
Eastern Illinois University
The Keep

Masters Theses Student Theses & Publications

1996

The Relationship of Catalase Activity to the Trade-
Off Between Reproduction and Lifespan in the
Giant Waterbug, Belostoma flumineum
Matthew R. Gilg
Eastern Illinois University
This research is a product of the graduate program in Zoology at Eastern Illinois University. Find out more
about the program.

This is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses
by an authorized administrator of The Keep. For more information, please contact tabruns@eiu.edu.

Recommended Citation
Gilg, Matthew R., "The Relationship of Catalase Activity to the Trade-Off Between Reproduction and Lifespan in the Giant Waterbug,
Belostoma flumineum" (1996). Masters Theses. 1951.
https://thekeep.eiu.edu/theses/1951

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Eastern Illinois University

https://core.ac.uk/display/154533423?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://thekeep.eiu.edu
https://thekeep.eiu.edu/theses
https://thekeep.eiu.edu/students
www.eiu.edu/biologygrad
www.eiu.edu/biologygrad
mailto:tabruns@eiu.edu


THESIS REPRODUCTION CERTIFICATE 

TO: Graduate Degree Candidates (who have written formal theses) 

SUBJECT: Permission to Reproduce Theses 

The University Library is rece1v1ng a number of requests from other institutions 
asking permission to reproduce dissertations for inclusion in their library 
holdings. Although no copyright laws are involved, we feel that professional 
courtesy demands that permission be obtained from the author before we allow 
theses to be copied. 

PLEASE SIGN ONE OF THE FOLLOWING STATEMENTS: 

Booth Library of Eastern Illinois University has my permission to lend my 
thesis to a reputable college or university for the purpose of copying it for 
inclusion in that institution's library or research holdings. 

Aui:nor Date 

I respectfully request Booth Library of Eastern Illinois University not allow 
my thesis to be reproduced because: 

Author Date 



The Relationship of Catalase Activity to the Trade-Off 

Between Reproduction and Lifespan in the Giant Waterbug, 
(TITLE) 

Belostoma flumineum 

BY 

Matthew R. Gil g 

THESIS 

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR THE DEGREE OF 

Master of Science 

IN THE GRADUATE SCHOOL, EASTERN ILLINOIS UNIVERSITY 

CHARLESTON, ILLINOIS 

1996 
YEAR 

I HEREBY RECOMMEND THIS THESIS BE ACCEPTED AS FULFILLING 

THIS PART OF THE GRADUATE DEGREE CITED ABOVE 

DATE f I AUVl'.ltK 

DATE Uf' ..y< I MtN I HtAU 



Abstract 

Senescence is the process by which organisms age and ultimately die. Life history 

theory suggests that the allocation of energy into growth and reproduction is necessarily 

associated with a decrease in energy available for the maintenance of the soma. Many 

studies have shown that early or increased rates of reproduction are often correlated with 

a decrease in longevity, but few studies have investigated physiological correlates to this 

event. Catalase is an enzyme involved in the removal of oxygen free radicals implicated in 

damaging cellular components that contribute to senescence. A decrease in catalase 

activity with age could increase the organism's maintenance cost and lead to an increased 

rate of senescence. This study investigated the possibility that changes in catalase activity 

are related to the energy trade-off between reproduction and longevity in the giant 

waterbug, Belostomaflumineum. This species is a good model for this type of 

investigation because both males and females contribute a significant amount of parental 

investment. 

Waterbugs were collected as fifth instar nymphs and maintained under controlled 

laboratory conditions. Males and females were randomly allocated to either virgin or 

breeder reproductive treatments. Waterbugs were assayed for catalase activity at ages of 

10, 60, 100, and 150 days. 

