-Cu1-P1-C23	-61.96 (12)	C19—C20—C21—C22	-0.2 (5)
S1—Cu1—P1—C23	83.42 (12)	C18—C17—C22—C21	1.5 (4)
S2—Cu1—P1—C23	173.35 (11)	C18C17C22P1	-177.9 (2)
P5—Cu1—P1—C23	132.23 (11)	C20—C21—C22—C17	-0.8 (4)
P1—Cu1—P2—C41	-130.97 (11)	C20—C21—C22—P1	178.6 (2)
S1—Cu1—P2—C41	83.07 (11)	C29—P1—C22—C17	98.8 (2)
S2Cu1P2C41	-10.53 (11)	C23—P1—C22—C17	-153.1 (2)
P5—Cu1—P2—C41	35.49 (11)	Cu1—P1—C22—C17	-25.6 (3)
P1Cu1P2C35	-10.86 (11)	C29—P1—C22—C21	-80.5 (3)
S1Cu1P2C35	-156.82 (11)	C23—P1—C22—C21	27.5 (3)
S2—Cu1—P2—C35	109.57 (11)	Cu1—P1—C22—C21	155.1 (2)
P5Cu1P2C35	155.59 (10)	C29—P1—C23—C24	175.9 (2)
P1—Cu1—P2—C47	108.09 (11)	C22P1C23C24	68.5 (3)
S1—Cu1—P2—C47	-37.87 (12)	Cu1P1C23C24	-62.3 (3)
S2—Cu1—P2—C47	-131.48 (11)	C29—P1—C23—C28	-5.6 (3)
P5—Cu1—P2—C47	-85.46 (11)	C22—P1—C23—C28	-113.1 (3)
Cu1—S2—P5—O3	-109.83 (10)	Cu1—P1—C23—C28	116.2 (2)
Cu1—S2—P5—C10	134.42 (11)	C28—C23—C24—C25	1.4 (5)
Cu1—S2—P5—S1	10.61 (4)	P1—C23—C24—C25	179.9 (3)
Cu1—S1—P5—O3	111.85 (9)	C23—C24—C25—C26	-0.9 (6)
Cu1—S1—P5—C10	-137.60 (11)	C24—C25—C26—C27	-0.7 (6)
Cu1—S1—P5—S2	-11.19 (5)	C25—C26—C27—C28	1.7 (5)
P1—Cu1—P5—O3	172.85 (9)	C24—C23—C28—C27	-0.4 (5)
P2Cu1P5O3	5.76 (10)	P1—C23—C28—C27	-178.9 (2)
S1Cu1P5O3	-91.80 (10)	C26—C27—C28—C23	-1.1 (5)
S2Cu1P5O3	99.97 (10)	C22—P1—C29—C34	-141.6 (2)
P1—Cu1—P5—C10	-18.33 (16)	C23—P1—C29—C34	112.2 (3)
P2Cu1P5C10	174.58 (16)	Cu1—P1—C29—C34	-11.9 (3)
S1—Cu1—P5—C10	77.03 (16)	C22—P1—C29—C30	40.9 (3)
S2—Cu1—P5—C10	-91.21 (16)	C23—P1—C29—C30	-65.3 (3)
P1Cu1P5S2	72.88 (4)	Cu1P1C29C30	170.6 (2)

P2Cu1P5S2	-94.21 (4)	C34—C29—C30—C31	-3.1 (5)
S1Cu1P5S2	168.23 (5)	P1—C29—C30—C31	174.4 (2)
P1Cu1P5S1	-95.35 (4)	C29—C30—C31—C32	0.2 (5)
P2Cu1P5S1	97.56 (4)	C30—C31—C32—C33	2.4 (5)
S2Cu1P5S1	-168.23 (5)	C31—C32—C33—C34	-1.9 (5)
C10—P5—O3—C9	111.5 (2)	C32—C33—C34—C29	-1.2 (5)
S2—P5—O3—C9	-9.8 (3)	C30—C29—C34—C33	3.7 (5)
S1—P5—O3—C9	-134.9 (2)	P1—C29—C34—C33	-173.9 (2)
Cu1—P5—O3—C9	-76.0 (2)	C41—P2—C35—C40	-0.9 (3)
C5—N1—C1—O1	178.9 (3)	C47—P2—C35—C40	105.9 (3)
C8N1C1O1	0.5 (4)	Cu1—P2—C35—C40	-125.1 (2)
C5N1C1C2	-1.3 (4)	C41—P2—C35—C36	175.6 (2)
C8N1C1C2	-179.8 (2)	C47—P2—C35—C36	-77.6 (2)
O1—C1—C2—C7	-1.8 (5)	Cu1P2C35C36	51.4 (2)
N1—C1—C2—C7	178.5 (3)	C40—C35—C36—C37	-1.4 (4)
O1C2C3	177.7 (3)	P2C35C36C37	-178.1 (2)
N1—C1—C2—C3	-2.0 (4)	C35—C36—C37—C38	1.4 (5)
C7—C2—C3—C3 ⁱ	1.5 (5)	C36—C37—C38—C39	-0.9 (5)
C1—C2—C3—C3 ⁱ	-178.1 (3)	C37—C38—C39—C40	0.3 (5)
C7C2C3C4	-178.6 (3)	C36C35C40C39	0.8 (5)
C1—C2—C3—C4	1.9 (4)	P2C35C40C39	177.2 (2)
C3i—C3—C4—C6	1.1 (5)	C38—C39—C40—C35	-0.3 (5)
C2—C3—C4—C6	-178.9 (3)	C35—P2—C41—C46	114.7 (3)
C3i—C3—C4—C5	-178.7 (3)	C47—P2—C41—C46	9.2 (3)
C2—C3—C4—C5	1.4 (4)	Cu1—P2—C41—C46	-120.8 (2)
C1—N1—C5—O2	-177.3 (3)	C35—P2—C41—C42	-70.4 (3)
C8—N1—C5—O2	1.1 (4)	C47—P2—C41—C42	-175.9 (2)
C1—N1—C5—C4	4.4 (4)	Cu1—P2—C41—C42	54.1 (3)
C8—N1—C5—C4	-177.1 (2)	C46—C41—C42—C43	-1.5 (5)
C6—C4—C5—O2	-2.3 (4)	P2—C41—C42—C43	-176.7 (2)
C3—C4—C5—O2	177.4 (3)	C41—C42—C43—C44	1.3 (5)
C6-C4-C5-N1	175.9 (3)	C42—C43—C44—C45	-0.5 (5)
C3—C4—C5—N1	-4.4 (4)	C43—C44—C45—C46	0.0 (5)
C3—C4—C6—C7 ⁱ	-0.8 (4)	C44C45C46C41	-0.2 (5)
C5—C4—C6—C7 ⁱ	179.0 (3)	C42C41C46C45	1.0 (5)
C3—C2—C7—C6 ⁱ	-1.8 (5)	P2—C41—C46—C45	175.9 (2)
C1C2C6 ⁱ	177.8 (3)	C41—P2—C47—C52	-109.7 (3)
C5—N1—C8—C9	-102.5 (3)	C35—P2—C47—C52	141.4 (3)
C1—N1—C8—C9	76.1 (3)	Cu1—P2—C47—C52	16.2 (3)
P5—O3—C9—C8	-135.9 (2)	C41—P2—C47—C48	68.5 (3)
N1—C8—C9—O3	57.7 (3)	C35—P2—C47—C48	-40.5 (3)
O3P5C10C11	78.5 (3)	Cu1—P2—C47—C48	-165.6 (2)
S2—P5—C10—C11	-161.3 (2)	C52—C47—C48—C49	0.3 (5)

S1P5C10C11	-33.9 (3)	P2C47C48C49	-177.9 (2)		
Cu1—P5—C10—C11	-91.2 (3)	C47—C48—C49—C50	-1.2 (5)		
O3P5C10C15	-100.1 (3)	C48—C49—C50—C51	1.3 (5)		
S2—P5—C10—C15	20.1 (3)	C49—C50—C51—C52	-0.4 (6)		
S1—P5—C10—C15	147.5 (2)	C48—C47—C52—C51	0.5 (5)		
Cu1—P5—C10—C15	90.1 (3)	P2—C47—C52—C51	178.7 (3)		
C15C10C11C12	1.4 (5)	C50—C51—C52—C47	-0.5 (6)		
Symmetry code: (i) -x+1, -y+1, -z.					

Table A7: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2) for NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂(SnPh₃)₂]₂

	x	y	z	$U_{ m iso}$ */ $U_{ m eq}$
Sn1	-0.25941 (3)	0.93483 (4)	-0.020622 (17)	0.02446 (10)
Sn2	0.43724 (2)	1.59568 (4)	0.815321 (17)	0.02317 (10)
S1	-0.29717 (13)	0.97351 (18)	0.12648 (8)	0.0361 (4)
S5	0.31298 (12)	1.48581 (16)	0.74897 (7)	0.0286 (4)
S7	-0.12888 (14)	1.05180 (19)	0.03851 (8)	0.0357 (4)
S8	0.50110 (13)	1.57029 (16)	0.67655 (8)	0.0311 (4)
P1	0.37359 (12)	1.48971 (15)	0.67147 (7)	0.0230 (3)
P2	-0.17095 (13)	1.04961 (16)	0.12101 (7)	0.0263 (4)
O1	0.0247 (4)	1.3662 (5)	0.5527 (2)	0.0362 (12)
O2	0.1905 (4)	0.8398 (4)	0.4054 (2)	0.0370 (12)
O3	0.1593 (4)	1.0695 (4)	0.2380 (2)	0.0332 (12)
O4	-0.0062 (4)	1.5957 (4)	0.3859 (2)	0.0358 (12)
O5	0.0248 (3)	0.8124 (4)	0.2445 (2)	0.0278 (10)
O6	-0.0795 (4)	0.9832 (4)	0.1588 (2)	0.0302 (11)
O7	0.1200 (3)	1.6440 (4)	0.5633 (2)	0.0308 (11)
O8	0.2889 (4)	1.5523 (4)	0.62656 (19)	0.0258 (10)
O9	-0.1057 (4)	1.5718 (5)	0.2144 (2)	0.0414 (13)
O10	0.3547 (4)	0.9521 (4)	0.5951 (2)	0.0358 (12)
N1	0.0109 (4)	1.4823 (5)	0.4689 (3)	0.0269 (12)
N2	0.1726 (4)	0.9538 (5)	0.3214 (3)	0.0301 (13)
Cl	0.0331 (5)	1.3698 (7)	0.5012 (3)	0.0264 (15)
C2	0.0674 (5)	1.2605 (6)	0.4694 (3)	0.0269 (15)
C3	0.0898 (5)	1.1479 (6)	0.4988 (3)	0.0311 (16)
Н3	0.0818	1.1406	0.5386	0.037*
C4	0.1244 (5)	1.0445 (7)	0.4693 (3)	0.0326 (17)
H4	0.1402	0.9673	0.4897	0.039*
C5	0.1360 (5)	1.0526 (6)	0.4116 (3)	0.0282 (16)
C6	0.1691 (5)	0.9404 (7)	0.3810 (3)	0.0319 (17)
C7	0.1515 (5)	1.0656 (6)	0.2891 (3)	0.0298 (17)
C8	0.1216 (5)	1.1767 (6)	0.3217 (3)	0.0272 (15)

C9	0.1005 (6)	1.2902 (7)	0.2930 (3)	0.0348 (17)
Н9	0.1005 (0)	1.2973	0.2534	0.042*
C10	0.0660 (6)	1.3954 (6)	0.3212 (3)	0.0311 (17)
H10	0.0498	1.4721	0.3005	0.037*
C11		1.3870 (6)	0.3794 (3)	0.0271 (15)
C12	0.0555 (5)			
	0.0186 (5)	1.4979 (6)	0.4099 (3)	0.0293 (16)
C13	0.0772 (5)	1.2729 (6)	0.4103 (2)	0.0248 (15)
C14	0.1117 (5)	1.1658 (6)	0.3810 (3)	0.0278 (15)
C15	0.1955 (5)	0.8396 (6)	0.2903 (3)	0.0324 (16)
H15A	0.2498	0.7930	0.3135	0.039*
H15B	0.2174	0.8640	0.2530	0.039*
C16	0.1058 (5)	0.7533 (6)	0.2788 (3)	0.0330 (16)
H16A	0.1240	0.6755	0.2588	0.040*
H16B	0.0856	0.7273	0.3163	0.040*
C17	0.0323 (5)	0.8103 (6)	0.1843 (3)	0.0317 (16)
H17A	0.0501	0.7235	0.1728	0.038*
H17B	0.0850	0.8691	0.1761	0.038*
C18	-0.0623 (6)	0.8488 (6)	0.1496 (3)	0.0345 (17)
H18A	-0.0596	0.8327	0.1079	0.041*
H18B	-0.1169	0.7980	0.1616	0.041*
C19	-0.0230 (5)	1.5941 (7)	0.4986 (3)	0.0303 (16)
H19A	-0.0492	1.5655	0.5340	0.036*
H19B	-0.0775	1.6347	0.4728	0.036*
C20	0.0553 (5)	1.6908 (6)	0.5151 (3)	0.0294 (15)
H20A	0.0922	1.7068	0.4820	0.035*
H20B	0.0254	1.7720	0.5254	0.035*
C21	0.1986 (5)	1.7269 (6)	0.5808 (3)	0.0302 (15)
H21A	0.1734	1.8137	0.5862	0.036*
H21B	0.2430	1.7305	0.5506	0.036*
C22	0.2537 (5)	1.6788 (7)	0.6369 (3)	0.0275 (15)
H22A	0.3097	1.7357	0.6500	0.033*
H22B	0.2098	1.6764	0.6673	0.033*
C23	-0.1554 (5)	1.2086 (6)	0.1475 (3)	0.0276 (15)
C24	-0.0678 (5)	1.2731 (7)	0.1464 (3)	0.0315 (16)
H24	-0.0158	1.2325	0.1303	0.038*
C25	-0.0542 (6)	1.3943 (6)	0.1680 (3)	0.0340 (16)
H25	0.0062	1.4372	0.1662	0.041*
C26	-0.1294 (6)	1.4544 (6)	0.1925 (3)	0.0305 (16)
C27	-0.2177 (6)	1.3921 (6)	0.1932 (3)	0.0328 (16)
H27	-0.2692	1.4324	0.2098	0.039*
C28	-0.2315 (6)	1.2714 (7)	0.1698 (3)	0.0341 (16)
H28	-0.2935	1.2308	0.1690	0.041*
C29	-0.1757 (7)	1.6306 (7)	0.2463 (4)	0.052 (2)

H29A	-0.1903	1.5732	0.2772	0.078*
H29B	-0.2362	1.6484	0.2201	0.078*
H29C	-0.1485	1.7103	0.2634	0.078*
C30	0.3681 (5)	1.3273 (6)	0.6461 (3)	0.0226 (13)
C31	0.4537 (5)	1.2666 (6)	0.6347 (3)	0.0277 (14)
H31	0.5141	1.3119	0.6396	0.033*
C32	0.4519 (5)	1.1432 (6)	0.6165 (3)	0.0294 (15)
H32	0.5103	1.1040	0.6074	0.035*
C33	0.3645 (6)	1.0749 (6)	0.6114 (3)	0.0276 (15)
C34	0.2780 (5)	1.1360 (7)	0.6220 (3)	0.0278 (14)
H34	0.2178	1.0903	0.6173	0.033*
C35	0.2792 (6)	1.2603 (6)	0.6389 (3)	0.0297 (15)
H35	0.2201	1.3011	0.6458	0.036*
C36	0.4429 (6)	0.8860 (7)	0.5854 (4)	0.049 (2)
H36A	0.4873	0.8802	0.6220	0.073*
H36B	0.4754	0.9327	0.5569	0.073*
H36C	0.4261	0.8002	0.5709	0.073*
C37	-0.3835 (6)	1.0538 (7)	-0.0385 (4)	0.0364 (19)
C38	-0.4626 (6)	1.0078 (7)	-0.0773 (3)	0.0377 (18)
H38	-0.4586	0.9262	-0.0944	0.045*
C39	-0.5480 (7)	1.0821 (8)	-0.0910 (4)	0.051 (2)
H39	-0.6023	1.0496	-0.1164	0.061*
C40	-0.5527 (7)	1.1992 (8)	-0.0679 (4)	0.049 (2)
H40	-0.6119	1.2467	-0.0752	0.058*
C41	-0.4729 (7)	1.2508 (7)	-0.0341 (4)	0.045 (2)
H41	-0.4746	1.3365	-0.0213	0.054*
C42	-0.3887 (6)	1.1761 (7)	-0.0184 (4)	0.0365 (18)
H42	-0.3346	1.2106	0.0065	0.044*
C43	-0.2936 (5)	0.7535 (6)	0.0104 (3)	0.0263 (14)
C44	-0.2226 (5)	0.6652 (7)	0.0325 (3)	0.0310 (16)
H44	-0.1550	0.6845	0.0328	0.037*
C45	-0.2501 (6)	0.5481 (7)	0.0545 (3)	0.0386 (19)
H45	-0.2006	0.4901	0.0705	0.046*
C46	-0.3450 (6)	0.5169 (7)	0.0534 (3)	0.0376 (18)
H46	-0.3622	0.4360	0.0671	0.045*
C47	-0.4191 (6)	0.6035 (7)	0.0319 (4)	0.0327 (17)
H47	-0.4864	0.5819	0.0313	0.039*
C48	-0.3926 (5)	0.7206 (6)	0.0116 (3)	0.0283 (15)
H48	-0.4426	0.7803	-0.0018	0.034*
C49	-0.1847 (6)	0.9179 (7)	-0.0954 (3)	0.0295 (17)
C50	-0.1399 (6)	1.0239 (8)	-0.1159 (4)	0.044 (2)
H50	-0.1359	1.0998	-0.0935	0.052*
C51	-0.1016 (7)	1.0234 (11)	-0.1667 (5)	0.059 (3)

H51	-0.0717	1.0976	-0.1798	0.071*
C52	-0.1067 (9)	0.9145 (16)	-0.1988 (5)	0.097 (6)
H52	-0.0831	0.9138	-0.2353	0.116*
C53	-0.1465 (6)	0.8036 (12)	-0.1782 (4)	0.067 (3)
H53	-0.1470	0.7270	-0.1999	0.080*
C54	-0.1852 (6)	0.8055 (8)	-0.1258 (4)	0.045 (2)
H54	-0.2117	0.7303	-0.1114	0.054*
C55	0.5634 (5)	1.4776 (7)	0.8378 (3)	0.0291 (15)
C56	0.5738 (6)	1.3573 (7)	0.8162 (4)	0.0364 (18)
H56	0.5240	1.3228	0.7882	0.044*
C57	0.6574 (6)	1.2860 (7)	0.8353 (4)	0.0413 (19)
H57	0.6652	1.2033	0.8200	0.050*
C58	0.7283 (6)	1.3356 (7)	0.8762 (4)	0.046 (2)
H58	0.7854	1.2871	0.8892	0.055*
C59	0.7178 (7)	1.4530 (8)	0.8985 (4)	0.043 (2)
H59	0.7678	1.4865	0.9266	0.052*
C60	0.6349 (6)	1.5246 (7)	0.8805 (3)	0.0359 (17)
H60	0.6267	1.6057	0.8973	0.043*
C61	0.4758 (5)	1.7806 (6)	0.7894 (3)	0.0241 (14)
C62	0.4071 (6)	1.8726 (7)	0.7725 (3)	0.0380 (18)
H62	0.3393	1.8554	0.7729	0.046*
C63	0.4369 (6)	1.9910 (7)	0.7547 (3)	0.0385 (18)
H63	0.3889	2.0547	0.7438	0.046*
C64	0.5323 (6)	2.0174 (7)	0.7526 (3)	0.0396 (18)
H64	0.5508	2.0980	0.7392	0.047*
C65	0.6038 (6)	1.9264 (6)	0.7702 (4)	0.0368 (19)
H65	0.6714	1.9451	0.7699	0.044*
C66	0.5749 (5)	1.8079 (6)	0.7882 (3)	0.0285 (15)
H66	0.6232	1.7449	0.7999	0.034*
C67	0.3571 (6)	1.5997 (6)	0.8889 (3)	0.0283 (16)
C68	0.3090 (6)	1.4929 (7)	0.9032 (3)	0.0351 (17)
H68	0.3019	1.4225	0.8774	0.042*
C69	0.2703 (6)	1.4867 (7)	0.9556 (3)	0.0390 (18)
H69	0.2372	1.4117	0.9650	0.047*
C70	0.2790 (6)	1.5860 (8)	0.9934 (4)	0.0374 (19)
H70	0.2558	1.5785	1.0299	0.045*
C71	0.3216 (6)	1.6969 (8)	0.9785 (3)	0.040 (2)
H71	0.3239	1.7685	1.0036	0.049*
C72	0.3622 (5)	1.7052 (7)	0.9258 (3)	0.0362 (18)
H72	0.3927	1.7817	0.9157	0.043*

Table A8: Atomic displacement parameters (Ų) for NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂(SnPh₃)₂]₂

	U^{11}	U ²²	U^{83}	U^{12}	U^{13}	U^{23}
Sn1	0.0237 (2)	0.0290 (2)	0.0206 (2)	-0.00518 (17)	0.00250 (16)	-0.00310 (17)
Sn2	0.0209 (2)	0.0301 (2)	0.01811 (19)	-0.00336 (17)	0.00108 (15)	-0.00226 (17)
S1	0.0283 (9)	0.0461 (10)	0.0354 (9)	-0.0103 (8)	0.0090 (7)	-0.0085 (8)
S5	0.0256 (8)	0.0406 (9)	0.0197 (8)	-0.0120 (7)	0.0033 (6)	-0.0046 (6)
S7	0.0352 (10)	0.0485 (11)	0.0237 (9)	-0.0189 (8)	0.0051 (7)	-0.0085 (7)
S8	0.0273 (9)	0.0378 (9)	0.0297 (9)	-0.0074 (7)	0.0086 (7)	-0.0054 (7)
P1	0.0233 (8)	0.0284 (8)	0.0171 (7)	-0.0036 (6)	0.0016 (6)	-0.0015 (6)
P2	0.0259 (9)	0.0312 (9)	0.0219 (8)	-0.0041 (7)	0.0031 (7)	-0.0055 (7)
O1	0.033 (3)	0.052 (3)	0.023 (3)	-0.007 (2)	0.004 (2)	-0.001 (2)
O2	0.040 (3)	0.033 (3)	0.037 (3)	0.006 (2)	0.000 (2)	0.009 (2)
O3	0.035 (3)	0.040 (3)	0.026 (3)	-0.006 (2)	0.010 (2)	-0.006 (2)
O4	0.041 (3)	0.035 (3)	0.030 (3)	0.003 (2)	0.000 (2)	0.003 (2)
O5	0.027 (3)	0.026 (2)	0.031 (3)	-0.0010 (18)	0.008 (2)	-0.0059 (19)
O6	0.032 (3)	0.029 (2)	0.028 (3)	0.001 (2)	0.001 (2)	-0.008 (2)
O7	0.032 (3)	0.028 (2)	0.030 (3)	0.004 (2)	-0.004 (2)	-0.003 (2)
O8	0.038 (3)	0.022 (2)	0.017 (2)	-0.0004 (19)	0.001 (2)	-0.0018 (17)
O9	0.056 (4)	0.032 (3)	0.039 (3)	-0.002 (2)	0.014 (3)	-0.006 (2)
O10	0.033 (3)	0.028 (2)	0.049 (3)	0.001 (2)	0.014 (2)	-0.006 (2)
N1	0.019 (3)	0.033 (3)	0.028 (3)	-0.001 (2)	0.001 (2)	-0.005 (2)
N2	0.025 (3)	0.036 (3)	0.028 (3)	-0.002 (2)	-0.002 (2)	0.000 (2)
C1	0.018 (3)	0.036 (4)	0.024 (4)	-0.010 (3)	-0.002 (3)	0.003 (3)
C2	0.021 (3)	0.032 (4)	0.027 (4)	-0.006 (3)	0.001 (3)	0.001 (3)
C3	0.029 (4)	0.036 (4)	0.026 (4)	-0.012 (3)	-0.003 (3)	0.008 (3)
C4	0.029 (4)	0.033 (4)	0.033 (4)	-0.009 (3)	-0.004 (3)	0.008 (3)
C5	0.029 (4)	0.025 (3)	0.027 (4)	-0.005 (3)	-0.008 (3)	0.001 (3)
C6	0.023 (4)	0.041 (4)	0.029 (4)	-0.003 (3)	-0.006 (3)	-0.002 (3)
C7	0.021 (3)	0.036 (4)	0.031 (4)	-0.007 (3)	-0.001 (3)	0.001 (3)
C8	0.024 (4)	0.031 (4)	0.025 (3)	-0.009 (3)	0.001 (3)	-0.002 (3)
C9	0.046 (5)	0.036 (4)	0.021 (3)	-0.010 (3)	-0.002 (3)	0.002 (3)
C10	0.039 (4)	0.027 (4)	0.024 (4)	-0.009 (3)	-0.005 (3)	0.002 (3)
C11	0.019 (3)	0.034 (4)	0.027 (4)	-0.007 (3)	-0.001 (3)	-0.004 (3)
C12	0.030 (4)	0.032 (4)	0.023 (3)	-0.007 (3)	-0.006 (3)	0.002 (3)
C13	0.024 (3)	0.031 (3)	0.017 (4)	-0.009 (3)	-0.007 (3)	0.002 (3)
C14	0.024 (4)	0.032 (4)	0.026 (3)	-0.009 (3)	-0.002 (3)	-0.002 (3)
C15	0.025 (4)	0.039 (4)	0.033 (4)	0.006 (3)	0.005 (3)	-0.005 (3)
C16	0.034 (4)	0.027 (4)	0.038 (4)	0.004 (3)	0.006 (3)	-0.001 (3)
C17	0.039 (4)	0.026 (3)	0.029 (4)	0.003 (3)	0.003 (3)	-0.008 (3)
C18	0.033 (4)	0.029 (4)	0.041 (4)	-0.005 (3)	0.001 (3)	-0.013 (3)
C19	0.018 (3)	0.043 (4)	0.030 (4)	0.003 (3)	0.002 (3)	-0.001 (3)
C20	0.033 (4)	0.029 (3)	0.026 (3)	0.010 (3)	0.003 (3)	0.000 (3)

C21	0.030 (4)	0.026 (3)	0.034 (4)	0.001 (3)	0.000 (3)	0.002 (3)
C22	0.027 (4)	0.032 (4)	0.025 (4)	0.000 (3)	0.009 (3)	0.001 (3)
C23	0.034 (4)	0.027 (3)	0.021 (3)	-0.002 (3)	0.000 (3)	-0.002 (3)
C24	0.033 (4)	0.037 (4)	0.023 (3)	0.005 (3)	-0.003 (3)	-0.003 (3)
C25	0.041 (4)	0.031 (4)	0.029 (4)	-0.005 (3)	-0.001 (3)	-0.001 (3)
C26	0.046 (5)	0.026 (3)	0.019 (3)	0.003 (3)	0.004 (3)	0.004 (3)
C27	0.040 (4)	0.032 (4)	0.028 (4)	0.006 (3)	0.009 (3)	0.002 (3)
C28	0.037 (4)	0.036 (4)	0.028 (4)	-0.006 (3)	0.004 (3)	0.005 (3)
C29	0.061 (6)	0.032 (4)	0.067 (6)	-0.004 (4)	0.026 (5)	-0.012 (4)
C30	0.024 (3)	0.029 (3)	0.016 (3)	-0.004 (3)	0.007 (3)	-0.001 (2)
C31	0.022 (3)	0.039 (4)	0.025 (3)	-0.007 (3)	0.013 (3)	0.000 (3)
C32	0.027 (4)	0.031 (3)	0.032 (4)	0.001 (3)	0.008 (3)	0.003 (3)
C33	0.032 (4)	0.031 (4)	0.021 (3)	0.002 (3)	0.011 (3)	0.001 (3)
C34	0.025 (4)	0.034 (4)	0.024 (3)	-0.005 (3)	0.004 (3)	0.002 (3)
C35	0.032 (4)	0.034 (4)	0.023 (3)	0.000 (3)	0.004 (3)	0.000 (3)
C36	0.041 (5)	0.031 (4)	0.077 (6)	0.002 (3)	0.015 (4)	-0.013 (4)
C37	0.030 (4)	0.040 (4)	0.038 (5)	0.000 (3)	0.000 (3)	0.006 (3)
C38	0.041 (4)	0.037 (4)	0.034 (4)	-0.003 (3)	0.000 (3)	-0.009 (3)
C39	0.048 (6)	0.058 (5)	0.039 (5)	0.003 (4)	-0.018 (4)	0.005 (4)
C40	0.053 (5)	0.047 (5)	0.047 (5)	0.013 (4)	0.007 (4)	0.006 (4)
C41	0.052 (5)	0.036 (4)	0.048 (5)	0.013 (4)	0.011 (4)	0.007 (4)
C42	0.042 (5)	0.031 (4)	0.038 (4)	-0.006 (3)	0.010 (4)	0.002 (3)
C43	0.024 (3)	0.026 (3)	0.028 (4)	-0.001 (3)	0.001 (3)	-0.001 (3)
C44	0.024 (4)	0.041 (4)	0.028 (4)	0.004 (3)	0.004 (3)	-0.003 (3)
C45	0.042 (5)	0.042 (4)	0.028 (4)	0.009 (3)	-0.005 (3)	0.003 (3)
C46	0.050 (5)	0.034 (4)	0.029 (4)	0.003 (3)	0.009 (3)	0.007 (3)
C47	0.032 (4)	0.041 (4)	0.028 (4)	0.001 (3)	0.016 (3)	0.000 (3)
C48	0.030 (4)	0.027 (3)	0.028 (4)	0.001 (3)	0.003 (3)	-0.007 (3)
C49	0.029 (4)	0.043 (4)	0.020 (4)	0.003 (3)	0.014 (3)	0.004 (3)
C50	0.036 (5)	0.051 (5)	0.047 (5)	0.007 (4)	0.016 (4)	0.013 (4)
C51	0.037 (5)	0.095 (7)	0.050 (6)	0.023 (5)	0.020 (5)	0.046 (6)
C52	0.031 (6)	0.232 (19)	0.026 (6)	0.031 (8)	0.002 (5)	0.022 (8)
C53	0.025 (5)	0.138 (10)	0.032 (5)	0.022 (5)	-0.011 (4)	-0.040 (6)
C54	0.021 (4)	0.071 (6)	0.039 (5)	0.008 (4)	-0.006 (3)	-0.016 (4)
C55	0.029 (4)	0.033 (4)	0.023 (4)	0.001 (3)	-0.003 (3)	-0.001 (3)
C56	0.029 (4)	0.031 (4)	0.047 (5)	-0.003 (3)	-0.001 (3)	0.002 (3)
C57	0.046 (5)	0.029 (4)	0.048 (5)	0.004 (3)	0.008 (4)	-0.002 (3)
C58	0.035 (4)	0.043 (5)	0.056 (5)	0.009 (4)	-0.007 (4)	0.006 (4)
C59	0.040 (5)	0.051 (5)	0.035 (4)	0.006 (4)	-0.005 (4)	0.007 (4)
C60	0.035 (4)	0.037 (4)	0.032 (4)	0.000 (3)	-0.010 (3)	-0.006 (3)
C61	0.029 (4)	0.028 (3)	0.016 (3)	-0.003 (3)	0.003 (3)	-0.001 (2)
C62	0.036 (4)	0.042 (4)	0.034 (4)	0.002 (3)	-0.001 (3)	-0.004 (3)
C63	0.046 (5)	0.045 (4)	0.025 (4)	0.015 (4)	0.005 (3)	0.004 (3)

