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Abstract 

The tropical semiring is IR U { oo} with the operations x EB y = min { x, y}, x EB oo = 

ooEBx = x,x8y = x+y,x8oo = oo8y = oo. This paper explores how ideas from 

classical algebra and linear algebra over the real numbers such as polynomials, roots 

of polynomials, lines, matrices and matrix operations, determinants, eigen values 

and eigen vectors would appear in tropical mathematics. It uses numerous computed 

examples to illustrate these concepts and explores the relationship between certain 

tropical matrices and graph theory, using this to provide proofs of some tropical 

computations. 
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Introduction 

The main purpose of this thesis is to describe the arithmetic operations in the 

tropical semi-ring, generally known as tropical arithmetic, and then explore how 

many of the standard notions of algebra and linear algebra would look in this tropical 

world. To begin, we should address the question of just what tropical mathematics 

is and why it is so named. The first of these issues is the thread that runs throughout 

the thesis. The basic operations of tropical arithmetic and their applications to the 

tropical versions of polynomials and lines are described and explored in the next 

three sections. Tropical matrix algebra and its application to tropical linear algebra 

form the rest of the paper. 

This leaves the question of why this entire area is referred to as tropical math­

ematics. One of the pioneers of the subject was Dr. Imre Simon - a Hungarian 

born mathematician who spent almost all of his academic life in Brazil. A group of 

French mathematicians who were following up on Simon's work seemed to simply 

view Brazil as "tropical" so began associating that term with this area of mathe­

matics in his honor. It should be noted that a group of Russian mathematics worked 

on the mirror-image of tropical mathematics independently beginning in the 1990s. 
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Tropical Operations 

Consider the real number system (~, +, ·) and replace the binary operations "+" by 

minimum of two numbers, denoted by "EB", and "·" by ordinary plus, denoted by 

"8", i.e. redefine the basic arithmetic operations of addition and multiplication of 

real numbers as follows: 

x EB y = min{x, y} 

x8y=x+y 

Example: The tropical sum of 6 and 2 is 2, and the tropical product of 6 and 2 

equals 8. That is 

6EB2=2 

682=8 

One can simply prove that many of the familiar axioms of arithmetic remain 

valid in tropical mathematics. To see this, for any x, y, z E ~ 

• Both addition and multiplication are associative. 

( x EB y) EB z = x EB (y EB z) 

(x 8 y) 8 z = x 8 (y 8 z) 

Associativity of tropical addition holds since min{x, min{y, z}} = min{x, y, z}. 

Associativity of tropical multiplication is obvious since the usual addition is 

associative. 

• Both addition and multiplication are commutative. 

xEBy=yEBx 

x8y=y8x 



• The tropical multiplication is distributive over tropical addition. 

x 8 (y EB z) = (x 8 y) EB (x 8 z) 

To illustrate this property: 

14 8 (5 EB 9) = 14 8 5 = 19 

(14 8 5) EB (14 8 9) = 19 EB 23 = 19 

In fact, this follows from 

min{x + y, x + z} = x + min{y, z} 

3 

• Note that 0 is the multiplicative identity, and for every a E JR, the multiplica­

tive inverse -a E JR exists. This is clear since tropical multiplication is the 

usual addition. 

• The additive identity e, if it exists, must satisfy the statement below 

Vx E JR, xEBe=eEBx=x 

which is equivalent to 

Vx E JR, x EB e = e EB x =min{ x, e} = x 

Observe that there doesn't exist e E JR which satisfy this condition. However, 

if we extend our tropical set JR to include oo, oo will serve as the zero element. 

Let 'JI' = JR U { oo}, and define 

Vx E JR, x EB oo = oo EB x = min { x, oo} = x 

Vx E JR, x8oo=oo8x=x+oo=oo 

Note that no a E JR has an additive inverse. So we cannot really talk about 

tropical subtraction. 

Therefore, the algebraic structure (11', EB, 8) is a semiring [3]. 
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Tropical Polynomials 

Consider functions of the form 

n 

p(x) = Ef)(ai 8 xi) 
i=O 

with ai E 11', in other words, tropical polynomials. Rewriting p(x) in classical 

notation yields 

p( x) = min { ai + ix h=o,1, ... ,n 

Notice that p(x) is the minimum of collection of linear functions. 

Example: Consider the tropical polynomial 

P1(x) = 2EBx = min{2,x} 

It is the minimum of constant function f(x) = 2 and the identity function f(x) = x. 

Similarly, 

P2(x) = 3 EB x EB (2 8 x3 ) = min{3, x, 3x + 2} 

is the minimum of the given three linear functions. 

This tells us that a tropical polynomial is a piecewise linear function and each piece 

has an integer slope, and its graph is continuous and concave down. 

(2,2) 

(-1,-l, 

Graph of P1(x) I 

It is natural to ask what the roots of these polynomials are. However, first we 

should examine what we mean by a root in the sense tropical algebra? In the usual 
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sense, Xo is said to be a root of a polynomial p(x) if p(x0 ) is equal to zero. However, 

this definition is not appropriate in tropical sense since the zero element is oo and 

there is no x for which p(x) = oo for most polynomials p. 

To illustrate this, consider the polynomial 

P2(x) = 3 EB x EB (2 8 x3 ) = min{3, x, 3x + 2}. 

