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ABSTRACT 

This thesis is aimed at developing and applying advanced modeling tools in the 

prediction of risk to the general public from transportation of chemical waste on public 

highways. The modeling tools developed can then be used to compare alternative waste 

management scenarios. The application considered is related to the transport of hazardous 

waste generated by the United States Department of Energy (DOE) to current treatment, 

storage, and disposal facilities. DOE is currently considering four different scenarios. 

The application considered can be more specifically defined as an analysis of the 

risk to the general public from transporting the 63 shipments of DOE generated 

hazardous waste designated as "poison by inhalation hazards" (PIH), potentially resulting 

in fatality, by the United States Department of Transportation (DOT) [Title 49, Code of 

Federal Regulations (Part 173.132)] in the 1992 fiscal year. The analysis is based on 

current transportation practices employed by DOE. Once the modeling tools have been 

developed to perform this analysis, similar analysis can be routinely carried out for other 

health end-points (carcinogenic effects and other adverse health effects other than cancer 

and lethality) and other waste management scenarios. 

Two types of tools have been developed, deterministic and probabilistic. Using 

the probabilistic modeling tool, a cumulative probability distribution of number of people 

impacted can be developed (for this application impacted means number of individuals 

experiencing potentially life-threatening health effects due to inhalation of a DOE 

generated PIH released as a result of a truck transportation accident). The probabilistic 

modeling tool developed is based upon a Monte Carlo analysis accounting for the 

uncertainties in the variables involved in the modeling process. 

The deterministic tool developed provides a simplified version of the probabilistic 

model such that the prediction will be one risk value which should approximate the mean 

of the cumulative probability distribution developed by the probabilistic model. Both the 

deterministic and probabilistic modeling tools require the modeling of the consequence of 
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a release of hazardous waste. The consequence is the result of source term accident 

modeling (i.e., resulting from a truck accident spill) along with dispersion modeling. 

The source term modeling employs the use of (1) distributions of meteorological 

data supplied by the National Weather Service at over 60 locations uniformly distributed 

around the continental United States and (2) a detailed study on the US DOT HMIRS 

(Hazardous Materials Information Reporting System) database which encompasses 

information on thousands of hazardous material transportation accidents since the 1970's. 

The study of the HMIRS database led to probability distributions on the release amounts 

(by transport container), breach fractions and accident time (by hour and month). A 

health criteria, presented at WM-94 by Hartman et. al. (1994), is used in the dispersion 

modeling to define human health impacts from the concentration history at each 

downwind location. 

Reasonable single values for all modeling parameters were used in the 

deterministic model, whereas probability distributions for release estimates and accident 

meteorological conditions were used for release amounts and meteorology in the 

probabilistic model. Realistic scenarios for the transportation accident itself were 

developed accounting for mixtures of chemicals released as is likely to occur. 

It was found that the cumulative probability distribution of the number of 

individuals with potentially life-threatening health effects, is highly skewed. The 

probability that no individuals will have potentially life-threatening health effects from 

these 63 shipments is greater than 99%. Therefore the median (the 50-th percentile) of 

the distribution is 0, and all of the non-zero potentially life-threatening health effects are 

contained in the upper tail of the cumulative probability distribution (less than 1 % chance 

of occurrence). Table 1 below presents some summary statistics compiled from the 

distribution. 

Only 3 (of the 63) shipments had the potential to affect more than 500 people in a 

single accident. Furthermore, only 14 shipments had the potential to affect more than 
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100 people. Eliminating, or at least altering the waste management of these shipments, 

could dramatically reduce risks by reducing the probabilities for a catastrophic accident 

in which more than 100 people are affected. 

Table 1 Summary Statistics from the Cumulative Probability Distribution of Number 

of Individuals with Potentially Life-Threatening Health Effects 

Number of People with 

Potentially Life-Threatening 0.001 0.01 0.1 1 10 100 500 

Health Effects (N) 

Probability that More 

than N Individuals 4.2E-4 2.4E-4 l.2E-4 3.6E-5 5.4E-6 5.8E-7 1.7E-8 

are Impacted 

An additional observation is that the mean of the cumulative probability 

distribution, 3.48E-4, is located at the 99.947-th percentile and the result of the 

deterministic calculations of risk, 1.74E-4 (112 of the mean), is located at the 99.941-th 

percentile. 

The Monte Carlo analysis helped to provide a great deal of perspective on the 

deterministic risk value. The fact that there is such a large probability of zero risk and an 

extremely small probability of a high risk scenario can be very useful in the decision 

making process. 
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1. INTRODUCTION 

1.1. Background 

This thesis is aimed at developing and applying advanced modeling tools in the 

prediction of risk to the general public from transportation of chemical waste on public 

highways. The application to be considered is the transport of hazardous waste generated 

by the United States Department of Energy. An accurate prediction of risk allows for a 

comparison of a number of management alternatives to determine the relative risk among 

the management alternatives considered for study. 

The United States Department of Energy (DOE) has approximately 45 sites 

within the United States which produce hazardous waste from their research and 

production processes. This waste must be transported on public roads to commercial 

permitted treatment, storage or disposal facilities (TSDs). During the course of travel, 

there is the possibility of an accidental release of hazardous waste resulting from a truck 

accident. Life-threatening, carcinogenic or other adverse health effects can result from 

inhalation of toxic fumes or poisons spread downwind from the accident site. As the 

generators of the waste, the Department of Energy must assume partial liability for the 

consequences resulting from such an accident. 

The Department of Energy is considering alternative waste management scenarios 

that may reduce the risks of human health effects from transportation of DOE generated 

waste to final treatment and disposal facilities. The basic question to be evaluated is 

"how much should DOE rely on outside commercial facilities for treatment "? A 

decision by the Department of Energy on how to handle off site waste treatment involves 

a comparison of four alternatives which considers several issues including human health 

risks, cost of treatment and transportation, ecological impacts, land use and 

socioeconomic impacts. The current cases under consideration include the following: 

(1) Baseline (no action) - The baseline or no action alternative refers to the 

continuation of nearly 100% use of outside commercial facilities for 
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treatment, storage and disposal of the DOE hazardous waste. Currently, the 

DOE treats some of their generated wastes on-site, transporting the rest to 

commercial facilities for treatment and/or disposal. This thesis will focus on 

the hazardous waste currently sent to outside commercial vendors. 

(2) Decentralized - Under this alternative on-site treatment activity would 

increase between 5 and 10 percent. As a result of this increase, use of 

commercial TSD vendors will decrease, likely reducing the risk from 

transportation. 

(3) Regionalized - This alternative builds upon the decentralized alternative by 

treating, storing and disposing on DOE sites approximately 50 percent of the 

waste that is currently treated, stored and disposed of offsite. This waste 

would then be transported to one of five designated regional DOE-owned-and­

operated hazardous waste treatment facilities. 

(4) Centralized - Under this alternative, 90 percent of all hazardous waste (non­

wastewater hazardous waste) presently treated by commercial TSD vendors 

would be transported to one of two DOE-owned-and-operated hazardous 

waste treatment facilities. The two DOE sites selected for this treatment are 

Idaho National Engineering Laboratory and Oak Ridge Reservation in Oak 

Ridge, Tennessee. 

For each alternative the total number of miles required to transport hazardous 

waste to treatment and disposal facilities is different. Similarly, the routes traveled will 

be different for each alternative. These changes from the baseline alternative will alter 

potential accident scenarios possibly leading to an increase or decrease in risk. 

This thesis will present results of risk predictions only for the no action alternative 

with the health endpoint of "lethality," better described as the "number of people with 

potentially life-threatening health effects." Predictions for the other alternatives and for 
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the two additional human health endpoints of "carcinogenicity" and "any effects" (other 

than carcinogenicity) can be carried out routinely with the computer models available as 

part of this thesis. 

1.2. Transportation Risk and Affecting Factors 

The risk of transporting chemical waste for one mile in a truck is the product of 

the probability of a release (during that one mile) and the consequence of the release that 

may occur during that one mile. The probability of a release is itself the product of the 

probability of an accident (during that one mile) and the probability of a release given 

that an accident occurred in that one mile. Once the risk for one mile of travel can be 

computed, the risk for an entire DOE scenario is computed as the sum of risk for each 

mile traveled in the entire scenario. 

There are a number of factors influencing these risk calculations. Some of them 

are illustrated in the following two figures. Figures 1.1 and 1.2 depict some potential 

accident scenarios that can happen for the DOE waste. These figures show some of the 

factors which can increase or decrease risks during the course of transportation including 

meteorological conditions, accident severity (affects how much is released and magnitude 

of release rate), chemical released and the number of people in the vicinity of the accident 

(population density). 

In Figure 1.1 a single unit truck transporting 55 gallon drums of bromine from 

Livermore California to Los Angeles California gets a flat tire while in Los Angeles. The 

driver temporarily looses control of the truck and hits a motor vehicle in another lane. It 

is a hot summer day with complete cloud cover and 50% humidity. The wind is blowing 

at 4 m/s. The accident results in ruptures in several of the drums. Subsequently, 77 

pounds of bromine are spilled onto the pavement forming a pool on the ground which 

takes approximately one hour to evaporate. During the evaporation, fumes spread 

downwind toward the downtown area. The plume contour in Figure 1.1 represents an 

area downwind where any location within the gray contour has an air concentration 

which exceeds 11 parts per million bromine. Any individual within this area for more 
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than one hour may suffer lethal effects. The downtown area is over 100 yards from the 

road and the plume contour is only 65 yards in length. Emergency response personnel are 

able to quickly and easily evacuate the general public from the vicinity of the spill and no 

deaths result from inhalation of bromine fumes. 

Figure 1.1 Continuous Liquid Release of Bromine 

Plume Contour - 65 yards long 

Yards 0 ~~~ 

10'--~~......_~~ ........... ~~--'-~~---' 

0 28 56 
Yards 

84 112 

In the scenano m 

Figure 1.1, high traffic 

volumes mcrease the 

probability of an accident, 

and large population 

densities mcrease the 

number of potential deaths 

per unit area within the 

plume contour. However, 

the bromine is released as a 

liquid. Liquid releases 

generally do not pose as 

great a danger to the general 

public as do gaseous 

releases. When gases are 

released into the atmosphere, plumes are formed with higher concentrations over a 

shorter period of time than those formed from evaporating pools of liquid. Although the 

duration of the inhalation danger is shorter for gaseous releases than it is for liquid 

releases, the human body can become overwhelmed by the higher concentrations in such 

short periods time. 
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Figure 1.2 Instantaneous Gaseous Release of Hydrogen Selenide 

Plume Contour-1.98 km long 

0.5 

km 0.0 

0.5 
0.0 2.0 

In Figure 1.2, a single unit truck transporting hydrogen selenide, selenium 

hexafluoride and tellurium hexafluoride from Argonne, Illinois to Clarence, New York 

overturns in a bad storm in the mountains of New York. A steel pressurized cylinder of 

hydrogen selenide is ruptured instantaneously releasing one gallon of the chemical in a 

gaseous state into the atmosphere. Hydrogen selenide is extremely toxic and it is 

estimated that inhalation of the gas for 15 minutes at a concentration of 0 .17 parts per 

million will result in lethality. The temperature is 43° F and there is a rain storm with 

high speed winds blowing out of the south at 11 m/s. Due to the low lethal concentration 

threshold and high speed winds, the plume contour is 1.98 kilometers in length despite 

the small amount released (one gallon). However, other than the occupants of the nearby 

farm house, no communities exist within the plume contour and consequently only the 

driver and farm house occupants are in danger. 

In each of these scenarios the plume contour was computed using the CASRAM 

computer dispersion model [1]. The CASRAM model has been used in both the 

deterministic and probabilistic methods and will be discussed further in chapters 4 and 5 
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on the deterministic and probabilistic models. This model requires as input the time of 

day, time of year, CAS numbers for each chemical released, amount released of each 

chemical , release duration for each chemical (possibly instantaneous), lethal 

concentration thresholds as a function of release duration for gas releases and evaporation 

time for liquid releases, and a number of meteorological parameters including wind 

speed, ambient temperature, ground roughness and stability class. 

When predicting the risk associated with transporting any particular DOE 

shipment of hazardous waste there is a distribution of possible values for each of the 

CASRAM input parameters. When applying the deterministic method to the prediction 

of risk in each of the scenarios in Figures 1.1 and 1.2, fixed values would have been 

assumed for each of the CASRAM inputs. For this thesis, average or conservative values 

are assumed. The actual values used are discussed in Chapter 3 on the deterministic 

method. However, in the probabilistic method, a distribution of values for each of the 

CASRAM inputs will be recognized resulting in a distribution of plume contours. More 

importantly, a distribution of exposed areas (area contained in the plume contour) will be 

provided, ultimately providing a distribution of risk. 

The probabilistic model can be used to quantify the uncertainty in deterministic 

predictions as well as provide additional information that the deterministic model cannot 

provide. This additional information will lead to improved comparisons between future 

alternative management scenarios for waste transport. The parameters where probability 

distributions will be recognized in the probabilistic model are presented in Table 1.2 

The remammg chapters of this thesis discuss the DOE shipments, the U.S. 

Department of Transportation's Hazardous Materials Information Reporting System 

(HMIRS) database and provide more details on the deterministic and the development of 

the probabilistic methods used in this study. Table 1.2 lists three parameters or categories 

of parameters which contribute to the risk calculations. Two of these, fraction of 

maximum shipment capacity released and temporal conditions, are based upon an 

investigation of the accident data contained in the HMIRS database maintained by the 
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Research and Special Programs Administration of the United Stated Department of 

Transportation. This database contains data on releases from thousands of hazardous 

waste accidents that have occurred since the early 1970's. 

Table 1.2 Parameters of Risk which have Probability Distributions 

(for the purposes of this thesis) 

(a) Percent of maximum or actual shipment capacity 

released depending upon container type 

(b) Meteorological conditions 

(c) Temporal conditions including month, day and hour 

The third category of parameters, the meteorological conditions, are based upon a 

study of 5 years of data from each of 62 National Weather Service sites in the country. 

The amount of data collected is sufficient to provide accurate distributions of winds, 

temperatures and stabilities as a function of both time and location. 

The modeling in this thesis does not account for variability in health criteria. 

Future work could involve the inclusion of this uncertainty in health criteria for each 

chemical that may be involved in a toxic gas release due to the transport of DOE 

hazardous chemical waste. Inclusion of that variation was beyond the scope of this 

thesis. The remaining two main sources of uncertainty (release amounts and 

meteorology) are included in this thesis. The sequence of the remaining chapters is given 

below -

Chapter 2: The DOE Shipments Chapter 3: The HMIRS Database 

Chapter 4: The Deterministic Method Chapter 5: The Probabilistic Method 

Chapter 6: Results and Discussion 

14 



2. THE DOE SHIPMENTS 

In order to analyze risk from treatment technology operations and transportation 

accidents, the hazardous waste risk assessment modeling (Ha WRAM) database [7] has 

been developed at Argonne National Laboratory. This database is structured to manage 

information related primarily to DOE generated hazardous waste transported to 

commercial facilities for treatment and/or disposal during the 1992 fiscal year. However, 

the DOE hazardous waste manifests sheets, from which the Ha WRAM database is 

constructed, do not document truck configuration or route information and often provide 

limited data on packaging and commodity physical state. These limitations will result in 

some uncertainty in the models developed in this thesis. During the course of discussing 

the deterministic and probabilistic models in Chapter 4 and Chapter 5, these uncertainties 

will be pointed out and our efforts to minimize this uncertainty will be discussed. 

There were 63 shipments in the Ha WRAM database transported on public 

highways to commercial facilities for treatment and/or disposal which have been 

designated as "poison inhalation hazards" (PIH' s) by the U.S. Department of 

Transportation (DOT) [Title 49, Code of Federal Regulations, Part 173.132]. Only 

liquids and gases are designated as PIH substances. Two criteria must be met for 

designation as PIH: (1) high toxicity, on the basis of animal 50% lethal concentrations 

(LC5o); and (2) for liquids, medium to high volatility. For this study, the modeling tools 

developed are applied to these 63 shipments, (all 63 are listed in Appendix A) which will 

serve as the no-action alternative case data with a health end point of potentially life­

threatening health effects. Table 2.1 contains a sample shipment from the 63 listed in 

Appendix A 

Note that Table 2.1 does not show all the information available in the Ha WRAM 

database for this shipment, but it also shows additional information which is not supplied 

in the database. All data in Table 2.1 other than the 15 minute exposure, 30 minute 

exposure and 60 minute exposure time concentration thresholds, are supplied by the 

Ha WRAM database and comprises the information in the database which was used in 

applying the deterministic and probabilistic methods. 
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Table 2.1 Sample Shipment 

Generator: Lawrence Livermore National Laboratory Destination Facility: ENSCO, Inc 

Generator Location: Livermore, California Destination Location: El Dorado, Arizona 

Departure Date: 7/10/92 

Shipment Contents: 

Lethal concentration (PPM) thresholds 

Commodity CAS Container Original as a function of exposure duration 

Name number type quantity :5 15 min (15, 30] min > 30 rnin 

Phenyl Isocyanate 103-71-9 Large Drum 177pounds 11 5.4 2.7 

Titanium Tetrachloride 7550-45-0 Large Drum 13 pounds 3.7 2.6 1.8 

2.1. Potentially Life-Threatening Concentration Thresholds 

The potentially life-threatening concentration thresholds for PIH substances are 

defined to be air concentrations above which exposed persons are at risk of potentially 

life-threatening health effects. Two possible toxicity values that are often available in the 

literature for estimating potential human life-threatening health effects are the LC50 and 

the LCw. The LC50 is defined as that concentration of gas or vapor that causes death in 

half of the animals tested when administered by continuous inhalation. The LC50 is 

obtained only from animal tests; consequently, results must be extrapolated for 

application to humans. The LCw is defined as the lowest concentration of gas or vapor 

that causes death in any exposed species. The LCw values may be obtained from animal 

tests or from accidental human exposure occurrences. When obtained from the latter, the 

lethal concentration measurement may not be accurate. 

For this thesis, the deterministic and probabilistic methods have only been applied 

to the transportation of the 63 potentially life-threatening shipments of DOE generated 

hazardous waste for no-action alternative. However, the modeling tools developed will 

be applied to all four alternatives for all three health end-points (fatality, cancer and other 

adverse effects). For further details on the development of the potentially life-threatening 

concentration thresholds and the concentration thresholds for carcinogenic and other 

adverse health effects refer to WM-94 [7]. 
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2.2. Routes Traveled 

Routing information has been predicted using the IDGHW AY 3 .1 - Enhanced 

Highway Routing Model [6] developed at Oak Ridge National Laboratory. The model 

takes as input the origin and destination cities, and supplies a detailed output of 

population densities at several locations defined by latitude and longitude angles. The 

model also supplies detailed information about the interstate and local road names as well 

as corresponding mileage for those roads. Although the road and highway specific 

information was not used in the application of the deterministic and probabilistic 

methods, it was useful in testing the quality or applicability of the IDGHW AY 3 .1 

predicted routes to the actual routes traveled. 

Although these routes are predicted, they are good approximations to the actual 

routes taken. The routes predicted for by the IDGHW AY 3 .1 model have been spot 

checked for accuracy by contacting the carriers and obtaining actual route information. 

For the deterministic method this detailed output is simplified to a distribution of 

miles traveled in 13 different population zones, and then further simplified to a table of 

three weighted average population densities and corresponding mileage for each of the 

three general population zones - rural, suburban and urban. Table 2.2 contains the 

summarized route predicted information for the sample shipment in Table 2.1. 

Table 2.2 HIGHWAY 3.1 PredictedRoutefrom 

Livermore, California to El Dorado, Arizona 

Population Zone Miles People /Mi:.i 

Rural 1,763 12 

Suburban 157 948 

Urban 19 5,660 

Appendix B contains a sample detailed output used in the probabilistic method. 

2.3. Containers Used by the DOE 
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The DOE hazardous waste can be divided into two main categories. The first 

category includes gases, compressed gases, liquefied gas, and compressed liquids. 

Hazardous wastes in this category are generally shipped in pressurized steel cylinders and 

pose a greater potential consequence when exposed to the general public than the 

hazardous wastes in the second category. The second category includes liquids which are 

not under pressure. These hazardous wastes are generally shipped in 55 gallon steel or 

fiber drums. There are also some smaller steel and fiber drums commonly used to 

package the liquid wastes in this second category. These smaller drum sizes include 

those which have a capacity of 5 gallons, 10 gallons, 15 gallons and 30 gallons. 

Approximately 65% of the hazardous waste listed in Appendix A have been 

packaged in cylinders and the rest in large drums. Although none of the hazardous waste 

listed in Appendix A is packaged in large single unit bulk containers such as a tanker 

truck, or the smaller fiber and steel drums, these containers must be considered as well. 

The modeling tools developed must be applicable to the DOE generated hazardous waste 

with the potential to cause carcinogenic or other adverse health effects. Some of the 

shipments of hazardous wastes in the Ha WRAM database with the potential to cause 

carcinogenic or other adverse health effects have been packaged in the smaller drums and 

bulk containers. 
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3. THE HMIRS DATABASE 

The Hazardous Materials Information System database (HMIRS) was developed 

and is currently maintained by the Research and Special Programs Administration of the 

United States Department of Transportation. This database contains thousands of records 

of actual hazardous materials accidents occurring during loading, unloading, temporary 

storage and transportation. The transportation incidents include enroute accidents by 

highway, rail, water and air. 