C64	0.044 (5)	0.036 (4)	0.038 (4)	0.000 (3)	0.002 (4)	0.006 (3)
C65	0.033 (4)	0.037 (4)	0.037 (5)	-0.004 (3)	-0.005 (4)	-0.002 (3)
C66	0.026 (4)	0.034 (4)	0.024 (3)	0.006 (3)	-0.003 (3)	-0.002 (3)
C67	0.026 (4)	0.037 (4)	0.021 (4)	0.000 (3)	0.001 (3)	-0.004 (3)
C68	0.042 (4)	0.034 (4)	0.031 (4)	0.003 (3)	0.011 (3)	-0.004 (3)
C69	0.044 (5)	0.041 (4)	0.033 (4)	0.003 (3)	0.007 (3)	0.019 (3)
C70	0.024 (4)	0.067 (5)	0.023 (4)	0.008 (3)	0.009 (3)	0.006 (3)
C71	0.032 (4)	0.060 (5)	0.027 (4)	0.014 (4)	-0.006 (3)	-0.016 (4)
C72	0.026 (4)	0.049 (4)	0.032 (4)	-0.001 (3)	-0.002 (3)	-0.005 (3)

Table A9: Geometric parameters (Å, °) for NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂(SnPh₃)₂]₂

Sn1—C37	2.110 (8)	C28—H28	0.9500
Sn1—C43	2.113 (6)	C29—H29A	0.9800
Sn1C49	2.143 (7)	C29—H29B	0.9800
Sn1—S7	2.4397 (17)	C29—H29C	0.9800
Sn2—C61	2.123 (6)	C30—C31	1.393 (9)
Sn2—C55	2.138 (7)	C30—C35	1.401 (9)
Sn2C67	2.157 (8)	C31—C32	1.364 (9)
Sn2—S5	2.4327 (16)	C31—H31	0.9500
S1—P2	1.929 (2)	C32—C33	1.390 (10)
S5—P1	2.085 (2)	C32—H32	0.9500
S7P2	2.077 (3)	C33—C34	1.401 (10)
S8—P1	1.934 (2)	C34—C35	1.364 (9)
P1—O8	1.597 (5)	C34—H34	0.9500
P1—C30	1.804 (6)	C35—H35	0.9500
P2O6	1.594 (5)	C36—H36A	0.9800
P2C23	1.784 (6)	C36—H36B	0.9800
O1—C1	1.220 (8)	C36—H36C	0.9800
O2—C6	1.218 (8)	C37—C42	1.373 (10)
O3C7	1.209 (9)	C37—C38	1.401 (11)
O4C12	1.196 (8)	C38C39	1.410 (12)
O5—C17	1.418 (8)	C38—H38	0.9500
O5C16	1.422 (8)	C39—C40	1.348 (12)
O6—C18	1.453 (8)	С39—Н39	0.9500
O7C21	1.403 (8)	C40C41	1.371 (12)
O7—C20	1.422 (8)	C40—H40	0.9500
O8—C22	1.446 (8)	C41—C42	1.405 (11)
O9—C26	1.358 (8)	C41—H41	0.9500
O9—C29	1.432 (9)	C42—H42	0.9500
O10—C33	1.347 (8)	C43—C44	1.393 (9)
O10—C36	1.441 (9)	C43—C48	1.407 (10)
N1—C12	1.402 (9)	C44—C45	1.404 (11)

N1—C1	1.412 (9)	C44—H44	0.9500
N1—C19	1.469 (9)	C45—C46	1.341 (11)
N2C6	1.400 (10)	C45—H45	0.9500
N2C7	1.403 (9)	C46—C47	1.406 (11)
N2C15	1.457 (9)	C46—H46	0.9500
C1—C2	1.477 (10)	C47—C48	1.384 (10)
C2—C3	1.380 (9)	C47—H47	0.9500
C2C13	1.407 (9)	C48H48	0.9500
C3—C4	1.401 (11)	C49—C54	1.376 (10)
С3—Н3	0.9500	C49C50	1.388 (10)
C4C5	1.376 (10)	C50—C51	1.358 (12)
C4—H4	0.9500	C50—H50	0.9500
C5C14	1.403 (9)	C51—C52	1.362 (16)
C5—C6	1.481 (10)	C51—H51	0.9500
C7—C8	1.479 (10)	C52—C53	1.398 (17)
C8C9	1.378 (10)	C52—H52	0.9500
C8—C14	1.411 (10)	C53—C54	1.394 (13)
C9—C10	1.400 (10)	C53—H53	0.9500
С9—Н9	0.9500	C54—H54	0.9500
C10C11	1.382 (10)	C55—C56	1.375 (10)
C10—H10	0.9500	C55—C60	1.391 (9)
C11—C13	1.408 (9)	C56—C57	1.393 (11)
C11—C12	1.489 (10)	C56—H56	0.9500
C13C14	1.429 (9)	C57—C58	1.370 (11)
C15—C16	1.524 (9)	C57—H57	0.9500
C15—H15A	0.9900	C58—C59	1.354 (11)
C15—H15B	0.9900	C58—H58	0.9500
C16—H16A	0.9900	C59—C60	1.382 (10)
C16—H16B	0.9900	C59—H59	0.9500
C17—C18	1.490 (10)	С60—Н60	0.9500
C17—H17A	0.9900	C61—C62	1.371 (10)
C17—H17B	0.9900	C61—C66	1.395 (10)
C18—H18A	0.9900	C62—C63	1.390 (11)
C18—H18B	0.9900	C62—H62	0.9500
C19—C20	1.492 (9)	C63—C64	1.346 (11)
C19—H19A	0.9900	С63—Н63	0.9500
C19—H19B	0.9900	C64—C65	1.392 (11)
C20—H20A	0.9900	C64—H64	0.9500
C20—H20B	0.9900	C65—C66	1.389 (10)
C21C22	1.505 (9)	C65—H65	0.9500
C21—H21A	0.9900	C66—H66	0.9500
C21—H21B	0.9900	C67—C68	1.366 (10)
C22—H22A	0.9900	C67—C72	1.399 (10)

C22—H22B	-H22B 0.9900 C68C69		1.394 (11)
C23—C24	1.384 (10)	C68—H68	0.9500
C23—C28	1.395 (10)	C69—C70	1.360 (12)
C24—C25	1.373 (9)	C69—H69	0.9500
C24—H24	0.9500	C70—C71	1.369 (11)
C25—C26	1.395 (11)	С70—Н70	0.9500
C25—H25	0.9500	C71—C72	1.416 (11)
C26—C27	1.380 (11)	C71—H71	0.9500
C27—C28	1.383 (9)	C72—H72	0.9500
C27—H27	0.9500		
C37—Sn1—C43	113.0 (3)	C28—C27—H27	119.8
C37—Sn1—C49	110.6 (3)	C27—C28—C23	120.7 (7)
C43—Sn1—C49	110.8 (3)	C27—C28—H28	119.7
C37—Sn1—S7	109.0 (2)	C23—C28—H28	119.7
C43—Sn1—S7	116.26 (18)	O9—C29—H29A	109.5
C49—Sn1—S7	96.0 (2)	О9—С29—Н29В	109.5
C61—Sn2—C55	112.1 (3)	H29AC29H29B	109.5
C61—Sn2—C67	112.4 (3)	O9—C29—H29C	109.5
C55—Sn2—C67	107.5 (3)	H29AC29H29C	109.5
C61—Sn2—S5	115.77 (18)	H29B—C29—H29C	109.5
C55—Sn2—S5	110.82 (19)	C31C30C35	119.4 (6)
C67Sn2S5	97.10 (19)	C31C30P1	119.8 (5)
P1—S5—Sn2	102.21 (8)	C35C30P1	120.8 (5)
P2S7Sn1	103.92 (8)	C32C31C30	121.0 (6)
O8—P1—C30	100.5 (3)	C32—C31—H31	119.5
O8P1S8	115.7 (2)	C30C31H31	119.5
C30—P1—S8	115.6 (2)	C31—C32—C33	119.8 (6)
O8P1S5	103.5 (2)	C31C32H32	120.1
C30P1S5	105.1 (2)	C33—C32—H32	120.1
S8—P1—S5	114.79 (10)	O10C33C32	124.9 (7)
O6—P2—C23	99.8 (3)	O10C33C34	115.7 (6)
O6P2S1	115.5 (2)	C32—C33—C34	119.4 (6)
C23—P2—S1	115.6 (3)	C35—C34—C33	120.8 (6)
O6—P2—S7	102.6 (2)	C35—C34—H34	119.6
C23—P2—S7	105.9 (2)	C33—C34—H34	119.6
S1—P2—S7	115.45 (11)	C34—C35—C30	119.5 (7)
C17—O5—C16	113.1 (5)	C34—C35—H35	120.2
C18—O6—P2	118.4 (4)	C30—C35—H35	120.2
C21—O7—C20	112.8 (5)	O10C36H36A	109.5
C22—O8—P1	120.1 (4)	О10—С36—Н36В	109.5
C26—O9—C29	116.3 (6)	H36AC36H36B	109.5
C33—O10—C36	116.8 (6)	O10—C36—H36C	109.5
C12-N1C1	125.4 (6)	H36AC36H36C	109.5

C12—N1—C19	115.9 (6)	Н36В—С36—Н36С	109.5
C1—N1—C19	118.6 (6)	C42—C37—C38	118.2 (7)
C6—N2—C7	125.5 (6)	C42—C37—Sn1	124.4 (6)
C6—N2—C15	116.5 (6)	C38—C37—Sn1	117.2 (6)
C7—N2—C15	117.8 (6)	C37—C38—C39	120.2 (7)
O1—C1—N1	120.4 (7)	C37—C38—H38	119.9
O1—C1—C2	123.1 (7)	C39—C38—H38	119.9
N1—C1—C2	116.5 (6)	C40—C39—C38	119.9 (8)
C3—C2—C13	121.3 (6)	C40—C39—H39	120.0
C3—C2—C1	119.0 (6)	C38—C39—H39	120.0
C13—C2—C1	119.8 (6)	C39—C40—C41	120.8 (8)
C2—C3—C4	119.4 (7)	C39—C40—H40	119.6
С2—С3—Н3	120.3	C41—C40—H40	119.6
C4—C3—H3	120.3	C40—C41—C42	119.6 (7)
C5—C4—C3	121.3 (7)	C40—C41—H41	120.2
C5—C4—H4	119.3	C42—C41—H41	120.2
C3—C4—H4	119.3	C37—C42—C41	120.9 (8)
C4C5C14	119.8 (7)	C37—C42—H42	119.6
C4—C5—C6	120.3 (6)	C41—C42—H42	119.6
C14—C5—C6	119.9 (7)	C44—C43—C48	117.3 (6)
O2—C6—N2	120.8 (7)	C44—C43—Sn1	123.4 (5)
O2—C6—C5	122.5 (7)	C48—C43—Sn1	119.2 (5)
N2C6C5	116.7 (6)	C43—C44—C45	120.7 (7)
O3—C7—N2	121.0 (7)	C43—C44—H44	119.7
O3—C7—C8	123.0 (6)	C45—C44—H44	119.7
N2C7C8	116.1 (7)	C46—C45—C44	121.0 (7)
C9—C8—C14	120.1 (7)	C46—C45—H45	119.5
C9—C8—C7	119.4 (7)	C44—C45—H45	119.5
C14—C8—C7	120.4 (6)	C45—C46—C47	120.3 (7)
C8C9C10	121.3 (7)	C45—C46—H46	119.9
С8—С9—Н9	119.3	C47—C46—H46	119.9
С10—С9—Н9	119.3	C48—C47—C46	119.1 (8)
C11—C10—C9	119.6 (6)	C48—C47—H47	120.4
C11-C10-H10	120.2	C46—C47—H47	120.4
C9C10H10	120.2	C47—C48—C43	121.6 (7)
C10C11C13	120.7 (6)	C47—C48—H48	119.2
C10C11C12	120.1 (6)	C43—C48—H48	119.2
C13—C11—C12	119.1 (6)	C54—C49—C50	119.0 (8)
O4—C12—N1	120.1 (7)	C54—C49—Sn1	121.2 (6)
O4—C12—C11	123.1 (7)	C50C49Sn1	119.6 (6)
N1—C12—C11	116.8 (6)	C51—C50—C49	122.5 (9)
C2—C13—C11	122.4 (6)	C51—C50—H50	118.8
C2C13C14	118.3 (6)	C49—C50—H50	118.8

C11—C13—C14	119.3 (5)	C50—C51—C52	118.8 (10)
C5—C14—C8	121.2 (6)	C50—C51—H51	120.6
C5—C14—C13	119.9 (6)	C52—C51—H51	120.6
C8—C14—C13	118.9 (6)	C51—C52—C53	120.5 (11)
N2—C15—C16	110.8 (6)	C51—C52—H52	119.8
N2—C15—H15A	109.5	C53—C52—H52	119.8
C16—C15—H15A	109.5	C54—C53—C52	120.0 (10)
N2—C15—H15B	109.5	C54—C53—H53	120.0
C16—C15—H15B	109.5	C52—C53—H53	120.0
H15A—C15—H15B	108.1	C49—C54—C53	119.0 (9)
O5C16C15	113.0 (5)	C49—C54—H54	120.5
O5—C16—H16A	109.0	C53—C54—H54	120.5
C15—C16—H16A	109.0	C56—C55—C60	119.3 (7)
O5—C16—H16B	109.0	C56—C55—Sn2	124.5 (5)
C15—C16—H16B	109.0	C60C55Sn2	116.0 (5)
H16A—C16—H16B	107.8	C55C56C57	120.0 (7)
O5—C17—C18	110.9 (6)	C55—C56—H56	120.0
O5C17H17A	109.5	C57—C56—H56	120.0
C18—C17—H17A	109.5	C58—C57—C56	119.7 (7)
О5С17Н17В	109.5	C58C57H57	120.2
C18—C17—H17B	109.5	C56—C57—H57	120.2
H17AC17H17B	108.1	C59—C58—C57	120.7 (7)
O6C18C17	109.3 (5)	C59—C58—H58	119.7
O6C18H18A	109.8	C57—C58—H58	119.7
C17—C18—H18A	109.8	C58—C59—C60	120.5 (8)
O6C18H18B	109.8	C58—C59—H59	119.8
C17—C18—H18B	109.8	C60—C59—H59	119.8
H18A—C18—H18B	108.3	C59—C60—C55	119.7 (7)
N1—C19—C20	113.8 (6)	C59—C60—H60	120.1
N1—C19—H19A	108.8	C55—C60—H60	120.1
C20—C19—H19A	108.8	C62C61C66	119.0 (6)
N1—C19—H19B	108.8	C62—C61—Sn2	122.6 (6)
C20—C19—H19B	108.8	C66—C61—Sn2	118.4 (5)
H19A—C19—H19B	107.7	C61—C62—C63	119.8 (8)
O7—C20—C19	108.6 (5)	C61—C62—H62	120.1
O7—C20—H20A	110.0	C63—C62—H62	120.1
C19—C20—H20A	110.0	C64—C63—C62	121.5 (7)
O7C20H20B	110.0	C64—C63—H63	119.3
C19—C20—H20B	110.0	С62—С63—Н63	119.3
H20AC20H20B	108.3	C63—C64—C65	120.0 (7)
O7—C21—C22	108.6 (5)	С63—С64—Н64	120.0
O7—C21—H21A	110.0	C65—C64—H64	120.0
C22C21H21A	110.0	C66—C65—C64	119.0 (8)

O7—C21—H21B	110.0	C66—C65—H65	120.5
C22—C21—H21B	110.0	C64—C65—H65	120.5
H21AC21H21B	108.3	C65—C66—C61	120.6 (7)
O8C22C21	107.8 (5)	C65—C66—H66	119.7
O8—C22—H22A	110.1	C61—C66—H66	119.7
C21—C22—H22A	110.1	C68—C67—C72	119.2 (7)
O8—C22—H22B	110.1	C68—C67—Sn2	119.5 (5)
C21—C22—H22B	110.1	C72—C67—Sn2	120.9 (6)
H22AC22H22B	108.5	C67C68C69	120.3 (7)
C24—C23—C28	118.2 (6)	C67—C68—H68	119.8
C24—C23—P2	121.1 (6)	C69—C68—H68	119.8
C28—C23—P2	120.7 (5)	C70—C69—C68	121.2 (7)
C25—C24—C23	121.5 (7)	С70—С69—Н69	119.4
C25—C24—H24	119.2	C68—C69—H69	119.4
C23—C24—H24	119.2	C69C70C71	119.6 (8)
C24—C25—C26	119.8 (7)	C69—C70—H70	120.2
C24—C25—H25	120.1	C71—C70—H70	120.2
C26—C25—H25	120.1	C70—C71—C72	120.2 (7)
O9—C26—C27	126.4 (7)	C70—C71—H71	119.9
O9C26C25	114.3 (7)	C72C71H71	119.9
C27—C26—C25	119.3 (6)	C67C72C71	119.3 (7)
C26—C27—C28	120.3 (7)	C67C72H72	120.4
C26—C27—H27	119.8	C71—C72—H72	120.4
C61—Sn2—S5—P1	55.4 (2)	O9—C26—C27—C28	-179.1 (7)
C55—Sn2—S5—P1	-73.6 (2)	C25—C26—C27—C28	0.0 (11)
C67—Sn2—S5—P1	174.56 (19)	C26—C27—C28—C23	2.7 (11)
C37—Sn1—S7—P2	77.0 (3)	C24—C23—C28—C27	-3.6 (10)
C43—Sn1—S7—P2	-52.2 (2)	P2C23C28C27	176.6 (6)
C49—Sn1—S7—P2	-168.9 (2)	O8P1C30C31	128.6 (5)
Sn2—S5—P1—O8	-125.89 (18)	S8P1C30C31	3.3 (6)
Sn2—S5—P1—C30	129.2 (2)	S5—P1—C30—C31	-124.3 (5)
Sn2—S5—P1—S8	1.09 (13)	O8—P1—C30—C35	-52.8 (6)
Sn1—S7—P2—O6	122.04 (19)	S8—P1—C30—C35	-178.0 (5)
Sn1—S7—P2—C23	-133.8 (2)	S5—P1—C30—C35	54.4 (6)
Sn1—S7—P2—S1	-4.46 (14)	C35—C30—C31—C32	0.1 (10)
C23—P2—O6—C18	-178.4 (5)	P1—C30—C31—C32	178.8 (5)
S1—P2—O6—C18	56.9 (5)	C30C31C32C33	-2.5 (10)
S7—P2—O6—C18	-69.5 (5)	C36—O10—C33—C32	3.5 (11)
C30—P1—O8—C22	168.2 (5)	C36—O10—C33—C34	-178.3 (7)
S8—P1—O8—C22	-66.6 (5)	C31—C32—C33—O10	-178.5 (7)
S5—P1—O8—C22	59.8 (5)	C31C32C33C34	3.4 (10)
C12—N1—C1—O1	179.5 (6)	O10-C33-C34-C35	179.8 (6)
C19N1C1O1	-0.3 (9)	C32—C33—C34—C35	-2.0 (10)

G12 NI G1 G2	To 1 (0)	C22 C24 C25 C20	0.4(10)
C12—N1—C1—C2	0.1 (9)	C33—C34—C35—C30	-0.4 (10)
C19—N1—C1—C2	-179.7 (5)	C31—C30—C35—C34	1.3 (10)
O1—C1—C2—C3	0.9 (10)	P1—C30—C35—C34	-177.3 (5)
N1—C1—C2—C3	-179.7 (6)	C43—Sn1—C37—C42	129.5 (7)
O1—C1—C2—C13	-178.6 (6)	C49—Sn1—C37—C42	-105.7 (7)
N1—C1—C2—C13	0.7 (9)	S7—Sn1—C37—C42	-1.4 (8)
C13—C2—C3—C4	0.9 (10)	C43—Sn1—C37—C38	-55.8 (7)
C1—C2—C3—C4	-178.6 (6)	C49—Sn1—C37—C38	69.0 (7)
C2—C3—C4—C5	-0.4 (11)	S7Sn1C37C38	173.3 (6)
C3—C4—C5—C14	-0.8 (11)	C42C37C38C39	-5.3 (13)
C3—C4—C5—C6	-177.7 (6)	Sn1—C37—C38—C39	179.7 (7)
C7—N2—C6—O2	-178.7 (6)	C37—C38—C39—C40	1.8 (14)
C15—N2—C6—O2	4.5 (10)	C38C39C40C41	4.2 (15)
C7—N2—C6—C5	2.9 (10)	C39—C40—C41—C42	-6.5 (14)
C15—N2—C6—C5	-173.9 (6)	C38—C37—C42—C41	3.0 (12)
C4C5C6O2	-2.7 (11)	Sn1C37C42C41	177.6 (6)
C14—C5—C6—O2	-179.5 (7)	C40—C41—C42—C37	2.8 (13)
C4C5C6N2	175.7 (6)	C37Sn1C43C44	-170.9 (6)
C14—C5—C6—N2	-1.1 (10)	C49—Sn1—C43—C44	64.4 (6)
C6N2C7O3	177.8 (7)	S7Sn1C43C44	-43.7 (6)
C15N2C7O3	-5.5 (10)	C37—Sn1—C43—C48	6.0 (6)
C6—N2—C7—C8	-1.1 (10)	C49—Sn1—C43—C48	-118.8 (5)
C15—N2—C7—C8	175.7 (6)	S7Sn1C43C48	133.1 (5)
O3C7C8C9	0.6 (11)	C48C43C44C45	0.6 (10)
N2—C7—C8—C9	179.5 (6)	Sn1C43C45	177.5 (5)
O3C7C8C14	178.6 (7)	C43C44C45C46	1.8 (11)
N2—C7—C8—C14	-2.5 (9)	C44—C45—C46—C47	-2.3 (12)
C14C8C9C10	-2.1 (11)	C45C46C47C48	0.5 (12)
C7C8C9C10	175.9 (7)	C46C47C48C43	1.9 (11)
C8C9C10C11	2.0 (11)	C44—C43—C48—C47	-2.4 (10)
C9C10C11C13	-1.4 (11)	Sn1—C43—C48—C47	-179.5 (6)
C9C10C11C12	-179.8 (7)	C37—Sn1—C49—C54	-110.2 (7)
C1-N1-C12-O4	176.7 (6)	C43—Sn1—C49—C54	15.9 (7)
C19—N1—C12—O4	-3.5 (9)	S7—Sn1—C49—C54	136.9 (6)
C1-N1-C12-C11	-1.5 (9)	C37—Sn1—C49—C50	65.8 (7)
C19—N1—C12—C11	178.3 (5)	C43—Sn1—C49—C50	-168.1 (6)
C10C11C12O4	2.4 (11)	S7—Sn1—C49—C50	-47.1 (6)
C13C11C12O4	-176.0 (7)	C54—C49—C50—C51	4.0 (13)
C10C11C12N1	-179.4 (6)	Sn1—C49—C50—C51	-172.0 (6)
C13—C11—C12—N1	2.1 (9)	C49—C50—C51—C52	-0.4 (14)
C3—C2—C13—C11	-179.6 (6)	C50—C51—C52—C53	-3.1 (15)
C1—C2—C13—C11	0.0 (10)	C51—C52—C53—C54	2.9 (15)
C3—C2—C13—C14	-0.3 (9)	C50—C49—C54—C53	-4.1 (11)

C1—C2—C13—C14	179.2 (6)	Sn1—C49—C54—C53	171.9 (5)
C10C11C13C2	-179.8 (6)	C52—C53—C54—C49	0.8 (12)
C12C11C13C2	-1.4 (10)	C61—Sn2—C55—C56	-129.2 (7)
C10C11C13C14	0.9 (10)	C67—Sn2—C55—C56	106.8 (7)
C12—C11—C13—C14	179.3 (6)	S5Sn2C55C56	1.8 (7)
C4—C5—C14—C8	-179.2 (6)	C61—Sn2—C55—C60	55.9 (7)
C6C5C14C8	-2.4 (10)	C67—Sn2—C55—C60	-68.1 (6)
C4C5C14C13	1.5 (10)	S5—Sn2—C55—C60	-173.1 (5)
C6C5C14C13	178.3 (6)	C60—C55—C56—C57	-2.8 (12)
C9—C8—C14—C5	-177.8 (7)	Sn2—C55—C56—C57	-177.5 (6)
C7—C8—C14—C5	4.3 (10)	C55—C56—C57—C58	1.0 (13)
C9C8C14C13	1.5 (9)	C56—C57—C58—C59	0.2 (14)
C7C8C14C13	-176.4 (6)	C57—C58—C59—C60	0.5 (14)
C2—C13—C14—C5	-0.9 (9)	C58—C59—C60—C55	-2.4 (14)
C11C13C14C5	178.4 (7)	C56—C55—C60—C59	3.5 (13)
C2C13C14C8	179.8 (6)	Sn2—C55—C60—C59	178.6 (6)
C11C13C14C8	-0.9 (9)	C55—Sn2—C61—C62	179.4 (6)
C6-N2-C15-C16	77.7 (8)	C67—Sn2—C61—C62	-59.4 (6)
C7N2C15C16	-99.4 (7)	S5Sn2C61C62	50.9 (6)
C17—O5—C16—C15	80.8 (7)	C55Sn2C61C66	1.0 (6)
N2—C15—C16—O5	60.4 (8)	C67—Sn2—C61—C66	122.2 (5)
C16O5C17C18	168.4 (5)	S5Sn2C61C66	-127.5 (5)
P2O6C18C17	173.7 (5)	C66—C61—C62—C63	-0.2 (11)
O5C17C18O6	69.2 (7)	Sn2C61C62C63	-178.6 (5)
C12N1C19C20	-79.5 (7)	C61C62C63C64	1.3 (12)
C1N1C19C20	100.3 (7)	C62C63C64C65	-2.1 (12)
C21—O7—C20—C19	177.8 (6)	C63—C64—C65—C66	1.7 (12)
N1—C19—C20—O7	-74.0 (7)	C64C65C66C61	-0.7 (12)
C20—O7—C21—C22	171.7 (6)	C62—C61—C66—C65	-0.1 (10)
P1—O8—C22—C21	163.3 (4)	Sn2—C61—C66—C65	178.4 (6)
O7—C21—C22—O8	59.7 (7)	C61—Sn2—C67—C68	166.1 (6)
O6P2C23C24	54.9 (6)	C55—Sn2—C67—C68	-70.1 (6)
S1—P2—C23—C24	179.5 (5)	S5Sn2C68	44.4 (6)
S7—P2—C23—C24	-51.3 (6)	C61—Sn2—C67—C72	-20.8 (7)
O6—P2—C23—C28	-125.3 (6)	C55—Sn2—C67—C72	103.0 (6)
S1—P2—C23—C28	-0.7 (6)	S5Sn2C72	-142.5 (6)
S7—P2—C23—C28	128.5 (5)	C72—C67—C68—C69	-3.6 (11)
C28—C23—C24—C25	1.7 (10)	Sn2—C67—C68—C69	169.7 (6)
P2—C23—C24—C25	-178.4 (5)	C67—C68—C69—C70	0.2 (12)
C23—C24—C25—C26	0.9 (10)	C68—C69—C70—C71	3.8 (12)
C29—O9—C26—C27	6.7 (11)	C69—C70—C71—C72	-4.3 (12)
C29—O9—C26—C25	-172.5 (7)	C68—C67—C72—C71	3.0 (11)
C24—C25—C26—O9	177.4 (6)	Sn2—C67—C72—C71	-170.1 (5)

