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Abstract: 

Estrogen replacement therapy appears to delay the onset of Alzheimer's disease 

(AD). The mechanism whereby estrogen prevents the pathogenesis of AD is unknown. In 

the present study, I examined the effects of 17-~-estradiol (E2) on neurite outgrowth from 

adult mice cortical neurons (AMC) in culture. I found that E2 increases apoE secretion 

and neurite outgrowth in AMC neurons from wild type mice in a dose dependent fashion. 

The neurite outgrowth promoting effect of E2 was not observed in AMC neurons derived 

from age-, sex-, and stain-matched apoE deficient/apoE gene knockout (apoE KO) mice. 

Furthermore, E2 has isoform specific effects on neurite outgrowth in the presence of 

purified recombinant human apoE. The presence of human apoE2 or apoE3 greatly 

augmented E2 effects on promoting neurite outgrowth, whereas the presence of apoE4 

had no significant effect. Consistent with these findings, E2 had differential effects on 

neurite outgrowth from AMC neurons derived from transgenic mice expressing human 

apoE isoforms. Incubation of AMC neurons from apoE3 transgenic mice with E2 

significantly increased neurite outgrowth, whereas incubation of AMC neurons from 

apoE4 transgenic mice with E2 had no significant effect. In summary, my data suggest 

that apoE isoforms play a critical role in mediating the neurite outgrowth promoting 

effect of E2. 
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1. Introduction: 

Alzheimer's Disease (AD) is an irreversible, progressive brain disorder that 

occurs gradually and results in memory loss, unusual behavior, personality changes, and 

a decline in thinking ability. AD is the major form of dementia, and is characterized by 

senile plaques and neurofibrillary tangles in the brain and loss of cholinergic neurons in 

the basal forebrain (Gooch and Stennett, 1996). The senile plaques in the brains of AD 

patients consist of amyloid deposits surrounded by dystrophic axons. The amyloid is 

referred to as ~-amyloid (A~), which is a product of inappropriate cleavage from the 

amyloid precursor protein (APP) (Haass and Selkoe, 1993; Gooch and Stennett, 1996; 

Vassar et al., 1999). The second major type of brain lesion in AD patients, the 

neurofibrillary tangles, are located in cell bodies and apical dendrites. The tangles 

contain paired helical filaments composed of abnormally phosphorylated tau proteins. 

Tau is one of the microtubule-associated proteins (MAPs) that stabilizes microtubules 

against disassembly and provides a mechanism for them to interact with other cell 

components (Gooch and Stennett, 1996). 

Apolipoprotein E ( apoE) is a 299 amino acid component of lipoproteins with a 

molecular weight of 37-kDa that mediates endocytotic lipid uptake by cells via several 

lipoprotein receptors. ApoE plays a vital role in the regulation of lipoprotein metabolism 

and in the control of lipid transport and lipid redistribution among target tissues and cells 

(Mahley, 1988; Weisgraber, 1994). Lipid transport and redistribution is regulated by 

apoE via interaction with lipoprotein receptors (Mahley, 1988). Cellular uptake and 

degradation of the lipoproteins is initiated by receptor-lipoprotein binding. The lipid 

becomes available for utilization in the regulation of intracellular cholesterol metabolism. 
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ApoE, therefore, serves as a ligand for the receptor-mediated clearance of lipoproteins 

from the plasma (Rall et al., 1982). 

ApoE is encoded by a single polymorphic gene, which contains four exons on 

chromosome 19 in humans (Mahley, 1988; Rall et al., 1982; Das et al., 1985; Paik et al., 

1985). The three major allele isoforms for the apoE gene are e2, e3, and e4, the 

frequencies of these three alleles in the general population are 8%, 77%, and 15%, 

respectively (Gooch and Stennet., 1996; Mahley 1994). The molecular basis of this 

polymorphism of the apoE gene results from cysteine-arginine interchanges at two 

positions in the apoE protein (Weisgraber, 1994). These single amino acid substitutions 

are found at residues 112 and 158 (Rall et al., 1982). The most common isoform, apoE3, 

contains cysteine at residue 112 and arginine at position 158. ApoE2 has cysteine at both 

positions and apoE4 contains arginine at both positions (Weisgraber, 1994). Recent 

studies have demonstrated that inheritance of the e4 allele of apoE increases the risk of 

Alzheimer's disease (AD) and that the inheritance of the e2 allele decreases the risk 

(Gooch and Stennet., 1996). 