Using these data, probability distributions of release fractions resulting from an 

accident and probability distributions for time of accident (month and hour) will be 

constructed. These distributions will later be applied in the probabilistic method. 

Average values of these distributions will be applied to the deterministic model. 

3.1. Reporting Requirements 

The Hazardous Materials Incident Reporting System (HMIRS) was established in 

1971 to fulfill the requirements of the Hazardous Materials Control Act of 1970. General 

reporting requirements apply to all modes of transport including air, rail, water, and 

highway. These requirements mandate that if any of the conditions listed in Table 3.1 

exist as a direct result of a hazardous materials incident occurring during transportation, 

the carrier must file a telephonic report at the earliest practical moment and submit a 

completed written copy of DOT form 5800.1 (see Appendix D) within thirty days. 

Table 3.1 Conditions which Mandate HMIRS Reporting 

1. As a direct result of hazardous materials -

(i) A person is killed 

(ii) A person receives injuries requiring hospitalization 

(iii) The estimated property damage exceeds $50,000 

(iv) An evacuation of the general public occurs lasting one or more hours 

(v) One or more major transportation arteries or facilities are closed or shut 

down for one hour or more 

(Table 3.1 Continued) 
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(vi) The operational flight pattern or routine flight of an aircraft is altered 

2. Fire, breakage, spillage or suspected contamination occurs involving a shipment of 

radioactive material 

3. Fire, breakage, spillage or suspected contamination occurs involving shipments of 

etiologic agents 

4. A situation exists of such a nature that, in the judgment of the carrier it should be 

reported though not meeting any of the above conditions. 

3.2. The Subset of the HMIRS Database Used in Distribution Construction 

As of January 1985, the DOT Research and Special Programs Administration 

(RSP A) established a rigorous qualification program on incoming copies of the written 

reports (DOT form 5800.1) to be entered into the HMIRS database. To date, the 1993 

data qualification is not complete. The 1985 - 1992 subset of the HMIRS database has 

therefore been selected as the data set from which to construct probability distributions of 

release :fractions and time of accident. However, the 1985-1989 data are not as 

descriptive as the 1990 to 1992 data. In 1990 additional fields of information were added 

to form DOT 5800.1. As a result, the reports filed during and beyond 1990 are more 

descriptive of the incidents than those filed prior to 1990. The only additional field added 

which is useful to this study is called the PHASE field. The PHASE field identifies 

whether an accident occurred while enroute, during loading or unloading or while in 

temporary storage. 

The definition of transportation supplied by the Department of Transportation 

states that loading, unloading and temporary storage are a part of the transportation 

process. This thesis is only concerned with accidents occurring while enroute. 

Disaggregating the 1990 through 1992 incidents into enroute and loading/unloading 

incidents is simply a matter of checking the appropriate fields. However, the 1985 
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through 1989 data do not identify the phase of transportation. In order to categorize the 

1985 to 1989 data into enroute and loading/unloading releases, incidents occurring in the 

same city as the origin or destination cities are categorized as loading/unloading 

incidents. This may lead to misclassification of some incidents because enroute accidents 

can occur in the origin or destination cities and temporary storage incidents may occur in 

locations other than the origin and destination cities. However, the number of such cases 

is small. 

The scope of this analysis does not include dust dispersion, radiological waste or 

releases resulting from loading, unloading or temporary storage incidents and is only 

concerned with highway related incidents. In constructing distributions of release 

fractions, time of day and month of year, only those events in the HMIRS database 

satisfying all of the conditions given in Table 3 .2 are considered applicable to this study. 

There are 17 ,838 incidents in the database satisfying these conditions. 

Throughout the remainder of this section, all results and discussion based on 

events in the HMIRS database are assumed to reflect only those events which satisfy all 

of the above conditions in Table 3.2. 

Table 3.2 Requirements for Incident Inclusion in Sample Space of Events Used 

to Construct Probabili'ty Distributions. 

1. Mode of transport used is highway 

2. A release of non-radioactive hazardous waste occurred. 

3. The released materials are in a liquid or gaseous state. 

4. The incident occurred while enroute. 

3.3. Containers 
In the event of an accidental release of hazardous waste resulting from a truck 

accident, some fraction of the shipment contents may be discharged. This fraction can 

range from a value near zero where a small leak from a damaged receptacle on a drum to 

100% of a pressurized cylinder's contents bursting out almost instantaneously from a 

puncture. The actual value of this fraction depends upon the severity of the accident and 
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the type of container used. Some accidents may involve a collision with another vehicle, 

while others may involve overturning of a truck or even a collision with a train. There 

are other factors besides the cause or type (overturn, collision, etc.) of accident which 

affect the accident severity. Table 3 .3 gives a list of several factors which may affect the 

severity of a truck accident. 

Table 3.3 Factors Affecting the Severity of a Truck Accident 

• Type and severity of accident (collision, overturn, etc.) 

• Driver reaction 

• Truck configuration 

• Weight of truck 

• Truck dimensions 

• Road conditions 

•Traffic 

•Weather 

•Geography 

All of the factors listed in table 3.3 affect the damage incurred by the hazardous 

waste containers inside the truck. The severity of this damage to the containers can be 

different in otherwise identical accident conditions for each different container type. For 

example, a puncture to a pressurized cylinder will usually result in a total release of the 

cylinder contents whereas a puncture in a 5 5 gallon drum containing liquids will result in 

some portion of the contents spilling out depending on the location of the hole and the 

orientation (standing upright or fallen over) of the drum. Table 3.4 gives a list of 

container types identified in the HMIRS database. 

Table 3 .4 lists the possible categories of containers from which to construct 

distributions of release fractions. Because of limitations in the number records in each of 

the of the HMIRS data, these categories have been generalized into six categories. Table 

3. 5 gives a basic description of each of these six categories. Note that each category is 

identified as package freight or bulk. Bulk containers are large containers which are 

generally shipped by themselves; for example tanker trucks are considered bulk 

containers. The DOE generated hazardous waste is rarely shipped in bulk containers, in 

particular, none of the PIH waste is shipped in bulk containers. Package freight 

containers are smaller and several of these are generally shipped together on one truck. 
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Table 3. 4 List of Containers Identified in the HMIRS Database 

Bulk containers: 

•Tank car • Steel cylinder tank • Portable steel tanks 

• Cryogenic tank • Portable rubber tank 

Package-freight containers: 

•Drums • Pressurized cylinders • Kegs I Barrels 

•Flasks 

•Pallets 

•Cans 

•Jars 

•Jugs 

•Carboys 

Category 

Small drums (*) 

(package freight) 

Large drums (*) 

(package freight) 

Pressurized 

cylinders (*) 

(package freight) 

• Aerosol cans 

•Pails 

•Tubes 

• Jerricans 

• Cloth bags (solids only) 

•Bottles 

Table 3. 5 General Container Tvoe Categones 

Descriptions 

Small drums are generally 5, 10, 15 or 30 gallon steel or fiber drums 

used to transport chemicals in a liquid state. Approximately 79% of 

the small drum incidents recorded in the HMIRS database involve 5 

gallon drums.(*) 

Large drums are generally 55 gallon steel or fiber drums carrying 

chemicals in a liquid state. Other common sizes include 30, 35 and 

50 gallon drums. However, the 55 gallon drums account for more 

than 92% of the large drum incidents recorded in the HMIRS 

database. It was found that 3 5% of the 63 PIH hazardous waste 

shipments in Appendix A are packaged in large drums (mostly 5 5 

gallon drums).(*) 

Pressurized cylinders are generally used to transport gases, 

compressed gases, or liquefied gases under pressure. Furthermore, 

hazardous materials packaged in cylinders generally present a greater 

hazard to human health than materials packaged in other package 

freight containers. It was found that 65% of the PIH hazardous waste 

shipments in Appendix A are packaged in cylinders. (*) 

(Table 3. 5 Continued) 
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Category Descriptions 

Pressurized bulk Pressurized bulk containers include large pressurized cylinders, and 

containers cryogenic tanks. Most incidents in the HMIRS database involving 

(bulk) these containers are related to releases of hydrogenated compounds or 

chloride compounds. Although these containers are not used in 

packaging any of the hazardous waste listed in Appendix A, these 

containers are used in packaging some of the DOE generated 

hazardous waste which when released can lead to carcinogenic or 

other adverse health effects. 

Non-pressurized 

bulk containers 

(bulk) 

Other small 

containers 

(package freight) 

Non-pressurized bulk containers include non-pressurized cargo tanks 

and portable tanks. Although these containers are used for highly 

toxic chemicals such as anhydrous ammoma, they are most 

commonly used for fuels and oils. These containers do not apply to 

the DOE generated hazardous wastes in this study. 

Other small containers are generally small containers which can be 

constructed from plastic, glass or metal including bottles, jars, pails 

and cans. Hazardous materials packaged in these containers 

generally present a low level of human health hazard. These 

containers do not apply to the DOE generated hazardous wastes in 

this study. 
~·, The original data supplied by DOE do not always document the contamer size. Furthermore, 
when cylinders are packaged inside of drums it is often indicated that the container type is a drum. 
Therefore it is assumed that any hazardous waste which is in a gaseous state or is a compressed 
liquid or liquefied gas has a pressurized cylinder as its inner container. Furthermore, because 55 
gallons is the most frequently used drum size it has been assumed in this study that all drum 
packagings are 55 gallons in capacity when no information about the size is given. 

3.3.1. Container Requirements 

The Title 49, Code of Federal Regulations, Part 172.101 provides precise details 

on how to determine the acceptability of a container for the packaging of a specific 

hazardous material offered for transportation. The basis for determining acceptability 

involves rating individual containers based upon performance in simulated transportation 

accident scenarios. These performance based tests include drop, leak, hydrostatic 

pressure and vibration tests. For example, one type of container may leak when dropped 
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from 5 feet while a second type of container will not leak until it is dropped from 25 feet. 

The second container type will then receive a higher rating. The following section 

presents the distributions of the six generalized container categories and some discussion 

specific to each category. 

3.4. Release Fractions 

One limitation of the HMIRS database is that the total volume or weight of a 

hazardous material shipped as package freight is not recorded. However, the number of 

containers shipped for each hazardous material and the maximum capacity of those 

containers is entered into the database so that the maximum physical capacity for the 

hazardous material can be calculated. For example, a truck carrying ten 55 gallon drums 

of chlorine and three cylinders with a maximum capacity of 8 ft3 filled with anhydrous 

hydrochloric acid has a maximum capacity of 550 gallons (10 x 55) of chlorine and a 

maximum capacity of 24 ft3 (3 x 8) of anhydrous hydrochloric acid. 

The records of the HMIRS database also include an entry for the total quantity 

released of each hazardous material in transit. For each chemical in each record of the 

database, the release quantity is divided by the associated maximum capacity providing a 

release :fraction. These release :fractions have been grouped into the six generalized 

container categories defined in section 3 .2, :from which release :fraction distributions have 

been constructed. Figure 3 .1 contains the cumulative probability distributions for the 

drum and cylinder categories and Figure 3 .2 contains the cumulative probability 

distributions for both the pressurized bulk and non-pressurized bulk container categories. 

Table 3.6 contains some summary statistics :from these same distributions. 

The package :freight distributions in Figure 3 .1 have release fractions along the 

abscissa. These numbers represent the percentage of the maximum physical capacity of 

the container used to transport any one hazardous commodity which will be released. For 

example, according to the large drum release :fraction distribution, there is a 25% chance 

that more than 4. 5% of the drums capacity will be released and therefore a 25% that more 
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than 2.475 gallons will spill out of a 55 gallon drum (2.475 gallons= 4.5% x 55 gallons). 

This probability is the same whether the drum is filled to the top or only halfway. 
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The records in the HMIRS database relating to bulk container releases record the 

actual amount shipped instead of the physical capacity of the containers. The bulk 
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container distributions are distributions of the percent of amount shipped which will be 

released. For example, suppose two identical portable tanks (non-pressurized) with a 

maximum capacity of 5,000 gallons are filled such that one of them contains 2,000 

gallons of hexane and the other 3,000 gallons of petroleum. Using the bulk non-pressure 

curve in Figure 3 .2, it can be seen that there is a 25% chance that more than 34% of the 

quantity shipped (not 34% of the maximum physical capacity) will be released. This 

leads to a 25% chance that more than 680 gallons (34% x 2,000 gallons) of hexane will 

be released and 1,020 gallons (34% x 3,000 gallons) of petroleum will be released. 

Table 3. 6 Summarv Statistics for Conttdner Release Fractions 

Cumulative Probability Distribution %-iles 

Container Category Number of Distribution 25th Median 75th 

incidents mean nercentile (50th o/o-ile) nercentile 

Pressurized bulk(a) 353 9% 0.1% 0.7% 4.7% 

Non-pressurized bulk(a) 1,676 22% 0.1% 1.8% 34.0% 

Large drums(b) 5,866 7% 0.1% 0.7% 4.5% 

Small drums(b) 1,603 11% 0.4% 2.0% 9.3% 

Pressurized cylinders(b) 84 24% 0.8% 3.8% 29.3% 
(a) Bulk container distributions are distributions of the percent of the actual amount shipped which will be 

released. 
(b) Package freight distributions are distributions of the percent of the maximum physical capacity of the 

containers used to ship a hazardous material which will be released. 

The data from Table 3.6 is obtained from the distributions plotted in Figures 3.1 

and 3 .2. This table shows that for all five distributions the median is located to the left of 

the mean, that is, these distributions are heavily skewed to the right. The location of the 

median to the left of the mean results from the fact that most release amounts account for 

a small fraction of the maximum capacity (package freight) or quantity shipped (bulk); 

however, a cluster of releases near the 100% release fraction exist in all five distributions. 

Even in the bulk pressurized container distribution there is a 3 .4% chance that 100% of 

the contents will be released. For example, consider the pressurized cylinder 

distributions. There is a 13% chance that 100% of the maximum capacity is released and 

a 50% chance that less than 3.8% of the maximum capacity is released. This 13% chance 
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of 100% of the maximum capacity being released pulls the mean of the distribution to the 

right of the median skewing the distribution to the right. 

Figure 3 .1 shows that cylinders generally release a higher percentage of their 

maximum capacity than drums. This should be expected since the pressure inside 

cylinders is generally higher than it is in drums, resulting in higher release rates. Small 

drums generally release a higher percent of their capacity than large drums. There are 

several potential reasons for this. The most dominant reason is that smaller drums are 

much more likely to be filled to their maximum capacity more often than large drums. 

It may seem peculiar that the distributions have such low means, especially for 

cylinders. It seems reasonable to expect that when cylinders release their contents, the 

average fraction released would be close to 1. However, most of the cylinder-related 

incidents involve small releases from a leaky valve. When drums are used to package 

liquids, overpacks are placed around the drums which have the ability to absorb liquids 

which have been released. Many of the drum releases involve leaks from a damaged 

receptacle or spills where a portion of the released quantity is absorbed in the 

overpacking. 

Bulk containers exhibit the opposite behavior of the drums and cylinders. The 

bulk pressurized containers generally release a smaller fraction of their maximum 

capacity than the bulk non-pressurized. This results from the construction of the bulk 

pressurized containers. A large portion of these containers are cryogenic cargo tanks. 

Cryogenic tanks are constructed by placing a steel vessel within another steel vessel. 

Each of these vessels is comparable in sturdiness to a typical non-pressurized bulk 

container. In order for a release to occur, both vessels must be damaged. The cumulative 

probability distributions for the bulk container release fractions are given in Figure 3 .2. 

The cylinder and large drum distributions in Figure 3 .1 are applied to the 

probabilistic method in Chapter 5 and their averages in table 3.6 are applied to the 

deterministic method in Chapter 4. The small drum and bulk probability distributions in 
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Figures 3 .1 and 3 .2 respectively, will be applied when this study is extended to include 

the carcinogenic and other adverse health effect end-points. 

3.4.1. Application Uncertainty 

In both the probabilistic and deterministic methods, the probability distributions 

of release fractions will be applied to determine the amount of hazardous waste released 

when a release is modeled. When the containers used are package freight containers 

there is a conflict. The shipment data supplied lists the actual quantity shipped and the 

maximum physical capacity is not always known. The release fraction probability 

distributions constructed from the HMIRS database which are applicable to package 

freight containers are based upon maximum physical capacity. For the purposes of 

continuing with the development of the modeling tools this thesis is to supply, release 

amounts have been modeled in both the deterministic and probabilistic methods by 

applying the maximum physical capacity release fractions to the actual amounts shipped. 

This will result in an artificial reduction in the calculated risks numbers. 

However, future improvements will include recalculating the deterministic results 

and reconstructing the risk distribution resulting from the probabilistic method using the 

assumption that any unknown package freight container size has a 55 gallon capacity. 

This assumption will allow for the determination of the maximum physical capacities for 

each chemical in each shipment and subsequently more accurate results. 

Also it should be noted that many of the release incidents in the HMIRS database 

are releases of hazardous waste generated in private industry or other agencies which 

have no association with the U.S. Department of Energy. Hazardous waste produced by 

these agencies which are not affiliated with DOE may not be entirely representative of 

the DOE waste in terms of performance capabilities of containers used to package their 

waste. For example, there are several hundred releasing incidents in the subset of the 

HMIRS database applied to this study which involve paint related chemicals shipped in 

55 gallon drums. Keep in mind that not all 55 gallon drums perform at the same level 
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(see section 3.3.1) and overpacks which provide additional protection against releases 

may or may not be used depending upon the regulations for the chemical of concern. As 

a result, the release fraction distributions may be a bit conservative. 

3.5. Time of Accident (Month and Hour) 

This section contains a description of the probability distributions of the time 

period in which a truck accident involving a release of hazardous waste may occur. 

These distributions include the hour of the day and the month of the year. These 

distributions are given in Figures 3.3 and 3.4 . 

Figure 3.3 Probability that a Release of HQZJlrdous Materials Resuldng from a Truck 
Accident Occurs in a Given Hour. 
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The distribution of accidental releases by hour of day is broken up into one hour 

time intervals on a 24 hour clock where the hour 0 to 1 represents the hour from midnight 

to 1 A.M.. This distribution indicates that releases are less frequent during nighttime 

hours. This is most likely a direct result of the fact that truck and traffic volumes are 

lower at night. 
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The distribution of releases by month indicate that releases are more frequent in 

the warmer months than in winter time. Again, this is most likely a result of higher 

traffic volumes in the spring and summer months. 

Figure 3.4 Probability that a Release of Hazardous Materials Resulting from a Truck 
Accident Occurs in a Given Month. 
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Appendix E contains other results from the HMIRS database including a 

description of the algorithm used to construct a cumulative probability distribution from a 

sample of release accidents. The distributions and results presented in this section and in 

Appendix E have applications in studies similar to this thesis. One example is the 

determination of downwind protective action distances from a transportation accident. 

The Research and Special Programs Administration of the United States Department of 

Transportation publishes the Emergency Response Guidebook [6] for emergency 

response personnel who are responsible for protecting people near an accident site where 

hazardous materials, which produce poisonous effects when inhaled, have been released. 

The Guidebook allows for emergency response personnel such as firemen and policemen 
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to quickly and easily determine protective action distances based upon the chemical 

released, general container size, and daytime/nighttime release period. 
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4. THE DETERMINISTIC METHOD 

This section contains a detailed discussion about the deterministic method 

including input parameters, model algorithm and a summary of results. Section 4 .1 thru 

4.4 discuss the risk formula and each of its parameters. Section 4.5 gives a detailed case 

study in which the risk associated with one of the shipments in Appendix A is determined 

using the deterministic method. Detailed results of the annual risk associated with the 63 

potentially life-threatening DOE shipments of hazardous waste listed in Appendix A 

calculated based upon the deterministic method are given in Appendix F. No discussion 

of those results are given in Appendix F. A discussion will be presented in chapter 6 

where they are compared against the results of the probabilistic method. 

4.1. The Risk Formula 

The risk associated with the transportation of one shipment of hazardous materials 

at any given point along the route traveled is defined as the product of the probability of a 

release at that point multiplied by the resulting consequence (fatalities are the only 

consequence within the scope of this thesis). The individual shipment risk is then 

computed by dividing the route traveled into 1 mile segments, computing risk at one 

point in each segment and summing these point risks. Finally, the annual risk is taken as 

the sum of the individual shipment risks. This process defines the annual risk formula 

shown in Equation 4.1. Figure 4.1 depicts this process graphically to facilitate your 

understanding. 

RISK= II( ARp X PRs) X (EAs X PDP) 

u u 
s p (Equation 4.1) 

Probability of Release Consequence 

The s subscript denotes the shipment number. Any factor in the equation 

4.1 whose value depends on shipment contents is subscripted by the s. s 

ranges from 1 to 63 for the 63 potentially life-threatening DOE shipments. 
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The p subscript denotes the p-th mile along the route traveled for the s-th 

shipment. Any factor in the risk equation whose value depends upon 

population densities or demography at a specific mile is subscripted with 

the p. p ranges from one up to the number of miles for the route traveled. 

ARp denotes the accident rate at the p-th mile. This value is a function of 

demographic region. These regions are rural, suburban and urban. 

PRs denotes the conditional probability of a release given an accident. The 

conditional release probability is a function of packaging type (package 

freight or bulk). Package freight containers are generally 55 gallon drums 

filled with liquids or cylinders filled with compressed liquids, gases or 

liquefied gases whereas bulk containers are generally large portable tanks 

or tanker trucks. 

