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ABSTRACT

The purpose of this paper is to analyze and contrast for
five civilizations the extent of knowledge of mathematics and
its incorporation into the 1life of the societiesr The
research is centered around the civilizations of the Central

American Maya, the South American Inca, the Native North

'~ American Indians, the ancient- Egyptians, and the ancient

Greeks. Four major areas’are studied and compared: the type
of mathematical system developed by each culture and its
efficiency, the range of mathematical skills of each culture
and the extent of their use‘within'daily activities, the
incorporation of the system ihto the culture's ceremonial and
religious life, and the existence of an accurate calendrical
system. TheSeYand other related areas are discussed for each
B ;

culture, andi§he areas in each culture are then compared. The
Mayan, Incan, Egybtian and Greek cultures are then rated on a
subjectiye scale, with the goal of forming a comparison, again
subjective, of the relative matheﬁaﬁicalkéchievements of the
four civilizations. Due to the lack of resource material on
the NéfiYéywﬁérth " American Indians, their mathematical
advancementé are not rated; insteaa, a brief overview of the
mathematical achievements of this society is presented.

A number of conclusions are made based on the comparison
of the four cultures. 3 The ratings awarded to the four

civilizations show that the Greek mathematical development was

somewhat more thorough than that of the other four cultures.




However, not all portions of Greek mathematical knowledge were
as e%tensive as that of their competitors.

The research and subjective comparison concludes that the
cultures studied in this research have made contributions to
international mathematical development. The Maya, Incé, Greék
and Egyptian civilizations introduced both mathematical skills
and calendrical development tq the ancient world predating
today's expansion of science and technology. The comparison
of the mathematical abilities and the selection of a superior
mathematical development does not carry as much importance as
the recognition of each civilization's individual mathematical

achievements. It is this recognition that the comparison and

conclusion of this research portrays.
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"The history of mathematics should not be detached from
the general history of culture. Mathematics is a domain of
intellectual activity, intimately related not only to
astronomy and mechanics, but also to architecture and
technology, to philosophy, and even to religion."

[Van der Waerden, p. 5]
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INTRODUCTION

Altheugh the primary focus of this research began with
the study of the Mayan Indians and their mathematical
knowledge, it has expanded to include the analysis of four
other civilizations and their efforts to incorporate
mathematics into their 1lives. The five cultures included in
this research are those of the Central American Maya, the
South American Inca, the Native North American Indians, the
ancient Egyptians, and the ancient Greeks.

The purpose of this paper is to analyze and contrast the
extent of each culture's knowledge of mathematics and the
incorporation of this knowledge into the daily life of each
society. For each culture, four major areas are studied and

compared: théffype of mathematical system developed by each

culture and i%s efficiency, the range of mathematical skills
of each culture and the extent of their use within daily
activities, the incorporation of the sYstem-into the culture's
ceremonial and religious 1lives, and the existence of an
accurate calendrical system.

The‘Méyan mathematical achievements in each of the four
areas mentioned above will be discussed first. Immediately
following the Mayan discussion, each area will be discussed
for the Incan Indiens. After completing the Incan discussion,
the two American Indian cultures are compared and given a

subjective rating based on the author's scale. To complete
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the study of Native Western Hemisphere mathematics, a short
discﬁssion of Native North American mathematics is presented
at this pdint. No attempt is made to rate the mathematical
developments of the Native American Indian society, as was
done in the Mayan and Incan societies, dﬁe to the 1lack of
resource material focusing on this civilization. However,
from the existing research, it 1is evident that some
mathematical accomplishments of the Native North Americans are
significant, and thus are mentioned in the discussion.
Following the discussion of the Central, South, and North
American Indians, the focus shifts from ancient American
mathematics to ancient Mediterranean mathematics, and the
mathematical developments of the ancient Egyptian and Greek
cultures are compared and rated using the same scale as for
the Maya and Fnca. The areas of each culture are rated with
the goal of Egrming a comparison, again subjective, of the

relative mathematical achievements of the five civilizations.

l




RATING SCALRE

The following scale was used in the comparison of the
Mayan and Incan civilizations and in the éomparison of the

Egyptian and Greek civilizations.

1
I

A maximum of two points was awarded for the construction of an
efficient numerical system and the efficiency in which it was
employed. Factorsiconsidered include are the type of system,
method of representing larger numbers, and ease in which it

was incorporated into the society.

A maximum of two points was assigned to systems which could
easily employ all four mathematical operations and the

efficiency gﬁf%his performance.

One point was awarded for the development of the concept of

zero and the invention of a zero symbol.

One point wasgranted for an adequate fractional system which

could be used within daily life.

A maximum of one point was awarded for the understanding of
geometry in regard +to6° areas, . volumes, measures of
circumference and the use of these within the societies!

architectural structures.

AT R Tk Lo,
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A maximum of one point was awarded for a somewhat accurate

approximation of pi.

A maximum of two points was awarded for a complete and
accurate calendrical system and its ease of use by each

society.

A maximum of two points was assigned for the completeness of

the numerical system's incorporation into daily activities.

A maximum of two points was awarded to a mathematical system

was evident within the cultures' ceremonial life.

The scale consists of a total of fourteen points.
..»j
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The ancient Mayan Indians emerged during the first or
second century of the Christian Era, establishing their
community Qithin the realms of what is now Mexico. During the
ten centuries of their independence, before their civilization
was destroyed by Spanish conquerors in 1541, the Maya
distinguished themselves as a tribe of highly intellectual and
skilled people, developing an intricate hieroglyphical
mathematical and calendrical system. The Maya were a simple
and hard-working people, whose main occupation was the
planting and harvesting of maize and whose interests included
an obsession with the passage of- time. Constant agricultural
labor and a transcendent interest in the measurement of time
led to their development of the first agricultural calendar
which prec%sely,recorded the seasons of planting and harvest.
Withoupatgg%gﬁgﬁof advanced arithmetical methods, it was not
possible toijperform the required computations of the

calendrical systen.
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MAYAN NUMERICAL SYSTEMS

Most of what is known of the Mayan mathematical system
has been correlated to their ancient calendar and related
computations. No existing evidence suggests conclusively the
use of a Mayan numerical system to complete economic
calculations: decisive evidence of real estate sales or
commodity trades ddés not seem to exist. Instead, the Maya
created well-developed numerical methods used mostly to
complete calendrical computations which became significant in
every aspect of Mayan life.

The Mayan Indians developed a vigesimal, or base twenty,
numerical system, based on counting using ten fingers and ten
toes, as opposed to a decimal system, Eased on counting with
ten fingers%wwggéhele and Freidél, p. 78] Utilizing only two
symbols, a clgéed'br solid small circle
( @ ) to represent one unit and a sblid<bar (mmm ) to
represent a cluster of five uniﬁs; the éystem was very
efficient. In an alternative notational system, numerals were

written'inﬁén'elaborate manner, the inessential decoration
used only a;>ornamentation. In other notations, red and black
colors were added to distinguish the "day signs" from the
"distance numbers" and "moﬁéh coefficients". [Thompson, p.
130] 7 |

The simple, two-symbol system, was in a sense superior to

the Roman notation, which employed at least five different
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symbols to portray all numerals. Mayan numbers were usually
cons£ructed from digits written vertically with lowest order
digits on.the bottom, in contrast to our modern method of
horizontal placement with lowest-order digits on the right.
[Closs (1986), p. 299]

In the Mayan system, one unit in each position
represented twenty units of the next lower order position,
just as ten units equal one unit in the next higher position
in the modern decimal system. The lowest order position was
used to represent the units zero to nineteen. Entries in the
second-order position contained zero through nineteen units of
twenty; therefore, the first two lowest orders together could
represent the numbers zero through 399. Similarly, adding the
third level allowed for additional numbers between 400 and
7,999,?anq‘§9}%6rth through the higher levels. [(Thompson]

Numbers ;ere“written as a combination of the bar and dot
éymbols; in each position or level, the bars were pl?ced below
the dots. Occasionally, numbers were written horizéntally,
placing the dots to the left of the bars. The Maya expressed
the numberSLdﬁ*; two, three and four by one dot, two dots,
three doﬁsgénd four dots, respeétively. The number five was
expressed by one bar which represented five dots or units; six
seven, eight and nipe-wgre ﬁfitteq as one bar and one, two,
three and four défs respectively. - Numbers ten through
fourteen were represented in the lowest order position by two

bars and the corresponding number of dots; fifteen through
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nineteen would be written as three bars and the proper number
of dots. The number twenty was represented by one dot in the

second position and 2zero units in the lowest position,

corresponding to the number ten written in the today's system’

as one ten and zero ones. The numbers twenty-one through
thirty-nine were drawqwas one dot in the second level and the
appropriate number of bars and dots in the first order
position. The same notation was used in each higher order
position with each dot or bar representing twenty of one
hundred units, respectively, of the next lower order position.

For example, the number thirty-six was written in the

following manner: | } 20
@

I
A ]
- e -

The number. 399 was represented‘this way:
o000 )
— S(%m
—
—— B
(XX T ]

o=

and 1,368 was written llke so:

— } o
O“Qi 8

(2144
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Using this method, no more than four dots were ever
presént in one order, because one bar was drawn for every
group of five dots. Using the same rule; no more than three
bars were ever drawn in one 1level, because four bars
represented twenty units in one order, equivalent to one dot
in the next higher digit position.

This Mayan numerical system was used primarily for
calculations of elapsed time. “Although George Sanchez, a
historian of Mayan mathematics, believed that the system was
never employed for economic purposes, others have suggested
that such alternate uses did exist. According to Bishop Diego
de Landa, the vigesimal method was used to keep track of
trading by merchants, using counters such as cacao beans on
flat surfaces. [Morley (1983), p. 547]

IE%;S bo§§ible that only three cultures have established
a symbsl };fJZero in a numbering system: the Hindué, the
Incan Empire and the Mayan civilizaﬁion in Mexico. [McIntyre,
p. 31] Although Mayan mathematics seemeauto represent a
basic and perhaps primitive system, the Maya were able to
discover the -importance of a zero symbol and incorporate it
into their number system. One 6f their symbols for zero was
a hieroglyph resembling a closed fist, which perhaps signified
the count of zero fingers. At other times the zero was drawn
as a stylized shell ﬁainted réd. : (In the 1literature
consulted, one occasionally sees the Mayan symbol for zero

written as an open circle slightly larger than that of their
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unit circle. This is remarkably similar to our own symbol 0;
however, it is merely an invention of historians to simplify
their own fepresentation of the Mayan symbol for zero. It is
interesting, though, to note that the Mayan closed fist does
have a resemblance to our own symbol for zero.) The Mayan
symbol was used in the same manner as in the modern decimal
system: the symbol was placed in a position which contained
no numerals. For example,che nﬁﬁber forty was represented as
two shaded dots in the second level and an oval zero symbql in
the lowest position. Another form of zero devélope@ for the
calendrical system was used only to express the first position
in each of the nineteen divisions of the year. [Closs,

Gallenkamp, p. 76; Sanchez]

This is the Mayan closed-fist zero symbol:

Bt
R P

ES BT

The use of the zero symbol is shown in the symbol for forty:
0o |
&

and also- intHe numeral 804:
(Y :25 8oo
® [ 0

seee } 4
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MAYAN COMPUTATIONS

A gréat portion of the Mayan written records were
destroyed during the Spanish conquest and therefore little is
known of Mayan use of the four basic mathematical operations.
Although the majority of the Mayan calculations focus on the
calendrical counting system, words denoting "division" and
"multiplication" existed " in the Mayan language. Recent
studies show that the Mayan system can be adapted td
multiplicatiqn, division and even square—root‘extractigns,
although the extent of Mayan knowledge of these is unkn&wn.
[Gallenkamp, p. 80] Evidence of Mayan multiplication tables
and calculations have been discovered; however, all focus on
calendric computations. [Sanchez, p. 8]

Thé*Mayaﬁ;;ddition proceéé was simple and analogous to
ours. Numbers wéfe added one level at a time. After the
digits on a given level for all summands had been coﬁbined,
the dots and bars were rearrangedﬂéo that\né more than four
closed dots and three bars were placed in each level: each
group ofﬁf%&eﬁg;ts would be converted into one bar and each

group of four bars would be replaced by one dot in the next

higher level. The numbers 33 and 114 would thus be added in

the following way:. L ® o o
o 9 Y. o o ;='4 — —
- Cormbined”

Y sese (osegdee = 220 =
= ] ) ] — .
B + [ = torried {: e
33 4 — _— —
3

BOOTH FIGHARY
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Subtraction was performed similarly: each level was
subtiacted separately. When subtracting a larger number from
a smallerlnumber in a specific level, one dot is carried as
twenty units from the next higher 1level. For example, if
eight were to be subtracted from twenty-four, it would be

necessary that eight units would be subtracted from four units

in the first level of the numbers. One unit of twenty from -

the second level of the larger number (24) would be carried
down into its first level as twenty units. The smaller
number's first level thus contains in effect twenty-four dots;
the eight units are then easily.subtracted from the twenty-
four. The result amounts to sixteen dots in the first level
expressed as three bars and one dot; the second level of both
numbers is empty, the only dot being carried down earlier.

subtfaction process thus differed from the present

B T

The Mayan
decimal method only by the borrqwing of twenty units as
dpposed to ten.

Although evidence of multiplication within the Mayah
numerical system is not solid, a possible process could be
conducted following three rules: one dot multiplied by one
dot results in one dot; one dot ﬁultiplied by one bar results
in one bar; one bar multiplied by one bar results in five
bars. Each level of the first numbe: would be separately
multiplied by each‘ievel‘of'the 'second number. The first
level of the first number would be multiplied by the first

level of the second number and recorded, then by the second

HOOTH FLIERARY
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level of the second number, until all levels of the second
numbér had been multiplied by the first level of the first
number. The same process would be used on the rest of the
levels of the first number. For example, the two numbers 21
and 101 could be multiplied by first multiplying the one dot
of the first level of 21 by the one unit of 101 and would be
recorded as one closed dot in the first level. The dot in the
first level of 21 would then be multiplied by the bar in the
second level of the 101 and recorded as one bar in the second
level of the resulting number. After the completion of the
first level, the dot in the second level of twenty-one would
be first multiplied by the unit of 101 and recorded as one dot
in the second level of the result; then the same dot would be
multiplied by the bar of the second level of 101 and recorded
as pneqbagﬁiﬁffhe third level of the result. The result
containé one éot in the first level, one bar and one dot in
the second level and one bar in the third level to represent

the result of 21 x 101, equivalent to 2121.

° Ll - - d
T eaxe=o; oex® &
(i 8 b — e c
- - - b
— L4 - ® .X = &
@ T e &) & @ o
¢ d ° o

UG ZITFARY
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Mayan division calculations could possibly have been
performed by a "reversal" of the multiplication process
analogoué ﬁo our own long-hand division process. A quotient
could be found by dividing the highest number of the divisor
into the highest or next-highest number if necessary, of the

dividend. For example, when dividing the number

by the number

-

.f‘}.‘- )

the highest 2digit" of the divisor

—
would be divided into the highest and next-highest "digits" of

the dividend

Using the fact that
[ J

T Y EEE - ey

- i

o

el ?