If we try to solve 

P2(x) = 3 EB x EB (2 8 x3 ) = min{3, x, 3x + 2} = oo 

Note that p2 ( x) is at most 3 which implies the equation has no solution. In general, 

this tells any polynomial p(x) has no roots if it has a constant term. In standard 

algebra, an equivalent definition of a root, in the classical sense, of a polynomial is 

an element x0 E IR such that 

p(x) = (x - x0 )q(x) 

for some polynomial q( x). So we can take the definition for tropical roots of the 

polynomial p( x) to be: A real number x0 is a tropical root of p( x) if there exists a 

tropical polynomial q ( x) such that 

p(x) = (xEBx0 ) 8q(x) 

Consider tropical polynomial P(x) of degree two defined by 

P(x) = (x EB a) 8 (x EB b) = min{x, a}+ min{x, b} 

Without loss of generality, suppose a < b, then 

min{x, a)= { : 

which leads to 

x:::; a 

x>a 
and min{x,b} = { : 

2x x:::; a 

P(x)= x+a a < x :::; b 

a+b x>b 

x:::; b 

x>b 



6 

and its graph is 

4 / b 

=1 v 
I Graph of P(x) 

This leads to the fact that the roots of p( x) are all points x0 of JR for which the 

graph of p( x) has a corner at x0 . 

Note that the above discussion is when a < b, how about when a = b? If we 

look at our polynomial P(x) will be reduced to 

{ 
2x 

P(x) = 
2a 

x :s; a 

x>a 

and the graph of P(x) will have only one corner. The difference in the slopes of the 

two pieces adjacent to a corner gives the order of the corresponding root (which is 

2 for this particular polynomial P ( x)). 

This is a good time to explore one of the interesting consequences of tropical 

arithmetic. One can simply notice that, when a= b, the reduction of P(x) gives 

=} P(x) = (x EB a) 8 (x EB a)= min{x, a}+ min{x, a} 

= 2min{x, a}= min{2x, 2a} = x2 EB a2 

=} (x EB a) 2 = x2 EB a2 

This fact can be generalized to 
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Additionally, x0 is a tropical root of at least order k of p( x) if there exists a 

tropical polynomial q(x) such that p(x) = (x EB x0)k 8 q(x). 

Example: The polynomial p 1 ( x) = 1 EB x has a simple root at x0 = 1 and the 

polynomial p2 (x) = 3 EB x2 = min{3, 2x} has a double root at ~- From the graph 

depicted below, one can observe that the order of the root is the difference in the 

slopes of the two pieces adjacent to a corner. 

1 1 

· Graph ofp1(x) Graph ofp2(x) 

Example: The polynomial p3 (x) = (x EB 2) 8 (x EB 3)2 has a simple root at x0 = 2 

and a double root at x 0 = 3. 

To see this, 

p3 (x) = {x EB 2) 8 (x EB 3) 2 = (x EB 2) 8 (x EB 3) 8 (x EB 3) 

= [ ( x2 ) EB ( x 8 2) EB ( x 8 3) EB ( 2 8 3)] 8 ( x EB 3) 

= [(x2 ) EB (x 8 2) EB 5] 8 (x EB 3) 

= ( x3 ) EB ( x2 8 3) EB ( 2 8 x2 ) EB ( 2 8 x 8 3) EB ( 5 8 x) EB ( 5 8 3) 

= (x3 ) EB (2 8 x2) EB (5 8 x) EB 8 

Now, note that the above expression is equivalent to the minimum of four linear 

functions given by 

min{3x, 2x + 2, x + 5, 8} 



and its graph is given below 

Graph of p3(x) 

On the other hand, 

p3(x) = (x EB 2) 8 (x EB 3) 2 = (x EB 2) 8 (x2 EB 32 ) 

= ( x EB 2) 8 ( x2 EB 6) 

= (x 3 ) EB (2 8 x2 ) EB (6 8 x) EB (2 8 6) 

= (x3 ) EB (2 8 x2 ) EB (6 8 x) EB 8 

which is equivalent to 

min{3x, 2x + 2, x + 6, 8} 

Graph of p3(x) 

8 

Notice that, the graphs are identicaL and have a single root at x = 2 and double 

root at x = 3. 
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Tropical Curves 

Definition: A tropical polynomial in two variables is written 

p(x,y) = ffiai,j 8 xi 8 yi = ~i_n{ai,j +ix+ jy} 
. . i,J 
i,J 

Here our tropical polynomial is again a piecewise linear function, and the tropi­

cal curve defined by p(x, y) is the corner locus of this function. That is, a tropical 

curve consists of all points (x0 , y0 ) E 1I'2 for which the minimum of p(x, y) is ob­

tained at least twice at (x0 , y0 ) (i.e. at every solution of the two piecewise-linear 

equations, precisely two of the linear forms attain the minimum value in each of the 

two equations). 

Example: Consider the tropical line defined by the polynomial 

p(x, y) = 1E9(-2)8xE93 8 y 

We must find the points (x0 , y0) in JR.2 that satisfy the following three systems 

of equations: 

1 = Xo + (-2) :s; Yo+ 3 

Yo+ 3 = 1 ~ Xo + (-2) 

xo + ( -2) = Yo + 3 :s; 1 

As depicted on the figure below, the curve is made up of three standard half-lines 

given by: 

and 

{ (3, y) : y 2:: -2}, 

{(x, -2): x 2:: 3} 

{(x,x- 5): x::; 3} 
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(3,-2) 

Graph of p(x,y) 

This curve is known as tropical line and it has several common properties with 

the usual line in Euclidean plane. A tropical line is made up of three half-lines 

emanating from a point in the direction of (1, 0), (0, 1) and (-1, -1). As depicted 

in the figure below: 

• Tropical lines are given by an equation of the form (a 8 x) EB (b 8 y) EB c. 

• Most pairs of tropical lines intersect in a single point; and 

• For most choices of pairs of points in the plane, there is a unique tropical line 

passing through the two points. 

Intersection of two lines A line through two distinct points 
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A line through two distinct points A line through two distinct points 

Note that we have: 

• some pairs of tropical lines that intersect at more that one point, and 

• for some choices of pairs of points in the plane, there are infinitely many 

tropical line passing through these two points. 

Two lines with more than 
one point of intersection. 

More than one line through 

two distinct points 
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Matrix Operations 

This notion can be adopted to define these tropical vector and matrix operations in 

JRn and JRmXn. 