EAs denotes the exposed area resulting from a release. This area 1s 

modeled from shipment data assuming fixed meteorological conditions, 

hour of day and month of year. 

PDP denotes the population density at the p-th mile. Population densities 

are attained from predicted routes. 

4.2. Accident Involvement Rates 

A cross classification study conducted in California [2] is the only known source 

of information that accurately matches accident data and corresponding shipment miles 

for selected sites statewide to generate accident involvement rates by demographic 

category and truck configuration. These rates are given in Table 4.2. 

As mentioned before, the Ha WRAM database does not provide details of truck 

configuration. However, the DOE hazardous waste is shipped predominantly in 

consignments of multiple drums with maximum capacities of each drum less than or 
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equal to 55-gallons. These types of shipments are conveyed mostly in single-unit trucks. 

Therefore, only the single-unit truck configuration accident rates have been employed in 

the deterministic calculations. 

Table 4.2 California Accident Involvement Rates, 1979-1983 

Accident rates oer million vehicle miles traveled (VMT) 

Truck Configuration Rural Rural Suburban 
. 

Suburban" Urban Urban 

freeway non - freeway non - freeway non -

freewav freewav freewav 

Sinole unit 0.56 0.68 0.79 0.86 1.01 1.04 

Sinole-trailer combination 0.94 1.91 1.56 1.97 2.18 2.03 

Double-trailer combination 1.18 1.63 1.41 3.48 1.63 5.33 

All confiourations 0.90 1.49 1.19 1.57 1.48 1.64 

• Suburban accident rates are not given by Graf and Archuleta [2]. They have been computed by averaging the rural 

and urban accident rates. 

Additionally, only the freeway accident rates have been used in the deterministic 

calculations. The Federal motor carrier safety regulations demand that unless no 

practical alternative exists, hazardous materials be transported over routes which do not 

go through or near heavily populated areas, places where crowds are assembled, tunnels, 

narrow streets or alleys. Furthermore, DOE facilities are generally located in rural areas. 

This suggests that in the urban and suburban categories, the ratio of nonfreeway to 

freeway miles is very small or zero. Examining the HIGHWAY 3 .1 program output from 

the 37 unique routes applicable to the 63 DOE potentially life-threatening shipments, 

indicates that this assumption is correct. In fact, after examining these routes, it is 

apparent that the majority of the miles traveled in all 37 routes is comprised of rural 

freeway miles. Most routes had in excess of 900 rural freeway miles and less than 5 

miles of rural nonfreeway travel. It is therefore assumed that the impact of delineating 

the HIGHWAY output into freeway and nonfreeway mileage for the purpose of applying 

appropriate accident rates is negligible and only freeway, single-unit truck configuration 

accident rates have been applied to the risk calculations. 
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4.2.1. Accident Involvement Rates vs. Probabilities of an Accident 

Discrete probability is generically defined as the ratio of the number of desirable 

outcomes over the total number of potential outcomes. The accident involvement rates 

presented in Table 4.2 are estimators of the actual probabilities of an accident where the 

number of potential outcomes is served by the number of miles in which an accident 

could occur and the desired outcomes are served by the number of miles in which an 

accident did occur. The accident rate in any one of the three general population zones is 

then an estimate of the probability of an accident in any one mile of travel in that 

population zone. 

It is crucial to realize that the probability of more than one accident occurring 

during the course of transporting one shipment from its generation point to its treatment 

and/or disposal facility is negligible. A discussion about this probability is presented in 

Appendix C. 

Another important and interesting result is that for these 3 7 HIGHWAY 

predicted routes, a good approximation to the probability of exactly one accident 

occurring along the entire route traveled from the generator to the disposal facility, in any 

one population zone, is obtained by multiplying the number of miles traveled in that 

population zone by the appropriate accident rate. For example, suppose a route consists 

of 10 rural miles, 10 suburban miles and 10 urban miles. The approximate probabilities 

of exactly one accident occurring along the entire route for this example, in each of the 

three generalized population zones, are given below -

(i) Rural population zone: 10 x 0.56E-6 = 5.6E-6 

(ii) Suburban population zone: 10 x 0.79E-6 = 7.9E-6 

(iii)Urban population zone: 10 x l.OlE-6 = 1.0lE-5 

A thorough discussion about these approximate probabilities 1s presented m 

Appendix C. 
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4.3. Probability of a release given an accident 

The Federal Highway Administration (FHW A) truck accident database, 

maintained by the Office of Motor Carriers, contains descriptive data of nationwide 

accidents involving motor carriers of property subject to Title 49, Code of Federal 

Regulations, Part 394. This database allows for accident categorization by package type 

and flags whether or not a release occurred. Table 4.3 gives the probability of a release 

given an accident by package type. These conditional probabilities, based on the FHW A 

truck accident database, have been calculated by dividing release counts by accident 

counts for each of the package types. 

Table 4.3 Probability of a Release Given an Accident by Cargo Tvpe 

Data based on 1984-1985 FHWA·reported truck accidents 

Cargo Type Number of Number of Release probability 

Accidents Releases given an accident 

General Freight 741 61 0.082 

Gases in Bulk 259 21 0.081 

Liquids in Bulk 1,831 345 0.188 

Solids in Bulk 40 12 0.300 

4.3.1. Applying the Conditional Release Probabilities to the DOE Shipments 

All of the hazardous waste listed in the DOE shipments in Appendix A have been 

packaged as package freight in drums or cylinders. Therefore only the general freight 

conditional release probability from Table 4.3 has been applied to this study. The 

conditional bulk container release probabilities will be applied when the carcinogenic and 

other adverse health end-points are considered. 

One problem with applying the general freight conditional release probability lies 

in the potential for multiple chemicals to be shipped together in one truck. When truck 

accidents occur resulting in a release, a fraction of each chemical in transit may be 

released. On the other hand, a fraction of only one of the chemicals or a few, but not all, 

of the chemicals in transit will be released. It is assumed that when a release occurs, a 
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fraction of the total quantity of each chemical in transit is released. This assumption may 

be conservatism in many cases. 

4.4. Exposed Areas and the CASRAM Computer Dispersion Model 

Exposed area refers to the area covered by a plume with a sufficiently large 

concentration to cause potentially life-threatening health effects as a result of inhalation. 

This area is a function of several parameters including meteorological conditions, 

temporal conditions, fraction of shipment volume released (per hazardous material in 

transit) and lethal concentration threshold. Conservative or average values are assumed 

for all of these variables. 

One of the difficulties in computing exposed areas, as mentioned in Chapter 2, is 

accounting for the effects of multiple chemicals being released. The algorithm described 

in section 4.5.1 has been included in the CASRAM computer model [1] which has been 

used to compute exposed areas for release scenarios involving the DOE shipments in 

Appendix A. This computer dispersion model includes a source model for determining 

release rates. The source model and dispersion methodology which CASRAM employs 

are briefly discussed later in Chapter 5 on the probabilistic method (see Sections 5.2.5 

and 5.2.6). 

It is assumed that any location within a 100 foot radius of any point on the 

highway is uninhabited. Exposed areas have therefore been computed using the 

CASRAM model via numerical integration starting at a location of 100 feet downwind 

from the release. At each downwind integration step, the three exposure times along with 

the associated average release rates computed by the CASRAM model, are used to 

compute three potentially different widths in which the toxicological limits are exceeded. 

(Recall that exposure times correspond to the 15, 30 and 60 minute toxicological values 

available in the shipment data for each chemical.) Whichever of these three widths is the 

largest is used in the incremental area calculation. 

4.4.1. Accounting for Multiple Chemical Releases 
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When an individual is simultaneously exposed to two or more hazardous wastes 

which act upon the same organ, harmful health effects can result which would not have 

occurred if exposure occurred individually for each hazardous waste at different times. 

When modeling a scenario in which multiple chemicals are released, the determination of 

the width of the plume at each incremental integration step is determined by incrementing 

the crosswind distance until the inequality given in equation 4.2 fails to be true. 

N C L-i > i 
i=1 Li 

(Equation 4.2) 

Li , in Equation 4.2 represents the concentration threshold (for this study it 

represents the potentially life-threatening health effects concentration threshold) and Ci, 

represents the concentration at any particular location (as predicted by a dispersion model 

such as CASRAM). The summation index, i, is incremented from 1 to N where there are 

N chemicals released. 

Keep in mind that the width at each integration step is computed using equation 

4.2 three times. Once for each (exposure time)/(release rate) combination and the largest 

width is used in the incremental area calculation. 

Figure 4.2 shows the results of modeling a one hour, simultaneous release of 10 

pounds of selenium hexafluoride and 10 pounds of tellurium hexafluoride. The health 

end-point under consideration is potentially life-threatening health effects, so that the 

concentration thresholds for selenium hexafluoride and tellurium hexafluoride are 1 ppm 

and 0.5 ppm respectively. In the figure, there are three contours. The smallest contour 

contains an area with a sufficiently large air concentration of ( ~ 1 ppm ) selenium 

hexafluoride to produce a potentially life-threatening situation to individuals within the 

contour. The middle contour contains an area with a sufficiently large air concentration 

of ( ~ 0.5 ppm) tellurium hexafluoride to produce a potentially life-threatening situation 

for individuals within the contour. If additive effects were ignored, any point outside of 

the selenium hexafluoride and tellurium hexafluoride contours is designated as a safe 
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location. However, when additive effects are considered, there are additional locations 

where although the air concentrations of selenium hexafluoride and tellurium 

hexafluoride are below 1 ppm and 0.5 ppm respectively, the sum of the ratios of the 

actual concentration divided by the corresponding concentration threshold exceeds unity. 

These additional locations are contained along with the areas contained in the two smaller 

contours within the additive effects contour. 

Cl) .. 
CD -CD 
E 

Figure 4.2 Plume Contours of Individual and Additive Effects 

(Axes Units - Meters) 
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II Selenium Hexaflouride 11111 Additive Effects 

D Tellurium Hexafluoride 

For each of the 63 shipments of DOE generated hazardous waste listed in 

Appendix A, all chemicals within one shipment are assumed to be additive. In reality 

this is not true, however, coding such relationships into the dispersion model can be 

extremely difficult. As a result, the exposed areas computed by the CASRAM model 

may be conservative, subsequently leading to potentially conservative risks. 
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4.5. The Risk Associated with Shipment 53 

In this section, the risk associated with the transportation of shipment 53 will be 

determined. This example will discuss the fine points associated with implementing the 

deterministic method using the 63 DOE generated potentially life-threatening shipments 

of hazardous waste. Table 4.4 contains the data for shipment 53. 

Table 4.4 Shipment 53 

Generator: Sandia National Laboratory in Albuquerque, NM 

Designated Facility: Rollins Environmental Services in Deer Park, TX 

Chemical List: 

Chemical Cont. Quantity Lethal concentration limits CAS 

Name Type Shipped 15 minutes 30 minutes 60minutes Nwnber 

Ammonia Cyl 30 lbs 560 280 140 7664-41-7 

Boron Trifluoride Cyl 3 lbs 16 11 8 7637-07-2 

Carbon Monoxide Cyl 15 lbs 560 280 140 630-08-0 

Chlorine Cyl l lbs 27 19 14 7782-5-5 

Hydrogen Sulfide Cyl 30lbs 89 44 22 7783-06-4 

Methylamine Cyl 4 lbs 540 380 270 74-89-5 

Phophine Cyl 3 lbs 4.4 3.1 2.2 7803-51-2 

Silicon Tetrafluoride Cyl 6 lbs 6400 4500 3200 7783-61-1 

Sulfur Dioxide Cyl 2 lbs 330 170 83 7446-09-5 

In order to predict the route traveled for this shipment the HIGHWAY 3 .1 

Enhanced Routing Model requires as input the origin and destination cities. This 

information is supplied in Table 4.4. After inputting this information, the data in Table 

4.5 is supplied as output. 

At this point we need to be determine the probability of a release and the 

consequence at each of the 899 miles along the predicted route and add their products. 

This summation will be the risk for the route. This will be done individually for each 

demographic region. Afterwards, the risks in each demographic region will be summed. 

Table 4.5 HIGHWAY 3.1 Route Summary 
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Demographic Weighted Average Miles Traveled 

Region Population Density in Region 

Rural 12 737 

Suburban 112 140 

Urban 5790 21 

Total 321 899 

4.5.1. The Probability of a Release 

For every mile traveled in a rural area, the probability of an accident is 

approximately 0.56E-6 (see Table 4.2). Similarly, for every mile traveled in a suburban 

area and for every mile traveled in an urban area the probability of an accident is given 

by 0.79E-6 and 1.0lE-6 respectively. Furthermore, all hazardous wastes in the 

shipment are packaged as general freight and the applicable conditional release 

probability is therefore 0.082 (see Table 4.3). For every mile in each of the demographic 

regions, the probability of a release is given in Table 4.6. 

Table 4. 6 Probability of a Release at Any Given Mile by Demographic Region 

Demographic Region Probability of a Release 

Rural 4.59E-8 

Suburban 6.48E-8 

Urban 8.28E-8 

4.5.2. Consequence 

The consequence is determined by taking the product of the population density at 

each mile multiplied by the associated exposed area at that mile. For each mile in any 

one of the three demographic regions, the population density is approximated by a 

constant whose value is given above in Table 4.5. These values are weighted average 

population densities computed by the HIGHWAY 3 .1 Enhanced Routing Model. 
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The exposed areas are calculated using CASRAM. The inputs parameters which 

it requires and the values which have been used in the application of the deterministic 

model to the 63 shipments of PIH hazardous wastes listed in Appendix A are given below 

1. Chemical List in Table 4.4 - Actual shipment data 

2. Wind Speed (4 m/s) - Average wind speed around the continental United States 

3. Ambient Temperature (35° C) - Conservative temperature 

4. Stability Class (D)-Average stability around the continental United States 

5. Release Fraction per Chemical Capacity - The release :fraction is used to determine 

how much of the chemical is released given the maximum physical capacity of the 

containers used to package the chemical. Table 3.6 in the chapter on the HMIRS 

database gives a list of average release fractions based on capacity for a chemical 

shipped in a specific container type. Keep in mind that chemical capacity refers to 

the maximum amount of chemical that can be shipped within a set of containers. It 

does not refer to the actual quantity shipped. For example, suppose a total of ten 

gallons of bromine is shipped such that 5 gallons are packed in each of two different 

15 gallon fiber drums. The maximum physical capacity would be 2 X 15 gallons = 

30 gallons, even though the actual quantity shipped is only 10 gallons. All hazardous 

waste for this shipment (shipment 53) is packaged in cylinders so that the applicable 

release fraction will be 24%. Note, if a container is packaged with less than the 

appropriate release fraction, a release will be modeled with more being released than 

physically possible. For example, a 55 gallon drum filled with 2 gallons of chlorine 

be modeled as releasing 7% X 55 = 3.85 gallons. This type of situation may never 

occur because the release :fractions are small. 
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The shipment data does include the exact container size or the number of 

containers used. Therefore the maximum physical capacity for each of the ten chemicals 

in this shipment cannot be computed. The average release fractions have been applied to 

the actual quantity shipped for each chemical. As a result of this, predicted release 

amounts may be under estimated. This issue was discussed in section 3.4.1. 

For the deterministic method, all location related information is constant. Any 

CASRAM model parameters which are location dependent or location related will 

therefore be constant for all shipments. Therefore, all exposed areas for this shipment 

will be the same irrespective of where along the route the accident occurs. In the 

probabilistic model, distributions of meteorological conditions, time and location will be 

recognized resulting in location dependent exposed areas. For this particular case the 

exposed area to be used at all locations along the route is given in Figure 4.3. 

Furthermore, routes are described by a total mileage count and an associated average 

population density in each of the three generalized population zones (rural, suburban and 

urban) and the probability of a release is a constant within each of the generalized 

population zone. As a result, the product of consequence multiplied by probability of a 

release is a constant within each of the generalized population zones. Therefore, risk can 

be computed by summing the three products of (probability of a release) x 

(consequence) x (total miles in population zone) where the probability of a release and 

the total miles are a function of population zone. The risk calculation for this shipment is 

shown below. Note that some unit conversion was necessary to compute the risk and 

these conversions are not shown. 

Risk for Shipment 53 = ~)PR;[Release] x Cnsq,) 
i=l 

L(PRp[Release] x Cnsqp x Mp) 1.07E-7, 
p=rural, suburban or urban 
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Figure 4.3 Exposed Area for Shipment 53 

Area Key: 

Downwind Distance 
(meters) 

D Prior to 100 foot marker 

ilt.I After 100 foot marker 

4.6. Interpreting the Results of the Deterministic Method 

The calculated shipment risk in Figure 4.2, 1.07E-7 people, represents an 

approximation to the mean or expected value of the distribution of potential outcomes or 

consequences which result from transporting hazardous waste, and the annual risk is then 

the sum of the expectations of the the distributions of consequences for each of the 

shipments of hazardous waste shipped during the year. Appendix C develops shows a 

mathematical developement of this approximate expectation. 
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5. THE PROBABILISTIC METHOD 

This section illustrates the methodology and operating procedures of the 

probabilistic model. The goal of the application of this model is to produce one 

cumulative probability distribution of number of people with potentially life threatening 

health effects due to the transportation of the 63 shipments of DOE generated PIH wastes 

(see Appendix A). This distribution will be denoted as PLTHE. The model is based 

upon a Monte Carlo algorithm which is used to produce, for each shipment of concern, a 

cumulative probability distribution of consequence given that a release occurs during the 

course of transporting a shipment of hazardous waste on public highways from its 

generation point to a designated disposal and/or treatment facility. For this application 

there are 63 potentially life-threatening shipments of DOE generated hazardous waste 

under consideration (see Appendix A). Therefore, 63 cumulative probability 

distributions of consequence given a release have been developed using a Monte Carlo 

algorithm. To obtain the PLTHE, Monte Carlo techniques are again employed using 

each of the individual 63 shipment distributions as input, ultimately providing a single 

cumulative probability distribution (the PLTHE). This process will be explained in detail 

in the remaining sections of this chapter. 

5.1. Introduction to Monte Carlo Algorithms 

In general, Monte Carlo techniques are often employed to produce a cumulative 

probability distribution for a random variable Y, whose cumulative probability 

distribution is unknown and where this random variable is a function of one or several 

random variables Xo, X1, ... ., Xn, whose probability distributions are known. 

Furthermore, the function which maps the random variables Xo, X1, ... ., Xn to Y must be 

known as well. 

For example, the consequence of a release of hazardous waste occurring as a 

result of a truck transportation accident is a stochastic random variable and is a function 

of several parameters, each of which is listed below in Table 5.1. There are three 

columns in Table 5 .1. Column 2 flags whether or not the variable is treated stochastically 
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in the determination of the 63 cumulative probability distributions of consequence given 

a release and column 3 identifies that the stochastic variable is dependent upon the values 

of other listed stochastic variables. 

Table 5.1 Input Parameters for the Determination of Consequence Given a Release 

Input Parameters Stochastic? Stochastic dependency upon other input parameters 

Location NO Not applicable, variable not stochastic 

Chemical data NO Not applicable, variable not stochastic 

Population NO Not applicable, variable not stochastic 

density 

Health criteria<•> NO Not applicable, variable not treated stochastically 

Release fraction YES Container type - different distribution for each type 

Spill cover area<2> YES Physical state - Only applicable to liquid spills 

Time YES None 

Date YES None 

Meteorology YES Time, Date and Location 

tlJ . . . . In reality, health cntena 1s stochastic, however, this vanation 1s beyond the scope of this thesis 

and has been treated deterministically. 

(l) The spill coverage area is only applicable if the chemical is initially released as a liquid. 

The function which maps the input parameters in Table 5.1 to consequence given 

a release is simply the product of EA x PD, where EA is the exposed area computed by 

the CASRAM computer dispersion model and PD is the population density supplied by 

the HIGHWAY 3 .1 Enhanced Routing Model. Note that the CASRAM dispersion model 

takes as input all parameters listed in Table 5.1, other than the population density. 

The Monte Carlo algorithm is implemented by repeatedly choosing values for 

each of the input parameters, calculating the value of the function based upon the selected 

input parameter values, and recording the trial calculation. This processes is repeated 

several hundred or even thousands of times. At each iteration, the selection of the input 

parameter values reflects their respective distributions. The process of selecting a value 

for the input parameters, will be referred to as sampling throughout the rest of the text. 
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The result of this repetitive process will be a distribution of values from which a 

cumulative probability distribution may be approximated. Appendix E discusses an 

algorithm for constructing a cumulative probability distribution from a set of values. 

Note that the meteorology is stochastic and is dependent upon other stochastic 

parameters (time and date). The implication is that the Monte Carlo algorithm employed 

must be capable of sampling in a manner which accounts for the stochastic dependence of 

random variables. 

The remaining sections of this chapter will provide detailed information on the 

implementation of the Monte Carlo algorithms used to construct distributions of 

consequence given a release for each of the 63 potentially life-threatening shipments of 

hazardous waste listed in Appendix· A. 