227

L

Vo /e
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the first "digit" of the quotient would thus be == ? .,
Multiplying the divisor by one bar results in

A L
o
-
— ’
which is subtracted !rom the dividend and resulted in a

remainder of °
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BASIC CALENDRICAL COMPUTATIONS

The ﬁayan vigesimal system was modified somewhat to
accommodate their chronological computations. One type of
Mayan calendar year consisted of eighteen months of twenty
days each; to adapt to the calendar year, the vigesimal system
was adjusted by allowing the second level to contain only
eighteen units, representing the eighteen months of every
year. ' The new system otherwise remained base twenty. The
first two levels now represented a calendrical Mayan year of
360 days: the twenty Mayan- days in each month were
represented by the first level of the new system, and the
eighteen monthly divisions of the year were contained in the
second leve%,-‘The third level would contain twenty positions,

*;-w. . . .
as would-:each «remaining level. [Sanchez]

In this&;ewnsystem, the first level recorded entries
bétween zero and nineteen days; a day count ranging between
zero and 359 days was recorded by the combination of the first
two levels; the first three levels were used to record time
periods ~involving between zero and 7,199 days. With this
slightly mgaified vigesimal sysﬁem,‘calendrical computations
could be done more efficiently than today. The difference

between the true vigesimal'éﬁd calendric systems can be seen

in the two distinct representations of -the number 404:

ELAFFIT L EHHARY
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i 'gqoo ® }3"\0
@ Jo ce b
oooo}'ﬂ ooooj} 4

True Vigesimal Representation Calendric Representation.

The revised vigesimal levels represented the structure of

represented the twenty days in each Mayan month: twenty
'kins' composéd one 'uinal', denoted by one unit in the second
level. -The second level represented the eighteen 'uinals’'.
Eighteen--»mom:.h-;gr 'uinals' completed one year; cone 'tun' was
equivalent to *one ‘unit in the third level of the calendric
_system. This position was calculated by mult;iplying one unit
of twenty by one unit of eighteen to Tdésignété"eighteen months
“ of twenty days each. A period of twenty 'tuns', labeled a

ey

'katun' ,‘“’gr}":‘?GO"x 20 days, was represented by each unit in the
‘; fourth leve‘l‘ of the calendrical systemn. The fifth level
represented the periods of one through nineteen 'baktuns'; one
baktun was commonly labeled c‘a;le cycle by historians. [Morley

. (1946), p. 276] Further 1levels were indicated in this

Mayan time periods of their calendar. The first level

17 LIIHARY

AFEA
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1 KIN = 1 DAY

20 KINS = 1 UINAL = 20 DAYS

18 UINALS = 1 TUN = 360 DAYS

20 TUNS = 1 KATUN = 7,200 DAYS

20 KATUNS = 1 BAKTUN = 144,000 DAYS = 400 TUNS
20 BAKTUNS = 1 PICTUN = 2,880,000 DAYS = 8,000 TUNS

Recording higher day counts was resolved by continuing to
multiply eacn level by twenty. [Morely (1983), p. 548]. As

an example, a day count of three-hundred was recorded as

o HI

in which the fifteen units in the sééohd leVéifdenoted fifteen

‘months of twenty days each and the shell in the first level

'denoted Zero days. A count of 75,550 days was recorded as ten
'katuns' equivalent to 72,000 days; nine 'tuns' equalling
3,240 days; fifteen 'uinals' or months representing 300 days

~and ten 'kins' torqomplete'the total 75,550 days:
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s | 7,900
122§ 3t

=1

=1

The Maya used their calendric system to record counts of days,
as well as absolute dates expressed as the time elapsed since
a certain fixed starting date (analogous to writing 8-16-1980

to represent 1980 years, eight months, and sixteen days

elapsed since a certain fixed starting date for our calendar.) &

"
More will bg‘said about the Mayan "starting date" later. Just g
as we_cpmgggg)%ﬁture dates by adding a number of days to a §
‘current date, ;nd compute elapsed time by subtracting one date %}
ffom another, so could the Maya. However, their modified '
vigesimal calendrical numbering system greatiy simplified the |
computations. [Sanchez, p. 14-15] %

Calendrical additions were done as in their true

vigesimal system but compensating for the maximum of only 18
units in the second level; chronological calculations recorded

one dot in the third level for each unit of 360, as opposed to

400. An example of calendric- addition portrays this

modification:




25

® 1 tun w= 7 tuns : 8e8¢ 4 tuns
. —
R oo \ eoe '

® 1 uinal + gy 17 ulnals = — = ] 1 uinal
- -

- 15 kins s 5 kins — & O kins
- —
—— [
]

[Sanchez, pp. 45-46]
Subtracting dates from each other was done by borrowing one

unit of 360 from the third level into the second level when

~ required: S
E‘m‘/ ° 33‘:0
‘ e — m — G6és — eeee %
§ 20 — — g
: _— o B
-} 5 e — L u
7 eeoe §

L B s

Conversion from the calendrical system to the true |
vigesimal system was easy. A calendrica‘i_humber could be
converted to a true vigesimal number by treating it as the

LR

represenEat'j:.-bn of a true vigesimal number, then subtracting

conversion factors from it. For example, the calendrical

number

represents 5 x 7,200 + 2 x 360 + 0 x 20 + 1 x 1.

Treating it as a true vigesimal number, representing 5 x 8,000
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+ 2 x 400 + 0 x 20 + 1 x 1, results in an
"overrepresentation" by 5 x 800 + 2 X 40 units, so
subtracting
e o0 e e —_—
g ¢ —
+
& + ® + & @ + & + eoe 00 — geew
& & & & & & & &>
effects the correction:
- - secn - ecos
] ® |
e = — e
<« [ XX 1] | = o
ma
. P - oQee [ .
— . ;l.e-r
m—— —
i . —
-
[ ]
)
fh,
I ssee 'ﬂ%
[ J w
ee - - . —-— v
e . 3
-—— 3
32 — ]
®

, Calendrical - True Vigesimal.

It proved more effective to use the true vigesimal system

than the calendrical system in multiplication and division
processes, so computations of day  counts would have very
likely been converted into vigesimal representations before
completing the operations. The result could then have been
converted back into the célehdricél representation.
Operations involving multiplication or division of

calendrical dates were generally not performed; more commonly,
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Mayan priests would determine the day count or "distance
numbér" which linked two recorded dates together. Two common
day-count.‘computations included the determination of the
Calendar Round date reached when counting through a given
interval of time in a forward or backward manner. Another
calculation determined the interval of time between two
specific Mayan dates. [Closs (1986), p. 306]

Mayan dates were recorded as the time elapsed since a
particular point in time. The given point could be explicitly
stated; if it was not, it was assumed to be the date treated
by the Maya as the starting point of time, falling
approximately in 3114 B.C. [Morley (1983), p.556 ]

(Note that the Mayan calendrical starting point is very close
to that of the Hebrew Calendar.) The dates were written as a

seriesv of ngﬁbers, separated by dots, written in a

+ N e

horizontally fight—to-left manner, indicating the amount of
‘kins', 'uinals', 'tuns', 'baktuns' and all higher periods of
the date. For example, the count df‘3.15.6:grepresented six
'kins'!, fifteen 'uinals' and three ‘'tuns' of elapsed time.
Imtermining1whether‘the date was to be counted forward or
backward from the reference poinf was the next step. Although
the majority of such calculations involved passing from an
earlier date to a later daté; a backward count also existed
and was signified'byva‘séecial minés sjmbol and a red circle
-around the date's lowest term.

The Maya had "day prefixes" that repeated in a thirteen-
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day cycle as our modern weekday names repeat in a seven-day
cyclé. Each day of the twenty-day Mayan month had a "day
name" asséciated with it. Also, the Maya recognized the
importance of the 365-day "Vague Year", though their Calendar
Round recognized a formal 360 day year, and would wish to know
the number of the day of a given date within a 365 day "year"
cycle. The Maya could have computed these from a given date
number by a process involviﬁé division and saving of
remainder; that is, the process we call modular division. For
example, suppose that the "day prefix", "day name", and day
position within the "Vague Year" were desired for the date
9.12.2.0.16, stated relative to the beginning point of Mayan
time. Since the date is 1,383,136 days after that starting
point, and since

e 1,383,135 mod 13 = 1

N

1,383,136 mod 20 = 16

1,383,136 mod 365

I

151 ,

B ey

the given d&ate has a "day prefik" of 1, a "day name" of 16,
and the 151st day position within the 365 day year, relative
to that of the Mayan starting date. The Mayan starting date
was labeled by thé:fourfh "day préfixf, the twentieth "day
name", and the eighth day of the eighteenth month of the year:;

the corresponding labels for the 9.12.2.0.16 would have to be
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adjusted to account for that.
While this completes the discussion of most of the
nathematics involved in the Mayan calendrical system, a

further discussion of the system placed within a cultural

context, will be presented in a later section.
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OTHER NUMERICAL REPRESENTATIONS

Another form of Mayan numbering incorporated the use of

certain pictorially intricate hieroglyphical symbols: the
head variant numerals. Although not as commonly used as the
bar and dot notation, these numerals were efficient and simple
to use. Each number from zero to twelve was depicted by a
unique hieroglyph, which almost élways represented a portrait
of a deity. The detailed features of each portrait
distinguished which number it represented. The numbers
thirteen through nineteen were commonly written as the
specific head hieroglyph representing the number ten and the
head hieroglyph representing the numbers three through nine,
respectively. Although the number thirteen could also be
represgg;edybzfé‘unique hieroglyph, it was usually denoted as
a combihatigg’éf the portraits for ten and three. This system
is not all that different from the Arabic system, in which one
distinct symbol denotes the first ten unité;'[Closs (1986),
pp. 334-336; Morley (1983), pp. 547-548] These head variant
numerals were--found in both records of Calendar Round dates
and distance numbers. Most head variant numerals have been
found in "Initial Series" representations, which indicated the
first date of the inscription process of hieroglyphical
panels. . ‘ |

As did many other ancient civilizations, the Maya

developed an abacus. Their abacus had seven rows, each
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containing seven beads partitioned into two groups: one group
of four beads on the left side of each row represented thé
four poséible dots at that level, while a second group of
three beads on the right side of the row represented the three
possible bars at that level. Just as four bars represented
one dot in the next higher 1level in the Mayan vigesimal
system, when four "bar" beads were needed in one abacus row,

a "dot" bead in the next Larger(row was used. [Sanchez]
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DEVELOPMENT OF FRACTIONS

The Méyan civilization had little need for fractions, and

therefore did not develop a complete fractional system.
[Thompson (1966), p. 169] A few simple fractions with a
denominator of one were known to exist in the Mayan systemn.
When a calendrical cycle was broken down into several smaller
parts, the Maya considered each section as a fraction of the
whole, but no evidence proves that they treated these
fractions as numbers, with one exception. They did have a
hieroglyph to represent one-half of a period. This is the
only Mayan hieroglyph of a fraction that has been found.

[Thompson, pp. 139-140]
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GEOMETRICAL DEVELOPMENT

The Méya developed some understanding of geometry. Their

perception of the four world directions, North, South, East
{and West, may imply their knowledge of right angles, often
used in their architecture. Mayan architecture included both
temples and pyramids; other build}ngs were constructed having
a flat top. [Thompson, p.“6] Some isosceles triangles and
angles measuring thirty degrees were found in other Mayan
architecture, as were hexagonal structures, signifying more
than just a scant knowledge of geometrical structures.

[Aveni, p. 125]
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THE CULTURAL IMPORTANCE OF THE MAYAN CALENDRICAL SYSTEM

Mayaﬁ life was deeply involved with the harvest of maize,
religious ceremonial events, and the focus of superstition and
mythology. Von Hagen states that the harvesting of corn was
actually the main part of the people's 1life. [Von Hagen]
Observing the stars, as well as_the seasonal risings of the
planets and the recordings of any indication of rain or sun to
aid in the upcoming harvest of the Mayan crop, led to the
development of their calendrical system.

The Maya certainly had no greater intellectual capacity
than other ancient tribes, yet their civilization became the
most sophisticated in the New World. [Von Hagen] The
people's lige'was ruled by their calendar and the recording of
past mi}esgqgeghénd their predictions of future events.

"No other people in history were so obsessed with

the passage of time, and they labored tifelessly to

understand its mysteries and control its awesome

influerices.

.se rﬁime was a supernatural phenomenon

involving omnipotent forces of creation and

destruction, ... direcfiy influenced by evil or

benevolent gods." ~ [Gallenkamp, p. 74]

"The Mayan numbers, time and the cosmos were
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ruled by supernatural forces. By discovering
and recording regularities in these forces,
theréfore, the Maya believed they were in a
position to better understand and even predict
events. Of course, the calendrical system was
also used to record the events of history,
the reign of rulers, their conquests and
achievements, and other earthly matters.”

[Morley (1983), p. 545]

The passing of Mayan time was regarded as a series of

burdens carried by bearers in relays. When one period of time
was completed, the next time-bearer or god would carry the
next burden. Each day was thought of as belonging to a deity

whose,igqiyiggéiucharacter was present during the time period
in which he ;uled. Thus each day portrayed a different
cﬁaracter or attitude, depending on that of the current time-
bearer. Days falling on the same date in a'é&lendrical cycle
portrayed similar characteristics; dates occurring on the same
day in more €Han one cycle portrayed even more similar
;characterisEics. [Schele and Ffeidel, p. 252] Mayan days
_became living, personified objects for the people. Each day
‘held a certain amount oleuck} the Maya so strongly believed
in these deities énd their powers, that each day was lived

according to its fortune. . The luck of the Gods, imparted to

. the days, influenced every daily activity. 1Indeed, when a
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specific day included no good fortune, important Mayén
activities such as farming would not be performed. [Thompson,
p. 66] |

The completion of the sun's cycle from sunrise to sunset
denoted the basic division of time upon which the Maya relied.
Twenty consecutive days completed one basic "luck" cycle, each
day being depicted by a portrait of a God. The twenty Mayan

days in such a cycle were hamed:

1 IMIX 11 CHUEN
2 IK .12 EB

3 AKBAL 13 BEN

4 KAN 14 IX

5 CHICCHAN. 15 MEN
6..CIML__ 7 " 16 CIB

7 MANIKﬁf i 17 CABAN
8 LAMAK 18 EZNAB
9 MULUC : 19 ‘CAUAc 
10 - ocC 20 AHAU

Theségﬁwenty names were uséd to number the first twenty
consecutive days of the 360-day year; the cycle then repeated.
"Day names" were always‘prefixed by numbers between one and
thirteen, called "dé& prefixés", similar to the modern seven
days of the week. Together, the "day prefix" and "day name"

would form a unit; neither was ever used by itself. The Mayan




37

langl..xage indicated the importance of the day prefix: the day
3 IMIX was written as 'oxil IMIX ', meaning "day prefix oxil
(3) beloﬁging to IMIX". [Thompson, p. 66]

The combination of the thirteen numbers and the twenty
names formed the centerpiece of the Mayan calendar. Each day
name could be Jjoined with one of the thirteen prefixes,
resulting in 260 different combinations. These 260 different
combinations of the twentj; "day names" and the thirteen "day
prefixes" formed another important cycle, no combination would
be repeated until 260 days had been completed. Beginning with
the first day of the day name ‘cycle, IMIX, and the first
number of the prefix cycle, 1, the first day of the 260-day
cycle was established as 1 IMIX. Following the first day
would be the combination of the second day name IK, combined
with the-»ise‘cgnéf’ljlumber became 2 IK. The fourteenth day would
. be representec; by the fourteenth day name and the first number
- prefix: 1 IX; the twentieth day was written;,as 7 AHAU. This
260-day cycle formed the Mayan Sacf‘e‘d.Year, "';I"zolkin", or the
’ "Tonalamatl', meaning "the book of days". [Morley (1946), pp.