Catalase activity/ g bug was shown to increase with chronological age in male and 

female virgins, but not in breeders of either sex~ most of this change was early in life (0-60 

days). Virgin bugs also had higher catalase activity I g bug than those that were allowed 

to breed. This might suggest that waterbugs that breed are less protected from free radical 
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damage than virgins, and could help explain the shortened life span of breeders relative to 

virgms. 
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Introduction 

Senescence is an adverse change in a living organism, which is loosely correlated 

with the passage of time, and ultimately leads to death (Comfort, 1954). One recurrent 

theme in senescence research is the relationship between reproduction and the rate of 

aging. According to the "Principle of Allocation," organisms allot a finite amount of 

energy for three essential purposes; growth, maintenance and reproduction (Gadgil and 

Bossert, 1970). Therefore, the allocation theory suggests that if more energy is allocated 

into one area, less energy is necessarily available for the other two. For example, Calow 

(1979) stated that "if reproduction competes more successfully than other organismic 

processes for a limited supply of energy or other resources then both the future survival 

and reproductive performance of the parent are likely to be put at risk." A trade-off 

between reproduction and longevity has been shown in a variety of organisms, from 

arthropods (Loschiavo, 1968; Partridge and Farquhar, 1981; Tallamy and Denno, 1982; 

Partridge et al., 1987; Scheiner et al., 1989), and molluscs (Haukioja and Hakala, 1978) 

to lizards (Tinkle et al., 1970), and birds (Ricklefs, 1977). 

Since numerous studies have shown a negative correlation between reproduction 

and longevity, some physiological correlates of aging should be present in relation to this 

trade-off. One mechanistic theory of aging that is noteworthy for its simplicity and its 

universality, is the free radical theory of aging. The free radical theory is based on the 

possibility that one factor in aging may be related to deleterious side attacks of free 

radicals on cell constituents (Harman, 1956). These reactions arise continuously, for the 

most part from oxygen in the course of normal metabolism, particularly in the respiratory 
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chain, phagocytosis, prostaglandin synthesis, and in the cytochrome p-450 system 

(Harman, 1956). Free radicals also arise from nonenzymatic reactions of oxygen with 

organic compounds, as well as from ionizing radiation (Harman, 1956). 

The oxygen free radicals that seem to be implicated in various forms of deleterious 

reactions with cellular components include the superoxide anion (02-) and the hydroxyl 

radical (OH°) (Ji et al., 1991). These radicals have been found to produce a variety of 

deleterious changes in cellular structures including alterations in membranes, collagen, 

DNA, chromosomal material, proteins and enzymes, and molecules modulating calcium 

levels in intracellular compartments (Lippman, 1983; Adelman et al., 1988; Harman, 

1994). The adverse effects of free radical reactions have been found to be countered, at 

least in part, by endogenous enzymes, including glutathione peroxidase, superoxide 

dismutase and catalase, and by nonenzymatic means, such as tocopherols and ascorbic 

acid (Harman, 1994). 

Catalase and superoxide dismutase (SOD) have been shown to be the critical 

enzymes for defense against oxygen toxicity in many organisms (Baird and Samis, 1971; 

He et al., 1994; Orr and Sohal, 1994; Sohal et al., 1995). SOD catalyzes the reduction of 

the superoxide anion to hydrogen peroxide, and catalase breaks down hydrogen peroxide 

to water and oxygen before it can dissociate into a pair of highly reactive hydroxyl 

radicals, which are believed to be the main agent of oxidative damage (Orr and Sohal, 

1994). Larsen (1993), using different mutations of the nematode Caenorhabditis elegans, 

found age dependant differences in SOD and catalase activities. A recessive age-I 

mutation was found to have significantly higher SOD and catalase activities than the 
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controls as adults. The age-1 mutation also increases the mean life span by 65% and 

increases maximum life span 110%. Larsen (1993) proposed that the higher activities of 

these enzymes may protect the age-1 mutants from the deleterious effects of various free 

radical reactions, thereby increasing life span. 

Changes in enzymatic activity have been found to correlate with senescence in 

several cases. Alcohol dehydrogenase, trehalase, alpha-glycerophosphate dehydrogenase, 

and esterase showed a decrease in activity, of varying degrees, with aging in Drosophila 

melanogaster (Burcombe, 1972). Several studies have also shown decreases in free 

radical scavenging enzymes, such as catalase, SOD, and glutathione peroxidase, with 

increasing chronological age (Reiss and Gershon, 1976; Hazelton and Lang, 1985; 

Sharma et al., 1993; He et al., 1994). This decrease in activity of free radical scavengers 

could result in less protection against free radical attacks on cellular structures, thereby 

increasing the organism's maintenance cost at old ages. Since energy is finite, however, 

much of the damage cannot be repaired and the organism will begin to show changes 

typical of senescence. Therefore, the activity of an organism's free radical scavenging 

enzymes could be a good marker of the physiological age of an organism. 