5.2. Distribution of Consequence Given a Release 

This sections provides additional details on the implementation of the Monte 

Carlo algorithm employed to construct a distribution of consequences given that a release 

occurs. Throughout the discussion of the methodology used in this process, it is 

important to keep in mind that the distributions constructed do not account for the 

consequence of multiple accidents occurring along one route as the probability of 

multiple accidents is negligible (see Chapter 4 and Appendix C). The flowchart in Figure 

5 .1 illustrates the process. The stochastic components have been identified by the 

"Random ---+" notation. 
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As initial data, the model requires the route to be traveled, the shipment contents 

and the population density at the current location. The model begins by looking at the 

first location, uniformly sampling a number on the interval [O, 1] and determining if an 

accident occurs based upon the sampled number. If the number sampled is less than the 

appropriate accident rate (3 possible accident rates - rural, suburban or urban) then an 

accident occurs. When it is determined that an accident occurs, another random number 

between zero and one is sampled uniformly. If this number is less than the appropriate 

probability of a release given an accident then a release occurs, otherwise, the route is 

incremented to the next location (different latitude and longitude and potentially different 

population density). When a release occurs, the appropriate sampling of date, time, 

meteorology, release fraction and spill coverage area (ifliquid spill) is performed. Using 

the sampled values, the source model and dispersion models (CASRAM) are employed to 

determine the number of number of people experiencing the health end-point under 

consideration (potentially life-threatening health effects for this thesis). The number of 

potential impacts (for the health end-point under consideration) is recorded and the whole 

process starts over. This process is repeated until 100,000 releases have been modeled 

and recorded. 

It is necessary to base the iteration count on releases rather than miles due to the 

low probability of an accident. It is conceivable that 100, OOO miles could be traveled and 

no release will be sampled. Therefore, to assure a smooth distribution the model 

continues processing until 100, OOO releases have occurred. 

5.2.1. Probability of an Accident and Probability of a Release Given an Accident 

The probability of an accident is one of three values. There is an associated 

accident probability at each mile along the route traveled depending upon whether the 

location is rural, suburban or urban. These three accident probabilities· are same values 

used in the deterministic model (see Section 4.2 ). 

Similarly, the probability of a release depends upon the container type used. 

These conditional probabilities used are the same as those used in the deterministic 
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method (see Section 4.3). When multiple chemicals are in transit, a potentially different 

random number between 0 and 1 is uniformly sampled for each chemical included in the 

shipment. Each of these chemicals is then tested for a release by comparing the 

appropriate sampled number against the appropriate conditional release probability. 

Since different chemicals in the same shipment may be packaged in different container 

types, there could be a different conditional release probability applicable (see Section 

4. 3) for each chemical. 

5.2.2. Sampling Date and Time 

The month of the year and the time of day are sampled from the discrete 

distributions constructed from releasing accidents recorded in the HMIRS database. 

These distributions are given in the form of a probability histogram in Figures 3.3 and 

3.4. and reviewed in tabular format in Tables 5.2 and 5.3. 

The sampling algorithm used to determine the month is based upon a random 

number, call it r, uniformly sampled between [0,1]. For each of the twelve months, an 

interval whose length is equal to the probability associated with that month, will be 

assigned. After r, the random number, is uniformly sampled, the month is chosen 

depending upon what interval r is contained in. For example, suppose r is in the interval 

[O, 0.070], then the month is January. If r is in the interval (0.070, 0.141], then the month 

is February. Notice that the left end-point of the interval associated with February is 

open (not closed) and is equal to the right end-point of the previous month's (January) 

interval. 

Intervals for months following February are defined in a similar manner. The left 

end-point is open and equal to the right end-point value for the previous month's 

associated interval. The right end-point is closed and equal to the sum of the left end­

point plus the probability associated with that month. 
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Table 5.2 Discrete Probability Density Function of Month of the Year 

Given a Release Occu"ed 

Month Probability Month Probability 

January 0.070 July 0.101 

February 0.071 August 0.105 

March 0.084 September 0.085 

April 0.082 October 0.078 

May 0.095 November 0.068 

June 0.101 December 0.057 

Sampling for the hour day is done exactly the same as for sampling the month. A 

random number is uniformly sampled between 0 and 1. This number will fall into one of 

24 different intervals, each associated with one specific hour. Each of these 24 distinct 

non-overlapping intervals will be associated with a specific hour and have a length equal 

to the probability that the release occurs in the associated hour, given that a release does 

occur. Once a month is sampled, the day of the month, ranging from 1 to 28, 30 or 31 

(depending upon the month), is sampled uniformly. 

5.2.3. The Meteorological Preprocessor and Sampling the Meteorology 

Data from 61 cities well distributed throughout the continental United States (see 

Figure 5.2) serve to characterize the entire country from a climatological point of view. 

Two varieties of data are used. The first are surface-airways data which are used to 

specify the surface turbulence characteristics. These data are organized through the 

National Solar Radiation Data Base. The second variety are upper-air data. These data 

are used for specification of the morning temperature profile, necessary for determination 

of daytime inversion heights. 
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Table 5.3 Discrete Probability Density Function of Hour of Day 

Given a Release Occu"ed 

24 Hour Clock Probability 24 Hour Clock Probability 

Interval Interval 

0-1 0.013 12 -13 0.050 

1-2 0.024 13 -14 0.054 

2-3 0.026 14 -15 0.057 

3-4 0.039 15 -16 0.043 

4-5 0.033 16 -17 0.041 

5-6 0.048 17 -18 0.033 

6-7 0.056 18 -19 0.034 

7-8 0.060 19 -20 0.030 

8-9 0.063 20 -21 0.025 

9 -10 0.067 21-22 0.021 

10-11 0.064 22-23 0.018 

11-12 0.071 23 -24 0.023 

Figure 5.2 Distribution of Weather Stations Throughout the 

Continental United States 
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Before sampling these data, a meteorological preprocessor takes raw hourly data 

consisting of wind speed, temperature, humidity and cloud cover measurements, and 

computes the required meteorological parameters for use in the source and dispersion 

models. The meteorological preprocessor uses an energy budget model, whereby 

components of the surface energy budget are parameterized to provide a series of 

equations which are then solved using the raw meteorological data along with similarity 

based wind and temperature profiles. For daytime (unstable lapse conditions) the 

inversion height is calculated using an integral model which relies on the temporal 

surface turbulence characteristics along with the morning temperature profile. The 

methods used in the preprocessor represent the state of the art in atmospheric boundary 

layer characterization and are preferable to the traditionally employed stability class 

methods. 

Given a location and sampled values for the month, day and hour, the most 

applicable subset of the preprocessed meteorological database is sampled for the 

necessary values from the four closest cities to the given location. The four sets of 

sampled values are then interpolated to the current location along the route. 

Besides the typically required atmospheric parameters, the meteorological 

preprocessor must also handle the pavement temperature profile, which is required in the 

source model. Although the evaporation rate from a pool is a very strong function of its 

surface temperature, the heat flux from the ground into the evaporating pool is most often 

the dominant energy source for pool evaporation. As a result of this, accurate 

determination of the ground temperature profile is important for accurate evaporation 

estimates because . A ground temperature profile is not computed per se for the source 

model, but a modified pavement temperature profile is computed. The pavement 

temperature profile differs from a usual ground temperature profile in that the energy 

balance at the surface does not include evaporation or transpiration from plants. This 

modification greatly affects the local energy budget, leading to large variations in surface 

temperature and conductive heat fluxes over those observed on normal ground. 
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5.2.4. Sampling the Release Fractions 

There are five potentially applicable cumulative probability distributions which 

may be sampled during the Monte Carlo process, depending upon the container type 

used. The recognized container types include large drums, small drums, pressurized 

cylinders, pressurized bulk containers and non-pressurized bulk containers. 

These five different container types are discussed in detail in Table 3.5. Only the 

large drum and pressurized cylinder distributions apply to the 63 potentially life­

threatening DOE generated shipments of hazardous waste. The algorithms used to 

sample those distributions is described below. 

Sampling from these distributions is done based upon the raw data used to 

construct the cumulative probability distributions rather than the cumulative probability 

distributions themselves. The set of release fractions collected from the HMIRS database 

have been categorized by container type and then sorted within each category in 

ascending order. Let Ne denote the total number of release fractions (same as number of 

total incidents) collected for a certain container type. Then within each category, the 

sorted release fractions are numbered from 0 to Ne-1. Sampling is then done by 

uniformly sampling a random integer in the range of 0 to Ne-1, where the value of Ne 

depends upon the container type. 

Using the sampled release fraction, a release amount can be calculated. The 

product of the maximum physical capacity should be multiplied by the release fraction 

sampled to determine the release amount. Presently, the maximum physical capacities 

are not always available and release amounts have been calculated by multiplying the 

actual quantity of hazardous materials shipped by the sampled release fraction. Resulting 

risks may be under estimated as containers are not always filled to their maximum 

capacity. However, future improvements to the application of the modeling tools 

provided in this thesis will include employing an algorithm to estimate maximum 

physical capacities. It will be assumed that any drums with an unknown capacity, due to 
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lack of information in the HaWRAM database, have a capacity of 55 gallons. 

Furthermore, any pressurized cylinders with an unknown size will be assumed to have a 

capacity of29 gallons. These containers sizes are the most commonly used and generally 

the largest used in practice as well. Because 29 gallon cylinders and 55 gallon drums are 

generally the largest sizes for cylinders and drums, resulting risk calculations to be 

included in future improvements, when these container size assumptions are employed, 

may be conservative. 

It should be noted that when multiple chemicals are released a release fraction is 

sampled for each released chemical. 

5.2.5. The Spill Coverage Area and Sampling from its Probability Density Function 

When a liquid is released, it forms an evaporating pool on the ground, thus 

releasing the material into the atmosphere. In determining the release rate, the pool size 

is an important factor because the evaporation rate is directly proportional to the pool 

size. Unfortunately, models for estimating pool size are not well developed. 

Additionally, the few existing models either require chemical data that are often not 

available or yield unrealistically large pool sizes. Adding to this problem is that pool-size 

data are practically non-existent. 

Due to the lack of acceptable techniques, an entirely heuristic scheme for 

estimating pool size is employed. By considering a few representative chemicals for 

which data were available, estimates of the equilibrium pool thickness on a flat surface 

have been derived. These estimates all yielded a unit coverage area of approximately 1 

m2/gallon. However, few spills occur on flat, uniform surfaces, and an arbitrary 

distribution has therefore been developed to account for a large variation in surface 

porosity and slope. This distribution is shown in Figure 5 .3. The large tail on the 

distribution is required to model the few cases where the liquid is spilled on strongly 

sloped, non-porous surfaces. These cases would exhibit large pool areas and 

consequently, large evaporation rates. 
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5.2.6. The Source Model 

3 

The source model uses the amount spilled, chemical property data and 

information sampled from the meteorological preprocessed database to determine the 

release rates for the spilled chemicals. Two types of releases are considered in the model. 

For gases, liquefied gases or liquids whose boiling point is below the pavement surface 

temperature, the released quantities are assumed to be released instantaneously. For 

cases when the pavement temperature is between zero and ten degrees above the boiling 

point, some liquid will flash and the rest will form a pool. Due to lack of available data, 

all released liquid which is not flashed is assumed to form a pool on the pavement 

surface. Undoubtedly, this does not always occur in real accidents. The implications of 

this assumption will be more thoroughly explored in section 5.4. 

The time dependent evaporation rate from the pool is estimated usmg a 

sophisticated energy balance technique. Average evaporation release rates are computed 

for 15 minute, 30 minute 60 minute time periods. These release rates are simply the 

amount of material evaporated up to that time divided by the respective time period. If 

59 



all of the chemical which is spilled evaporates before the 60 minute time period has 

expired, the evaporation model is terminated, and the release rates for the remaining time 

periods are simply given as the amount spilled divided by the respective time period. 

5.2.7. The Dispersion Model 

The dispersion model uses local meteorology data and chemical release rates to 

determine the area in which the toxicological limits are exceeded. The concentration 

downwind of the source is determined using a similarity-based method which utilizes 

non-dimensional relationships for the ground-level crosswind-integrated concentration 

together with relations for the horizontal plume spread. This method is superior to the 

Pasquill-Gifford-Tumer curves since it appropriately accounts for the atmospheric 

boundary layer's physical structure and continuously relates the meteorological 

parameters to the downwind concentration estimates (i.e. no discretization into stability 

classes). Furthermore, model predictions agree well with a wide variety of field studies, 

most notably the Prairie Grass Dispersion Experiments. Besides standard plume releases, 

the dispersion model also has the capability of treating puff releases. Such capability is 

required since gaseous and flashed liquid releases are instantaneous (forming a puff), 

whereas evaporation from a liquid pool is continuous (forming a plume). For a more 

thorough description of the dispersion methodology, the reader is referred to Statistical 

Determination of Downwind Concentration Decay [1]. 

Note that when multiple chemicals are released, the methodology to account for 

additive effects is exactly the same as presented in Section 4.4. 

5.3. Constructing the PLTHE 

Section 5.2 discussed the methodology and operating procedures for determining 

a cumulative probability distribution of consequence given that a release occurs for any 

one shipment. This section provides an approach for building upon that method by using 

the cumulative probability distributions of consequence produced for each shipment, to 

construct a single cumulative probability distribution representative of all shipments (the 
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PL THE). This remainder of this section will discuss the approach used in three steps, 

numbered 1, 2 and 3 below. 

1. For each cumulative probability distribution of consequence given that a release 

occurs (there are 63 cumulative probability distributions resulting from applying 

the Monte Carlo process described in section 5 .2 to the 63 potentially life­

threatening shipments of DOE generated hazardous waste listed in Appendix A), 

an unconditional cumulative probability distribution of consequence must be 

determined. The term unconditional here means that a cumulative probability 

distribution of consequence will be derived given that the shipment is transported 

on public highways. Since the release condition is not a given, the probability of 

a consequence of zero is magnified greatly because the probability of a release is 

so small. The main idea here is that instead of assuming a release occurs 

somewhere along a route and determining the cumulative probability distribution 

of consequence, we now simply assume a truck transporting hazardous waste is 

shipped along a route consisting of public highways. We now examine the 

cumulative probability distribution of consequence given that the truck is 

traveling along that route. Doing so, the probability of a release needs to be 

factored into the cumulative probability distribution of consequence given that a 

release occurs. 

2. Define the random variable Y = X1 + X2 + . . . + XN , where Xi is a random 

variable whose cumulative probability distribution is represented by the 

unconditional cumulative probability distribution of consequence for the i-th 

shipment of hazardous waste. Note that for the application of the risk assessment 

of the baseline potentially-lethal shipments of DOE generated hazardous waste, 

N=63. 

3. Use another Monte Carlo algorithm to determine the cumulative probability 

distribution of Y. Note that Y will represent the cumulative probability 

distribution of the sum of the shipment risks random variables, hence the random 
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variable Y represents the annual risk and Y' s cumulative probability distribution 

represents the cumulative probability distribution of the annual risk. 

5.3.1. Step 1 - Constructing an Unconditional Consequence Distribution 

The cumulative probability distributions provided by the Monte Carlo process 

defined in Figure 5 .1, are in a numerical format. That is, they are given in the form of 

two column table. Column 1 contains a value X, which represents that a consequence 

given that a release occurs. Column two contains a cumulative probability PR[X], which 

represents the probability that the consequence of a release is less than or equal to X. 

Therefore, 1-PR[X] represents the probability that the consequence of a release is greater 

than X. To illuminate this discussion we will work with a simplified example. 

Suppose that consequence is number of potentially life-threatened individuals 

(which is the case for the application of the modeling tools presented in this thesis). 

Furthermore, suppose that the output of the Monte Carlo process defined in Figure 5. 1, 

for some particular shipment is represented in Table 5.4. Table 5.4 only shows 10 values, 

intermediate values must be interpolated. Note, that in reality, the output of the Monte 

Carlo process will show cumulative probability distributions in much finer detail, in that 

the numerical representation will contain 100,000 values instead of 10. For simplicity, 

only 10 values are used. Although the cumulative probability distribution is simplified in 

that only ten values are used for the numerical representation, the methodology presented 

to obtain the unconditional cumulative probability distribution of the consequence 

From table 5 .4 it is seen that the probability that more than 0 individuals are 

exposed to a potentially life-threatening circumstance is 80%. Furthermore suppose that 

the probability of a release has been determined for the route to be 8E-5. Then the 

probability that more than 0 people are impacted is given by the probability of a release 

multiplied by the probability that more than 0 people are impacted given that a release 

occurs. This same product corresponding to each of the ten consequence values is 

computed and recorded in column four of Table 5.4. The fourth column of Table 5.4 

now has the probability that more than X people are impacted given only that the 
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shipment was shipped along public roads. However, to determine the cumulative 

probability distribution the values in the 4-th column of Table 5.4 still must be subtracted 

from 1. Table 5.5 shows both the conditional and unconditional consequence cumulative 

probability distributions for this hypothetical shipment and route. 

Table 5.4 Cumulative Probability Distribution of Consequence Given a Release for a 

Hypothetical Shipment and Route 

Assume that for this particular shipment and route, the probability of a release is 

approximately 8.0E-5 

Number of potentially life- (Cumulative probability) (1- Cumulative probability) ( 8.0E-5 x (1 - Cum Prob)) 

threatened individuals Probability that consequence Probability that consequence Probability that consequence 

x is less than or equal to X, is greater than to X, given that is greater than X 

given that a release occurs a release occurs 

0 80% 20% 1.6E-5 
1 86% 14% 1.12E-5 
2 91% 9% 7.2E-6 
3 95% 5% 4.0E-6 
4 98% 2% 1.6E-6 
5 99% 1% 8.0E-7 
6 99.4% 0.6% 4.8E-7 
7 99.6% 0.4% 3.2E-7 
8 99.7% 0.3% 2.4E-7 
9 99.8% 0.2% 1.6E-7 
10 99.9% 0.1% 8.0E-8 

Table 5.5 Conditional vs. Unconditional Cumulative Probabilities 

Distributions of Consequence 

Cumulative Cumulative 
Consequence Probability Given a Probability 

Release Occurred 
0 0.8 0.99998400 
1 0.86 0.99998880 
2 0.91 0.99999280 
3 0.95 0.99999600 
4 0.98 0.99999840 
5 0.99 0.99999920 
6 0.994 0.99999952 
7 0.996 0.99999968 
8 0.997 0.99999976 
9 0.998 0.99999984 
10 0.999 0.99999992 
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5.3.2. Steps 2 and 3 - Another Monte Carlo Algorithm 

Step 2 is simply to define the random variable Y = LXi , where each of the Xi 

have a cumulative probability distribution represented by the cumulative probability 

distribution of the i-th shipment (as derived in Step 1). Step 3 is to derive the distribution 

of the random variable Y using a Monte Carlo algorithm. This algorithm proceeds by 

simply sampling a value corresponding to each of the random variables X1 , X2 , ... , then 

adding up all the sampled Xi , and recording the sum. This process is repeated several 

hundred or even thousands of times, until enough data is collected to make a smooth 

distribution. 

For the application involving the 63 DOE generated potentially life-threatening 

shipments of hazardous waste, there are 63 distributions to sample at each iteration, and 

the number of iterations used is 10,000,000. In this case a smaller number of iterations 

was not sufficient because for all 63 of the (unconditional) cumulative probability 

distributions of consequence, all the non-zero consequence is contained in the upper tail 

(above the 99-th percentile). In order to achieve a sufficient amount of sampling from the 

upper tail of those distributions an incredibly large number of iterations (10,000,000) had 

to be executed. 

5.4. Results and Discussion 

Figure 5.4 shows the (PLTHE) cumulative probability distribution of number of 

individuals with potentially life-threatening health effects as a result of transporting the 

63 DOE generated shipments of hazardous waste listed in Appendix A. This distribution 

shows that the mean number of individuals exposed to a potentially life-threatening 

scenario as a result of transporting the 63 DOE generated shipments of hazardous waste, 

is not always a good indicator of possible outcomes. For instance, although the mean 

value is 3.48E-4, the probability that zero people will be exposed to a potentially life­

threatening situation is greater than 99%, the probability that more than 1 person will be 

exposed to a potentially life-threatening situation is 3 in 25 thousand, the probability that 

more than 1,000 people will be exposed to a potentially life-threatening situation is 1 in 
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50 million. It is quite conceivable that a route on which slightly more people are affected 

in the mean, may be preferable to an alternative route in which the odds for a catastrophic 

accident are higher. 

5.4.1. Deterministic Results versus Probabilistic Results 

The mean of the cumulative probability distribution given in Figure 5.4 is 3.48E-

4 people, whereas the results of the deterministic method show a risk of 1.74E-4 (they 

differ by a factor of2). Although these numbers differ by a factor of two, their respective 

locations on the cumulative probability distribution are 99. 941 % and 99. 94 7%. For this 

case, the deterministic results provide a good estimator for the mean of the cumulative 

probability distribution of number of potentially life-threatened individuals. 

When these modeling tools are applied to the other alternative waste management 

scenarios (centralized, decentralized, and regionalized - see section 1.1) and to the other 

health end-points ("cancer" and "other adverse health effects"), the deterministic results 

will provide an estimate for the expected value of consequence (risk) for each 

combination of waste management scenario and health end-point. These numbers will 

allow for comparison of alternatives only by average values or expected consequence. 

However, the probabilistic results also provide a probability of zero risk (> 99% for the 

baseline potentially life-threatening scenario) and some additional information about 

catastrophic results in the upper tail of the distribution. This type of information can be 

very useful in the comparison between alternative waste management scenarios. 

