Eastern Illinois University The Keep

Masters Theses

Student Theses & Publications

2002

A Comparison of Vertical Velocity Profiles from the Balloon Borne Sounding System and the 915/50 MHz Radar Wind Profiler/Radio Acoustic Sounding System to Parcel Theory at the ARM SGP Site

Joshua R. Ravenscraft *Eastern Illinois University* This research is a product of the graduate program in Natural Sciences at Eastern Illinois University. Find out more about the program.

Recommended Citation

Ravenscraft, Joshua R., "A Comparison of Vertical Velocity Profiles from the Balloon Borne Sounding System and the 915/50 MHz Radar Wind Profiler/Radio Acoustic Sounding System to Parcel Theory at the ARM SGP Site" (2002). *Masters Theses.* 1438. https://thekeep.eiu.edu/theses/1438

This is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact tabruns@eiu.edu.

THESIS/FIELD EXPERIENCE PAPER REPRODUCTION CERTIFICATE

TO: Graduate Degree Candidates (who have written formal theses)

SUBJECT: Permission to Reproduce Theses

The University Library is receiving a number of request from other institutions asking permission to reproduce dissertations for inclusion in their library holdings. Although no copyright laws are involved, we feel that professional courtesy demands that permission be obtained from the author before we allow these to be copied.

PLEASE SIGN ONE OF THE FOLLOWING STATEMENTS:

Booth Library of Eastern Illinois University has my permission to lend my thesis to a reputable college or university for the purpose of copying it for inclusion in that institution's library or research holdings.

Author's Signature	V	×1010
Author's Signature		pate

I respectfully request Booth Library of Eastern Illinois University **NOT** allow my thesis to be reproduced because:

Author's Signature

Date

A Comparison of Vertical Velocity Profiles from the Balloon Borne

Sounding System and the 915/50 MHz Radar Wind Profiler/Radio Acoustic

Sounding System to Parcel Theory at the ARM SGP site.

BY

Joshua R. Ravenscraft

Thesis

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science in Natural Science

IN THE GRADUATE SCHOOL, EASTERN ILLINOIS UNIVERSITY CHARLESTON, ILLINOIS

2002 YEAR

I HEREBY RECOMMEND THAT THIS THESIS BE ACCEPTED AS FULFILLING THIS PART OF THE GRADUATE DEGREE CITED

ABOVE D'ALE THESIS DIRECTOR DATE DÉPARTMENT HEAD

Department of Physics Master of Science in Natural Sciences Physics Concentration Thesis Acceptance

Title:

A Comparison of Vertical Velocity Profiles from the Balloon Borne Sounding System and the 915/50 MHz Radar Wind Profiler/Radio Acoustic Sounding System to Parcel Theory at the ARM SGP site.

> By Mr. Joshua R. Ravenscraft

The undersigned Thesis Committee hereby recommend that this thesis be accepted as fulfilling part of the Master of Science in Natural Sciences in Physics degree program:

Abstract

In this study we characterized vertical wind velocity profiles in the troposphere using the Atmospheric Radiation Measurement (ARM) equipment facility at the Southern Great Plains (SGP) site in Lamont OK established by the Department of Energy (DOE) and administered through Argonne National Laboratories (ANL). Using the Balloon Borne Radio Sonde (BBSS) system launched four times per day, we collected ambient temperature profiles and lapse rates from the period of June to September of 2001. Concurrently the Rass Radar Wind Profiler collected vertical wind speed data at 915 MHz continuously throughout this period. The BBSS data is visualized using a Skew-T atmospheric profile plot allowed calculations of the Convective Available Potential Energy (CAPE) by integrating from the fiducial saturated adiabatic lapse rate curve to the ambient temperature curve. From this we calculated the vertical velocity using ideal atmospheric parcel theory. In addition the linear Brunt-Väisälä convective parcel theory is compared to the Skew-T derived lapse rate velocities applied to the stable regime. A statistical comparison was made to characterize the condensation fraction associated with vertical winds at the topographically unique SGP location. Robustness of the comparison is tested using second, third and fourth order moments and by testing for a normal distribution of the

i

deviations. We found that the $\chi^2 = 0.889$ for CAPE and RWP vertical velocities measured in the aggregate. This characterization matches the methodology used at a similar site in Darwin, Australia and was used as input for full scale three-dimensional modeling of the atmosphere over SGP. The CAPE derived vertical wind speed parameter was found to be 0.55 for the SGP site.

Dedication

To my wife Diane,

I love you.

Acknowledgements

I would like to thank my wife for supporting me these last three years. Without her love, patience, and understanding none of this would be possible.

I would like to thank my committee Dr. James McGaughey, Dr. A. Doug Davis, and Mr. Christopher Klaus for taking time out of their busy schedules to read and evaluate my thesis. I would also like to thank Sharon Nichols for all her support.

I would also like the thank my advisor Dr. Keith Andrew who taught me the process of original research and helped me better understand the world around us.

Lastly, I would like to thank all the wonderful people that I have had opportunity to become friends with over these last three years. I would especially like to thank Mark Welter and Julie Johnson for their continuous support throughout the entire process. Thanks.

iv

Table of Contents

Introduction	1
Chapter 1: The Atmosphere	3
Chapter 2: Thermodynamics in the Atmosphere	8
Chapter 3: Kinetic Theory of Gases	16
Chapter 4: Air Parcel	23
Chapter 5: Thermodynamic Diagram and Skew-T/Log P Plot	35
Chapter 6: Indices	42
Chapter 7: Instruments	46
Chapter 8: Data	52
Chapter 9: Conclusion	73
Bibliography	75
Appendix A	80
Appendix B	83
Appendix C	85

Figure 1: Vertical temperature profile for the	
U.S. Standard Atmosphere	5
Figure 2: (a) Piston at rest; (b) Piston moving up a distance dy	10
Figure 3: Work is equal to the area under the curve	
Between V_i and V_f on the PV diagram	11
Figure 4: Heat is equal to the area under the curve between S_i	
and S_f on the TS diagram	13
Figure 5: Line A represents an isovolumetric process;	
Line B represents an adiabatic process; Line C represents	
an isothermal process. Line D represents an	
isobaric process	15
Figure 6: Cubic box in which a molecule is colliding with	
a wall of the container	17
Figure 7: An ideal gas is taken from one isotherm to another	
following three different paths	20
Figure 8: Representation of an air parcel in a vertical	
column of the atmosphere	24
Figure 9: Thermodynamic Diagram	36
Figure 10: Skew-T/Log-P Diagram	38

Figure 11: Balloon Borne Sounding System being released	46
Figure 12: RWP50	48
Figure 13: RWP915	48
Figure 14: Tipping bucket precipitation gauge	49
Figure 15: RWP data plot	51
Figure 16: MMCR data plot	52
Figure 17: SMOS data plot	53
Figure 18: Comparison of vertical velocities from RWP	
and V _{CAPE}	56
Figure 19: Comparison of vertical velocities from RWP	
and $0.5 V_{CAPE}$	57
Figure 20: Gaussian distribution of the deviation between the	
RWP and the $0.5V_{CAPE}$	60
Figure 21: Linear plot of RWP vs. 0.5V _{CAPE}	61
Figure 22: Comparison of RWP velocities and $0.45V_{CAPE}$	62
Figure 23: Gaussian distribution of the deviations between the	
RWP and the $0.45V_{CAPE}$	63
Figure 24: Linear plot of RWP vs. 0.45V _{CAPE}	64
Figure 25: Comparison of RWP velocity and $0.55V_{CAPE}$	64

Figure 26:	Gaussian distribution of the deviations between the	
	RWP and the $0.55V_{CAPE}$	65
Figure 27:	Linear plot of RWP vs. 0.55V _{CAPE}	66
Figure 28:	Gaussian distribution of the deviations between the	
	RWP and the Brunt-Väisälä velocity	68
Figure 29:	Linear plot of RWP vs. Brunt-Väisälä velocities	69
Figure 30:	CAPE histograms for soundings at the SGP site	70
Figure 31:	Graph of average deviations vs. condensation coefficients	72

List of Tables

Table 1: Composition of the earth's atmosphere below 100 km	3
Table 2: Essential Laws of Thermodynamics	11
Table 3: Navier-Stokes Equations	32
Table 4: CAPE Guide to Weather	43
Table 5: NCAPE Guide to Weather	44
Table 6: Primary Quantities Measured by BBSS	46
Table 7: Secondary Quantities Measured by BBSS	46
Table 8: Sample of CAPE/RWP Readings	54
Table 9: Calculated Velocity from CAPE	55
Table 10: Deviations between RWP and V_{CAPE}	56
Table 11: Deviations between RWP and 0.5 V_{CAPE}	58
Table 12: Statistical analysis for comparing data	58
Table 13: Expected frequency of data points	60
Table 14: Deviations between RWP and 0.45 V_{CAPE}	62
Table 15: Deviations between RWP and 0.55 V_{CAPE}	65
Table 16: Vertical velocity calculated from the Brunt-	
Väisälä frequency equation	67
Table 17: Deviations between RWP and the Brunt-	
Väisälä velocity	67

Introduction

When and where is the next tornado going to hit? What path will the next hurricane take? Scientists have asked these questions since the beginning of meteorological studies. In the beginning, man thought angry gods caused weather. Even today, there are cultures that pray to gods to bring better weather. As mankind evolved, so did the methods by which weather was observed. During the Golden Age of Greece, Aristotle compiled data that included rain, hail, snow, and other meteorological phenomena in a book titled *The Meteorologica* in 318 B.C. Also during this time Hippocrates wrote a book about how weather affected people's health called *Airs, Waters, &Places* [1].

Following the Golden Age of Greece, science declined as wars for territory increased. It wasn't until the late 1500's and early 1600's during the scientific revolution that new equipment and ideas allowed for scientific advancements in the study of meteorology. The invention of the thermometer by Galileo in 1603 and the barometer by Torricelli in 1643 made data collection more accurate. As time went on, scientists started seeing patterns in the weather data and applied it to their current weather conditions. It was from this data that a more reliable weather prediction system started.

1

Today most meteorologists use statistical data dating back over 100 years to statistically predict the weather patterns. There have been many advancements in the last few years largely due to the advancement of technology available to them for *in situ* or real time data. The Atmospheric Radiation Measurement (ARM) equipment facility at the Southern Great Plains (SGP) site in Lamont, Oklahoma has the some of the most powerful high-resolution weather gathering instruments available. The SGP site is one of three major sites operated by Argonne National Laboratories (ANL) in conjunction with the Department of Energy (DOE). Equipment such as high resolution Doppler radar allows scientists to see cloud formation and activity from ground level to tens of miles in the air. Along with ground instruments and weather satellites that send images of the atmosphere over specific regions scientists are able to establish better dynamical models of the weather. Scientists around the world are using these new instruments to devise more accurate dynamic models for a particular region. Similar studies are being conducted in Darwin, Australia, Belém, South America, and in California. Analysis of the data is only reliable over the topographical area where the instruments are located. By analyzing the data over the SGP site, a vertical velocity parameter was developed that could help create a better dynamic model of the weather for Lamont, Oklahoma.

2

Chapter 1: The Atmosphere

To look at the dynamics of an air parcel traveling vertically in the atmosphere it is necessary to look at the atmosphere itself. When compared to the size of the earth the atmosphere is very thin. Most of the mass of the atmosphere is located under the 500-mb level, which is a height of approximately 5.5 km. This is than 0.001 of the radius of the earth [2].

It is important to know the composition of the atmosphere. Since our goal is to analyze severe weather situations, it is important to know exactly how much water vapor is present in the atmosphere that is responsible for this weather. According to Wallace [2] the atmosphere consists of about 76% nitrogen and 23% oxygen by mass, Table (1).

Table 1: [2]

Constituent	Molecular weight	Content (fraction of total molecules)
Nitrogen (N ₂)	28.016	0.7808 (75.51% by mass)
Oxygen (O_2)	32.00	0.2095 (23.14% by mass)
Argon (A)	39.94	0.0093 (1.28% by mass)
Water vapor (H_2O)	18.02	0-0.04
Carbon dioxide (CO_2)	44.01	325 parts per million
Neon (Ne)	20.18	18 parts per million
Helium (He)	4.00	5 parts per million
Krypton (Kr)	83.7	1 parts per million
Hydrogen (H)	2.02	0.5 parts per million
Ozone (O_3)	48.00	0-12 parts per million

Composition of the earth's atmosphere below 100 km

As seen in Table (1), the amount of water vapor is roughly 0 to 4 percent of the molecules in the atmosphere. This small amount of water vapor present in the entire atmosphere accounts for all the precipitation on the planet.

The atmosphere has layers where the physical properties of an air parcel behave differently. The lowest layer, called the troposphere, is located between the earth's surface up to a pressure of about 190 mb. "The troposphere (literally, the turning or changing sphere) accounts for more than 80% of the mass and virtually all of the water vapor, clouds, and precipitation in the earth's atmosphere" [2]. Since most of the water vapor resides in the troposphere than most of the earth's weather is generated in the troposphere. As an air parcel rises in the troposphere the temperature of that parcel decreases as shown in Fig. (1). The next layer in the atmosphere is called the tropopause, here a transition takes place between the troposphere and the stratosphere. During this transition the air parcel stays at a steady temperature as it rises into the stratosphere. Fig.(1) shows the temperature increase profile defined by the US Standard Atmosphere, which was established by the National Oceanic and Atmospheric Administration in 1976 as a standard pressure at sea level being 1013 mb [2]. "The stratosphere (literally, the layered sphere) is characterized by very small

4

vertical mixing. Even the most vigorous thunderstorm updrafts are unable to penetrate more than a few kilometers into the lower stratosphere"[2]. One can think of the stratosphere as a lid that keeps the weather contained in the troposphere. One of the main difference between the troposphere and the stratosphere is that as an air parcel rises through the stratosphere its temperature increases and is shown in Fig. (1).

Figure 1: Vertical temperature profile for the U.S. Standard Atmosphere [2].

The reason for the different temperature changes in each level of the atmosphere is directly related to the molecules that are present in each level. Since the troposphere contains nearly all the water vapor in the atmosphere,

"it absorbs solar energy and thermal radiation from the planet's surface" [3] which causes the surrounding air parcel to decrease in temperature. The stratosphere contains virtually no water vapor and nearly all the ozone in the atmosphere. "Ozone plays the major role in regulating the thermal regime of the stratosphere. Temperature increases with ozone concentration. Solar energy is converted to kinetic energy when ozone molecules absorb ultraviolet radiation, resulting in heating of the stratosphere" [3]. In the mesosphere water vapor and ozone are negligible and therefore the temperature is lower than the stratosphere and troposphere. The few molecules that remain the thermosphere increase in temperature as they move vertically. "This increase in temperature is due to the absorption of intense solar radiation by the limited amount of remaining molecular oxygen" [3].