A potential method to test whether oxygen free radicals affect the aging process is 

to look for differences in the activity of free radical scavenging enzymes when energy 

trade-offs involving the life span of the organism should be operating. If catalase activity 

truly has an effect on an organism's life span, then a treatment that increases the rate of 

aging and decreases the life span of the organism should be correlated with a decrease in 

catalase activity as well. If the free radical theory of aging is valid we should see two 
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effects when life span is shortened due to increased energy being put into reproduction: 

1) age-related changes in catalase activity with lower catalase activity later in life when the 

organism is senescing. 

2) lower catalase activity in individuals of a given age that have allocated more energy to 

reproduction, resulting in a shorter life span and a higher rate of senescence. 

The giant waterbug, Be/ostoma flumineum, provides a good study system to 

investigate aging. The giant waterbug is an iteroparous insect, 18-24 mm in length, in 

which both sexes contribute a significant amount of parental investment, females in the 

form of egg production and males in the form of parental care of the eggs (Torre Bueno, 

1906; Smith, 1976). Female waterbugs lay up to 150 eggs on the back of the male, who 

then aerates the eggs for 7 to 14 days, depending on the water temperature (Torre Bueno, 

1906; Kruse, 1990). Waterbugs are paurometabolous insects that proceed through five 

nymphal instars before becoming reproductive adults about 45 to 54 days after hatching 

(Torre Bueno, 1906). This species is available in large numbers, has a relatively short life 

span, is easily maintained and will breed in captivity. 

The fact that both parents contribute a significant amount of parental investment 

(Trivers, 1972) makes this organism especially suited to investigating energy trade-offs. 

In other organisms it is relatively easy to observe energy trade-offs in females since they 

usually have the larger parental investment in each clutch (Tallamy and Denno, 1982; 

Partridge et al., 1987; Fowler and Partridge, 1989; Reznik, 1992). Although the cost of 

sperm is generally considered small compared to that of the production of eggs, that is not 

always the case (Van Voorhies, 1992).Unlike most other species, male waterbugs allocate 
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energy not only to the production of sperm, but also to parental care (i.e., aerating, 

cleaning, etc.) of the eggs. Female waterbugs contribute a large amount of energy to the 

production oflarge eggs. Consequently, if the amount of energy allocated to reproduction 

has an effect on life span in the waterbug, it should be measurable in both sexes. 

Preliminary data, from a study currently being conducted in our laboratory suggests adult 

waterbugs have a mean life span of approximately 150-180 days. Virgin male waterbugs 

have a 20% longer mean life span than male waterbugs that breed and brood their eggs, 

and virgin females tend to live approximately 12% longer than females that breed. 
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Materials and Methods 

Giant waterbugs were collected as last instar nymphs from three ephemeral ponds 

in Coles County, IL, USA in July and August, 1995 and July, 1996 using aquatic dip nets. 

Nymphs were transported to the laboratory in plastic coolers containing pond water and 

aquatic vegetation. Nymphs were separated and kept individually in 2 L plastic, 

cylindrical containers approximately 3/4 full of deionized water with pieces of floating 

plastic which served as perching sites. Nymphs were fed crickets twice a week and kept at 

normal summer conditions of30 °C under 14L:10D photoperiod until emergence into 

adults; day of emergence was recorded and tabulated as adult age zero. Within 1 week of 

emergence each waterbug was sexed and individually marked by painting a number on its 

pronotum using white Testers brand model airplane paint and covering it with a fine coat 

of cyanoacrylate glue. Gender was determined by examining the genital plate; females 

possess two apical tufts, whereas males lack these structures (Menke, 1960). 