 265-267]"

This process represents a good example of an important

characteristic called absolute continuity, present throughout
the entire Mayan nca_lend;ar ;ystem, Every cycle would be
counted through from béginhirig to end, then would begin anew.
[Thompson, pp. 66-67] The different cycles of prefixes, day

names and months proceeded independently of each other. Their
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combination determined the complete structure of the Mayén
calehdar.‘

Althdugh the 260-day cycle was not used to count time,
but often only to record and anticipate the time for their
maize harvest, it became a significant part of Mayan society.
The people's ceremonial life was determined from the Sacred
Year; the God of each day was ahguardian to those born on a
particular day. The 'Tonalamatl' was the only part of the
Mayan calendar system with which the common folk were
familiar. [Thompson, p. 103]

Another important component of the Mayan calendar was yet
another year, the 365-day year, or 'Haab', also called the
Vaque Year. It was constructed of eighteen periods or
"months" of twenty days each and one shorter period of five
extra d@yshégggghplete the 365-day cycle. These five extra
'days wefe naméa the 'xma kaba kin', meaning "days without a
héme", and were considered to be highly unlucky. The Mayan
Indians realized that the solar year lasted aﬁproximately six
_hours longer than 365 days. They did not, however, add a leap
day every‘feur”ﬁéérs,.knowing that this would complicate their
¢alendricalﬁéomputations. [Gann; pp- 127, 208; Thompson, p.

121] The eighteen primary twenty-day divisions or "months"

of the Mayan Vague Year werehiabeled inkthe following cycle:
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1 POP 10 YAX
"2 Uo 11 ZAC
3 zIP 12 CEH
4 2Z0TZ 13 MAC
5 TZEC 14 KANKIN
6 XUL 15 MUAN
7 YAXKIN 16 PAX
8 MOL . 17 KavaB
9 CHEN 18 CUMHU

To complete the 365-day Vagque Year, a nineteenth five-day
"month" was added, labeled as UAYEB, which represented the
'xma kaba kin', or "days without a name". It must be
'emphasized that these "months" were not closely related to the
{twentyiggy d&c;ﬁs within the Sacred Year. To emphasize this
‘distincéioglgggéh day was denoted both by its "day prefix, day
héme" designation within the Sacfed Year and by another
designation within the Vaque Year more<close1§irelated to our
modern Pmonth, day of the month" system. The first day of the
365-day May@préﬁaab"was the first day of the first "month"
fOP. The Maya considered the day Qf the month to represent
fhe number of days already completed in that month, so the
first day of a month was numbered by a zero. Thus, 0 POP
designated the Mayan New Qear, Eac@ 365-day Vaque Year would

contain eighteen complete twenty-day cycles from the 260-day

Sacred Year, plus five additional days. As a result, the day
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name’of New Year's Day would advance by five days each ygggg
Year. At the end of four years, then, the day count advanced
by twenty.days, and the New Year's Day would again have the
same day name as it had four years before. Notice that only
four different day names would coincide with the first day of
each month. These four day names: IK, MANIK, EB, and CABAN,
in combination with the thirteen day prefixes, became the
Mayan New Year's days. [Tﬁbmpson, p. 123]

Combining the 365-day year or 'Haab' with the 260-day
'Tonalamatl', resulted in the Mayan Calendar Round which
became the ultimate basis of Mayan chronology. This Calendar
Round was pictorially recorded as two cog wheels; one
containing the 365 positions of the year and the other the 260
possible day_names. When the two wheels were intermeshed,
each day:namewufj{ié was combined {vith one of the 365 positions
of the year at ;ach connected cog, beginning with the start of
_both cycles, 2 IK 0 POP. The least common mul@;iple of 260 and
. 365 gave the 18,980 possible combinafidns of'Ma.iran dates. The
'Haab' wheel would therefore make fifty-two revolutions before
returning to 2 IK 0 POP. Each of these fifty-two 'Haabs' was
i given a namg corresponding to the four previously-mentioned
"day names" of the New Year's Days and the thirteen possible

"day prefixes" that were .affixed to these "day names". A

person, then, living a life‘lo'nger than fifty-two years would

Calendar Round period was used widely throughout Mesoamerica,

éee repeated New Year's ‘day names. The fifty-two year

AN

,.
3
[

__EAST




41

both‘as a calendar and as an almanac, as early as the fifth
century B.C. It became an important part both of the Mayan
calendar énd daily life; Mayan festivals had revolved around
this Calendar Round until recently, when the ancient timing
was altered to correspond to the Christian Calendar.
[Gallenkamp, p.76; Morley, pp. 543-545; Schele and Freidel,
p.45]

The Mayan people were one of the first to establish a
fixed starting point in their calendar, as a reference point
for the beginning of time. A specific date in their calendar,
13.0.0.0.0 4 AHAU 8 CUMHU, was referred to as the "zero
date", and was considered by the Maya as the day of the
world's creation. Although this date has been found to be
more of a hygothetical starting point, the concept of the day
is analegou§ﬁ;o}iﬁe Birth of Christ in the Gregorian calendar.
‘The dateritselg‘occurred more than three millennia before the
eafliest known Maya inscription, therefore strongly suggesting
that it must have been an invention of the Maya, rather than
corresponding to a true historical event. ([Gallenkamp, p. 77;
Morley (1983), Pp. 555-556]

The Magé devised three systéms’to count periods of time
- from their calendar. The Long Count, considered to be the
;most accurate ancientfworid calendar ever developed

[Gallenkamp, p. 76], fixed the chronological position of all

_ Count was a number which designated the chronological count,

~dates with respect to the calendar's starting point. The Long

W
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or elapsed number of days since the starting date. The Lohg
Count would therefore record the first day following the "zero
date" 4 AHAU 8 CUMHU by the number 1. On some of their
monument inscriptions, the Maya included a date which
indicated the first day of the inscription process. It was
recorded in an "Initial Series" hieroglyph at the beginning of
the text. [Closs (1986), p. 317; Schele and Freidel, p. 81].
‘A typical date using the Long Count procedure may have been
8;14.10.13.15 7 AHAU 3 XUL. This represented an elapsed
mount of time since the initial date of eight baktuns,
fourteen katuns, ten tuns, thirteen uinals and fifteen kins,
or 1,256,660 days, denoting the day 7 AHAU of the 'Tzolkin'
and the third day of the month XUL in the Mayan 'Haab'.
Téallenkamp,?p; 77]

Expgesgigg;iﬁly one day in the Long Count required ten
fferenﬁ glyphé. The "Secondary Series" occurring later in
;ﬁé hieroglyph would record further dates in a much
;breviated form. "Secondary series dates consist of the
unber of days (distance numbers) to be counted forward or
ckward from thé base date to arrive at the new calendar-
ound position."  [Morley (19835, p. 558]. The distance
umbers of the secondary series were recorded in increasing
rder, from left to right,iinéﬁead of right-to-left order, as
ne in the Long Counf.\ For example, if the long-count date

+16.0.0.0 was followed by a forward count of 11.8

presenting eleven 'kins' and eight 'uinals', the two counts
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were combined to form the long-count date 9.16.0.8.11. The
long‘count method later was simplified by a "short count"
method, wﬁich designated a specific time period and the date
upon which it would end. [Morley (1983), pp. 557-559]

Not fully satisfied with this collection of time cycles,
the Maya also devised a "moon count", or lunar calendar. The
"moon count" began with a new moon; the moon was described by
its shape on the first evehing after the beginning moon, the
second evening, and each day thereafter of the moon's cycle.
The cycle ended on the last night before the new moon, called
the "the end of the moon (month) .day". While the moon was
waxing, certain restrictions were put upon the Mayan
lifestyle: crops were not harvested until a later phase of
the moon, charcoal was not burned and people became lazy.
[Avenihcpp;nggéff' Another count gave the age and position of
the new hoon 5;d the length of the‘particular lunar month of
either twenty-nine or thirty days. [Gann, P 216] Although
many observations were made to complete sucﬁ?a detailed moon
calendar, it was not as commonly used as the other Mayan

calendrical-sy&tems.
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MATHEMATICAL APPLICATIONS IN DAILY LIFE

Not évery Mayan Indian had been educated in the uses of
the numerical systems, nor of the calendrical systems.
Priests of high rank and powerful positions in Mayan society
were, for the most part, the employers of the Mayan
mathematical and chronological computations. Almost all
knowledge of mathematics, astronomy, hieroglyphic writing and
calendars was restricted to the upper classes, while most of
the peasants remained illiterate. [Gallenkamp, pp. 108-113]
The farmers and peasants, however, did employ the 260-day
'"Tonalmatl', which specified the harvesting time and
designated the amount of luck each day contained. An almanac
for planting was constructed by the Mayan astronomers, which

listed,ggogﬁggahbad days, lucky and unlucky days, as well as

rainy or dry days.” A typical entry in the almanac could have

béen "the month and day of 9 CABAN was a goqd and lucky day,
with heavy rains, and good for planting évérything“. [Von
Hagen] @ All Mayan people had at least some knowledge and use
of some»papt'8f;the.calendrical system, although many knew
little or’ﬂbérhaps nothing of fhe mathematical system or

computations of any chronological dates.
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MATHEMATICAL APPLICATIONS IN CEREMONIAL LIFE

Mayan ceremonial 1life revolved around the 260-day

calendar year which indicated both the daily luckiness and the
daily ruling deity. This portion of the Mayan calendar also
specified which God was the ruling power of each birthday.
The chronological computations‘wmade' by the higher Mayan

priests designated the ceremonial life of the Mayan people.
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"The Incan civilization is noteworthy as being tﬁe
highest type found on the American continent, (its only rivals
being the ﬁaya of Yucatan and the Aztec)..." [Locke, p. 9]
These South American Indians established their society during
the twelfth century, acquiring much power and conquering many
neighboring civilizations in the next three hundred years.
The technology and architecture of these people were highly

developed and their economy depended mostly on the harvest of

maize, as did that of the Mayan Indians.
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INCAN MATHEMATICAL DEVELOPMENT

The Incan people were known to have a great knowledge of

mathematics. The Incan society had no use for money as all
economic transactions were completed by barter and trade.
Although the Inca knew nothing of renting, buying or selling,
mathematical calculations were common in many facets of their
everyday 1living. [Locke, p. 40]. A highly developed
soclalistic government required each Incan district to furnish
information on matters such as revenues, taxes, census, and
records of crops and herds. Detailed accounts of the matters
of all the Incan provinces were Kept, including records of
citizens, llamas, soldiers, and so forth. To service demands
from the government, the Inca developed not one but two

mechanical counfing devices: an abacus and the Incan quipu, a

Bom, T

method of recofé—keeping involving knots tied in ropes.
The Incan knotted quipus originated with the Amazon
Indians. Men of the Amazon Indian sobieties-kﬁotted ropes to
‘denote the numbers of days of an absence. After the passing
of each dayﬁawives would loosen one knot until all knots in
athe rope ‘wéfe untied; an unknétted rope foretold their
“husbands' return. [Flornoy, p. 13].

Four hundred quipus: have been excavated from Incan
raves, the only piéée they have been found. The device
iffered from other ancient computational devices, such as

papyri inscriptions, in that the quipus recorded only results
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and no intermediate computations; no evidence of intermediate
stagés of actual mathematical operations is contained in the
surviving quipus. Nor did the Incan quipumakers employ two-
dimensional recording material such as clay or papyrus as in
the ancient Sumerican and Egyptian cultures. Tying the knots
was not done in a methodical left to right or right to left
manner; instead, a group of cords was connected and knotted
‘using a method based on the posiﬁion and color of the cords
and knots. The quipus were quite advanced compared to other
~early mathematical devices, because they indicated the
- existence of a general recording system and mathematical
. concepts involving both verbal communication and craftiness.
{Ascher and Ascher. p. 78] As practical as these quipus

- seemed, they were probably neither employed as calculating nor

and were used instead to record the results of computations
done with pebbles and grains. [Day, p. 13; Locke pp. 32, 37]
Quipus commonly recorded such informatian as population
censuses, size of the military, counts of animals and cities,
production of gotd and accounts of goods stored in storehouses
such as silver, clothing and maiée. [Ascher and Ascher, p.
10; Day, p. 1l; Locke, pp. 31-32] Some quipus recorded
raditional songs and custpms;”stories, genealogies, dates and
eligious laws, by\kngttihg the rop%s iﬁ specificvpattern in

hich both placement and color were important. [(Day, p. 1]

i

arious quipus were constructed with colored cords which
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distinguished the ropes from one another. Information
recorded on uncolored quipus was arranged according to the
objects' importance, beginning with that of most consequence
"and proceeding in order to the most insignificant. [Locke,
pp. 40; Von Hagen, pp. 536-~537, 561-564].

Although the quipus seemed of simple construction, knot-
translations could become somewhat complicated and required a
verbal translation by a commentat;f, a 'quipu~camayoc'. These
interpreters, or 'quipu-camayu', meaning "he who has charge
of the accounts", were responsible for the construction and
translation of the quipu. Each quipumaker developed his own
istyle of knotting the quipus. The most trustworthy and honest
Incan citizens were selected for these positions due to the
importance of the work. Each quipumaker was responsible for
correct}xlre;ogﬁing all accounts of the province in which he
éresided:» fﬁe Villages commonly selected four interpreters to

manage the accounts; more populated villages employed a larger

number of camayocs. [Locke, p. 40]-=

Pedro de Cieza de Leon talked to some of the old
"rememberers" i551549, who explained that

"The Quipucamayos} which Were the officers and
intendants kept the account of all with their
strings éha{knoﬁtes,'withéut failing, setting
downe what evgfy one had paied, even to a hen

or a burthen of wood, and in a moment they
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did see by diverse registers what everyone

ought to pay" [Locke, p. 38]

"They added up, and multiplied by these knots,
and to know what portions referred to each
village, they divided the strings by grains
of maize or small stones, so that their
calculation might. be wiéhout confusion”

[Locke, p. 39].