Since weather is contained within the troposphere and the very lower parts of the stratosphere the other layers of the atmosphere are not as critical to this analysis. The layers above the stratosphere are the stratopause, mesosphere, mesopause, and thermosphere. The stratopause, like the tropopause, is the transition layer between the stratosphere and the mesosphere. The mesosphere is comparable to the troposphere because the temperature decreases as air moves up in altitude as well as not inhibiting

6

the motion of the air like the stratosphere. The mesopause is the transition layer between the mesosphere and the thermosphere. The thermosphere extends upward to an altitude of several hundred kilometers and can vary in temperature from 500°K to 2000°K. Not shown in Fig. (1) is the exosphere that extends upward to about 500 kilometers. The exosphere is where the space station and the shuttle orbit the earth.

Chapter 2: Thermodynamics in the Atmosphere

An understanding of thermodynamics is needed to describe physical changes an air parcel undergoes as it moves vertically through the atmosphere. The following summary of the needed thermodynamics follows closely the material in Serway [4] and Reif [5]. Air is composed of many different types of gases. A simple analysis of gas is made possible by a basic equation of state known as the ideal gas law [6]. Therefore a basic approach to analyzing air is to assume it is an ideal gas. An ideal gas is one in which the following assumptions are made: 1-- the temperature of the gas is not low enough to condense into a liquid, 2-- the gas molecules do not interact except upon elastic collisions, and 3-- the molecular volume is negligible compared to the volume of the parcel. The ideal gas law can be expressed as

$$PV = nRT. (2.1)$$

In this equation P is pressure measured in pascals (Pa), V is volume measured in cubic meters (m³), n is the number of moles, T is temperature measured in Kelvins (K), and R is the universal gas constant which has a value of 8.315 J/mol•K. According to this equation an ideal gas is one in which the ratio of PV/nT is a constant. A kinetic molecular description of the ideal gas law is in terms of the number of molecules N and their

interactions and not the number of moles. Substituting for n, Eq.(2.1) becomes

$$PV = Nk_{B}T.$$
 (2.2)

Here k_B is Boltzman's constant which is equal to

$$k_{\rm B} = \frac{R}{N_{\rm A}} = 1.38 \times 10^{-23} \, \text{J} / \text{K}.$$
 (2.3)

Eq. (2.2) can be expressed in terms of ρ , the density of the gas as

$$P = \frac{\rho k_B T}{M}$$
(2.4)

From these equations one can see that the pressure, volume, and temperature are considered to be the thermodynamic variables.

Consider the work done on an ideal gas that occupies a piston with an initial volume V and pressure P, Fig. (2). As the piston moves upward from y to y + dy the volume of the gas increases from V to V + dV. According to the definition of pressure P = F/A, where F is the force applied perpendicular to a surface of cross-sectional area A. The work done on the gas by the piston is given as

$$dW = Fdy = PAdy.$$
(2.5)

Figure 2: (a) Piston at rest. (b) Piston moving up a distance dy.[4]

Notice that A dy is the increase of the volume dV, so the work done on the gas becomes

$$dW = PdV. (2.6)$$

To find the total work done on the gas through a change of V_i to V_f one can integrate both sides of Eq. (2.6), which gives

$$\Delta W = \int_{V_i}^{V_f} P dV. \qquad (2.7)$$

From Eq. (2.6) if the pressure of the gas were to be plotted against the volume of the gas, called a PV diagram, the work done would equal the area under the curve between V_i and V_f , Fig. (3).

Figure 3: Work is equal to the area under the curve between V_i and V_f on the PV diagram.

The PV diagram is the most basic thermodynamic diagram. We will develop the concept of thermodynamic diagrams further in chapter 5.

Next consider the fundamental laws of thermodynamics, Table (2).

Table	2 : Fundamental Laws of Thermodynamics
• 2	Zeroeth Law $T_A = T_C$, $T_B = T_C$, $\therefore T_A = T_B$
• 1	st Law $dU = dQ - dW$
■ 2	L^{nd} Law $\Delta S > 0$
■ 3	$\int_{T \to T_0}^{T} S \to S_0$

The Zeroeth law of thermodynamics states, "if two systems are in thermal equilibrium with a third system, they must be in thermal equilibrium with each other"[5]. The first law states that any change of internal energy dU is equal to the difference between the amount of heat put into the system dQ and the amount of work done by the system dW, Eq. (2.8).

$$dU = dQ - dW$$
(2.8)

It is important to know that the quantities dQ and dW represent an inexact differentials which means that the change of heat dQ and the change of work dW depend on the path taken and not only the initial and final states. Whereas dU only depends on the initial and final states of the internal energy.

The second law states that if a system is in equilibrium it has a certain quantity called entropy (S) measured in J K⁻¹, which has the following properties, determined by the environment of the system. First, "in any process in which a thermally isolated system goes from one macrostate to another, the entropy tends to increase"[5],

$$\Delta S \ge 0. \tag{2.9}$$

Second, "if the system is not isolated and undergoes a quasi-static infinitesimal process, which is a process that moves slow enough to keep the parcel in thermal equilibrium at all times, in which it absorbs heat dQ"[5], than

$$dS = \frac{dQ}{T}$$
(2.10)

The third law states that the entropy of a system S has a limiting property such that as T goes to T_0 , S goes to a constant S_0 , where S_0 is independent of all the parameters of that system.

The change of heat dQ of a system can be found by plotting Eq. (2.10) in similar fashion as done with Eq. (2.7) the area under the curve equals the change of heat in the system, Fig. (4).

Figure 4: Heat is equal to the area under the curve between S_i and S_f on the TS diagram

There are several processes in thermodynamics that are useful to us which can be investigated through Eq. (2.8). If a process occurs at a constant pressure it is called an isobaric process. In an isobaric process the change of pressure dP = 0 and the work done is equal to

$$\Delta W = P \int_{V_i}^{V_f} dV$$

$$\therefore \Delta W = P \Delta V. \qquad (2.11)$$

If a process occurs at a constant volume it is called an isovolumetric or isochoric process. In this process the change of volume of the system dV=0. Since dV = 0, from Eq. (2.6) the total work done on the system is zero since work is directly related to the change of volume. Therefore the change of internal energy comes directly from the amount of heat added or taken from the system, Eq. (2.12).

$$dU = dQ \tag{2.12}$$

If a process occurs at a constant temperature it is called an isothermal process. In this process the change of temperature of the system dT = 0. In an isothermal process the change of internal energy is zero because the "internal energy of an ideal gas is a function of temperature only"[4]. Therefore the amount of heat added to the system is equal to the amount of work done on the system, Eq. (2.13).

$$dQ = -dW \tag{2.13}$$

Finally, if a process occurs in which no heat is added or taken away from the system it is called an adiabatic process. In an adiabatic process the change of heat of the system dQ = 0. Since dQ = 0, the change of internal energy is equal to the negative work done on the system, Eq. (2.14).

$$dU = -dW \tag{2.14}$$

It is this process that will be modeled for the air parcel ascending vertically and will be assumed to rise adiabatically through the air. Fig. (5) shows each of the processes on a PV diagram and the paths that the gas could take.

Figure 5: Line A represent an isovolumetric process. Line B represents an adiabatic process. Line C represents an isothermal process. Line D represents an isobaric process.

Chapter 3: Kinetic Theory of Gases

Now that a macroscopic model of an ideal gas has been examined, it is also useful to examine a molecular model of an ideal gas. This summary of the molecular model of an ideal gas follows closely the material in Serway [4] and Sears [7].

In a similar fashion to that of the macroscopic model of an ideal gas, there are some underlying assumptions that need to be made in order to proceed with the molecular model: 1 -- The number of molecules is large and the distance between each molecule is also large. This means that the total volume of the molecules is small compared to that of the container itself. 2 -- Each molecule obeys Newton's three laws of motion where each molecule randomly moves in the container. 3 -- When the molecules collide with the walls of the container and each other they undergo an elastic collision such that energy and momentum are conserved. 4 -- The interactive forces between the molecules are negligible except during collisions. 5 -- The gas under consideration is composed of all the same molecules. With these assumptions we can look at the interactions of the molecules within the container.

Consider a molecule inside a cubic box with sides of length d that collides with one of the walls of the box moving at some velocity **v**, Fig. (6).

16

Figure 6: Cubic box in which a molecule is colliding with a wall of the container.

Applying Newton's second law to the molecule colliding with the wall of the box, the force that the wall exerts on the molecule is equal to Eq. (3.1).

$$F_{\text{on wall}} = \frac{mv_x^2}{d}$$
(3.1)

If all of the forces exerted on the wall were averaged in the x direction it would give the following, Eq. (3.2).

$$F = \frac{Nm}{d} \overline{v}_x^2.$$
(3.2)

Here N is the number of molecules and v-bar is the average of all the velocities in the x direction. If we take this situation and apply it to the x, y, z, directions we find that the total force is equal to Eq. (3.3).

$$F = \frac{N}{3} \left(\frac{m \overline{v}^2}{d} \right)$$
(3.3)

The derivations of Eq. (3.1), (3.2), and (3.3) can be found in appendix A. Plugging Eq. (3.3) into the equation P = F/A a value for the total pressure exerted on the walls of the box by the molecules is obtained, Eq. (3.4).

$$P = \frac{F}{A} = \frac{F}{d^2} = \frac{1}{3} \left(\frac{N}{d^3} m \overline{v}^2 \right) = \frac{1}{3} \left(\frac{N}{V} m \overline{v}^2 \right)$$
$$P = \frac{2}{3} \left(\frac{N}{V} \right) \left(\frac{1}{2} m \overline{v}^2 \right)$$
(3.4)

This result indicates that the pressure is proportional to the number of molecules per unit volume and directly proportional to the average kinetic energy of the molecules.

Taking Eq. (3.4) and Eq. (2.2) we can find the average kinetic energy of the molecules with respect to temperature as

$$\frac{1}{2}m\bar{v}^2 = \frac{3}{2}k_BT.$$
 (3.5)

Eq. (3.5) also represents the total energy of a monatomic gas since a monatomic gas molecule moves only in the x, y, and z directions. Therefore, it is said to have three degrees of freedom. Dividing the right side of Eq. (3.5) by 3, each degree of freedom has energy of $1/2k_BT$. If the gas consists of diatomic molecules there are more possible degrees of freedom. These degrees of freedom can come from the rotational or vibrational energies that a diatomic molecule can obtain. Rotationally the diatomic molecule can rotate three different ways, but only two of the rotations are substantial enough to add to the total energy. Vibrationally the diatomic molecule has two degrees of freedom, back and forth, which adds to the total energy. Adding all the degrees of freedom for a diatomic molecule the total energy of the system becomes

$$E_{\rm T} = \frac{7}{2} \,\mathrm{Nk}_{\rm B} \mathrm{T} = \frac{7}{2} \,\mathrm{nRT}.$$
 (3.6)

Consider an ideal gas in which one wants to change the temperature of the system. This temperature change can take places using different paths as shown in Fig. (7). Since ΔT is the same for each of these paths, the change of internal energy is also the same for each one. However, according to Eq. (2.8) the amount of heat added to the system equals the change of internal energy plus the work done. The work done on each of the paths in Fig. (7) is different from the earlier explanation that work is equal to the area under the curve on a PV diagram.

Figure 7: An ideal gas is taken from one isotherm to another following three different paths.

Since this occurs, it requires the definition of a new term called molar specific heat for the two processes that occur most frequently, which are the constant volume and pressure processes as discussed in Ch.(2). Using the definition of molar specific heat, the amount of heat required to change the temperature of a system is

$$Q = nC_V dT \text{ (constant volume)}$$
(3.7)

$$Q = nC_{p}dT$$
 (constant pressure) (3.8)

where C_V and C_P are the molar specific heat at constant volume and pressure respectively. Applying Eq. (3.7) to a monatomic gas which undergoes an isovolumetric expansion, the molar specific heat can be defined in terms of internal energy dU. In an isovolumetric expansion the work done dW is zero, such that all heat Q added to the system changes into U, Eq. (2.12). Setting Eq. (2.12) equal to Eq. (3.7) the molar specific heat at a constant volume is

$$C_{V} = \frac{1}{n} \frac{dU}{dT}.$$
(3.9)

Instead of taking the gas through an isovolumetric process, suppose the gas is taken through an isobaric process. As Eq. (2.11) shows, the work done is equal to the pressure and the change of volume. This leads to an internal energy equation

$$dU = dQ - dW = nC_{P}dT - PdV.$$
(3.10)

Rearranging Eq. (3.9) and substituting in for dU and PdV = nRdT from the ideal gas law a relationship exists between C_V and C_P

$$nC_{V}dT = nC_{P}dT - nRdT$$

$$C_{P} - C_{V} = R.$$
(3.11)

Suppose now the gas is taken through an adiabatic process in which no heat is gained or lost. In this case the pressure and the volume are related at any time during this process by the equation

$$PV^{\gamma} = constant$$
 (3.12)

where $\gamma = C_P/C_V$ is constant throughout the process. Since Eq. (3.12) is a constant throughout the entire adiabatic process, initial and final equations for the system can be written both in terms of P-V and in terms of V-T as

$$\mathbf{P}_{i}\mathbf{V}_{i}^{\gamma} = \mathbf{P}_{f}\mathbf{V}_{f}^{\gamma} \tag{3.13}$$

$$T_i V_i^{\gamma - 1} = T_f V_f^{\gamma - 1}.$$
 (3.14)

Chapter 4: Air Parcel

"Many of the most interesting meteorological phenomena are associated with strong or even violent vertical motion. These phenomena suggest that we attempt to determine the conditions that will yield strong vertical motions. The classical approach to this problem is to investigate what will occur when a small parcel is vertically displaced from its original position" [11].

The air parcel mentioned above is defined as an amount of air that is large enough to contain millions of molecules so pressure and density are well defined. However, the parcel must also be small enough so that density and pressure throughout is uniform. "Thus the pressure and density are macroscopic descriptions of the molecular properties and motions of the gas, and the velocity of the parcel is the average of all the molecular velocities" [11]. There are two assumptions that must be made when choosing an air parcel to analyze: 1 -- The pressure of the air parcel will always match the pressure of the surrounding air. 2 -- The parcel moves adiabatically so that the potential temperature is constant throughout the motion. The remainder of this chapter will be focused on the analysis of an air parcel by different methods that develop in Dutton [11] and Wallace [2].

23

Fig. (8) shows an air parcel in a vertical column of the atmosphere.

Figure 8: Representation of an air parcel in a vertical column of the atmosphere. [2]

The mass per area of the air parcel is given by ρ dz and the pressure acting on the air parcel due to its weight is equal to ρ g dz. The pressure on the top of the air parcel decreases by an amount of dp over a height dz. One must assume that the air parcel is in equilibrium by summing up the forces acting on the parcel of air according to Newton's second law,

$$p_{bottom} = p_{top} + dp \tag{4.1}$$

Since the air parcel is in equilibrium, the forces must equal zero. However, Eq. (4.1) gives a net buoyant force in the positive vertical direction equal to dp. To reach equilibrium, dp must be equal to the pressure acting on the air parcel due to its weight.

$$dp = -g\rho dz$$

$$\frac{dp}{dz} = -g\rho.$$
(4.2)

Eq. (4.2) is known as the hydrostatic equation. Integrating both sides of Eq. (4.2)

$$-\int_{p(z)}^{p(\infty)} dp = \int_{z}^{\infty} g\rho dz$$
$$p(z) = \int_{z}^{\infty} g\rho dz \qquad (4.3)$$

shows that the pressure at a height z will be equal to the weight of air in the vertical column above the parcel. At sea level the pressure equals 1.013 x 10^5 Pa or 1013 mb [2]. The hydrostatic equation "almost always gives an adequate representation between pressure and density makes it a potent concept, especially for analysis of large-scale flow. It provides one relation between p and ρ and the equation of state provides another between p, ρ , and T, and hence one may be eliminated" [11].