Male and female waterbugs were randomly allocated into four age groups, each 

age group containing 11-15 virgins and 11-15 breeders, except age group I which 

contained 8 virgin males and 8 virgin females. Age groups I-IV were assayed for catalase 

activity at a chronological age of8-12 days, 55-65 days, 95-105 days, and 145-155 days 

old respectively. Age group II male breeders were allowed to brood a single clutch. Age 

group III male breeders brooded two clutches, and age group IV males brooded 3 

clutches of eggs. Age group II female breeders oviposited at least 25 eggs, age group III 

females laid at least 50 eggs, and age group IV females laid at least 100 eggs. 

Male breeders were placed in groups of 8-10 in 38 L aquaria approximately 1/3 
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full of deionized water and supplied with plastic perching sites. Each of these aquaria also 

contained 15-20 gravid female waterbugs. Individual males were checked once every 24 

hours for the presence of egg pads. Egg-laden males were removed from the aquaria and 

allowed to individually brood their clutch until hatching in a 2L plastic container 

previously described. Once males reached the assigned reproductive investment level they 

were maintained in a 12 L plastic storage container (PSC), 40.6 x 28 x 15.2 cm, 

approximately 3/4 full of deionized water with floating plastic perch sites and 5-6 other 

males. Female breeders were separated and kept with 4-5 male waterbugs in PSC 

described above. Once females reached their assigned reproductive investment level they 

were maintained in a PSC with 5-6 other females. Similarly, male and female virgins were 

kept in groups of 5-6 in PSC. 

All waterbugs were maintained at 30 °C with 14L:10D photoperiod. Water in 

aquaria was changed weekly, while water in 12 L PSC and 2 L individual containers was 

changed twice weekly. Bugs were fed commercial crickets ad libitum and dead/ partially 

consumed crickets were removed every 24 hours. 

Catalase assay: 

Waterbugs were removed at their assigned age group and catalase activity 

determined. Individuals were weighed and homogenized in 5 ml of 67mM phosphate 

buffer, pH 7.0, in an ice bath. The homogenate was centrifuged at 15,000 x g for 10 

minutes at 4 °C and the supernatant was used in the assay. The experimental enzyme 

solution was made by diluting 1 ml of supernatant with 5 ml of the Phosphate buffer. The 

rest of the assay followed methods described by Luck (1965). Each homogenate was 
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assayed in duplicate. Activity is expressed as moles of H20 2 changed to H20 and 0 2 I 

minute as calculated using the extinction coefficient of 43.6 M-1cm-1 (Bergmeyer, 1963). 

Protein concentration: 

The concentration of soluble protein was determined in order to ascertain specific 

activity of catalase. Soluble protein concentration was quantified using a Lowry Protein 

Assay as revised by Peterson (1977). Experimental solutions for each bug contained 20 ul 

of the original supernatant from the catalase assay, and were run in duplicate. 

Statistical Analysis: 

Catalase activity was calculated by two methods, per g body weight (bug) and per ug 

protein (specific activity). Detection of any differences in reproductive investment 

(number of eggs oviposited, number of eggs brooded, number of days spent brooding) 

among the three age groups of male and female breeders was conducted by a 1-way 

analysis of variance (ANOVA). A 3-way AN OVA with the main effects of gender, age, 

and reproductive investment was used to analyze differences in the physiological 

measurements between virgin and breeder bugs. Since no bugs bred prior to 10 days of 

age the 3-way ANOV A only analyzed age groups II, III, and IV. A 2-way ANOV A with 

the major effects of gender and age was utilized to detect differences between gender in 

bugs with the same reproductive treatments, i.e., male virgins vs. female virgins and male 

breeders vs. female breeders. A 1-way ANOVA was used in all treatments to detect any 

differences in catalase activity among bugs of varying chronological age. Any significant 

F-values (1-way ANOVA's) were further investigated using the Student Newman-Keuls' 

means comparison test. All analyses were conducted with an alpha value of 0.05. 

12 



Results 

Reproductive Investment: 

Table 1 shows the differences in reproductive investment among age groups for 

breeder waterbugs. Breeder males were significantly different at all age groups both in 

total number of eggs brooded (F= 32.66, P<0.0001) as well as total number of days spent 

brooding (F=34.20, P<0.0001). Similarly, breeder females were significantly different in 

number of eggs oviposited (F=I0.06, P=0.0027), except for age group II and age group 

ill, which did not differ significantly. 