C24—C25—C26—C27	-1.8 (10)	C70—C71—C72—C67	0.9 (11)

Table A10: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Ų) for NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂(SnPh₃)₂]₂⊂15DN38C10

	x	y	z	$U_{\rm iso}^*/U_{\rm eq}$	Occ. (<1)
Sn1A	0.55437 (3)	0.90708 (2)	-0.335923 (13)	0.03600 (10)	
Sn1B	0.29242 (3)	0.42871 (2)	-0.185473 (13)	0.03841 (10)	
S1A	0.38084 (11)	0.99968 (8)	-0.28392 (5)	0.0381 (3)	
S1B	0.26945 (11)	0.35360 (8)	-0.10650 (5)	0.0397 (3)	
S2A	0.28052 (18)	0.95847 (11)	-0.38807 (6)	0.0672 (5)	
S2B	0.54990 (12)	0.40517 (8)	-0.13233 (5)	0.0403 (3)	
P1A	0.29245 (12)	1.03923 (9)	-0.33912 (5)	0.0409 (3)	
P1B	0.44384 (12)	0.32940 (8)	-0.09796 (5)	0.0355 (3)	:
O1A	0.1767 (3)	1.5313 (2)	-0.38439 (14)	0.0447 (9)	
O1B	0.3271 (3)	0.0801 (2)	0.00503 (14)	0.0434 (9)	
O2A	0.3115 (3)	1.3393 (2)	-0.50691 (13)	0.0461 (9)	
O2B	0.2939 (3)	-0.1464 (2)	-0.08203 (15)	0.0508 (10)	
O3A	0.3043 (3)	1.2825 (2)	-0.38968 (13)	0.0413 (8)	
ОЗВ	0.4487 (3)	0.0732 (2)	-0.11511 (13)	0.0414 (9)	
O4A	0.3643 (3)	1.1138 (2)	-0.36251 (12)	0.0388 (8)	
O4B	0.4837 (3)	0.2347 (2)	-0.11171 (13)	0.0412 (8)	
O5A	-0.1897 (6)	1.1854 (4)	-0.2484 (3)	0.068 (2)	0.730 (7)
O5B	0.3645 (3)	0.3206 (2)	0.12214 (13)	0.0449 (9)	
O5C	-0.1313 (19)	1.2507 (11)	-0.2201 (7)	0.072 (6)	0.270 (7)
O6A	-0.2684 (4)	1.4993 (2)	-0.36813 (14)	0.0500 (10)	
O6B	0.0174 (3)	-0.0462 (2)	-0.16015 (14)	0.0433 (9)	
O7A	-0.2821 (5)	1.6673 (3)	-0.32124 (17)	0.0750 (14)	
07В	0.0207 (3)	-0.2183 (2)	-0.15628 (13)	0.0427 (9)	
O8A	-0.0678 (4)	1.7367 (3)	-0.34420 (16)	0.0605 (11)	
O8B	-0.0034 (3)	-0.3377 (2)	-0.08200 (14)	0.0478 (9)	
O9A	-0.0642 (3)	1.8747 (3)	-0.41028 (18)	0.0618 (12)	
O9B	0.1276 (3)	-0.4137 (2)	-0.01328 (14)	0.0467 (9)	
O10A	0.0411 (3)	1.7962 (2)	-0.50818 (17)	0.0558 (11)	
O10B	0.1377 (3)	-0.2795 (2)	0.05797 (14)	0.0444 (9)	
O11A	0.7233 (3)	0.8132 (2)	-0.37968 (14)	0.0431 (9)	
N1A	0.2456 (4)	1.4363 (2)	-0.44604 (15)	0.0353 (9)	
N1B	0.3096 (4)	-0.0291 (2)	-0.04235 (17)	0.0380 (10)	
C1A	-0.0124 (4)	1.5978 (3)	-0.42905 (18)	0.0345 (11)	
H1A	-0.0011	1.6264	-0.4017	0.041*	
C1B	0.0778 (5)	0.1207 (3)	0.03268 (19)	0.0395 (12)	
H1B	0.1238	0.1591	0.0412	0.047*	
C2A	0.0654 (4)	1.5293 (3)	-0.44696 (18)	0.0323 (11)	

C2B	0.1323 (4)	0.0521 (3)	0.00483 (18)	0.0332 (11)	
СЗА	0.1649 (4)	1.5002 (3)	-0.42232 (19)	0.0351 (11)	
СЗВ	0.2610 (5)	0.0375 (3)	-0.0098 (2)	0.0389 (12)	
C4A	0.0482 (4)	1.4866 (3)	-0.48895 (17)	0.0272 (10)	
C4B	0.0614 (4)	-0.0063 (3)	-0.00799 (19)	0.0340 (11)	′
C5A	0.1268 (4)	1.4178 (3)	-0.50865 (17)	0.0301 (10)	
C5B	0.1135 (5)	-0.0768 (3)	-0.03667 (19)	0.0359 (11)	
C6A	0.2341 (4)	1.3939 (3)	-0.48789 (19)	0.0352 (11)	
С6В	0.2440 (5)	-0.0881 (3)	-0.0560 (2)	0.0404 (12)	
C7A	0.1082 (4)	1.3754 (3)	-0.54843 (18)	0.0348 (11)	
H7A	0.1592	1.3288	-0.5605	0.042*	
С7В	0.0447 (4)	-0.1334 (3)	-0.0482 (2)	0.0377 (12)	
н7в	0.0800	-0.1804	-0.0665	0.045*	
C8A	0.3545 (5)	1.4167 (3)	-0.4259 (2)	0.0451 (13)	
H8A1	0.3806	1.4676	-0.4168	0.054*	
H8A2	0.4167	1.3898	-0.4517	0.054*	
C8B	0.4385 (5)	-0.0425 (3)	-0.0604 (2)	0.0458 (14)	
H8B1	0.4649	-0.1010	-0.0587	0.055*	
H8B2	0.4765	-0.0137	-0.0386	0.055*	
C9A	0.3357 (5)	1.3608 (3)	-0.3803 (2)	0.0459 (14)	
H9A1	0.4081	1.3533	-0.3673	0.055*	
H9A2	0.2739	1.3883	-0.3546	0.055*	
C9B	0.4767 (5)	-0.0132 (3)	-0.1132 (2)	0.0476 (14)	
H9B1	0.5614	-0.0276	-0.1244	0.057*	
H9B2	0.4366	-0.0399	-0.1351	0.057*	
C10A	0.3998 (5)	1.2282 (3)	-0.4176 (2)	0.0413 (12)	
H10A	0.4712	1.2304	-0.4046	0.050*	
H10B	0.4156	1.2445	-0.4524	0.050*	
C10B	0.5106 (5)	0.1092 (3)	-0.1585 (2)	0.0435 (13)	
H10C	0.4956	0.0838	-0.1879	0.052*	
H10D	0.5952	0.1003	-0.1593	0.052*	
C11A	0.3645 (5)	1.1428 (3)	-0.41285 (19)	0.0405 (12)	
H11A	0.2861	1.1428	-0.4201	0.049*	
H11B	0.4198	1.1064	-0.4365	0.049*	
C11B	0.4705 (5)	0.1996 (3)	-0.15817 (19)	0.0425 (13)	•
H11C	0.5177	0.2259	-0.1862	0.051*	
H11D	0.3882	0.2086	-0.1613	0.051*	
C12A	0.1455 (7)	1.0817 (6)	-0.3093 (5)	0.038 (3)	0.730 (7)
C12B	0.4294 (4)	0.3254 (3)	-0.03197 (18)	0.0333 (11)	
	0.1678 (19)	1.1050 (18)	-0.3043 (13)	0.047 (8)	0.270 (7)
C12C	0.1076 (19)	1.1050 (10)	0.5045 (15)	0.047 (0)	10.2/01/1

H13A	0.1924	1.1264	-0.2507	0.065*	0.730 (7)
C13B	0.4405 (5)	0.3953 (3)	-0.00565 (19)	0.0364 (11)	(/
H13B	0.4609	0.4427	-0.0232	0.0304 (11)	
C13C	0.1610 (19)	1.1869 (13)	-0.2893 (8)	0.047 (5)	0.270 (7)
H13C	0.2292	1.2128	-0.2994	0.056*	0.270 (7)
C14A	0.0151 (8)	1.1622 (7)	-0.2430 (4)	0.055 (2)	0.730 (7)
H14A	0.0030	1.1930	-0.2138	0.066*	0.730 (7)
C14B	0.4220 (4)	0.3959 (3)	0.04560 (19)	0.0379 (12)	0.730 (7)
H14B	0.4312	0.4428	0.0625	0.045*	
C14C	0.063 (2)	1.2346 (14)	-0.2608 (8)	0.056 (6)	0.270 (7)
H14C	0.0682	1.2884	-0.2515	0.068*	0.270 (7)
C15A	-0.0763 (9)	1.1517 (8)	-0.2668 (4)	0.047 (2)	0.730 (7)
C15A	0.3896 (4)	0.3258 (3)	0.07186 (19)	0.047 (2)	0.730 (7)
					0.270 (7)
C15C C16A	-0.042 (2)	1.1980 (16)	-0.2468 (8)	0.044 (6)	0.270 (7)
	-0.0593 (7)	1.1100 (6)	-0.3109 (4)	0.061 (3)	0.730 (7)
H16A	-0.1228	1.1073	-0.3265	0.073*	0.730 (7)
C16B	0.3780 (5)	0.2555 (3)	0.0463 (2)	0.0402 (12)	
H16B	0.3564	0.2085	0.0640	0.048*	0.270 (7)
C16C	-0.040 (3)	1.1198 (18)	-0.2599 (12)	0.053 (8)	0.270 (7)
H16C	-0.1083	1.0946	-0.2479	0.064*	0.270 (7)
C17A	0.0503 (7)	1.0720 (6)	-0.3322 (3)	0.057 (2)	0.730 (7)
H17A	0.0615	1.0407	-0.3612	0.068*	0.730 (7)
C17B	0.3981 (4)	0.2550 (3)	-0.0051 (2)	0.0377 (12)	
H17B	0.3908	0.2076	-0.0220	0.045*	
C17C	0.053 (2)	1.0728 (15)	-0.2892 (9)	0.053 (6)	0.270 (7)
H17C	0.0428	1.0205	-0.2995	0.064*	0.270 (7)
C18C	-0.229 (7)	1.205 (4)	-0.206 (3)	0.16 (3)	0.270 (7)
H18A	-0.2661	1.2010	-0.2343	0.247*	0.270 (7)
H18B	-0.2843	1.2314	-0.1790	0.247*	0.270 (7)
H18C	-0.2012	1.1502	-0.1966	0.247*	0.270 (7)
C18B	0.3626 (6)	0.3928 (4)	0.1506 (2)	0.0523 (15)	
H18D	0.4403	0.4107	0.1441	0.078*	
H18E	0.3393	0.3808	0.1855	0.078*	
H18F	0.3071	0.4356	0.1413	0.078*	
C18A	-0.2147 (13)	1.2314 (9)	-0.2022 (7)	0.059 (3)	0.730 (7)
H18G	-0.2125	1.1939	-0.1748	0.089*	0.730 (7)
H18H	-0.2920	1.2620	-0.1979	0.089*	0.730 (7)
H18I	-0.1564	1.2689	-0.2031	0.089*	0.730 (7)
C19A	0.6182 (5)	0.9887 (3)	-0.39454 (19)	0.0392 (12)	
C19B	0.1186 (5)	0.4316 (3)	-0.2005 (2)	0.0440 (13)	
C20A	0.6623 (4)	1.0603 (3)	-0.3853 (2)	0.0374 (12)	
H20A	0.6633	1.0742	-0.3526	0.045*	
C20B	0.0220 (5)	0.4084 (4)	-0.1668 (2)	0.0498 (14)	

TIZOD	To 0227	0.3869	-0.1361	0.060*
H20B	0.0327			
C21A	0.7058 (5)	1.1127 (3)	-0.4242 (2)	0.0434 (13)
H21A	0.7359	1.1607	-0.4175	0.052*
C21B	-0.0898 (6)	0.4163 (4)	-0.1775 (3)	0.0655 (18)
H21B	-0.1539	0.4018	-0.1538	0.079*
C22A	0.7034 (5)	1.0926 (4)	-0.4723 (2)	0.0522 (15)
H22A	0.7313	1.1273	-0.4984	0.063*
C22B	-0.1060 (7)	0.4460 (5)	-0.2238 (3)	0.074 (2)
H22B	-0.1808	0.4505	-0.2317	0.089*
C23A	0.6598 (6)	1.0214 (4)	-0.4820 (2)	0.0592 (17)
H23A	0.6580	1.0082	-0.5148	0.071*
C23B	-0.0120 (8)	0.4686 (5)	-0.2577 (3)	0.075 (2)
H23B	-0.0230	0.4883	-0.2887	0.090*
C24A	0.6185 (5)	0.9687 (4)	-0.4435 (2)	0.0515 (15)
H24A	0.5909	0.9199	-0.4507	0.062*
C24B	0.1016 (7)	0.4625 (4)	-0.2465 (2)	0.0639 (18)
H24B	0.1650	0.4791	-0.2697	0.077*
C25A	0.6440 (4)	0.8981 (3)	-0.27467 (18)	0.0360 (11)
C25B	0.3274 (5)	0.5505 (3)	-0.1740 (2)	0.0396 (12)
C26A	0.6064 (5)	0.8491 (4)	-0.2344 (2)	0.0520 (15)
H26A	0.5390	0.8227	-0.2332	0.062*
C26B	0.2916 (5)	0.5870 (3)	-0.1272 (2)	0.0450 (13)
H26B	0.2560	0.5573	-0.1000	0.054*
C27A	0.6666 (6)	0.8384 (4)	-0.1957 (2)	0.0545 (16)
H27A	0.6412	0.8034	-0.1695	0.065*
C27B	0.3101 (5)	0.6696 (4)	-0.1216 (2)	0.0507 (14)
H27B	0.2850	0.6948	-0.0904	0.061*
C28A	0.7630 (5)	0.8789 (3)	-0.1957 (2)	0.0468 (14)
H28A	0.8039	0.8716	-0.1697	0.056*
C28B	0.3639 (5)	0.7133 (3)	-0.1608 (2)	0.0509 (15)
H28B	0.3776	0.7674	-0.1563	0.061*
C29A	0.7981 (6)	0.9303 (4)	-0.2345 (2)	0.0575 (16)
H29A	0.8622	0.9597	-0.2344	0.069*
C29B	0.3978 (5)	0.6770 (3)	-0.2072 (2)	0.0507 (15)
H29B	0.4340	0.7069	-0.2342	0.061*
C30A	0.7395 (5)	0.9391 (4)	-0.2738 (2)	0.0547 (16)
Н30А	0.7656	0.9737	-0.3002	0.066*
C30B	0.3785 (5)	0.5956 (3)	-0.2140 (2)	0.0463 (13)
H30B	0.4002	0.5718	-0.2457	0.056*
C31A	0.4617 (5)	0.8071 (3)	-0.3497 (2)	0.0456 (13)
C31B	0.4188 (5)	0.3624 (3)	-0.24265 (18)	0.0387 (12)
C32A	0.3654 (5)	0.7865 (4)	-0.3141 (2)	0.0492 (14)
	0.3417	0.8167	-0.2846	0.059*

C32B	0.5310 (5)	0.3864 (3)	-0.25907 (19)	0.0428 (13)
	0.5319 (5)			` ´
H32B	0.5502	0.4350	-0.2468	0.051*
C33A	0.3042 (5)	0.7211 (4)	-0.3222 (3) -0.2976	0.0592 (17)
H33A				0.0471 (14)
C33B	0.6170 (5)	0.3395 (4)	-0.2931 (2) -0.3042	0.056*
H33B				
C34A	0.3364 (6)	0.6794 (4)	-0.3672 (3) -0.3731	0.0655 (19)
H34A		0.6363		
C34B	0.5912 (6)	0.2669 (4)	-0.3103 (2)	0.0510 (15)
H34B	0.6490	0.2344	-0.3327	0.061*
C35A	0.4277 (6)	0.7009 (4)	-0.4028 (3)	0.0669 (19)
H35A	0.4464	0.6739	-0.4335	0.080*
C35B	0.4804 (6)	0.2415 (4)	-0.2949 (2)	0.0538 (16)
H35B	0.4636	0.1922	-0.3068	0.065*
C36A	0.4935 (5)	0.7626 (4)	-0.3939 (2)	0.0502 (15)
H36A	0.5592	0.7741	-0.4176	0.060*
С36В	0.3935 (5)	0.2897 (3)	-0.2615 (2)	0.0464 (13)
Н36В	0.3181	0.2732	-0.2518	0.056*
C37A	-0.2590 (5)	1.4442 (3)	-0.4062 (2)	0.0430 (13)
C37B	0.0372 (5)	0.0265 (3)	-0.1410 (2)	0.0400 (12)
C38A	-0.3323 (5)	1.4485 (3)	-0.4389 (2)	0.0418 (13)
H38A	-0.3938	1.4912	-0.4363	0.050*
C38B	0.1468 (5)	0.0530 (3)	-0.1452 (2)	0.0500 (15)
H38B	0.2143	0.0206	-0.1616	0.060*
C39A	-0.3164 (4)	1.3893 (3)	-0.4765 (2)	0.0396 (12)
H39A	-0.3685	1.3927	-0.4984	0.047*
C39B	0.1564 (5)	0.1290 (3)	-0.1246 (3)	0.0553 (16)
Н39В	0.2313	0.1453	-0.1263	0.066*
C40A	-0.2270 (4)	1.3272 (3)	-0.4818 (2)	0.0409 (12)
H40A	-0.2178	1.2883	-0.5070	0.049*
C40B	0.0590 (5)	0.1801 (3)	-0.1020 (2)	0.0464 (14)
H40B	0.0673	0.2317	-0.0902	0.056*
C41A	-0.1474 (4)	1.3216 (3)	-0.4487 (2)	0.0380 (12)
C41B	-0.0544 (4)	0.1533 (3)	-0.0968 (2)	0.0386 (12)
C42A	-0.0491 (5)	1.2577 (3)	-0.4531 (2)	0.0467 (14)
C42B	-0.1586 (5)	0.2031 (3)	-0.0719 (2)	0.0387 (12)
C43A	0.0272 (5)	1.2550 (4)	-0.4212 (3)	0.0572 (17)
H43A	0.0920	1.2147	-0.4249	0.069*
C43B	-0.2668 (5)	0.1752 (3)	-0.06395 (19)	0.0395 (12)
H43B	-0.3335	0.2078	-0.0470	0.047*
C44A	0.0072 (6)	1.3133 (4)	-0.3827 (2)	0.0586 (17)
H44A	0.0578	1.3097	-0.3603	0.070*
C44B	-0.2773 (5)	0.0964 (3)	-0.0816 (2)	0.0416 (12)

H44B	-0.3512	0.0771	-0.0755	0.050*	-
C45A	-0.0829 (5)	1.3746 (4)	-0.3771 (2)	0.0498 (14)	
H45A	-0.0927	1.4130	-0.3516	0.060*	
C45B	-0.1818 (4)	0.0479 (3)	-0.10736 (19)	0.0357 (11)	
H45B	-0.1914	-0.0031	-0.1195	0.043*	- 10 diameter de la constante
C46A	-0.1633 (5)	1.3804 (3)	-0.4105 (2)	0.0394 (12)	
C46B	-0.0679 (5)	0.0748 (3)	-0.11572 (19)	0.0384 (12)	
C47A	-0.3638 (6)	1.5650 (4)	-0.3626 (2)	0.0587 (17)	
H47A	-0.4381	1.5420	-0.3605	0.070*	
H47B	-0.3523	1.6004	-0.3918	0.070*	
C47B	0.1209 (5)	-0.1009 (3)	-0.1821 (2)	0.0463 (14)	
H47C	0.1710	-0.1134	-0.1579	0.056*	
H47D	0.1662	-0.0747	-0.2107	0.056*	
C48A	-0.3698 (7)	1.6144 (4)	-0.3172 (3)	0.076 (2)	
H48A	-0.4467	1.6470	-0.3093	0.092*	
H48B	-0.3637	1.5771	-0.2896	0.092*	
C48B	0.0822 (5)	-0.1780 (3)	-0.1979 (2)	0.0452 (13)	
H48C	0.0312	-0.1650	-0.2216	0.054*	
H48D	0.1510	-0.2142	-0.2143	0.054*	
C49A	-0.1853 (6)	1.6338 (4)	-0.3074 (3)	0.071 (2)	
H49A	-0.1404	1.5965	-0.3334	0.085*	
H49B	-0.2072	1.6016	-0.2774	0.085*	
C49B	0.0107 (6)	-0.3017 (3)	-0.1666 (2)	0.0480 (14)	
H49C	0.0890	-0.3322	-0.1752	0.058*	
H49D	-0.0274	-0.3042	-0.1949	0.058*	
C50A	-0.1063 (8)	1.6985 (5)	-0.2971 (3)	0.090 (3)	
H50A	-0.1510	1.7390	-0.2728	0.108*	
H50B	-0.0390	1.6723	-0.2843	0.108*	
C50B	-0.0601 (6)	-0.3393 (4)	-0.1222 (2)	0.0537 (15)	
H50C	-0.1385	-0.3088	-0.1137	0.064*	
H50D	-0.0690	-0.3958	-0.1296	0.064*	
C51A	0.0064 (7)	1.8001 (5)	-0.3452 (3)	0.083 (3)	
H51A	0.0773	1.7788	-0.3333	0.099*	
H51B	-0.0349	1.8448	-0.3233	0.099*	
C51B	-0.0547 (5)	-0.3865 (4)	-0.0413 (2)	0.0513 (15)	
H51C	-0.0459	-0.4439	-0.0514	0.062*	:
H51D	-0.1385	-0.3681	-0.0308	0.062*	
C52A	0.0395 (6)	1.8312 (4)	-0.3970 (3)	0.076 (2)	
H52A	0.1005	1.8678	-0.3990	0.092*	
H52B	0.0704	1.7854	-0.4198	0.092*	
C52B	0.0078 (5)	-0.3775 (4)	0.0010 (2)	0.0475 (14)	
H52C	0.0056	-0.3195	0.0088	0.057*	
H52D	-0.0317	-0.4047	0.0305	0.057*	

C53A	-0.0457 (6)	1.9129 (4)	-0.4574 (3)	0.077 (2)	
H53A	0.0331	1.9303	-0.4645	0.093*	
H53B	-0.1020	1.9621	-0.4559	0.093*	
C53B	0.1943 (5)	-0.4146 (3)	0.0244 (2)	0.0479 (14)	
H53C	0.2625	-0.4559	0.0158	0.057*	
H53D	0.1462	-0.4314	0.0555	0.057*	
C54A	-0.0578 (5)	1.8601 (4)	-0.4997 (3)	0.0651 (19)	
H54A	-0.1317	1.8357	-0.4915	0.078*	
H54B	-0.0580	1.8932	-0.5296	0.078*	
C54B	0.2373 (5)	-0.3330 (3)	0.0327 (2)	0.0423 (13)	
H54C	0.2977	-0.3409	0.0527	0.051*	
H54D	0.2712	-0.3092	0.0009	0.051*	
H11F	0.7162	0.7647	-0.3610	0.06 (2)*	
H11G	0.8059	0.8295	-0.3917	0.08 (2)*	

Table A11: Atomic displacement parameters (Å 2) for NDI-[CH $_2$ CH $_2$ OCH $_2$ CH $_2$ O(An)PS $_2$ (Sn-Ph $_3$) $_2$] $_2$ \subset 15DN38C10

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1A	0.0280 (2)	0.0410 (2)	0.0392 (2)	-0.00769 (14)	-0.00470 (14)	-0.00415 (15)
Sn1B	0.0363 (2)	0.0396 (2)	0.0377 (2)	-0.00255 (15)	-0.00437 (15)	-0.00253 (15)
SIA	0.0315 (7)	0.0433 (7)	0.0381 (7)	-0.0010 (5)	-0.0062 (5)	0.0003 (5)
S1B	0.0298 (7)	0.0474 (7)	0.0411 (7)	-0.0045 (5)	-0.0052 (5)	0.0032 (6)
S2A	0.0923 (14)	0.0703 (11)	0.0539 (10)	-0.0400 (10)	-0.0333 (9)	0.0081 (8)
S2B	0.0327 (7)	0.0475 (7)	0.0392 (7)	-0.0073 (5)	-0.0027 (5)	0.0012 (6)
P1A	0.0323 (8)	0.0515 (8)	0.0412 (8)	-0.0096 (6)	-0.0104 (6)	0.0049 (6)
P1B	0.0301 (7)	0.0383 (7)	0.0364 (7)	-0.0026 (5)	-0.0035 (5)	-0.0028 (5)
O1A	0.050(2)	0.040 (2)	0.049 (2)	-0.0023 (17)	-0.0210 (18)	-0.0044 (17)
O1B	0.033 (2)	0.043 (2)	0.059 (2)	-0.0094 (16)	-0.0156 (17)	-0.0056 (17)
O2A	0.038 (2)	0.047 (2)	0.046 (2)	0.0181 (17)	-0.0040 (17)	-0.0010 (17)
O2B	0.039 (2)	0.039 (2)	0.072 (3)	-0.0008 (17)	-0.0068 (19)	-0.0149 (19)
O3A	0.035 (2)	0.043 (2)	0.043 (2)	0.0045 (16)	-0.0059 (16)	0.0039 (16)
ОЗВ	0.029 (2)	0.043 (2)	0.049 (2)	-0.0005 (15)	-0.0019 (16)	-0.0034 (17)
O4A	0.038 (2)	0.047 (2)	0.0337 (19)	-0.0068 (16)	-0.0112 (15)	0.0064 (16)
O4B	0.037 (2)	0.042 (2)	0.044 (2)	0.0003 (16)	-0.0094 (16)	-0.0031 (16)
O5A	0.037 (4)	0.081 (5)	0.083 (5)	-0.001 (3)	-0.008 (3)	0.014 (4)
О5В	0.049 (2)	0.048 (2)	0.037 (2)	-0.0063 (18)	-0.0088 (17)	0.0019 (17)
O5C	0.072 (13)	0.064 (11)	0.064 (11)	-0.012 (9)	0.030 (10)	-0.005 (9)
O6A	0.053 (3)	0.047 (2)	0.046 (2)	-0.0070 (18)	0.0000 (18)	-0.0047 (18)
O6B	0.032 (2)	0.041 (2)	0.054 (2)	0.0021 (15)	-0.0033 (16)	-0.0038 (17)
07A	0.086 (4)	0.075 (3)	0.063 (3)	-0.014 (3)	-0.009 (3)	-0.010 (3)
07В	0.043 (2)	0.038 (2)	0.045 (2)	-0.0014 (16)	-0.0034 (17)	-0.0044 (16)