Substituting the ideal gas law into Eq. (4.2) with the assumption that the acceleration of gravity is constant throughout the atmosphere by integrating one can obtain the Law of Atmospheres

$$P = \frac{\rho k_{B}T}{m} \Rightarrow \rho = \frac{Pm}{k_{B}T}$$

$$\frac{dp}{dz} = -g\left(\frac{Pm}{k_{B}T}\right) \Rightarrow \int_{p(0)}^{p(z)} \frac{dp}{P} = \int_{0}^{z} -\frac{gm}{k_{B}T} dz$$

$$P(z) = P(o)e^{-mgz/k_{B}T}.$$
(4.4)

The hydrostatic equation assumes a uniform acceleration of gravity as an air parcel moves vertically in the atmosphere. It is important to note that the acceleration due gravity decreases as a function of height by

$$g(\phi, z) = g_{\phi} \left(\frac{a}{a+z}\right)^2$$
(4.5)

where a is the radius of the earth, z is the height above sea level, and g_{ϕ} depends on latitude and is given by the equation

$$g_{\phi} = 980.6160[1 - 2.64x10^{-3}\cos 2\phi + 5.9x10^{-6}\cos^2 2\phi] \text{ cm/s.}$$
 (4.6)

If we take a unit mass and raise it to a height z above the earth's surface, the mass has some potential energy equal to the amount of work done against earth's gravitational field. Using Eq. (4.5) with the above statement, the potential energy of a unit mass, known as geopotential, can be expressed by

$$\Phi = \int_{0}^{z} g_{\phi} \left(\frac{a}{a+z}\right)^{2} dz + \Phi(0)$$
(4.7)

The value for $\Phi(0)$ is usually taken to be zero at sea level. Therefore Eq. (4.7) becomes

$$\Phi(z) = g_{\phi} \frac{az}{a+z}.$$
(4.8)

It is also helpful in meteorology to define levels in the atmosphere where the geopotential is constant. Geopotential height (Z) is used frequently as a vertical component of the atmosphere when energy plays an important role. Geopotential height is defined by

$$Z = \frac{\Phi}{g_{o}} \quad g_{o} = 9.80 \text{m/s}^{2}.$$
 (4.9)

Potential temperature θ is often used in analyzing air parcels rather than actual temperature. Potential temperature is defined as the "temperature which the parcel of air would have if it were expanded or compressed adiabatically from its existing pressure and temperature to a standard pressure p_o" [2]. The equation which defines potential temperature is known as Poisson's equation which is

$$\theta = T \left(\frac{p_o}{p}\right)^{R/C_P}.$$
(4.10)

For dry air, $R = R_d = 287 \text{ J deg}^{-1} \text{ kg}^{-1}$ and $C_P = 1004 \text{ J deg}^{-1} \text{ kg}^{-1}$; so $R/C_P = 0.286$ [2]. Potential temperature is an important parameter in meteorology

because air parcels often undergo processes which are close to adiabatic, which means that θ remains constant.

The change in temperature of an air parcel as it moves vertically in the atmosphere is called the lapse rate, γ , and is defined by

$$\gamma = -\frac{\mathrm{dT}}{\mathrm{dz}}.\tag{4.11}$$

The negative sign in Eq. (4.11) gives a positive lapse rate since temperature decreases with height and the units are deg km⁻¹. For a dry parcel of air, the lapse rate γ_d is defined by

$$\gamma_{\rm d} = \frac{g}{C_{\rm p}} \cong 10 \text{deg/km.}$$
 (4.12)

This value is only for a dry parcel of air that is being lifted adiabatically. "The actual lapse rate of temperature in the atmosphere, as measured by a radiosonde, averages $6 - 7 \text{ deg km}^{-1}$ in the troposphere but it takes on a wide range of values at individual locations" [2].

The mixing ratio is the amount of water vapor in the air compared to the mass of dry air,

$$w \equiv \frac{m_v}{m_d}.$$
 (4.13)

The mixing ratio w is usually expressed in terms of grams of water vapor to kilograms of dry air. If the air becomes saturated then Eq. (4.13) becomes

$$w_{s} = \frac{m_{vs}}{m_{d}}$$
(4.14)

where m_{vs} is the amount of water vapor in the saturated air.

The relative humidity RH of the air depends upon both w and w_s . It is the ratio of the actual mixing ratio to the saturated mixing ratio given by

$$RH \equiv 100 \frac{W}{W_s}.$$
 (4.15)

The dew point temperature T_d is a temperature that determines the saturation point of an air parcel. If the air parcels cools to T_d , then the air parcel becomes saturated. Comparably it is when the saturation mixing ratio w_s equals the actual mixing ratio w and the relative humidity becomes 100%.

Using Archimedes's principle the net force F on an air parcel is the difference between the force of gravity on the air parcel of mass M_P and the mass M of the surrounding air displaced by the parcel. This force is assumed to act positively upward given by

$$F = g(M - M_P).$$
 (4.16)

This force becomes equal to the acceleration of the air parcel when it is applied to Newton's 2nd law of motion

$$M_{\rm P} \frac{d^2 z}{dt^2} = F = g(M - M_{\rm P}).$$
 (4.17)

Dividing both sides of Eq. (4.17) by the volume of the air parcel, Eq. (4.17) can be written in terms of the difference of densities of the air parcel and the surrounding air,

$$\frac{d^2 z}{dt^2} = g\left(\frac{\rho - \rho_P}{\rho_P}\right). \tag{4.18}$$

Eq. (4.18) shows that if the air parcel is less dense than the surrounding air it will accelerate upward, and if the air parcel is denser then the surrounding air then it will accelerate downward. With the assumptions associated with using an air parcel and the ideal gas law, Eq. (4.18) can also be expressed as

$$\frac{d^{2}z}{dt^{2}} = -g\left(\frac{T - T_{P}}{T_{P}}\right) = -g\left(\frac{\theta - \theta_{P}}{\theta_{p}}\right)$$
(4.19)

Dividing Eq. (4.17) by the volume of the air parcel Newton's second law can be rewritten in terms of the change in density between the air parcel and the surrounding air

$$F = g(M - M_{P})$$

$$\rho a = -gd\rho. \qquad (4.20)$$

Applying the chain rule to Eq. (4.20) gives

$$\rho a = \rho \frac{d^2 z}{dt^2} = -g \frac{d\rho}{dz} dz.$$
(4.21)

Substituting the result from Eq. (4.19) and Eq. (2.4), Eq. (4.21) can be rewritten into a second order differential equation using the difference of lapse rates between dry air and the actual lapse rate of an air parcel

$$\frac{d^2}{dt^2}\Delta z + \frac{g}{T}(\gamma_d - \gamma)\Delta z = \frac{d^2}{dt^2}\Delta z + \omega^2 \Delta z = 0.$$
(4.22)

A second order differentiation is considered a harmonic oscillator when given in the form of Eq. (4.22). The quantity ω is known as the Brundt-Väisälä frequency, where

$$\omega = \sqrt{\frac{g}{T}(\gamma_{d} - \gamma)}$$
(4.23)

Eq. (4.23) allows us to determine the period for which the air parcel is rising and falling given by

$$\tau = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{T}{g} \frac{1}{(\gamma_{d} - \gamma)}}$$
(4.24)

Knowing the height over which it is oscillating, the velocity of the air parcel can be calculated from Eq. (4.24) by

$$v = \frac{\Delta z}{2\pi \sqrt{\frac{T}{g} \frac{1}{(\gamma_{d} - \gamma)}}}$$
(4.25)

A more complex way to analyze an air parcel is to apply the Navier-Stokes equations to an air parcel, Table (3).

Table 3: Navier-Stokes Equations	
$\frac{d\vec{v}}{dt} = -\frac{1}{\rho}\nabla p - g\frac{\mathbf{r}}{r} + \frac{1}{\rho}[\nabla \bullet (\mu\nabla\vec{v}) + \nabla(\lambda\nabla \bullet \vec{v})]$	(4.26)
$c_V \frac{dT}{dt} + p \frac{d}{dt} \left(\frac{1}{\rho}\right) = q + f$	(4.27)

$$\frac{\mathrm{d}p}{\mathrm{d}t} + \rho \nabla \bullet \vec{\mathbf{v}} = 0 \tag{4.28}$$

$$\mathbf{P} = \rho \mathbf{R} \mathbf{T} \tag{4.29}$$

Eq. (4.26) is Newton's second law of motion. The left side of the equation equals the acceleration of the air parcel in three dimensions. Examination of the terms on the right side of Eq. (4.26) is more complex. The first term on the right of the equals sign represents the pressure gradient force. This force is the same force that was used in the hydrostatic equation and in the solution of the Brunt-Väisälä equation. The next term in the equation, -g/r r, is the force of gravity on the air parcel itself. The g in this equation is that given by Eq. (4.4) that varies with height and latitude on the earth. The final part to Eq. (4.26) is the force of friction due to the collisions between the molecules in the air. The values of μ and λ are the viscosities of the air molecules.

Eq. (4.27) consists of the Laws of Thermodynamics combined. The terms q and f on the right hand side of the equation refer to the heat lost by the thermodynamic processes and the frictional forces between the molecules respectively.

Eq. (4.28) is called the Continuity Equation. This equation relates the time rate of change of density, and the volume as the air parcel travels through the atmosphere. As the parcel increases in velocity, the density of the parcel increases because the volume decreases. As the velocity decreases the density of the parcel decreases because the volume increases. This follows from Bernoulli's law of pressure. Eq. (4.29) is the ideal gas law written in terms of the density of air, R, and T.

These equations can be deceiving since at first glance there only appear to be four equations. However, since Eq. (4.26) contains a vector quantity **v**, there are three different equations that are derived from that one equation.

The Navier-Stokes equations are the fundamental equations that govern weather. However, since these are non-linear equations that occur in three dimensions it is impossible to solve these equations as a whole for any

situation. Instead certain assumptions can be made to the equations that eliminate sections of Eq. (4.26). These assumptions are that the frictional forces are small enough to be negligible and that the force of gravity does not vary with height. If these assumptions are made, then Eq. (4.26) is reduced to a linear equation that depends only on pressure differences. These pressure differences have already been examined in the hydrostatic equation and the Brunt-Väisälä frequency equation. It is on these assumptions that the theoretical values of vertical velocity depend on.

Chapter 5: Thermodynamic Diagram and Skew-T/Log P Plot

The thermodynamic diagram simplifies lengthy calculations and allows meteorologists to determine temperature and humidity changes in the atmosphere. The diagram also quantitatively answers questions regarding things such as how much rain can fall in a given storm or how high a parcel of air has to be lifted to produce a cloud [8]. A basic understanding of the thermodynamic diagram allows further analysis of a more complex thermodynamic diagram called the Skew-T/Log P plot. Some guidelines for reading a thermodynamic diagram are listed below and refer to Fig. (9) found on the proceeding page. The information shown below follows Gedzelman [8].

The horizontal axis of the thermodynamic diagram is used to represent the temperature of a parcel of air in degrees Celsius, while the vertical axis of this graph represents pressure in millibars. As the air parcel moves upward notice that the pressure is decreasing more rapidly at first, then slower as the air parcel moves higher reaching thermal equilibrium as suggested by the laws of thermodynamics.

The black dotted lines that are approximately horizontal are used to indicate altitude in kilometers. These lines, however, are only approximations based on two assumptions [8]: 1-- the sea level pressure is

1013 mb and 2 -- the temperature of the atmosphere decreases 6.5°C per kilometer, which is the lapse rate for a saturated parcel of air.

As an unsaturated parcel of air is lifted it moves up the solid black dry adiabatic lines that slope downward almost at a 45° angle. As a dry air parcel is lifted it follows the slope of the dry adiabat. The dry adiabatic lines are also lines of constant potential temperature and are given in degrees Kelvin.

Figure 9: Thermodynamic Diagram [8]

The solid red lines that are almost vertical show how the dew point changes as the air parcel is raised or lowered in the atmosphere. These lines also tell the mixing ratio of air when the dew point is known, as well as the saturated mixing ratio when the temperature is known. Once the air has become saturated (the point where the dry adiabatic line and the dew point line meet) it follows the moist adiabatic line. This line is represented by the dashed red line and shows the lapse rate as the air parcel is raised or lowered once saturation has occurred.

The thermodynamic diagram has numerous applications for meteorologists, such as finding information about the temperature (T), dew point temperature (T_d), and the wet bulb temperature (T_w). If two of the three temperatures are known, finding the relative humidity RH and estimating the amount of precipitation are possible from this diagram.

A more useful thermodynamic diagram often used by meteorologists is called the Skew-T/Log-P diagram, Fig (10). The diagram gets its name from the skewed temperature axis that runs at a 45° angle starting from the bottom left to the top right. The vertical axis is a measure of the log of the pressure because, as a parcel of air climbs in altitude the pressure of the parcel drops logarithmically [4].

The vertical axis is a measure of pressure while the diagonal solid black lines are a measure of temperature, Fig. (10).

Figure 10: Skew-T/Log-P Diagram [9]

The red lines which start at the bottom and rise diagonally to the left represent the dry adiabatic lapse rate [10]. These lines represent the path of a dry parcel of air as it is raised or lowered in the atmosphere. As in the case of the thermodynamic diagram previously discussed, the numbers that appear above the red lines are the values of the potential temperature, which is the temperature of a any parcel at 1000 mb, if the parcel was moved adiabatically to a pressure of 1000 mb [8].

The green line represents the saturated adiabatic lapse rate that is the path the air parcel travels when it is saturated. Notice that the saturated adiabatic lapse rate line stops around 200 mb. This is due to the fact that as the saturated parcel of air rises it will eventually lose all of the moisture in the parcel and continue rising at the dry adiabatic lapse rate.

The blue lines that start at the bottom of the diagram and rise diagonally to the right represent the mixing ratio. The saturated mixing ratio is the number of grams of water divided by the number of kg of saturated air [8].

The last two lines represent the direct measurements taken from the radiosonde, which is the instrument attached to the weather balloon. The blue line represents the dew point temperature and the red line is the actual temperature of the air. Usually, these lines never intersect except in extremely moist situations.

Along with the graph itself, the Skew-T/Log-P diagram comes with more information attached. On the far right hand side of the diagram are the wind barbs that show the horizontal wind speed for the altitude that the radiosonde is at, Fig. (10). On the right hand side of the diagram is a list of indices that include but not limited to: convection available potential energy (CAPE), normalized convection available potential energy (NCAPE),

K index, lifted index (LI), Showalter index (SI), lifted condensation level (LCL), level of free convection (LFC), and the equilibrium level (EL) which will be discussed in more detail in Ch. (6).