Definition: Let A= [Aij], B = [Bij] E IRmxn. The tropical matrix sum, A EBB, is 

then obtained by evaluating the tropical sum of the corresponding entries. That is, 

Definition: Let A= [Aij] E IRmxn and c be any scalar. The product c 0 A (scalar 

multiplication) is obtained by adding c to each entry in A. That is, 

Definition: Let A = [Aij] E IRmxn and B = [Bij] E :!Rnxp. The tropical matrix 

product, C =A 0 BE IRmxp, is the given by the matrix C = [Cij] with entries 

n 

C1j = ffiAik 0 Bkj = min{ Aik + Bkj h=1, .. .,n 

k=l 

where i = 1, ... ,m and j = 1, ... ,p 

Example: In IR4 tropical sum and tropical scalar multiplication can be performed 

as follows: 
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Example: In JR2x 2 tropical sum and tropical multiplication of 2 x 2 matrices can 

be performed as follows: 

( 1 -l)EB(l 7) (lEBl -lEB-7)=(1 -7) 
2 0 3 -6 2 EB 3 0 EB -6 2 -6 

c ~l) 0 c 7 ) = ( 1 8 1 EB -1 8 3 1 8 7 EB -1 8 -6 ) 

-6 2 8 1 EB 0 8 3 2 8 7 EB 0 8 -6 

=(2EB2 8EB-7)=(2 -7) 
3 EB 3 9 EB -6 3 -6 

Definition: Let A = [Aij] be an n x n matrix. Define the tropical determinant 

tropdet (A) by 

tropdet(A) = EB{A1cr(l) 8A2cr(2) 8 ··· 8Ancr(n)} 

crESn 

Sn is a group of permutations of {1, 2, ... , n} 

Example: Find the tropical determinants of A and B where 

Note that, 

and 

tropdet (A) = ( 3 8 6) EB ( 2 8 4) = 9 EB 6 = 6 

tropdet(B) = (3 8 7) EB (8 8 4) = 10 EB 12 = 10 

tropdet(A 8 B) = 12 -I 6 8 10 = tropdet(A) 8 tropdet(B) 



14 

The evaluation of the tropical determinant is the classical assignment problem 

of combinatorial optimization. For instance, suppose a company needs to assign n 

jobs ton workers in such a way that each worker can perform only one job and each 

job needs be assigned to exactly one of the workers. Let aij be the cost of assigning 

job i to worker j. For <J E Sn, Aia(l) + A2a(2) + ... + Ana(n) is the cost of assigning 

job i to worker <J( i) then 

min { Aia(1) + A2a(2) + ... + Ana(n)} 
aESn 

is the cheapest assignment and is also the tropical determinant of the n x n matrix 

The assignment problems in linear programming like minimizing total cost, min­

imizing total time, maximizing performance etc. can be reduced to the evaluation 

of the tropical determinant. 

Definition: A permutation matrix is a matrix obtained by permuting the rows of 

an n x n identity matrix according to some permutation of the numbers 1 to n. 

Note that every row and column of a permutation matrix contains precisely a 

single 1 with O's everywhere else, and every permutation corresponds to a unique 

permutation matrix. There are, therefore, n! permutation matrices of size n x n. 

One way of solving assignment problems is a brute force algorithm which leads 

to generate all n! permutations of {1, 2, ... , n} for n x n matrix. In practice, this 

is not a helpful method as it is not efficient for large n. However, in optimization 

theory, there is a well known polynomial time algorithm, known as the Hungarian 

Method, which can compute the tropical determinant. 

Before discussing Hungarian Method, let A= [Aij] be any n x n matrix in which 

Aij is the cost of assigning worker i to job j. Let S = [sij] be then x n matrix where 

if worker i is assigned to job j 

otherwise 

In other words, S is the permutation for a particular worker-job assignment. 



The assignment problem can then be expressed in terms of a function z as: 

n n 

minimize z(S) = LLAijBij 

i=l j=l 

over all S 

15 

Any matrix S realizing this minimum is called a solution and corresponds to a 

permutation u of N obtained by setting u( i) = j if and only if sij = 1. Furthermore, 

if Sis a solution corresponding to u, then 

n 

L:AijSij = Aio-(i) 

j=l 

Summing over i from 1 ton, we obtain 

n n n 

L Aio-( i) = LL Aij Sij 

i=l i=lj=l 

Thus, any solution Son which z(S) is minimum is called an optimal solution. 

The Hungarian Method: Consider a matrix A= {a1 , ... ,an} E·ffi.nxn. 

Step 1: For each row, subtract its minimum value from each entry in the row. This 

corresponds to ai = -( EBjaij) 8 ai and the resulting matrix is non-negative. 

Step 2: For each column, subtract its minimum value from each entry in the column. 

This is just applying Step 1 to the transpose of A and then transposing back. 

Step 3: Select rows and columns in a minimal way such that each 0 in the matrix is 

in one of the selected rows or columns. If the number of rows and columns chosen 

is n, then for the resulting matrix B, there exists u E Sn such that z(S) = 0 when 

S is the permutation matrix for u. Otherwise, continue to Step 4. 

Step 4: Let a be the smallest entry in A that lies in none of the chosen rows and 

columns. Then subtract a from each element not in the chosen rows and columns, 

and add a to each element that is in both a chosen row and column. This corresponds 

to tropically scaling each chosen row and column by a and then scaling every other 

entry by -a. Go back to Step 3. 
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The idea behind the Hungarian method is to try to transform a given assignment 

problem specified by matrix A= [Aij] into another one specified by a matrix A' = 

[A~j], such that each A~j 2: 0, where both problems have the same set of optimal 

solutions; and then find a solution S' for which 

n n 

z(S') = LLA~js~j = 0 
i=l j=l 

Since A~j 2: 0 , S' must be an optimal solution to the problem specified by A', 

and hence must also be an optimal solution to the one specified by A. 