"knots counted from one to ten and ten to a
hundred, and from a hundred to a thousand.
Each ruler of a province was provided with
accountants, and by these knots they kept

B aééqynt_of what tribute was to be paid...

) ;éalﬁith,such accuracy that not so much as

a pair of sandals would be missing"

[Von Hagen, p. 562],

These pas§ag§§.pgriray both the simplicity and accuracy of the
Incan quipus:-

The quipu was constructed from one main, thick grayish-
white cotton or wool cord to which smaller, thinner, sometimes
colored pendant cordé:weréﬂattached. éach of the smaller,

attached cords were knotted at intervals by clusters of knots

called interval knots. Even smaller knotted subsidary cords

b
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were hung from the pendant cords. [Ascher and Ascher, p. 56;
Closs (1986), pp. 266-267; Von Hagen, pp. 561-564] Data was
stored on é quipu either as a single number, multiple numbers
or number labels; most quipus were of the first kind. The
recorded information was separated such that each quipu cord
represented one item. Each knotted "cluster" on a cord had
zero to nine knots, and recorded one digit of each number
being recorded on that particular string; each digit denoted
one higher power of ten. Thus, numbers were recorded in
decimal notation. [Closs (1986), pp. 268-272] The clusters
were separated by spaces of unknotted rope to distinguish
knots in one cluster from those in the next. Leland Locke was
able to show that knots placed at the lower ends of the cords
of a particular quipu represented units, knots in the cords'
middleaéengtgdgiéns, and at thé top of the cords, at their
attached ends,}the"knots represented hundreds. [Day, pp. 15-
17]. Thus the values of the clusters increased by one higher
power of ten when translating the cord from‘its dangling end
to its end attached to the main cord. Values greater than one
thousand “wetre rarely if ever recorded due to the limited
accounts of‘each village. The system, however, included the
ability to express any number.
[Ascher and Ascher{Ap, 29; Lééke, Pp. 39-40]
Only three typeé of knots were used to record numbers in

the Incan decimal system: multiple long knots, a special

figure-eight knot and overhand single knots. Multiple long

.....
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knots were constructed by two or more turns in the rope and
represented only the units two through nine. Each turn of
these knots, treated as one knot in itself, was easily
distinguished and represented one unit in the numbers' units
position. Because a long knot could not be constructed from
only one turn in the rope, the number one was represented by
a special figure-eight knot only in the units' position.
[Closs (1986), pp. 268—272;‘bay, p. 17] Single knots recorded
~all higher powers of ten; each single knot represented one of
the higher powers of ten.

The first of two special>'features of this Incan

cluster to separate the powers of ten. The number 121 would

attached end of the cord representing‘one hundred:
~ «— main
ord.

any cluster, making the system a true decimal system, [Locke,

. 15] As another example, a surviving quipu records the

m?ﬂmmm
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‘our powers of ten like so: a three-turn long knot on the
langling end of the cord portraying the three units; a space;

cluster with three single knots representing thirty; a

space; two single knots one position higher representing two
hundred; a space; and four single knots at the attached end of

the pendant cord denoting the four thousands.

+— Mmain

Quipus could record a group of numbers on one single

ord, though this required a slightly modified method. When
e :
ne quipﬁfceréﬁéontained more than one number; cords required

symbol to separaée each recorded number. The problem was
esolved by separating the multiple numbers by the
haracteristic turns of the long kngt.or the épecial figure-
eight knot occurring only in the units position. Because
hese twowkdéféggere the only knots placed in this position,
hey indicated the boundary between multiple numbers. If one
f the numbers had no kno?g in the wunits position, the

Eparation of the multiple numbers was indicated by a slightly

arger space than the spaces sepératfng the single knots

epresenting consecutive péwers of ten. A cord holding three

ingle knots at its connected end; a space; two long knot

'
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~turns; a space; two single knots; a space; and one figure-
eight knot represented the numbers thirty-two and twenty-one,
separated by the first number's units position (the two turns

— main
ord

[Closs (1986), pp. 272-274]

The Aschers concluded from théir research and inspection
of the specific patterns of the quipus that the Incan quipus
indicate the extent of 1Incan mathematical knowledge,
including, pr,obably, addition, division into equal parts,
division"5"int&"jsimple unequal | fractions, division into
proportional parts,“multiplication of integers by integers,
and multiplication of integers by fractions. These
conclusions are derived only from th\.e‘ compafisém of patterns
and hypotheses about the quipus, and cannot, in fact, prove
the mathelr{;tti;aZ’L‘-{;dvan'cement of the Incan Indians. [Ascher
and Ascher, pp. 151-152]

A summation process has been indicated on approximately

one-fourth of the surviving Incan quipus. These large and

complicated quipus are separated into 'gr"oups of cords, each

e numbers in each group. Knots were aligned as are the

group containing a summation cord which records the sums of

e R R S R
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figu;es that a modern-day accountant records, column by colﬁmn
as in a ledger: "the knots of each number and each thread were
placed in a line with each other in the same way a good
accountant places his figures to make a long addition sum "
[Locke, p. 40]. When the cords were spread out so that each
lay horizontally and all knots were aligned in columns of
fmwers of ten, the summation cord would be at the bottom,
‘similar to the layout of aﬁmaddition problem done on paper.
;Numbers in each column from the cords in the group were added
nd the result knotted into the summation cord corresponding
o each power of ten. As an example, one quipu includes a
roup of knotted strings containing four cords. The first
ord is blank: its value is zero; the second cord has one
verhand knot>pl§g?d in its middle; cord three has a six-fold
ong kn&gfoﬁ“iés dangling end; the last cord carries one
figure-eight knot on its dangling end. Cord two has a value
yf ten; cord three a value of six; apd cord four a value of
ne. The summation cord contains seven long—knét turns in its

inits poéition and -one knot in the tens position. The sum of

A

the four cords is equivalent to the number knotted into the

summation cord, thus completing the addition process.
‘ -« main

) cord
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(Day, pp. 15-17] Note: it must be emphasized that one cannot

clearly identify the method of the addition process using the

Incan quipus because no actual addition process has been

observed. [Ascher and Ascher, pp. 93-94]

The Incan Indians are one of only three cultures to have

~developed a symbol for zero within their numerical system.

- The Aschers divide the concept of zero into:

",..first, the understanding that positions
containing nothing contribute to the overall
value of a number; second, that there must
be a way of representieg nothing; and third,
that when the representation of nothing

stands by itself, it is also a number. "

IAsgher and Ascher, p. 30]
7

The Inca displayed a zero simply by a space: the absence of
a knot in a quipu cord represented the~abseneédef a number or
zero units in a specific position. Using this system, the
Inca were ab}edgg’express not only the absence of a number,
but also the:exietence of the number zero.
[Ascher and Ascher, p. 30; Locke, pp. 17-18]

A complication arose when.no units occurred in one of two
ﬁmltiple numbers recerded{on the same éord. Did the space

denote a void in the unlts' p051tlon or was this just a space

placed to separate multlple numbers? The following quipu cord-
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‘which represents the two multiple numbers 230 and 21

portfays this ambiguity: <« Mmain

;The knots could be translated as either the number 2,321, or
~as the two multiple numbers 230 and 21. The ambiguity is
resolved by a comparison of the cbntroversial cord with other
pendant cords in the quipu. Hopefully, another cord in this
quipu would have a knot in the position between the two
' numbers, (marked in red ink for .simplicity) and the space
would be easily recognized as a zero. If, however, all cords A
in the quipu contained an empty space in the same position, "
the problem was more serious (and probably unlikely). Spaces 2
separaténghpg;ﬁiﬁle numbers not containing the characteristic 4
long knoﬁs or ?igufe—eight knots were made somewhat larger to =
iﬁdicate a boundary between the numbers. - '
Incan knots were carefully aliénéd, and each cluster was
knotted in the same relative 1location and an identical
distance“apaftééh each cord, which reduced any ambiguity, if
not eliminé%ing it entirely by spacing size; inter-number
spaces were larger than inter-digit spaces. The efficiency of

the Incan system lies in the fact that .the units position is

identifiable from the other positions by the type of knot used
to represent the units.

Some quipus recorded multiples of one or two specific
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numbers and have repeated them, indicating an emphasis of some
sort. For example, one such quipu is dominated by the numbers
thirteen and twenty-six; all but three cords record either
thirteen or its double. Another quipu is possibly related to
some sort of calendrical system. Its emphasis of the number
nineteen and its multiples may have associated this quipu with

the alignment of cycles based on the sun. Seven pendant cords
at the end of the quipu aisplay a combination of nineteen
knots, suggests a possible Incan nineteen-year calendrical
cycle made up of seven parts.

Another feature of the Incan knot-system which extended
its versatility was the use of colored cords. The different
colors represented each cord's association with other cords

[Closs (1986), p. 267].
-,‘}--

S

".,.. the quipumaker alone had to recognize and
recall color differences and use them to his
advantage. His color vocabulary.wés large;

it was not simply red, green, white and so

on, but various reds, greens and whites.

... his task was to choose, combine, and

arrange colors in varied patterns to express

the relationships in whatever it was that he

was recording." [Aschet and Ascher, p. 61]

Each different color attached a specific meaning to the cord.

{

fEY
N—

CIREF DAY

N Y )

YL S E+1) “@éﬁ

LR R8I




60

For example, the color black represented time; a black knotted
cord recorded a date. A red knotted cord depicted the current
Incan army or king; knots on a green cord denoted the number
of Incan enemies. Yellow cords represented gold; knots on
these colored cords recorded the amounts of gold in the
‘province. Similarly, white knotted ropes displayed the
quantities of silver. [Flornoy, pp. 115-117] Other quipu
colors included carmine to représent the Inca themselves;
Erown to portray another tribe; gray, to denote the Incan
. provinces; variegated to represent the government, and blue,
yellow and white to represent rel%gion. [Locke, p. 16]

| One colored quipu was constructed of a thick black rope
_to indicated time; thousands of little knots on this colored
fope indicatedremptiness. A red rope connected to the black

was knotted fbuﬁytimes to denote the fourth year of the Incan

Bun

reign; to this fast knot a brown thread with ten smaller knots
was attached, indicating ten littie provinces established
Auring this year. To each of theée"ten knots a green thread
was attached which contained thousands of newvand very tiny
knots torfeggeggpt the number of enemies killed in battle.
[Flornoy, pp- 115—117j

The Incan mathematical device employed by citizens in
everyday calculations was not the quipu-knot method, for knot-
ﬁying took much timé and:thus became ibconvenient in daily

operations. Rather, a simple abacus was used consisting of a

counting board and pebbles or maize kernels.
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",..they do draw so many grains from one side,
and adde so many to another, with a thousand
other inventions."

"These Indians will take their Graines and place
five of one side, three of another, and eight
of another and will change one graine of one
side, and three of another. So as they finish
a certaine account,lyithouﬁ erring in any poynt
and they sooner submitte themselves to reason
by these Quippos, what everyone ought to pay,
then we can do with the penne."

[Locke, pp. 37-38].

Father Jose de Acosta discovered that performing
calculations”oﬁgthe Incan counting board proved more efficient
than tﬁéQmBéZ;;—day use of ink and paper for that purpose.
[Day, p. 32] The Incan abacus was a rectangle divided into
twenty squares each containing a number of‘smgll circles and

dots: a counting board on which computations and results were

figured. The small circles in each square were empty

holes to be filled .with pebbles or grains of maize as
calculations were performed. Pebbles and grains were easily
placed and moved on the.. counting board to complete
calculations quickly.

The rectangular abacus was constructed as a grid with

horizontal rows and vertical columns. The vertical columns

sazisges
fem o

e




62

represented the quipu decimal notation in which each column

corresponded to an individual quipu cord. The squares of each

column represented clusters of each quipu cord, beginning with

the units position on the bottom, continuing to the highest

power of ten at the top. The horizontal coordinates

represented multiples of each power of ten. Pebbles placed on

the bottom row represented units occurring in the number;

those placed on the fifth level represented ten thousands.

The number of holes in each of the twenty squares varied:

each square of the first column contained five holes, those of

the second column contained three holes, squares in the third

column contained two holes, and those of the last column on

the right each contained only one hole. [Day, pp. 13, 31-37]
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[Day, pp. 35-36]

Addition on these counting boards was done by placing the

counters on the designated holes in each square. Each square

was only allowed a designated number of pebbles;

when one
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square was filled, the next square to the right would be used.
The first number in each addition was transmitted from the
quipu onto the counting board. To represent the number
“thirty-two, for example, the third square in the bottom-most
' row would be filled with two pebbles to denote two units.
Three pebbles were placed in the second square  -in the second
;row to record ﬁhirty. To add twenty-four to thirty-two, the
four units wefe added to th; two units already represented by
the first row by filling two more holes. The six pebbles were
shifted into the five holes of the left-most square and the
single hole of the right-most sqﬁére in the first row. To
combine the twenty units with the thirty units within the
second row, the five positions in the left-most square would
be filled torréggesent fifty. Thus the result of fifty-six

was repfééeﬁﬁéégas six pebbles in the first row denoting six

units and five pebbles in the second row denoting the five

tens: d ' © . ¢
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No héstories consulted recorded any evidence of either knot-
method or abacus subtraction.

Incan multiplication was more complicated than their
addition process. Two quipu cords representing the two
numbers to be multiplied were placed vertically next to the
counting board so that the units positions of the cords and
the counting board were both located on the bottom. 1In this
manner it was not difficult to compare the abacus and the
- numbers in the quipu.