			·			
O8A	0.050 (3)	0.071 (3)	0.059 (3)	0.005 (2)	-0.014 (2)	-0.020 (2)
O8B	0.046 (2)	0.048 (2)	0.051 (2)	-0.0130 (18)	-0.0092 (18)	0.0037 (18)
O9A	0.027 (2)	0.053 (3)	0.097 (4)	-0.0013 (18)	0.004 (2)	-0.012 (2)
О9В	0.037 (2)	0.049 (2)	0.050 (2)	0.0000 (17)	-0.0017 (17)	-0.0068 (18)
O10A	0.031 (2)	0.036 (2)	0.089 (3)	0.0087 (16)	0.008 (2)	-0.003 (2)
O10B	0.028 (2)	0.040 (2)	0.062 (3)	-0.0042 (15)	-0.0021 (17)	-0.0064 (18)
011A	0.035 (2)	0.041 (2)	0.051 (2)	-0.0052 (16)	-0.0026 (16)	-0.0075 (18)
NIA	0.024 (2)	0.037 (2)	0.044 (3)	-0.0011 (17)	-0.0086 (18)	0.0051 (19)
NIB	0.030 (2)	0.031 (2)	0.053 (3)	-0.0021 (17)	-0.0085 (19)	-0.0022 (19)
C1A	0.036 (3)	0.033 (3)	0.033 (3)	-0.003 (2)	-0.003 (2)	-0.003 (2)
CIB	0.048 (4)	0.028 (3)	0.043 (3)	-0.006 (2)	-0.011 (2)	-0.003 (2)
C2A	0.030 (3)	0.029 (2)	0.037 (3)	-0.002 (2)	-0.007 (2)	0.005 (2)
C2B	0.025 (3)	0.035 (3)	0.041 (3)	-0.004 (2)	-0.009 (2)	-0.001 (2)
C3A	0.034 (3)	0.035 (3)	0.037 (3)	-0.006 (2)	-0.008 (2)	0.002 (2)
СЗВ	0.034 (3)	0.037 (3)	0.047 (3)	-0.003 (2)	-0.012 (2)	0.003 (2)
C4A	0.027 (3)	0.026 (2)	0.029 (2)	-0.0043 (18)	-0.0031 (19)	0.0021 (18)
C4B	0.032 (3)	0.032 (3)	0.040 (3)	-0.006 (2)	-0.012 (2)	-0.002 (2)
C5A	0.027 (3)	0.026 (2)	0.033 (3)	-0.0001 (18)	0.0008 (19)	0.0044 (19)
C5B	0.034 (3)	0.030 (3)	0.043 (3)	-0.001 (2)	-0.008 (2)	-0.005 (2)
C6A	0.030 (3)	0.034 (3)	0.038 (3)	-0.003 (2)	0.001 (2)	0.008 (2)
C6B	0.031 (3)	0.034 (3)	0.056 (4)	-0.006 (2)	-0.008 (2)	-0.001 (2)
C7A	0.030 (3)	0.032 (3)	0.037 (3)	0.001 (2)	0.004 (2)	-0.003 (2)
С7В	0.033 (3)	0.029 (3)	0.050 (3)	-0.001 (2)	-0.006 (2)	-0.007 (2)
C8A	0.041 (3)	0.041 (3)	0.057 (4)	-0.005 (2)	-0.019 (3)	0.006 (3)
C8B	0.027 (3)	0.042 (3)	0.068 (4)	0.001 (2)	-0.011 (3)	0.001 (3)
C9A	0.040 (3)	0.049 (3)	0.051 (3)	0.005 (3)	-0.020 (3)	-0.001 (3)
C9B	0.025 (3)	0.043 (3)	0.073 (4)	0.000 (2)	-0.006 (3)	-0.010 (3)
C10A	0.032 (3)	0.047 (3)	0.042 (3)	0.001 (2)	-0.005 (2)	0.010 (2)
C10B	0.035 (3)	0.057 (3)	0.037 (3)	-0.004 (2)	-0.002 (2)	-0.004 (3)
Clia	0.035 (3)	0.045 (3)	0.042 (3)	0.001 (2)	-0.011 (2)	0.002 (2)
C11B	0.041 (3)	0.050 (3)	0.035 (3)	0.001 (2)	-0.009 (2)	-0.001 (2)
C12A	0.015 (5)	0.050 (6)	0.055 (6)	-0.013 (4)	-0.015 (5)	0.018 (5)
C12B	0.023 (3)	0.034 (3)	0.041 (3)	-0.0007 (19)	-0.004 (2)	-0.001 (2)
C12C	0.035 (14)	0.081 (19)	0.040 (15)	-0.047 (13)	-0.020 (12)	0.023 (14)
C13A	0.038 (5)	0.056 (5)	0.069 (7)	-0.001 (4)	-0.017 (4)	-0.002 (5)
C13B	0.040 (3)	0.031 (3)	0.037 (3)	-0.005 (2)	-0.004 (2)	0.003 (2)
C13C	0.039 (12)	0.048 (12)	0.049 (12)	-0.003 (9)	0.001 (9)	-0.004 (10)
C14A	0.032 (6)	0.067 (7)	0.065 (6)	-0.003 (5)	-0.011 (4)	-0.011 (5)
C14B	0.035 (3)	0.037 (3)	0.041 (3)	-0.005 (2)	-0.004 (2)	-0.008 (2)
C14C	0.085 (16)	0.042 (11)	0.045 (12)	-0.008 (11)	-0.022 (11)	0.002 (9)
C15A	0.023 (6)	0.051 (7)	0.062 (7)	0.006 (5)	-0.005 (4)	0.007 (5)
C15B	0.028 (3)	0.043 (3)	0.041 (3)	-0.001 (2)	-0.007 (2)	0.002 (2)
C15C	0.034 (13)	0.046 (12)	0.043 (11)	0.027 (11)	-0.007 (9)	0.017 (10)

C16A	0.029 (5)	0.078 (6)	0.080 (7)	-0.008 (4)	-0.020 (4)	0.011 (5)
C16B	0.037 (3)	0.037 (3)	0.047 (3)	-0.004 (2)	-0.010 (2)	0.005 (2)
C16C	0.030 (15)	0.047 (16)	0.076 (17)	0.010 (12)	-0.004 (12)	0.020 (13)
C17A	0.034 (5)	0.079 (6)	0.058 (6)	-0.003 (4)	-0.012 (4)	0.001 (5)
C17B	0.030 (3)	0.033 (3)	0.049 (3)	0.000 (2)	-0.008 (2)	-0.002 (2)
C17C	0.049 (15)	0.059 (13)	0.054 (14)	-0.006 (11)	-0.016 (11)	0.006 (11)
C18C	0.15 (5)	0.18 (6)	0.15 (5)	-0.03 (4)	0.01 (4)	0.06 (5)
C18B	0.055 (4)	0.060 (4)	0.041 (3)	-0.009 (3)	-0.006 (3)	-0.003 (3)
C18A	0.034 (7)	0.064 (7)	0.069 (8)	0.012 (5)	0.003 (5)	0.005 (6)
C19A	0.035 (3)	0.042 (3)	0.039 (3)	-0.003 (2)	-0.005 (2)	-0.005 (2)
C19B	0.044 (4)	0.041 (3)	0.048 (3)	0.003 (2)	-0.017 (3)	-0.004 (2)
C20A	0.032 (3)	0.039 (3)	0.040 (3)	-0.002 (2)	-0.004 (2)	-0.005 (2)
C20B	0.036 (4)	0.062 (4)	0.055 (4)	-0.004 (3)	-0.018 (3)	-0.005 (3)
C21A	0.040 (3)	0.039 (3)	0.048 (3)	-0.009 (2)	0.001 (2)	-0.004 (2)
C21B	0.042 (4)	0.077 (5)	0.079 (5)	-0.001 (3)	-0.018 (3)	-0.013 (4)
C22A	0.054 (4)	0.054 (4)	0.043 (3)	-0.009 (3)	0.005 (3)	0.002 (3)
C22B	0.071 (6)	0.074 (5)	0.085 (6)	0.005 (4)	-0.041 (4)	-0.014 (4)
C23A	0.067 (5)	0.074 (5)	0.036 (3)	-0.018 (3)	-0.004 (3)	-0.003 (3)
C23B	0.097 (6)	0.077 (5)	0.061 (5)	0.002 (4)	-0.048 (4)	0.001 (4)
C24A	0.053 (4)	0.053 (4)	0.046 (4)	-0.011 (3)	-0.002 (3)	-0.007 (3)
C24B	0.079 (5)	0.062 (4)	0.057 (4)	-0.008 (4)	-0.028 (4)	-0.005 (3)
C25A	0.032 (3)	0.043 (3)	0.033 (3)	-0.002 (2)	-0.007 (2)	-0.005 (2)
C25B	0.033 (3)	0.042 (3)	0.041 (3)	0.002 (2)	-0.005 (2)	-0.004 (2)
C26A	0.048 (4)	0.057 (4)	0.055 (4)	-0.021 (3)	-0.011 (3)	-0.002 (3)
C26B	0.036 (3)	0.050 (3)	0.046 (3)	-0.001 (2)	-0.003 (2)	0.001 (3)
C27A	0.074 (5)	0.044 (3)	0.044 (3)	-0.007 (3)	-0.010 (3)	0.008 (3)
C27B	0.045 (4)	0.051 (3)	0.051 (4)	0.001 (3)	-0.004 (3)	-0.011 (3)
C28A	0.052 (4)	0.049 (3)	0.039 (3)	0.006 (3)	-0.014 (3)	-0.012 (3)
C28B	0.055 (4)	0.036 (3)	0.058 (4)	-0.003 (3)	-0.005 (3)	-0.007 (3)
C29A	0.047 (4)	0.071 (4)	0.063 (4)	-0.019 (3)	-0.024 (3)	0.006 (3)
C29B	0.053 (4)	0.042 (3)	0.052 (4)	-0.007 (3)	0.002 (3)	0.006 (3)
C30A	0.051 (4)	0.070 (4)	0.051 (4)	-0.025 (3)	-0.018 (3)	0.019 (3)
C30B	0.046 (4)	0.045 (3)	0.044 (3)	-0.001 (3)	-0.005 (3)	0.000 (3)
C31A	0.032 (3)	0.049 (3)	0.055 (4)	-0.011 (2)	-0.003 (2)	-0.011 (3)
C31B	0.042 (3)	0.044 (3)	0.029 (3)	-0.002 (2)	-0.005 (2)	-0.002 (2)
C32A	0.039 (3)	0.048 (3)	0.057 (4)	-0.005 (3)	-0.001 (3)	-0.011 (3)
C32B	0.050 (4)	0.038 (3)	0.037 (3)	-0.004 (2)	-0.001 (2)	0.001 (2)
C33A	0.036 (4)	0.060 (4)	0.081 (5)	-0.013 (3)	-0.006 (3)	-0.001 (3)
C33B	0.043 (3)	0.056 (4)	0.037 (3)	0.005 (3)	-0.003 (2)	0.003 (3)
C34A	0.054 (5)	0.058 (4)	0.090 (5)	-0.014 (3)	-0.022 (4)	-0.016 (4)
C34B	0.057 (4)	0.055 (4)	0.036 (3)	0.019 (3)	-0.009 (3)	-0.015 (3)
C35A	0.053 (4)	0.075 (5)	0.077 (5)	-0.016 (3)	-0.016 (4)	-0.029 (4)
C35B	0.072 (5)	0.046 (3)	0.047 (4)	0.006 (3)	-0.026 (3)	-0.008 (3)

F	1	T	T	T 0 00= (0)	0.010.00	0.014.03
C36A	0.033 (3)	0.059 (4)	0.060 (4)	-0.007 (3)	-0.010 (3)	-0.014 (3)
C36B	0.050 (4)	0.051 (3)	0.038 (3)	-0.002 (3)	-0.009 (3)	-0.002 (3)
C37A	0.037 (3)	0.039 (3)	0.048 (3)	-0.008 (2)	0.008 (2)	0.001 (2)
C37B	0.034 (3)	0.035 (3)	0.049 (3)	-0.002 (2)	-0.006 (2)	0.003 (2)
C38A	0.028 (3)	0.042 (3)	0.051 (3)	0.000 (2)	0.002 (2)	0.005 (3)
C38B	0.030 (3)	0.042 (3)	0.071 (4)	-0.001 (2)	0.002 (3)	-0.001 (3)
C39A	0.020 (3)	0.051 (3)	0.046 (3)	-0.006 (2)	-0.002 (2)	0.001 (2)
C39B	0.027 (3)	0.043 (3)	0.093 (5)	-0.004 (2)	-0.006 (3)	-0.003 (3)
C40A	0.029 (3)	0.041 (3)	0.050 (3)	-0.009 (2)	0.000 (2)	-0.005 (2)
C40B	0.035 (3)	0.033 (3)	0.069 (4)	-0.007 (2)	-0.005 (3)	0.002 (3)
C41A	0.024 (3)	0.034 (3)	0.053 (3)	-0.003 (2)	-0.001 (2)	0.005 (2)
C41B	0.026 (3)	0.041 (3)	0.048 (3)	-0.004 (2)	-0.007 (2)	0.005 (2)
C42A	0.028 (3)	0.037 (3)	0.069 (4)	-0.007 (2)	0.005 (3)	0.011 (3)
C42B	0.033 (3)	0.038 (3)	0.044 (3)	-0.001 (2)	-0.007 (2)	0.001 (2)
C43A	0.032 (4)	0.055 (4)	0.080 (5)	0.004 (3)	-0.006 (3)	0.025 (3)
C43B	0.029 (3)	0.045 (3)	0.044 (3)	-0.003 (2)	-0.006 (2)	0.000 (2)
C44A	0.045 (4)	0.076 (5)	0.059 (4)	-0.014 (3)	-0.017 (3)	0.028 (4)
C44B	0.029 (3)	0.046 (3)	0.051 (3)	-0.006 (2)	-0.011 (2)	0.001 (3)
C45A	0.045 (4)	0.058 (4)	0.048 (3)	-0.015 (3)	-0.009 (3)	0.010 (3)
C45B	0.031 (3)	0.036 (3)	0.042 (3)	-0.003 (2)	-0.012 (2)	0.000 (2)
C46A	0.030 (3)	0.045 (3)	0.041 (3)	-0.009 (2)	-0.001 (2)	0.009 (2)
C46B	0.033 (3)	0.041 (3)	0.041 (3)	-0.002 (2)	-0.007 (2)	0.001 (2)
C47A	0.057 (4)	0.048 (3)	0.059 (4)	-0.006 (3)	0.019 (3)	-0.014 (3)
C47B	0.036 (3)	0.043 (3)	0.053 (4)	0.002 (2)	0.003 (3)	-0.001 (3)
C48A	0.107 (6)	0.052 (4)	0.055 (4)	-0.018 (4)	0.024 (4)	-0.007 (3)
C48B	0.038 (3)	0.051 (3)	0.041 (3)	0.001 (2)	0.000 (2)	-0.003 (3)
C49A	0.048 (4)	0.067 (5)	0.081 (5)	0.008 (3)	0.014 (4)	0.001 (4)
C49B	0.064 (4)	0.040 (3)	0.043 (3)	0.000 (3)	-0.021 (3)	-0.010 (2)
C50A	0.140 (8)	0.081 (5)	0.046 (4)	0.041 (5)	-0.039 (5)	-0.030 (4)
C50B	0.053 (4)	0.052 (4)	0.062 (4)	-0.014 (3)	-0.022 (3)	0.002 (3)
C51A	0.061 (5)	0.086 (6)	0.104 (7)	0.022 (4)	-0.035 (4)	-0.053 (5)
C51B	0.041 (4)	0.052 (4)	0.062 (4)	-0.013 (3)	-0.012 (3)	0.009 (3)
C52A	0.045 (4)	0.060 (4)	0.124 (7)	-0.009 (3)	-0.009 (4)	-0.036 (4)
C52B	0.032 (3)	0.055 (4)	0.052 (4)	-0.004 (2)	0.001 (2)	0.001 (3)
C53A	0.044 (4)	0.044 (4)	0.123 (7)	-0.003 (3)	0.031 (4)	-0.004 (4)
C53B	0.036 (3)	0.046 (3)	0.059 (4)	0.005 (2)	-0.009 (3)	-0.002 (3)
C54A	0.040 (4)	0.043 (4)	0.097 (5)	0.008 (3)	0.015 (3)	0.006 (3)
C54B	0.029 (3)	0.041 (3)	0.054 (3)	0.002 (2)	-0.005 (2)	-0.004 (3)

 $\textbf{Table A12:} \ \ \textbf{Geometric parameters (Å, °) for NDI-[CH_2CH_2OCH_2CH_2O(An)PS_2(SnPh_3)_2]_2} = 15DN38C10$

Sn1A—C19A	2.132 (5)	C19A—C20A	1.378 (7)
Sn1A—C31A	2.135 (5)	C19A—C24A	1.385 (8)

Sn1AC25A	2.140 (5)	C19B—C20B	1.382 (8)
Sn1A—O11A	2.457 (3)	C19B—C24B	1.388 (8)
Sn1A—S1A	2.5625 (13)	C20A—C21A	1.401 (7)
Sn1B—C25B	2.116 (5)	C20A—H20A	0.9300
Sn1B—C31B	2.128 (5)	C20B—C21B	1.378 (8)
Sn1B—C19B	2.135 (6)	C20B—H20B	0.9300
Sn1B—S1B	2.4427 (13)	C21A—C22A	1.368 (8)
S1A—P1A	2.0461 (19)	C21A—H21A	0.9300
S1B—P1B	2.0758 (18)	C21B—C22B	1.388 (10)
S2A—P1A	1.934 (2)	C21B—H21B	0.9300
S2BP1B	1.9386 (18)	C22A—C23A	1.372 (8)
P1A—O4A	1.603 (4)	C22A—H22A	0.9300
P1A—C12A	1.798 (8)	C22B—C23B	1.359 (10)
P1A—C12C	1.808 (18)	C22B—H22B	0.9300
P1B—O4B	1.591 (4)	C23AC24A	1.389 (8)
P1B—C12B	1.779 (5)	C23A—H23A	0.9300
O1A—C3A	1.204 (6)	C23B—C24B	1.405 (10)
O1BC3B	1.225 (6)	C23B—H23B	0.9300
O2A—C6A	1.230 (6)	C24A—H24A	0.9300
O2B—C6B	1.216 (6)	C24B—H24B	0.9300
O3AC9A	1.413 (6)	C25A—C30A	1.364 (7)
O3AC10A	1.431 (6)	C25A—C26A	1.373 (7)
O3B—C10B	1.410 (6)	C25B—C30B	1.377 (7)
O3BC9B	1.411 (6)	C25B—C26B	1.385 (7)
O4AC11A	1.446 (6)	C26A—C27A	1.381 (8)
O4BC11B	1.448 (6)	C26A—H26A	0.9300
O5A—C15A	1.364 (12)	C26B—C27B	1.406 (8)
O5A—C18A	1.443 (19)	C26B—H26B	0.9300
O5BC15B	1.349 (6)	C27AC28A	1.364 (8)
O5BC18B	1.420 (6)	C27A—H27A	0.9300
O5C—C15C	1.36 (3)	C27B—C28B	1.359 (8)
O5C—C18C	1.41 (7)	C27B—H27B	0.9300
O6A—C37A	1.369 (6)	C28A—C29A	1.364 (8)
O6A—C47A	1.435 (7)	C28A—H28A	0.9300
O6B—C37B	1.368 (6)	C28B—C29B	1.373 (8)
O6B—C47B	1.440 (6)	C28B—H28B	0.9300
O7A—C49A	1.314 (8)	C29A—C30A	1.384 (8)
O7A—C48A	1.396 (8)	C29A—H29A	0.9300
O7B—C48B	1.408 (6)	C29B—C30B	1.396 (8)
O7B—C49B	1.417 (6)	C29B—H29B	0.9300
O8AC51A	1.417 (9)	C30A—H30A	0.9300
O8A—C50A	1.430 (9)	C30B—H30B	0.9300
O8BC50B	1.394 (6)	C31AC36A	1.383 (8)

Con Carp	1, 100 10	G214 G25 :	1,202 (0)
O8BC51B	1.423 (6)	C31A—C32A	1.392 (8)
O9A—C53A	1.408 (9)	C31B—C36B	1.388 (7)
O9A—C52A	1.433 (8)	C31B—C32B	1.395 (7)
O9B—C53B	1.408 (6)	C32A—C33A	1.394 (8)
O9B—C52B	1.424 (6)	C32A—H32A	0.9300
O10A—C42Ai	1.373 (7)	C32B—C33B	1.379 (7)
O10A—C54A	1.443 (6)	C32B—H32B	0.9300
O10B—C42B ⁱⁱ	1.373 (6)	C33A—C34A	1.378 (9)
O10BC54B	1.428 (6)	C33A—H33A	0.9300
O11A—H11F	0.9372	C33B—C34B	1.373 (8)
O11A—H11G	1.0111	C33B—H33B	0.9300
N1A—C6A	1.387 (6)	C34A—C35A	1.358 (9)
N1A—C3A	1.392 (6)	C34A—H34A	0.9300
N1A—C8A	1.479 (6)	C34B—C35B	1.377 (9)
N1B—C6B	1.395 (6)	C34B—H34B	0.9300
N1B—C3B	1.409 (7)	C35A—C36A	1.386 (8)
N1B—C8B	1.467 (6)	C35A—H35A	0.9300
C1A—C2A	1.382 (7)	C35B—C36B	1.392 (8)
C1A—C7Ai	1.400 (7)	C35B—H35B	0.9300
C1A—H1A	0.9300	C36A—H36A	0.9300
C1B—C2B	1.382 (7)	C36B—H36B	0.9300
C1B—C7B ⁱⁱ	1.389 (7)	C37AC38A	1.350 (8)
С1В—Н1В	0.9300	C37A—C46A	1.419 (7)
C2A—C4A	1.415 (6)	C37B—C38B	1.373 (7)
C2A—C3A	1.480 (7)	C37B—C46B	1.428 (7)
C2B—C4B	1.421 (6)	C38A—C39A	1.394 (7)
C2B—C3B	1.457 (7)	C38A—H38A	0.9300
C4AC4A ⁱ	1.401 (9)	C38B—C39B	1.398 (8)
C4A—C5A	1.402 (6)	C38B—H38B	0.9300
C4B—C4B ⁱⁱ	1.395 (10)	C39A—C40A	1.351 (7)
C4B—C5B	1.409 (7)	C39A—H39A	0.9300
C5A—C7A	1.368 (7)	C39B—C40B	1.367 (8)
C5A—C6A	1.480 (7)	C39B—H39B	0.9300
C5B—C7B	1.371 (7)	C40A—C41A	1.414 (7)
C5B—C6B	1.489 (7)	C40A—H40A	0.9300
C7A—C1Ai	1.400 (7)	C40B—C41B	1.414 (7)
C7A—H7A	0.9300	C40B—H40B	0.9300
C7B—C1B ⁱⁱ	1.389 (7)	C41A—C46A	1.401 (7)
C7B—H7B	0.9300	C41AC42A	1.441 (7)
C8A—C9A	1.524 (7)	C41B—C46B	1.428 (7)
C8A—H8A1	0.9700	C41B—C42B	1.429 (7)
C8A—H8A2	0.9700	C42A—C43A	1.360 (8)
C8B—C9B	1.505 (8)	C42A—O10Ai	1.373 (7)

C8B—H8B1	0.9700	C42B—C43B	1.360 (7)
C8B—H8B2	0.9700	C42B—O10Bii	1.373 (6)
С9А—Н9А1	0.9700	C43AC44A	1.398 (9)
C9A—H9A2	0.9700	C43A—H43A	0.9300
C9A—H9A2	0.9700	C43B—C44B	1.409 (7)
C9B—H9B2	0.9700	C43B—H43B	0.9300
	1.494 (7)	C44A—C45A	1.346 (8)
C10A—C11A	0.9700	C44A—H44A	0.9300
C10A—H10A	0.9700	C44B—C45B	1.360 (7)
C10A—H10B		C44B—H44B	0.9300
C10B—C11B	1.493 (7)		
C10B—H10C	0.9700	C45A—C46A	1.427 (7)
C10B—H10D	0.9700	C45A—H45A	0.9300
C11A—H11A	0.9700	C45B—C46B	1.414 (7)
C11A—H11B	0.9700	C45B—H45B	0.9300
C11B—H11C	0.9700	C47A—C48A	1.481 (8)
C11B—H11D	0.9700	C47A—H47A	0.9700
C12A—C13A	1.344 (15)	C47A—H47B	0.9700
C12A—C17A	1.403 (14)	C47B—C48B	1.485 (7)
C12B—C13B	1.393 (7)	C47B—H47C	0.9700
C12B—C17B	1.394 (7)	C47B—H47D	0.9700
C12C—C13C	1.39 (3)	C48A—H48A	0.9700
C12C—C17C	1.47 (3)	C48A—H48B	0.9700
C13A—C14A	1.419 (13)	C48B—H48C	0.9700
C13A—H13A	0.9300	C48B—H48D	0.9700
C13B—C14B	1.374 (7)	C49A—C50A	1.543 (11)
C13B—H13B	0.9300	C49A—H49A	0.9700
C13C—C14C	1.40 (3)	C49A—H49B	0.9700
C13C—H13C	0.9300	C49B—C50B	1.485 (8)
C14A—C15A	1.380 (16)	C49B—H49C	0.9700
C14A—H14A	0.9300	C49B—H49D	0.9700
C14B—C15B	1.385 (7)	C50A—H50A	0.9700
C14B—H14B	0.9300	C50A—H50B	0.9700
C14C—C15C	1.41 (4)	C50B—H50C	0.9700
C14C—H14C	0.9300	C50B—H50D	0.9700
C15A—C16A	1.364 (15)	C51AC52A	1.485 (11)
C15B—C16B	1.389 (7)	C51A—H51A	0.9700
C15C—C16C	1.33 (5)	C51A—H51B	0.9700
C16A—C17A	1.367 (12)	C51BC52B	1.503 (8)
C16A—H16A	0.9300	C51B—H51C	0.9700
C16B—C17B	1.378 (7)	C51B—H51D	0.9700
C16B—H16B	0.9300	C52A—H52A	0.9700
C16CC17C	1.37 (4)	C52A—H52B	0.9700
cide cire	1.57 (4)		015 1 0 0

C17A—H17A	0.9300	C52B—H52D	0.9700
C17B—H17B	0.9300	C53A—C54A	1.495 (10)
C17C—H17C	0.9300	C53A—H53A	0.9700
C18C—H18A	0.9600	C53A—H53B	0.9700
		C53B—C54B	1.513 (7)
C18C—H18B	0.9600	C53B—H53C	0.9700
C18C—H18C	0.9600		
C18B—H18D	0.9600	C53B—H53D	0.9700
C18B—H18E	0.9600	C54A—H54A	0.9700
C18B—H18F	0.9600	C54A—H54B	0.9700
C18A—H18G	0.9600	C54B—H54C	0.9700
C18A—H18H	0.9600	C54B—H54D	0.9700
C18A—H18I	0.9600		
C19A—Sn1A—C31A	120.8 (2)	C22A—C23A—C24A	120.7 (6)
C19A—Sn1A—C25A	116.0 (2)	C22A—C23A—H23A	119.6
C31A—Sn1A—C25A	118.7 (2)	C24AC23AH23A	119.6
C19A-Sn1A-O11A	82.37 (17)	C22B—C23B—C24B	121.1 (7)
C31A—Sn1A—O11A	80.93 (17)	C22B—C23B—H23B	119.5
C25A—Sn1A—O11A	85.55 (16)	C24B—C23B—H23B	119.5
C19A—Sn1A—S1A	101.34 (14)	C19A—C24A—C23A	120.1 (6)
C31A—Sn1A—S1A	99.06 (15)	C19AC24AH24A	120.0
C25A—Sn1A—S1A	90.59 (14)	C23A—C24A—H24A	120.0
O11A-Sn1A-S1A	175.55 (9)	C19B—C24B—C23B	119.5 (7)
C25B—Sn1B—C31B	114.5 (2)	C19B—C24B—H24B	120.2
C25B—Sn1B—C19B	109.4 (2)	C23B—C24B—H24B	120.2
C31B—Sn1B—C19B	110.3 (2)	C30A—C25A—C26A	117.6 (5)
C25BSn1BS1B	109.66 (15)	C30A—C25A—Sn1A	122.4 (4)
C31B—Sn1B—S1B	111.34 (14)	C26A—C25A—Sn1A	120.0 (4)
C19B—Sn1B—S1B	100.82 (16)	C30B—C25B—C26B	119.9 (5)
P1A-S1A-Sn1A	99.41 (6)	C30B—C25B—Sn1B	119.5 (4)
P1B—S1B—Sn1B	101.73 (6)	C26B—C25B—Sn1B	120.4 (4)
O4AP1AC12A	108.2 (4)	C25A—C26A—C27A	121.3 (5)
O4AP1AC12C	94.9 (10)	C25AC26AH26A	119.4
C12A—P1A—C12C	16.6 (8)	C27A—C26A—H26A	119.4
O4A—P1A—S2A	113.51 (15)	C25B—C26B—C27B	118.9 (5)
C12A—P1A—S2A	108.7 (4)	C25B—C26B—H26B	120.5
C12C—P1A—S2A	124.3 (9)	C27B—C26B—H26B	120.5
O4AP1AS1A	101.29 (14)	C28AC27AC26A	120.5 (6)
C12A—P1A—S1A	107.3 (5)	C28AC27AH27A	119.7
C12C—P1A—S1A	101.3 (13)	C26A—C27A—H27A	119.7
S2A—P1A—S1A	117.18 (10)	C28BC27BC26B	121.2 (6)
O4B—P1B—C12B	100.3 (2)	C28B—C27B—H27B	119.4
O4BP1BS2B	115.07 (15)	C26B—C27B—H27B	119.4
C12B—P1B—S2B	115.44 (17)	C29AC28AC27A	118.7 (5)