In addition to Figure 5.4, the cumulative probability distribution of number of 

potentially life-threatened individuals, Figure 5.5 has been provided. Both these figures 

are presented with the abscissa in log scale. The ordinate axis of Figure 5.5 represents 1 

minus the cumulative probability, in other words, the probability that more than N people 

are exposed to a potentially life-threatening situation. Figure 5. 5 may be easier to 

interpret than the cumulative probability distribution given in Figure 5.4. 
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The three largest risk shipments, according to the deterministic results, are 

shipments 3, 12, and 23. Their associated risks, as well as the mean of the associated 

cumulative probability distribution of number of potentially life-threatened individuals 
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and probability that more than 100 people are potentially life-threatened, are given in 

Table 5.6. 

Table 5. 6 Summary Statistics of Deterministic and Probabilistic Results 

Shipment Detenninistic Mean of cwnulative Probability of Probability Probability Shipment 

nwnber shipment probability 0 potential > 100 potential ofa miles 

risk distribution fatalities fatalities release traveled 

3 8.18E-6 2.98E-5 99.999% 4.00E-8 3.97E-6 64.5 

12 3.63E-5 8.89E-5 99.996% 1.02E-7 9.43E-5 1905 

23 8.26E-5 1.97E-4 99.998% 3.14E-7 3.04E-5 557.2 

There are a few interesting points to be made about the table. First note that the 

deterministic results agree with the probabilistic results in that shipments 2, 12 and 23 

have the highest means of all 63 cumulative probability distributions of number of 

potentially life-threatened individuals, and the highest probabilities that more than 100 

lives are potentially threatened. The deterministic risk of shipment 3 differs from the 

mean of the corresponding cumulative probability distribution by a factor of 3.6. 

However, both the deterministic result and the probabilistic mean both lie between the 

99.90-th percentile and the 99.999-th percentile. Similarly, the deterministic risks for 

shipments 12 and 23 differ from their corresponding cumulative probability distribution 

means by a factor of 2.4. However, in each case, the two numbers lie between the 

corresponding 99.90-th percentiles and the 99.99-th percentiles. 

It should also be noted that these three shipments, 3, 12 and 23, are comprised of 

only either all hazardous wastes in a gaseous state or at least 90% in a gaseous state. 

Furthermore these three shipments account for 73% of the deterministic risk and are 

dominant shipments in the determination of the upper tail of the annual cumulative 

probability distribution of number of individuals potentially life-threatened. 

5.4.3. Probabilistic Model Uncertainty 

Clearly, one would like a model that was truly accurate and free from bias, 

whether that bias be conservative or non-conservative. This was a fundamental goal in 
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the development of the probabilistic modeling tools developed in this thesis. However, 

when faced with lack of information in a particular area, assumptions employed tended to 

be conservative since non-conservative assumptions historically require more 

justification. In the remainder of this section, areas of uncertainty in the probabilistic 

modeling tools and their possible impacts on results are briefly discussed. 

1. The specification of the spill coverage area distribution was quite arbitrary and 

neglected individual chemical properties. Though the distribution is most certainly 

not entirely accurate, predicted spill areas are very reasonable and, as will become 

apparent below, not a significant source of uncertainty in the final annual cumulative 

probability distribution of number of potentially life-threatened individuals. 

2. The assumption that liquid spills always occur on the pavement is fairly dramatic. 

The higher temperatures which can be associated with the pavement surface provide a 

large reservoir of available energy. This most certainly leads to an overprediction of 

evaporation rates for spills which do not occur on the pavement surfaces. In these 

cases, the release rates may be overpredicted by as much as a factor of 2. 

Additionally, if a spill is confined within the vehicle, additional overprediction may 

occur since surface transfer coefficients are markedly reduced over what they are for 

materials the ground. This may seem to be quite a problem. However, the fact that 

most of the risk comes from gases (in which case the evaporation from pools is not 

applicable) means that the uncertainties in the final annual cumulative probability 

distribution arising from the treatment of the liquid spills forming evaporating pools, 

are small. 

3. Using the data in the HMIRS database to predict releasing behavior in accidents 

involving a release of hazardous waste generated and packaged by DOE may result in 

conservative distributions. Not all large drum containers provide the same protection 

to their contents. Furthermore, not all have equivalent protection from additional 

overpacks as well. The same can be said for cylinders and small drums. The 

demands on the performance capabilities of the containers used depend upon the level 
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of danger presented by the hazardous waste being packaged. The application of the 

modeling tools developed concerns hazardous waste which is potentially lethal. 

Because of the high level of danger these commodities present, packaging 

requirements are stringent. Not all of the drum and cylinder incidents found in the 

HMIRS database and used to construct release fraction distributions, are 

representative of the DOE containers. Section E.2 (located in Appendix E) provides 

additional details about this uncertainty. 
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APPENDIX A 

This section identifies the 63 potentially life-threatening shipments of DOE 

generated hazardous waste transported for disposal and/or treatment in the 1992 fiscal 

year. The format of this information is given below -

Row 1: Shipment number 

Row 2:Location of generator( city, state) and designated treatment facility( city, state) 

Row 3: Date of departure from generation point 

The remaining rows for a shipment include the hazardous waste data. The column 

descriptions for the hazardous waste data rows are given below -

• Column 1 identifies the manifest reported container type. The 

identification is a 2 character string. A container identification starting 

with a 'C' indicates that a cylinder container was used and an 

identification beginning with a 'D' indicates a drum. 

• Column 2 contains a 1 character string which provides more detailed 

information about the packaging used. If column 2 contains a 'C' then a 

cylinder packaging was used. If column 2 contains an 'L' then a large 

drum(> 20 gallons in capacity, mostly 55 gallon drums) was used and if 

column 2 contains an 'S' a small drum was used. If column 1 does not 

agree with column 2, that is column 1 has 'DM' but column 2 has 'C', this 

should be interpreted as meaning that the hazardous waste is packaged in 

cylinders contained inside of drums. 

• Column 3 has the value of the original quantity shipped. 

• Column 4 contains the units for the original quantity. The units are 

indicated by a 1 character string. A 'P' indicates pounds, 'G' indicates 

gallons and 'C' indicates cubic feet. 
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• Column 5 contains the chemical name 

• Columns 6, 7 and 8 contain the potentially life-threatening health effect 

concentration thresholds for the 15 minute, 30 minute and 60 minute 

exposure times respectively. 

• Column 9 contains the CAS number for the chemical 

SHIPMENTS 

shipment 1 
Livermore, CA to El Dorado, AR 

7/10/92 
DM L 10 p Phosphorus oxychloride 13 9.1 6.4 10025-87-3 
DM L 10 p phosphorus oxychloride 13 9.1 6.4 10025-87-3 

shipment 2 
Livermore, CA to El Dorado, AR 

9/ 30/ 92 
DM L 177 p Phenyl isocyanate 11 5.4 2.7 103-71-9 
DM L 13 p Titanium tetrachloride 3.7 2.6 1. 8 7550-45-0 

shipment 3 
Livermore, CA to Gilroy, CA 

1/24/92 
DM C 565 p Chlorine 27 19 14 7782-50-5 

shipment 4 
Livermore, CA to Gilroy, CA 

2/ 7 / 92 
DM C 200 P Chlorine 27 19 14 7782-50-5 

shipment 5 
Livermore, CA to Los Angeles, CA 
5/ 8/ 92 

DM L 77 P Bromine 45 23 11 7726-95-6 

shipment 6 
Livermore, CA to Los Angeles, CA 

7/22/92 
DF L 5 G Phosphorus oxychloride 13 9.1 6.4 10025-87-3 

shipment 7 
Livermore, CA to Los Angeles, CA 

8/10/92 
cw c 57 p Nitric Acid, fuming 27 19 13 7697-37-2 
DM L 160 p Phenyl isocyanate 11 5.4 2.7 103-71-9 
DM L 160 p Thiophosgene 23 16 11 463-71-8 

shipment 8 
Livermore, CA to Greenbrier, TN 

7/ 2/92 
DF C 5 G Hydrogen fluoride, Anhydrous 24 17 8 7664-39-3 

shipment 9 
Livermore, CA to Greenvrier, TN 

7/24/92 
DM L 10 P Cyclohexyl isocyanate 6 4.2 3 3173-53-3 
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shipment 10 
Livermore, CA to Deer Park, TX 
10/ 4/91 
DM C 13 P Nickel carbonyl 

shipment 11 
Livermore, CA to Deer Park, TX 
10/ 4/91 
DM C 10 P Tungsten hexafluoride 

shipment 12 
Livermore, CA to Deer Park, TX 
5/ 8/ 92 

DM L 15 P Bromine or Bromine solutions 
CY C 125 P Hydrogen fluoride, Anhydrous 

shipment 13 
Livermore, CA to Deer Park, TX 

6/18/92 
CY C 1 P Sulfur dioxide, liquefied 

shipment 14 
Idaho Falls, ID to Clarence, NY 
12/17/91 
DM C 2 P SULFURIC ACID, FUMING 
DM C 14 P TUNGSTEN HEXAFLUORIDE 

shipment 15 
Idaho Falls, ID to Clarence, NY 

8/17/92 
DM L 10 P Thiophosgene 

shipment 16 
Idaho Falls, ID to El Dorado, AR 
10/25/91 
DF L 14 P Methyl iodide 
DF L 76 P Thiophosgene 

shipment 17 
Idaho Falls, ID to El Dorado, AR 
11/14/91 
DF C 41 P Chlorine 

shipment 18 
Idaho Falls, ID to Clarence, NY 

4/ 15/ 92 
DF C 45 P Boron trifluoride 
DM L 12 P CYANOGEN BROMIDE 

shipment 19 
Argonne, IL to El Dorado AR 
11/19/91 
DM L 5 G Trimethylacetyl chloride 

shipment 20 
Argonne, IL to Clarence, NY 
12/ 6/ 91 
DM L 5 G Bromine or Bromine solutions 

shipment 21 
Argonne, IL to Clarence, NY 
12/ 6/ 91 
DM L 5 G Sulfuric Acid, fuming 
DM L 10 G Titanium tetrachloride 

shipment 22 
Argonne, IL to Clarence, NY 

4/24/92 
DM L 5 G Allylamine 
DM C 30 G Nitric Acid, fuming 

1. 4 

12 

45 
24 

330 

23 
12 

23 

90 
23 

27 

16 
7.7 

27 

45 

23 
3.7 

110 
27 

0.96 

6 

23 
17 

170 

16 
6 

16 

63 
16 

19 

11 
3.9 

19 

23 

16 
2.6 

81 
19 

0.48 13463-39-3 

3 

11 
8 

83 

11 
3 

11 

45 
11 

14 

8 
1. 9 

14 

11 

11 
1. 8 

57 
13 

7783-82-6 

7726-95-6 
7664-39-3 

7446-09-5 

7664-93-9 
7783-82-6 

463-71-8 

74-88-4 
463-71-8 

7782-50-5 

7637-07-2 
506-68-3 

3282-30-2 

7726-95-6 

7664-93-9 
7550-45-0 

107-11-9 
7697-37-2 
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shipment 23 
Argonne, IL to Clarence, NY 

7/ 7 /92 
cw c 1 G Hydrogen Selenide 0.17 0.12 0.085 7783-07-5 
cw c 1 G Selenium hexafluoride 2 1. 4 1 7783-79-1 
cw c 1 G Tellurium hexafluoride 1 0.71 0.5 7783-80-4 

shipment 24 
Argonne, IL to Houston, TX 

9/ 2/92 
DM C 1 G Arsine 5.2 2.6 1.3 7784-42-1 
cw c 1 G Methyl bromide 110 79 56 74-83-9 

shipment 25 
Kansas City, MO to Deer Park, TX 

3/11/92 
cw c 35 p Ammonia, anhydrous 560 280 140 7664-41-7 
cw c 2 p Carbon monoxide 560 280 140 630-08-0 

shipment 26 
Kansas City, MO to Houston, TX 

6/25/ 92 
DM C 50 p Ammonia, anhydrous 560 280 140 7664-41-7 
DM c 20 p Chlorine 27 19 14 7782-50-5 
DM c 20 p Hydrogen Sulfide 89 44 22 7783-06-4 
DM c 20 p Nitrogen Dioxide 6 4.2 3 10102-44-0 
DM c 50 p Silicon tetrafluoride 6400 4500 3200 7783-61-1 
DM c 20 p Sulfur dioxide, liquefied 330 170 83 7446-09-5 

shipment 27 
Los Alamos, NM to Baton Rouge, LA 
11/27/91 
DF L 1 p Dimethyl sulfate 3.5 2.5 1. 7 77-78-1 
DF L 1 p Thiophosgene 23 16 11 463-71-8 
DM L 3 p Cyanogen bromide 7.7 3.9 1. 9 506-68-3 

shipment 28 
Los Alamos, NM to Baton Rouge, LA 
12/17/91 
DM L 25 p Bromine 45 23 11 7726-95-6 

shipment 29 
Los Alamos, NM to Baton Rouge, LA 

2/13/92 
DF C 60 p Ammonia, anhydrous 560 280 140 7664-41-7 

shipment 30 
Los Alamos, NM to Baton Rouge, LA 
5/ 5/92 

DF L 2 p Bromine 45 23 11 7726-95-6 
DF L 9 p Nitric Acid, fuming 27 19 13 7697-37-2 

shipment 31 
Los Alamos, NM to Baton Rouge, LA 

8/ 4/92 
DF L 10 p Sulfuric Acid, fuming 23 16 11 7664-93-9 

shipment 32 
Los Alamos, NM to Baton Rouge. LA 

8/27/92 
DF L 25 p Titanium tetrachloride 3.7 2.6 1. 8 7550-45-0 

shipment 33 
Los Alamos, NM to Deer Park, TX 
10/30/91 
DM C 1 p Nitric Acid, fuming 27 19 13 7697-37-2 

shipment 34 
Los Alamos, NM to Deer Park, TX 

1/29/92 
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DF C 4 p Nitric Acid, fuming 27 19 13 7697-37-2 

shipment 35 
Los Alamos, NM to Deer Park, TX 

5/ 5/ 92 
DM L 1 p Acrolein, inhibited 19 13 6.6 107-02-8 
DF c 10 p Arsine 5.2 2.6 1.3 7784-42-1 
DM c 2 p Nitric Acid, fuming 27 19 13 7697-37-2 

shipment 36 
Los Alamos, NM to Deer Park, TX 

5/28/92 
CY c 5 p Carbon monoxide 560 280 140 630-08-0 
CY C 1 p Sul fur dioxide, liquefied 330 170 83 7446-09-5 

shipment 37 
Los Alamos, NM to Deer Park, TX 

6/25/92 
CY C 1 p Chlorine 27 19 14 7782-50-5 

shipment 38 
Los Alamos, NM to Deer Park, TX 

7/16/92 
CY c 10 p Carbon monoxide 560 280 140 630-08-0 
CY c 6 p Chlorine 27 19 14 7782-50-5 
DF c 1 p Nitric Acid, fuming 27 19 13 7697-37-2 
CY c 20 p Sulfur dioxide, liquefied 330 170 83 7446-09-5 

shipment 39 
Los Alamos, NM to Deer Park, TX 

8/ 4/ 92 
CY c 2 p Arsine 5.2 2.6 1.3 7784-42-1 
CY c 3 p Carbonyl fluoride 72 51 36 353-50-4 
CY c 2 p Phosgene 5.6 2.8 1. 4 75-44-5 
CY c 1 p Phosphine 4. 4 3.1 2.2 7803-51-2 
CY c 2 p Sulfuryl fluoride 400 280 200 2699-79-8 

shipment 40 
Los Alamos, NM to Deer Park , TX 

8/13/92 
CY C 2 p Chlorine 27 19 14 7782-50-5 

shipment 41 
Los Alamos, NM to Deer Park, TX 

9/24/92 
CY c 2 p Chlorine 27 19 14 7782-50-5 
CY c 4 p Hydrogen Sulfide 89 44 22 7783-06-4 
CY c 400 p Sulfur dioxide, liquefied 330 170 83 7446-09-5 

shipment 42 
Albuquerque, NM to El Dorado, AR 
10/ 8/ 91 
DF C 5 p Nitric Acid, fuming 27 19 13 7697-37-2 

shipment 43 
Albuquerque, NM to El Dorado, AR 

2/17/92 
DF L 10 p Methyl chloroformate 14 10 7 79-22-1 

shipment 44 
Albuquerque, NM to Fremont, CA 

4/ 21/ 92 
DF c 27 p Chlorine 27 19 14 7782-50-5 
DF c 24 p Hydrogen Sulfide 89 44 22 7783-06-4 
DM c 7 p Nitric oxide 350 250 170 10102-43-9 
DF c 47 p Nitrogen Dioxide 6 4.2 3 10102-44-0 

shipment 45 
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Albuquerque, NM to Baton Rouge, LA 
11/27/91 
CW C 25 P Nitric Acid, fuming 
DF L 25 P Phosphorus oxychloride 
CW L 
CW L 

25 P Sulfuric Acid, fuming 
25 P Thionyl chloride 

shipment 46 
Albuquerque, NM to Baton Rouge, LA 

1/13/92 
DF C 60 P Arsine 

shipment 47 
Albuquerque, NM to Baton Rouge, LA 

2/ 3/92 
DF L 4 P Methyl iodide 

shipment 48 
Albuquerque, NM to Baton Rouge, LA 

4/21/92 
7 P Allylamine DF L 

DF L 
DF C 

12 P Methyl vinyl ketone 
10 P Nitric Acid, fuming 

shipment 49 
Albuquerque, NM to Baton Rouge, LA 

5/26/92 
DF C 159 P Hydrogen Sulfide 
shipment 50 
Albuquerque, NM to Clarence, 

7/16/92 
CY C 3 P Hydrogen Sulfide 
CW C 68 P Nitric oxide 
CY C 10 P Nitrogen Dioxide 

shipment 51 

NY 

Albuquerque, NM to Deer Park, TX 
10/14/91 
DF L 5 P Thionyl chloride 

shipment 52 
Albuquerque, 

3/31/92 
NM to Deer Park, TX 

CY C 38 
CY C 3 

P Ammonia, anhydrous 
P Carbon monoxide 

CY C 
CY C 
CY C 
CY C 
CY C 
CY C 
CY C 
CY C 

1 P Chlorine 
P Methylamine, Anhydrous 

10 P Nickel carbonyl 
1 P Nitrosyl chloride 
3 P Silicon tetrafluoride 
2 P Sulfur dioxide, liquefied 
1 P Titanium tetrachloride 
3 P Tungsten hexafluoride 

shipment 53 
Albuquerque, NM to Deer Park, TX 

5/21/92 
CY C 30 P Ammonia, anhydrous 
CY C 3 P Boron trifluoride 
CY C 
CY C 
CY C 
CY C 
CY C 
CY C 
CY C 

15 P Carbon monoxide 
1 P Chlorine 

30 P Hydrogen Sulfide 
4 P Methylamine, Anhydrous 
3 P Phosphine 
6 P Silicon tetrafluoride 
2 P Sulfur dioxide, liquefied 

shipment 54 
Albuquerque, NM to Deer Park, TX 

7/22/92 
CW C 1 P Hydrogen Selenide 

27 
13 
23 

100 

5.2 

90 

110 
0. 7 9 

27 

89 

89 
350 

6 

100 

560 
560 

27 
540 
1. 4 

6 
6400 

330 
3.7 

12 

560 
16 

560 
27 
89 

540 
4. 4 

6400 
330 

0.17 

19 
9.1 
16 
71 

2.6 

63 

81 
0.56 

19 

44 

44 
250 
4.2 

71 

280 
280 

19 
380 

0.96 
4.2 

4500 
170 
2.6 

6 

280 
11 

280 
19 
44 

380 
3.1 

4500 
170 

13 7697-37-2 
6.4 10025-87-3 

11 
50 

1.3 

45 

57 
0.4 

13 

22 

22 
170 

3 

50 

140 
140 

14 
270 

0.48 
3 

3200 
83 

1. 8 
3 

140 
8 

140 
14 
22 

270 
2.2 

3200 
83 

7664-93-9 
7719-09-7 

7784-42-1 

74-88-4 

107-11-9 
78-94-4 

7697-37-2 

7783-06-4 

7783-06-4 
10102-43-9 
10102-44-0 

7719-09-7 

7664-41-7 
630-08-0 

7782-50-5 
74-89-5 

13463-39-3 
2696-92-6 
7783-61-1 
7446-09-5 
7550-45-0 
7783-82-6 

7664-41-7 
7637-07-2 

630-08-0 
7782-50-5 
7783-06-4 

74-89-5 
7803-51-2 
7783-61-1 
7446-09-5 

0.12 0.085 7783-07-5 
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shipment 55 
Albuquerque, NM to Deer Park, TX 

7/31/92 
CY c 190 p Carbon monoxide 560 280 140 630-08-0 
CY C 3 p Hydrogen Sulfide 89 44 22 7783-06-4 

shipment 56 
Albuquerque, NM to Deer Park, TX 

9/ 1/92 
CY C 12 p Ammonia, anhydrous 560 280 140 7664-41-7 
CY c 3 p Carbon monoxide 560 280 140 630-08-0 
CY c 5 p Hydrogen fluoride, anhydrous 24 17 8 7664-39-3 

shipment 57 
Amarillo, TX to Sauget, IL 

4/ 3/ 92 
DM L 900 G Sulfuric Acid, fuming 23 16 11 7664-93-9 

shipment 58 
Amarillo, TX to Carlyss, LA 

2/14/92 
DF L 5 G Thionyl chloride 100 71 50 7719-09-7 

shipment 59 
Richland, WA to El Dorado, AR 
11/19/91 
DM L 60 p Chlorine 27 19 14 7782-50-5 

shipment 60 
Richland, WA to El Dorado, AR 

4/29/92 
DM L 85 p Bromine or Bromine solutions 45 23 11 7726-95-6 
DM L 11 p Sulfur trioxide, inhibited 4.5 3.2 2.2 7446-11-9 

shipment 61 
Richland, WA to El Dorado, AR 

7/31/92 
DM L 10 p Dimethyl sulfate 3.5 2.5 1. 7 77-78-1 
CF L 20 p Sulfuric Acid, fuming 23 16 11 7664-93-9 
DM L 54 p Titanium tetrachloride 3.7 2.6 1. 8 7550-45-0 

shipment 62 
Richland, WA to El Dorado, AR 

8/20/ 92 
DM L 14 p Phosphorus Trichloride 20 14 10 7719-12-2 

shipment 63 
Richland, WA to El Dorado, AR 

9/23/92 
DM L 10 P Chloropicrin 3.9 2.8 2 76-06-2 
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APPENDIXB 

This section contains both a detailed and a summarized version of a sample 

HIGHWAY 3 .1 route prediction for traveling from Lawrence Livermore National 

Laboratory in Livermore, CA to Laidlaw Environmental Services in Greenbrier, TN. 