To multiply two numbers together, the larger number was

multiplied by the highest power "of ten occurring in the

smaller number. For example, when multiplying 24 and 456, 456
would be multiplied by ten and this product would be recorded
on the abacus. It can be assumed that the product of any
number and anngﬁger of ten was éasily calculated and could be

A

recorded without récording intermediate calculations. After

the initial intermediate product was recorded, this number was b
added to itself as many times as the highest power of ten

occurred in the smaller number. Therefore, in the previous

) 4560 would be added to itself only once,

” example,‘456*x’§5

because the highest power of ten occurred only twice in the
smaller number. The same process was then done with the
larger number and»;he secoﬁd highest power of ten of the
smaller number. In the prévious example, the product of 456
and one would be added to itself three times. This process

was continued until all powers of ten of the smaller number
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had been exhausted. The intermediate products were added to

get the final product. [Day, p. 38]
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correspondence between the knotted segments of the quipus
d the digit positions on the counting boards helped minimize .

errors when using this method. [Day, p. 38]“
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DEVELOPMENT OF FRACTIONS

The Incan quipus supply no evidence of an Incan
fractional system. What does exist, however, are records of
even division into parts and the use of common ratios. As in
the summation quipus, no calculation methods have actually
been discovered, but some quipus  do portray division into
gmrts. One dquipu recorded“a total value of two hundred,
Eonsisting of two groups each of which represent one-half of
two hundred. One 6f the two pendant groups itself contains
two groups each representing fifty, half of one hundred. The
other pendant group is divided into six equal cords
representing the value of one hundred divided into six roughly
even parts: 46£¥6,17,17,17,17. Another includes summation
cords coﬁféintﬁé mﬁltiples of eight and pendant cords each

recording a value of one-eighth of the sum.
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GEOMETRICAL DEVELOPMENT

Geométrical applications in the Incan 1lifestyle were
found within their architecture, as well as on their pottery.
Temples were constructed of rectangular one room units placed
around a rectangularly-enclosed courtyard. A trapezoidal
opening within the walls supplied a passageway. Stones used
in construction were cut ‘into rectangular blocks such that
each fit snugly with the block surrounding it. Incan pottery
was decorated by geometrical repetitions and symmetric
designs, using rotation and reflection, double reflection, and
vertical reflection. Mirrored reflections were also present
in Incan pottery decorations, storehouses, designs on fabric
and temple Yalls [Ascher and Ascher, pp. 50-7]
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INCAN CALENDRICAL SYSTEMS

Althdugh little is known of Incan calendric systems, an

Incan calendar consisting of twelve months was discovered,
thought to have been based on the observations of the sun and
moon. The Inca may have added one or two days to certain
months in order to catch up with the solar year. An Incan
textile calendar was found censisting of ten rows and thirty-
six circles each, possibly representing a 360-day year.

[Aveni, pp. 219-226]
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MATHEMATICAL APPLICATIONS IN DAILY LIFE

The Ihca developed an accurate knowledge of the movements
of the sun, moon and a number of the planets. Sophisticated
astronomical pbservations were performed in order to fix dates
for agricultural and ritualistic purposes. Astrologers
secured the dates for sowing and harvesting the crops and for
celebrating the festivals of the sun. One quipu was
discovered to record accurate calculations of the orbital
periods of Mercury, Venus, Jupiter and the moon. This may
suggest that the Incan astronomers were able to predict the
date of lunar eclipses, similar to the accomplishment of the
Mayan astronomers. [Day, pp. 19-31]

The quj:pus also recordéd counts of the lower ranking
citizens-of eﬂggg ’av‘illage and province. The first cord showed
a census of me; over sixty years of age; the second recorded
thése between fifty and sixty years of age; the next cord
represented the next lower age bracket, unt‘il' "“every baby was
counted. Different sized and different colored cords
represented '~"sp2§;é“’j:fic traits in the citizens, such as being
married or .s’ingle. Resources 'éﬁch as crops, agricultural
produce, herds of animals, stores of wool and cotton, weapons
and military supplies were also recorded on the quipus. Some
quipus also "recorde‘d" laws, rites, treaties, speeches and

history of the Inca by a specific placement of colored knots.

Quipus were also used in a type of messenger service. Trained
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runners were stationed in pairs at interval of about one mile
along their highways, running at top speed and handing their
quipus on, as in a relay. In this way, they could transmit a
message two or three hundred miles in twenty-four hours. [Day,
pp. 38-40]

By combining the various knot-tying methods and the
specific patterns of colored cords, the Incas were able to
record numerical accounts and records, as well as songs, peace
negotiations, calendars and Incan histories. The Incan Empire
wanted to be known as the "culture bearers"; the history they
recorded ignored all undesirable-information of their past,
and thus passed on only positive information about the former
Incan cultures. [Day, pp. 29, 39:; Von Hagen, p. 564] It is
therefore nq)wonder that the quipu knot system became so
importaq;:tpagﬁgulncan people: the counting device not only
kept all accoé;tsnand records for each province, but also

carried the Inca name into the years ahead.
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MATHEMATICAL APPLICATIONS IN CEREMONIAL LIFE

The knotted quipus often played an important part of the
Incan cultural ceremonies and their superstitious lifestyle.
~ Women were known to knot the number of their lovers on strings
and throw them into the fire during their husbands' absence;
this practice supposedly purified the women. Quipus buried in
graves contained no information about the living: this was
believed to give the dead power over those still alive. These
grave-quipus were thought to contain magical numbers.
Nordenskioeld showed that the a number of the grave-quipus
were calendars indicating days and like the Mayan codices were
"nothing but books of divination and prophecy" [Day, pp. 9,
19]. »

Quiguss§up§gZédly were used as a magical device to create
and manipulateié variety of spells. "The act of tying a
knof", says Dilling, "implies something 'bound' and hence the
action becomes a spell towards hindefinq the aétions of other
persons and things." [Day, pp. 42-43] In the same manner,
loosening a Knot removed the spel; caused by the knot. The
knots tied wi%h a magic spell were.sometimes blown or spit on;
this was done to increase the power of the spell. These Magic
Knots were thought ?o:have pé&er over weather, disease and
death, sex, and spiriﬁs; the Inca believed that by chanting,
tying and untying a knot, sicknesses could be healed. Some

colored quipus were used as amulets: white cords indicated
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health; black cords portrayed disease and death; red
represented the blood of 1life. Cords made out of wool

supposedly possessed great magic power. [Day, pp. 42-68]
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. COMPARISON OF MAYAN AND INCAN MATHEMATICAL SYSTEMS

In this section, the development of Mayan and Incan
mathematics is compared using the subjective numerical scale
mentioned in the introduction, taking into account each of the
significant topics discussed concerning these systems.

The Mayan vigesimal numbering system was Dboth
uncomplicated and efficie&é to use; only two symbols were
needed to record all numbers employed by the Mayas. Both the
abacus and the bar and dot method enabled the Mayan Indians to
record and compute large numbers: the bar and dot system was
observed to record numbers as large as 1,872,000, and in
theory could record those of any size. The abacus was known
to compute eaégzy up to one .billion. The head-variant
numeralégﬁerewiiso’established as an efficient although not as
commonly-used nume?ical recording system. The calendrical
method was developed into a aetailed syStem for the
computations for dates and elapsedﬂberiods”of time. Using
this method, theJ Mayan priests were able to record and
calculatekti§;4zz;any extent needed. For the constructions of
the efficient bar and dot system, the ease of the calendrical
conversion and effective appl?qations of the abacus, the Maya
receive one and three-fourth points, deducting only for the

complication of deciphering large numbers.

The Inca developed a decimal system, the efficiency of

which was perhaps hindered by the complexity of the quipus.
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Deciphering the knotted quipus was not a practical nor time-
efficient . method of recording numbers; an interpreter was
needed to translate each quipu. Another factor complicating
the Incan method was the coloring of certain quipu cords;
it was necessary to decipher each knot's position and color to
extract the message. Recording large numbers required no
extra work, although, again, the numbers were difficult to
interpret. The Incan Inéians receive one point for the
versatility of their quipu knot-tying method; the score was
reduced for the complications involved in the deciphering of
the knotted cords.

The Mayan method facilitated by all four mathematical
operations, although most calculations represented
chronological counts. Addition was accomplishable by hand and
by usianthewﬁgi;n abacus. Two simple rules were used to
easily complete thé addition and subtraction process in the
bar and dot system. Multiplication was also an efficient,
simple process if three simple r;iés were followed. A

conversion factor was used for every <chronological

< T,

computatiSni&ltﬁé vigesimal and calendrical systems differed
by two units in the second level, and it was necessary to
compensate for this. This conversion became somewhat

complicated when using large chronological dates. Only one

consulted source discovered the existence of a Mayan division

process and although it was not frequently used, division was

shown to be of the same efficiency as multiplication. The
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total score awarded to the Mayan mathematical dévelopment is
one and three-fourth points, the deduction being due to the
vagueness of the division process. The Incan people were able
to record statistical accounts as well as their histories on
the quipus. Both the quipu and their abacus were employed in
the addition process. The quipu addition method was simple
and efficient, using a spmmatibn cord to tally results.
Addition on the abacus by shifting pebbles into its holes was
discovered to be more efficient than using ink and paper,
although the lengthy multiplication calculations performed on
the counting board became tedidﬁé and inefficient. Both
subtraction and division were mentioned in Incan research:;
however, both processes have been interpreted from the quipus,
supplying no éggcrete evidence of Incan knowledge. This
culturexféééTV§; a total of one point for the ease of their
addition process on both the quipu and abacus and the
existence of the multiplication metpod upon the abacus.

The Maya receive the maximum of oné ipoint for the
understanding gf. the concept of 2zero, as well as the
developméhti;fjits distinct symbols and efficient placement
within the Mayan numerical system. - The Inca receive three-
fourth of a point for an invention of a zero symbol. The
placement of the Incan sympol as a blank space in a cord was
theoretically ambiguous, and in somehcésés became difficult to

interpret.

The Maya did not incorporate fractions into their
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numerical system, although one symbol representing one-half of
a period was discovered as a part of the hieroglyphic system.
Other evidence of Mayan knowledge of a fractional system has
not been discovered. The Mayan numerical system receives zero
points for the almost nonexistent fractional system. Evidence
of an Incan fractional system was not apparent in the use of
quipus; they receive a score of zero points for this.
Geometry was not a‘isignificant aspect of the Mayan
civilization. Some of the architecture does reflect some
knowledge and undérstanding of the four worldly directions, as
well as the construction of both right and isosceles
triangles. The score for the geometrical knowledge of the

Mayas is one-half point. Incan knowledge of geometry was

limited to their architecture and pottery; the Incan culture

The Maya developed a highly effective method of recording
dates and counting elapsed amounts of time. ;The calendrical
system was at the core of Mayan society; it determined the

timing of farming, religious and ceremonial events. The 360-

SR i,

day cyclé :gés-:develbped as an. effective calendar system
analogous to the modern-day calehdar. The Maya were also one
of the first cultures to develop a starting point in their
calendar, which is similar to the zero year in the Christian
calendar. A score of two points ishaﬁafded to the effective

and intricate Mayan calendrical system and its use within the

society.
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.The Inca developed a twelve-month year similar to the one
used today, but little is known of the efficiency of date-
keeping. It has been discovered, however, that one or two
~days were added to the year to correlate to the Incan year
with the solar year. The Incan calendrical system receives
one point.

The Mayan mathematica{. system was used mostly by the
elite priests who were the only citizens to perform the day
counts and other chronological calculations. The extent of
the lower-ranking citizens' use of the numerical system
involved only the employment ofﬂ »the 260-day cycle which
k‘ determined the days of Mayan harvest. For the centralized use
jof the mathematical system, the Maya receive one and one-half

point. The Incg}yere able to incorporate their mathematical

system iﬁto'"iﬂ‘é}é'r lives with ease. Although only a very small
'percentage of the population was able to "read" the quipus,
the records they kept were still of value \"’_to the entire
( community of each Incan pi‘ovince. Many of the “(daily accounts

. were recorded on the knot-string devices; the quipus were thus

_ - Rk,

employed By ;a: nﬁmber of trade merchants. For the ease and
wide range of the system's use, the Inca receive two points.

Ceremonial applications of Mayan mathematics included
calendrical computations u:s\edrto record ‘or predict religious
or ceremonial events. For this applicétion, the Mayan system
' is awarded one and one-halfrpoint for the incorporation of the.

7“mathematical system. The Incan ceremonial application of
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their mathematical system included their 'magical knots' and
the magic spells. The Incan astrologers were able to record
the event of any néw agricultural seasons which often
developed into ritualistic festivals. The four most important
Incan ceremonies followed the two solstices and equinoxes.
These dates were apparently observed by the astrologers. The
Incan use of mathematics within the ceremonial lifestyle was

awarded one and one-half point.

The total score received by the Mayan culture is
ten points.
The total score received by the Incan culture is

seven and three-fourths points.

-}.,
o el . .}, . R
In this “adthor's opinion, the Maya were the more

mathematically adept of the two cultures.
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. The study of Native North American mathematics is quite
brief. Unfortunately, little research has been done in this
direction compared to the developed studies of the
mathematical systems of Mesoamerica and South American
Indians. However, including a discussion of the North
American Indians at this point expands the comparison of
Indian cultures by supplying an enlarged outlook on the
mathematical achievements o% Indian civilizations.

The Dakota Indians were able to develop an effective
numbering system.k The Dakota, as well as the Algonguian and
Iroquoian Indians, used a decimal numbering systemn. The
Dakota could count past one million with their system, as
could the Aztec, Maya and Inca. The Dakota's numerical system
was developed é;gpnd the positive integers used within the
additidﬁggnd”ﬁﬁ}tiplication operations. [Closs (1977), pp.
13-15] Both thé Dakota and the Ojibwa Indians carved single
strokes on grave posts to record nqmbers; -in some cases
different types of strokes were used to aeﬁote different
objects being cgpnted. [Closs (1977), pp. 13-15]

The ind;;’gzibe of Alaska developed a well-structured
numbering system able to count above one hundred and that had
the capability of being extended. The system was developed
around groups of twenty, similar to the Mayan system, and was
based on man's twenty fingers and toeé,'aé opposed to the more
:common decimal systems that were based on the fingers only.

[Closs (1977), pp. 15-16]. The Inuits divided the body into




81
four groups: the upper and lower digits and the left and
right digits. The word for the number five was related to
"arm"; "ten" was related to "top" and referred to the upper
ten digits on the hands. The word for twenty was related to
"limbs" and referred to counting on all four appendages of the
body. The numbers six through ten were related to the right
hand; eleven through fifteen were based on the left foot and
sixteen through twenty on-;he right foot. [Closs, pp. 135-
139] One person would equal the number twenty, five people
would constitute' one hundred, equivalent to one bundle.
[Closs (1977), pp. 58-60] o

The Inuit society had no great use for large numbers, and
thus the system was developed for numbers less than one
hundred, With'the capability of expansion where necessary.
Most scﬁabb~bczé ;ésily counted fo one hundred and above; some
men could count uﬁ»to four hundred‘ [Closs (1977), p. 62]
The Inuit people, however, developed a negative attitude
towards large numbers. There existéwaﬁ oldxcbﬁper Eskimo tale
of two Indian hunters who starved to death while arguing whose

F ==

animal had the most hairs; this represents their belief in the
nonexistent need for such great quantities. [Closs (1986),
pp. 15-16]

The Ojibwa Indians also developed an effective numbering
system containing few regtrictioﬁ§, which enabled them to
count into the millions. Their own language includes a word

for one billion. ([Closs (1986), pp. 13-14] The language also
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2

includes words used as multipliers indicating the number of

times a process is to be completed. Distributive numbers also
existed to express the number of things given to each of a
group of people. The numbering system combines base five and

base ten, constructing numbers from groups of five and ten:

6: 1 + 5 100f“ 1 x 100 1000: 10 x 100

7: 2 + 5 200: 2 x 100 2000: 2 x 1000
8: 3 + 5 300: 3 x 100

400: 4 x 100
500: 5 x 100 1000000: 1000 x 1000

11

=
o
+
[

12

o
N
3]

The Coahuiltecan, a Texan tribe, developed a numbering

system which was also constructed with multiplicative and

| additive principles:.. : .
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3: 2 +1
6: (2 +1) x 2 30: 20 + 10
7: 4 + 2 + 1 40: 20 x 2
8: 4 x 2 50: 40 + 10
9: 4 + 5
10: 5 x 2

11: 10 + 1

13: 12 + 1

14: 12 + 2

l16: 15 + 1

’fhe overall ability of all Northern Ame;'ican Indian
umbering systems to be used in calculations Qé"s very 1low.
The addition, subtraction and multiplication operations could
be done only with 'Eiffe aid of fingers, pebbles, sticks, kernels
of maize or otfuér available countefs. The Native Americans
had little need of mathematical operations, and developed no
idea of mental arithmetJic.; [éioss (1977), p. 16] The

raditional method used for the few needed calculations was

e method of placing counters on a counting board similar to
By

imitive abacus. The counting board is considered to be a

i
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"technological improvement" which grouped pebbles into
identicalnpiles representing identical values. A surface
divided into strips or columns which represented the place
values in a given numbering system was used to group together
all those items of each numerical wvalue.
Although most calculations were done upon the counting
- board, a few other computing and-counting methods were used.
In some cases, hand signs ;ere used to count; each number was
represented by a unique sign, based on twenty fingers and
toes. [Closs (1977), p. 1l1] Some societies used beans and
sticks as counters: the Nevada Paiute would use ten tally
sticks inserted into the ground to represent ten fingers and
indicated numbers on them with a movable counter. The

California Yokuts used the same process with twenty-five

sticks in aﬂrﬁg. V[Closs (1977), p. 13] Another group would
count the numbersrby moving a stick along a circle of forty
stones that had larger openings between every ten stones.
Notches o |

cut into sticks were commonly used to record numbers in the
Western ﬁni?éé?gtates, where sometimes the tenth notch was
marked diffefently. [Closs (1977), pp. 13-15]

k The use of fractions was found in some Indian cultures.
The words for simpler-fractions were common, but recorded only
rarely; the only fractions found reéBrdea were unit fractions.