O4B—P1B—S1B	106.42 (15)	C29AC28AH28A	120.7
C12B—P1B—S1B	102.91 (17)	C27A—C28A—H28A	120.7
S2B—P1B—S1B	115.00 (8)	C27B—C28B—C29B	119.5 (6)
C9AO3AC10A	114.0 (4)	C27B—C28B—H28B	120.3
C10B—O3B—C9B	113.4 (4)	C29B—C28B—H28B	120.3
C11AO4AP1A	122.0 (3)	C28A—C29A—C30A	120.6 (6)
C11BO4BP1B	122.2 (3)	C28A—C29A—H29A	119.7
C15AO5AC18A	118.8 (9)	C30A—C29A—H29A	119.7
C15B—O5B—C18B	118.6 (4)	C28B—C29B—C30B	120.5 (6)
C15C—O5C—C18C	106 (4)	C28B—C29B—H29B	119.7
C37A—O6A—C47A	117.2 (5)	C30B—C29B—H29B	119.7
C37B—O6B—C47B	116.5 (4)	C25A—C30A—C29A	121.3 (6)
C49AO7AC48A	113.7 (6)	C25A—C30A—H30A	119.4
C48B—O7B—C49B	112.5 (4)	C29A—C30A—H30A	119.4
C51A—O8A—C50A	117.0 (6)	C25B—C30B—C29B	120.0 (5)
C50B—O8B—C51B	112.1 (4)	C25B—C30B—H30B	120.0
C53AO9AC52A	115.3 (5)	C29B—C30B—H30B	120.0
C53B—O9B—C52B	115.0 (4)	C36A—C31A—C32A	118.5 (5)
C42AiO10AC54A	117.5 (5)	C36A—C31A—Sn1A	121.7 (4)
C42Bii—O10B—C54B	117.3 (4)	C32A—C31A—Sn1A	119.8 (4)
Sn1A—O11A—H11F	102.6	C36B—C31B—C32B	118.3 (5)
Sn1AO11AH11G	124.1	C36B—C31B—Sn1B	120.1 (4)
H11FO11AH11G	117.2	C32B—C31B—Sn1B	121.4 (4)
C6A-N1A-C3A	125.2 (4)	C31A—C32A—C33A	120.8 (6)
C6A—N1A—C8A	118.8 (4)	C31A—C32A—H32A	119.6
C3AN1AC8A	116.0 (4)	C33A—C32A—H32A	119.6
C6B—N1B—C3B	124.2 (4)	C33B—C32B—C31B	121.4 (5)
C6B—N1B—C8B	116.6 (4)	C33B—C32B—H32B	119.3
C3BN1BC8B	119.0 (4)	C31B—C32B—H32B	119.3
C2A—C1A—C7Ai	120.8 (5)	C34A—C33A—C32A	119.1 (6)
C2AC1AH1A	119.6	C34A—C33A—H33A	120.5
C7Ai—C1A—H1A	119.6	C32A—C33A—H33A	120.5
C2BC1BC7B ⁱⁱ	121.1 (5)	C34B—C33B—C32B	119.5 (6)
C2B—C1B—H1B	119.5	C34B—C33B—H33B	120.3
C7B ⁱⁱ —C1B—H1B	119.5	C32B—C33B—H33B	120.3
C1A—C2A—C4A	119.3 (4)	C35A—C34A—C33A	120.5 (6)
C1AC2AC3A	120.5 (5)	C35A—C34A—H34A	119.7
C4A—C2A—C3A	120.2 (4)	C33AC34AH34A	119.7
C1B—C2B—C4B	119.2 (5)	C33B—C34B—C35B	120.5 (5)
C1BC2BC3B	120.8 (5)	C33B—C34B—H34B	119.7
C4B—C2B—C3B	120.0 (4)	C35B—C34B—H34B	119.7
O1A—C3A—N1A	121.8 (5)	C34A—C35A—C36A	120.7 (6)
O1A—C3A—C2A	121.8 (5)	C34A—C35A—H35A	119.7

N1A—C3A—C2A	116.3 (4)	C36A—C35A—H35A	119.7
O1B—C3B—N1B	119.5 (5)	C34B—C35B—C36B	120.0 (6)
O1BC3BC2B	123.0 (5)	C34B—C35B—H35B	120.0
N1B—C3B—C2B	117.5 (4)	C36B—C35B—H35B	120.0
C4Ai—C4A—C5A	119.7 (5)	C31A—C36A—C35A	120.3 (6)
C4Ai—C4A—C2A	119.6 (5)	C31A—C36A—H36A	119.9
C5A—C4A—C2A	120.7 (4)	C35A—C36A—H36A	119.9
C4B ⁱⁱ —C4B—C5B	119.4 (5)	C31B—C36B—C35B	120.3 (6)
C4Bii—C4B—C2B	119.7 (6)	C31B—C36B—H36B	119.9
C5B—C4B—C2B	120.9 (5)	C35B—C36B—H36B	119.9
C7A—C5A—C4A	120.5 (4)	C38A—C37A—O6A	124.3 (5)
C7AC5AC6A	119.9 (4)	C38A—C37A—C46A	120.2 (5)
C4A—C5A—C6A	119.5 (4)	O6AC37AC46A	115.5 (5)
C7B—C5B—C4B	120.6 (5)	O6B—C37B—C38B	124.5 (5)
C7B—C5B—C6B	119.9 (5)	O6B—C37B—C46B	114.1 (4)
C4BC5BC6B	119.5 (4)	C38B—C37B—C46B	121.4 (5)
O2AC6AN1A	120.5 (5)	C37A—C38A—C39A	120.4 (5)
O2AC6AC5A	122.1 (5)	C37A—C38A—H38A	119.8
N1A—C6A—C5A	117.5 (4)	C39A—C38A—H38A	119.8
O2BC6BN1B	120.0 (5)	C37B—C38B—C39B	119.6 (5)
O2B—C6B—C5B	122.6 (5)	C37B—C38B—H38B	120.2
N1B—C6B—C5B	117.3 (4)	C39B—C38B—H38B	120.2
C5A—C7A—C1Ai	120.1 (5)	C40A—C39A—C38A	121.4 (5)
C5A—C7A—H7A	120.0	C40A—C39A—H39A	119.3
C1A ⁱ —C7A—H7A	120.0	C38A—C39A—H39A	119.3
C5B—C7B—C1B ⁱⁱ	120.1 (5)	C40B—C39B—C38B	122.0 (5)
C5B—C7B—H7B	119.9	C40B—C39B—H39B	119.0
C1B ⁱⁱ —C7B—H7B	119.9	C38B—C39B—H39B	119.0
N1A—C8A—C9A	112.3 (4)	C39A—C40A—C41A	119.7 (5)
N1A—C8A—H8A1	109.1	C39A—C40A—H40A	120.2
C9A—C8A—H8A1	109.1	C41A—C40A—H40A	120.2
N1A—C8A—H8A2	109.1	C39B—C40B—C41B	119.0 (5)
C9A—C8A—H8A2	109.1	C39B—C40B—H40B	120.5
H8A1—C8A—H8A2	107.9	C41B—C40B—H40B	120.5
N1B—C8B—C9B	112.8 (4)	C46A—C41A—C40A	119.4 (5)
N1B—C8B—H8B1	109.0	C46A—C41A—C42A	118.5 (5)
C9B—C8B—H8B1	109.0	C40A—C41A—C42A	122.1 (5)
N1B—C8B—H8B2	109.0	C40B—C41B—C46B	120.7 (5)
C9B—C8B—H8B2	109.0	C40B—C41B—C42B	121.2 (5)
H8B1—C8B—H8B2	107.8	C46BC41BC42B	118.0 (5)
O3A—C9A—C8A	114.3 (4)	C43A—C42A—O10Ai	125.5 (5)
O3A—C9A—H9A1	108.7	C43A—C42A—C41A	120.7 (6)
C8AC9AH9A1	108.7	O10AiC42AC41A	113.8 (5)

O3A—C9A—H9A2	108.7	C43B—C42B—O10Bii	125.0 (5)
C8A—C9A—H9A2	108.7	C43B—C42B—C41B	121.3 (5)
H9A1—C9A—H9A2	107.6	O10Bii—C42B—C41B	113.7 (4)
O3B—C9B—C8B	109.6 (4)	C42A—C43A—C44A	119.4 (6)
O3B—C9B—H9B1	109.8	C42A—C43A—H43A	120.3
C8B—C9B—H9B1	109.8	C44A—C43A—H43A	120.3
O3B—C9B—H9B2	109.8	C42B—C43B—C44B	119.6 (5)
C8B—C9B—H9B2	109.8	C42B—C43B—H43B	120.2
H9B1—C9B—H9B2	108.2	C44B—C43B—H43B	120.2
O3A-C10A-C11A	107.9 (4)	C45A—C44A—C43A	122.3 (6)
O3A—C10A—H10A	110.1	C45A—C44A—H44A	118.9
C11A—C10A—H10A	110.1	C43A—C44A—H44A	118.9
O3AC10AH10B	110.1	C45B—C44B—C43B	121.5 (5)
C11A—C10A—H10B	110.1	C45B—C44B—H44B	119.2
H10A—C10A—H10B	108.4	C43B—C44B—H44B	119.2
O3BC10BC11B	109.2 (4)	C44A—C45A—C46A	119.9 (6)
O3B—C10B—H10C	109.8	C44A—C45A—H45A	120.1
C11B—C10B—H10C	109.8	C46A—C45A—H45A	120.1
O3B—C10B—H10D	109.8	C44B—C45B—C46B	120.2 (5)
C11B—C10B—H10D	109.8	C44B—C45B—H45B	119.9
H10CC10BH10D	108.3	C46B—C45B—H45B	119.9
O4AC11AC10A	109.0 (4)	C41A—C46A—C37A	119.0 (5)
O4A—C11A—H11A	109.9	C41A—C46A—C45A	119.2 (5)
C10A—C11A—H11A	109.9	C37A—C46A—C45A	121.8 (5)
O4A—C11A—H11B	109.9	C45B—C46B—C37B	123.6 (5)
C10A—C11A—H11B	109.9	C45BC46BC41B	119.3 (5)
H11AC11AH11B	108.3	C37B—C46B—C41B	117.1 (5)
O4BC11BC10B	108.8 (4)	O6AC47AC48A	111.0 (6)
O4BC11BH11C	109.9	O6A—C47A—H47A	109.4
C10B—C11B—H11C	109.9	C48A—C47A—H47A	109.4
O4BC11BH11D	109.9	O6A—C47A—H47B	109.4
C10BC11BH11D	109.9	C48A—C47A—H47B	109.4
H11C-C11B-H11D	108.3	H47A—C47A—H47B	108.0
C13A—C12A—C17A	121.0 (8)	O6B—C47B—C48B	108.8 (4)
C13A—C12A—P1A	119.9 (8)	O6B—C47B—H47C	109.9
C17A—C12A—P1A	119.1 (8)	C48B—C47B—H47C	109.9
C13B—C12B—C17B	118.5 (5)	O6B—C47B—H47D	109.9
C13B—C12B—P1B	120.2 (4)	C48B—C47B—H47D	109.9
C17B—C12B—P1B	121.1 (4)	H47C—C47B—H47D	108.3
C13CC12CC17C	111.2 (18)	O7A—C48A—C47A	114.6 (5)
C13C—C12C—P1A	129.5 (19)	O7A—C48A—H48A	108.6
C17C—C12C—P1A	119.2 (19)	C47A—C48A—H48A	108.6
C12A—C13A—C14A	121.4 (8)	O7A—C48A—H48B	108.6

C12A—C13A—H13A	119.3	C47A—C48A—H48B	108.6
	119.3	H48A—C48A—H48B	107.6
C14A—C13A—H13A		O7B—C48B—C47B	110.4 (4)
C14B—C13B—C12B	121.6 (5)		109.6
C14B—C13B—H13B	119.2	O7B—C48B—H48C	
C12B—C13B—H13B	119.2	C47B—C48B—H48C	109.6
C12C—C13C—C14C	128 (2)	O7B—C48B—H48D	109.6
C12C—C13C—H13C	116.2	C47B—C48B—H48D	109.6
C14C—C13C—H13C	116.2	H48C—C48B—H48D	108.1
C15A—C14A—C13A	115.9 (10)	O7A—C49A—C50A	112.6 (6)
C15A—C14A—H14A	122.1	O7A—C49A—H49A	109.1
C13A—C14A—H14A	122.1	C50A—C49A—H49A	109.1
C13B—C14B—C15B	119.3 (5)	O7A—C49A—H49B	109.1
C13BC14BH14B	120.3	C50A—C49A—H49B	109.1
C15B—C14B—H14B	120.3	H49A—C49A—H49B	107.8
C13C—C14C—C15C	117 (2)	O7B—C49B—C50B	109.8 (5)
C13C—C14C—H14C	121.3	O7B—C49B—H49C	109.7
C15C—C14C—H14C	121.3	C50B—C49B—H49C	109.7
O5AC15AC16A	115.4 (9)	O7BC49BH49D	109.7
O5A—C15A—C14A	121.6 (11)	C50BC49BH49D	109.7
C16A—C15A—C14A	122.9 (10)	H49C—C49B—H49D	108.2
O5B—C15B—C14B	124.3 (5)	O8AC50AC49A	105.3 (5)
O5B—C15B—C16B	115.7 (5)	O8AC50AH50A	110.7
C14B—C15B—C16B	120.0 (5)	C49A—C50A—H50A	110.7
C16C—C15C—O5C	131 (3)	O8AC50AH50B	110.7
C16C—C15C—C14C	117 (2)	C49A—C50A—H50B	110.7
O5C—C15C—C14C	112 (2)	H50A—C50A—H50B	108.8
C15A—C16A—C17A	120.4 (8)	O8BC50BC49B	109.7 (5)
C15A—C16A—H16A	119.8	O8B—C50B—H50C	109.7
C17A—C16A—H16A	119.8	C49B—C50B—H50C	109.7
C17B—C16B—C15B	120.4 (5)	O8B—C50B—H50D	109.7
C17B—C16B—H16B	119.8	C49B—C50B—H50D	109.7
C15B—C16B—H16B	119.8	H50C—C50B—H50D	108.2
C15C—C16C—C17C	126 (3)	O8A—C51A—C52A	109.7 (6)
C15C—C16C—H16C	116.8	O8A—C51A—H51A	109.7
C17C—C16C—H16C	116.8	C52A—C51A—H51A	109.7
C16A—C17A—C12A	118.2 (9)	O8AC51AH51B	109.7
C16A—C17A—H17A	120.9	C52A—C51A—H51B	109.7
C12A—C17A—H17A	120.9	H51A—C51A—H51B	108.2
C16B—C17B—C12B	120.2 (5)	O8B—C51B—C52B	108.2 (4)
C16B—C17B—H17B	119.9	O8B—C51B—H51C	110.1
C12B—C17B—H17B	119.9	C52B—C51B—H51C	110.1
C16C—C17C—C12C	120 (2)	O8B—C51B—H51D	110.1
C16C—C17C—H17C	120.1	C52B—C51B—H51D	110.1
0.00 0.70 11170	120.1	C-2D C-1151D	110.1

C12C—C17C—H17C	120.1	H51C-C51B-H51D	108.4
O5C—C18C—H18A	109.5	O9AC52AC51A	108.3 (6)
O5CC18CH18B	109.5	O9AC52AH52A	110.0
H18A—C18C—H18B	109.5	C51A—C52A—H52A	110.0
O5CC18CH18C	109.5	O9A—C52A—H52B	110.0
H18A—C18C—H18C	109.5	C51A—C52A—H52B	110.0
H18B—C18C—H18C	109.5	H52A—C52A—H52B	108.4
O5B—C18B—H18D	109.5	O9BC52BC51B	109.1 (5)
O5B—C18B—H18E	109.5	O9B—C52B—H52C	109.9
H18D—C18B—H18E	109.5	C51B—C52B—H52C	109.9
O5B—C18B—H18F	109.5	O9B—C52B—H52D	109.9
H18D—C18B—H18F	109.5	C51B—C52B—H52D	109.9
H18E—C18B—H18F	109.5	H52C—C52B—H52D	108.3
C20A—C19A—C24A	118.6 (5)	O9AC53AC54A	114.9 (5)
C20A—C19A—Sn1A	121.8 (4)	O9A—C53A—H53A	108.5
C24A—C19A—Sn1A	119.6 (4)	C54A—C53A—H53A	108.5
C20B—C19B—C24B	118.5 (6)	O9A—C53A—H53B	108.5
C20B—C19B—Sn1B	124.4 (4)	C54A—C53A—H53B	108.5
C24B—C19B—Sn1B	117.1 (5)	H53A—C53A—H53B	107.5
C19AC20AC21A	121.2 (5)	O9B—C53B—C54B	114.7 (5)
C19A—C20A—H20A	119.4	O9B—C53B—H53C	108.6
C21AC20AH20A	119.4	C54B—C53B—H53C	108.6
C21B—C20B—C19B	121.8 (6)	O9B—C53B—H53D	108.6
C21B—C20B—H20B	119.1	C54B—C53B—H53D	108.6
C19B—C20B—H20B	119.1	H53C—C53B—H53D	107.6
C22A—C21A—C20A	119.3 (5)	O10A—C54A—C53A	108.2 (6)
C22A—C21A—H21A	120.4	O10A—C54A—H54A	110.1
C20A—C21A—H21A	120.4	C53A—C54A—H54A	110.1
C20B—C21B—C22B	119.5 (7)	O10A—C54A—H54B	110.1
C20B—C21B—H21B	120.2	C53A—C54A—H54B	110.1
C22B—C21B—H21B	120.2	H54A—C54A—H54B	108.4
C21A—C22A—C23A	120.1 (6)	O10B—C54B—C53B	107.7 (4)
C21A—C22A—H22A	120.0	O10B—C54B—H54C	110.2
C23A—C22A—H22A	120.0	C53B—C54B—H54C	110.2
C23B—C22B—C21B	119.6 (7)	O10B—C54B—H54D	110.2
C23B—C22B—H22B	120.2	C53B—C54B—H54D	110.2
C21B—C22B—H22B	120.2	H54C—C54B—H54D	108.5
C19A—Sn1A—S1A—P1A	51.95 (15)	C31B—Sn1B—C19B—C20B	127.8 (5)
C31A—Sn1A—S1A—P1A	-72.13 (18)	S1B—Sn1B—C19B—C20B	10.1 (5)
C25A—Sn1A—S1A—P1A	168.63 (15)	C25B—Sn1B—C19B—C24B	71.5 (5)
O11A—Sn1A—S1A—P1A	-161.7 (11)	C31B—Sn1B—C19B—C24B	-55.2 (5)
C25B—Sn1B—S1B—P1B	-75.45 (16)	S1B—Sn1B—C19B—C24B	-173.0 (4)
C31B—Sn1B—S1B—P1B	52.29 (17)	C24A—C19A—C20A—C21A	0.6 (8)

	1,000,00	G-14 G104 G204 G214	179 0 (4)
C19B—Sn1B—S1B—P1B	169.26 (16)	Sn1A—C19A—C20A—C21A	178.9 (4)
Sn1A—S1A—P1A—O4A	-82.81 (15)	C24B—C19B—C20B—C21B	-0.9 (9)
Sn1A—S1A—P1A—C12A	163.8 (4)	Sn1B—C19B—C20B—C21B	176.0 (5)
Sn1A—S1A—P1A—C12C	179.8 (9)	C19A—C20A—C21A—C22A	0.5 (8)
Sn1A—S1A—P1A—S2A	41.24 (11)	C19B—C20B—C21B—C22B	1.9 (10)
Sn1B—S1B—P1B—O4B	-103.99 (15)	C20A—C21A—C22A—C23A	-0.6 (9)
Sn1B—S1B—P1B—C12B	151.06 (17)	C20B—C21B—C22B—C23B	-1.3 (11)
Sn1B—S1B—P1B—S2B	24.69 (10)	C21AC22AC23AC24A	-0.4 (10)
C12A—P1A—O4A—C11A	-89.8 (6)	C21B—C22B—C23B—C24B	-0.2 (12)
C12C—P1A—O4A—C11A	-99.9 (12)	C20A—C19A—C24A—C23A	-1.6 (9)
S2AP1AO4AC11A	31.0 (4)	Sn1AC19AC24AC23A	-180.0 (5)
S1A—P1A—O4A—C11A	157.5 (3)	C22AC23AC24AC19A	1.5 (10)
C12B—P1B—O4B—C11B	159.3 (4)	C20B—C19B—C24B—C23B	-0.6 (9)
S2B—P1B—O4B—C11B	-76.2 (4)	Sn1B—C19B—C24B—C23B	-177.8 (5)
S1BP1B	52.5 (4)	C22BC23BC24BC19B	1.2 (11)
C7AiC1AC2AC4A	0.7 (7)	C19A—Sn1A—C25A—C30A	-2.7 (6)
C7A ⁱ —C1A—C2A—C3A	-178.7 (4)	C31A—Sn1A—C25A—C30A	153.7 (5)
C7Bii—C1B—C2B—C4B	0.0 (8)	O11A—Sn1A—C25A—C30A	76.6 (5)
C7Bii—C1B—C2B—C3B	-177.7 (5)	S1ASn1AC25AC30A	-105.6 (5)
C6AN1AC3AO1A	175.6 (5)	C19ASn1AC25AC26A	177.8 (4)
C8A—N1A—C3A—O1A	-8.1 (7)	C31A—Sn1A—C25A—C26A	-25.8 (5)
C6A—N1A—C3A—C2A	-5.9 (7)	O11A—Sn1A—C25A—C26A	-102.9 (5)
C8A—N1A—C3A—C2A	170.5 (4)	S1A—Sn1A—C25A—C26A	74.9 (4)
C1A—C2A—C3A—O1A	5.1 (8)	C31B—Sn1B—C25B—C30B	34.2 (5)
C4A—C2A—C3A—O1A	-174.3 (5)	C19B—Sn1B—C25B—C30B	-90.1 (5)
C1A—C2A—C3A—N1A	-173.4 (4)	S1B—Sn1B—C25B—C30B	160.2 (4)
C4AC2AC3AN1A	7.1 (7)	C31B—Sn1B—C25B—C26B	-150.4 (4)
C6B—N1B—C3B—O1B	170.8 (5)	C19B—Sn1B—C25B—C26B	85.3 (5)
C8B—N1B—C3B—O1B	-4.0 (7)	S1B—Sn1B—C25B—C26B	-24.4 (5)
C6BN1BC3BC2B	-9.0 (7)	C30A—C25A—C26A—C27A	-3.3 (9)
C8B—N1B—C3B—C2B	176.2 (4)	Sn1A—C25A—C26A—C27A	176.3 (5)
C1B—C2B—C3B—O1B	6.5 (8)	C30B—C25B—C26B—C27B	-0.9 (8)
C4B—C2B—C3B—O1B	-171.2 (5)	Sn1B—C25B—C26B—C27B	-176.3 (4)
C1B—C2B—C3B—N1B	-173.7 (5)	C25A—C26A—C27A—C28A	2.4 (10)
C4B—C2B—C3B—N1B	8.6 (7)	C25B—C26B—C27B—C28B	-1.1 (9)
C1A—C2A—C4A—C4Ai	-1.2 (8)	C26AC27AC28AC29A	0.3 (9)
C3A—C2A—C4A—C4Ai	178.2 (5)	C26B—C27B—C28B—C29B	1.9 (9)
C1A—C2A—C4A—C5A	178.8 (4)	C27A—C28A—C29A—C30A	-2.1 (10)
C3A—C2A—C4A—C5A	-1.8 (7)	C27B—C28B—C29B—C30B	-0.6 (9)
C1BC2BC4BC4B ⁱⁱ	-0.5 (9)	C26A—C25A—C30A—C29A	1.5 (9)
C3B—C2B—C4B—C4B ⁱⁱ	177.2 (6)	Sn1AC25AC30AC29A	-178.0 (5)
C1B—C2B—C4B—C5B	179.5 (5)	C28A—C29A—C30A—C25A	1.1 (10)
C3B—C2B—C4B—C5B	-2.8 (7)	C26B—C25B—C30B—C29B	2.2 (8)
	1 (-)		(0)

C4A ⁱ —C4A—C5A—C7A	-1.7 (8)	Sn1B—C25B—C30B—C29B	177.6 (4)
C2A—C4A—C5A—C7A	178.3 (4)	C28B—C29B—C30B—C25B	-1.4 (9)
C4Ai—C4A—C5A—C6A	174.9 (5)	C19A—Sn1A—C31A—C36A	37.4 (6)
C2AC4AC5AC6A	-5.1 (7)	C25A—Sn1A—C31A—C36A	-117.8 (5)
C4B ⁱⁱ —C4B—C5B—C7B	-1.0 (9)	O11A—Sn1A—C31A—C36A	-38.0 (5)
C2B—C4B—C5B—C7B	179.0 (5)	S1A-Sn1A-C31A-C36A	146.5 (5)
C4B ⁱⁱ —C4B—C5B—C6B	176.9 (6)	C19ASn1AC31AC32A	-141.5 (5)
C2B—C4B—C5B—C6B	-3.1 (8)	C25A—Sn1A—C31A—C32A	63.3 (5)
C3AN1AC6AO2A	178.5 (5)	O11A—Sn1A—C31A—C32A	143.1 (5)
C8AN1AC6AO2A	2.2 (7)	S1ASn1AC31AC32A	-32.4 (5)
C3AN1AC6AC5A	-0.7 (7)	C25B—Sn1B—C31B—C36B	-165.7 (4)
C8AN1AC6AC5A	-177.0 (4)	C19B—Sn1B—C31B—C36B	-41.9 (5)
C7A—C5A—C6A—O2A	3.9 (7)	S1B—Sn1B—C31B—C36B	69.2 (4)
C4A—C5A—C6A—O2A	-172.8 (5)	C25B—Sn1B—C31B—C32B	19.7 (5)
C7A—C5A—C6A—N1A	-176.9 (4)	C19B—Sn1B—C31B—C32B	143.5 (4)
C4AC5AC6AN1A	6.4 (6)	S1B—Sn1B—C31B—C32B	-105.4 (4)
C3BN1BC6BO2B	-175.8 (5)	C36A—C31A—C32A—C33A	1.6 (9)
C8BN1BC6BO2B	-0.9 (8)	Sn1AC31AC32AC33A	-179.5 (5)
C3B—N1B—C6B—C5B	3.2 (8)	C36B—C31B—C32B—C33B	-0.2 (8)
C8BN1BC6BC5B	178.2 (5)	Sn1B—C31B—C32B—C33B	174.5 (4)
C7B—C5B—C6B—O2B	-0.1 (8)	C31A—C32A—C33A—C34A	-3.3 (10)
C4B—C5B—C6B—O2B	-178.0 (5)	C31B—C32B—C33B—C34B	-1.5 (8)
C7B—C5B—C6B—N1B	-179.0 (5)	C32A—C33A—C34A—C35A	1.0 (11)
C4BC5BC6BN1B	3.0 (7)	C32B—C33B—C34B—C35B	1.6 (9)
C4A—C5A—C7A—C1A ⁱ	2.2 (7)	C33A—C34A—C35A—C36A	2.8 (11)
C6AC5AC7AC1Ai	-174.4 (4)	C33B—C34B—C35B—C36B	0.0 (9)
C4B—C5B—C7B—C1B ⁱⁱ	1.5 (8)	C32A—C31A—C36A—C35A	2.3 (9)
C6BC5BC7BC1B ⁱⁱ	-176.4 (5)	Sn1A—C31A—C36A—C35A	-176.6 (5)
C6AN1AC8AC9A	-101.1 (5)	C34A—C35A—C36A—C31A	-4.5 (11)
C3AN1AC8AC9A	82.3 (6)	C32B—C31B—C36B—C35B	1.7 (8)
C6B—N1B—C8B—C9B	82.4 (6)	Sn1B—C31B—C36B—C35B	-173.0 (4)
C3B—N1B—C8B—C9B	-102.4 (6)	C34B—C35B—C36B—C31B	-1.6 (8)
C10A—O3A—C9A—C8A	72.8 (5)	C47AO6AC37AC38A	0.8 (7)
N1AC8AC9AO3A	62.4 (6)	C47A—O6A—C37A—C46A	179.7 (4)
C10B—O3B—C9B—C8B	162.4 (4)	C47B—O6B—C37B—C38B	5.8 (8)
N1B—C8B—C9B—O3B	64.3 (6)	C47B—O6B—C37B—C46B	-174.5 (4)
C9AO3AC10AC11A	164.9 (4)	O6AC37AC38AC39A	-179.7 (5)
C9BO3BC10BC11B	177.2 (4)	C46A—C37A—C38A—C39A	1.4 (8)
P1AO4AC11AC10A	159.9 (3)	O6BC37BC38BC39B	179.3 (5)
O3AC10AC11AO4A	-71.0 (5)	C46B—C37B—C38B—C39B	-0.4 (9)
P1BO4BC11BC10B	-177.3 (3)	C37A—C38A—C39A—C40A	-1.0 (8)
O3BC10BC11BO4B	54.3 (6)	C37B—C38B—C39B—C40B	-2.8 (10)
O4AP1AC12AC13A	-72.8 (10)	C38A—C39A—C40A—C41A	-0.1 (8)