Chapter 6: Indices

One of the methods that meteorologists use to predict weather is numerical numbers known as indices. These indices range from a very trivial mathematical calculation to an integration taking over a section of the troposphere. These indices often appear on the Skew-T/Log-P diagrams. There are numerous indices to analyze, but will be limited to the Lifted Index, the Showalter index, the K Index, CAPE, and NCAPE.

The Lifted Index or LI is the most simplistic of the indices that will be examined. It is the difference between the ambient air temperature at 500 mb and the air parcel's temperature if lifted adiabatically from the surface to the lifted condensation level and then moist adiabatically to 500 mb [10]. A parcel's lifted condensation level (LCL) is the level at which clouds start to occur. It usually occurs at the intersection between the temperature and the dew point.

The Showalter Index or SI is very similar to that of the LI. It is the difference between the temperature of the environment at 500 mb and the air parcel's temperature if lifted from 850 mb to the LCL and then moist adiabatically to 500 mb. The SI provides an estimate of the air parcels instability based on the difference of temperatures [10].

The K Index is another method of weather prediction that uses more temperature points than the LI and SI. The K Index equation is

$$K = T_{850} - T_{500} + T_{d850} - (T_{700} - T_{d700})$$
(6.1)

where the subscript d represents the dew point temperatures at the given pressure values.

Convective Available Potential Energy or CAPE is the area on a thermodynamic diagram enclosed by the environmental temperature profile and the moist adiabat connecting the level of free convection (LFC) to the equilibrium level (EL) [12,13]. CAPE is derived from Eq. (4.17). Integrating both sides it gives

$$E = g \int_{LFC}^{EL} \left(\frac{\theta_P - \theta}{\theta} \right) dz$$
 (6.2)

where E is the amount of energy per unit mass or J kg⁻¹. The LFC is the pressure level in which the air parcel becomes unstable and experiences a positive buoyant force. EL is the level in which the air parcel regains stability and experiences a negative buoyant force. Knowing the CAPE of an air parcel and using the conservation of energy, the speed of the air parcel can be determined by

$$\frac{1}{2}mv^{2} = CAPE$$

$$v = \sqrt{2*CAPE}$$
(6.3)

where the velocity is measured in m s⁻¹ and the kinetic energy is associated with a unit mass. Meteorologists use certain values of CAPE to help predict the possibility of storms as shown in Table (4).

Table 4: CAPE Guide to Weather [12,14]

CAPE < 0 = Stable

0-1000 = Marginally Unstable (Possible Thunderstorms)

1000-2500 = Moderately Unstable (Possible Severe Thunderstorms)

2500-3000 = Very Unstable (Severe Thunderstorms and possible Tornadoes)

CAPE > 3000 = Extremely Unstable (Catastrophic)

The CAPE values above 1000 will be analyzed further in the paper for accuracy regarding thunderstorm activity.

The Normalized CAPE or NCAPE is the last index that will be discussed. NCAPE is related to CAPE by

$$NCAPE = \frac{CAPE}{FCL}.$$
 (6.4)

FCL is called the free convection level and is found by the difference of altitudes between the EL and the LFC [15]. The NCAPE is takes into account the height over which the CAPE occurs which gives a more precise estimate for weather forecast. Table (5) is a summary of a study in Northern California of NCAPE and severe weather.

Table 5: NCAPE Guide to Weather [15]

NCAPE<0.03 = Isolated to scattered showers occurred

0.04 - 0.08 = Numerous showers, scattered thunderstorms

0.09 - 0.13 = Numerous thunderstorms, isolated to scattered strong

thunderstorms

NCAPE > 0.14 = Strong thunderstorms

Chapter 7: Instruments

To compare vertical wind velocities for severe weather, data from three different instruments were used. These instruments supplied information regarding CAPE, vertical wind velocities, horizontal wind velocities, and precipitation output. The most essential of the three instruments was the Balloon-Borne Sound System (BBSS).

The BBSS has two main components to the system. The first component is a disposable Väisälä radiosonde. The radiosonde is comprised of different instruments for collecting various quantities of data. The instruments that make up the radiosonde are a thermistor which measures temperature, a hygristor which measures relative humidity, an aneroid barometer which measures pressure, a baroswitch which is a switching mechanism for the barometer, a commutator bar which transmits humidity and reference information as well as temperature information, an oscillator radio transmitter, and a battery [16]. The box is attached to a balloon that is made of a thin film or rubber as shown in Fig. (11).

At launch, the balloon is filled with helium to a diameter of about two meters. As the balloon rises the diameter expands to about eight meters before the balloon bursts. As the balloon rises through the air the radiosonde takes data on the thermodynamic state of the atmosphere, the wind speed

Figure 11: Balloon Borne Sounding System being released [17]. (Photo credit- Dr. Bill Rose of Michigan Technical University)

and the direction. The primary quantities that are measured from the BBSS

during a free balloon ascent as a function of time are listed below in Table

(6).

Table 6: Primary quantities measured by the BBSS [18]

- Pressure (hPa)
- Temperature (°C)
- Relative Humidity (%RH)
- Wind speed (m/s)
- Wind direction (deg)

The secondary or derived quantities that are measured from the BBSS during

a free balloon ascent also as a function of time are listed below in Table (7).

 Table 7: Secondary quantities measured by the BBSS [18]

- Altitude (gpm)
- Dew Point (°C)
- Ascent Rate (m/s)
- Latitude of Sonde (°N)
- Longitude of Sonde (°W)
- u-component of wind velocity (m/s)

The second component of the BBSS is the ground station to which the data is sent back from the radiosonde as it ascends through the atmosphere. The ground station at the SGP site consists of a receiver processor, a UHF receiver, a GPS processor, a UHF antenna, a GPS antenna, and a floppy disk drive. Once the data is received from the radiosonde, the information is then plotted as a thermodynamic diagram called a Skew-T plot.

While the radiosondes are very durable, there are situations that occur which interfere with the quality of data. Some of the more common situations that the BBSS might experience which can affect the quality of the data received are incorrect surface conditions, humidity sensor saturation or icing, and interference and signal confusion with other radiosondes [18].

The second instrument that was used to compare the results was the Radar Wind Profiler and RASS 50 MHz and 915 MHz (RWP50 and RWP915). The RWP50 consists of a large antenna field of elements created essentially by coaxial cable suspended roughly 1.5 m above a ground plane. The approximately 70 m square antenna is oriented in a horizontal plane so the "in-phase" beam travels vertically as shown in Fig. (12).

Figure 12: RWP50 [19]

Figure 13: RWP915 [20]

The RWP915 is constructed of an antenna that is approximately 4 m square and is oriented horizontally so the "in-phase" beam travels vertically as shown in Fig. (13). Along with the horizontal antenna the each system includes acoustic sources, a mobile acoustic source, a receiver, an interface module, and a computer for data analysis and processing.

"The RWP50 measures wind profiles from (nominally) 2 to 12 km and virtual temperature profiles from 2 to 4 km" [19]. "The RWP915 measures wind profiles from (nominally) .1 km to 5 km and virtual temperature profiles from .1 km to 1.5 km" [20]. The primary measurements of both the RWP50 and the RWP915 are the intensity and Doppler frequency of backscattered radiation. The more interesting data received from the RWP instruments are the secondary measurements derived from the primary quantities. These measurements include horizontal wind speeds and direction, vertical wind speeds, and virtual temperature as a function of height. The accuracy to which the RWP50 and the RWP 915 collect data for horizontal wind speed is 1.5 m/s, for vertical wind speed is 0.75 m/s, and for virtual temperature is 0.5 degrees [17,18].

The third instrument used was the Surface Meteorological Observation System (SMOS). The SMOS mostly uses conventional in situ sensors to obtain 1 minute and 30-minute averages of surface wind speed, wind direction, air temperature, relative humidity, barometric pressure, and precipitation. The data that was most relevant to the measurements was the precipitation data. The precipitation gauge is an electrically heated, tipping bucket precipitation gauge manufactured by NovaLynx as shown in Fig. (14). The precision of the precipitation data is 0.245 +/- 0.254 mm.

According to the manufacturer of the tipping-bucket rain gauge, for rain less then 75 mm per hour with light to moderate winds, the collection efficiency of the gauge is 99 to 100%. However, during heavy storms or strong winds, the collection efficiency is reduced. Manufacturers have not attempted to specify accuracy for these conditions.

Figure 14: Tipping bucket precipitation gauge. [21]

The last instrument that was used was the Millimeter Wave Cloud Radar (MMCR). The purpose of using the MMCR is to determine if there were clouds on the particular days of measurement and where the cloud boundaries were. The radar also reports radar reflectivity of the atmosphere up to 20 km and possesses a Doppler capability that allows the measurement of cloud constituent vertical velocities. The MMCR operates at a frequency of 35GHz and has a Doppler resolution of less than 0.1 m/s [22].

Chapter 8: Data

As seen from Eq. (6.3) the vertical velocity of an air parcel should equal

$$v = \sqrt{2 * CAPE}.$$
 (8.1)

From the Brunt-Väisälä frequency the velocity of an air parcel should equal, Eq. (4.22) [23]

$$v = \frac{\Delta z}{2\pi \sqrt{\frac{T}{g} \frac{1}{(\gamma_{d} - \gamma)}}}.$$
(8.2)

A quantitative statistical comparison between the theoretical values of vertical velocity and the direct measurement of vertical velocity by the RWP provides insight on how accurate the theoretical models can predict the weather. A typical sample of the data from the RWP is shown in Fig. (15).

Figure 15: RWP data plot [24]

The MMCR and the SMOS were used indirectly by testing for the presence of clouds and precipitation. An example of the data taken by the MMCR on May 24, 2002 is shown in Fig. (16) at the SGP site.

Figure 16: MMCR data plot [25]

Fig. (17) shows a typical sample of the data recorded by the SMOS instrument that includes precipitation, RH, barometric pressure etc.

Figure 17: SMOS data plot [26]

Table (8) lists sample data taken from the Southern Great Plains (SGP) site in Lamont, Oklahoma over a period of 4 months. The sample data covers a range of CAPE data. In Table (8) CAPE values are given from days without clouds, with clouds, and days that produced storms with precipitation. The accuracy of the CAPE value is dependent upon the accuracy of the temperature reading of the radiosonde, which is \pm 0.5 °C. By taking the average reading of the CAPE over the entire data set, the

average accuracy is $\pm 150 \text{ J kg}^{-1}$ of the average CAPE. The accuracy of the RWP velocity is given on the instruments data page website [24].

Date	Z-Time	CAPE $(J/kg) \pm 150$	$RWP(m/s) \pm 0.75m/s$
		J/kg	
20010611	1126	948	22
20010808	1729	152	11
20010828	2328	1075	26
20010627	1130	1150	35
20010608	528	1528	30
20010825	2328	1544	26
20010612	2029	2106	33
20010611	2030	2321	33
20010621	528	2047	32
20010921	533	1671	35

Table 8: Sample of CAPE/RWP Readings

There were three different independent methods for obtaining vertical velocity. Based on the overall accuracy of each method the standard for statistical comparison was determined. In order to achieve this the average uncertainty for each method used to find velocity was found. The average uncertainty of V_{CAPE} is \pm 5.55 m s⁻¹ taken from the average velocity calculated from the entire data, which is 55.47 m s⁻¹. The RWP has an uncertainty in each measurement of \pm 0.75 m s⁻¹. Calculating the total average uncertainty for the data points results in an average uncertainty of \pm .11 m s⁻¹. Since this value is smaller than the original uncertainty, \pm 0.75 m s⁻¹ will be used as the uncertainty of the RWP velocity measurement. The uncertainty with the Brunt-Väisälä velocity includes the

uncertainty from the V_{CAPE} as it also depends upon temperature. There is an added uncertainty in the height component of the Brunt-Väisälä equation which when calculated gives an uncertainty of ± 1.5 m s⁻¹. The average Brunt-Väisälä velocity is 14.2 m s⁻¹. From the uncertainties the vertical velocity measured by the RWP is the most accurate of the three methods and therefore it will be used as the standard for the statistical comparison for the CAPE and the Brunt-Väisälä velocity.

The velocity from the CAPE values was calculated from Eq. (8.1) as an energy integration of the Navier-Stokes equations in the absence of friction, as shown in Table (9).

Date	CAPE	V_{CAPE} (m/s) ± 5.55 m/s
20010611	948	43.5
20010808	152	17.4
20010828	1075	46.4
20010627	1150	47.9
20010608	1528	55.3
20010825	1544	55.6
20010612	2106	64.9
20010611	2321	68.1
20010621	2047	64.0
20010921	1671	57.8

Table 9: Calculated Velocity from CAPE

Plotting the RWP velocity and the V_{CAPE} shows the initial differences between the two measurements, Fig. (18).

Figure 18: Comparison of vertical velocities from RWP and V_{CAPE}

Taking the velocity calculated from CAPE, the deviations between the RWP

value and CAPE values were analyzed, Table (10).

Date	V _{CAPE} (m/s)	RWP(m/s)	Deviation(RWP- V _{CAPE})
20010611	43.5	22	-21.5
20010808	17.4	11	-6.4
20010828	46.4	26	-20.4
20010627	47.9	35	-12.9
20010608	55.3	30	-25.3
20010825	55.6	26	-29.3
20010612	64.9	33	-31.9
20010611	68.1	33	-35.1
20010621	64.0	32	-32
20010921	57.8	35	-22.8

Table 10: Deviation between RWP and V_{CAPE}

The deviations in Table (10) between the RWP and the V_{CAPE} are significant. The average deviation for all the data collected was -24.4 m s⁻¹

and the average RWP for all the data is 31.0 m s^{-1} . The initial assumption that the air parcel ascends adiabatically and behaves as an ideal gas cannot be correct as the deviations show. Therefore CAPE is not completely converted into kinetic energy. "Due to water loading, mixing, entrainment, and evaporative cooling, the actual *w*-max is approximately one-half that calculated above" [27], where we have *w* - max equaling V_{CAPE}. By introducing a CAPE variational condensation parameter *b* in which V_{CAPE} now becomes *b*V_{CAPE} the energy loss can be accounted for. The objective is to determine the best value of *b* such that the deviations between V_{CAPE} and RWP are insignificant. By doing this a drop in the deviation between RWP and V_{CAPE} can be seen. Fig. (19) is the plot comparing the RWP velocities and the adjusted 0.5V_{CAPE} value

Figure 19: Comparison of RWP velocities and 0.5V_{CAPE}

Date	$0.5V_{CAPE}$ (m/s)	RWP(m/s)	Deviation(RWP-0.5V _{CAPE})
20010611	21.75	22	.25
20010808	8.7	11	2.3
20010828	23.2	26	2.8
20010627	23.95	35	11.05
20010608	27.65	30	2.35
20010825	27.8	26	-1.8
20010612	32.45	33	.55
20010611	34.0	33	-1.0
20010621	32.0	32	0
20010921	28.9	35	6.1

Table 11: Deviation between RWP and $0.5V_{CAPE}$

Overall the data taken, there was an average deviation of 3.33 m s^{-1} between the RWP and the $0.5V_{CAPE}$. A comparative statistical analysis for comparing independent data is shown in Table (12).