Cata/ase Activiry/ g bug: 

Both male and female virgins showed a significant age-related increase in catalase 

activity/ g bug (F=29.84, P<0.0001- males; F=5.45, P=0.0044 - females) (Fig. 1). Virgin 

males showed an increase in catalase activity/ g bug of approximately 178 %, while 

catalase activity I g bug increased about 72% in virgin females. The lowest catalase 

activity occurred in age group I for both males and females, then increased and remained 

relatively stable for the other three age groups. Catalase activity did not increase 

significantly over time, however, in waterbugs that bred (F=2.12, P=0.156 - males; 

F=l.01, P=0.392 - females) (Fig. 2). However, if age group I is treated as the early adult 

life "starting point" of catalase activity, the age-related patterns of virgins and breeders are 

very similar. Female breeders show a 47% increase in catalase activity I g bug, as opposed 

to the 72% increase female virgins demonstrate between 10 and 60 days of age. Male 

breeders show an increase in catalase activity I g bug of 80% between 10 and 60 days, 

while male virgins showed a 122% increase. A significant difference is also seen between 
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bugs differing in breeding status; virgins have a higher catalase activity I g bug than 

breeders regardless of age (F= 7.77, P= 0.0069). Catalase activity also varied between the 

sexes. Male waterbugs have higher catalase activity/ g bug than females as virgins (F= 

5.24, P= 0.0259) and breeders (F=8.40, P=0.0075). 

Catalase Activity/ ug Soluble Protein: 

The specific activity of catalase in male virgin waterbugs (Fig. 3) increased 

significantly throughout their life (F= 12.4, P<0.0001), but the same trend was not seen in 

female virgins (F=0.126, P=0.944). Newly emerged male virgins (Age Group I) had 

significantly lower specific activity than at all other ages. Waterbugs that bred did not 

show age-related increases in specific activity of catalase (F=2.3, P=0.120). No significant 

difference in the specific activity of catalase was found between virgin waterbugs and 

those that had bred (F=0.071, P=0.791). Specific activity of catalase was also significantly 

higher in male waterbugs than in female waterbugs regardless of breeding status (F= 

49.95, P<.0001-virgins; F=20.92, P=0.0001 - breeders). 

14 



Discussion 

Catalase activity/ g bug tends to increase with chronological age in the giant 

waterbug. An age-related increase in catalase activity has not been reported in the 

literature to my knowledge. In most cases, catalase and other antioxidant enzymes have 

been shown to decrease in activity with increasing chronological age. Sharma et al. 

(1993) found an age-related decrease in catalase activity in the drosophilid, Zaprionus 

paravittiger. Maximum activity was observed during the time of peak reproduction. It is 

possible that we are seeing something similar in the giant waterbug since peak 

reproduction tends to be between approximately 50 and 150 days of adult age. The 

possibility remains that a significant decrease in catalase activity could occur at some point 

after 150 days. The original experimental design included assaying bugs at 200 days of 

age, but unfortunately the sample size was too small (due to death from senescence) to 

utilize in the study. 

The difficulty in making comparisons with many similar studies is that the enzyme 

assays are generally tissue specific as opposed to a whole body homogenate, which I 

utilized. For example, Rao et al. (1990) showed not only a significant decrease in specific 

activity of catalase (34-56%), as well as SOD (26%) and glutathione peroxidase (33%), 

with increasing chronological age in rat liver, but also that less mRNA coding for each of 

the enzymes was present in the cells at later ages. This suggests that, at least in the rat 

liver, fewer antioxidant enzymes are being produced at later ages, causing a decrease in 

specific activity. 

Other studies have shown differences in activity, as well as age-related differences 
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in activity, in various tissues. Reiss and Gershon (1976), for example, found that the 

specific activity of SOD decreased considerably (55%) in the liver of aging rats, but only 

slightly (17%) in the heart and no change was found in brain tissues. Similar results were 

reported in mice (Reiss and Gershon, 1976). Ji et al. (1991) found that cytosolic 

antioxidant enzymes, such as catalase and Cu-Zn SOD, showed decreased activity (34-

56% and 26% respectively) with age in the hearts of rats, while mitochondrial Mn SOD 

increased in activity almost 100%. Hazelton and Lang (1985), however, found that 

glutathione peroxidase activity decreased with age in mouse liver (53%), kidney (35%)and 

heart (27%) tissues. With results seeming to vary among tissues, and even within cellular 

compartments, it is difficult to say how the activity of a given antioxidant enzyme is 

changing within an entire organism. Unless a large decrease in antioxidant enzyme activity 

in a specific location can be linked to the death of the organism, (e.g., lower catalase 

activity in the liver causes liver failure leading to death) tissue specific studies are too 

variable to be of much use. 