The best system was developed by the Iroquoian Tribe of the

Onondaga Indians, containing:




1/2.

1/3: "three divided"

1/4: "four times divided"

The Algonquian Fox tribe also developed a fractional system:

1/2: "one half"
2/2: "two halves"

1/4: "one fourth"

[Closs (1977), p. 4]

R ‘ f -
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Development of geometry and its use by the Native North
American Indian societies was slightaﬁrtsimpiy not well-known.
Evidence of their knowledge exists within the architecture of
the Omahd; %ﬁéﬁﬁse of the circle has been found in their
construction éf buildings. The Chavante of Brazil also used
the circle in their architecture. [Closs (1977), pp. 21-22]

Mathematical applications in -the- daily 1life of the
Northern American Indians éeems to‘haVe'been limited to the

distribution of food and supplies and counting games. These

number games included games involving categorizing groups of
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sticks into certain numerical divisions (by the Fox Indians),
choosing certain combinations of bone and brass that denote a
specified score depending on their colors (by the Ojibway),
and dice games that were played by many North American
Indians. [Closs (1977), pp. 9-10]

The mathematics of the Native Americans 1is often
overlooked as a contribution to modern mathematical
development. These culturés, however, established not only a
number of adequate numerical systems, but also original
methods of calculations. Because evidence of development of
geometry, calendrical systems and the incorporation of
mathematics into the daily activities is vague or nonexistent,
the scores of the North American Indians when compared to the
Maya and the Inca are relatively 1low, and thus are not
includéd%in4th;f;ompetition. This author, however, found it
necessary to state”the accomplishments of these people and to
consider them as contributors to the general development of
mathematics. - |

To the largest extent, this section of the Native

R e

American research was developed from the A Survey of

.

Mathematical Development in the New World and Native American

Mathematics, both by Michael Closs.
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The Egyptian civilization established itself as one of

the earliest literate societies of the ancient Near East over
five thouéand years ago in the Nile Valley of central Egypt.
During the first four thousand years of Egyptian history, the
swamps along the Nile valley were cleared and settled by
people from Africa and possibly Asia, intermingling to form
the ancient Egyptian culture. After developing a number of
small and sparse kingdoms and centers of civilization, the
Egyptian people divided themselves into Upper and Lower Egypt.
Upper Egypt was located within the Nile valley including the
area leading down to the Delta, and was influenced by western
Asia and Libya; Lower Egypt was located in the Delta itself
and was influenced by the inhabitants of Africa. Lower Egypt
developed rapidly and it was this society which invented the
firstrdecumenthQCalehdar of 365 days in the earliest fixed
dated in hist:;ry of 4241 B.C. [Breasted, p. 15] The two
cultures were united by the Pharaoh Menes in 3100 B.C.,
beginning the first dynasty of Engt‘and a ﬁeriod of great
cultural growth.J After a period of Egyptian prosperity and
independénce, %anpt was conquered in 526 B.C., when the

civilization was overpowered first by the Persians and later

by the Greeks and Romans.




89

EGYPTIAN NUMERICAL SYSTEMS

The ancient Egyptian civilization developed for integers a

decimal system which did not include a decimal place holder.
Two numerical systems were constructed; one was represented in
hieroglyphic writing, another used the cursive script of the
hieratic system. The numerical symbols of both systems were
‘most frequently written fr; right to left, but were also
discovered written in a vertical pattern read from top to
bottom. [Gillings; p. 1]. The decimal system, employed more
frequently than the hieratic system;mwas constructed similarly
‘to the modern-day numerical system; however, only each power
of ten was represented by an Egyptian symbol, whereas today's
Arabic system~ihg%gdes a symbol for each multiple of ten. The
7

_Egyptian fumérical symbols were:
| 1 2 10,000
N 10 - LR 100,000

9 100 \éi 1,000,000

[Chace, p. 3; Freebury, p. 21; Heath, p. 64; Van der Waerden,

pp. 5, 17] Each Egyptian numeral was constructed only from
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powers of ten; numbers were written using the hieroglyphic
symbols which corresponded to the powers df ten occurring in
each number; The numbers one through nine were written as the
corresponding number of vertical slashes, which was the
Egyptian unit symbol. m 1

b

3+

8
9

It was not required to separate the group of symbols of each
~ power, because each power of ten was represented by a unique
hieroglyph. The numeral forty-one, for example, was
constructed of one ten to the power zero and four tens of the

,__;., .
N £ .
first poweramd was thus portrayed by one unit symbol and four

ten-symbols:

an
an

A

Evidence réfj;%gfptian addition and subtraction methods is
~vague; these simple operations were done by some method and
only the solutions were transferred to the papyri.

Both addition and‘subﬁpaction c;lculhtions were indicated
by special hieroglyphs represenéihg' the addition and

subtraction process:

ol
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(Gillings, p. 6] It seems probable that the use of additibn
and subtraction tables was central in Egyptian computations,
yet no evidence of these exists. [Gillings, p. 10] Evidence
of the addition process occurred throughout Egyptian
hieroglyphics. [Van der Waerden. p. 30] Only one rule was
crucial: ten symbols of one order were written as one symbol
of the next higher ordef. The process was completed by
combining the symbols of each power of ten and converting each
group of ten to a symbol of the next higher power.
Calculating the sum of the numbers seventy-nine and twenty-two
would be completed by first combihing all symbols representing
the units; combining nine and two would result in one unit
symbol one symbol representing one ten. This ten was then

combined wiEh‘fdl other symbols representing tens, resulting

S

in ten ;ymbols:ofnten; these were converted into one symbol
for one hundred. The final sum was writteh as one symbol
denoting one hundred and one unit. symbol‘to represent the
result of one hundred and one. [Gillings; p. 1; Van der

Waerden, p. 18). ~ Here are some examples of Egyptian addition

. . . oW onn 24
using the hieroglyphic system: 1y o 53
n
A ¥
~ I'I|Il| f}\ﬂ 3 7
oA 46
411 fon 83
ImlI I?\nnn 9?} 259
MR e 376
W 8959 535

[Van der Waerden, p. 12]

P ———————
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.The subtraction process was closely related to the
addition method. TIf a number contained a greater amount of
symbols in a specific order than the number from which it was
subtracted, one symbol was borrowed from a higher order,
similar to the Mayan process. One symbol from a higher order
would be conveyed into ten unité of the next lower order.
The Egyptian multiplication method became complicated, as
it was constructed of two o;‘ more processes. Van der Waerden
described the Egyptian multiplication process as a written
operation with slow development. [Van der Waerden, pp. 18,30]
only two actual multiplicative subcomputations were used by
Egyptian mathematicians to effect all multiplication:
multiplying a number by two or by ten. A product was found by
successively-dbt‘;bling the multiplicand and recording these
results ,"Z"ii\u*}:t‘ipj.eé of ten would also be included where they
aided the multiplir.‘.;étion process.
For example, the product of thirteen and seven was

computed by first designating one of the two numbers as the

multiplicand or base number. Using thirteen as the base

R

number, the first multiple was recorded as 1 13. Thirteen
would then be doubled and the result recorded as 2 26, the
two denoting the second multiple of thirteen; twenty-six

represented the result of the second multiple. The second

nultiple was once again doubled and recorded as 4 52. This

process was continued until the number in the left column

exceeded the original multiplier; in the previous case, the




process would cease at the fourth multiple;

again would result in the eighth multiple,

number seven.

93

£

doubling this
surpassing the

Multiples from the left column were selected so

that their sum produced the multiplier; the numbers chosen

were labeled by the symbol " / %,

in the final solution

multiples resulted
multiplication.
13 x 7
/1 13
/ 2 26
/ 4 52
Total: =~ =7 . 91

[Chase, p. 3; Gillings, p. 15]

Another example of the Egyptian multiplication

portrays the‘multiplication of twelve and twelve:

e,

12

12

12. ¢

12

12

1l x
2 X
/ 4 x
/ 8 X
Total: 12

The sum of these marked

to the

process
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_Division computations were completed by denoting the
divisor as the base number and recording its multiples and if
necessary, powers of ten, as in the multiplication process.
The following example of dividing 1120 by 80 was found in the
Rhind papyrus, and translated as literally "add beginning with

80 until 1120 is produced":

1 80

/ 10 800

2 160

/ 4 320

sum of "/" 14 1120

The reéﬁTt“of?diViding 1120 by eighty was the sum of the
marked multiples.‘v We would write this process as "1120
divided by eighty equals fourteen". [Van der Waerden, p. 22]

A symbol for zero had not been“yet devéléped during the

time of the ancient Egyptians, and therefore could not be

p AR

recorded‘“bii_théir scribes or clerks. In the Egyptian
mathematical\papyri, a blank space on the paper did sometimes
indicate a zero. In a sense, then, the Egyptians were able to
understand and incorporate the concept -of a zero value into

their calculations.
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DEVELOPMENT OF FRACTIONS

The Egyptians became obsessed with developing tables of
fractions, and although they employed only the natural
fractions occurring in their daily activities, some of these
fractional calculations were so obscure that it retarded the
process of Egyptian mathematical development. The Egyptian
mathematicians developed simple decompositions of fractions,
a process which Hogben stated as taking "... extraordinary
pains to split ﬁp fractions like 2/43 into a sum of unit
fractions... A procedure as useless as it was ambiguous."
[Gillings, pp. 48, 71] The profound interest of accurate
calculations with fractions originated from practical problems
such as the»diy%gion of food or supplies among families or
troops{iﬁé‘wifg the Mayan computations, none of the Egyptian
calculations invol&ed currency or money. [Gillings, p. 105]
The Rhind papyrus included tables in which- fractions were
reduced into only the unit fracﬁions aﬁd"those with a

numerator of two.. One of these tables dating back to 400 A.D.

e B,

containslwtgg numbers one through ten and each number's
multiples of ten, one hundred and one thousand broken up into
unit fractional parts up to @gnths. Important fractions were
given their own name and then broken down into unit fractions;

Egyptian fractions were always written as the sum of integers

and unit fractions. Unit fractions were represented by an
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open_ oval written above the number whose reciprocal the
fraction represented. The oval was also the hieroglyphical

symbol for and open mouth. One-twelfth, for exanmple, was

written as: (::::}

e

The calculations involving fractibns caused the Egyptians much
work and anxiety. [Freebury, pp. 22-23]

Only one specific fraction with a numerator other than
one was found in any of the Egyptian papyri: the fraction
two-thirds. Instead of béing sééérated into unit fractions,
this fraction was given its own hieroglyph:

@ '

P
——- £

PO

The namegéiven;to two-thirds was "the two parts" and the name
for one-third was "the third part". The Egyptians considered
only two parts of a unit divided into n pieces: the first part
of n-1 pieces and the remaining part. For example, a unit
broken into five pieces would be considered to have "the two
parts" consisting of four-fifths and one-fifth of the original
unit. A fraction such as two-fifths was not directly
representable. [Van der Waerden, pp. 19-22]

Evidence of émﬁloying ,fractions: within mathematical
operations was found in the Rhind Papyrus. One table displays

the duplication of fractions; another portrays a method of
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duplicating the unit fractions 1/n by dividing two by n. Also
found was a large table of calculations displaying a division
process performed with fractions. Tables computing the
products of fractions were included in the Rhind papyrus,
although Chace stated that fractions were only multiplied by

2/3, 1/2 or 1/10. [Chace, p. 4] By using the multiplicative

doubling process and recgrding“ the multiples of simple
fractions, the Egyptians were able to complete fractional
multiplications. These lengthy computations were stated to
have been an everyday process of the Egyptian scribes of that
time. [Gillings, p. 40]

The Recto Table, the most extensive arithmetical Table i
found in Egyptian papyri, contained a table of the odd numbers 4
one through bné}pgndred and one, all divided by two. The &
answer Eg‘éééﬁjdiv}sion was recorded first and then proven ?
correct by the multiplication of the fractions involved in
each answer. The Rhind papyrus alSo_displaySfone calculation

recording a fraction of 8 + 2/3 + 1/10 + 1/2190 ro (a unit

of measure); fractional computation methods similar to these

were usedwby,thewGreeks 2,200 years later. [Gillings, pp. 45-
48]
The use of fractions in division was also noted in the
papyri. To find one;thira‘of a nq@ber,’the Egyptians first
found two-thirds of it and then halved éhis product.

[Gillings, pp. 2, 22]
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.Other operations with fractions included the division
process using a remainder. The Egyptians completed the
division of nineteen by eight by using eight as the base

number to produce nineteen. The base number was doubled as in

the multiplication method, but was also halved to result in

"the correct solution.

19 : 8

multiplication [ 1 8
portion

L / 2 16

~ 2 4 one-half of eight = 4
halving _
portion ' / 4 2 one-fourth of eight = 2

i / 8 1 one-eighth of eight = 1
Result: .- }FQ' 2 4 8

S R

EN

from multiplication from halving

The division of nineteen by eight wéé.computed by combining

the second multiple of eight, one-fourth of eight and one-
eighth of éiqﬁt;?fesulting in nineteen.