Table (12): Statistical analysis for comparing data [28].

- 1 -- Arithmetic Mean $\overline{\mathbf{x}} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i}$ (8.3)
- 2 -- Standard Deviation Eq. $\sigma_x = \sqrt{\frac{1}{N-1}\sum (x_i \overline{x})^2}$ (8.4)

3 -- Normal Distribution
$$f_{\bar{x},\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\bar{x})^2/2\sigma^2}$$
 (8.5)

4 -- Skewness $S = \frac{\sum_{i=1}^{N} (x_i - \overline{x})^3}{(N-1)\sigma^3}$ (8.6)

5 -- Kurtosis

$$K = \frac{\sum_{i=1}^{N} (x_i - \bar{x})^4}{(N-1)\sigma^4} \quad (8.7)$$

6 -- Chi Squared,
$$\chi^2$$
 $\chi^2 = \sum_{k=1}^{N} \frac{(O_k - E_k)^2}{E_k}$ (8.8)

7 -- Linear Correlation
$$\mathbf{r} = \frac{\sum(\mathbf{x}_i - \overline{\mathbf{x}})(\mathbf{y}_i - \overline{\mathbf{y}})}{\left[\sum(\mathbf{x}_i - \overline{\mathbf{x}})^2 \sum(\mathbf{y}_i - \overline{\mathbf{y}})^2\right]^{1/2}} \quad (8.9)$$

The mean is the arithmetic average of the all the deviations and the standard deviation is an estimate of the average uncertainty of the measurements.

The normal distribution, which is referred to as the Gaussian distribution, is a plot of the frequency of data points that occur within x number of standard deviations. In a Gaussian distribution of 100 data points, 68 are expected to appear within one standard deviation of the mean. For the 41 data point set an expected 28 of the 41 should appear within one standard deviation of the mean. The skewness of a data set indicates if the data is shifted to the right or left of the mean. The kurtosis of a data set indicates how peaked the Gaussian distribution is compared to a true Gaussian distribution. The kurtosis number for a perfect Gaussian distribution is 3. The χ^2 test tests the distributions expected frequency of data to its actual frequency of data. For the data the expected frequency of data appearing within x number of standard deviations is shown in Table (13). The linear correlation gives a value that signifies if the two variables are linearly related. A correlation value of one means the two variables are linearly proportional to each other.

Table 13: Expected frequency of data points

x Standard Deviations from the Mean	-3	-2	-1	1	2	3
Expected Number of Data Points Appearing in the Range	.93	5.57	14	14	5.57	.93

Figure 20: Gaussian distribution of the deviation between the RWP and the $0.5V_{CAPE}$

It is apparent from Fig. (20) that the peak of the curve does not lie above zero, which should occur if the values of the RWP and V_{CAPE} are comparable. The mean for this graph was calculated to be 3.38 m s⁻¹ and the standard deviation was calculated to be 4.71. The skewness of the distribution was calculated to be -0.02. Since this number is within one standard deviation the graph is assumed to be asymmetric and Gaussian. In addition to the skewness, the kurtosis of the graph was calculated to be 2.40, which is an acceptable value within the error in the measurements. The χ^2 test results give a value of 0.82 with an expected result of 1. Again the difference can be accounted for in the error of the measurements taken. This indicates that the graph is reasonable close to a Gaussian distribution. Plotting RWP velocity vs. $0.5V_{CAPE}$ a linear correlation of 0.698 as seen from Fig. (21) was obtained. This value indicates that there is not a direct linear correlation between the RWP and the 0.5V_{CAPE}.

Figure 21: Linear plot of RWP vs. 0.5 V_{CAPE}

It is apparent that b = 0.5 is not the best parameter for the data since the deviations do not randomly appear around zero. Picking b = 0.45 and applying the same statistical analysis that was done on b = 0.5 and compare the bV_{CAPE} to the RWP velocity. Fig. (22) is a plot comparing the RWP velocity and the $0.45V_{CAPE}$.

Figure 22: Comparison of RWP velocities and $0.45V_{CAPE}$

Date	$0.45 V_{CAPE}$ (m/s)	RWP(m/s)	Deviation(RWP- 0.45V _{CAPE})
20010611	19.6	22	2.4
20010808	7.8	11	3.2
20010828	20.9	26	5.1
20010627	21.6	35	13.4
20010608	24.9	30	5.1
20010825	25.0	26	1.0
20010612	29.2	33	3.8
20010611	30.6	33	2.4
20010621	29.3	32	2.7
20010921	26.0	35	9.0

Table 14: Deviation between RWP and 0.45V_{CAPE}

The Gaussian distribution of the deviations in Table (14) is shown in Fig.

(23).

Figure 23: Gaussian distribution of the Deviations between the RWP and the $0.45V_{CAPE}$

The mean of the deviations for the $0.45V_{CAPE}$ and RWP were calculated to be 6.11 and the standard deviation was calculated to be 4.46. The mean for this trial increased which moved the Gaussian distribution away from zero as compared to the $0.5V_{CAPE}$ distribution. The skewness and the kurtosis were calculated to be -0.11 and 2.38 respectively. Both of these numbers are reasonable with the errors involved. The χ^2 test results gave a value of 0.89, which is closer to 1 then the result of the $0.5V_{CAPE}$ test and indicates that this data is also a Gaussian distribution. Plotting RWP vs. $0.45 V_{CAPE}$ gives a linear correlation of 0.698 as seen from Fig. (24).

Figure 24: Linear plot of RWP vs. 0.45 V_{CAPE}

Since the b = 0.45 parameter shifted the distribution away from zero, the next parameter examined was b = 0.55. Fig. (25) compares the RWP velocities to the $0.55V_{CAPE}$. The results of this parameter are shown in Table (15).

Figure 25: Comparison of RWP velocity and 0.55V_{CAPE}

Date	0.55V _{CAPE} (m/s)	RWP(m/s)	Deviation(RWP- 0.55V _{CAPE})
20010611	23.9	22	-1.9
20010808	9.6	11	1.4
20010828	25.5	26	0.5
20010627	26.3	35	8.7
20010608	30.4	30	-0.4
20010825	30.6	26	-4.6
20010612	35.7	33	-2.7
20010611	37.5	33	-4.5
20010621	35.2	32	-3.2
20010921	31.8	35	3.2

Table 15: Deviations between RWP and $0.55 V_{CAPE}$

The mean deviation for the $0.55V_{CAPE}$ data is 0.56 m s⁻¹ and the standard deviation is 4.99. The Gaussian distribution of the deviations in Table (15) is shown in Fig. (26).

Figure 26: Gaussian distribution of the deviations between the RWP and the 0.55 V_{CAPE}

Calculating the skewness and the kurtosis of the data gives -0.15 and 2.47 respectively. Again these numbers are within an accepted range considering

the errors of the measurements. The χ^2 test results give 0.81, which indicates that this is a Gaussian distribution. Plotting RWP vs. $0.55V_{CAPE}$ gives a linear correlation of 0.698 as shown in Fig. (27).

Figure 27: Linear plot of RWP vs. $0.55 V_{CAPE}$

All of the three linear correlation values given in Figs. (20), (23), and (26) have the same linear correlation number. However, b = 0.55 gives the best fit for a Gaussian distribution as well as the smallest average deviation from the RWP velocity.

The Brunt-Väisälä velocity equation is a different theoretical way of predicting the vertical velocity of the air parcel, Eq. (8.2). The vertical

velocities calculated from Eq. (8.2) for the sample data are shown in Table (16).

Table 16: Vertical velocity calculated from theBrunt-Väisälä frequency equation

Date	Brunt-Väisälä Frequency (rad/s)	B-V Velocity (m/s)
20010611	0.009941	12.2
20010808	0.012101	5.31
20010828	0.010150	13.4
20010627	0.010972	15.7
20010608	0.010573	17.0
20010825	0.010341	14.3
20010612	0.011373	17.3
20010611	0.009520	10.5
20010621	0.009990	17.4
20010921	0.011822	17.0

Table (17) shows the deviations calculated from the RWP and the Brunt-

Väisälä velocity.

Date	B-V Velocity	RWP	Deviations (RWP- B-V Velocity)
20010611	12.2	22	9.8
20010808	5.31	11	5.7
20010828	13.4	26	12.6
20010627	15.7	35	19.3
20010608	17.0	30	13.0
20010825	14.3	26	11.7
20010612	17.3	33	15.7
20010611	10.5	33	22.5
20010621	17.4	32	14.6
20010921	17.0	35	18.0

Table 17: Deviations of RWP and Brunt-Väisälä velocity

The average deviation between the **RWP velocity** and the Brunt-Väisälä velocity is 16.8 m s⁻¹ with a standard deviation of 5.54. Fig. (28) shows the Gaussian distribution of the deviations calculated for the entire data set.

Figure 28: Gaussian distribution of the deviations between the RWP and the Brunt-Väisälä velocity

The skewness and kurtosis of the deviations are 0.14 and 2.85 respectively. The χ^2 test result is 0.889 that indicates that the deviations are Gaussian. Plotting RWP vs. Brunt-Väisälä velocity gives a linear correlation of 0.43 as shown in Fig. (29). With the value of the linear correlation it indicates that the RWP and the Brunt-Väisälä velocities are not linearly proportional to each other.

Figure 29: Linear plot of RWP vs. Brunt-Väisälä velocities

Following the study of Williams and Renno [29] the CAPE values over the time period are plotted in a histogram showing the frequency of the CAPE values for this period, Fig. (30). It can be seen that the CAPE values decrease exponentially as the CAPE values increase, which is a special form of a gamma distribution given by

$$f(x) = \frac{1}{\beta} e^{-(x-\mu)/\beta}$$
 (8.10)

where β is a scale parameter and μ a location parameter [30]. This result is consistent with those of Williams and Renno whose study included

topographical locations such as Darwin, Australia and Belém, South America [29]

Figure 30: CAPE histograms for soundings at the SGP site

Other methods of evaluating the vertical velocity component of an air parcel are concurrently being studied. These methods include the study of NCAPE and SCAPE, slantwise convective available potential energy, [31]. The NCAPE values for the data taken for CAPE >1000 J kg⁻¹ are shown in Appendix C. To date, analysis of the SCAPE has not been found to be as useful [31]. There are days that involve Intense Observation Periods (IOP) in which a BBSS is launched every 10 minutes and the data collected and analyzed in greater detail than days in which the BBSS is sent up only four times a day.

Chapter 9: Conclusions

Vertical velocity profiles have been examined based on thermodynamic, radar, and electronic observations. The velocities of the air parcels were calculated using the CAPE, Brunt-Väisälä frequency, and by direct measurement from the RWP. From the data the velocity determined by the Brunt-Väisälä frequency show an average deviation of 16.8 m s⁻¹ with a linear correlation of 0.430. The corrected CAPE values statistically agree with the RWP. Plotting a graph of the average deviation vs. the *b* parameter and finding the equation of best fit leads us to a value of *b* that can be used in the dynamic models of the weather for the SGP site, Fig. (31).

Figure 31: Graph of average deviations vs. *b* parameters

The equation of best fit in Fig. (31) is given by

$$y = 175x^2 - 192x + 55.7.$$
(9.1)

Taking the derivative of Eq. (9.1) to find the minimum value that x obtains gives

$$\frac{dy}{dx} = 350x - 192 = 0. \tag{9.2}$$

Solving for x returns a value of 0.549. This is the value of the parameter b in the corrected CAPE velocity equations. The data showed when b = 0.55 the calculated average deviation was 0.56 m s⁻¹ with a linear correlation of 0.698. This parameter b = 0.55 in the equation bV_{CAPE} for the SGP site will be helpful in making a dynamic model of the weather around Lamont, Oklahoma.

The current goal of dynamic weather analysis is to predict when severe weather will appear before the storm strikes. When the ability to solve the Navier-Stokes equations becomes available, more accurate weather prediction is likely to occur. Until that time weather prediction will be based on *in situ* data and years of statistical weather information.

Bibliography

 Bruce Welsh, A Short History of Meteorology, Indiana State University,

http://isu.indstate.edu/welsh/ua/hist-metro.html, (2002).

- 2. John M. Wallace, P.V. Hobbs, *Atmospheric Science: An Introductory Survey*, Academic Press, (1977).
- Steve Kempler, Atmospheric Structure, NASA, <u>http://daac.gsfc.nasa.gov/CAMPAIGN_DOCS/ATM_CHEM</u>, (2000).
- 4. Raymond A. Serway, R.J. Beichner, *Physics: For Scientists and Engineers Fifth Edition*, Saunders College Publishing, (2000).
- 5. F. Reif, *Fundamentals of Statistical and Thermal Physics*, McGraw-Hill Book Company, (1965).
- 6. Other more realistic equations of state are given by the van der Waals equation given by $\left(P + \frac{a}{v^2}\right)\left(v b\right) = RT.$
- Francis W. Sears, Gerhard L. Salinger, *Thermodynamics, Kinetic Theory, and Statistical Thermodynamics: Third Edition*, Addison-Wesley Publishing Company, (1986).
- 8. Stanley David Gedzelman, *The Science and Wonders of the Atmosphere*, John Wiley & Sons, (1980).

9. National Science Digital Library, Balloon Borne Sounding System Quicklook Data,

http://nsdl.arm.gov, (2002).

- Ohio State University Atmospheric Science Program, Skew-T Thermodynamic Diagram Help, <u>http://twister.sbs.ohio-state.edu/helpdocs/skew_T_help.html</u>, (1999).
- John A. Dutton, *Dynamics of Atmospheric Motion*, Dover Publications, Inc. (1986).
- Ryan Knutsvig, Severe Weather Indices, University of North Dakota, <u>http://people.aero.und.edu/~knutsvig/swx2.html</u>, (2000).
- H.B. Bluestein, Synoptic-Dynamic Meteorology in Midlatitudes, Oxford University Press, (1993).
- 14. D. Djuric, Weather Analysis, Prentice-Hall Inc., (1994).
- Alexander Tardy, Using Normalized Convective Available Potential Energy to Forecast Moist Convection in Northern California, Western Region Technical Attachment No. 01-07, available from http://www.wrh.noaa.gov/wrhg/01TAs/0107, (2001).
- Edward J. Hopkins, *Radiosondes—An Upper Air Probe*, University of Wisconsin Madison,

http://www.aos.wisc.edu/~hopkins/wx-inst/wxi-raob.htm, (1996).

17. Atmospheric Radiation Measurement Program, Tools for the Atmospheric Scientist,

http://www.ux1.eiu.edu/~cxtdm/met/bbss.html

- Dr. Barry M. Lesht, Balloon Borne Sounding System, Argonne National Laboratory, <u>http://www.arm.gov/instruments/static/bbss.html</u>, (2002).
- Richard L. Coulter, Radar Wind Profiler and Rass (RW50), Argonne National Laboratory,

http://www.arm.gov/docs/instruments/static/rwp.html, (2002).