Theorem: [4] A solution Sis an optimal solution for 

n n 

z(S) = LLAijBij = 0 
i=l j=l 

if and only if it is an optimal solution for 

n n 

z'(S) = LLA~jsij = 0 
i=l j=l 

where A~j = Aij - ui - Vj for any choice of (u1 , ... , un) and (v1 , ... , vn) where ui and 

vi are real numbers for all i and j. 

Proof. It is sufficient to show that the functions z(S) and z'(S) differ by a constant. 

n n 

z'(S) = LLA~jsij = 0 
i=l j=l 

n n 

i=l j=l 

n n n n n n 
= LLAijBij - LLUiSij - LLVjSij 

i=l j=l i=l j=l i=l j=l 

n n n n 
= z(S) - LuiLBij - LviLBij 

i=l j=l j=l i=l 

n n 

= z(S) - Lui - Lvi 
i=l j=l 
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n n 

==} z(S) - z'(S) =Lui+ LVJ 
i=l j=l 

n n 

This implies z(S) and z'(S) differ only by the constant L:ui + LVJ which com-
i=l j=l 

pletes the proof. 

D 

This fact describes how we can transform a matrix into another one which has 

the same set of optimal solutions. 

Definition: Given any n x n matrix A= [AiJ], let 

The n x n matrix A' = [A~J] given by A~J = AiJ - ui - VJ for all pairs i and j is 

called the reduced matrix for A. 

A' is nothing more than the result of first two steps of Hungarian Method. After 

performing the first two steps of the Hungarian Method, all entries in the reduced 

matrix are non-negative. 

If we have an independent set of zeros in a matrix of non-negative numbers the 

minimum for that matrix is zero and realized by the permutation determined by 

these zeros. 

Step 4 is performed only when no independent set of n zeros exists. This step is 

equivalent to first subtracting the smallest entry k from every entry in the matrix, 

and then adding k to every entry covered by a line. Subtracting k from every entry 

is the transformation ui = k, for all i, and VJ = 0, for all j. This does not change 

the set of optimal solutions but the sum of all entries will decrease by at least k. 

Eventually. if the sum of all entries is zero, then all entries in the matrix are 

zero and an independent set of n zeros exists. Note that the algorithm terminates, 

because if that is not the case the sums of all matrix entries would give an infinite 

decreasing sequence of positive integers, which is impossible. 



Example: Find the tropical determinant of the matrix A, where 

A= 

8 23 13 18 

13 28 3 13 

33 18 10 22 

15 23 11 18 

18 

To find the determinant, for each row, subtract its minimum value from each 

entry in the row. Then we have, 

0 15 5 10 

10 25 0 10 

23 8 0 12 

0 8 7 3 

For each column, subtract its minimum value from each entry in the column. 

0 7 5 7 

10 17 0 7 

23 0 0 g 

0 0 7 0 

Select rows and columns in a minimal way such that each 0 in the matrix is in one 

of the selected rows or columns. 

t 7 7 

The number of rows and columns chosen is 4 which is the order of the matrix, which 

corresponds to the fact that each row subscript i is assigned to exactly one column 

subscript and vice versa. 



0 7 5 7 

10 17 0 7 

23 0 0 9 

0 0 7 0 

19 

Hence, the minimum is attained and it corresponds to the permutation transpo­

sition a= (2, 3), (set of zeros marked in bold face). 

Therefore, the tropical determinant is the sum of the corresponding entries of 

the original matrix. That is tropdet(A) = 8 + 3 + 18 + 18 = 47 

Example: Suppose four workers must be assigned to four jobs, and the matrix A, 

given below, indicates the cost of training each worker for each job. How should 

the workers be assigned to jobs so that each worker is assigned one job, each job is 

assigned one worker, and the total training cost is minimized? 

4 5 6 3 

7 2 19 16 
A= 

4 12 5 11 

6 3 13 9 

Solving this problem is equivalent to finding the tropical determinant of the 

matrix A. Similar to the previous example, for each row, subtract its minimum 

value from each entry in the row. Then we have, 

1 2 3 0 

5 0 17 14 

0 8 1 7 

3 0 10 6 

For each column, subtract its minimum value from each entry in the column. 



1 2 2 0 

5 0 16 14 

0 8 0 7 

3 0 9 6 
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Select rows and columns in a minimal way such that each 0 in the matrix is in one 

of the selected rows or columns. 

I 
3 © 9 6 

The number of rows and columns chosen is 3 which is less than 4, hence we precede 

to step 4. Observe that 3 is the smallest entry that lie in none of the chosen rows 

and columns, Subtracting 3 from each element not in the chosen rows and columns 

and adding 3 to each element that is in both a chosen row and column yields 

0 © 6 3 

with a corresponding independent set of zeros marked in bold face. 

1 5 

2 0 

0 11 

0 0 

2 0 

13 11 

0 7 

6 3 

Hence, the minimum assignment corresponds to the permutation transposition 

(J = (1, 4). 

Therefore, tropdet(A) = 3 + 2 + 5 + 6 = 16 
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Powers of a Matrix 

In graph theory, a directed graph (or digraph) is a graph, or set of nodes (vertices) 

connected by edges, where the edges have a direction associated with them. 

A weighted graph is a digraph which has values attached to the directed edges. 

These values represent the cost of traveling from one node to the next. The figure 

below is an example of directed graph. 

Fig. Directed Gragh 

The graph may represents flight distance between terminals, the dollar cost of a 

plane ticket between the hubs, the time spent to travel form one city to the other 

etc. A weighted graph can be represented by a matrix. 