Most of the aforementioned studies work with the specific activity of the enzyme 

in tissue samples as opposed to entire organisms. I do not feel, however, that specific 

activity is the best measurement of catalase activity in giant waterbugs. While the specific 

activity of catalase in female waterbugs was shown to be a great deal lower than males, in 

both virgins and breeders, the differences in activity I g waterbug were not as dramatic. 

Females tend to have large amounts of soluble protein that do not necessarilly relate to 

catalase activity, making specific activity measurements misleading. Body mass of 

waterbugs did not tend to fluctuate much in adulthood, consequently making the activity I 
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g bug measurement much more reliable than the activity I ug protein. 

Virgin waterbugs (both male and female) have significantly higher catalase activity/ 

g bug than breeders. This decrease in activity in breeders may mean less protection from 

damaging free radical attacks, and increased maintenance costs. Because a considerable 

amount of energy is being devoted to reproduction instead of maintenance, in both male 

and female waterbugs, breeders would not be able to slow the rate of damage to cellular 

components and make repairs. Interestingly, the differences were not found to be age­

related. Breeders consistently have lower catalase activity than virgins of the same age. If 

newly emerged adults are used as the "starting point" in both virgins and breeders, the 

differences in catalase activity were established by 60 days of age. This suggests that the 

onset of reproduction can cause a downward shift in catalase activity. These results were 

expected because breeder waterbugs have shorter life spans than virgins (Kruse and Gilg, 

unpubl.). 

Few, if any, studies have investigated changes in the activities of antioxidant 

enzymes based on energy trade-offs. Dietary restriction has been shown to increase life 

span in a variety of organisms including rats (Duffy, et al., 1989; Rao et al., 1990) and 

Daphnia (Ingle et al., 1937), in the same way a decrease in reproductive investment can 

increase life span. Rao et al. (1990) demonstrated that specific activities of catalase, SOD, 

and glutathione peroxidase differ in the livers of diet restricted rats and rats fed ad libitum. 

Diet restricted rats had higher activities in all three enzymes at almost every age, and the 

rate of decrease in activity with increasing chronological age was slowed. The maximum 

differences in enzymatic activity between the two treatments were more substantial than 
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the differences found in the waterbug. Catalase activity was 64% higher in diet restricted 

rats than in rats fed ad /ibitum, while SOD activity was 38% higher in diet restricted rats. 

He et al. (1994) utilized strains of senescence prone and senescence resistant mice 

to analyze differences in SOD and glutathione peroxidase activities. The activity of both 

enzymes decreased with increasing chronological age, but the differences between 

treatments were fairly small. At the latest chronological age SOD activity was only 14% 

higher in senescence resistant mice than in senescence prone mice. Glutathione peroxidase 

activity was only 3% higher in senescence resistant mice. These differences in activity do 

not sufficiently explain the 33% longer life span of the of the senescence resistant mice. 

Orr and Sohal (1994) inserted extra copies of the genes coding for SOD and 

catalase into groups of Drosophila melanogaster resulting in a simultaneous 73% 

increase in catalase activity and a 26% increase in SOD activity. This manipulation 

increased mean life span up to 34% and maximum life span by about 30%. This study 

provides some of the best evidence that substantial increases in the activity of antioxidant 

enzymes can result in increased life spans. 