20. Richard L. Coulter, *Radar Wind Profiler and Rass (RWP915)*, Argonne National Laboratory,

http://www.arm.gov/docs/instruments/static/rwpr.html, (2002).

21. USA Today Website,

http://www.usatoday.com/weather/wtipgage.htm, (1999).

22. Kevin Widener, *Millimeter Cloud Radar*, Pacific Northwest National Laboratory,

http://www.arm.gov/docs/instruments/static/mmcr.html, (2002).

- 23. When solving for velocity for a simple harmonic oscillator it is common to use the Root Mean Square of the velocity that equals 0.707 of the maximum velocity. In this study, it is the maximum velocities that are being compared, Eq. (8.2) gives v-max.
- 24. National Science Digital Library, Rass / Radar Wind Profiler Quicklook Data,

http://www.nsdl.arm.gov, (2002).

25. National Science Digital Library, Millimeter Cloud Radar Quicklook Data,

http://www.nsdl.arm.gov, (2002).

- National Science Digital Library, Surface Meteorological Observational System Quicklook Data, <u>http://www.nsdl.arm.gov</u>, (2002).
- 27. Ben Quinn, A Description of Atmospheric Soundings: Understanding the Indices of Soundings, and forecasting/predicting severe weather, Northeast Media of Atmospheric Science Website, wysiwyg://2http://www.nemas.net/edu/soundings/soundings.htm, (2000).
- John R. Taylor, An Introduction to Error Analysis, University Science Books, (1982).

- Earle Williams and Nilton Renno, "An Analysis of the Conditional Instability of the Tropical Atmosphere", *American Meteorological* Society, 121, 21 (1993).
- 30. National Institute of Standards and Technology, Exponential Distribution,
 <u>http://www.itl.nist.gov/div898/handbook/eda/section3/eda3667.htm</u>, (2002).
- 31. Charles A. Doswell III, et. al, "The Intricacies of Instabilities", American Meteorological Society, **128**, **4143** (2000).

Appendix A: Derivations of Eq. (3.1), (3.2), and (3.3) [4]

From Fig. (5) a molecule is shown colliding into one of the sides of a container. Due to conservation of momentum the total momentum during an elastic collision of a system before equals the total momentum after the collision. Examining the conservation of momentum in the x direction gives a total change of momentum equal to

$$\Delta \mathbf{p}_{\mathbf{x}} = \mathbf{p}_{\mathbf{x}\mathbf{f}} - \mathbf{p}_{\mathbf{x}\mathbf{i}} = -\mathbf{m}\mathbf{v}_{\mathbf{x}} - \mathbf{m}\mathbf{v}_{\mathbf{x}} = -2\mathbf{m}\mathbf{v}_{\mathbf{x}}.$$
 (A.1)

If the molecule is going to collide twice with the same wall it must travel a distance of 2d in the x direction. The time that it takes for the molecule to complete the two collisions is $\Delta t = 2d/v_x$. From the Impulse-momentum theorem the force that is acting on this molecule during the time of impact is equal to

$$F = \frac{\Delta p_x}{\Delta t} = \frac{-2mv_x}{\Delta t} = \frac{-2mv_x}{2d/v_x} = \frac{-mv_x^2}{d}.$$
 (A.2)

From Newton's third law the force that the molecule exerts on the wall is equal and opposite of Eq. (A.2); therefore the molecule exerts a force on the wall equal to

$$F_{\text{lonwall}} = \frac{mv_x^2}{d}.$$
 (A.3)

This force is from only one molecule hitting the wall. To find the total force exerted on the wall by all the molecules in the x direction, all the forces from each individual molecule must be summed together. Since the assumption in Chapter 3 was that all the molecules were identical, m is the same for all the molecules as well as the distance d each one has to travel. Therefore, it is the velocities that can differ in the x direction. To find the total force, the average value of the square of the velocities in the x direction is calculated and that result is substituted into Eq. (A.3), which gives

$$F = \frac{Nm}{d} \overline{v}_{x}^{2}$$
(A.4)

where N is the total number of molecules in the container and v-bar squared is the average value of the square of the velocities in the x direction.

In order to find the total force acting on the container from all three directions the velocities of each molecule in each direction must be known. If one molecule has a velocity in the x, y, and z directions then the total velocity of the molecule v is related by

$$v^{2} = v_{x}^{2} + v_{y}^{2} + v_{z}^{2}$$
(A.5)

according to Pythagorean's theorem. Since all the molecules in the container have to be considered, the average of each molecule must be taken

$$\overline{\mathbf{v}}^2 = \overline{\mathbf{v}}_x^2 + \overline{\mathbf{v}}_y^2 + \overline{\mathbf{v}}_z^2. \tag{A.6}$$

Since the motion of the molecules is random, the average velocities in each direction will be equal to the average velocity in the x direction. Because of this Eq. (A.6) becomes

$$\overline{\mathbf{v}}^2 = 3\overline{\mathbf{v}}_{\mathbf{x}}^2 \tag{A.7}$$

which leads to the total force acting on the walls of the container to be

$$F = \frac{N}{3} \left(\frac{m \overline{v}^2}{d} \right).$$
(A.8)

Plugging Eq. (A.8) into the definition of pressure a form of the ideal gas law can be derived.

$$P = \frac{F}{A} = \frac{N}{3} \left(\frac{m \overline{v}^2}{d^3} \right) = \frac{N}{3} \left(\frac{m \overline{v}^2}{V} \right)$$
$$PV = \frac{N}{3} m \overline{v}^2$$
(A.9)

Appendix B: Data Tables

	Date	Time	CAPE	Vertical Velocity (RWP)	V-CAPE	Difference between RWP and V-CAPE	0.51/0455	Difference Between RWP and 0.5V-CAPE	0.45V-CAPE	Difference Between RWP and 0.45V-CAPE	0.55V-CAPE	Difference Between RWP and 0.55V:CARE
*	20010614	530	1258	34	50.16	-16.16		8.92	22.57	11.43	27.59	6.41
*	20010620	2106	1548	33	55.64	-22.64	25.08	5.18	25.04	7.96	30,60	2.40
*	20010620	2329	1341	33	51.79	-18.79	27.82	7.11	23.30	9.70	28.48	4.52
*	20010621	528	2047	32	63.98	-31.98	25.89	0.01	28.79	3.21	35.19	-3.19
*	20010628	2028	1109	35	47.10	-12.10	31.99	11.45	21.19	13.81	25.90	9,10
•	20010907	528	1395	27	52.82		23.55	0.59	23.77	3.23	29.05	-2.05
	20010917	528	1192	33	48.83	-25.82	26.41	8.59	21.97	11.03	26.85	6.15
•	20010917	2328	1040	31	45.61		24.41	8.20	20.52	10.48	25.08	5.92
	20010921	533	1671	35	57.81	-14.61	22.80	6.09	26.01	8.99	31.80	3.92
	20010921	1136	1384	27	52.61	-22.81	28,91	0.69	23.68	3.32	28.94	-1.94
	20010922	2339	1621	27	56.94		26.31	-1.47	25.62	1.38	31.32	-4.32
	20010922	1739	1423	31	53.35	-29.94	28.47	4.33	24.01	6.99	29.34	1.66
	20010602	1130	1472	34	54.26	-22.35	26.67	6.87	24.42	9.58	29.84	4.16
	20010603	528	1485	33	54.50		27.13	5.75	24.52	8.48	29.97	3.03
	20010603	1127	2396	33	69.22	-21.50	27.25	-1.61	31.15	1.85	38.07	-5.0
	20010604	533	1182	34	48.62		34.61	9.69	21.88	12.12	26.74	7.26
	20010605	2329	1797	43	59.95	-14.62	24.31	13.03	26.98	16.02	32.97	10.0
	20010608	533	1528	30	55.28		29.97	2.36	24.88	5.12	30.40	-0.40
	20010608	1130	1246	30	49.92	-25.28	27.64	2.36	22.46	7.54	27.46	
	20010611	2030	2321	36	68.13	-32.13	24.96	1.93	30.66	5.34	37.47	-1.4
	20010611	2330	1423	36	53.35		34.07	9.33	24.01	11.99	29.34	6.6
	20010612	2029	2106	33	64.90	-17.35	26.67	9.33	29.20	3.80	35.69	
	20010612	2329	2956	33	76.89		32.45	-5.44	34.60	-1.60	42.29	
	20010613	2030	3291	34	81.13	-43.89	38.44	-5.44	36.51	-2.51	44.62	
	20010616	2330	1922	36	62.00		40.56	5.00	27.90	8.10	34.10	
	20010627	1130	1150	35	47.96	-26.00	31.00	11.02	21.58	13.42	26.38	
	20010801	2327	1068	27	47.96		23.98	3,89	20.80	6.20	25.42	
	20010806	1728	1959	27	46.22	-19.22	23.11	-4.30	20.80	-1.17	34.43	
	20010800	1128	1459	30	54.02	-35.59	31.30	2.99	24.31	5.69	29.71	0.2
	20010817	1728	1409	30	46.90	-24.02	27.01	6.55	24.51	8.89	25.80	
	20010821	1720	1029	26	45.37	-16.90	23.45	3.32	20.41	5.59	23.80	
	20010822	528	1029	20				2.86	20.41	5.58	29.85	
	20010824	2329	1473	30	54.28 45.32	-24.28	27.14	2.80	24.42	4.61	29.8	
	20010824	2329	1027	25		-20.32	22.66	-1.78		0.99	24.93	
	20010825	1125	1544	20	55.57	-29.57	27.78	0.21	25.01	2.89	29.46	
	20010827			27	53.57	-26.57	26.79	5.53	24.11		29.46	
		1129	1102	29	46.95	-17.95	23.47		21.13	7.87		
	20010828	2328	1075	28	46.37	-20.37	23.18	2.82	20.87	5.13		
	20010829	529	1554		55.75	-25.75	27.87		25.09	4.91	30.66	
	20010903	1722	1862	28	61.02	-33.02	30.51	-2.51	27.46	0.54		
	20010920	1740	1966	29	62.71	-33.71	31.35	-2.35	28.22	0.78		
	20010923	539	1509	26	54.94	-28.94	27.47	-1.47	24.72	1.28	30.21	