HIGHWAY 3.1 summary 

Po ulation Zone 

Rural 

Suburban 

Urban 

( < 139) 

(139-3326) 

> 3,326 

15.14 

884.99 

5639.674 

. Mile Miles Traveled 

2051.6 

215.7 

29.8 

HIGHWAY 3.1 Detailed Output Description 

Routes predicted by the HIGHWAY 3 .1 program are given by a series of latitude, 

longitude pairs followed by a distance from the previous latitude, longitude pair followed 

by a discrete distribution of miles traveled in each of twelve different population density 

categories. The column descriptions given below describe these categories. Note that 

latitude and longitude pairs are absolute values in the western hemisphere. 

Column 1 

Column 2 

Column 3 

Column 4 

Column 5 

Column 6 

degrees of latitude. 

degrees of longitude. 

distance in miles from the last latitude, longitude pair. 

miles traveled in an area with 0 people per square mile. 

miles traveled in an area with 0 - 5 people per square mile. 

miles traveled in an area with 5 - 22. 7 people per square mile. 

Column 7 miles traveled in an area with 22.7 - 59.7 people per square mile. 

Column 8 miles traveled in an area with 59.7 - 139 people per square mile. 

Column 9 miles traveled in an area with 139 - 326 people per square mile. 

Column 10 miles traveled in an area with 326 - 821 people per square mile. 

Column 11 miles traveled in an area with 821 - 1861 people per square mile. 

Column 12 miles traveled in an area with 1861 - 3326 people per square mile. 

Column 13 miles traveled in an area with 3326 - 5815 people per square mile. 

Column 14 miles traveled in an area with 5815 - 9996 people per square mile. 

Column 15 miles traveled in an area with > 9996 people per square mile. 
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HIGHWAY 3.1 detailed output 

86.717 36.350 1.9 0.0 0.0 0.0 0.0 0.1 0.3 0.9 0.6 0.0 0.0 0.0 0.0 

86.706 36.308 6.1 0.0 0.0 0.0 0.0 0.1 0.3 1.0 4.1 0.6 0.0 0.0 0.0 

86.751 36.246 2.1 0.0 0.0 0.0 0.0 0.0 0.1 0.5 0.9 0.3 0.3 0.0 0.0 

86.779 36.208 1.9 0.0 0.0 0.6 0.1 0.0 0.1 0.6 0.5 0.0 0.0 0.0 0.0 

86.781 36.189 1.9 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.3 1.0 0.2 0.2 0.0 

86.818 36.163 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.1 0.1 0.3 

86.835 36.157 24.7 0.0 3.3 3.1 0.9 4.4 6.6 1.7 1.7 1.7 0.8 0.5 0.0 

87.177 36.028 10.0 0.0 0.1 2.4 3.9 3.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 

87.337 36.019 9.0 2.9 0.3 1.0 1.8 0.8 1.2 1.0 0.0 0.0 0.0 0.0 0.0 

87.486 35.990 20.0 0.0 6.5 13.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

87.802 35.881 17.0 0.0 1.2 15.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

88.083 35.840 18.0 0.0 11.8 3.0 1.1 0.5 1.6 0.0 0.0 0.0 0.0 0.0 0.0 

88.392 35.787 21.0 0.0 1.2 5.3 10.8 3.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

88.744 35.682 4.9 0.0 0.3 1.8 0.4 1.2 0.1 0.5 0.6 0.0 o.o 0.0 0.0 

88.829 35.669 2.0 0.8 0.0 0.0 0.0 0.0 0.0 0.1 1.1 0.0 0.0 0.0 0.0 

88.856 35.664 1.0 0.2 0.0 0.0 o.o 0.0 0.1 0.3 0.4 0.0 o.o 0.0 0.0 

88.875 35.654 13.0 0.0 0.0 2.7 8.8 0.2 1.3 0.0 0.0 0.0 0.0 0.0 0.0 

89.093 35.586 9.9 0.0 1.2 3.0 5.7 0.0 0.0 0.0 0.0 0.0 o.o 0.0 0.0 

89.247 35.539 38.0 0.9 6.0 14.4 7.7 3.5 2.7 2.8 0.0 0.0 0.0 0.0 0.0 

89.772 35.204 7.9 0.2 0.0 0.1 0.2 0.6 0.5 0.9 3.8 0.6 1.0 0.0 0.0 

89.884 35.151 3.9 0.2 0.1 0.0 0.0 0.2 0.4 1.0 0.9 1.0 0.1 0.0 0.0 

89.928 35.189 4.9 0.7 0.0 0.1 0.1 0.7 0.4 0.8 1.5 0.6 0.0 0.0 0.0 

90.016 35.190 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.6 0.6 0.2 0.0 

90.020 35.159 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.8 0.1 0.0 

90.020 35.148 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.5 0.2 0.3 

90.040 35.150 0.9 0.3 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.2 0.2 0.0 

90.067 35.151 4.1 0.8 1.1 0.4 0.0 0.1 0.2 0.8 0.3 0.1 0.3 0.0 0.0 

90.149 35.153 2.9 0.7 0.2 0.0 0.0 0.0 0.1 0.1 0.4 0.9 0.5 0.0 0.0 

90.192 35.171 12.1 0.4 4.6 0.8 3.7 1.3 0.7 0.5 0.1 0.0 0.0 0.0 0.0 

90.401 35.149 23.9 1.1 8.0 12.9 0.7 0.5 0.2 0.2 0.3 0.0 o.o 0.0 0.0 

90.790 35.034 25.1 0.4 5.1 8.2 10.5 0.4 0.0 0.1 0.4 0.0 0.0 0.0 0.0 

91.195 34.911 23.1 9.3 11.1 1.2 0.1 0.2 0.8 0.4 0.0 0.0 0.0 0.0 0.0 

91.566 34.821 35.0 4.4 5.3 10.1 8.8 3.9 1.9 0.6 0.0 0.0 0.0 0.0 0.0 

92.167 34.782 4.1 0.1 0.0 0.4 0.9 0.8 0.4 0.5 0.9 0.1 0.0 0.0 0.0 

92.232 34.782 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.6 0.4 0.5 0.1 0.0 

92.262 34.778 6.1 0.2 0.0 0.7 0.6 0.4 1.2 1.0 0.6 1.2 0.2 0.0 0.0 

92.342 34.824 19.9 1.6 0.4 0.6 2.2 10.2 2.9 1.1 0.7 0.1 0.1 0.0 0.0 

92.433 35.092 2.1 0.0 0.0 0.0 0.0 0.0 0.4 0.4 0.3 0.8 0.2 0.0 0.0 

92.439 35.110 17.0 0.0 2.9 4.4 4.6 0.6 2.5 0.9 1.1 0.0 0.0 0.0 0.0 
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0.0 

0.0 

o.o 

0.0 

0.3 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.1 

0.0 

0.0 

0.0 

0.0 

o.o 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 
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APPENDIXC 

This appendix contains a mathematical proof of three statements made in Chapter 

4 on the deterministic method. The assertions made in that section are summarized in 

statements 1, 2 and 3 below. 

1. The probability that more than one accident might occur during the course of 

transportation for any one shipment of DOE generated hazardous waste is negligible. 

2. The probability of one accident occurring during the course of transportation of any 

one shipment of DOE generated hazardous waste in a specific population zone (rural, 

suburban, urban) is given as follows -

Let ARR , ARs and ARu denote the probability of an accident in any one mile of 

travel in a rural, suburban and urban population zone respectively, and let mR, ms 

and mu denote the mileage within the rural, suburban and urban population zone 

respectively . Then the probability that exactly 1 accident occurs, an it occurs 

within a 

a) rural population zone is given by 

mRx (1-ARR)(mR-l) x (1-ARs)ms x (1-ARu)mu x ARR 

b) suburban population zone is given by 

m (m -1) m 
ms x (I-ARR) R x (1-AR8 ) s x (1-ARu) u x ARs 

c) urban population zone is given by 

mux (1-ARR)mR x (1-ARs)ms x (1-ARu)(mu-l) x ARu 

3. The calculated risk associated with any one shipment is approximately the mean or 

expected value of the distribution of potential outcomes or consequences which may 
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result from transporting the shipment from its generation point to a prospective 

designated treatment/ disposal facility. 

C.1. The Probability of Multiple Accidents 

It is crucial to realize that the probability of more than one accident occurring 

during the course of transporting one shipment from its generation point to its treatment 

and/or disposal facility is negligible for the routes traveled in transporting the 63 

shipments of PIH hazardous wastes generated by the United States Department of 

Energy. 

There are 3 7 unique HIGHWAY predicted routes traveled in transporting the 63 

shipments of DOE generated hazardous waste listed in Appendix A All of these routes 

are less than 3,000 miles long and are more than 70% of each routes total mileage is 

comprised of rural mileage. The probability of an accident is the lowest in the rural 

population zone and the highest in the urban population zone. Therefore, the probability 

of more than one accident occurring while transporting any one of the 63 potentially life­

threatening shipments of hazardous waste listed in Appendix A is less than the 

probability of more than one accident occurring while transporting one shipment of 

hazardous waste across a 3,000 mile route comprised of all urban mileage. This latter 

probability will be developed and will be shown to be negligible in an intuitive sense. It 

is not clear how to define the term negligible mathematically, however, it seems to 

reasonable to treat probabilities ofless than 1.0E-4 as negligible. 

Now, let a route consists of 3,000 miles of urban mileage. Then the probability of 

an accident in any one of those 3,000 miles is equal to l.OIE-6, denoted AR, and the 

probability that an accident will not occur in any one of those 3,000 miles, denoted (1-

AR) is equal to 0.999999. 

If no accident occurs then no accident occurred in any of the 3,000 miles along 

the route and this event has probability (I-AR)3000 :::::: 0.996975. If one accident occurs 

then it either it happened at the first, second, third, ... ., or 3,000-th mile. It is assumed for 
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simplicity that if an accident occurs then the hazardous waste must still be shipped from 

the accident point to the designated treatment facility along the remainder of the route. If 

N is an integer in the interval [1, 3000], then the probability that exactly one accident 

happens at the N-th mile is given by 

(1-AR)N-I x 

FirstN-1 
miles safely 

travelled 

AR 
"'-.--' 

Accident 

(1- AR)2,999 x AR 

x (1- AR)3000-N 

Remaining miles 
safely travelled to 

desginated treatment 
facility 

, where AR= 1.0lE -6 

for every Nin [1, 2, ... , 3000] 

Furthermore, there are 3,000 different miles in which the accident can occur and 

the probability that exactly one accident occurs is then given by 3,000·(1-AR)2999-AR ~ 

0.002991. Furthermore, the three events of (1) no accident, (2) exactly one accident and 

(3) more than one accident are mutually exclusive and collectively exhaustive so that the 

probability of more than one accident is given by 

1-PR[O accidents] -PR[l accident] ~ 3.4E-5. 

It is helpful to view these three probabilities together in a table. Table C.1 

contains the probability of zero accidents, exactly one accident and multiple accidents 

occurring while transporting one shipment of hazardous waste across 3,000 miles of 

urban mileage. 

When examining the numbers in table C.1 it is important to realize that the 

probability of more than one accidents for this example is significantly higher than it is 

any one actual route. For the 37 unique HIGHWAY 3.1 predicted routes, all are less than 

3,000 miles in total length and over 70% of those miles in each route is comprised of 

rural miles only. Furthermore, the probability of an accident in any one mile within a 

rural area is less then the probability of an accident in any one mile of a urban area. In 

86 



other words if P multiple denotes the probability of more than one accident occurring along 

any one of the 37 unique HIGHWAY 3.1 predicted routes, then Pmultiple < 0.000034 < 

1. OE-4, thus P multiple is negligible. 

Table C 1 Probabilities of Number of Accidents Occurring Along a 3, OOO Mile Route 

Comprised of all Urban Mileage 

Event 

Zero Accidents 

Exactly One Accident 

More Than One Accident 

Probability of event 

0.996975 

0.002991 

0.000034 

It should also be noted that it is really a release we are interested in because no 

release means zero risk. Now given that the probability of more than one accident 

occurring is less than 3.4E-5 we also have, based upon the probability of a package 

freight release given an accident (0.082), that the probability of more than one release is 

less than 2.79E-6 = 3.4E-5 x 0.082. Therefore, not only is the probability of multiple 

accidents for one shipment occurring along a route negligible, but more importantly, the 

probability of multiple releases for one shipment along a route is negligible. 

C.2. The Probability of Exactly One Accident in a Specific Population Zone 

The probability of exactly one accident occurring along a route and occurring in a 

rural population zone, is now developed. The following notation will be (same notation 

used in statement 2 above). 

AR1 - Probability of an accident in any one mile of travel in the 1-th population 

zone, where I can be one of - Rural, Suburban or Urban. 

m1 - Number of miles along the route which are representative of the 1-th 

population zone, where I can be one of - Rural, Suburban or Urban. 
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Suppose exactly one truck accident occurs while transporting a shipment of 

hazardous waste. Furthermore, let this accident occur in a rural population zone. Now 

the route traveled is ordered from the generation point to the designated treatment and/or 

disposal facility as follows -

n 

where L(mRi + msi + muJ 
i=l 

· ' (mRn' ffisn' ffiun) 

This ordering listed above implies that the first mR1 miles traveled pass through a 

rural area, and the next m81 miles traveled pass through a suburban area, etc .. Note that 

this ordering of the miles traveled is general because some of the m1i may be zero, where 

I E (R, S, U) and i E (1, 2, ... , n). Now suppose that the at the i-th mile an accident 

occurs, where the i-th mile is one of the mRj miles. With this ordering defined it is clear 

that the probability of an accident occurring in a rural population zone at the i-th mile is 

given by 

IT[ (1-ARR)mRk x (1-ARs )ffisk x (1-ARu )mUk] x (1-ARR)m* 
k~I 

No accident occurs in the first ( i) miles. Note that since the i-th 
mile occurs within the one of the mRi' there is some number m* 
which represents the number of miles within the mR.i miles but 

prior to the i-th mile, in which no accident occurs. 
' n 

x 

~ 

Accident 
occurs at 
the i-th 

mile 

x (1-ARR)m x IT[ (1-ARR)mRk x (1-ARs)ffisk x (1-ARu )mUk] 
k~J+l 

No accident occurs after the i-th miles. Note that since the i-th 
mile occurs within the one of the mR, there is some number m' 
which represents the number of mil~s within the mRi miles but 

after the i-th mile, in which no accident occurs. 

The above expression looks somewhat complex. Basically this expression simply 

multiplies the probability of no accident occurring in the first i-1 miles, multiplied by the 

probability of an accident at the i-th mile, multiplied again by the probability of no 

accident occurring in any of the remaining miles which are traveled following the i-th 
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mile. Furthermore, due to the commutitivity of multiplication these terms can be 

rearranged and simplified so that the probability of exactly one accident happening at the 

i-th mile, given that the i-th mile is in a rural population zone, is given by Equation C.1. 

(Equation Cl) 

Note that Equation C.1 is independent of which particular rural mile is chosen. In 

other words, the probability of exactly one accident occurring in a rural area at the i-th 

mile, where the i-th mile is in a rural population zone, is the same for all rural miles. 

Furthermore, since there are a total of mR different miles in which this accident may 

happen, we have that the probability of exactly one accident occurring along the route, 

where this accident occurs in a rural area is given by Equation C.2. 

mR X (1-ARR)(mR-l) x (1-A.Rg)ms x (1-ARu)mu x ARR (Equation C2) 

ms x (1-ARR)(mR-l) x (1- ARs) ms x (1- ARu) mu x A.Rg (Equation C3) 

mu x (1-ARR)(mR-l) x (1-ARs)ms x (1-ARu )mu x ARu (Equation C 4) 

Equations C.3 and C.4 represent the probability of exactly one accident happening 

for the route traveled, where the accident occurs in a suburban and urban population zone 

respectively. No proof is given for Equations C.3 and C.4. The proof of rural case is 

easily applied to the suburban and urban cases. The theories used to develop the proofs 

of statements 1 and 2 can include mutual exclusion, stochastic independence and 

binomial distributions. These topics can be found in any undergraduate text on 

mathematical probability theory. 

C.3 Interpreting the Results of the Deterministic Method 

For each shipment the set of potential outcomes or consequences as a result of 

transportation is given by the set whose members are the three different consequences 
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(consequence of a release in each of the three generalized population zones) resulting 

from exactly one release occurring due to an accident plus the no release consequence. 

Note that this true because we are assuming no accident or only one accident occurs 

along the route because the probability of more than one accident occurring along a route 

is negligible. 

Furthermore, these four consequences will occur exactly when a release occurs in 

the associated population zone (insofar as the determinisitc method, in the probabilistic 

method there will be an infinite number of consequences recognized at each potential 

release location) or when no release occurs. Therefore, the probability of a release in a 

specified population zone (or the probability of no release) is exactly the probability of 

the associated consequence in that population zone (or thye no release consequence). In 

interpreting the results of the deterministic method, it will be important to keep in mind 

that that there are only four potential consequences which result from transporting a 

shipment of hazardous waste (insofar as the deterministic method), and that the 

probability of these four consequences (consequence of a release in a rural, suburban or 

urban population zone or no release) is given by the probability of a release in the 

associated population zone or the probability of no release. 

Therefore, the expected value or mean value of this distribution of four potential 

consequences is given by summing each of the four consequences multiplied by their 

respective probabilities. That is the mean value or expected value of the distribution of 

consequences (insofar as the deterministic calculations) is given by (Note that the 

following developement makes use of statements (1) and (2)): 
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Mean Value L( PRp [ CNSQP ] x CNSQP) + ( PR[No Release] x CNSQ) 
P=(rural, suburban, urban) 

L( PRp[ CNSQP] x CNSQp) + (PR[No Release] x o) 
P=(rural, suburban, urban) 

L( PRp[ CNSQp] x CNSQp) 
P=(rural, suburban, urban) 

~ L ( {MP x PRP[ Release J} x CNSQP ), 
P=(rural, suburban, urban) 

where M p denotes miles in the P - th population zone 

Nmiles 

L( PRJ Release ] x CNSQJ, 
1=! 

where the route travelled is N miles long 

= Shipment Risk 
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APPENDIXD 

The HMIRS database, discussed in Chapter 3, is constructed from DOT form 

5 800 .1. This Appendix contains a copy of that form which will provide the reader with a 

general awareness of the information available in the HMIRS database. 

DOT Form 5800.1 

DEPARTMENT OF TRANSPORTATION Form Approved OMB 

INSTRUCTIONS: Submit this report in duplicate to the Information System Manager, 

Materials Transportation, DHM-63, Research and Special Programs Administration, 

20590. 

tt-~dtt\R~HJe of incident 
(use military time, noon=l 200 Date: Time: 

4 Carrier name 5 Carrier address (Principal place of Business) 

6 List your OMC motor carrier census number, reporting rail road alphabetic code, merchant 

II 

7 Shipper name and address 8 Consignee name and address 

9 Origin address (if different from shipper address) 10 Destination address (if different from consignee 

address) 

18 Estimated quantity of 

hazardous material 

nee Ef the incident . 