Suppose that one has a directed graph with vertices V = {1, ... , n} and weighted 

edges E. Then we can form the transition cost matrix C E Rnxn where Cij is the 

weight given to the edge ( i, j). By convention Cii = 0 and if edge ( i, j) does not 

exists then Cij = oo. If we interpret the weight of an edge ( i, j) as the cost of 

moving from vertex i to vertex j, then we will show the tropical power (cm )ij will 

be the minimum cost of moving from vertex i to vertex j in at most m steps. 

Definition: A weighted adjacency matrix is a matrix representation A of a weighted 

graph. Aij is the weight of the edge (if any) from vertex i to vertex j. 

In the next example, the shortest path problem will be used to illustrate the 

power of tropical matrix multiplication. 
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Example: Consider the weighted graph, given below, which represents the cost of 

flight between pair of cities of the given four cities 

Ticket Cost 

The corresponding adjacency (transition) matrix is given by 

0 45 50 25 

36 0 00 00 
C= 

00 35 0 42 

00 90 55 0 

Notice that 

0 45 50 25 0 45 50 25 

c2 = 
36 0 00 00 36 0 00 00 

8 
00 35 0 42 00 35 0 42 

00 90 55 0 00 90 55 0 

0 45 50 25 

36 0 86 61 

71 35 0 42 

126 90 55 0 

Observe that (3, 1) entry, 71, corresponds to the path length from vertex 3 to 

vertex 1, []] -+ [l] -+ [], and (1, 3) entry, 50, corresponds to the path length 
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from vertex 1 to vertex 3, DJ ------+ rn. In fact, each entry ( C 2 )iJ is the minimum 

length of all possible paths from vertex i to j using at most in 2 steps. 

0 45 50 25 

C 3 = c 2 c:ic = 
36 0 86 61 

8 
71 35 0 42 

126 90 55 0 

0 45 50 25 

36 0 86 61 

71 35 0 42 

126 90 55 0 

0 45 50 25 

C4 = c 2 0 c 2 = 
36 0 86 61 

8 
71 35 0 42 

126 90 55 0 

0 45 50 25 

36 0 86 61 

71 35 0 42 

126 90 55 0 

Moreover, for any m EN and m :::'.'. 3, we will have 

0 45 50 25 

36 0 86 61 

71 35 0 42 

126 90 55 0 

0 45 50 25 

36 0 00 00 

00 35 0 42 

00 90 55 0 

0 45 50 25 

36 0 86 61 

71 35 0 42 

126 90 55 0 

In fact, for any n x n adjacency matrix C, the (ij)th entry of the matrix cn-1 is 

the length of a shortest path from vertex i to vertex j in the corresponding graph. 

Notice that, from the definition of tropical matrix multiplication and the asso­

ciativity of the tropical operations, for n :::'.'. 2, we can use the recursive formula given 
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below to evaluate the (ij)th entry of en-I 

er;= min{c;t-1 + ckj: k = 1, 2, ... , n} 

Theorem: Let G be a weighted directed graph on n nodes with n x n adjacency 

matrix Da. The entry of the matrix D~-1 (tropical matrix power) in row i and 

column j equals the length of a shortest path from node i to node j in G. 

Proof. Let d~;) denote the minimum length of any path from node i to node j which 

uses at most r edges in G. We have dg) = dij for any two nodes i and j. 

Now, any shortest path in the directed graph G uses at most n - 1 directed 

edges. Hence the length of a shortest path from i to j equals d~;-i). 

__ /,,,,' ,«' 

/ ' 

0- J., .......... ~·;· ............................................ 0- / 

Fig. Shortest path from i to j 

For r ~ 2 we have a recursive formula for the length of a shortest path. As 

shown in the figure above, if path p is a shortest path (of length r) from vertex i 

to vertex j, and k is next to last vertex of p. Then path p is the shortest path p1 

(of length r - 1), the portion of path p from vertex i to vertex k, plus path p2 (of 

length 1) from vertex k to vertex j. 

This gives 

d(r) - · {d(r-l) d · k - 1 2 } 
ij - mm ik + kj . - ' ' ... ' n 

Using tropical arithmetic, this formula can be rewritten as follows: 

d (r) d(r-1) d d(r-1) d d(r-1) d 
ij = il 8 lj EB i2 8 2j EB ... EB in 8 nj 
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(d(r-1) d(r-1) d(r-1)) (d d d ) 
= il ' i2 ' · · ·' ·in 8 lj' 2j' · · ·' nj 

From this it follows, by induction on r, that d};) coincides with the entry in 

row i and column j of the tropical product of row i of D~-1 and column j of De, 

which is the (i, j) entry of D''Q. This proves d};) = D''Q, for r:::; n - 1. In particular, 

d}j-l) = D~-l), since the edge weights dij were assumed to be non-negative, a 

shortest path from node i to node j visits each node of G at most once. So D~-l) 

actually forms shortest path from i to j. This proves the result. 

D 

This recursive formula is essentially the Dijkstra's algorithm. The iteration 

will be more interesting if we replace the diagonal entries by Cii = oo, i.e. when 

we restrict ourselves of no possibility of having a loop in our graph. In fact, the 

iterations of the form Ak, where k E N will reveal some important features of the 

graph G(A). 

Consider, the corresponding transition cost matrix with diagonal entries set to 

oo: 

00 45 50 25 

36 00 00 00 
C= 

00 35 00 42 

00 90 55 00 

Notice that 

00 45 50 25 00 45 50 25 

C2= 
36 00 00 00 36 00 00 00 

8 
00 35 00 42 00 35 00 42 

00 90 55 00 00 90 55 00 



C3 = c2 0 c = 

C4 = c 2 0 c 2 = 

81 85 80 92 

00 81 86 61 

71 132 97 00 

126 90 00 97 

81 85 80 92 0 45 50 25 

00 81 86 61 36 0 00 00 

71 132 97 00 

126 90 00 97 

121 115 131 106 

117 121 116 128 

168 116 121 96 

126 171 152 151 

81 85 80 92 

00 81 86 61 

71 132 97 00 

126 90 00 97 

151 166 166 146 

157 151 166 142 

152 156 151 163 

207 171 176 151 

00 35 0 42 

00 90 55 0 

81 85 80 92 

00 81 86 61 

71 132 97 00 

126 90 00 97 
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Notice that the matrix entry [Ak]iJ gives the path of least weight of length k 

from vertex i to vertex j in G(A). In particular, each diagonal entry [Ak]ii gives the 

cycle of least weight of length k beginning at vertex i in G(A). 
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Eigenvalues and Eigenvectors 

Definition: Let A be an nxn-matrix with entries in the tropical semiring (11", EB, 8 ). 