* Indicates recorded precipitation that day

20010821 1728 1100 30 4877024 53.780182 16.464632 17.80142 15.780540 15.306260 15.71781182 15.306260 15.7781182 15.306260 15.7781182 15.306260 15.7781182 15.306260 15.7781182 15.306260 15.7781182 15.78054 15.7781182 15.306260 15.7781182 15.306260 15.7781182 15.306260 15.7781182 15.306260 15.7781182 15.306260 15.7781182 15.306260 15.7781182 15.306260 15.7781182 15.306260 15.7781182 15.306260 15.7781182 15.306260 15.7781182 15.306260 15.7781182 15.306260 15.7781182 15.306260 15.7781182 15.306260 15.7781182 15.306260 15.7781182 15.306260 15.7781182 15.306260 15.7781182 15.306260 15.7781182 15.306260 15.7781182 15.7781182 15.7781182 15.7781182 15.7781182 15.778133 15.766240 15.77732 15.77826 15.777332 15.757342 15.77854667 15.777332 15.777332 15.766667														
Date Time CAPE (0.5%-CAPE 0.7%-CAPE 0.7%-CAPE </th <th></th> <th></th> <th></th> <th></th> <th>Velocity</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Between RWP and</th> <th>Between RWP and</th> <th>Between RWD</th> <th>Between</th>					Velocity						Between RWP and	Between RWP and	Between RWD	Between
20010614 550 [258 34 159006 17 35591071 [2359626] 20019821 153254072 14800581 3041311 20010620 22229 1341 33 366221 128 194773 35800266 10221 14971827 14971827 14971827 14971827 14971827 14971827 14971877 1597074 150721 159724 1597267 159724 1597267 1597187 1697177 12971873 1597074 1597267 1597247 1497177 12971871 1597717 12971873 1597717 1597717 12971874 1597714 1597274 1497274 14972677 1497477 159771 159775 12973441 1597075 12973441 1597075 12973441 1597075 12973441 1597075 12973441 1597075 12974741 15999747 1298983 1697771 1297441 1597474 15997474 15989877 159775 1297441 159775 1297441 159775 1297441 159775 12974419 1597775 129747913		Date	Time	CAPE	(RWP)	0.65V-CAPE	0.75V-CAPE	0 35V-CAPE	0 25V-CAPE	0.6V-CAPE	0.75V-CAPE	U.35V-CAPE	0.25V-CAPE	
 20010620 2106 1549 36.16/12/1 41.73 2832 19.4745986 15.910271 75.86202 22.91024 19.227021 19.227022 19.2272732 19.2272732 19.2272732		20010614	530	1258	54	32.0030341	3/619000c	17 5559107	12 5399362	30.0958469			21.4600638	
 20010620 2229 1341 35.65/2192 28.9410221 19.1291031 29.07074 19.072417 29.410221 19.357262 19.25726 19.25726 20.25726 19.25726 20.25726 19.25727 20.25726 19.25727 20.25726 20.257276 20.25727 20.2572	-	20010620	2106	1548		36.1671121	41 731 2072		17 9104277	33,3850266	-8.7312032		19.0895723	
 20010621 528 2047 352 41.3998421 47.9862798 22.3984766 17.73011 20.270841 20.2708441 20.2708444			2329	1341		33.6622192	38,8410221		12,9470074	31.0728177			20.0529926	
 20010628 2026 109 25 30512/108 45.217353 16.484766 1739116 22.6173884 10.22120 12.617384 8.5128428 12.734444 31.737046 26.6196568 17.091779 12.2011052 20.010047 228 1040 31.737046 26.6196568 17.091779 12.2015356 29.297353 5.6196669 15.097241 13.097244 13.097244 13.097244 13.097244 14.097253 14.097253 14.097253 14.097253 14.097243 14.097253 14.097253 14.097243 14.097264 15.09476 16.0937796 15.094776 15.094781 15.09476 15.094776 15.094776 15						41.5898425	47.9882798		15 9960933	38.3906239	-13.70020		16.0039067	-6.3906239
20010607 528 1395 21 34.352/273 98.413379 18.497171 13.200112 15.19320 12.193200 12.1						30.6121708	35.3217355	16.4834766	11.7739118	28.2573884			23.2260882	
20010017 528 1192 33 51.19/1446 36.619668 17.099179 12.2065556 29.293733 15.02021 12.015221						34.3332929	39.6153379	10 4074 577		31.6922704	-12.613336		13.7948874	
2001021 2033 1071 26 2755211 13.922820 13.922820 13.922820 13.922820 13.922820 13.922820 13.922820 13.922820 23.975233 14.7664822 20.574791 10.93189787 20010821 1138 1384 27 34.1976607 34.5858333 18.411213 13.552464 31.567715 -12.458839 18.858779715 12.458839 18.858779715 21.2458839 18.9587771 23.0027488 -9.010356 12.238223917 17.6630213 -10.002486 20010602 1130 14723 34.5761445 40.010356 18.9710717 13.3589787 32.0027488 -9.010356 12.3282279176 10.007489 -9.010356 12.3282279176 10.0074897 13.004093 13.9258021 17.017341 14.19277991 15.007476 20.432871 14.4901600 17.716 20.4327486 15.9459791 14.0073749 15.9426459 11.9407449 15.9457373 16.94257373 16.94257373 16.94257373 16.94257373 16.94257373 16.94257373 16.92657373 16.9426737373 16.92						31.7370446	36.6196668	17 0891 779		29.2957335			20.7934444	TTOOOT
• · ·< · ·< ·< ·< <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>34.2052628</td> <td>15.962456</td> <td>11.4017543</td> <td>27.3642102</td> <td></td> <td></td> <td>19.5982457</td> <td></td>							34.2052628	15.962456	11.4017543	27.3642102			19.5982457	
2001022 2330 1021 21000022 2330 1021 21000022 12000022 12000022 12000022 12000022 12000022 12000022 12000022 12000022 12000022 12000022 12000022 12000022 12000022 12000022 12000022 12000022 120000022 120000022 120000022 120000022 120000022 120000022 120000022 120000022 120000022 120000022 120000022 120000022 1200000022 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>20.2335118</td><td>14.4525084</td><td>34.6860202</td><td></td><td></td><td></td><td></td></t<>								20.2335118	14.4525084	34.6860202				
2001022 1730 1423 33 34.6751445 40.01936 18.21701 13.389771 22.001748 -9.01936 12.322291 17.653021 -1.008748 20010602 1130 1472 34 35.2661159 40.6333799 19.990524 13.56466 32.551839 -6.693799 15.009476 20.43334 1.4446160 20010603 528 1495 33 54.25019 19.071972 13.56466 32.551839 -6.693799 15.009476 20.43334 1.4446160 20010603 528 1495 33 54.457373 17.0177441 12.152456 29.172699 -2.4657373 16.9826599 -1.484738 15.6939317 -8.534533 20010605 533 1528 30 35.9327.1749 11.4608249 19.382469 13.866599 -1.460825 10.6516151 6.177202 -3.668599 20010608 130 1246 33.64761445 40.01936 18.2719701 13.386977 32.007488 +0.10936 14.21537215 19.969439 +8.7199919 15							39.4588393			31.5670715				1.0010110
20010602 1130 1142 21 22010356 18/17701 13/356/78 22/001603 528 1.009476 20.43534 1.0448160 20010603 528 1445 33 54.235091 40.8732788 19.9072371 13.56466 52.55183 -6.6937979 13.925002 19.375774 0.3013761E 20010603 532 1182 34 31.603639 36.4557373 17.017341 12.1552459 -2.4557373 16.982559 21.8447542 48271013 20010605 533 1528 33.9674654 44.962491 9.9824921 14.9874940 59.9699875 -1.9624844 22.0175073 28.0125027 7.33001255 20010608 533 1528 33.2479583 7.4395191 13.24640423 19.349344 13.80275 31.168579 12.1532175 19.640339 48.973451 20010611 2330 1423 36.42959515 10.991683 23.947978 13.3564787 12.057488 -4.0109361 17.329229 22.630213 3.991231 22.0017488 -4.0109361 </td <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>14.2346408</td> <td>34.163138</td> <td></td> <td></td> <td></td> <td>1.100100</td>					1				14.2346408	34.163138				1.100100
20010603 528 1485 33 53.4235091 10.9732798 19.0741972 13.294268 22.69226 7.9732798 13.9258028 19.375734 0.30137616 20010603 1127 2396 33 44.9957776 51.9182049 22.294956 17.3606068 41.5345633 16.912053 21.8447542 4.8274103 20010604 533 1192 34 31.603633 56.455737 17.0173441 21.25599 -2.4557373 16.992553 21.8447542 4.8274103 20010608 533 1528 30 35.9327149 14.40829191 94.948449 13.802077 33.1685599 -1.9624844 22.015757 2.0151615 16.179723 2.01566 0.4979346 15.57215 16.957271 3.168599 2.0571615 -7.4399519 12.5280224 17.52016 0.0480344 20010611 2330 1243 36 45.71445 10.09361 8.9779716 12.3806787 32.0087448 4.019374 19.2456949 2.2650211 17.750133 5.9999533 20010612 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>13.3369787</td> <td>32.0087488</td> <td></td> <td></td> <td></td> <td></td>									13.3369787	32.0087488				
20010603 1127 2396 33 44.995776 51.918204 24.228956 17.300489 15.918205 8.77150438 15.933917 -8.5346635 20010604 533 1182 34 31.605639 36.455733 17.0173441 12.1532458 29.1725997 -2.4557373 16.982559 21.8447542 4.82741013 20010605 3329 1797 43 39.9574654 44.962494 20.9824927 14.9874948 35.969975 -9.624444 22.0175073 22.0417502 7.03001251 20010608 1333 1528 30 35.9327149 41.4608249 19.348349 35.9699751 -9.465733 16.599168 17.4399519 12.5280224 17.50016 -0.439354 -15.099168 12.1537215 18.9669439 -4.8793344 20010611 2330 1423 36 45.671494 20.17701 13.3569787 32.0087488 -4.010936 17.3282299 22.6630213 3.9912511 20010612 2229 2106 33 42.189499 48.677494 26.91335919 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>32.5551839</td> <td></td> <td></td> <td></td> <td>1.11101000</td>										32.5551839				1.11101000
20010604 333 1182 31.603639 36.453737 17.017344 12.153265 2.4657373 16.982559 21.8447542 4.82741013 20010605 3229 1797 43 38.9674864 44.9624941 12.1532659 2.1657373 16.982559 21.8447542 4.82741013 20010608 533 1528 30.35327149 14.4608249 19.3483849 18.820275 33.1665599 11.460251 10.511151 16.17722 3.168559 20010608 1130 1246 30 32.4479583 37.4399519 12.580224 17.520016 0.04403844 20010611 2330 1243 36.4761445 40.010936 18.6717977 32.067987 32.0087486 -4.010386 17.3282299 22.663021 3.9912817 20010612 2029 2106 33 42.189499 48.6749422 22.714973 16.2249807 39.393938 15.674942 10.285027 16.775193 -5.9399538 20010612 2329 23956 33 49.781952 57.6671484									13.6244266	32.6986238				110101010
20010605 232 1197 43 38.5674864 49.5624944 10.174441 12.1532436 25.1126205 -1.9624844 22.0175073 28.0125052 7.03001251 20010606 533 1528 30 35.9327149 41.46082491 19.9483849 13.920275 33.1686599 -11.460825 10.6516151 16.179725 -3.1686599 20010608 1130 1246 30.24479588 37.4399519 17.3202661 40.879346 -15.099168 12.1537215 18.9669439 -4.879344 20010611 2330 1423 36 34.6761445 40.019361 18.371677 22.663021 3.991231 20010612 2329 2956 33 49.9781952 57.6671494 26.911333719 -24.667148 6.0886411 13.776172 -13.33717 20010612 2329 2956 33 49.9781952 57.6671494 26.9113337187 -24.667148 6.088641 13.776172 -13.33717 20010612 2330 3291 34 52.7741919 60.2873431														
20010606 533 1528 30 35.932719 41.4608249 19.3429827 13.967495 33.666599 -11.460825 10.6516151 16.179725 -3.1686599 20010608 1130 1246 30 32.4479583 37.4399519 12.2800274 33.666599 -11.460825 10.6516151 16.179725 -3.1686599 20010611 2330 1423 36 44.671445 40.010936 18.6717701 13.3669787 32.0087488 -4.010936 17.3282299 22.6630213 3.9912513 20010612 2229 2106 33 42.1849499 48.6749422 27.14773 16.8249607 38.939938 -15.674942 10.2880271 16.7750193 -5.9399338 20010612 2329 2956 33.49719192 36.6877149 26.9113591 9.222828 46.137771617 -13.33717 -10.5 14.3 20.95 -11.7 -10.5 14.3 20.95 -11.7 -10.5 14.3 20.95 -11.7 -10.5 14.3 20.95 -11.7 -10.5		the second se												
20010606 1130 1246 33 17.4002951 17.47032449 18.87076 23.0186027 13.01860276 12.5280224 17.520016 0.04803844 20010611 2030 2321 36 44.2859459 51.099168 32.9452785 17.0330561 40.8793346 -15.099168 12.1537215 18.966439 -4.8793344 20010611 2330 1233 63 45.761445 40.010936 18.6717701 13.3569787 32.0097486 -4.010936 17.320297 22.663013 3.9912513 20010612 22029 2106 33 42.189499 48.6749422 22.714973 16.224907 38.9399538 -15.674942 10.2850271 16.7750193 -5.9399333 20010613 2330 1322 36 40.3 45.3 21.71 15.5 37.2 -10.5 14.3 20.5 -11.48 5.0864581 13.776122 -13.377612 -23.0128 -7.66266 10.824092 15.44571 200104212 6.22501080 20.010801 23.927 10.5653 23.17761		_					1110021044							
20010611 2030 2211 36 44.2859459 51.099168 72.47994 72.93746 -15.099168 12.1537215 18.9669439 -4.8793344 20010611 2330 1423 36 44.2859459 51.099168 72.94797 72.0073346 -15.099168 12.1537215 18.9669439 -4.8793344 20010612 2329 2106 33 42.1894999 46.6749422 22.714973 16.2249807 38.939538 -15.674944 10.2820271 16.7750172 -13.133711 20010612 2329 2356 33 49.9781952 75.6771484 26.9113359 19.22298278 46.137187 -24.667148 6.08866411 13.776172 -13.133711 20010613 2330 3291 34 52.7341919 60.8471446 28.933341 20.2823815 48.6777156 -26.847145 5.0466588 13.7176172 -13.133717 20010627 1130 1150 35 31.1729049 35.9687364 16.785908 11.587422 27.730128 -7.66266 10.0204212 6.2250														
20010611 2330 1423 36 34.6761445 40.010936 18.671701 13.356977 32.00109748 4.010936 17.3282299 22.6630213 3.9912512 20010612 2229 2106 33 42.1849499 48.6749422 27.14973 16.2249607 39.939938 -15.674942 10.280271 16.775013 -5.9399933 20010612 2329 2956 33.4971992 75.6671464 28.9113359 19.222362 46.6377116 -26.847145 5.60465588 13.7176185 -14.677717 20010613 2030 3291 34 52.7341919 60.8471446 28.93538412 20.223815 46.5777156 -26.847145 5.60465588 13.7176185 -14.677717 20010607 1130 1150 35 31.1729049 35.967364 16.775710818 -7.66266 10.824992 15.44578 -0.73012 20010800 1728 1969 27 40.680541 46.9454717 1.35422 27.730128 -7.66266 10.824992 15.5477147 5.932472147 1.59								17.4719776	12.479984					
20010612 2002 2106 33 42.1849499 48.6749422 22.714973 16.22499738 -15.674942 10.285027 16.7750193 -5.9399538 20010612 2329 2956 33 49.9781952 57.6671494 28.9113359 19.2223828 46.1337187 -24.667146 6.0886641 13.7776172 -13.133711 20010615 2330 3291 34 52.7341919 50.8471464 28.9113359 19.2223828 46.1337187 -24.667146 6.0886641 13.7776172 -13.133717 20010616 2330 1922 36 40.3 45.5 21.7 15.5 37.2 -10.5 14.3 20.5 -11. 20010627 11.30 1150 35 31.1729049 35.9687364 16.7785403 11.9995788 2.7740991 -0.9687364 18.214597 23.0104212 6.27501093 20010801 2327 1068 27 40.6660541 45.9454471 21.9078735 15.6474824 37.75563577 -19.945447 5.9921247 11.3515176							10000							
20010612 2232 2956 33 49 978 192 37 667148 22 / 1973 16 / 22 900 39 37 200 -24 667148 6.0886641 13.776 172 -13.13371 20010613 2030 3291 34 52.7341919 60.8471446 26.91138519 22.223815 48.6777156 -26.847145 5.0466598 13.776172 -13.13371 20010616 2330 1922 35 46.5 21.7 15.5 37.2 -1.0.5 14.3 20.5 -1.4 77711 20010627 1130 1150 35 31.1729049 35.9687364 16.785908 27.78991 -0.9667364 18.2145897 23.0104212 6.2250108 20010801 2227 1068 27 30.040972 34.66266 15.954402 37.355577 -9.9447 50.921247 11.355176 -0.55635 20010801 1128 1459 30 35.112035 40.5138965 18.9064804 13.3046288 32.4111092 -10.513887 11.0355196 16.4953712 -2.411109														
20010613 2030 3391 327341919 60.8471446 28.9173839 19.2723423 46.135710 -26.847145 5.60466588 13.7176185 -14.677711 20010613 2330 13221 36 0.03 46.5 21.7 15.5 37.2 -10.5 14.3 20.5 -11.8 11.9995786 18.7779156 -26.847145 5.60466588 13.7176185 -14.677711 20010627 1130 1150 35 31.1729049 35.9687364 16.7854103 11.9995786 18.776364 18.2145972 20.014212 62.250109 20010801 2327 1068 27 30.040972 34.66266 16.175006 11.55422 27.730128 -7.66266 10.824092 15.44578 -0.73012 20010801 1728 1459 0.3511235 45.947471 13.9995780 15.649424 37.558377 -19.945447 5.9921247 11.351517 -10.55843 20010821 1728 1409 03 30.4877024 35.1781182 15.649424 37.558577														
20010616 2330 1922 36 40.3 46.5 21.7 15.5 37.2 -10.5 14.3 20.5 -11.3 20010616 2330 1150 35.5 31.1729049 35.9687364 16.7854103 11.9995788 28.7749991 -0.5687364 18.2145997 23.0104212 6.2250108 20010801 2327 1068 27 30.040972 34.66266 16.7854103 11.9995788 28.7749991 -0.5687364 18.2145997 23.0104212 6.2250108 20010800 1728 1956 27 40.6660541 46.9454471 21.9078735 15.649424 37.5553577 -19.945447 5.0921247 11.3515176 -10.556357 20010801 1128 1469 30 35.112035 40.51388658 18.9064904 13.5046288 24.111092 10.935196 16.4953712 -2.411109 20010822 1741 1002 26 29.4473702 34.0238887 15.877814 11.7260394 28.1224976 51.78182 13.7893748 -1.219110														
20010527 1130 1150 35 31.7 153 37.4 153 37.4 18.2145897 23.0104212 6.2250106 20010627 1130 1150 35 31.72904 35.9677364 16.785018 11.979788 27.749891 -0.9667364 18.2145897 23.0104212 6.2250106 20010801 2227 1008 27 40.660541 46.9544471 12.9078733 15.6448624 37.3563577 -9.947447 5.9921247 11.315176 -0.750123 20010801 1120 1469 30 35.112035 40.5138865 18.9064904 13.5942678 37.45475 5.921247 11.315176 -10.57382 20010817 1120 1449 30 35.112035 40.51388657 18.9064268 32.411092 -0.513887 11.9355196 16.4953712 -2.411109 20010821 1741 1029 22.947702 34.03288877 15.8778147 11.3412946 5.1781182 13.3835448 18.273908 -2.1910 20010824 528 1														
20010801 2327 1058 35.958784 16.7457403 1.7369748 22.77972 7.766266 10.824092 15.44578 -0.73012 20010801 2327 1068 27 30.040972 34.66266 16.173901 11.5495748 22.779372 -7.66266 10.824092 15.44578 -0.73012 20010800 1728 1169 27 40.6660541 46.9454471 21.9078733 15.6494824 37.3563577 19.945447 5.0921247 11.351576 -10.55635 20010821 1728 1100 30.4877024 35.1781182 16.41645732 17.726374 53.7584946 57.81182 13.659344 18.273606 18.575034 20010821 1728 1100 30.4977024 35.1781182 16.41647334 23.5662402 -10.7078 11.0935148 18.273606 18.575034 20010824 5229 1027 25.29498993 39.990076 15.862767 33.5662402 -10.7078 11.0030266 16.430733 -2.566240 20010824 2329 1027														
2001000 1/28 1056 27 0.06600511 65/15308 11.3542/2 2/1/30120 59/3522/2 1/1/3012 19/35447 5.0921247 11.35176 10.556357 20010801 1128 1459 30 35.112035 40.51386851 18.9064904 13.5046286 32.4111092 10.513887 11.0935196 16.4953712 -2.411109 20010821 1728 1100 30 0.4877024 35.1781182 16.4164552 11.7260394 28.1424946 5.1781182 13.5854484 18.279506 1.8575054 20010822 1741 1002 26 29.4473702 34.0238887 15.8778147 1.3412962 27.2191109 -8.0238887 10.1221853 14.6597038 -1.219110 20010824 528 1473 30 35.2800935 40.7778002 18.9969734 13.369267 32.5562402 -10.7078 11.003266 16.4307338 -2.562404 20010824 2329 1027 26 29.458699 33.9900876 15.3623769 1.3302692 27.1926461														
20010817 1126 1409 30 35.11203 40.5138867 18.94942/1 37.338501 11.0231897 11.021212 11.021213 11.021213 11.021213 11.021213 11.021213 11.0212131 11.021213 11.021213 <td></td>														
20010821 1128 1100 30 30.4877024 55.178182 16.306420 43.30626 32.4711027 10.3781182 13.5835448 18.2739606 1.8575054 20010821 1728 1100 30.4877024 55.1781182 16.4164521 11.726034 26.1781182 13.5835448 18.2739606 1.8575054 20010822 1741 1029 26 29.4973702 30.038887 11.3703734 28.1624946 -5.1781182 13.583548 18.2739606 1.8575054 20010824 528 1473 30 35.2809073 18.9969734 13.569267 32.5662402 -10.7078 11.0030266 16.4307333 -2.566240 20010824 528 1547 30 35.280999 35.990076 15.8623769 13.3990076 15.8623769 13.3990076 15.677332 5.55057841 12.107556 -7.341855 20010825 2328 1544 26 36.1203544 41.677332 19.4494216 13.892444 33.3418656 -15.677332 6.505057841 12.107556 -7.														
20010822 1741 1020 20.3 517632 15.47832 11.720034 26.142476 0.1023887 10.1221853 14.6597038 -1219110 20010822 1741 1020 26 29.447370 34.033887 15.877814 11.341952 27.219109 -6.0238887 10.1221853 14.6597038 -1219110 20010824 528 1473 30 35.2600935 40.7078002 18.9969734 13.5692667 32.5562402 -10.7078 11.0030266 16.4307333 -2.562400 20010824 2329 1027 26 29.458099 33.9908076 15.8623769 11.3302692 27.1926461 -6.9908076 9.1577332 6.55057841 12.107556 -7.341865 20010825 2328 1544 20 36.1203544 41.677332 19.494241 33.318656 -15.677332 6.55057841 12.107556 -7.341865 20010828 1129 1402 29 30.5154059 15.703333 13.33930952 21.434266 -15.677332 6.55057841 12.107556 -7.34186														
20010824 528 1473 30 35 2800935 40.708002 18.969774 13.842567 32.5662402 -10.7078 11.0030266 16.4307333 -2.566240 20010824 2329 1027 26 29.4586999 33.990076 18.969774 13.302567 32.5662402 -10.7078 11.0030266 16.4307333 -2.566240 20010826 2329 1027 26 29.4586999 33.990076 15.9623769 11.3302652 27.1926461 -8.990076 9.13762313 15.6697304 -2.192646 20010825 2328 15441 23.611677352 15.8623769 11.3302656 -15.87732 L5.557841 12.10755 -7.341865 20010827 1125 1436 27 34.8220476 40.1792957 16.733333 13.3930952 32.1434296 -13.179266 8.24966677 13.609048 -5.143428 20010828 1122 102 29 30.5154059 35.2100838 16.238724 11.7366946 28.16067 -6.2100881 12.5686276 17.2633054 0.819														
20010824 2329 1027 25 29 4586599 33.9908076 15.362269 23.002192 27.1924461 -8.9908076 9.13762313 13.6697308 -2.192446 20010824 2328 1027 25 29 4586599 33.9908076 15.862376 11.3022692 27.1924461 -8.9908076 9.13762313 13.6697308 -2.192446 20010825 2328 1544 26 36.1203544 41.677332 19.4494216 13.892444 33.3418656 -15.677332 6.55057841 12.107556 -7.341865 20010828 1129 1102 29 30.5154059 35.100838 16.4313724 11.7365467 43.60657 -6.100838 12.566276 17.2633054 0.813329 20010828 1129 1102 29 30.5154059 35.100838 16.4313724 11.7365467 -6.100838 12.566276 17.2633054 0.813329 20010828 2328 1076 20 30.1392601 34.7760694 16.2288324 11.5920231 27.8208555 -8.7760694 9.7711167														
20010825 2328 1544 22 301,502,57332 19,449421 33,3418556 -15,677332 6,55057841 12,107556 -7,341865 20010827 1125 1435 27 34,8220476 40,177325 19,449421 33,818656 -15,677332 6,55057841 12,107556 -7,341865 20010827 1125 1435 27 34,8220476 40,1792857 18,7503333 13,33930952 32,1434286 -15,677332 6,24966667 13,60948 -5,143428 -13,179266 8,24966667 13,60948 -5,143428 -13,179266 8,24966667 13,60948 -5,143428 -13,179266 8,24966677 -14,18335 -143428 -13,179266 8,24966677 -11,81208 10,330544 41,1736694 16,2208524 11,5920231 27,8208555 -8,7760694 9,77116763 14,4079769 -1820855 20010828 5259 1554 30 36,2371355 41,8120796 16,2288524 11,5920231 27,8208555 -8,7760694 9,77116763 14,4079769 -1820855 20010920						00.2000300								
20010827 1125 1335 2135 11373257 18.352474 33.3541035 8.2496667 13.605048 -5.143428 20010827 1125 1435 27 34.8220476 40.1792857 18.352474 33.05410305 8.24966667 13.6059048 -5.143428 20010828 1120 1102 29 30.5154059 35.2100838 16.4313724 11.7366946 28.168067 -6.2100838 12.5686276 17.2633054 0.8319329 20010828 2328 1075 20 30.1392601 34.7760594 16.228824 11.5920231 27.8208555 -8.7760594 9.77116763 14.4079769 -1.820855 20010829 529 1554 30 36.2371356 41.8120796 15.1337399 33.4496637 -11.81208 10.4876962 16.0626401 -3.449663 20010903 1722 1802 28 36.659804 47.0292468 12.5561463 36.6417511 -17.768439 6.413518 12.7438537 -6.14751 20010920 1740 1966														
20010828 1120 1102 29 30.5154059 55.2100838 16.433724 11.7366946 28.168067 -6.2100838 12.5686276 17.2633054 0.8319329 20010828 2328 1075 20 30.5154059 35.7760694 16.238824 11.7366946 28.168067 -6.2100838 12.5686276 17.2633054 0.8319329 20010828 2328 1075 20 30.1392601 34.7760694 16.238824 11.5920231 27.8200555 -9.7760694 9.77116763 14.4079769 -1.820855 20010820 520 1554 30 36.2371356 41.8120796 19.5123038 13.9373599 33.4496637 -11.81208 10.40876922 16.0626401 -3.449663 20010903 1722 1802 28 39.6559804 45.7684389 21.3566048 15.2561463 36.6147511 -17.768439 6.6413518 12.7438537 -6.614751 20010920 1740 1966 29 40.7586601 47.0292462 21.9469816 15.6764154 37.623397 -													13.606904	8 -5.1434286
20010828 2328 1075 28 30.1392601 34.760694 16.298324 11.590733 27.820855 -8.7760694 9.77116763 14.4079769 -1.820855 20010828 529 1554 30 36.2371356 41.8120796 19.5123038 13.9373599 33.4496637 -11.81208 10.4876422 16.626401 -3.449663 20010903 1772 1862 28 39.653904 45.7684389 21.3586048 15.2561463 36.6147511 -17.764439 56.4139518 12.7438537 -8.614751 20010920 1740 1966 29 40.786601 47.0292462 21.9469816 15.6764154 37.623377 -18.029246 7.05301843 13.3235846 -6.62333														4 0.83193297
20010820 529 1554 30 36.2371356 41.8120796 19.512363 13.9373599 33.4496637 -11.81208 10.4876962 16.062401 -3.449663 20010903 1722 1862 28 39.6559804 45.7684389 21.3386048 15.2561463 36.6147511 -17.768439 6.64139518 12.7438537 -8.614751 20010920 1740 1966 29 40.7586801 47.0292462 21.9469816 15.6764154 37.623397 -18.029246 7.05301843 13.3235846 -8.62335														9 -1.8208555
20010003 1722 1862 28 39.6659804 45.7664389 21.3566048 19.2561463 36.6147511 -17.768439 6.64139518 12.7438537 -8.614751 20010920 1740 1966 29 40.7586801 47.029246 21.9469816 15.6764154 37.623397 -18.029246 7.05301843 13.3235846 -8.62339											-		16.062640	1 -3.4496637
20010920 1740 1966 29 40.7566801 47.0292462 21.9469816 15.5764154 37.623397 -18.029246 7.05301843 13.3235846 8.62339														7 -8.6147511
													13.323584	6 -8.623397
20010923 539 1509 26 35.7086124 41.2022451 19.2277144 13.7340817 32.9617961 -15.202245 6.77228563 12.2659183 -6.961796			539										12.265918	3 -6.9617961