C12C—P1A—C12A—C13A	-35 (5)	C38B—C39B—C40B—C41B	3.6 (10)
S2AP1AC12AC13A	163.5 (8)	C39A—C40A—C41A—C46A	0.6 (7)
S1A—P1A—C12A—C13A	35.8 (10)	C39A—C40A—C41A—C42A	-178.8 (5)
O4A—P1A—C12A—C17A	106.0 (9)	C39B—C40B—C41B—C46B	-1.2 (9)
C12C—P1A—C12A—C17A	144 (6)	C39B—C40B—C41B—C42B	177.7 (6)
S2A—P1A—C12A—C17A	-17.7 (10)	C46A—C41A—C42A—C43A	-0.6 (8)
S1AP1AC12AC17A	-145.4 (8)	C40A—C41A—C42A—C43A	178.8 (5)
O4B—P1B—C12B—C13B	155.1 (4)	C46A—C41A—C42A—O10Ai	-179.5 (4)
S2B—P1B—C12B—C13B	30.9 (5)	C40A—C41A—C42A—O10Ai	-0.2 (7)
S1B—P1B—C12B—C13B	-95.2 (4)	C40B—C41B—C42B—C43B	-175.6 (5)
O4B—P1B—C12B—C17B	-29.7 (4)	C46B—C41B—C42B—C43B	3.4 (8)
S2B—P1B—C12B—C17B	-154.0 (4)	C40B—C41B—C42B—O10B ⁱⁱ	5.1 (7)
S1B—P1B—C12B—C17B	79.9 (4)	C46B—C41B—C42B—O10Bii	-175.9 (4)
O4A—P1A—C12C—C13C	-20 (4)	O10Ai—C42A—C43A—C44A	-179.0 (5)
C12A—P1A—C12C—C13C	-165 (9)	C41A—C42A—C43A—C44A	2.2 (8)
S2AP1AC12CC13C	-143 (3)	O10Bii C42B C43B C44B	177.8 (5)
S1A—P1A—C12C—C13C	82 (4)	C41B—C42B—C43B—C44B	-1.4 (8)
O4A—P1A—C12C—C17C	158 (3)	C42A—C43A—C44A—C45A	-2.6 (9)
C12A—P1A—C12C—C17C	13 (3)	C42B—C43B—C44B—C45B	-1.3 (8)
S2AP1AC12CC17C	35 (4)	C43AC44AC45AC46A	1.3 (9)
S1AP1AC12CC17C	-100 (3)	C43B—C44B—C45B—C46B	2.0 (8)
C17A—C12A—C13A—C14A	-3.1 (17)	C40A—C41A—C46A—C37A	-0.1 (7)
P1AC12AC13AC14A	175.7 (8)	C42A—C41A—C46A—C37A	179.3 (5)
C17B—C12B—C13B—C14B	0.4 (8)	C40A—C41A—C46A—C45A	179.9 (5)
P1B—C12B—C13B—C14B	175.6 (4)	C42A—C41A—C46A—C45A	-0.7 (7)
C17CC12CC13CC14C	4 (5)	C38AC37AC46AC41A	-0.9 (8)
P1AC12CC13CC14C	-178 (2)	O6A—C37A—C46A—C41A	-179.9 (4)
C12A—C13A—C14A—C15A	2.7 (16)	C38A—C37A—C46A—C45A	179.1 (5)
C12BC13BC14BC15B	-1.1 (8)	O6AC37AC46AC45A	0.1 (7)
C12C—C13C—C14C—C15C	-3 (4)	C44A—C45A—C46A—C41A	0.4 (8)
C18A—O5A—C15A—C16A	-179.3 (11)	C44A—C45A—C46A—C37A	-179.6 (5)
C18AO5AC15AC14A	-1.7 (17)	C44B—C45B—C46B—C37B	177.9 (5)
C13AC14AC15AO5A	179.4 (9)	C44B—C45B—C46B—C41B	0.0 (8)
C13AC14AC15AC16A	-3.1 (18)	O6B—C37B—C46B—C45B	4.9 (7)
C18B—O5B—C15B—C14B	4.6 (7)	C38B—C37B—C46B—C45B	-175.4 (5)
C18B—O5B—C15B—C16B	-173.6 (5)	O6B—C37B—C46B—C41B	-177.2 (4)
C13B—C14B—C15B—O5B	-177.1 (5)	C38B—C37B—C46B—C41B	2.5 (8)
C13BC14BC15BC16B	1.1 (8)	C40B—C41B—C46B—C45B	176.3 (5)
C18C—O5C—C15C—C16C	1 (5)	C42BC41BC46BC45B	-2.6 (7)
C18C—O5C—C15C—C14C	-177 (4)	C40B—C41B—C46B—C37B	-1.7 (8)
C13C—C14C—C15C—C16C	3 (4)	C42B—C41B—C46B—C37B	179.3 (5)
C13CC14CC15CO5C	-179 (2)	C37A—O6A—C47A—C48A	174.4 (5)
O5AC15AC16AC17A	-178.5 (9)	C37B—O6B—C47B—C48B	176.6 (4)

C14A—C15A—C16A—C17A	3.9 (18)	C49A—O7A—C48A—C47A	-90.3 (8)
O5B—C15B—C16B—C17B	178.1 (4)	O6A—C47A—C48A—O7A	74.9 (8)
C14BC15BC16BC17B	-0.2 (8)	C49B—O7B—C48B—C47B	-163.7 (4)
O5CC15CC16CC17C	177 (2)	O6BC47BC48BO7B	-62.1 (6)
C14C—C15C—C16C—C17C	-6 (5)	C48A—O7A—C49A—C50A	-162.9 (6)
C15A—C16A—C17A—C12A	-3.9 (15)	C48B—O7B—C49B—C50B	-177.1 (5)
C13A—C12A—C17A—C16A	3.6 (16)	C51A—O8A—C50A—C49A	179.4 (5)
P1AC12AC17AC16A	-175.2 (8)	O7A—C49A—C50A—O8A	-65.0 (8)
C15B—C16B—C17B—C12B	-0.6 (8)	C51B—O8B—C50B—C49B	-168.9 (5)
C13B—C12B—C17B—C16B	0.5 (7)	O7B—C49B—C50B—O8B	-61.1 (6)
P1BC12BC17BC16B	-174.7 (4)	C50A—O8A—C51A—C52A	178.8 (6)
C15C—C16C—C17C—C12C	8 (5)	C50B—O8B—C51B—C52B	-177.1 (5)
C13C—C12C—C17C—C16C	-6 (4)	C53A—O9A—C52A—C51A	176.0 (5)
P1AC12CC17CC16C	175 (2)	O8A—C51A—C52A—O9A	69.2 (7)
C31A—Sn1A—C19A—C20A	170.2 (4)	C53B—O9B—C52B—C51B	-175.8 (5)
C25A—Sn1A—C19A—C20A	-33.9 (5)	O8B—C51B—C52B—O9B	-66.4 (6)
O11A—Sn1A—C19A—C20A	-115.1 (4)	C52A—O9A—C53A—C54A	89.5 (7)
S1ASn1AC19AC20A	62.4 (4)	C52B—O9B—C53B—C54B	-78.0 (6)
C31A—Sn1A—C19A—C24A	-11.5 (5)	C42A ⁱ —O10A—C54A—C53A	-177.8 (5)
C25A—Sn1A—C19A—C24A	144.4 (4)	O9A—C53A—C54A—O10A	-69.8 (6)
O11A-Sn1A-C19A-C24A	63.2 (4)	C42Bii—O10B—C54B—C53B	176.3 (4)
S1A-Sn1A-C19A-C24A	-119.3 (4)	O9B—C53B—C54B—O10B	73.8 (6)
C25B—Sn1B—C19B—C20B	-105.4 (5)		
Symmetry codes: (i) -x, -y+3, -z-1; (ii) ->	c, -y, -z.		

Table A13: Hydrogen-bond geometry (Å, °) for NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂(SnPh₃)₂]₂ ⊂15DN38C10

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H <i>A</i>	D···A	<i>D</i> —H··· <i>A</i>	
O11 <i>A</i> —H11 <i>F</i> ···O7 <i>A</i> ⁱⁱⁱ	0.94	1.91	2.839 (6)	174	
O11 <i>A</i> —H11 <i>G</i> ···O9 <i>A</i> ⁱⁱⁱ	1.01	1.73	2.736 (5)	170	
Symmetry code: (iii) x+1, y-1, z.					

 $\label{eq:Table A14: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2) for NDI-[CH2CH2O(An)PS2]2-[SnPh2]2}$

	x	у	z	$U_{\rm iso}$ */ $U_{\rm eq}$	
Sn1	0.913918 (14)	0.212481 (13)	0.238928 (8)	0.01781 (6)	
Cl1	1.19037 (7)	0.47718 (6)	0.02807 (4)	0.03414 (15)	
Cl2	1.11834 (7)	0.26962 (6)	0.04744 (4)	0.03635 (16)	
S1	0.75885 (6)	0.27596 (6)	0.05471 (4)	0.02583 (14)	
S2	0.67307 (6)	0.26165 (5)	0.23938 (3)	0.02182 (13)	

S3	0.89006 (6)	0.16983 (5)	0.37760 (3)	0.02190 (13)
S4	1.17854 (6)	0.12296 (5)	0.30141 (3)	0.02311 (13)
P1	0.62723 (6)	0.26158 (5)	0.12672 (3)	0.01816 (12)
P2	1.08383 (6)	0.08986 (5)	0.39161 (3)	0.01879 (13)
01	0.81018 (18)	0.37978 (16)	0.60081 (10)	0.0268 (4)
02	0.58141 (18)	0.13184 (17)	0.60194 (10)	0.0279 (4)
03		0.37702 (17)	0.25509 (10)	
04	0.30363 (17)		0.24960 (11)	0.0260 (4)
05	0.53932 (19)	0.61955 (16)	0.11929 (9)	0.0290 (4) 0.0200 (3)
	0.48918 (16)		<u> </u>	
O6	0.47205 (19)	-0.15421 (16)	0.10953 (11)	0.0297 (4)
07	1.10923 (17)	-0.04258 (14)	0.41027 (9)	0.0210 (4)
O8	1.2584 (2)	0.24244 (17)	0.67114 (11)	0.0309 (4)
N1	0.6973 (2)	0.25523 (18)	0.60106 (11)	0.0214 (4)
N2	0.4180 (2)	0.50167 (18)	0.25382 (11)	0.0201 (4)
C1	0.8999 (2)	0.1193 (2)	0.64828 (14)	0.0224 (5)
HIA	0.9532	0.1662	0.6292	0.027*
H1B	0.9415	0.0742	0.6937	0.027*
C2	0.7657 (3)	0.1964 (2)	0.66924 (14)	0.0236 (5)
H2A	0.7167	0.1502	0.6948	0.028*
H2B	0.7718	0.2538	0.7052	0.028*
C3	0.7337 (2)	0.3461 (2)	0.56910 (14)	0.0214 (5)
C4	0.6750 (2)	0.3966 (2)	0.49566 (13)	0.0191 (5)
C5	0.5816 (2)	0.3568 (2)	0.46388 (13)	0.0185 (5)
C6	0.5445 (2)	0.2671 (2)	0.49934 (14)	0.0201 (5)
C7	0.6064 (2)	0.2115 (2)	0.57094 (14)	0.0216 (5)
C8	0.4534 (2)	0.2296 (2)	0.46665 (14)	0.0227 (5)
Н8	0.4292	0.1691	0.4907	0.027*
C9	0.3962 (2)	0.2802 (2)	0.39814 (14)	0.0232 (5)
Н9	0.3330	0.2543	0.3763	0.028*
C10	0.4315 (2)	0.3672 (2)	0.36243 (14)	0.0204 (5)
C11	0.5247 (2)	0.4070 (2)	0.39461 (13)	0.0182 (5)
C12	0.5649 (2)	0.4939 (2)	0.35783 (13)	0.0192 (5)
C13	0.6582 (2)	0.5300 (2)	0.38922 (14)	0.0211 (5)
H13	0.6855	0.5877	0.3638	0.025*
C14	0.7127 (2)	0.4812 (2)	0.45889 (14)	0.0217 (5)
H14	0.7761	0.5069	0.4807	0.026*
C15	0.3775 (2)	0.4138 (2)	0.28718 (14)	0.0210 (5)
C16	0.5090 (2)	0.5450 (2)	0.28375 (14)	0.0204 (5)
C17	0.3758 (2)	0.5415 (2)	0.17604 (14)	0.0229 (5)
H17A	0.3601	0.6249	0.1705	0.027*
H17B	0.2938	0.5273	0.1668	0.027*
C18	0.4771 (2)	0.4799 (2)	0.11773 (14)	0.0215 (5)
H18A	0.4519	0.5141	0.0664	0.026*

H18B	0.5610	0.4887	0.1293	0.026*
C19	0.5780 (2)	0.1379 (2)	0.11745 (14)	0.0200 (5)
C20	0.4761 (2)	0.1231 (2)	0.16294 (14)	0.0222 (5)
H20	0.4298	0.1807	0.1968	0.027*
C21	0.4439 (3)	0.0248 (2)	0.15823 (15)	0.0251 (5)
H21	0.3745	0.0154	0.1885	0.030*
C22	0.5126 (2)	-0.0612 (2)	0.10928 (15)	0.0237 (5)
C23	0.6143 (3)	-0.0483 (2)	0.06506 (14)	0.0239 (5)
H23	0.6617	-0.1068	0.0321	0.029*
C24	0.6459 (2)	0.0513 (2)	0.06953 (14)	0.0233 (5)
H24	0.7154	0.0605	0.0392	0.028*
C25	0.5498 (3)	-0.2508 (2)	0.06882 (17)	0.0310 (6)
H25A	0.5568	-0.2281	0.0153	0.046*
H25B	0.5100	-0.3113	0.0727	0.046*
H25C	0.6359	-0.2792	0.0906	0.046*
C26	0.9737 (2)	0.0558 (2)	0.18008 (13)	0.0193 (5)
C27	1.0949 (3)	0.0137 (2)	0.14495 (15)	0.0253 (5)
H27	1.1513	0.0581	0.1431	0.030*
C28	1.1333 (3)	-0.0929 (2)	0.11269 (16)	0.0296 (6)
H28	1.2163	-0.1217	0.0894	0.035*
C29	1.0501 (3)	-0.1580 (2)	0.11444 (16)	0.0303 (6)
H29	1.0759	-0.2306	0.0919	0.036*
C30	0.9301 (3)	-0.1160 (2)	0.14916 (16)	0.0277 (6)
H30	0.8732	-0.1598	0.1502	0.033*
C31	0.8920 (2)	-0.0098 (2)	0.18265 (15)	0.0229 (5)
H31	0.8099	0.0178	0.2073	0.027*
C32	0.9359 (2)	0.3780 (2)	0.23041 (14)	0.0214 (5)
C33	1.0047 (3)	0.4086 (2)	0.28643 (15)	0.0262 (5)
H33	1.0425	0.3555	0.3264	0.031*
C34	1.0177 (3)	0.5167 (2)	0.28366 (16)	0.0297 (6)
H34	1.0633	0.5379	0.3222	0.036*
C35	0.9649 (3)	0.5929 (3)	0.22546 (18)	0.0344 (6)
H35	0.9753	0.6663	0.2234	0.041*
C36	0.8965 (3)	0.5636 (2)	0.16964 (18)	0.0340 (6)
H36	0.8609	0.6164	0.1291	0.041*
C37	0.8798 (3)	0.4564 (2)	0.17297 (16)	0.0292 (6)
H37	0.8299	0.4373	0.1359	0.035*
C38	1.1307 (2)	0.1313 (2)	0.47944 (14)	0.0203 (5)
C39	1.2156 (3)	0.0513 (2)	0.52786 (15)	0.0243 (5)
H39	1.2434	-0.0273	0.5159	0.029*
C40	1.2601 (3)	0.0840 (2)	0.59284 (14)	0.0240 (5)
H40	1.3173	0.0284	0.6253	0.029*
C41	1.2198 (2)	0.1995 (2)	0.61011 (14)	0.0232 (5)

1.1330 (3)	0.2800 (2)	0.56298 (15)	0.0256 (5)	
1.1039	0.3584	0.5755	0.031*	
1.0892 (3)	0.2465 (2)	0.49826 (15)	0.0241 (5)	
1.0307	0.3019	0.4664	0.029*	
1.3444 (3)	0.1644 (3)	0.72298 (15)	0.0290 (6)	
1.3034	0.1104	0.7450	0.043*	
1.3649	0.2070	0.7636	0.043*	
1.4239	0.1222	0.6958	0.043*	
1.1891 (3)	0.3615 (3)	0.09017 (16)	0.0319 (6)	
1.1401	0.3914	0.1372	0.038*	
1.2786	0.3175	0.1044	0.038*	
	1.1039 1.0892 (3) 1.0307 1.3444 (3) 1.3034 1.3649 1.4239 1.1891 (3) 1.1401	1.1039 0.3584 1.0892 (3) 0.2465 (2) 1.0307 0.3019 1.3444 (3) 0.1644 (3) 1.3034 0.1104 1.3649 0.2070 1.4239 0.1222 1.1891 (3) 0.3615 (3) 1.1401 0.3914	1.1039 0.3584 0.5755 1.0892 (3) 0.2465 (2) 0.49826 (15) 1.0307 0.3019 0.4664 1.3444 (3) 0.1644 (3) 0.72298 (15) 1.3034 0.1104 0.7450 1.3649 0.2070 0.7636 1.4239 0.1222 0.6958 1.1891 (3) 0.3615 (3) 0.09017 (16) 1.1401 0.3914 0.1372	1.1039 0.3584 0.5755 0.031* 1.0892 (3) 0.2465 (2) 0.49826 (15) 0.0241 (5) 1.0307 0.3019 0.4664 0.029* 1.3444 (3) 0.1644 (3) 0.72298 (15) 0.0290 (6) 1.3034 0.1104 0.7450 0.043* 1.3649 0.2070 0.7636 0.043* 1.4239 0.1222 0.6958 0.043* 1.1891 (3) 0.3615 (3) 0.09017 (16) 0.0319 (6) 1.1401 0.3914 0.1372 0.038*

Table A15: Atomic displacement parameters (\mathring{A}^2) for NDI-[CH₂CH₂O(An)PS₂]₂-[SnPh₂]₂

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.01943 (9)	0.01589 (9)	0.01950 (9)	-0.00736 (6)	-0.00010 (6)	-0.00298 (6)
Cl1	0.0438 (4)	0.0326 (4)	0.0304 (3)	-0.0182 (3)	-0.0075 (3)	0.0038 (3)
Cl2	0.0364 (4)	0.0318 (4)	0.0447 (4)	-0.0156 (3)	0.0006 (3)	-0.0069 (3)
S1	0.0283 (3)	0.0274 (3)	0.0259 (3)	-0.0146 (3)	0.0069 (2)	-0.0072 (2)
S2	0.0185 (3)	0.0262 (3)	0.0200 (3)	-0.0054 (2)	-0.0011 (2)	-0.0063 (2)
S3	0.0205 (3)	0.0233 (3)	0.0207 (3)	-0.0053 (2)	0.0004 (2)	-0.0015 (2)
S4	0.0231 (3)	0.0266 (3)	0.0210 (3)	-0.0099 (2)	0.0010 (2)	-0.0022 (2)
P1	0.0188 (3)	0.0186 (3)	0.0184 (3)	-0.0074 (2)	0.0001 (2)	-0.0042 (2)
P2	0.0208 (3)	0.0182 (3)	0.0178 (3)	-0.0066 (2)	0.0000 (2)	-0.0023 (2)
O1	0.0326 (10)	0.0219 (10)	0.0271 (9)	-0.0091 (8)	-0.0097 (8)	-0.0041 (7)
O2	0.0279 (10)	0.0311 (11)	0.0263 (9)	-0.0128 (8)	0.0009 (7)	0.0039 (8)
O3	0.0245 (9)	0.0330 (11)	0.0246 (9)	-0.0143 (8)	-0.0031 (7)	-0.0035 (7)
04	0.0402 (11)	0.0251 (10)	0.0259 (9)	-0.0162 (8)	-0.0063 (8)	0.0010 (7)
O5	0.0204 (8)	0.0185 (9)	0.0224 (8)	-0.0076 (7)	-0.0021 (7)	-0.0023 (6)
O6	0.0344 (10)	0.0232 (10)	0.0358 (11)	-0.0151 (8)	0.0006 (8)	-0.0044 (8)
07	0.0262 (9)	0.0171 (9)	0.0206 (8)	-0.0076 (7)	-0.0023 (7)	-0.0031 (6)
O8	0.0396 (11)	0.0336 (11)	0.0242 (9)	-0.0175 (9)	-0.0049 (8)	-0.0065 (8)
N1	0.0216 (10)	0.0232 (11)	0.0171 (10)	-0.0038 (8)	-0.0004 (8)	-0.0035 (8)
N2	0.0210 (10)	0.0199 (11)	0.0188 (10)	-0.0054 (8)	-0.0016 (8)	-0.0036 (8)
C1	0.0273 (13)	0.0153 (12)	0.0251 (12)	-0.0066 (10)	-0.0071 (10)	-0.0027 (9)
C2	0.0303 (14)	0.0207 (13)	0.0183 (12)	-0.0058 (10)	-0.0029 (10)	-0.0014 (9)
C3	0.0214 (12)	0.0181 (13)	0.0216 (12)	-0.0016 (9)	0.0001 (10)	-0.0065 (9)
C4	0.0185 (11)	0.0178 (12)	0.0188 (11)	-0.0023 (9)	0.0008 (9)	-0.0074 (9)
C5	0.0176 (11)	0.0183 (12)	0.0185 (11)	-0.0041 (9)	0.0038 (9)	-0.0066 (9)
C6	0.0179 (11)	0.0223 (13)	0.0196 (12)	-0.0056 (9)	0.0029 (9)	-0.0046 (9)
C7	0.0209 (12)	0.0214 (13)	0.0211 (12)	-0.0048 (10)	0.0049 (9)	-0.0040 (9)
C8	0.0232 (12)	0.0230 (13)	0.0243 (12)	-0.0109 (10)	0.0052 (10)	-0.0030 (10)
C9	0.0206 (12)	0.0277 (14)	0.0249 (13)	-0.0122 (10)	0.0011 (10)	-0.0059 (10)

C10	0.0174 (11)	0.0243 (13)	0.0194 (12)	-0.0063 (9)	0.0025 (9)	-0.0065 (9)
C11	0.0184 (11)	0.0166 (12)	0.0187 (11)	-0.0040 (9)	0.0029 (9)	-0.0065 (9)
C12	0.0197 (12)	0.0173 (12)	0.0188 (11)	-0.0029 (9)	0.0013 (9)	-0.0067 (9)
C13	0.0228 (12)	0.0195 (13)	0.0218 (12)	-0.0078 (10)	0.0021 (9)	-0.0052 (9)
C14	0.0208 (12)	0.0205 (13)	0.0241 (12)	-0.0063 (9)	0.0001 (10)	-0.0079 (9)
C15	0.0190 (12)	0.0210 (13)	0.0231 (12)	-0.0062 (9)	0.0027 (9)	-0.0054 (9)
C16	0.0246 (12)	0.0156 (12)	0.0211 (12)	-0.0061 (9)	0.0011 (10)	-0.0053 (9)
C17	0.0264 (13)	0.0206 (13)	0.0206 (12)	-0.0058 (10)	-0.0041 (10)	-0.0011 (9)
C18	0.0264 (13)	0.0180 (13)	0.0208 (12)	-0.0077 (10)	-0.0022 (10)	-0.0018 (9)
C19	0.0220 (12)	0.0199 (13)	0.0192 (11)	-0.0080 (9)	-0.0019 (9)	-0.0015 (9)
C20	0.0210 (12)	0.0225 (13)	0.0224 (12)	-0.0057 (10)	0.0004 (9)	-0.0036 (9)
C21	0.0229 (13)	0.0269 (14)	0.0261 (13)	-0.0090 (10)	0.0023 (10)	-0.0017 (10)
C22	0.0254 (13)	0.0208 (14)	0.0264 (13)	-0.0094 (10)	-0.0067 (10)	0.0009 (10)
C23	0.0268 (13)	0.0216 (14)	0.0228 (12)	-0.0067 (10)	-0.0008 (10)	-0.0048 (10)
C24	0.0247 (13)	0.0252 (14)	0.0205 (12)	-0.0087 (10)	0.0013 (10)	-0.0032 (10)
C25	0.0401 (16)	0.0204 (14)	0.0344 (15)	-0.0120 (12)	-0.0013 (12)	-0.0048 (11)
C26	0.0243 (12)	0.0153 (12)	0.0188 (11)	-0.0066 (9)	-0.0010 (9)	-0.0032 (9)
C27	0.0288 (14)	0.0256 (14)	0.0254 (13)	-0.0139 (11)	0.0027 (10)	-0.0041 (10)
C28	0.0306 (14)	0.0295 (15)	0.0276 (14)	-0.0082 (11)	0.0080 (11)	-0.0085 (11)
C29	0.0386 (16)	0.0195 (14)	0.0332 (14)	-0.0092 (11)	0.0039 (12)	-0.0095 (10)
C30	0.0303 (14)	0.0189 (14)	0.0381 (15)	-0.0129 (11)	-0.0025 (11)	-0.0053 (11)
C31	0.0218 (12)	0.0169 (13)	0.0305 (13)	-0.0069 (10)	0.0006 (10)	-0.0032 (10)
C32	0.0221 (12)	0.0190 (13)	0.0258 (12)	-0.0102 (9)	0.0035 (10)	-0.0048 (9)
C33	0.0287 (14)	0.0259 (15)	0.0254 (13)	-0.0103 (11)	-0.0015 (10)	-0.0033 (10)
C34	0.0284 (14)	0.0303 (16)	0.0340 (15)	-0.0133 (11)	-0.0009 (11)	-0.0108 (11)
C35	0.0378 (16)	0.0222 (15)	0.0476 (17)	-0.0151 (12)	0.0007 (13)	-0.0067 (12)
C36	0.0422 (17)	0.0199 (15)	0.0413 (16)	-0.0120 (12)	-0.0096 (13)	0.0050 (11)
C37	0.0330 (15)	0.0237 (15)	0.0336 (15)	-0.0122 (11)	-0.0072 (11)	-0.0019 (11)
C38	0.0216 (12)	0.0223 (13)	0.0189 (11)	-0.0097 (10)	0.0024 (9)	-0.0042 (9)
C39	0.0276 (13)	0.0219 (14)	0.0245 (13)	-0.0095 (10)	0.0026 (10)	-0.0028 (10)
C40	0.0260 (13)	0.0268 (14)	0.0205 (12)	-0.0103 (10)	-0.0012 (10)	0.0002 (10)
C41	0.0249 (13)	0.0284 (14)	0.0216 (12)	-0.0159 (10)	0.0024 (10)	-0.0039 (10)
C42	0.0326 (14)	0.0200 (14)	0.0275 (13)	-0.0127 (11)	0.0035 (11)	-0.0066 (10)
C43	0.0249 (13)	0.0240 (14)	0.0237 (13)	-0.0083 (10)	0.0013 (10)	-0.0006 (10)
C44	0.0374 (15)	0.0347 (16)	0.0207 (13)	-0.0196 (12)	-0.0016 (11)	-0.0013 (11)
C45	0.0351 (15)	0.0358 (17)	0.0298 (14)	-0.0186 (12)	-0.0041 (12)	0.0029 (11)

Table A16: Geometric parameters (Å, °) for NDI-[CH₂CH₂O(An)PS₂]₂-[SnPh₂]₂

Sn1C26	2.135 (2)	C17—C18	1.521 (3)
Sn1—C32	2.136 (3)	C17—H17A	0.9900
Sn1—S3	2.4996 (6)	C17—H17B	0.9900
Sn1—S2	2.5111 (6)	C18—H18A	0.9900

C11—C45	1.766 (3)	C18—H18B	0.9900
Cl2—C45	1.773 (3)	C19—C24	1.390 (4)
S1—P1	1.9370 (9)	C19—C20	1.410 (4)
S2—P1	2.0629 (8)	C20—C21	1.377 (4)
S3—P2	2.0507 (9)	C20—H20	0.9500
S4—P2	1.9703 (9)	C21—C22	1.399 (4)
P1—O5	1.6089 (17)	C21—H21	0.9500
P1—C19	1.794 (3)	C22—C23	1.387 (4)
P207	1.5909 (18)	C23—C24	1.389 (4)
P2—C38	1.792 (3)	C23—H23	0.9500
O1—C3	1.211 (3)	C24—H24	0.9500
O2C7	1.210 (3)	C25—H25A	0.9800
O3—C15	1.214 (3)	C25—H25B	0.9800
O4—C16	1.209 (3)	C25—H25C	0.9800
O5C18	1.448 (3)	C26C31	1.390 (4)
O6C22	1.361 (3)	C26C27	1.395 (4)
O6—C25	1.428 (3)	C27—C28	1.387 (4)
O7C1 ⁱ	1.458 (3)	C27—H27	0.9500
O8—C41	1.357 (3)	C28—C29	1.398 (4)
O8C44	1.430 (3)	C28—H28	0.9500
N1—C3	1.401 (3)	C29—C30	1.381 (4)
N1—C7	1.405 (3)	C29—H29	0.9500
N1—C2	1.471 (3)	C30—C31	1.393 (4)
N2C15	1.401 (3)	С30—Н30	0.9500
N2—C16	1.402 (3)	C31—H31	0.9500
N2—C17	1.473 (3)	C32—C37	1.383 (4)
C1—O7 ⁱ	1.458 (3)	C32—C33	1.397 (4)
C1—C2	1.516 (4)	C33—C34	1.388 (4)
C1—H1A	0.9900	C33—H33	0.9500
C1—H1B	0.9900	C34—C35	1.369 (4)
C2—H2A	0.9900	C34—H34	0.9500
C2—H2B	0.9900	C35—C36	1.384 (4)
C3—C4	1.484 (3)	C35—H35	0.9500
C4—C14	1.375 (4)	C36—C37	1.393 (4)
C4—C5	1.412 (3)	C36—H36	0.9500
C5—C11	1.413 (3)	C37—H37	0.9500
C5—C6	1.415 (3)	C38—C39	1.398 (4)
C6—C8	1.381 (4)	C38—C43	1.398 (4)
C6—C7	1.484 (3)	C39—C40	1.384 (4)
C8C9	1.404 (4)	C39—H39	0.9500
C8—H8	0.9500	C40—C41	1.396 (4)
C9—C10	1.378 (4)	C40—H40	0.9500
С9—Н9	0.9500	C41—C42	1.397 (4)