An eigenvalue of A is a real number >. such that 

for some v E JR.n. The vector v is called an eigenvector of the tropical matrix A. 

Example: Consider a matrix A and a vector v such that 

A=(: : ) and v= (:) 

( 7 6) (5) (785EB683) A8v= 8 = 6 4 3 685EB483 

Therefore, >. = 4 is an eigenvalue of the matrix A and v is eigenvector in the 

corresponding eigenspace. 

Definition: Let G be a weighted digraph. The graph G is said to be strongly 

connected if there is a path from any vertex to any other vertex. 

Definition: A tropical matrix A is irreducible if and only if its corresponding graph, 

G (A), is strongly connected. 

Definition: The normalized length of a directed path i 0 , i 1, ... , ik in G(A) is the 

sum (in classical arithmetic) of the lengths of the edges divided by the number of 

edges of the path. Thus the normalized length is 

k 

If ik = i 0 then the path is a directed cycle and we refer to this quantity as the 

normalized length of the cycle. 
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Theorem: [1] Let A be a tropical n x n-matrix whose graph G(A) is strongly 

connected. Then A has precisely one eigenvalue >.(A). That eigenvalue equals the 

minimal normalized length of any directed cycle in G(A). 

Proof. Let >. = >.(A) be the minimum of the normalized lengths over all directed 

cycles in G(A). We first prove that >.(A) is the only possibility for an eigenvalue. 

Suppose that z E ]Rn is any eigenvector of A, and let 'Y be the corresponding eigen­

value. For any cycle (ii, i2, ... , ik, ii) E G(A) we have 

Adding the left hand sides and the right hand sides, we find that the normalized 

length of the cycle is greater than or equal to 'Y· In particular, we have >.(A) ~ 'Y· 

For the reverse inequality, start with any index ii. Since z is an eigenvector with 

eigenvalue "(, there exists i 2 such that aii i 2 + zi2 = "( + zii. Likewise, there exists i 3 

such that ai2i3 + zi3 = "( + Zi2 • We continue in this manner until we reach an index 

i 1 which was already in the sequence, say, ik = i 1 fork < l. By adding the equations 

along this cycle, we find that 

= ('y + Zik) + ('y + Zik+J + ··· + ('y + Ziz) 

We conclude that the normalized length of the cycle (ik, ik+i, ... , iz = ik) in G(A) 

is equal to 'Y· In particular, 'Y ~ >.(A). This proves that 'Y = >.(A). It remains 

to prove the existence of an eigenvector. Let B be the matrix obtained from A 

by (classically) subtracting >.(A) from every entry in A. All cycles in the weighted 

graph G(B) have non-negative length, and there exists a cycle of length zero. Using 

tropical matrix operations we define 

B* = B EB B 2 EB B 3 EB ... EB En 
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The entry Bii in row i and column j of the matrix B* is the length of a shortest 

path from node i to node j in the weighted directed graph G(B). Since the graph 

is strongly connected, we have Bii < oo. Moreover, 

(Id EB B) 8 B* = B* 

Here Id = B 0 is the tropical identity matrix whose diagonal entries are 0 and off­

diagonal entries are oo. Fix any node j that lies on a zero length cycle of G(B), and 

let x = Bj denote the lh column vector of the matrix B*. We have Xj = Bii = 0. 

This property together with (**) implies 

x = (Id EBB) 8 x = x EBB 8 x = B 8 x 

This is because 

• ith entry of B 8 x = min{bil + X1, bi2 + X2, ... , bin+ Xn}, but Xj = 0 so the lh 

term in this is just bij. This means that the ith entry of B 8 x is less than or 

equal to bij. 

• B 8 x = B 8 (lh col of B*) = jthcol of B 8 B* = lh col of (B2 EB ... EB Bn+l) 

·th t f B '-" . . {B2 Bs Bn+1} • i en ry o -o x is mm ij, ij, ... , ij 

= min { Bij, B'fJ, Bh 1 ••• , BF/ 1} from the first point 

:::; min{Bij, B'fJ, Bh, ... , B0} 

= Bij =Xi 

This means x EBB 8 x = B 8 x. Hence, we conclude that x is an eigenvector 

with eigenvalue .A of our matrix A: 

A 8 x =(.A 8 B) 8 x =.A 8 (B 8 x) =.A 8 x 

This completes the proof of Theorem D 

Definition: The eigenspace of the matrix A, is the set 

Eig(A) = {v E :!Rn: A8v = .A(A) 8v} 
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One can simply observe that Eig(A) is closed under tropical scalar multiplica­

tion, that is, if v E Eig(A) and c E IR then c 0 vis also in Eig(A). 

This leads to the fact every eigenvector of the matrix A is also an eigenvector of 

the matrix B = (-A.(A)) 0 A and vice versa. Hence the eigenspace 

Eig( B) = { v E !Rn : B 0 v = v} 

For instance, consider the directed graph G given below. It is strongly connected, 

and its adjacency matrix A is irreducible. 