[Van der Waerdén, p. 23]
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. GEOMETRICAL DEVELOPMENT

Herodotus once stated that geometry originated during the
annual flooding of the Nile; after every seasonal flood, the
Egyptian surveyors redefined the boundaries of the land that
had not been destroyed. [Johnston, p. 81] The Egyptians
developed a geometry which was analogous to an applied
arithmetic, consisting not of calculations of quantities of
beer and bread but of areas and volumes. The Egyptian
mathematicians computed the areas of rectangles and squares by
multiplying their length times thé"breadth. As early as 2000
B.C., the Egyptians were able to calculate the area of a
triangle by halving the base "in order to make the triangle
square" and thégwmultiplied the halved base by the height of
the triéiéIéTWZEVaq der Waerden, p. 32] The area of a circle
was recorded on the Rhind papyrus by using the square of
eight-ninths of the diameter, “resultinq in a close
approximation of pi: '3.1605. Gillings ‘séates that the

Egyptians recorded the circumference of a semi-circle as the

e e

product éf Qpe-half, pi, and the diameter, using 256/81 as
their approximation for pi. A formula for the surface area of
a hemisphere was also discovered by the Egyptians this early:
the product of two, pi aﬁ@ the square of the radius of the
sphere, which was unknown to the Greeks dntil Archimedes' time

of 250 B.C. The formula for finding the volume of a cylinder
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was also developed by these early mathematicians: the area 6f
the circu;ar base was recorded first and then multiplied by
the height of the cylinder, the same process used today. The
slope of the sides of a pyramid, as well as its volume were
also computed by Egyptian mathematicians. The Egyptian
geometrical development also included calculations of the
frustum of a square pyramid and also the cubical content of a
hemisphere, a wvalue whichwwas not rediscovered until over
3,000 years later. [Freebury, pp. 23-25; Gillings, pp. 137,

146, 185, 197 ; Johnston, p. 66; Van der Waerden, pp. 31-33]
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EGYPTIAN CALENDRICAL SYSTEMS

The Egyptians developed two types of calendrical systems
to regulate both their daily 1lifestyle and agricultural
cycles. Egyptian astronomers found a correlation between the
annual flooding of the Nile and certain celestial movements,
and thus based their primary calendar upon the moon and the
star Sirius, with a year ;orresponding closely to the true
solar year, being only twelve minutes shorter. This combined
lunar and sidereal calendar was designed to regulate religious
ceremonies and everyday activities. Each day was assigned a
specific name, some of which were derived from the various
phases of the moon's cycle.

The Egyptlans also developed a civil vyear of twelve
months of fhfity days, five "year-end" or epagomenal days were
added to the end of the year to complete a year of three
hundred and sixty-five days. These five extra days were
dedicated to the Gods Osiris, Horus, Seth, 1515 and Nephthys.

The twelve months were divided into three seasons of four

R

months each named in accordance with the planting cycle: the
sowing period, the "coming forth" or growing period and the
summer or harvest period, The twelve months were not labeled
by names but were numbered with respect to the season in which
they existed; the days other thanmthe‘epagomenal days were

labeled by numbers within their months. The years themselves
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were counted from the beginning of a King's reign, starting
new with each King. [Breasted, p. 46] A date was listed by
the name of the presently-reigning King, the year of his
reign, the season in which the date fell, the number of the
month, and the specific day of the month, respectively. This
system, using both civil calendar and the agricultural
seasons, was later adopted by the Greek and Roman
civilizations. )

Egyptian astronomers named the fixed constellations and
divided those along the Zodiac into thirty-six "decans", for
use as a star clock to calculate the time at night. A day was
divided into twelve night hours and twelve day hours, a
division still employed today. Compensating for the variation
of the ratio~ogﬁphese two divisions between the summer and
winter §§556ﬁ§z§the Egyptians altered the length of the hours
and constructed devices such as the sundial and water clocks
designating the varying lengths of hours durlng the seasons of
the year. A standard 1ength of the hour was never developed

in ancient Egypt.e

=S

Both the c1v1l and lunar/51dereal calendars were already
in existence during the time of the first Pharaoh of Upper and
Lower Egypt and were noted as "the most scientific
organization of calendars which had 'yet been used by man", by
J.W. S. Sewell. [Gillings, p. 235]‘% 6t£o Neugebauer labeled

the Egyptian calendrical system as forming the "only
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4
intelligent calendar". [Chace, p. 43; Gillings, pp. 235-

236; Moffat, pp. 66-67]
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MATHEMATICAL APPLICATIONS IN DAILY LIFE

The Egyptian daily 1lifestyle wused much of their
mathematical knowledge. The Rhind papyrus displays
distributions of wages, calculations of amounts of grain,
conversion of various measures for grain and calculations of
areas and volumes. Uses ef mathematics were also found in
Egyptian architecture. The Egyptian pyramids were built using
precise mathematical measurements and calculations; the
structures had a side-to-height ratio of 11:7, in which the
ratio of one-half the perimeter tebthe height was 3 1/7.
[Freebury, pp. 23-25; Van der Waerden, pp. 16, 29]

The Egyptian mathematical system employed approximation:
if the result cguld not be computed, it was approximated and
later refinea‘;f addltlonal information became available. The
Egyptians were problem-solvers, taking particular cases of
calculations and generalizing from them. [Chace, pp. 38-40]
Although the Egyptian kmathematicians had a vigorously-
developed mathegetlcal knowledge, some researchers believed
that the Egyptian system was not fully developed. Struik
stated that "all available texts point to an Egyptian
mathematics of rather primitive standards". [Gillings, p.

232] Early Egyptian’mathématical eélcuIations focused on the

abstract part of mathematics; the mathematicians were not as

concerned with the intermediate proofs or derivations of
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1l results [Moffat, p.
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MATHEMATICAL APPLICATIONS IN CEREMONIAL LIFE

The Egyptian people incorporated a great number of
ceremonial activities into their 1life. The change of the
seasons was celebrated annually in accordance with their civil
calendar. A new king was honored as was the transformation of
a dead person into the Afterworld. All festivals were
celebrated according to th; Egyptian calendar systems, which
recorded and regulated the various festivals and ceremonies.

An important goal of every Egyptian was to attain the
honor of reaching the Afterworld.vpﬁuch of Egyptian ceremonial
life centered on this transformation. The Egyptian pyramids
were constructed for this ceremonial transformation process.

Without~£5suuse of Egyptian mathematical skills, the
buildih&wof”fﬁ; pyramids would not have been possible. The
tombs were developed from approximately six and one quarter
million tons of stone, each block ayeraging two and one half

tons. The stones were fitted with a tolerance of one-fiftieth

of an inch, a dimension similar to what might be used by a

‘e B,

jeweler. The mérgin of error of the squareness of each side

was very slight, portraying "an almost superhuman fidelity and

devotion to the physical task at hand." [Wilson, pp. 54-55]
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.The Greeks developed their culture within a short timé,
settling first in the southern part of the Balkan Peninsula
and islands in the Aegean Sea and quickly spreading into Asia
Minor, Lower Italy and the African littoral. The peak of the
Greek civilization was reached during the fifth century B.C.,
which saw a quick decline of Greek influence at the time of
the rise of that of Rome. Within these few short centuries,
much of what is called ghe "cradle of our culture" was
developed and its influence distributed throughout the Ancient
World. This period also saw the birth of Greek mathematics,

later to become the foundation of many future sciences

developed by modern civilizations. [Dantzig, pp. 15-17]
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GREEK MATHEMATICAL SYSTEMS

Although European mathematics is often considered to have
originated in the ancient Greek world, a large part of the
Greek mathematical development began more than 2000 years
after the Egyptians had completed their mathematical Rhind
papyrus. The Greeks developed seQeral numerical systems which
were based on different units such as the Greek drachma or
letters of the Greek alphabet; each notation was based on a
decimal system. When dealing with monetary calculations, the
Greeks incorporated a numbering system which used a drachma
(the ancient Greek currency) as its primary unit. Other units
such as units of weights or measure were also employed.
(Tod, pp. 4-617"

The firsféGreek numeric notation, labeled as Herodianic
or Attic, was found to be less advanced than that of the
Babylonians. The Greeks used symbols~similaf¥to those of the

Romans to represent the numbers of their system:
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) 1 [H 500
B 5 >< 1,000
A 10 [X 5,000
E 50 M 10,000
H 100 rﬂ‘ 50,000

Compared to the ancient Egyptian system, the Greek was more
versatile; the Greeks developed symbols not only for the
powers o&»t§n$¢£ii'also for intermediate multiples of five.
Numbers were poitra&ed by these symbols written from left to

right , with the highest denomination placed in the left-most

position. Examples of Greek numerals:

] 6~ “‘(I||| 14 H M 105

-

The Greeks developed a second numerical system whose
twenty-seven "digits" were based on.the .Phoenician and Greek
alphabets. These twenty-seven letters were divided into three

groups of nine numbers each:




100 —

000 —

For example, the

wheréas ‘()(

and alphabetic

P

-

ﬁ M

s o, P.vy.5.e,¢.0n0
0 L, KA. uv.§ 0 TG
900 Q,OiT]Iqu)quLCO,%
gooo-la,p, 0

[Van der Waerden, p. 46].

numbers one through 999;

symbol

' MEJ

lc,
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Using these letters, this system could directly represent the

for numbers greater than 999, a

this numeral~wds written as:

10,000. For example, 20,000 was repfésented‘by

or

symbol for two from the alphabetic notation and an " M

stroke was written next to the unit symbols one through nine.

X

denoted 1,000.

represented the number one,
By combining the Herodianic
j%btations, the Greeks could also represent
numbers 10,000;£o 90,000, by borrowing the symbol " M " from

the Herodianic notation to represent numbers greater than

the

L] .
’
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placed the numerals between vertical columns of two or three

dots, left a space on each side of the letter, or placed a

horizontal line above the letter. Using both letters and

Herodianic numbers as numerical symbols created ambiguity in

deciphering the numerals, and left only few 1letters to

represent any unknowns or variables. This confusion may have

hindered the development of Greek-algebra. [Heath, pp. 11-19;

“

Tod, pp. 30, 42, 127; Van der Waerden, p. 45] Addition was

performed similarly to the way it is done today; numbers to be

added were written above one another, with all numbers in each

denomination written in the same column. Each column was

tallied and the result was written below the last number in

the addition.

1,424

103
12,281

+ 30,030

43,838

Subtraction was done in the .same manner, carrying one

-

from a higher level as Een units:inté a lower level

required.

unit

when
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Difference: H 8 l’(i 76,227

[Heath, p. 28-30]

Greek methods of multiplication were generally tedious.
When multiplying two numbers written as only one Greek numeral
or letter, the product of the two radices was multiplied by
the highest power of ten in each of the two terms. Computing
the product of 200 and 3,000, for example, was completed by
multiplying together the two radices, two and three, and
nultiplying this result by the product of 10° and 10° , the

highest powers of ten in each of the two terms.
.._‘f’a._, .

Mof@"oempi;x'multiplication problems generally required
the use of multiplication tables. In these, the multiplicand
was written above the multiplier separated by the Greek words
for "upon" or "by". Each number wgs.brokeﬁ ﬁp into smaller
numbers that could be represented by one symbol alone; the
smaller ﬁhmg;f:%were'then multiplied together and each of
these products were added together. For example, if 265 was
multiplied by 270, the first number was br§ken down into 200,
60 and 5, the second into 200 and -70. ° Each portion of the

first number was multiplied by eachyﬁaft‘of the second number;

the six products were togéther produced the final result.
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265 200, 60, 5
X 270 200, 70 t
200 x 200 = 40,000
200 x 70 = 14,000
60 x 200 = 12,000
60 x 70 = 4,200 :
5 x 200 = 4,000
5 x 70 = 350
Total: 74,550

Greek division was performed by the same method used today.

A g;eg}wgﬁéaus also existed and was used like the Mayan

abacus for evé}yday calculations. The number in each order

was denoted by pebbles, buttons or pegs placed the column

representing that order denomination. [Heath; pp. 28-30]
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DEVELOPMENT OF FRACTIONS

The ffactional system of the Greeks surpassed that of the
Egyptians, and resembled more closely the one of today. In
the third century B.C., fractions were written with the
positions of the numerator and the denominator reversed; it
was not until the first Century A. D. that the Greek fractions
were written with the numef;tor on the top and the denominator
on the bottom position. [Heath, p. 20; Van der Waerden, pp.
49-50] |

Although fractions were also reduced into unit fractions
as done by the Egyptians, the Greeks did not restrict
themselves to such computations. Unit fractions were
expressed by the numeral in the denominator andi a slash

writteﬁiimmediétely to the left of it. Other notations for

general fractions placed the denominator to the right of the

numerator; some fractions were written with the numerator
below a line and the denominator written above the line.

Here are some examples:
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89 121/16
pHo
LE S 15/4

ri X 1 1/3

’I\O“L"LSX . 370 + 1/2 + 1/16

Special symbols were developed for one-half and one-
third, as 1in the Egyptian system, again denoting the
importance of these fractions.  Fractions of base sixty,
originating in Babylonia, were used by the Greeks in
astronomical calculations, although they were much less
convenient thahﬂ;he other types of fractions. The units were
written‘first”gkd were followed by a number marked by one
accent for the sixtieths or minutes,‘ahd a number marked with
two accents denoting the three-hund;ed—sixtieths or seconds,
like the present day method. This special syétém included the
only evidence qi»the Greek use of the zero symbol. A round
open circie ;;s:ﬁsed to denote zero units in cases involving
no units. [Heath, p. 23]

The Greek mathematicians”were able to do many types of
computations with ~fractibps, They were able to reduce

fractions to lowest terms, as well as find common

denominators. The development of fractions did not deter the




Greek expansion of mathematics, as happened in the Egyptién

mathematical systemn.

[Heath, p.

23,

Van der Waerden,

p.