The magnitude of the change in catalase activity/ g bug varies with sex in the giant 

waterbug. The maximum difference in catalase activity/ g bug between female virgins and 

female breeders is approximately 45% at 150 days of age. The maximum difference is 

only 24% in male waterbugs at 60 days of age. It is possible that these differences in 

magnitude between males and females are representative of the amount of energy each 

gender is allocating to reproduction. The production of eggs in females could be more 

costly than the act of brooding eggs is for males, resulting in less energy being available to 
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maintain catalase activity at its peak levels. An interesting anomaly also occurs at 150 

days, when breeder males actually have a higher activity than virgin males. This could 

simply be due to small sample sizes in both treatments, but breeders having higher catalase 

activity than virgins later in life is not congruent with the idea that catalase activity plays a 

major role in the rate of aging in the giant waterbug. 

Catalase activity/ g bug tended to increase early in the adult life of the waterbug, 

but remained relatively stable afterward. This lack of change later in life does not make 

catalase a very suitable physiological marker of aging in the giant waterbug. The fact that 

virgin waterbugs showed age-related increases in catalase activity suggests better defense 

against free radical damage later in life. Breeder waterbugs showed no significant increase 

in catalase activity with age, but enzymatic activity did not decline either. If free radicals 

are indeed involved in the aging process of the giant waterbug, it does not seem to be the 

result of a reduction in defense at later ages. It is possible, however, that free radicals play 

some role in the aging process in waterbugs, because breeders had lower catalase activity/ 

g bug than virgins of the same age. This difference may result in less defense against 

damaging free radical attacks, thereby increasing the organisms maintenance cost and 

resulting in a faster rate of senescence. The decrease in catalase activity with only one 

reproductive bout is also intriguing. This suggests that reproduction could potentially 

incur physiological costs almost immediately. Studies similar to this in other organisms 

would be useful in discerning the role free radicals, and free radical defense play in 

shortened life spans due to energy trade-offs. 
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Table 1: Body weight and reproductive investment among breeder and virgin 
waterbugs. Wet weight of bug, total number of eggs and total number of days males 
spent brooding eggs are given as means with one standard error in parentheses. 
Superscripts denote significant differences. 

Sex/ Age (days) 

b. male/ 55-65 

b. male 95-105 

b. male 145-155 

b. female/ 55-65 

b. female/ 95-105 

b. female/ 145-155 

v. male I 8-12 

v. male I 55-65 

v. male I 95-105 

v. male I 145-155 

v. female/ 8-12 

v. female/ 55-65 

v. female/ 95-105 

v. female/ 145-155 

b.= breeder 
v.= virgin 

n 

7 

7 

3 

4 

6 

5 

8 

9 

9 

4 

8 

10 

10 

4 

Wet Weight 
(g) 

0.205 (0.006) 

0.226 (0.008) 

0.255 (0.006) 

0.278 (0.010) 

0.278 (0.010) 

0.288 (0.027) 

0.220 (0.006) 

0.224 (0.007) 

0.227 (0.007) 

0.234 (0.006) 

0.247 (0.010) 

0.289 (0.012) 

0.269 (0.013) 

0.292 (0.012) 

23 

Total# Eggs Total# Days 
Brooding 

84.1 (7.7}a 7.7 (0.6)9 

192.6 (18. 7)b 12.0 (0.8)b 

267. 7 (9.6}c 19.0 (l.5t 

53.0 (11.9)9 NA 

80.2 (13.8)• NA 

170.4 (26.5)b NA 

NA NA 

NA NA 

NA NA 

NA NA 

NA NA 

NA NA 

NA NA 

NA NA 



Fig. 1: Catalase activity I g waterbug, described as moles ofH20 2 converted to H20 and 0 2 I 
minute, for male and female virgins at all age groups. Each point represents the mean activity (± 
1 SE). Significant differences exist between sexes and between individuals in age group I relative 
to other age groups. 
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Fig. 2: Catalase activity I g waterbug, described as moles ofH20 2 converted to H20 and 0 2 per 
minute, for male and female breeders at all age groups. Each point signifies the mean activity (± 1 
SE). Significant differences exist between sexes; there is also a significant interaction between 
male and female breeders of varying chronological ages. 
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Fig. 3: The specific activity (mol*min-1*ug prof1) of catalase for all age groups of male and 
female virgin and breeder waterbugs. Each point is the mean specific activity (± 1 SE). 
Significant differences exist between the sexes, and with increasing chronological age in male 
virgins. A significant interaction is also present between male and female virgins. 
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