Fig. Directed Gragh 

The adjacency matrix A is given by 

00 00 8 00 00 

4 00 00 00 2 

A= 00 3 00 00 5 

5 4 00 00 5 

00 00 6 7 00 

00 00 8 00 00 00 00 8 00 00 

4 00 00 00 2 4 00 00 00 2 

A2= 00 3 00 00 5 0 00 3 00 00 5 

5 4 00 00 5 5 4 00 00 5 

00 00 6 7 00 00 00 6 7 00 



A3 =AZ 8A = 

A4 =AZ 8Az = 

00 11 00 00 13 

00008 900 

AZ= 7 00 11 12 5 

00 11 

00 00 

7 00 

8 00 

12 9 

A3= 

00 11 

00 00 

7 00 

8 00 

12 9 

A4= 

8 00 11 12 6 

12 9 00 00 11 

00 00 13 

8 9 00 

11 12 5 8 

11 12 6 

00 

4 

00 

5 

00 00 11 00 

15 00 19 20 13 

14 11 00 00 13 

17 14 11 12 16 

17 14 12 13 16 

15 00 17 18 11 

00 00 13 00 

8 9 00 00 

11 12 5 8 7 

11 12 6 8 

00 00 11 12 

25 22 19 20 24 

15 00 19 20 13 

17 14 22 23 16 

18 15 22 23 16 

23 20 17 18 22 

31 

00 8 00 00 

00 00 00 2 

3 00 00 5 

4 00 00 5 

00 6 7 00 

11 00 00 13 

00 8 9 00 

00 11 12 5 

00 11 12 6 

9 00 00 11 
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25 22 19 20 24 00 00 8 00 00 

15 00 19 20 13 4 00 00 00 2 

A5 = A4 8A= 17 14 22 23 16 8 00 3 00 00 5 

18 15 22 23 16 5 4 00 00 5 

23 20 17 18 22 00 00 6 7 00 

25 22 30 31 24 

25 22 19 20 24 

As= 18 25 22 23 16 

19 25 22 23 17 

23 22 28 29 22 

Recall that the matrix entry [Ak]ij gives the path (or cycle) of least weight of 

length k from vertex i to vertex j in G(A), and henc.e to find the shortest path (or 

cycle), we need to evaluate the·tropical sum these power matrices A*: 

A*= A EB A2 EB A3 EB A4 EB A5 

===}A*= 

15 11 8 20 13 

4 11 8 9 2 

7 3 11 12 5 

5 4 11 12 5 

12 9 6 7 11 

Note that the minimum diagonal entries of A* is the minimal length of the cycles 

in the graph of G. That is 

min{l5,ll,ll,12,ll} = 11 

However, the eigenvalue >.(A) is the minimal normalized length which is 



Notice that 

0000 8 0000 

4 000000 2 

00300005 

5 400005 

00006 700 

which is in the form of A 8 v = .Av 

2 

0 

11 
=-8 

3 

33 

2 

0 

In fact, we can use the proof proceeding theorem to find this eigenvector v. To 

see this consider the given adjacency matrix A and define martix B by subtracting 

the eigenvalue A from each entry, 

00 00 

1 
3 00 

13 00 00 
3 

5 

00 00 6 00 00 

2 00 00 00 0 

B= 2 4 
00 -3 00 00 3 = -3 8 00 1 00 00 3 

4 
3 

1 
3 00 00 

4 
3 

00 00 
7 
3 

10 
3 00 

0000 6 0000 

2 000000 0 
2 10 

B = -3 8 oo 1 oo oo 3 

10 
=--8 

3 

3 200003 

00004 500 

00 7 00 00 9 

00 00 4 

7 

5 

8 

00 

3 00 1 

4 00 7 8 2 

8 5 00 00 8 

3 2 00 00 3 

00 00 4 5 00 

0000 6 0000 

2 000000 0 

8 00 1 00 00 3 

3 200003 

00004 500 

00 

00 

11 00 00 3 

00 
2 
3 

00 1l 
3 

5 
3 

17 
3 

00 

£ 00 11 14 4 
3 3 3 -3 
14 
3 

5 
3 00 00 

14 
3 



3 15 
B =--0 

3 

15 

3 

4 20 
B =--0 

3 

20 

00700009 

00004 500 

3 00 7 8 1 

4 00 7 8 2 

8 500008 

9 00 13 14 7 

8 500007 

118 5 610 

118 6 710 

7 00 12 13 5 

00 700009 

00004 500 

3 00 7 8 1 

4 00 7 8 2 

8 500008 

17 14 11 12 17 

7 00 11 12 5 

= -3 0 9 6 14 15 8 

5 25 
B =--0 

3 

10 7 14 15 8 

16 13 9 10 16 

17 14 11 12 17 

7 00 11 12 5 

9 6 14 15 8 

10 7 14 15 8 

16 13 9 10 16 

0000 6 0000 

2 000000 0 

000100003 

3 200003 

00004 500 

. 12 00 24 27 
.3 3 3 

6 
3 

9 
3 0 6 00 00 3 
18 9 0 3 15 
3 3 3 3 
18 9 Q §. 15 
3 3 3 3 3 

6 00 21 24 0 
3 3 3 

00 700009 

00004 500 

3 00 7 8 1 

4 00 7 8 2 

8 500008 

31 22 13 16 31 
3 3 3 3 3 
1 00 13 16 _§. 
3 3 3 3 

7 2 22 25 4 
3 -3 3 3 3 
10 1 22 25 4 
3 3 3 3 3 
28 19 7 10 28 
3 3 3 3 3 

0000 6 0000 

2 000000 0 

000100003 

3 200003 

00004 500 

34 
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15 12 21 22 14 20 11 38 41 17 
3 3 3 3 3 

15 12 9 10 14 20 11 2 5 17 

25 
3 3 3 3 3 

=--0 8 15 12 13 6 - 1 20 11 14 _1 
3 -3 3 3 3 3 

9 15 12 13 7 2 20 11 14 4 
3 3 3 3 -3 

13 10 20 21 12 14 5 35 38 11 
3 3 3 3 3 

Then 
4 11 13 16 2 3 3 3 
.! 0 2 5 5 
3 3 3 -3 

B* = B 0 B 2 0 B 3 0 B 4 0 B 5 = 1 2 0 1 7 
-3 -3 -3 

~ 1 1 2 4 
3 3 -3 

2 5 7 10 0 3 3 3 

The proof of the previous theorem tells us that any column vector of the matrix 

B*, for which B;i = 0 is an eigenvector with eigenvalue ), = 1
3
1 • For this particular 

tropical matrix A, column vectors B;2 , B;3 and B;5 are the eigenvectors. 