Explosion 

1 5 Identification number 

19 Fatalities 20 Hospitalized 21 Non-

Injuries Hospitalized 

D. Decontamination 

Clean up 

B Material0 entered waterway 
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Van truck/trailer Flat bed 

Yes 

SPACE FOR DOT USE 

33 Number of packages of same type in 

34 Package specification identification 

39 If 
reco9.'d~a~K~l~fi ed B. Date of last test 

40 Exemption I approval I competent 

a1lure 42 Object causing failure 
A B A B A B 

Ca a a vehicle collision CO a a corrosion Ca a a other freight -a a a -a a a -a a a 
a. a a a vehicle overturn j. a a a metal fatigue a.a a a forklift 
b. a a a overloading/ k.a a a friction/ rubbing b.a a a nail/ protrusion 
c a a a overfilling la a a fire/ heat a a a other vehicle ·a a a ·a a a c.a a a 
d. a a a loose fitting, valve ma a a freezing d.a a a water/ other 

e. a a a defective fitting, n.a a a venting e.a a a liquid 
a a a a a a a a a 

d~ How packagecf~d M Package arem~~~ilffle d? What failed Ofb6.~kage 
A B struck / rammed A B material A B roadside obstacle h. D" a a q.jj a a h.a a a 

fa a a imaFo~re~oading ~a a a SPRl!/orward fa a a R8n~age material 
a. a a a ~rblocking a.a a a end, rear a.a a a afH~ I valve 
b. a a a burst/internal b.a a a side, right b.a a a closure 
c a a a pressure c.a a a side, left c a a a chime ·a a a 

ripped a a a ·a a a 
weld/ seam d. a a a d.a a a top d.a a a 

e. a a a crushed e. bottom e. a a hose 
f. rubbed/ abraded f. center f. 
g. ruptured g. other g. 
h. other h. h. 
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IX DESCRIPTION OF EVENTS: Describe the sequence of events that led to the incident, action taken at the 

time discovered, and action taken to prevent future incidents. Include any recommendations to improve 

packaging, or transportation of hazardous materials. Photographs and diagrams should be submitted when 

necessary for clarification. ATIACH A COPY OF THE HAZARDOUS WASTE MANIFEST FOR INCIDENTS INVOLVING 

HAZARDOUS WASTE, continue on additional sheets if necessary. 

46 Name of person responsible for preparing report 47 Signature 

48 Title of person responsible for preparing report 49 Telephone number 50 date report signed 

(include area code) 
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APPENDIXE 

This appendix contains a description of the algorithm used to construct a 

cumulative probability distribution of a continuous random variable based upon a 

population sample, additional details on the release fraction cumulative probability 

distributions given in Figures 3 .1 and 3 .2, and a few additional probabilities determined 

from the HMIRS database. 

E.1 Construction of a Cumulative Probability Distribution 

To illustrate the algorithm used to construct a cumulative probability distribution 

of a continuous random variable from a population sample, an example will be given 

rather than describing the algorithm explicitly. In particular, the pressurized cylinders 

data compiled from the HMIRS data will be used for this example to construct the 

cumulative probability distribution of percent of maximum capacity released from a 

cylinder, given that a release of hazardous materials from a cylinder occurs. 

Suppose X is a continuous random variable (X represents the percent of 

maximum physical capacity released or in other words the container release fraction), and 

that column 1 of Table E.1 contains a set of values (84 values to be exact) randomly 

sampled from the population of X (the sample containing all pressurized cylinder 

incidents occurring between 1985 and 1992 and entered into the HMIRS database given 

that the conditions in Table 3 .2 are satisfied). These sampled values are then sorted and 

numbered from 1 to 84. Table E.1 contains the sorted and numbered values. Column 1 

of Table E.1 contains the sorted values and column 2 contains the numbering. The third 

column contains a set of increasing values contained in the interval [O, 1]. These numbers 

have been computed by dividing column 2 by the sample size, 84. 

Consider the first value (the value with an entry of' 1' in column 2) in Table E.1. 

There is 1 out of 84 incidents having a release fraction (of maximum physical capacity) 

less than or equal to 2.8E-5. In other words, for this sample, the probability that a release 
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Table E.1 Pressurized Cylinder Release Fractions DerivedfromHMIRS Database 

Release% Release# Cumulative Prob. Release% Release# Cumulative Prob. 

0.000028 1 0.011905 0.03876 43 0.511905 

0.00022 2 0.02381 0.040064 44 0.52381 

0.0005 3 0.035714 0.0504 45 0.535714 

0.000539 4 0.047619 0.054054 46 0.547619 

0.000667 5 0.059524 0.060065 47 0.559524 

0.0007 6 0.071429 0.071429 48 0.571429 

0.000833 7 0.083333 0.077778 49 0.583333 

0.000833 8 0.095238 0.1 50 0.595238 

0.001236 9 0.107143 0.100128 51 0.607143 

0.00125 10 0.119048 0.111702 52 0.619048 

0.001418 11 0.130952 0.127226 53 0.630952 

0.001455 12 0.142857 0.133333 54 0.642857 

0.001481 13 0.154762 0.142857 55 0.654762 

0.002857 14 0.166667 0.142857 56 0.666667 

0.005 15 0.178571 0.15 57 0.678571 

0.005 16 0.190476 0.16129 58 0.690476 

0.006667 17 0.202381 0.166667 59 0.702381 

0.007143 18 0.214286 0.175 60 0.714286 

0.007576 19 0.22619 0.181818 61 0.72619 

0.008081 20 0.238095 0.249997 62 0.738095 

0.008264 21 0.25 0.292887 63 0.75 

0.01 22 0.261905 0.333333 64 0.761905 

0.010667 23 0.27381 0.3472 65 0.77381 

0.010965 24 0.285714 0.499969 66 0.785714 

0.014286 25 0.297619 0.5 67 0.797619 

0.014286 26 0.309524 0.5 68 0.809524 

0.015006 27 0.321429 0.532213 69 0.821429 

0.016667 28 0.333333 0.6 70 0.833333 

0.016667 29 0.345238 0.933333 71 0.845238 

0.02 30 0.357143 0.941176 72 0.857143 

0.02 31 0.369048 0.97619 73 0.869048 

0.020833 32 0.380952 1 74 0.880952 

0.023208 33 0.392857 1 75 0.892857 

0.025 34 0.404762 1 76 0.904762 

0.025 35 0.416667 1 77 0.916667 

0.025641 36 0.428571 1 78 0.928571 

0.026667 37 0.440476 1 79 0.940476 

0.026667 38 0.452381 1 80 0.952381 

0.028571 39 0.464286 1 81 0.964286 

0.03125 40 0.47619 1 82 0.97619 

0.035417 41 0.488095 1 83 0.988095 

0.038124 42 0.5 1 84 1 
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fraction of less than or equal to 2.85E-5 occurring as a result of damage to a pressurized 

cylinder containing hazardous waste is 1/84 ~ 1.19%. This probability may serve as an 

estimate to the population cumulative probability distribution (of release fraction of 

maximum physical capacity) function at 2.85E-5. 

Similarly, approximately 86.9% of the release fractions sampled were less than or 

equal to 0.976. Therefore, it is estimated that 0.869 is the probability that less than or 

equal to 97. 6% of the maximum capacity of a shipment of cylinders will be released. 

One problem with the data in table E.1 is that often, a certain release fraction may 

be repeated in the table. For example the 74-th and 84-th entries in the table, and all 

other entries between these two (75, 76, ... , 83), show a release fraction of 100% of the 

maximum physical capacity. In order to determine how to interpret this, the definition of 

cumulative probability must be reviewed. 

Suppose X is a random variable, and Z is a value which this variable may take on. 

Then the probability that X ~ Z is, by definition, the value of the cumulative probability 

distribution function evaluated at Z. Therefore, in the above example, there are actually 

84 incidents (not 74, 75, ... , or 83) which have a release fraction of maximum physical 

capacity of less than or equal to 1. Therefore, 84/84 = 1 will serve as the estimated value 

of the population cumulative probability distribution function at 1. This situation can be 

generalized by approximating the value of the population cumulative probability 

distribution function at a certain value by the largest probability given when the sample 

contains multiple instances of the same release fraction. Doing so to the data in Table 

E.1, results in the numerical representation of the pressurized cylinder release fraction 

cumulative probability distribution given in Table E.2 

The data in Table E.2 is given graphically in Figure 3.1. Note that, to obtain 

cumulative probabilities for a release fraction not explicitly given in Table E.2, a linear 

interpolation is required between the nearest two release fractions. The graph of the 

cumulative probability distribution has been drawn by connecting straight lines between 
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points given in the Table E.2. This is equivalent to linearly interpolating intermediate 

values. 

Table E.2 Cumulative Probability Distribution Function of Fraction of Maximum 

Capacity Releasedfrom Packaf(e Freif(ht Pressurized Cylinders. 
Release Cumulative Release Cumulative Release Cumulative Release Cumulative 
Fraction Probability Fraction Probability Fraction Probability Fraction Probability 
2.80E-05 1.19E-02 l.43E-01 6.67E-Ol 3.13E-02 4.76E-01 l.61E-Ol 6.90E-Ol 

2.20E-04 2.38E-02 8.08E-03 2.38E-01 3.54E-02 4.88E-01 1.67E-Ol 7.02E-01 

5.00E-04 3.57E-02 8.26E-03 2.50E-01 3.81E-02 5.00E-01 l.75E-01 7.14E-01 

5.39E-04 4.76E-02 l.OOE-02 2.62E-01 3.88E-02 5.12E-01 l.82E-Ol 7.26E-01 

6.67E-04 5.95E-02 l.07E-02 2.74E-Ol 4.0lE-02 5.24E-Ol 2.50E-01 7.38E-Ol 

7.00E-04 7.14E-02 l.lOE-02 2.86E-01 5.04E-02 5.36E-01 2.93E-Ol 7.50E-Ol 

8.33E-04 9.52E-02 l.43E-02 3.lOE-01 5.41E-02 5.48E-01 3.33E-Ol 7.62E-Ol 

l.24E-03 1.07E-Ol l.50E-02 3.21E-Ol 6.0lE-02 5.60E-01 3.47E-Ol 7.74E-01 

l.25E-03 l.19E-01 l.67E-02 3.45E-Ol 7.14E-02 5.71E-01 5.00E-01 7.86E-01 

l.42E-03 l.3 lE-01 2.00E-02 3.69E-01 7.78E-02 5.83E-01 5.00E-01 8.lOE-01 

l.46E-03 1.43E-01 2.08E-02 3.81E-01 l.OOE-01 5.95E-01 5.32E-01 8.21E-01 

l.48E-03 l.55E-01 2.32E-02 3.93E-01 l.OOE-01 6.07E-01 6.00E-01 8.33E-01 

2.86E-03 l.67E-01 2.50E-02 4.17E-01 l.12E-01 6.19E-01 9.33E-01 8.45E-01 

5.00E-03 l.90E-Ol 2.56E-02 4.29E-Ol l.27E-01 6.31E-Ol 9.41E-01 8.57E-01 

6.67E-03 2.02E-01 2.67E-02 4.52E-01 l.33E-01 6.43E-01 9.76E-Ol 8.69E-Ol 

7.14E-03 2.14E-01 2.86E-02 4.64E-01 l.50E-01 6.79E-01 l.OOE+OO l.OOE+OO 

7.58E-03 2.26E-01 

E.2 Uncertainty in Analyzing Release Fractions of DOE Shipments 

The release fraction cumulative probability distributions are delineated by 

container type, where the container categories recognized include small and large drums, 

pressurized cylinders, bulk pressurized containers and bulk non-pressurized containers 

(see Table 3.5 for a description of these categories). This delineation has been made by 

container category because it is believed to be the most dominant factor affecting the 

behavior of the release fraction random variable. However, it must be noted that not all 

drums are packaged the same, not all cylinders are packaged the same, and most 

certainly, there is a range of quality of construction within each of the container 

categories. For example, paint related materials and fuming sulfuric acid can both be 

packaged in 55 gallon drums. Because of the hazard presented by fuming sulfuric acid, 

thick absorbent overpacks may be placed around the drum. Furthermore, the drum 

containing the fuming sulfuric acid may have all welded seams whereas the drum used to 
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package the paint related materials may be constructed with a plastic receptacle. The 

likelihood of a damaged receptacle resulting in a release should be much higher than the 

likelihood of a puncture to the drum with all welded seems. Many of the incidents used 

to construct these distributions concern releases of chemicals presenting a low level of 

hazard which have been generated by an agency not affiliated with DOE. The 

packagings used may not perform in an accident as well as the DOE packagings due to 

the requirements for packaging the DOE hazardous wastes which have the potential to 

cause more severe human health and environmental damages. As a result, the cumulative 

probability distributions of release fractions may be conservative in that cumulative 

probabilities may be overestimated. 

Tables E.3 show the ten most frequent chemicals used in the construction of the 

pressurized cylinder release fraction cumulative probability distribution. Notice that one 

of the most frequent hazardous wastes represented in the table includes compressed 

oxygen, which probably does not pose either a great human health hazard or 

environmental hazard. Furthermore, the packaging requirements for compressed oxygen 

are less stringent than for any of the DOE generated hazardous wastes listed in Appendix 

A. As a result, the cylinders used to package the compressed oxygen may have plastic 

receptacles instead of all welded seams or less protective overpacks than those used by 

the DOE to contain their cylinder packagings. Subsequently, the cumulative probability 

distribution of release fractions from pressurized cylinders may be conservative in that 

probabilities are overestimated. 

Similar tables have also been provided for each of the other four cumulative 

probability distributions shown in Figures 3.1 and 3.2 (small drums, large drums, bulk 

pressurized and bulk non-pressurized). In each of those tables (Tables E.4 thru E. 7) there 

are chemicals which present a lower level of hazard to human health and potential 

environmental damage than does the DOE generated hazardous wastes. 
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Table E.3 lOMost Frequent Hazardous Liquid or Gas Chemicals Releasedfrom 

Pressurized Cylinders as a Result of a Truck Accident 

(Based upon the records of the HMIRS Database) 

Chemical Name Frequency Chemical Name Frequency 
Acetylene dissolved 6 Fire extinguishers 5 

Aerosol product 6 Hydrochloric acid anhydr 5 
Nitrogen refrigerated liq 6 Liquefied petroleum gas 5 
Oxygen compressed 6 Helium compressed 4 
Boron trichloride 5 Oxygen refrigerated liq 4 

Table E.4 10 Most Frequent Hazardous Liquid or Gas Chemicals Released from 

Large Drums (> 20 Gallons in Capacity) as a Result of a Truck Accident 

(Based upon the records of the HMIRS Database) 

Chemical Name Frequency Chemical Name Frequency 
Stain 794 Alkaline liquid n.o.s. 212 
Flammable liquids n.o.s. 550 Paint related material 180 
Corrosive liquids n.o.s. 549 Adhesives 131 
Resin solution 537 Ink printers flammable 122 
Compound cleaning liquid 390 Poisonous liquids n.o.s. 106 

Table E.5 10 Most Frequent Hazardous Liquid or Gas Chemicals Released from 

Small Drums (s 20 Gallons in Capacity) as a Result of a Truck Accident 

(Based upon the records of the HMIRS Database) 

Chemical Name Frequency Chemical Name Frequency 
Compound cleaning liquid 151 Ink printers flammable 81 
Flammable liquids n.o.s. 128 Liquid Cement 68 
Adhesives 124 Coating solution 45 
Corrosive liquids n.o.s. 120 Spirits of salt 43 
Resin solution 105 Alkaline liquid n.o.s. 39 

Table E. 6 10 Most Frequent Hazardous Liquid or Gas Chemicals Released from 

Bulk Pressurized Containers as a Result of a Truck Accident 

(Based upon the records of the HMIRS Database) 

Chemical Name Frequency Chemical Name Frequency 
Hydrogen refrigerated liq 23 Chlorine 1 
Hydrogen compressed 5 Helium refrigerated liq 1 
Hydrochloric acid anhydr 2 Hydrogen sulfide 1 
Hydrogen chloride ref liq 2 Nitrogen refrigerated liq 1 
Aerosol product 1 Resin solution 1 
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Table E. 7 10 Most Frequent Hazardous Liquid or Gas Chemicals Released from 

Non-Pressurized Bulk Containers as a Result of a Truck Accident 

(Based upon the records of the HMIRS Database) 

Chemical Name Frequency Chemical Name Frequency 
Case oil 424 Corrosive liquids n.o.s. 92 
Diesel fuel 278 Hydrogen sulfate 82 
Flammable liquids n.o.s. 114 Spirits of salt 67 
Combustible liquid n.o.s. 109 Caustic soda solution 65 
Petroleum crude oil 106 Petroleum naphtha 47 

E.3 Risks Associated with Fire or Water Immersion Resulting from a Release 

The basic concept behind the deterministic risk model presented in Chapter 4 is to 

compute risk as the sum of the products of the probabilities of an outcome multiplied by 

the corresponding outcome for each potential outcome. For the application presented in 

this thesis, the deterministic model was used to calculate shipment risks, which were then 

summed to determine the annual risks. The shipment risks, were computed by summing 

the products of the probability of a release at any one mile multiplied by the consequence 

(number of potentially life-threatening health effects) of that release. Future extensions 

of this work will include analysis of risks imposed by fire and chemical reactions 

occurring as a result of water immersion of the hazardous wastes released. 

In order to implement these extensions using the deterministic model, the risk 

formula given in Equation 4.1 would be adapted to the following -

RISK= LL(ARP xPR8 x PC) x(EA8 x PDP) 
s p 

JJ JJ (Equation E.1) 

water immersion or ~ Consequence { 
Probability of a } r } 

fire, given a release l 
The four terms ARP (probability of an accident), PRs (probability of a release 

given an accident), EAs (exposed area - mile2) and PDP (population density -

people/mile2) are the same as they are given in Equation 4.1. However, there is an 
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additional term, PC. PC is the probability of the additional consequence under 

consideration given a release. 

If interested in computing the risks resulting from fire than PC should be filled by 

the probability of a fire given that a release occurs. Furthermore, a model other than 

CASRAM (see section 4.4) would have to be used to determine the exposed area as 

CASRAM does not account for fires. 

In computing the risk resulting from the hazardous waste being submersed in 

water, PC represents the probability that an immersion of the waste occurs given that a 

release occurs. Furthermore, either a model other than CASRAM would have to be used 

or to compute the exposed areas, as CASRAM does not account for reactivity with water, 

or the stoicheometry can be done by hand, determining what reactives to use as input to 

CASRAM. 

In either case, risks associated with fire or water immersion resulting from the 

release of hazardous waste due to a truck accident, the probability of a fire given a release 

and the probability of a water immersion given a release need to be determined. These 

values can be approximated by taking the fraction of releases resulting in fire (or water 

immersion) divided by the total number of releases. These values are given below in 

Table E.8. 

Numbers in Table E.8 are based upon 1989 to 1992 records of the HMIRS 

database. During the years of 1985 to 1988 the fire and water immersion fields are often 

left blank. It could be assumed when left blank, neither happened. However, the 1989 to 

1992 records are also marked as true or false with regard to the fire and water immersion 

fields. As a result, this data is believed to be more accurate by leaving out the 1985 to 

1988 data. 
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Table E.8 Probabilities and Accident Counts Involving Fire and Water Immersion 

Consequence of Release Number oflncidents Probability of consequence 

given a release occurs 

Fire 154 0.0173 

Hazardous Waste Immersed in H20 90 0.0101 

Other (possibly no consequence) 8652 0.9726 

Total 8,896 1.000 
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APPENDIXF 

This appendix contains the results of the deterministic calculations. The route 

summary, exposed area and risk associated with each of the 63 potentially life­

threatening shipments of DOE generated hazardous waste listed in Appendix A, is given 

below. Following these individual shipment data, the total annual risk is given (the sum 

of the shipment risks). 

It is worth noting that for 32 of the 63 shipments (approximately 1/2), there is 

zero risk. This is a result of the assumption that there are no human inhabitants within 

100 feet of the road. Therefore, those 32 zero risk shipments all had an assoicated 

exposed area of less than or equal to 100 feet. 

Therefore less than half the shipments account for all the risk 1.74E-4). 

Furthermore, the top seven risk producing shipments (3, 8, 12, 23, 26, 46, 50) account for 

approximately 86% of the total annual risk (1.189E-4), and the top 2 (12, 23) account for 

approximately 68% of the total annual risk (1.49E-4). 