C10C11	1.413 (3)	C42—C43	1.381 (4)
C10—C15	1.484 (3)	C42—H42	0.9500
C11—C12	1.414 (3)	C43—H43	0.9500
C12—C13	1.380 (4)	C44—H44A	0.9800
C12—C16	1.486 (3)	C44—H44B	0.9800
C13—C14	1.406 (4)	C44—H44C	0.9800
C13—H13	0.9500	C45—H45A	0.9900
C14—H14	0.9500	C45—H45B	0.9900
C26—Sn1—C32	139.28 (9)	O5C18H18B	109.7
C26—Sn1—S3	109.11 (7)	C17—C18—H18B	109.7
C32—Sn1—S3	106.16 (7)	H18A—C18—H18B	108.2
C26—Sn1—S2	101.49 (7)	C24—C19—C20	119.0 (2)
C32—Sn1—S2	101.74 (7)	C24—C19—P1	120.46 (19)
S3—Sn1—S2	84.113 (19)	C20—C19—P1	120.39 (19)
P1—S2—Sn1	104.91 (3)	C21—C20—C19	119.8 (2)
P2—S3—Sn1	93.87 (3)	C21—C20—H20	120.1
O5—P1—C19	99.32 (10)	C19—C20—H20	120.1
O5P1S1	115.35 (7)	C20C21C22	120.5 (2)
C19—P1—S1	115.47 (9)	C20C21H21	119.7
O5—P1—S2	104.29 (7)	C22—C21—H21	119.7
C19—P1—S2	105.90 (8)	O6C22C23	124.6 (2)
S1P1S2	114.75 (4)	O6C22C21	115.2 (2)
O7—P2—C38	100.01 (11)	C23—C22—C21	120.2 (2)
O7P2S4	114.57 (7)	C22—C23—C24	119.2 (2)
C38—P2—S4	114.34 (9)	C22—C23—H23	120.4
O7P2S3	109.11 (7)	C24C23H23	120.4
C38—P2—S3	109.18 (9)	C23C24C19	121.4 (2)
S4—P2—S3	109.22 (4)	C23C24H24	119.3
C18O5P1	121.51 (15)	C19—C24—H24	119.3
C22—O6—C25	117.3 (2)	O6C25H25A	109.5
C1 ⁱ O7P2	121.23 (15)	O6C25H25B	109.5
C41—O8—C44	118.3 (2)	H25A—C25—H25B	109.5
C3—N1—C7	125.4 (2)	O6C25H25C	109.5
C3—N1—C2	117.0 (2)	H25A—C25—H25C	109.5
C7N1C2	117.4 (2)	H25B—C25—H25C	109.5
C15N2C16	125.6 (2)	C31—C26—C27	119.5 (2)
C15—N2—C17	117.5 (2)	C31—C26—Sn1	117.97 (18)
C16—N2—C17	116.3 (2)	C27—C26—Sn1	122.34 (19)
O7 ⁱ —C1—C2	109.1 (2)	C28—C27—C26	120.2 (2)
O7 ⁱ —C1—H1A	109.9	C28—C27—H27	119.9
C2—C1—H1A	109.9	C26—C27—H27	119.9
O7 ⁱ —C1—H1B	109.9	C27—C28—C29	120.1 (3)
C2—C1—H1B	109.9	C27C28H28	119.9

Н1А—С1—Н1В	108.3	C29—C28—H28	119.9
N1—C2—C1	110.7 (2)	C30—C29—C28	119.5 (2)
N1C2H2A	109.5	C30—C29—H29	120.2
C1C2H2A	109.5	C28—C29—H29	120.2
N1—C2—H2B	109.5	C29—C30—C31	120.5 (3)
C1—C2—H2B	109.5	С29—С30—Н30	119.7
Н2А—С2—Н2В	108.1	C31—C30—H30	119.7
O1C3N1	120.4 (2)	C26C31C30	120.1 (2)
O1—C3—C4	122.9 (2)	C26—C31—H31	119.9
N1—C3—C4	116.8 (2)	C30C31H31	119.9
C14—C4—C5	120.6 (2)	C37—C32—C33	119.6 (2)
C14—C4—C3	119.7 (2)	C37C32Sn1	121.76 (19)
C5—C4—C3	119.7 (2)	C33—C32—Sn1	118.58 (19)
C4—C5—C11	119.2 (2)	C34—C33—C32	120.0 (3)
C4—C5—C6	121.6 (2)	C34—C33—H33	120.0
C11C5C6	119.2 (2)	C32—C33—H33	120.0
C8—C6—C5	120.2 (2)	C35—C34—C33	120.1 (3)
C8C6C7	120.1 (2)	C35—C34—H34	119.9
C5C6C7	119.7 (2)	C33—C34—H34	119.9
O2C7N1	121.1 (2)	C34C35C36	120.4 (3)
O2C7C6	122.1 (2)	C34—C35—H35	119.8
N1C7C6	116.7 (2)	C36C35H35	119.8
C6C8C9	120.5 (2)	C35—C36—C37	120.0 (3)
C6C8H8	119.8	C35C36H36	120.0
С9—С8—Н8	119.8	C37C36H36	120.0
C10C9C8	120.2 (2)	C32—C37—C36	119.8 (3)
С10—С9—Н9	119.9	C32—C37—H37	120.1
С8—С9—Н9	119.9	C36—C37—H37	120.1
C9C10C11	120.4 (2)	C39—C38—C43	118.7 (2)
C9C10C15	119.6 (2)	C39—C38—P2	121.1 (2)
C11—C10—C15	119.9 (2)	C43—C38—P2	120.05 (19)
C10C11C5	119.5 (2)	C40C39C38	121.5 (3)
C10C11C12	121.3 (2)	С40—С39—Н39	119.3
C5C11C12	119.2 (2)	С38—С39—Н39	119.3
C13—C12—C11	120.6 (2)	C39—C40—C41	119.2 (2)
C13—C12—C16	119.5 (2)	C39—C40—H40	120.4
C11C12C16	119.9 (2)	C41—C40—H40	120.4
C12—C13—C14	120.0 (2)	O8C41C40	124.8 (2)
C12—C13—H13	120.0	O8C41C42	115.4 (2)
C14—C13—H13	120.0	C40C41C42	119.9 (2)
C4C14C13	120.4 (2)	C43—C42—C41	120.4 (3)
C4C14H14	119.8	C43—C42—H42	119.8
C13C14H14	119.8	C41—C42—H42	119.8

O3—C15—N2	121.2 (2)	C42—C43—C38	120.3 (2)
O3C15C10	122.2 (2)	C42—C43—H43	119.8
N2C15C10	116.6 (2)	C38—C43—H43	119.8
O4C16N2	120.4 (2)	O8—C44—H44A	109.5
O4C16C12	123.0 (2)	O8—C44—H44B	109.5
N2C16C12	116.6 (2)	H44A—C44—H44B	109.5
N2C17C18	110.9 (2)	O8—C44—H44C	109.5
N2—C17—H17A	109.5	H44AC44H44C	109.5
C18—C17—H17A	109.5	H44B—C44—H44C	109.5
N2C17H17B	109.5	C11—C45—C12	111.43 (16)
C18—C17—H17B	109.5	C11—C45—H45A	109.3
Н17А—С17—Н17В	108.1	C12—C45—H45A	109.3
O5—C18—C17	109.8 (2)	CI1—C45—H45B	109.3
O5—C18—H18A	109.7	C12—C45—H45B	109.3
C17C18H18A	109.7	H45AC45H45B	108.0
C26-Sn1-S2-P1	-54.72 (7)	C17—N2—C16—O4	7.3 (3)
C32—Sn1—S2—P1	91.60 (8)	C15—N2—C16—C12	-1.0 (3)
S3—Sn1—S2—P1	-163.07 (3)	C17—N2—C16—C12	-172.2 (2)
C26—Sn1—S3—P2	67.78 (8)	C13—C12—C16—O4	-1.6 (4)
C32—Sn1—S3—P2	-91.53 (7)	C11C12C16O4	179.9 (2)
S2Sn1S3P2	167.92 (3)	C13C12C16N2	177.9 (2)
Sn1S2P1O5	-146.36 (7)	C11—C12—C16—N2	-0.6 (3)
Sn1S2P1C19	109.39 (9)	C15—N2—C17—C18	-94.4 (3)
Sn1S2P1S1	-19.20 (5)	C16-N2-C17-C18	77.5 (3)
Sn1—S3—P2—O7	-112.54 (7)	P1—O5—C18—C17	-128.85 (18)
Sn1—S3—P2—C38	139.08 (9)	N2C17C18O5	66.0 (3)
Sn1—S3—P2—S4	13.39 (4)	O5—P1—C19—C24	133.6 (2)
C19P1O5C18	-175.52 (17)	S1P1C19C24	9.7 (2)
S1—P1—O5—C18	-51.46 (18)	S2—P1—C19—C24	-118.51 (19)
S2P1O5C18	75.32 (17)	O5—P1—C19—C20	-51.2 (2)
C38—P2—O7—C1 ⁱ	-172.32 (18)	S1—P1—C19—C20	-175.16 (17)
S4—P2—O7—C1 ⁱ	-49.58 (19)	S2—P1—C19—C20	56.7 (2)
S3—P2—O7—C1 ⁱ	73.21 (18)	C24—C19—C20—C21	-1.2 (4)
C3—N1—C2—C1	-75.2 (3)	P1—C19—C20—C21	-176.48 (19)
C7—N1—C2—C1	101.2 (3)	C19—C20—C21—C22	0.8 (4)
O7 ⁱ —C1—C2—N1	-53.6 (3)	C25—O6—C22—C23	8.3 (4)
C7N1C3O1	177.7 (2)	C25—O6—C22—C21	-171.5 (2)
C2—N1—C3—O1	-6.2 (3)	C20—C21—C22—O6	180.0 (2)
C7—N1—C3—C4	-2.7 (3)	C20—C21—C22—C23	0.2 (4)
C2N1C3C4	173.4 (2)	O6C22C23C24	179.6 (2)
O1—C3—C4—C14			
	3.6 (4)	C21—C22—C23—C24	-0.6 (4)
N1—C3—C4—C14	3.6 (4) -175.9 (2)	C21—C22—C23—C24 C22—C23—C24—C19	-0.6 (4) 0.2 (4)

N1—C3—C4—C5	3.6 (3)	P1C19C24C23	176.0 (2)
C14-C4-C5-C11	-1.6 (3)	C32Sn1C26C31	-149.57 (18)
C3—C4—C5—C11	178.9 (2)	S3—Sn1—C26—C31	61.8 (2)
C14—C4—C5—C6	177.7 (2)	S2—Sn1—C26—C31	-25.9 (2)
C3—C4—C5—C6	-1.8 (3)	C32—Sn1—C26—C27	35.7 (3)
C4—C5—C6—C8	-179.7 (2)	S3—Sn1—C26—C27	-113.0 (2)
C11—C5—C6—C8	-0.3 (3)	S2Sn1C26C27	159.34 (19)
C4—C5—C6—C7	-1.1 (3)	C31—C26—C27—C28	0.1 (4)
C11—C5—C6—C7	178.2 (2)	Sn1C26C27C28	174.8 (2)
C3—N1—C7—O2	179.3 (2)	C26—C27—C28—C29	0.8 (4)
C2N1C7O2	3.2 (3)	C27—C28—C29—C30	-0.7 (4)
C3—N1—C7—C6	0.0 (3)	C28—C29—C30—C31	-0.3 (4)
C2N1C7C6	-176.1 (2)	C27—C26—C31—C30	-1.1 (4)
C8—C6—C7—O2	1.3 (4)	Sn1—C26—C31—C30	-176.0 (2)
C5—C6—C7—O2	-177.3 (2)	C29—C30—C31—C26	1.2 (4)
C8C6C7N1	-179.4 (2)	C26—Sn1—C32—C37	69.3 (3)
C5C6C7N1	2.0 (3)	S3—Sn1—C32—C37	-141.4 (2)
C5C6C8C9	-0.2 (4)	S2—Sn1—C32—C37	-54.2 (2)
C7—C6—C8—C9	-178.8 (2)	C26—Sn1—C32—C33	-113.3 (2)
C6C8C9C10	0.6 (4)	S3Sn1C32C33	35.9 (2)
C8C9C10C11	-0.5 (4)	S2—Sn1—C32—C33	123.10 (19)
C8C9C10C15	175.4 (2)	C37—C32—C33—C34	-0.8 (4)
C9C10C11C5	-0.1 (3)	Sn1—C32—C33—C34	-178.2 (2)
C15—C10—C11—C5	-175.9 (2)	C32—C33—C34—C35	-1.0 (4)
C9C10C11C12	178.2 (2)	C33—C34—C35—C36	1.1 (5)
C15C10C11C12	2.3 (3)	C34—C35—C36—C37	0.7 (5)
C4C5C11C10	179.8 (2)	C33—C32—C37—C36	2.6 (4)
C6C5C11C10	0.4 (3)	Sn1—C32—C37—C36	179.9 (2)
C4C5C11C12	1.5 (3)	C35—C36—C37—C32	-2.5 (5)
C6C5C11C12	-177.8 (2)	O7—P2—C38—C39	23.5 (2)
C10C11C12C13	-178.6 (2)	S4P2C38C39	-99.4 (2)
C5C11C12C13	-0.3 (3)	S3—P2—C38—C39	137.90 (19)
C10C11C12C16	-0.1 (3)	O7—P2—C38—C43	-160.8 (2)
C5C11C12C16	178.1 (2)	S4—P2—C38—C43	76.3 (2)
C11C12C13C14	-0.8 (4)	S3P2C38C43	-46.4 (2)
C16C12C13C14	-179.3 (2)	C43—C38—C39—C40	-0.8 (4)
C5C4C14C13	0.4 (4)	P2C38C39C40	174.9 (2)
C3—C4—C14—C13	180.0 (2)	C38—C39—C40—C41	-0.4 (4)
C12—C13—C14—C4	0.8 (4)	C44—O8—C41—C40	-1.4 (4)
C16—N2—C15—O3	-175.7 (2)	C44—O8—C41—C42	178.3 (2)
C17—N2—C15—O3	-4.6 (3)	C39—C40—C41—O8	-178.7 (2)
C16—N2—C15—C10	3.1 (3)	C39—C40—C41—C42	1.6 (4)
C17—N2—C15—C10	174.2 (2)	O8C41C42C43	178.6 (2)

C9C10C15O3	-0.8 (4)	C40—C41—C42—C43	-1.7 (4)		
C11C10C15O3	175.1 (2)	C41—C42—C43—C38	0.4 (4)		
C9—C10—C15—N2	-179.6 (2)	C39—C38—C43—C42	0.8 (4)		
C11—C10—C15—N2	-3.7 (3)	P2C38C43C42	-175.0 (2)		
C15—N2—C16—O4 178.5 (2)					
Symmetry code: (i) $-x+2$, $-y$, $-z+1$.					

Table A17: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²) for NDI-[CH₂CH₂OCH₂CH₂O(An)PS₂]₂-[SnPh₂]

	x	у	z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Sn1	0.61703 (2)	0.75565 (2)	0.148792 (15)	0.01718 (9)	
Cl1	0.2837 (3)	0.5750 (3)	0.26972 (15)	0.1375 (15)	
C12	0.10859 (16)	0.51821 (14)	0.12356 (10)	0.0581 (4)	
C13	0.40230 (15)	1.08169 (12)	0.38583 (12)	0.0634 (5)	
C14	0.430 (3)	0.9054 (9)	0.3048 (15)	0.072 (4)	0.41 (5)
Cl4A	0.4804 (16)	0.9124 (7)	0.3211 (5)	0.048 (2)	0.59 (5)
S1	0.71867 (10)	0.93521 (8)	0.21845 (6)	0.0219 (2)	
S2	0.63581 (10)	0.92705 (9)	0.02894 (6)	0.0248 (2)	
S3	0.66238 (10)	0.69511 (8)	0.27926 (6)	0.0221 (2)	
S4	0.50884 (10)	0.49599 (8)	0.14226 (6)	0.0235 (2)	
P1	0.72148 (10)	1.01913 (8)	0.12350 (6)	0.0186 (2)	
P2	0.61424 (9)	0.53345 (8)	0.24631 (6)	0.0175 (2)	
O1	0.6792 (3)	1.1200 (2)	0.13821 (18)	0.0237 (6)	
O2	0.7017 (3)	1.2413 (2)	0.27302 (17)	0.0242 (7)	
O3	1.2202 (3)	1.2406 (3)	0.15540 (19)	0.0284 (7)	
04	0.9616 (3)	1.2265 (2)	0.35012 (17)	0.0228 (6)	
O5	0.6999 (3)	1.0570 (3)	0.47221 (19)	0.0283 (7)	
O6	1.1622 (3)	0.7700 (2)	0.3433 (2)	0.0298 (7)	
07	0.9205 (3)	0.6097 (2)	0.48111 (17)	0.0218 (6)	
O8	0.9882 (3)	0.5299 (2)	0.28511 (17)	0.0242 (7)	
O9	0.7313 (3)	0.4976 (2)	0.26023 (17)	0.0228 (6)	
O10	0.4314 (3)	0.3145 (2)	0.48774 (18)	0.0269 (7)	
N1	0.8257 (3)	1.1395 (3)	0.4074 (2)	0.0194 (7)	
N2	1.0405 (3)	0.6892 (3)	0.4119 (2)	0.0184 (7)	
C1	0.5776 (4)	1.1176 (4)	0.1640 (3)	0.0250 (9)	
H1A	0.5649	1.0601	0.1978	0.030*	
нів	0.5065	1.1048	0.1198	0.030*	
C2	0.6033 (4)	1.2247 (4)	0.2070 (3)	0.0272 (10)	
H2A	0.6192	1.2813	0.1732	0.033*	
H2B	0.5340	1.2292	0.2228	0.033*	
C3	0.6684 (4)	1.2195 (3)	0.3411 (2)	0.0221 (9)	
Н3А	0.6168	1.1456	0.3351	0.027*	

нзв	0.6250	1.2694	0.3514	0.027*	
C4	0.7781 (4)	1.2327 (3)	0.4066 (2)	0.0220 (9)	
H4A	0.8384	1,2977	0.4024	0.026*	
H4B	0.7604	1.2428	0.4555	0.026*	
C5	0.9168 (4)	1.1455 (3)	0.3744 (2)	0.0191 (9)	
C6	0.9571 (4)	1.0480 (3)	0.3719 (2)	0.0188 (8)	
C7	0.9098 (4)	0.9586 (3)	0.4076 (2)	0.0173 (8)	
C8	0.8226 (4)	0.9591 (3)	0.4436 (2)	0.0189 (8)	
C9	0.7768 (4)	1.0534 (3)	0.4429 (2)	0.0206 (9)	
C10	0.7790 (4)	0.8725 (3)	0.4795 (2)	0.0200 (9)	
H10	0.7193	0.8730	0.5030	0.024*	
C11	0.8236 (4)	0.7831 (3)	0.4812 (2)	0.0191 (8)	
H11	0.7947	0.7241	0.5068	0.023*	
C12	0.9087 (4)	0.7808 (3)	0.4460 (2)	0.0169 (8)	
C13	0.9523 (4)	0.8684 (3)	0.4078 (2)	0.0166 (8)	
C14	1.0385 (4)	0.8672 (3)	0.3708 (2)	0.0190 (8)	
C15	1.0804 (4)	0.9535 (3)	0.3341 (2)	0.0204 (9)	
H15	1.1365	0.9512	0.3078	0.024*	
C16	1.0406 (4)	1.0448 (3)	0.3355 (2)	0.0214 (9)	
H16	1.0713	1.1046	0.3112	0.026*	
C17	1.0863 (4)	0.7728 (3)	0.3724 (2)	0.0191 (9)	
C18	0.9543 (4)	0.6869 (3)	0.4482 (2)	0.0185 (8)	
C19	1.0865 (4)	0.5948 (3)	0.4150 (3)	0.0228 (9)	
H19A	1.1026	0.5740	0.4678	0.027*	
H19B	1.1615	0.6140	0.4018	0.027*	
C20	1.0016 (4)	0.5008 (3)	0.3606 (2)	0.0220 (9)	
H20A	1.0322	0.4376	0.3666	0.026*	
H20B	0.9250	0.4826	0.3716	0.026*	
C21	0.8930 (4)	0.4566 (4)	0.2294 (3)	0.0245 (9)	
H21A	0.8669	0.3899	0.2523	0.029*	
H21B	0.9196	0.4387	0.1855	0.029*	
C22	0.7925 (4)	0.5032 (4)	0.2018 (3)	0.0251 (9)	
H22A	0.8216	0.5785	0.1923	0.030*	
H22B	0.7383	0.4627	0.1532	0.030*	
C23	0.8717 (4)	1.0854 (3)	0.1309 (2)	0.0196 (9)	
C24	0.9338 (4)	1.0379 (3)	0.0944 (3)	0.0230 (9)	
H24	0.8956	0.9711	0.0643	0.028*	
C25	1.0509 (4)	1.0867 (4)	0.1014 (3)	0.0266 (10)	
H25	1.0929	1.0531	0.0767	0.032*	
C26	1.1066 (4)	1.1857 (3)	0.1448 (2)	0.0217 (9)	·
C27	1.0440 (4)	1.2337 (3)	0.1817 (2)	0.0225 (9)	
H27	1.0818	1.3008	0.2114	0.027*	
C28	0.9279 (4)	1.1842 (3)	0.1749 (2)	0.0208 (9)	

H28	0.8860	1.2171	0.2002	0.025*
C29	1.2841 (4)	1.1965 (4)	0.1148 (3)	0.0328 (11)
H29A	1.2923	1.1286	0.1148 (3)	0.049*
H29B	1.3620	1.2464	0.1226	0.049*
H29C	1.2419	1.1844	0.0600	0.049*
C30	0.5594 (4)	0.4691 (3)	0.3200 (2)	0.0178 (8)
C31	0.6330 (4)	0.4837 (3)	0.3950 (2)	0.0206 (9)
H31	0.7110	0.5285	0.4067	0.025*
C32	0.5935 (4)	0.4337 (3)	0.4525 (2)	
H32	0.6440	0.4441	0.5034	0.0213 (9)
	 			
C33	0.4791 (4)	0.3679 (3)	0.4355 (2)	0.0214 (9)
C34	0.4050 (4)	0.3530 (3)	0.3603 (3)	0.0237 (9)
H34	0.3270	0.3082	0.3487	0.028*
C35	0.4449 (4)	0.4032 (3)	0.3036 (2)	0.0214 (9)
H35	0.3942	0.3929	0.2528	0.026*
C36	0.5063 (5)	0.3229 (4)	0.5638 (3)	0.0297 (10)
H36A	0.5729	0.2959	0.5628	0.045*
Н36В	0.4625	0.2806	0.5955	0.045*
H36C	0.5352	0.3978	0.5854	0.045*
C37	0.4376 (4)	0.7462 (4)	0.0966 (3)	0.0270 (10)
C38	0.3934 (5)	0.8268 (4)	0.1177 (3)	0.0386 (12)
H38	0.4409	0.8793	0.1589	0.046*
C39	0.2815 (5)	0.8318 (5)	0.0797 (4)	0.0438 (14)
Н39	0.2524	0.8864	0.0956	0.053*
C40	0.2122 (5)	0.7568 (5)	0.0183 (3)	0.0403 (13)
H40	0.1351	0.7590	-0.0079	0.048*
C41	0.2559 (5)	0.6810 (5)	-0.0034 (3)	0.0434 (13)
H41	0.2090	0.6300	-0.0457	0.052*
C42	0.3680 (5)	0.6751 (5)	0.0343 (3)	0.0405 (13)
H42	0.3966	0.6212	0.0169	0.049*
C43	0.7361 (4)	0.7145 (3)	0.0975 (2)	0.0210 (9)
C44	0.8562 (4)	0.7651 (4)	0.1281 (3)	0.0303 (11)
H44	0.8828	0.8175	0.1710	0.036*
C45	0.9363 (5)	0.7394 (4)	0.0963 (4)	0.0414 (13)
H45	1.0176	0.7739	0.1173	0.050*
C46	0.8978 (5)	0.6631 (5)	0.0337 (4)	0.0429 (13)
H46	0.9530	0.6450	0.0121	0.052*
C47	0.7795 (5)	0.6131 (4)	0.0026 (3)	0.0358 (12)
H47	0.7534	0.5617	-0.0408	0.043*
C48	0.6990 (4)	0.6380 (4)	0.0347 (3)	0.0264 (10)
H48	0.6179	0.6026	0.0136	0.032*
C49	0.1832 (6)	0.6189 (5)	0.2009 (4)	0.0476 (14)
H49A	0.2244	0.6839	0.1820	0.057*

H49B	0.1261	0.6374	0.2239	0.057*	
C50	0.4209 (5)	0.9547 (5)	0.3909 (4)	0.0433 (13)	
H50A	0.4932	0.9571	0.4320	0.052*	
H50B	0.3539	0.9064	0.4039	0.052*	

Table A18: Atomic displacement parameters (Ų) for NDI-[CH2CH2OCH2CH2O(An)PS2]2-[SnPh2]

	U^{11}	U ²²	U ³³	U ¹²	U^{13}	U^{23}
Sn1	0.01803 (15)	0.01494 (14)	0.01646 (14)	0.00315 (10)	0.00281 (10)	0.00365 (10)
Cl1	0.132 (2)	0.216 (3)	0.0802 (15)	0.140 (3)	-0.0277 (15)	-0.0345 (18)
C12	0.0694 (11)	0.0604 (9)	0.0543 (9)	0.0171 (8)	0.0349 (8)	0.0038 (7)
C13	0.0568 (10)	0.0394 (8)	0.1114 (15)	0.0136 (7)	0.0516 (10)	0.0168 (8)
Cl4	0.092 (11)	0.058 (4)	0.062 (6)	-0.010 (4)	0.050 (7)	-0.016 (3)
Cl4A	0.081 (5)	0.030 (3)	0.040 (2)	0.017 (2)	0.029 (3)	0.0025 (14)
S1	0.0272 (5)	0.0156 (5)	0.0177 (5)	0.0004 (4)	0.0034 (4)	0.0041 (4)
S2	0.0278 (6)	0.0229 (5)	0.0195 (5)	0.0064 (4)	0.0005 (4)	0.0013 (4)
S3	0.0328 (6)	0.0139 (5)	0.0167 (5)	0.0024 (4)	0.0062 (4)	0.0036 (4)
S4	0.0276 (6)	0.0219 (5)	0.0171 (5)	0.0032 (4)	0.0035 (4)	0.0018 (4)
P1	0.0225 (5)	0.0145 (5)	0.0185 (5)	0.0056 (4)	0.0049 (4)	0.0035 (4)
P2	0.0218 (5)	0.0146 (5)	0.0162 (5)	0.0047 (4)	0.0058 (4)	0.0033 (4)
O1	0.0298 (17)	0.0180 (14)	0.0279 (16)	0.0095 (13)	0.0130 (13)	0.0057 (12)
O2	0.0228 (16)	0.0269 (16)	0.0212 (15)	0.0079 (13)	0.0024 (12)	0.0038 (12)
O3	0.0252 (17)	0.0275 (17)	0.0306 (17)	0.0023 (14)	0.0102 (14)	0.0014 (13)
04	0.0270 (16)	0.0133 (14)	0.0250 (16)	0.0040 (12)	0.0039 (13)	0.0044 (12)
O5	0.0319 (18)	0.0271 (17)	0.0323 (18)	0.0148 (14)	0.0128 (15)	0.0116 (14)
O6	0.0336 (18)	0.0176 (15)	0.044 (2)	0.0081 (14)	0.0200 (16)	0.0068 (14)
07	0.0297 (17)	0.0152 (14)	0.0217 (15)	0.0072 (12)	0.0078 (13)	0.0078 (12)
O8	0.0314 (17)	0.0179 (14)	0.0204 (15)	0.0033 (13)	0.0057 (13)	0.0051 (12)
09	0.0263 (16)	0.0278 (16)	0.0186 (15)	0.0111 (13)	0.0096 (12)	0.0064 (12)
O10	0.0319 (18)	0.0231 (16)	0.0272 (16)	0.0028 (14)	0.0150 (14)	0.0090 (13)
N1	0.0222 (18)	0.0141 (16)	0.0201 (17)	0.0071 (14)	0.0015 (14)	0.0020 (13)
N2	0.0198 (18)	0.0136 (16)	0.0207 (17)	0.0055 (14)	0.0032 (14)	0.0030 (13)
C1	0.016 (2)	0.031 (2)	0.026 (2)	0.0084 (19)	0.0029 (18)	0.0008 (19)
C2	0.026 (2)	0.031 (2)	0.025 (2)	0.015 (2)	0.0007 (19)	0.0058 (19)
C3	0.023 (2)	0.019 (2)	0.025 (2)	0.0094 (18)	0.0063 (18)	0.0048 (17)
C4	0.027 (2)	0.015 (2)	0.023 (2)	0.0090 (18)	0.0039 (18)	0.0012 (16)
C5	0.021 (2)	0.017 (2)	0.0156 (19)	0.0051 (17)	-0.0014 (16)	-0.0008 (15)
C6	0.021 (2)	0.0131 (19)	0.017 (2)	0.0019 (16)	-0.0011 (16)	0.0031 (15)
C7	0.019 (2)	0.0139 (19)	0.0142 (19)	0.0030 (16)	-0.0008 (16)	0.0035 (15)
C8	0.017 (2)	0.019 (2)	0.016 (2)	0.0046 (17)	-0.0007 (16)	0.0028 (16)
C9	0.022 (2)	0.018 (2)	0.020 (2)	0.0054 (17)	0.0026 (17)	0.0026 (16)
C10	0.021 (2)	0.020 (2)	0.018 (2)	0.0054 (17)	0.0043 (16)	0.0032 (16)
C11	0.022 (2)	0.0161 (19)	0.016 (2)	0.0028 (17)	0.0024 (16)	0.0035 (15)