In addition, notice that column vectors B;1 and B;4 are also eigenvectors. 

To see this, 

4 0 

1 11 
3 -3 

B;1 = 1 =40 13 
-3 -3 

2 10 
3 -3 

2 -2 

00 00 8 00 00 0 0 

4 00 00 00 2 _.!.! 11 
3 

11 
-3 

00 3 00 00 5 0 13 =-0 13 
-3 3 -3 

5 4 00 00 5 10 _10 
-3 3 

00 00 6 7 00 -2 -2 

Similarly, 
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16 10 
3 3 

5 1 
3 3 

B74 = 1 =28 -1 

2 0 

10 4 
3 3 

00 00 8 00 00 
10 10 
3 3 

4 00 00 00 2 1 1 
3 3 

11 
00 3 00 00 5 8 -1 =-8 

3 
-1 

5 4 00 00 5 0 0 

4 i 
3 3 00 00 6 7 00 

This is not surprising since every column in B* is a tropical scalar multiplication 

of any other. Notice that, column vectors B71 and B74 are in the eigenspace of A, 

Eig(A). 

In fact, if B0 be the submatrix of B* given by the columns whose diagonal entry 

Bjj is zero. The image of this matrix (with respect to tropical multiplication of 

vectors on the right) is equal to the desired eigenspace. 

Eig(A) = Eig(B) = Image(B0) 

In our example, the eigenspace is 

2 

Eig(A) = Image(B0) = 

0 
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B2= 

0 3 3 5 

0 0 0 1 

0 3 3 5 

0 0 0 1 

3102 3102 

5253 5253 

0334 0335 

B 3 = B 2 8 B = 
0 0 0 1 

1 1 0 2 

2 2 2 3 

0 0 0 1 

3 1 0 2 

5 2 5 3 

0 3 3 4 0 3 3 4 

B 4 = B 2 8 B 2 = 
0 0 0 1 0 0 0 1 

8 
1 1 0 2 1 1 0 2 

2 2 2 3 2 2 2 3 

0 3 

B* = B EB B 2 EB B 3 EB B 4 = 
0 0 

1 1 

2 2 

3 

0 

0 

2 

0 3 3 4 

0 0 0 1 

1 1 0 2 

2 2 2 3 

0 3 3 4 

0 0 0 1 

1 1 0 2 

2 2 2 3 

0 3 3 4 

0 0 0 1 

1 1 0 2 

2 2 2 3 

4 

1 

2 

3 
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Here, we have a sub-matrix with all diagonal entries equal to zero. In addition, 

observe that the column vectors B;1 , B!2 and B!3 are eigenvectors and, unlike the 

column vectors of the previous example, they are linearly independent in tropical 

sense. Note that B!4 is a scalar multiple of B;2. Therefore, the eigenspace Eig(A) is 

Eig(A) =Image 

0 3 3 

0 0 0 

1 1 0 

2 2 2 
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Note that 
4 1 

1 -2 
=30 

2 -1 

3 0 

so the fourth column of B* is in this eigenspace but not independent of the other 

three columns. 
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Conclusion 

In this thesis, after defining the basic operations in tropical arithmetic, we have 

explored tropical versions of several well-known ideas in classical algebra and linear 

algebra: roots of polynomials, graphs of linear polynomials (tropical lines), matrix 

operations, determinants, eigenvalues and eigenspaces. It has been intrig1-ing to 

see how similar and yet different many of the results are. For example, in the 

classical sense there are several equivalent definitions for the root of a polynomial. 

In the tropical world some of these don't even make sense and others have pretty 

straightforward translations into an appropriate and workable definition. Tropical 

lines have no notion of slope but in most cases two points do determine a unique 

line and in most cases two lines do intersect in a single point. Of course the word 

'most' helps highlight the fact that there are still interesting differences. 

Most of this paper deals with tropical versions of matrix arithmetic, determi­

nants, eigenvalues and eigenvectors. While the tropical identity matrix looks much 

different it is just composed of the multiplicative identity (0) down the main diag­

onal and the additive identity ( oo) in all other entries. The standard definition of 

the determinant as the sum of all the signed products of n-elements one from each 

row and column carries over - without the signs. We showed that, for square matri­

ces with non-negative entries, there was a wonderful interpretation of the tropical 

determinant as the solution to a minimization problem. This give great practical 

uses for this computation. Moreover, we showed how this optimization represen­

tation provides a very efficient method for finding tropical determinants. A major 

improvement over the computation of ordinary determinants. 

We also exploited the connection between matrices with non-negative tropical 

entries and weighted directed graphs. Here an entry of oo in the i, j spot corresponds 

to the absence of a directed edge from vertex i to vertex j. This led to a direct 

relationship between the powers of such an adjacency matrix and the shortest paths 

between vertices, which in turn provided the key elements of the surprising proof 

that such matrices have a unique eigenvalue which is directly related to the cycles 
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in the associated graph. 

Along with the relevant proofs, the paper spent a great deal of time with the 

detailed computations of several illustrative examples for each of the concepts dis­

cussed. It is the hope that this effort will help provide both experience with the 

tropical operations and a more concrete basis for understanding how the tropical 

versions of classical concepts differ in sometimes strange a~d sometimes very prof­

itable ways. 
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