It is believed apoE functions as a lipid carrier molecule in membrane remodeling 

in the response to peripheral and central nerve damage, possibly to scavenge cholesterol 

from cellular debris for use in axonal regeneration and remyelination (Ignatius et al., 

1986; Mahley, 1988; Poirier, 1996). In humans the brain is second only to the liver in 

apoE production (Beffert et al., 1998; Elshourbagy et al., 1985). Transcripts for apoE are 

distributed throughout all regions of the brain, and have been localized to astrocytes and 

microglia by in situ hybridization. In the central nervous system (CNS), apoE is 

synthesized and secreted primarily by glial cells (astrocytes, microglia and to a lesser 
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extent, by macrophages) (Elshourbagy et al., 1985; Pitas et al., 1987) but not by neurons. 

ApoE serves as a ligand for the low-density lipoprotein receptor (LDLR) in primary 

cultures of rat brain astrocytes (Beffert et al., 1998). In cerebrospinal fluid, apoE is 

found associated with high-density lipoprotein (HDL) particles and appear to play a 

major role in lipid transport in the CNS. Previous studies have shown that apoE plays a 

pivotal role in maintaining central nervous system function and synaptic plasticity, 

especially after neuronal damage. ApoE levels dramatically increase after brain injury 

(Boyles et al., 1990; Boyles et al., 1989; Ignatius et al., 1986; Leblanc et at., 1990) . 

Increased apoE immunoreactivity is present in the brains of patients with such 

neurological disorders as Down's syndrome, Creutzfeld-Jacob disease, and Alzheimer's 

disease (AD) (Namba et al., 1991). It has been demonstrated that expression of apoE 

increases following optic nerve injury, but absolute levels of apoE do not increase 

(Ignatius et al., 1986). ApoE mRNA is increased in the brains of AD patients and in the 

response to injury in both CNS (Boyles et al., 1989) and peripheral nerve system (Snipes 

et al., 1986). 

In culture from fetal dorsal root ganglion cultures, incubation with P-very low

density lipoprotein CP-VLDL) particles, which are rich in both apoE and cholesterol, 

showed increased neurite outgrowth and branching (Handelmann et al., 1992). These 

results have been the basis for proposing that apoE-containing lipoproteins are involved 

in the mobilization and redistribution of lipids in the repair and maintenance of myelin 

and axonal membrane following peripheral nerve injury (Beffert et al., 1998). Based on 

these observations, it has also been proposed that apoE is involved in neurodegenerative 

processes by isofom1-specific effects on cytoskeletal stability and neurite outgrowth 
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(Mahley et.al .. 1994; Weisgraber and Mahley, 1996). In vitro studies with dorsal root 

aanalion neurons have shown that addition of apoE3 to a culture stimulated neurite 
~ ~ 

outgrowth whereas apoE4 decreased neurite extension (Nathan et al.. 1994). Fom1er 

studies from our laboratory have shown that addition of apoE3 to adult mouse cortical 

neuron cultures significantly increased neurite outgrowth. These data imply that apoE is 

important for peripheral nerve regeneration (Mahley, 1988). The data from apoE 

knockout (apoE KO) mice, however, does not support this hypothesis. Regeneration of 

nerves in both control mice and apoE KO mice were morphologically identical at two and 

four weeks following sciatic nerve crush (Popko et al., 1993; Goodrum, 1995). This 

suggests that other apolipoproteins in the PNS may substitute for apoE when it is absent. 

Therefore, the specific role of apoE and its importance in the PNS remains unclear. 