C12	0.019 (2)	0.0145 (19)	0.0139 (19)	0.0038 (16)	0.0006 (16)	0.0024 (15)
C13	0.016 (2)	0.0136 (18)	0.0148 (19)	0.0018 (16)	-0.0014 (15)	-0.0001 (15)
C14	0.020 (2)	0.0137 (19)	0.020 (2)	0.0038 (16)	0.0010 (16)	0.0025 (15)
C15	0.020 (2)	0.017 (2)	0.024 (2)	0.0044 (17)	0.0066 (17)	0.0032 (16)
C16	0.022 (2)	0.0153 (19)	0.022 (2)	0.0020 (17)	0.0020 (17)	0.0063 (16)
C17	0.019 (2)	0.0140 (19)	0.023 (2)	0.0032 (16)	0.0058 (17)	0.0006 (16)
C18	0.023 (2)	0.0133 (19)	0.0153 (19)	0.0033 (16)	0.0006 (16)	0.0005 (15)
C19	0.029 (2)	0.018 (2)	0.024 (2)	0.0117 (18)	0.0055 (18)	0.0051 (17)
C20	0.032 (2)	0.0128 (19)	0.023 (2)	0.0074 (18)	0.0092 (18)	0.0059 (16)
C21	0.029 (2)	0.023 (2)	0.023 (2)	0.0096 (19)	0.0083 (18)	-0.0008 (17)
C22	0.027 (2)	0.034 (2)	0.021 (2)	0.013 (2)	0.0120 (18)	0.0071 (18)
C23	0.024 (2)	0.0149 (19)	0.019 (2)	0.0042 (17)	0.0056 (17)	0.0060 (16)
C24	0.029 (2)	0.016 (2)	0.024 (2)	0.0047 (18)	0.0084 (18)	0.0015 (17)
C25	0.032 (3)	0.023 (2)	0.029 (2)	0.010 (2)	0.013 (2)	0.0027 (18)
C26	0.021 (2)	0.022 (2)	0.022 (2)	0.0053 (18)	0.0069 (17)	0.0088 (17)
C27	0.030 (2)	0.017 (2)	0.020 (2)	0.0051 (18)	0.0076 (18)	0.0028 (16)
C28	0.027 (2)	0.017 (2)	0.022 (2)	0.0080 (18)	0.0101 (18)	0.0043 (16)
C29	0.028 (3)	0.031 (3)	0.043 (3)	0.008 (2)	0.016 (2)	0.008 (2)
C30	0.023 (2)	0.0114 (18)	0.021 (2)	0.0062 (16)	0.0083 (17)	0.0044 (15)
C31	0.024 (2)	0.0146 (19)	0.024 (2)	0.0050 (17)	0.0089 (18)	0.0032 (16)
C32	0.027 (2)	0.017 (2)	0.021 (2)	0.0079 (18)	0.0068 (17)	0.0042 (16)
C33	0.029 (2)	0.0148 (19)	0.024 (2)	0.0069 (18)	0.0135 (18)	0.0067 (16)
C34	0.021 (2)	0.019 (2)	0.030 (2)	0.0025 (18)	0.0086 (18)	0.0041 (18)
C35	0.023 (2)	0.019 (2)	0.022 (2)	0.0060 (18)	0.0063 (17)	0.0015 (16)
C36	0.037 (3)	0.029 (2)	0.027 (2)	0.009 (2)	0.015 (2)	0.0127 (19)
C37	0.021 (2)	0.025 (2)	0.033 (3)	0.0057 (19)	0.0054 (19)	0.0013 (19)
C38	0.037 (3)	0.030 (3)	0.045 (3)	0.005 (2)	0.011 (2)	0.004 (2)
C39	0.042 (3)	0.034 (3)	0.061 (4)	0.015 (3)	0.019 (3)	0.011 (3)
C40	0.034 (3)	0.046 (3)	0.043 (3)	0.012 (3)	0.011 (2)	0.021 (3)
C41	0.036 (3)	0.049 (3)	0.038 (3)	0.012 (3)	-0.003 (2)	0.005 (2)
C42	0.035 (3)	0.052 (3)	0.032 (3)	0.017 (3)	0.002 (2)	0.002 (2)
C43	0.021 (2)	0.022 (2)	0.022 (2)	0.0078 (18)	0.0086 (17)	0.0110 (17)
C44	0.025 (2)	0.022 (2)	0.043 (3)	0.0072 (19)	0.008 (2)	0.007 (2)
C45	0.026 (3)	0.031 (3)	0.068 (4)	0.007 (2)	0.015 (3)	0.007 (3)
C46	0.036 (3)	0.044 (3)	0.063 (4)	0.017 (3)	0.029 (3)	0.015 (3)
C47	0.040 (3)	0.041 (3)	0.034 (3)	0.018 (2)	0.018 (2)	0.004 (2)
C48	0.024 (2)	0.031 (2)	0.026 (2)	0.008 (2)	0.0071 (18)	0.0094 (19)
C49	0.051 (4)	0.039 (3)	0.058 (4)	0.018 (3)	0.018 (3)	0.008 (3)
C50	0.043 (3)	0.037 (3)	0.051 (3)	0.003 (3)	0.024 (3)	-0.001 (2)

 $\textbf{Table A19:} \ \ Geometric \ parameters \ (\mathring{A}, \ ^o) \ \ for \ NDI-[CH_2CH_2OCH_2CH_2O(An)PS_2]_2-[SnPh_2]$

	70.114.60	CIE IIIE	0.0500
Sn1—C43	2.114 (4)	C15—H15	0.9500
Sn1—C37	2.129 (5)	C16—H16	0.9500
Sn1—S1	2.4730 (10)	C19—C20	1.512 (6)
Sn1—S3	2.4904 (10)	C19—H19A	0.9900
C11—C49	1.733 (7)	C19—H19B	0.9900
C12C49	1.769 (6)	C20—H20A	0.9900
Cl3—C50	1.733 (6)	C20—H20B	0.9900
C14—C50	1.728 (13)	C21—C22	1.496 (6)
C14A—C50	1.777 (10)	C21—H21A	0.9900
S1P1	2.0754 (14)	C21—H21B	0.9900
S2—P1	1.9424 (15)	C22—H22A	0.9900
S3—P2	2.0608 (14)	C22—H22B	0.9900
S4—P2	1.9517 (15)	C23—C24	1.386 (6)
P1—O1	1.580 (3)	C23—C28	1.401 (6)
P1—C23	1.796 (4)	C24—C25	1.388 (7)
P2O9	1.594 (3)	C24—H24	0.9500
P2C30	1.795 (4)	C25—C26	1.398 (6)
O1C1	1.450 (5)	C25—H25	0.9500
O2C2	1.423 (5)	C26—C27	1.400 (6)
O2—C3	1.423 (5)	C27—C28	1.380 (6)
O3C26	1.356 (5)	C27—H27	0.9500
O3—C29	1.429 (6)	C28—H28	0.9500
O4—C5	1.212 (5)	C29—H29A	0.9800
O5—C9	1.221 (6)	C29—H29B	0.9800
O6C17	1.204 (5)	C29—H29C	0.9800
O7C18	1.222 (5)	C30—C35	1.396 (6)
O8—C20	1.415 (5)	C30C31	1.398 (6)
O8C21	1.428 (5)	C31—C32	1.381 (6)
O9—C22	1.458 (5)	C31—H31	0.9500
O10C33	1.366 (5)	C32—C33	1.392 (6)
O10-C36	1.426 (6)	C32—H32	0.9500
N1—C9	1.392 (5)	C33—C34	1.401 (6)
N1—C5	1.401 (6)	C34—C35	1.373 (6)
N1—C4	1.483 (5)	C34—H34	0.9500
N2C18	1.394 (6)	C35—H35	0.9500
N2C17	1.401 (5)	C36—H36A	0.9800
N2C19	1.484 (5)	С36—Н36В	0.9800
C1—C2	1.499 (6)	C36—H36C	0.9800
C1—H1A	1,,,,,,	C37—C42	1.373 (7)
	0.9900	C37—C42	1.373 (1)
С1—Н1В	0.9900	C37—C38	1.397 (7)

C2—H2B	0.9900	C38—H38	0.9500
C3—C4	1.509 (6)	C39—C40	1.388 (9)
C3—H3A	0.9900	C39—H39	0.9500
C3—H3B	0.9900	C40—C41	1.344 (9)
C4—H4A	0.9900	C40—H40	0.9500
C4—H4B	0.9900	C41—C42	1.391 (8)
C5—C6	1.488 (6)	C41—H41	0.9500
C6—C16	1.379 (6)	C42—H42	0.9500
C6C7	1.419 (6)	C43—C48	1.392 (7)
C7—C8	1.407 (6)	C43—C44	1.402 (7)
C7—C13	1.409 (6)	C44—C45	1.381 (8)
C8C10	1.380 (6)	C44—H44	0.9500
C8—C9	1.483 (6)	C45—C46	1.386 (9)
C10—C11	1.412 (6)	C45—H45	0.9500
C10—H10	0.9500	C46—C47	1.383 (8)
C11C12	1.379 (6)	C46—H46	0.9500
C11—H11	0.9500	C47—C48	1.384 (7)
C12—C13	1.416 (6)	C47—H47	0.9500
C12—C18	1.475 (6)	C48—H48	0.9500
C13C14	1.411 (6)	C49—H49A	0.9900
C14—C15	1.379 (6)	C49—H49B	0.9900
C14—C17	1.498 (6)	C50H50A	0.9900
C15—C16	1.406 (6)	C50—H50B	0.9900
C43Sn1C37	127.94 (18)	O8C21H21A	109.4
C43-Sn1-S1	106.07 (12)	C22C21H21A	109.4
C37—Sn1—S1	109.09 (13)	O8C21H21B	109.4
C43—Sn1—S3	105.34 (11)	C22—C21—H21B	109.4
C37—Sn1—S3	115.48 (13)	H21AC21H21B	108.0
S1Sn1S3	83.74 (3)	O9C22C21	108.5 (3)
P1—S1—Sn1	97.51 (5)	O9—C22—H22A	110.0
P2—S3—Sn1	97.60 (5)	C21—C22—H22A	110.0
O1—P1—C23	99.02 (18)	O9—C22—H22B	110.0
O1—P1—S2	117.02 (13)	C21—C22—H22B	110.0
C23—P1—S2	114.65 (15)	H22AC22H22B	108.4
O1—P1—S1	105.85 (13)	C24—C23—C28	119.5 (4)
C23—P1—S1	107.91 (14)	C24—C23—P1	120.2 (3)
S2P1S1	111.29 (6)	C28—C23—P1	120.3 (3)
O9P2C30	99.51 (18)	C23—C24—C25	120.9 (4)
O9—P2—S4	114.53 (13)	C23—C24—H24	119.6
C30—P2—S4	115.89 (15)	C25—C24—H24	119.6
O9P2S3	107.53 (13)	C24—C25—C26	119.6 (4)
C30—P2—S3	106.04 (14)	C24—C25—H25	120.2

C2—O2—C3 C26—O3—C29 C26—O3—C29 C20—O8—C21 C22—O9—P2 C21—O3 C23—O10—C36 C33—O10—C36 C9—N1—C5 C9—N1—C4 C18—N2—C17 C18—N2—C19 C17—N2—C19 C110.4 (3) O3—O3—C25 C28 C25 C26 C27 C28 C28 C28 C29—N1—C4 C26 C27 C27 C27 C27 C27 C27 C27	3-C26-C25 3-C26-C27 25-C26-C27 28-C27-C26 28-C27-H27 26-C27-H27 27-C28-C23 27-C28-H28 23-C28-H28 3-C29-H29A 3-C29-H29B 29A-C29-H29B 3-C29-H29C	124.7 (4) 115.7 (4) 119.6 (4) 120.4 (4) 119.8 119.8 120.1 (4) 120.0 120.0 109.5 109.5
C26—O3—C29	25—C26—C27 28—C27—C26 28—C27—H27 26—C27—H27 27—C28—C23 27—C28—H28 23—C28—H28 23—C29—H29A 23—C29—H29B	119.6 (4) 120.4 (4) 119.8 119.8 120.1 (4) 120.0 120.0 109.5
C20—O8—C21 113.2 (3) C28 C22—O9—P2 121.3 (3) C28 C33—O10—C36 117.2 (4) C26 C9—N1—C5 125.4 (3) C27 C9—N1—C4 116.5 (4) C27 C5—N1—C4 118.1 (3) C23 C18—N2—C17 125.5 (3) O3- C18—N2—C19 117.0 (3) O3- C17—N2—C19 117.5 (4) H29	28—C27—C26 28—C27—H27 26—C27—H27 27—C28—C23 27—C28—H28 23—C28—H28 3—C29—H29A 3—C29—H29B	120.4 (4) 119.8 119.8 120.1 (4) 120.0 120.0 109.5
C22—O9—P2	28—C27—H27 26—C27—H27 27—C28—C23 27—C28—H28 23—C28—H28 3—C29—H29A 3—C29—H29B 29A—C29—H29B	119.8 119.8 120.1 (4) 120.0 120.0 109.5
C33—O10—C36	26—C27—H27 27—C28—C23 27—C28—H28 23—C28—H28 3—C29—H29A 3—C29—H29B 29A—C29—H29B	119.8 120.1 (4) 120.0 120.0 109.5
C9—N1—C5	27—C28—C23 27—C28—H28 23—C28—H28 3—C29—H29A 3—C29—H29B 29A—C29—H29B	120.1 (4) 120.0 120.0 109.5
C9—N1—C4 116.5 (4) C27 C5—N1—C4 118.1 (3) C23 C18—N2—C17 125.5 (3) O3— C18—N2—C19 117.0 (3) O3— C17—N2—C19 117.5 (4) H29	27—C28—H28 23—C28—H28 3—C29—H29A 3—C29—H29B	120.0 120.0 109.5 109.5
C5—N1—C4 118.1 (3) C23 C18—N2—C17 125.5 (3) O3— C18—N2—C19 117.0 (3) O3— C17—N2—C19 117.5 (4) H29	23—C28—H28 3—C29—H29A 3—C29—H29B 29A—C29—H29B	120.0 109.5 109.5
C18—N2—C17 125.5 (3) O3— C18—N2—C19 117.0 (3) O3— C17—N2—C19 117.5 (4) H29	3—C29—H29A 3—C29—H29B 29A—C29—H29B	109.5 109.5
C18—N2—C19 117.0 (3) O3— C17—N2—C19 117.5 (4) H29	3—C29—H29B 29A—C29—H29B	109.5
C17—N2—C19 117.5 (4) H29	29A—C29—H29B	
		109.5
O1—C1—C2 106.1 (4) O3-	3—C29—H29C	
		109.5
O1—C1—H1A 110.5 H29	29A—C29—H29C	109.5
C2—C1—H1A 110.5 H29	29B—C29—H29C	109.5
O1—C1—H1B 110.5 C35	35—C30—C31	119.1 (4)
C2—C1—H1B 110.5 C35	35C30P2	121.3 (3)
H1A—C1—H1B 108.7 C31	31—C30—P2	119.7 (3)
O2—C2—C1 110.8 (4) C32	2C31C30	120.8 (4)
O2—C2—H2A 109.5 C32	12—C31—H31	119.6
C1—C2—H2A 109.5 C30	0—C31—H31	119.6
O2—C2—H2B 109.5 C31	11—C32—C33	119.6 (4)
C1—C2—H2B 109.5 C31	11—C32—H32	120.2
H2A—C2—H2B 108.1 C33	3C32H32	120.2
O2—C3—C4 108.3 (4) O10	0—C33—C32	124.4 (4)
O2—C3—H3A 110.0 O10	0—C33—C34	115.7 (4)
C4—C3—H3A 110.0 C32	2C33C34	119.8 (4)
O2—C3—H3B 110.0 C35	5C34C33	120.2 (4)
C4—C3—H3B 110.0 C35	5C34H34	119.9
H3A—C3—H3B 108.4 C33-	3—C34—H34	119.9
N1—C4—C3 112.3 (3) C34	4—C35—C30	120.5 (4)
N1C4H4A 109.1 C34	4—C35—H35	119.7
C3—C4—H4A 109.1 C30	0—C35—H35	119.7
N1—C4—H4B 109.1 O10	0—C36—H36A	109.5
C3—C4—H4B 109.1 O10	0—С36—Н36В	109.5
H4A—C4—H4B 107.9 H36.	6A—C36—H36B	109.5
O4—C5—N1 121.7 (4) O10	0—С36—Н36С	109.5
O4—C5—C6 121.7 (4) H36.	6AC36H36C	109.5
N1—C5—C6 116.6 (4) H36	6B—C36—H36C	109.5
C16—C6—C7 120.2 (4) C42-	2—C37—C38	117.2 (5)
C16—C6—C5 120.2 (4) C42-		123.2 (4)
C7—C6—C5 119.6 (4) C38-		118.7 (4)
		121.4 (5)

C8C7C6			
	121.2 (4)	C39—C38—H38	119.3
C13—C7—C6	119.2 (4)	C37—C38—H38	119.3
C10—C8—C7	120.7 (4)	C38—C39—C40	119.7 (5)
C10C8C9	119.5 (4)	C38—C39—H39	120.1
C7—C8—C9	119.8 (4)	C40—C39—H39	120.1
O5C9N1	120.5 (4)	C41—C40—C39	118.9 (5)
O5—C9—C8	122.4 (4)	C41—C40—H40	120.6
N1—C9—C8	117.1 (4)	C39—C40—H40	120.6
C8C10C11	119.7 (4)	C40—C41—C42	121.9 (6)
C8C10H10	120.2	C40—C41—H41	119.1
C11C10H10	120.2	C42—C41—H41	119.1
C12C11C10	120.6 (4)	C37—C42—C41	120.8 (5)
C12C11H11	119.7	C37—C42—H42	119.6
C10C11H11	119.7	C41—C42—H42	119.6
C11—C12—C13	120.1 (4)	C48—C43—C44	118.9 (4)
C11—C12—C18	120.0 (4)	C48—C43—Sn1	122.0 (3)
C13—C12—C18	119.9 (4)	C44—C43—Sn1	119.0 (3)
C7—C13—C14	119.6 (4)	C45—C44—C43	120.4 (5)
C7C13C12	119.3 (4)	C45—C44—H44	119.8
C14—C13—C12	121.0 (4)	C43—C44—H44	119.8
C15—C14—C13	120.3 (4)	C44—C45—C46	119.9 (5)
C15C14C17	119.7 (4)	C44—C45—H45	120.1
C13—C14—C17	120.0 (4)	C46—C45—H45	120.1
C14C15C16	120.3 (4)	C47—C46—C45	120.3 (5)
C14C15H15	119.9	C47—C46—H46	119.9
C16C15H15	119.9	C45—C46—H46	119.9
C6C16C15	120.3 (4)	C46—C47—C48	120.0 (5)
C6C16H16	119.8	C46—C47—H47	120.0
C15C16H16	119.8	C48—C47—H47	120.0
O6C17N2	121.9 (4)	C47—C48—C43	120.4 (5)
O6C17C14	121.9 (4)	C47—C48—H48	119.8
N2C17C14	116.2 (4)	C43—C48—H48	119.8
O7C18N2	120.1 (4)	C11—C49—C12	110.2 (3)
O7—C18—C12	122.5 (4)	C11—C49—H49A	109.6
N2—C18—C12	117.4 (4)	C12—C49—H49A	109.6
N2C19C20	112.1 (4)	C11—C49—H49B	109.6
N2C19H19A	109.2	C12—C49—H49B	109.6
C20—C19—H19A	109.2	H49AC49H49B	108.1
N2C19H19B	109.2	C14C50C13	111.0 (9)
C20C19H19B	109.2	C14—C50—C14A	19.3 (8)
H19A—C19—H19B	107.9	C13—C50—C14A	115.6 (4)
O8C20C19	107.8 (3)	Cl4—C50—H50A	109.4
O8C20H20A	110.1	C13C50H50A	109.4

	1	CIAA CEO HEOA	00.6
C19—C20—H20A	110.1	CI4A—C50—H50A	90.6
O8C20H20B	110.1	CI4—C50—H50B	109.4
C19—C20—H20B	110.1	Cl3—C50—H50B	109.4
H20A—C20—H20B	108.5	C14AC50H50B	121.3
O8—C21—C22	111.0 (4)	H50A—C50—H50B	108.0
C43—Sn1—S1—P1	68.52 (13)	C17—N2—C18—O7	180.0 (4)
C37—Sn1—S1—P1	-72.44 (15)	C19N2C18O7	0.4 (6)
S3—Sn1—S1—P1	172.73 (6)	C17—N2—C18—C12	-0.9 (6)
C43—Sn1—S3—P2	-65.34 (13)	C19—N2—C18—C12	179.5 (3)
C37—Sn1—S3—P2	81.48 (15)	C11—C12—C18—O7	-0.7 (6)
S1—Sn1—S3—P2	-170.33 (6)	C13C12C18O7	179.2 (4)
Sn1S1P1O1	133.15 (13)	C11—C12—C18—N2	-179.8 (4)
Sn1S1P1C23	-121.60 (15)	C13—C12—C18—N2	0.2 (5)
Sn1S1P1S2	5.01 (8)	C18—N2—C19—C20	75.9 (5)
Sn1—S3—P2—O9	106.27 (12)	C17—N2—C19—C20	-103.7 (4)
Sn1S3P2C30	-148.01 (15)	C21O8C20C19	-168.1 (3)
Sn1S3P2S4	-20.55 (7)	N2C19C20O8	63.8 (5)
C23—P1—O1—C1	-158.7 (3)	C20—O8—C21—C22	106.6 (4)
S2P1C1	77.6 (3)	P2	-175.8 (3)
S1P1O1C1	-47.0 (3)	O8C21C22O9	-76.9 (5)
C30—P2—O9—C22	162.2 (3)	O1—P1—C23—C24	-155.2 (3)
S4—P2—O9—C22	37.9 (3)	S2P1C23C24	-29.8 (4)
S3P2O9C22	-87.5 (3)	S1—P1—C23—C24	94.8 (3)
P1O1C2	151.8 (3)	O1P1C23C28	26.4 (4)
C3—O2—C2—C1	-98.6 (4)	S2P1C23C28	151.8 (3)
O1C1C2O2	-63.2 (5)	S1—P1—C23—C28	-83.6 (3)
C2—O2—C3—C4	176.5 (3)	C28—C23—C24—C25	0.3 (6)
C9—N1—C4—C3	-84.1 (5)	P1—C23—C24—C25	-178.1 (3)
C5—N1—C4—C3	97.3 (4)	C23—C24—C25—C26	-0.8 (7)
O2—C3—C4—N1	-78.3 (4)	C29—O3—C26—C25	4.3 (6)
C9N1C5O4	-173.7 (4)	C29—O3—C26—C27	-176.4 (4)
C4N1C5O4	4.8 (6)	C24—C25—C26—O3	-179.8 (4)
C9N1C5C6	5.2 (6)	C24—C25—C26—C27	0.8 (7)
C4N1C5C6	-176.3 (3)	O3C26C27C28	-179.7 (4)
O4C5C6C16	-5.7 (6)	C25—C26—C27—C28	-0.3 (6)
N1C5C6C16	175.4 (4)	C26C27C28C23	-0.2 (6)
O4C5C6C7	173.9 (4)	C24—C23—C28—C27	0.3 (6)
N1C5C6C7	-5.0 (5)	P1—C23—C28—C27	178.7 (3)
C16—C6—C7—C8	-178.5 (4)	O9—P2—C30—C35	-128.2 (4)
C5C6C7C8	1.9 (6)	S4—P2—C30—C35	-4.9 (4)
C16C6C7C13	2.4 (6)	S3—P2—C30—C35	120.4 (3)
C5C6C7C13	-177.2 (4)	O9P2C30C31	50.8 (4)
C13C7C8C10	0.5 (6)	S4—P2—C30—C31	174.1 (3)
C13C7C8C10	0.5 (6)	S4—P2—C30—C31	174.1 (3)

C6C7C8C10	-178.7 (4)	S3—P2—C30—C31	-60.6 (3)
C13—C7—C8—C9	-179.4 (4)	C35—C30—C31—C32	0.1 (6)
C6—C7—C8—C9	1.4 (6)	P2C30C31C32	-179.0 (3)
C5-N1C9O5	177.7 (4)	C30C31C32C33	0.1 (6)
C4N1C9O5	-0.8 (6)	C36O10C33C32	-3.5 (6)
C5-N1C9C8	-2.1 (6)	C36—O10—C33—C34	176.5 (4)
C4—N1—C9—C8	179.4 (3)	C31—C32—C33—O10	179.8 (4)
C10C8C9O5	-1.2 (6)	C31—C32—C33—C34	-0.2 (6)
C7—C8—C9—O5	178.8 (4)	O10C33C34C35	-179.9 (4)
C10-C8-C9-N1	178.6 (4)	C32—C33—C34—C35	0.0 (7)
C7—C8—C9—N1	-1.5 (6)	C33—C34—C35—C30	0.1 (7)
C7C8C10C11	1.0 (6)	C31C30C35C34	-0.2 (6)
C9—C8—C10—C11	-179.1 (4)	P2C30C35C34	178.8 (3)
C8-C10-C11-C12	-1.3 (6)	C43—Sn1—C37—C42	27.0 (5)
C10C11C12C13	0.1 (6)	S1—Sn1—C37—C42	156.9 (4)
C10-C11-C12-C18	-180.0 (4)	S3—Sn1—C37—C42	-111.0 (4)
C8C7C13C14	179.1 (4)	C43—Sn1—C37—C38	-141.9 (4)
C6C7C13C14	-1.8 (6)	S1Sn1C37C38	-12.0 (4)
C8—C7—C13—C12	-1.7 (6)	S3—Sn1—C37—C38	80.1 (4)
C6C7C13C12	177.5 (4)	C42—C37—C38—C39	3.0 (8)
C11C12C13C7	1.4 (6)	Sn1C37C38C39	172.5 (4)
C18C12C13C7	-178.6 (4)	C37—C38—C39—C40	-1.3 (9)
C11C12C13C14	-179.4 (4)	C38—C39—C40—C41	-0.6 (8)
C18C12C13C14	0.7 (6)	C39—C40—C41—C42	0.6 (9)
C7—C13—C14—C15	-0.5 (6)	C38C37C42C41	-2.9 (8)
C12—C13—C14—C15	-179.7 (4)	Sn1C37C42C41	-172.0 (4)
C7—C13—C14—C17	178.5 (4)	C40—C41—C42—C37	1.2 (9)
C12C13C14C17	-0.8 (6)	C37—Sn1—C43—C48	-27.3 (4)
C13C14C15C16	2.1 (6)	S1Sn1C43C48	-158.3 (3)
C17C14C15C16	-176.8 (4)	S3Sn1C43C48	114.0 (3)
C7—C6—C16—C15	-0.7 (6)	C37—Sn1—C43—C44	153.3 (3)
C5C6C16C15	178.9 (4)	S1—Sn1—C43—C44	22.3 (4)
C14—C15—C16—C6	-1.6 (6)	S3—Sn1—C43—C44	-65.5 (3)
C18—N2—C17—O6	178.8 (4)	C48—C43—C44—C45	0.0 (7)
C19—N2—C17—O6	-1.6 (6)	Sn1—C43—C44—C45	179.5 (4)
C18—N2—C17—C14	0.8 (6)	C43—C44—C45—C46	0.0 (8)
C19-N2-C17-C14	-179.6 (3)	C44—C45—C46—C47	0.5 (9)
C15—C14—C17—O6	1.0 (6)	C45—C46—C47—C48	-1.0 (8)
C13C14C17O6	-177.9 (4)	C46—C47—C48—C43	1.1 (8)
C15C14C17N2	179.0 (4)	C44—C43—C48—C47	-0.6 (7)
C13—C14—C17—N2	0.1 (6)	Sn1—C43—C48—C47	180.0 (4)