Shipment 1 Shipment 33 

Route 1 Route 19 

Miles People /Mi.2 Miles People I Mi.2 

Rural l.76E+o3 1.17E+Ol Rural 7.65E+02 l.33E+Ol 

Suburban l.57E+02 9.48E+o2 Suburban l.45E+02 1.09E+03 

Urban 1.89E+ol 5.66E+03 Urban l.66E+Ol 5.44E+o3 

Area(km2) O.OOE+OO Area(km:z) O.OOE+OO 

Shipment2 Shipment34 

Route 1 Route 19 

Miles People /Mi.2 Miles People I Mi.2 

Rural 1.76E+03 l.17E+ol Rural 7.65E+02 l.33E+Ol 
Suburban l.57E+02 9.48E+02 Suburban 1.45E+02 1.09E+03 

Urban 1.89E+Ol 5.66E+03 Urban l.66E+Ol 5.44E+03 

Area(km2) O.OOE+OO Area(km2) O.OOE+oO 

104 



L 

Shipment3 
Route 2 

Rural 
Suburban 
Urban 
Area(km") 

Shipment4 
Route 2 

Miles 
2.83E+ol 
1.79E+ol 
1.83E+ol 
6.24E-04 

Miles 
Rural 2.83E+ol 
Suburban 1. 79E +o 1 
Urban 1.83E+ol 
Area (km") 2.14E-04 

&llllllii:llll1ll\1t\llll!i:i•lllll:llll.I 

Shipments 
Route 2 

Rural 

Miles 

2.83E+ol 

People I Mi.2 
2.76E+ol 
l.21E+o3 
7.40E+o3 

People I Mi.2 
2.76E+ol 
l.21E+o3 
7.40E+o3 

People I Mi.2 
2.76E+ol 

Suburban l.79E+ol l.21E+o3 
Urban l.83E+ol 7.40E+o3 
Area (km2) O.OOE+oO 

lla!!lJ~'.il\1\\lf;!tlil•iffltZ:'.:···:a 

Shipment6 
Route 2 

Rural 
Suburban 
Urban 
Area(km") 

Shipment7 
Route 2 

Rural 
Suburban 
Urban 
Area(km2) 

Miles 

2.83E+ol 
1.79E+ol 
1.83E+ol 

O.OOE+oO 

Miles 
2.83E+ol 
1.79E+ol 
1.83E+ol 

O.OOE+oO 

People I Mi.2 

2.76E+ol 
l.21E+o3 
7.40E+o3 

People I Mi.2 

2.76E+ol 
l.21E+o3 
7.40E+o3 

Shipment35 
Route 19 

Miles 
Rural 7.65E+o2 
Suburban l.45E+o2 
Urban l.66E+ol 

Shipment36 
Route 19 

Rural 
Suburban 
Urban 

Miles 

7.65E+02 
1.45E+02 
l.66E+Ol 
7.20E-07 

• .. '..1_•·.·.·.··.·_;_._· .. ···,~-~~-kk.· .. •• •. ·.: .•. ·.··-~-·•.:•.,.;;_.•.I,_i_i_.•.i.!_i.i_.,t,t.i_•.i .• ,•• .•. •.1 .•. ••,t.L_t_.·.~_;_;,i_;_._'..1.. II4bm081 
·~ • .-~n. '•.w. '~}. • . ~ • .:-..~ .' Yh:O:-'.· ;:;:;:;:;:;:;:;:;:;:~;:;:;:;:;:;:;:~;:;:;:~;:;:;:;:;:=jfM::~;: 

Shipment37 
Route 19 

Rural 

Miles 

7.65E+o2 

People I Mi.2 
l.33E+Ol 
l.09E+o3 
5.44E+o3 

People I Mi.2 
l.33E+Ol 
1.09E+o3 
5.44E+o3 

People I Mi.2 

l.33E+Ol 
Suburban 1.45E+o2 1.09E+03 
Urban l.66E+Ol 5.44E+03 
Area (km") l.03E-06 

!llil· .. i::. !!.li11l~~1··11~•1111: 

Shipment38 
Route 19 

Rural 
Suburban 

Miles 
7.65E+o2 
l.45E+o2 

People I Mi.2 

l.33E+ol 
l.09E+03 

Urban l.66E+Ol 5.44E+03 
Area (km") 9.35E-06 

:11·1J 1\111111 111111111 

Shipment39 
Route 19 

Rural 
Suburban 
Urban 
Area(km•) 

Miles 
7.65E+02 
l.45E+02 
1.66E+ol 

3.18E-05 

People I Mi.2 

l.33E+ol 
l.09E+o3 
5.44E+03 
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Shipment8 Shipment40 
Route 4 Route 19 

Miles People I Mi.2 Miles People I Mi.2 

Rural 2.05E+03 l.51E+Ol Rural 7.65E+02 l.33E+Ol 

Suburban 2.16E+02 8.85E+02 Suburban 1.45E+02 1.09E+o3 

Urban 2.98E+Ol 5.64E+03 Urban 1.66E+Ol 5.44E+o3 

Area(km2) l.67E-04 Area(kmL) 2.06E-06 

Shipment 9 Shipment41 

Route4 Route 19 

Miles People I Mi.2 Miles People I Mi.2 

Rural 2.05E+03 l.51E+Ol Rural 7.65E+02 l.33E+Ol 

Suburban 2.16E+o2 8.85E+02 Suburban l.45E+02 l.09E+03 

Urban 2.98E+Ol 5.64E+03 Urban l.66E+Ol 5.44E+03 

Area (km2) O.OOE+oO Area(kmL) 4.26E-05 

Shipment 10 Shipment42 

Route 5 Route 21 

Miles People I Mi.2 Miles People I Mi.2 

Rural l.62E+o3 l.16E+Ol Rural 7.64E+o2 l.36E+Ol 

Suburban l.94E+02 1.22E+03 Suburban 1.08E+o2 l.OOE+o3 

Urban 8.66E+ol 6.57E+o3 Urban l.02E+Ol 5.85E+03 
Area(kmL) O.OOE+oO Area (kmL) O.OOE+OO 

Shipment 11 Shipment43 
Route 5 Route 21 

Miles People I Mi.2 Miles People I Mi.2 

Rural l.62E+o3 1.16E+ol Rural 7.64E+02 l.36E+Ol 

Suburban 1.94E+02 1.22E+03 Suburban l.08E+o2 l.OOE+03 

Urban 8.66E+Ol 6.57E+03 Urban l.02E+Ol 5.85E+03 

Area(km2) 5.53E-06 Area(km2) O.OOE+OO 

Shipment 12 Shipment44 
Route 5 Route 22 

Miles People I Mi.2 Miles People I Mi.2 

Rural l.62E+03 1.16E+Ol Rural l.01E+o3 l.06E+ol 
Suburban l.94E+o2 l.22E+03 Suburban 5.21E+Ol 8.61E+02 
Urban 8.66E+Ol 6.57E+03 Urban 1.04E+Ol 5.55E+03 

Area (km') 5.48E-04 Area(km') 4.02E-04 

106 



Shipment 13 
Route 5 

Rural 
Suburban 
Ulban 
Area(km") 

Shipment 14 
Route 8 

Miles 
1.62E+03 
1.94E+o2 
8.66E+ol 
9.29E-08 

Miles 
Rural 1.68E+o3 
Suburban 2. 92E +o2 
Ulban 4.19E+ol 
Area (km") 7.76E-06 

lll!!!ll:'i!! ! .!!i:fflllill 

Shipment 15 
Route 8 

Rural 
Suburban 
Urban 
Area(km2) 

Shipment 16 
Route7 

Rural 
Suburban 
Ulban 
Area(kmz) 

Shipment 17 
Route7 

Rural 
Suburban 
Ulban 
Area(km") 

Miles 
l.68E+o3 
2.92E+o2 
4.19E+ol 

O.OOE+oO 

Miles 

l.51E+o3 
l.57E+o2 
1.50E+Ol 

O.OOE+oO 

Miles 
1.51E+o3 
l.57E+o2 
1.50E+ol 
4.29E-05 

People I Mi.2 
1.16E+ol 
l.22E+o3 
6.57E+o3 

People I Mi.2 
l.81E+ol 
7.79E+o2 
5.70E+03 

People I Mi.2 
l.81E+ol 
7.79E+o2 
5.70E+03 

People I Mi.2 
l.35E+ol 
8.23E+02 
5.22E+o3 

People I Mi.2 

l.35E+ol 
8.23E+02 
5.22E+03 

Shipment45 
Route23 

Rural 
Miles 

9.04E+o2 
People I Mi.2 

l.78E+ol 
Suburban l.31E+02 9.83E+o2 
Ulban 2.86E+ol 5.50E+o3 
Area (km") O.OOE+OO 

:;~ mm DL]I J 

Shipment46 
Route23 

Rural 
Suburban 

Miles 
9.04E+o2 
l.31E+o2 

Ulban 2.86E+ol 
Area (km") 3.06E-04 

.111t111rJf~1111111i1111~111111111~1~11111i~~i~i 

Shipment47 
Route23 

Miles 
Rural 9.04E+o2 
Suburban l.31E+o2 
Ulban 2.86E+ol 

Area (km2) O.OOE+oO 

111t111r111r1r11111;1r1r11•mi11 

Shipment48 
Route23 

Rural 
Suburban 
Ulban 

Miles 
9.04E+o2 
l.31E+o2 
2.86E+ol 

Area (km2) O.OOE+OO 

lllllllllll1lri•llli11,! 

Shipment49 
Route 23 

Miles 
Rural 9.04E+o2 
Suburban l.31E+o2 
Ulban 2.86E+ol 
Area(km2) l.07E-04 

People I Mi.2 
l.78E+ol 
9.83E+o2 
5.50E+o3 

People I Mi.2 
l.78E+Ol 
9.83E+o2 
5.50E+o3 

People I Mi.2 
1.78E+Ol 
9.83E+o2 
5.50E+o3 

People I Mi.2 
l.78E+Ol 
9.83E+o2 
5.50E+o3 
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Shipment 18 
Route 8 

Miles 

Rural 1.68E+-03 

Suburban 2.92E+-02 

Urban 4.19E+-Ol 

Area (km") 8.37E-05 

I: :+~!;i~ll!i!i!i!il!!l!llillrlDB! 

Shipment 19 

Route 9 

Rural 
Suburban 

Urban 

Area(km") 

Shipment20 

Route 11 

Rural 
Suburban 

Urban 

Area(km2) 

Shipment21 

Route 11 

Miles 

6.56E+-02 
9.05E+-Ol 
l.OlE+-01 

O.OOE+-00 

Miles 

3.31E+-02 
1.92E+-02 
3.50E+-Ol 

O.OOE+-00 

Miles 

Rural 3 .3 lE +-02 

Suburban l.92E+-02 

Urban 3.50E+-Ol 

Shipment22 

Route 11 

Rural 

Suburban 
Urban 

Miles 

3.31E+-02 

1.92E+02 
3.50E+Ol 

O.OOE+-00 

lllllf,l?~~~~\llil11l llllllBBli 

People I Mi.2 

l.81E+-Ol 
7.79E+-02 
5.70E+-03 

People I Mi.2 

2.16E+-Ol 

8.36E+-02 
6.28E+-03 

People I Mi.2 

4.87E+-Ol 
8.43E+-02 

5.92E+-03 

People I Mi.2 

4.87E+-Ol 

8.43E+-02 
5.92E+-03 

People I Mi.2 

4.87E+-Ol 
8.43E+02 

5.92E+-03 

Shipment50 
Route24 

Rural 
Suburban 
Urban 

Shipment51 
Route 25 

Rural 

Suburban 
Urban 

Area(km") 

Shipment52 

Route 25 

Miles 

People I Mi.2 

Shipment53 

Route 25 

Miles 

People I Mi.2 

Shipment54 

Route 25 

Miles 

l.40E+03 
3.51E+-02 
5.20E+-Ol 

Miles 

7.37E+-02 
l.40E+-02 
2.12E+-Ol 

O.OOE+-00 

Rural 

7.37E+02 

l.30E+-Ol 

l.67E-05 

Rural 

7.37E+-02 

l.30E+Ol 

7.60E-05 

Rural 

Miles 7.37E+-02 
People I Mi.2 l.30E+-Ol 

Area (km2) l.48E-04 

lllli'fl"liiiiiiiiiii'1il!~l1i,lilt••11 

People I Mi.2 

2.74E+-Ol 
7.88E+-02 
6.04E+-03 

People I Mi.2 

l.30E+Ol 
l.12E+-03 
5.79E+-03 

Suburban 

1.40E+02 

l.12E+03 

Suburban 

l.40E+-02 

l.12E+-03 

Suburban 

l.40E+-02 
1.12E+-03 
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Shipment23 Shipment 55 
Route 11 Route 25 

Miles People I Mi.2 Rural Suburban 

Rural 3.31E+o2 4.87E+Ol Miles 7.37E+o2 l.40E+02 
Suburban l.92E+02 8.43E+02 People I Mi.2 l.30E+Ol l.12E+o3 
Urban 3.50E+ol 5.92E+o3 

Area(km2) 2.76E-03 Area(km2) 2.61E-05 

Shipment24 Shipment56 
Route 14 Route 25 

Miles People I Mi.2 Rural Suburban 

Rural 9.01E+02 2.43E+Ol Miles 7.37E+02 l.40E+02 
Suburban l.76E+o2 8.68E+o2 People I Mi.2 l.30E+Ol 1.12E+03 
Urban l.96E+Ol 5.76E+03 

Area(km2) 5.73E-05 Area(km2) 2.36E-05 

Shipment25 Shipment57 
Route 16 Route 34 

Miles People I Mi.2 Miles People I Mi.2 

Rural 5.52E+02 2.33E+ol Rural 6.28E+02 2.39E+Ol 
Suburban l.45E+o2 l.11E+o3 Suburban l.17E+02 8.17E+02 
Urban 3.42E+Ol 5.55E+03 Urban 2.lOE+Ol 6.27E+03 
Area(km') 7.52E-06 Area (km2 ) O.OOE+OO 

Shipment26 Shipment 58 
Route 16 Route 35 

Miles People I Mi.2 Miles People I Mi.2 

Rural 5.52E+o2 2.33E+Ol Rural 5.40E+02 2.06E+Ol 
Suburban l.45E+02 1.11E+03 Suburban 1.18E+02 l.08E+03 
Urban 3.42E+ol 5.55E+o3 Urban 2.23E+Ol 5.19E+03 

Area(km2) l.96E-04 Area(km2) O.OOE+OO 

Shipment27 Shipment 59 
Route 18 Route 36 

Miles People I Mi.2 Miles People I Mi.2 

Rural 9.32E+02 l.79E+Ol Rural l.95E+03 l.41E+ol 
Suburban 1.35E+02 9.58E+02 Suburban 2.14E+02 8.67E+o2 
Urban 2.40E+ol 5.20E+o3 Urban 2.12E+Ol 5.33E+03 
Area(km2 ) O.OOE+oO Area(km2 ) 1.82E-05 

109 



L 

Shipment28 
Route 18 

Miles 
Rural 9.32E+o2 
Suburban l.35E+o2 
Urban 2.40E+ol 
Area (km') O.OOE+oO 

Ill !!!!!!!!!!!!!!!!!!flJfifJjl~!lfJf~J~liBll1~1! 

Shipment29 
Route 18 

Rural 
Suburban 
Urban 
Area(km") 

Shipment30 
Route 18 

Rural 
Suburban 
Urban 
Area(km2) 

Shipment31 
Route 18 

Rural 
Suburban 
Urban 
Area(kmz) 

Shipment32 
Route 18 

Miles 
9.32E+o2 
l.35E+02 
2.40E+ol 

1.25E-05 

Miles 
9.32E+02 
1.35E+o2 
2.40E+ol 

O.OOE+oO 

Miles 
9.32E+o2 
1.35E+o2 
2.40E+ol 
O.OOE+oO 

Miles 
9.32E+o2 

People I Mi.2 
l.79E+Ol 
9.58E+o2 
5.20E+o3 

People I Mi.2 
l.79E+ol 
9.58E+02 
5.20E+03 

People I Mi.2 

l.79E+ol 
9.58E+o2 
5.20E+o3 

People I Mi.2 
1.79E+ol 
9.58E+o2 
5.20E+o3 

People I Mi.2 
1.79E+ol Rural 

Suburban 

Urban 

1.35E+o2 9.58E+o2 

2.40E+ol 5.20E+o3 
Area (km") O.OOE+oO 

:a11ttttJ111111!!,,~ 111111111t1:t:11i1 

Shipment60 
Route 36 

Rural 
Suburban 
Urban 
Area(km") 

Shipment61 
Route 36 

Miles 
1.95E+o3 
2.14E+02 
2.12E+Ol 

O.OOE+oO 

Miles 
Rural l.95E+03 
Suburban 2.14E+o2 
Urban 2.12E+ol 
Area (km") O.OOE+oO 

!lllt\!tl!!l!!!!I~! ::::1::1~flill9~-

Shipment62 
Route 36 

Miles 

Rural l.95E+o3 
Suburban 2.14E+o2 
Urban 2.12E +O 1 
Area (kmz) O.OOE+OO 

!1111!!1\m! llllililf!}~~-l~,::1,:1;.1 

Shipment63 
Route 36 

Rural 
Miles 

1.95E+03 

People I Mi.2 
l.41E+ol 
8.67E+02 
5.33E+03 

People I Mi.2 
1.41E+Ol 
8.67E+o2 
5.33E+o3 

People I Mi.2 

l.41E+ol 
8.67E+02 
5.33E+o3 

People I Mi.2 
l.41E+ol 

Suburban 2.14E+02 8.67E+02 
Urban 2.12E+Ol 5.33E+03 
Area (kmz) O.OOE+OO 

!111.11!1!!1111 11.a! 

TOTAL ANNUAL RISK= 1. 74E-4 
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APPENDIXG 

Monte Carlo methods have applications in both integration and simulation. This 

appendix will provide the reader with some general background information on Monte 

Carlo methods of simulation along with some additional details on the application of 

Monte Carlo methods in this thesis. 

G.1. Monte Carlo Simulation 

Suppose Y = G(Xi, X2, ... , Xn), where all of the Xi are mutually and stochastically 

independent random variables whose probability density functions are known. Then Y is 

also a random variable. Traditionally, analytical methods such as the change-of-variable 

or moment-generating-function technique are employed to determine the probability 

density function of Y. Often, the function G is very complex making it very difficult to 

apply traditional analytical techniques or even impossible. Using Monte Carlo 

simulation, a numerical alternative to analytic techniques is possible. The basic 

algorithm is illustrated in Figure G. I. 

Start 

Figure G.1 Monte Carlo Simulation Methods 

Sample the distributions 
/ 

I 
I Calculate 

I Y=G( X1, X,, ... , X. ) 

l~I /\' i / \ x. 
i / "-\ . 
' j .................................................................................. ~ .. · 

~---NO-RepeatProcess -----< 

Output 
Final 

Distribution 

/-.,, 
I ' 

I \ .--YES 

/ " 
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completed? 
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The Monte Carlo simulation method involves sampling a value from each of the 

mutually and stochastically independent random variables which risk is a function of, 

calculating the value of Y, and repeating this process until N iterations have been 

executed, where N is a user selected number (usually several hundred or even several 

thousand repetitions are required to obtain a smooth distribution). 

G.1.1. Sampling Techniques 

Generally, sampling is done by first sampling a uniformly distributed random 

variable with a random number generator. This random variable may be of the discrete 

type or of the continuous type. Commonly computer random number generators are 

based upon the linear congruential method defined by the following recursion: 

Yn+l - ayn + c mod M for n = 0,1,2, ... 

where 

M is a large positive integer (usually 232-1 or 7FFF in hexadecimal); 

a is an integer in [1,M) and gcd( a,M)= 1; 

c is an integer in the set {O, 1, 2, ... , M-1 }; 

(Equation G.1) 

Equation G.2 defines a recursion that can be used to generate a discrete uniformly 

distributed random integer. Often a real random number is needed in the interval [0,1]. 

Such a random variable may be approximated by dividing the random integer generated 

by the value of M. There is a great deal of literature on computer algorithms used for the 

generation of uniformly distributed random numbers. The reader is referred to Random 

Number Generation and Quasi-Monte Carlo Methods [9] for additional information on 

the subject. 

Once the ability to generate uniformly distributed random numbers of the discrete 

or continuous type has been established, it is often a simple task to generate random 

numbers that are distributed non-uniformly. For example, if Yi and Y2 are uniformly 

distributed over the interval (0, 1 ], then the random variables X1 and X2 defined in 
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Equations G.2 and G.3 respectively (Equations G.2 and G.3 define the scheme suggested 

by Box and Muller (5] for randomly generating values of a standard normal random 

variable), are stochastically independent random variables, both distributed normally with 

mean 0 and variance 1. Given these transformations and the ability to generate values of 

a uniformly distributed (on (0, 1]) random variable, randomly generating numbers from a 

standard normal distribution can easily be done. 

X1 = (-2·ln Y1)112 · cos(2IIY2) 

X2 = (-2·ln Y1)112 · sin(2IIY2) 

(Equation G.2) 

(Equation G.3) 

Using the above transformation, samples of size 50, 100, 1,000 and 10,000 have 

been randomly generated and plotted against the standard normal cumulative probability 

function in Figures G.2, G.3 G.4 and G.5. As expected, the curve produced from a 

sample of size 10,000 shows that the random generation of values well simulates 

sampling from a standard normal population. Transformation techniques provide a 

simple method of non-uniform random number generation, however, analytic 

transformation are not always available. Another common technique used is called Latin 

hypercubes sampling (LHS). 

To implement LHS, the range of the random variable must first be truncated to a 

closed interval (if the range is not already a closed interval). For example, if a sample 

from a standard normal population is desired, and ifit is acceptable to neglect 0.1% of the 

distribution in the left and right tails, then the standard normal distribution can be 

truncated to the range [-3,3]. Once truncated, the LHS process continues by splitting the 

recognized range of the variable into N non-overlapping intervals on the basis of equal 

probability. Figure G.6 shows an example of truncating and partitioning the standard 

normal distribution into 5 equal probability {20%) intervals. To complete the process, 

random numbers are generated uniformly from within each of the partitions such that the 

same number of samples is drawn from each partition. For example, if a sample of size 

100 is desired, then 20 items will be sampled from within each of the 5 partitions. 

Clearly, the more partitions selected, the better the simulation will be. In fact, the 
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limiting distribution as the number of partitions approaches infinity 1s exactly the 

distribution under consideration. 

Another approach that can be taken is using an actual sample based upon field 

data when available. For example, sampling from the release fraction, temporal (time of 

day and day of year), and meteorological conditions distributions does not require any 

sampling algorithm. Actual data was available from the HMIRS database and the 

National Climatic Data Center leading to actual samples ranging in size from 68 values to 

27,000. When sufficient data is available, using real samples leads to the least amount of 

uncertainty. 

For additional information on Monte Carlo simulation and methods of random 

number generation for Monte Carlo simulation and integration, the reader is referred to 

Random Number Generation and Quasi-Monte Carlo Methods [9] and An Approach to 

Sensitivity Analysis of Computer Models [10]. 
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Figure G.2 Sample Size of50 Figure G.3 Sample Size of 100 

Figure G. 4 Sample Size of 1000 Figure G. 5 Sample Size 10, OOO 
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Figure G. 6 Standard Normal Probability Density Function Truncated 

and Partitioned into 20% Non-overlapping Intervals 
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