There are three forms of AD: early-onset familial AD, late-onset familial AD and 

sporadic AD. Early-onset familial AD, which accounts for only 5% of human patients, 

has been found to be related to mutations on chromosomes 1, 14, and 21 (Gooch and 

Stennett, 1996). The late-onset familial AD and sporadic AD, which accounts for 

approximately 95% of all late-onset AD cases, are associated with the inheritance of e4 

(Poirier et al., 1993; Beffert et al., 1998). About 80% of familial and 64% of sporadic 

late-onset AD cases carry at least one copy of the e4 allele compared to 31 % of controls 

(Corder et al., 1993; Beffert et al., 1998). Furthermore, the e4 allele also has a strong 

impact on the age of onset of clinical symptoms in AD. Studies have shown that the 

average age at onset of AD patients without the e4 allele is 84.3 years, compared to 75.5 

years with individuals with a single e4 allele, and 68.4 years in individuals with two 

copies of e4. Most importantly, the survival time also decreases with an increasing gene 
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dose of apoE4 (Corder et al., 1993, Gooch and Stennett, 1996). These studies have been 

confirmed by many laboratories worldwide, and are now universally accepted that the 

apoE genotype is the major risk factor for AD. Unfortunately the mechanism whereby 

apoE4 leads to the pathogenesis of AD is unknown. 

In addition to apoE genotype, it seems that estrogen plays an important protective 

role in the development of AD. Estrogen is a hormone dominant in the female 

reproductive system. Estrogen can improve blood circulation in the brain as well as 

stimulate nerve cell growth. It has also been shown to increase levels of acetylcholine, 

and it impedes the deposition of amyloid (Inestrosa et al., 1998). Women are statistically 

more susceptible to AD which leads researchers to believe that hormones may also play a 

crucial role in the disease process. A plausible explanation for the increased occurrence 

of AD in women is due to the loss of ovarian steroids in the menopause stage. The 

normal age of menopause is 54 years and the average life span of women is 78 years. 

This indicates that most women spend almost one-third of their life in an estrogen

deprived state. There is recent evidence that postmenopausal estrogen replacement 

therapy (ERT) is inversely correlated, both in dose and duration of therapy, with the 

incidence of AD (Phillips et al., 1992). Preliminary trials indicate a positive effect of 

ERT on cognition in both cognitively impaired and normal postmenopausal women 

(Sherwin 1988). Additional studies have shown that estrogen serves a normal 

maintenance role in the same regions of the brain that are most effected in AD. Estrogen 

treatment in experimental animals promotes recovery from neurological damage. 

Estrogen administration increases glial cell markers and apoE in most of these animal 

models (Simpkins et al., 1994). 

6 



Recently studies have suggested that estrogen's protective effects are through its 

action as a trophic factor for cholinergic neurons, a modulator for the expression of apoE 

in the brain, an antioxidant compound decreasing the neuronal damage caused by 

oxidative stress (Inestrosa et al., 1998). In mixed glial cultures that contain both 

astrocytes and microglia, 17-~-estradiol (E2) treatment induced two-fold increases in 

apoE mRNA over untreated controls and the largest increase is seen at an estrogen 

concentration of 0.1 nM, corresponding to physiological levels of circulating estrogen 

during proestrus (0.05 nM) and pregnancy (0.5 nM) (Stone et al., 1997). Previous studies 

have shown that estrogen treatment significantly increased the neurite outgrowth of 

acetylcholinesterase-positive fibers from embryonic basal-forebrain tissues transplanted 

into the anterior chamber of the eye (Honjo et al., 1992), indicating that estrogen may 

have a direct trophic effect upon basal-forebrain cholinergic neurons. The cholinergic 

neurons located in the basal forebrain are particulary susceptible to degeneration in AD 

and have been correlated in age and disease-related cognitive decline (Whitehouse et al., 

1981). These results indicate that estrogen could have positive effects on memory and 

learning processes (Gibbs 1997). 