1	1					Difference i
						Between
						RWP and
				Y		Brunt-
1				Vertical Velocity	Velocity	Vaisala
L	Date	Time	CAPE	(RWP)	fom B-V frey	Velocity
*	20010614	530	1258	34	19 8925716	14.1074284
*	20010620	2106	1548	33	#DIV/0!	#DIV/0!
*	20010620	2329	1341	33	14 9109864	18.0890136
*	20010621	528	2047	32	2 56389131	29.4361087
*	20010628	2028	1109	35	19.0664057	15.9335943
	20010907	528	1395	27	17 0135269	9.98647314
-	20010917	528	1192	33	16,7948096	16.2051904
*	20010917	2328	1040	31	10,5210625	20.4789375
×	20010921	533	1671	35	13 7486676	21.2513324
*	20010921	1136	1384	27	17.3337813	9.66621871
*	20010922	2339	1621	27	15.5728864	11.4271136
*	20010922	1739	1423	31	#DIV/0!	#DIV/0!
	20010602	1130	1472	34	12.1986198	21.8013802
	20010603	528	1485	33	#DIV/0!	#DIV/0!
	20010603	1127	2396	33	19.6642703	13.3357297
-	20010604	533	1182	34	14.4538735	19.5461265
	20010605	2329	1797	43	17.4289224	25.5710776
	20010608	533	1528	30	15.7454394	14.2545606
_	20010608	1130	1246	30	8.38276426	21.6172357
	20010611	2030	2321	36	15.8991965	20.1008035
	20010611	2330	1423	36	18.069003	17.930997
	20010612	2029	2106	33	12.2916068	20.7083932
	20010612	2329	2956	33	13.3583355	19.6416645
	20010613	2030	3291	34	10.5779406	23.4220594
	20010616	2330	1922	36	16.4107903	19.5892097
	20010627	1130	1150	35	14.4146111	20.5853889
	20010801	2327	1068	27	14.2554726	12.7445274
	20010806	1728	1959	27	13.859919	13.140081
-	20010817	1126	1459	30	2.14154755	27.8584525
	20010821	1728	1100	30	13.365167	16.634833
	20010822	1741	1029	28	16.9237331	9.0762669
	20010824	528	1473	30	14.5881031	15.4118969
	20010824	2329	1027	25	13.2927935	11.7072065
	20010825	2328	1544	26	21.7664317	4.2335683
	20010827	1125	1435	27	10.1026046	16.8973954
	20010828	1129	1102	29	15.9574335	13.0425665
	20010828	2328	1075	26	17.0069558	8.99304415
	20010829	529	1554	30	8.91507633	21.0849237
	20010903	1722	1862	28	13.0344329	14.9655671
	20010920	1740	1966	29	14.6259229	14.3740771
	20010923	539	1509	26	13.5967771	12.4032229

Appendix C: NCAPE values calculated

	Date	Time	CAPE	NCAPE
	20010614	530	1258	0.155886
	20010620	2106	1548	0.136304
	20010620	2329	1341	0.148719
	20010621	528	2047	0.186838
	20010628	2028	1109	0.215801
	20010907	528	1395	0.184158
	20010917	528	1192	0.103356
	20010917	2328	1040	0.184201
	20010921	533	1671	0.184968
	20010921	1136	1384	0.177095
	20010922	2339	1621	0.192632
	20010922	1739	1423	0.158499
	20010602	1130	1472	0.13081
	20010603	528	1485	0.05178
	20010603	1127	2396	0.246249
	20010604	533	1182	0.795424
	20010605	2329	1797	0.169544
	20010608	533	1528	0.151212
	20010608	1130	1246	0.121336
	20010611	2030	2321	0.334438
	20010611	2330	1423	0.175506
	20010612	2029	2106	0.22004
	20010612	2329	2956	0.320468
	20010613	2030	3291	#DIV/0!
	20010616	2330	1922	#DIV/0!
	20010627	1130	1150	0.127608
	20010801	2327	1068	0.110331
	20010806	1728	1959	0.191402
	20010817	1126	1459	0.20219
	20010821	1728	1100	0.114108
	20010822	1741	1029	0.180495
	20010824	528	1473	0.156852
	20010824	2329	1027	0.123408
	20010825	2328	1544	
	20010827	1125	1435	the second distance of the second distance of the second distance of the second distance of the second distance
	20010828		1102	and the second se
_	20010828	Construction of the local division of the lo	1075	
	20010829	And the second se	1554	
	20010903		1862	
	20010920		1966	
	20010923			0.177362