117

48]
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GEOMETRICAL DEVELOPMENT

Althdugh most researchers agree that European geometry
originated in Egypt, this subject is thought to have been the
Greeks' greatest achievement. The word itself comes from the
Greek language: 'geo' meaning earth and 'metria' meaning
measurement. Heath states that Thales travelled to Egypt and
brought geometry back to Greece. [Heath, p. 75] Some of the
geometrical accomplishments of Thales included the bisection
of a circle by its diameter and the proof of the equality of
the base angles in an isosceles ‘triangle. Archimedes was
able to isolate the value of pi between 3 10/71 and 3 1/7 by
constructing regular polygons in and about a «circle,
calculating the perimeters and assuming that the value of the
circumf-grencg__;;’gf'the circle fell between the two values.
[Freebury, pp.;34-53] The Pythagorean order also contributed
to the growth of Greek geometry. These mathematicians
developed the properties of paralléis'and uséd them to prove
that the sum of the angles of any triangle is equal to the
measure of “two right angles. | They also discovered the
theorems ab;ﬁt the sums of the exferior and interior angles of
any polygon. The Pythagoreans discovered three of the regqular
solids, approximated;thellehéfh of the giagonal of a square,
and knew that the eaf£h is a sphere. ‘Euclid also contributed

greatly to the advancement of Greek mathematics with the
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incorporation of proofs and theorems in geometry into his
Elem;nts.  [Heath, pp. 82, 110; Hooper, p. 41]

Othef ancient Greek developments included the solution to
quadratic equations and the discovery of irrational numbers.
Ptolemy was able to extract square roots by using the
sexagesimal fractions. Thales predicted an eclipse as early
as 585 B.C. Eratosthenes calculated the circumference of the
earth in 250 B.C., missing the correct value by only fifty

miles. [Freebury, p. 34; Van der Waerden, pp. 123,125]
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GREEK CALENDRICAL SYSTEMS

The éarliest evidence of a Greek calendrical system
exists in the writings of Homer and Hesiod discovered on stone
tablets in the thirteenth century B.C. Early Greek systems
employed lunar months and astronomical observations; the
agricultural cycles were found to be correlated with the
rising of a specific star group. A lunar year of three
hundred and fifty four days was constructed and reconciled
with the solar year by adding an "extra" month every second
year. o

The Greeks developed a civil year similar to the Egyptian
year. It consisted of twelve months, each given a specific
name and consisting of twenty-nine or thirty days each.
Approxi@at§L¥%§£e half of the months had their twenty-ninth
day deleted {; gét a better correspondence with the solar
yéar. A device with movable pegs was constructed to relate
the civil year to solar cycles. Each month was divided into
three decades of ten days each. The days were labeled in
accordance With the decade in which they occurred. A date was
recorded bfwits month, the decadé itﬂfollowed and the specific
day on which it fell after the end of the decade. Days
falling in the first decade were recorded as the first nine

days with no reference to the decade, because the Greeks had

no symbol representing zero. For example, the seventeenth day




of the month was recorded as the seventh day after the first

decade of the specific month.
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MATHEMATICAL APPLICATIONS IN DAILY LIFE

Greek‘alphabetic numbers were used to indicate values
such as the length of time of military service or priesthood,
monetary values, distances from towns, and days of the month.
The Greek mathematicians discovered the golden mean, a ratio
of (1 +J§5/2, which 1is often found in nature. Music, for
example, is considered by some to be most pleasurable to the
ear when the notes are played at an interval corresponding to
the golden mean.‘[Huntley, pp. 52-55] Many Greek buildings
were constructed using the golden mean; architecture of this
type has been found to be visually more pleasurable than that

built with other measurements.

e
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MATHEMATICAL APPLICATIONS WITHIN CEREMONIAL LIFE

The éythagorean Order developed many superstitions and
ceremonial applications which were related to their
mathematical works. Gorman finds that this society's
philosophy was not truly one of mathematics or science.
Instead it was religious and philosophical, based on loyalty
and simplicity; purificatfbn for the mind and body was most
important to life in the society. The society developed a
devout belief in God, expressed in mathematics. Boyer writes
that mathematics was life for the Pythagorean Order, and Van
der Waerden states that mathematics was part of their
religion. [Boyer, pp. 52-62] The society worshipped numbers
as Gods; numbers were in a free and pure form comparable to

o -
the Godss Ehsfﬁythagoreans believed that all things consisted

ES

of numbers; numbers formed the universe and had a life
independent of the minds of men. The Pythagoreans believed
that God was all numbers; when the P&ﬁhagoréaﬁs thought about
numbers, they were communing with the Gods in prayer.
[Gorman,‘ppf‘1§z:136; Van der Waerden pp. 88,93] Mathematics
was a way f;f the Pythagoreans to elevate their soul and form
a union with God, who had ordered the universe by means of
numbers. [Van der‘Waerden;ﬂpp. 93-94] It is said that
Thales, although not a member - of the Pythagoreans,

ceremonially sacrificed a bull to honor his construction of a
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ht triangle.
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COMPARISON OF EGYPTIAN AND GREEK MATHEMATICAL SYSTEMS

The écale constructed in the Mayan and Incan comparison
will now be used to compare the Egyptian and Greek
mathematics.

Both the Egyptian and Greek cultures developed decimal
mathematical systems; evidence of counting by fingers exists
in the Greek language. The&Egyptians developed a hieroglyphic
numerical system in which only powers of ten were represented.
"All available texts point to an Egyptian mathematics of a
rather primitive culture." [Gillings, p. 232]. The Greeks
employed a numerical system based upon their alphabet which
included a symbol for each power of ten as well as for the
intermediate numbers 5, 50, 500, 5,000 50,000. The system

-__5‘;.“ ) o
could resultwiﬁ confusion due to the similarity of the Greek

£

numerals and lettefs; using the same symbols to represent both
letters and numerals left little room for thg development of
algebraic variables or constants. Enfh numerical systems had
the ability to record large numbers using an efficient method.

The Egyptians receive a score of one point, reduced because of

the limitediaevelopment of the hieroglyphic symbols; the Greek
score was reduced to one and one-fourth point due to the
problem of distinguishing nunéralsyfrom,letters.

Egyptian addition was an élementary process which

combined common symbols in each order: ten units of one order
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was gquivalent to one symbol of the next higher order. The
Greeks lined up all numbers of each denomination above one
another aﬁd then added all symbols of each denomination; the
subtraction process was done similarly. The Egyptians left
few if any records of subtraction; scribes were expected to
perform addition and subtraction, recording only the result
and showing no calculations. The Egyptians completed
multiplication calculations by using the multiplier as a base
number, doubling and multiplying by ten to find a sum
equivalent to the multiplicand. The Egyptian division method
also used this process of doubling and addition. The Greeks
developed a multiplication system similar to the one used
today. The Greek division process was also similar to the
method used today. The Egyptian score is reduced to one and
one-fpu:thwgiint, due to the difficulty and length of both
multiplicat;on ‘and division processes; for the ease and
similarity to the system used today, the Greek numerical
system and its inccrporation'iof the four mathematical
operations desgrves a perfect score of two points.

Neifﬁe;%éociety invented a designated position or symbol
for zer§‘ throughout their mathematical system. Gillings
stated that "the Egyptians had no symbol for zero", although
in some of the scribesl caiéulations a blank space designated
an empty position. <[Gillin§é,' p. 15]. The Greeks,

specifically Ptolemy, developed a symbol for zero which was
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apparently used in only one context: by Ptolemy in ‘a
sexaéesimal fractional system. Both the Egyptian and Greek
system wére awarded one-half point for their 1limited
recognition of the concept of zero.

Both societies developed a fractional system. The
Egyptians used only natural fractions, or those occurring in
their daily life; all other fractions besides 2/3 were reduced
to unit fractions. Reducing fractions to unit fractions was
very time-consuming and allowed less time for the development
of other Egyptian mathematics. The Greeks developed a more
sophisticated fractional system which included all fractions.
The Egyptians receive three-fourth point for the development
of an intricate yet somewhat useless system of fractions. The
Greeks were awarded a maximum score of one point for their

P .
construq;iqnmgi‘an effective fractional systenm.

All sourc;s consulted agree that modern European geometry
originated in Egypt, yet Egyptian geometricgl»knowledge was
‘not as extensive as in- the Greek'édciety;‘l The Egyptians
developed a fairly accurate measure of areas of squares,
triangles, *tri%ééoids and circles, the formulas for some
volumes andgkhe surface area of a'hemisphere, which the Greeks
did not rediscover until later. The Egyptians did not develop
a demonstrative geomepry;:théQ were not interested in proofs,

whereas this was of major concern te the Greeks. The Greeks,

namely the Pythagoreans, discovered that the angles of a

-
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triangle equalled the measurement of two right angles; héd
knowiedge_of volumes of regular solids; and developed some
theorems ébout parallel linés. The Egyptians receive three-
quarters point for their geometrical advancements and its
incorporation into their 1lives; the Greeks are awarded the
maximum score of one point for their well-developed knowledge
of geometry and its applications into their 1lives.

Both cultures developed an approximation of pi. The
Egyptians used the fraction 256/81 as pi, derived from their
formula (8d/9)? for the area of a circle. The Greek
mathematician Archimedes found -that the wvalue of pi 1lay
between 3 10/71 and 3 1/7, roughly, 3.1408 < pi < 3.14286.
Again, both cultures receive the maximum score of one point
for approximations of pi.

Nq}thg;;ﬁgz‘Greeks nor the“Egyptians valued the existence
of a calendrféalVSystem as much as did the Mayan or Incan
cultures. The Egyptians developed a calendrical system
consisting of a twelve-month year.;‘It involved three seasons
of four months each: a sowing, growing and harvest period.
The Greeks‘&e?gioped an elastic g;z;; year similar to that of
the Egypti;hs, which varied iﬁ length to parallel 1lunar
phases. For their development of an accurate calendrical year
and its incorporation intoﬁéhe ceremonial and daily lives,
both the Egyptians and Greeks receive a score of one and one-

half point.
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Both cultures were able to incorporate the numerical
systéms into their daily life. The golden mean ratio can be
found in é number of Greek structures as well as in their
music. Eratosthenes developed a scientific measurement of the
earth, and Greek astronomers were able to predict an eclipse.
An abacus of pebbles was used for simple every-day
calculations. Numerical notations were found that dealt with
monetary matters, the length of tenure of office and
priesthood, and distances from town. The Egyptians developed
the pyramids; used the paths of the planets to calculate time,
and developed calculations of measures of grain, distribution
of wages, and conversions of different measures of grains.
The Egyptian calculations did not deal with money or currency.
Both culturgs‘were awarded a maximum score of two points for
the extgnthqﬁgiiEOrporation of their mathematical skills into
their lives. }

The incorporation of mathematics into Greek ceremonial
life was epitomized by the PYthagoreanﬁ order, whose
mathematicians perceived a strong relationship between
mathematics*aﬁﬁgreligion. Mathematical applications within
the Egyptiéhtceremonial life ceﬁtered around the building of
tombs to honor those on the path to the Afterlife. The
calendar recording Egyptian ééasonq designated ceremonies and

important activities and was maintained by astronomical

observations. The Egyptian score for incorporating their
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mathematical knowledge into the ceremonial life is one point.

The Greek ceremonial applications were awarded one and one-

half poinﬁ.

The total score of the Egyptian culture is nine and three-

fourth points.

The total score received by the Greek culture is eleven and

three-quarter points. -

In this author's opinion, the Greeks were the more

mathematically adept of the two cultures.
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CONCLUSIONS

Aftef completing the comparison of the five cultures
included in this research, a number of observations become
evident. The results of the comparison would indicate that
the extent of Greek mathematical knowledge was superior to
that of the Egyptian, Mayan and Incan cultures. It is
crucial, however, to undegstandythat all results in the lattér
portion of this research are based upon the opinions of the
author, and were not derived by quantitative objective
methods. Although the Greek civilization was awarded the
greatest numerical score, nét all portions of Greek
mathematical knowledge were as extensive as that of their

competitors. The Mayan system represented the concept of zero

most effectivedy. Not only was this culture able to represent
o #

% T

a lack‘of a sumber in any denomination, but was also able to
portray the zero digit when needed within a numerical symbol.
It is also apparent that the detailed_Mayan‘éalendrical system
was a much more efficient and effective sysﬁem than that of
the Inpané»‘ggeek or Egyptian civilizations. No other
calendrical.systemnwith such involved mathematical calculative
ability and having the ability to deal with both ceremonial
and practical situations has been discovered in other ancient

civilizations.

.

The ancient 1Inca developed a mathematical system
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involving the most intricate and creative methods of recordiﬁg
statistical references and completing mathematical
calculations. By also recording both Incan calendars and
selected histories, the quipus were able to immortalize the
Incan civilization.

Mathematical discoveries more advanced than those of the
Greek culture were also prevalent in the Egyptian
civilization. The ancienE Egyptians constructed a number of
detailed buildings using their mathematical knowledge.
Egyptian mathematicians and their scribes were able to
calculate and record a large number of intricate mathematical
computations on papyri which are still in existence today.

It can be concluded, then, that the cultures studied in
this research have not only contributed to the international

73-- -

developmentaﬂ{mathematics, but have helped shaped the path of

a

mathematical devéiopment throughout the past and into the
future. Each of the Mayan, Incan, Egyptian and Greek
civilizations introduced mathematiéai skills and calendrical
development to the ancient world predating today's expansion

of scienéehghdfgéchnology. The comparison of the mathematical

abilities and the selection of a superior mathematical
development does not carry as much importance as the
recognition of each. civ:ili‘z»;':ltionts individual mathematical
achievements. It is thisirecogniffon that the comparison and

conclusion of this research portrays.
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[Closs (1986)]

Head Variant Numerals
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b)

[Closs (1986)1

Chuen

Eb

Be;

Ix

len .

Cib
Caban
Etz'nab
Cauac
Ahau

Chicchan
Oc

Imix
k
Akbal
Kan
Cimi
Manik
Lamat
Muluc
Names and hieroglyphs for the days of the Sacred Round
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lec

Xul

Zidy

Yaxkin

Mol

Yax

Names. and hieroglyphs for
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Zac

Ceh

Mac

Kankin

Muan

Pax

Kayab

Cumku

Uayeb -

“n,

the months and residuc of the Vague Year [Closs(1986)]
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Diagram of the cog wheel illustrating thc;meshing of the 260-day almanac (left)
[Morley (1983)]

with the 365-day year (right)
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Lonp-Count Innoduding Glyph: the head in che center |
is the only variable clemenc of this sips. This is the
mame glyph of the deity who is patron of the month

there Cambkua) in whidh che Jonp-count terminal dace
falls.

9 hadotuns WA IRTIVIIYS
(0 X LEL000 days (17 X 7,200 days
= 1,290,000 days) = 122000 days) '
() ins : 0 uinals I
WX 360 days (0 X 20 days g
= 0 days) = 0 days) 3 I
4
5
-
0 Kins 13 Ahan (day reached by |
(X 1 day counting, forwaed abaove :
= 0 days) total of days Trom starting I
point of Maya cra) ‘(
Glyph Gorname plyph of Gilyph Fromeaning, }
the derty who s panon ol unknown 1"
the minth day in che nine-
day series (the Nine Guods fr
ol the Lower Waorlid) éﬁ
Glyphs I and D plyphs — Glyph C:oplyph denoting j
denoting the moon age ol position of currene lunar ‘l
the Jong-count tprminal  mondh in lanar hall-year |
date, here “new moan™ petiod, here dhe second
position
g i
Glyph Xy mcaning Glyph B meaning J; }
unknown unknown 5 ‘
E
Glyph Ay current funar I8 Cambku (month |
month, here 29 daps in 0 reached by conndng for-
ferpethe Lase glyph of the  ward above ol of days !
lanar series. from startingg point of
Maya ern). Last plyph of
the long count,
1
o T

Example of a long-count date, from the inscription on the east side of a Monument Quirigua, Guatemala

(Morley (1983)] J
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{Ascher and Ascher]

A quipu that has been completed and rolled
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