The way in which estrogen interacts with apoE and neurons is not completely 

known. The mechanism for this process would prove to be quite important for 

developing novel therapies for Alzheimer's disease. The primary aim of my study was to 

determine the pathway by which 17-~-estradiol (E2) increases neurite outgrowth from 

AMC neurons. In this thesis, I demonstrate the following specific questions: 1) E2 effect 

on apoE secretion and neurite outgrowth in AMC neurons from wild type mice. 2) E.2 

effect on neurite outgrovvth in A.1'1C neurons derived from age-, sex-, and stain-matched 
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apoE deficient/apoE gene knockout (apoE KO) mice. 3) Does E2 have isoform specific 

effects on neurite outgrowth in the presence of purified recombinant human apoE? 4) E2 

effect on neurite outgrowth from Alv1C neurons derived from transgenic mice expressing 

human apoE isoforms. 
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2. lVIaterials and lVIethods 

2.1. lVIaterials 

2.1.1. Adult mouse cortical culture 

Transgenic human apoE3, transgenic human apoE4 mice, homozygous apoE KO 

mice (C57BL/6-Apoe<tmiUnc>, Cat. # 002052) bred 10 generations onto the C57BL/6 

background and control mice (C57BL/6, Cat. # 000664) were obtained from Jackson 

Laboratory (Bar Harbor, MA). Cell culture medium, including Hibernate A (Cat.# 10740-

025), Neurobasal (Cat. # 21103-049), and B27 medium supplement (Cat. # 17504-010) 

were purchased from Life Technologies Inc., (Gaithersburg, MD). Glutamine (Cat. # G-

3126) and poly-D-lysine (Cat. # P-6407) were purchased from Sigma Chemicals (St. 

Louis, MO). Papain (Cat. # 3119) was obtained from Worthington (Lakewood, NJ). 

Gentamicin (Cat. # 15710-015), FGF2 (Cat. # 13256-029), and Optiprep (Cat. # 103-

0061) were from Life Technologies Inc., (Gaithersburg, MD). Glass cover slips (Cat. # 

P7-63-3029) were purchased from Carolina Biological (Burlington, NC). Falcon Brand 35 

mm diameter dishes (Cat. # 08-772-4A), Costar Brand Tissue Culture 24-well plates (Cat. 

# 07-200-84), 50 ml tube (Cat. # 05-539-6), 15 ml centrifuge tubes (Cat.# 05-539-5), and 

9-inch pipettes (Cat.# 13-678-6B) were purchased from Fisher Scientific (Chicago, IL). 

2.1.2. Neurite outgrowth assay 

Human recombinant apoE3 (Cat. # P2003) and apoE4 (Cat. # P2004) were 

purchased from Panvera (Madison, WI), and dialyzed overnight in O. lM ammonium 

bicarbonate. 17-~-estradiol (Cat. # E-3229) was purchased from Sigma (St. Louis, MO) 

and was dissolved in 95% ethanol. 

2.1.3. ApoE quantification 
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The monoclonal anti-apoE (3Hl) used for immunoprecipitation was obtained from 

the University of Ottawa, Heart Institute. HRP conjugated secondary antibody, and rabbit 

anti-goat IgG (Cat.# AP106P) Yvas obtained from Chemicon (Temecula, CA). Protein A

Sepharose CL-4B (Cat. # P-3391) and BSA (Cat. # A-9418) were obtained from Sigma 

Chemicals (St. Louis, MO). Goat anti-human apoE (Cat. # 178479) was purchased from 

Calbiochem (San Diego, CA). All other materials used for apoE quantification, including 

pre-cast 4-20% gradient gels (Cat. # FB3435), Millipore Irnmobilon-P Transfer 

Membranes (Cat. #IPVHOOOlO), Pierce SuperSignal West Pico Chemiluminescent 

Substrate (Cat. # PI34080), Kodak BioMax Light-2 film (5*7', Cat. #05-728-53), Tris 

(Cat. #BP154-1) , Glycine (Cat.# BP381-l), SDS (Cat.# BP166-100), Tween 20 (Cat.# 

BP337-500) and sodium bromophenol blue (Cat. # BP-114-25) were purchased from 

Fisher Scientific (Chicago, IL). 

2.1. 4. Immunocytochemist1y 

The mouse anti-neurofilament-70 (Cat. #N-5388), mouse anti-Glial Fibrillary 

Acidic Protein (GF AP) (Cat. # N-3893), and FITC-conjugated lectin from Bandeiraea 

simplicifolia (BSL-1) were obtained from Sigma Chemicals (St. Louis, MO). The FITC

conjugated goat anti-mouse IgG-Fab2 specific (Cat. # 115-095-006) and normal goat 

serum (Cat.# 005-000-121)were purchased from Jackson IrnmunoResearch (West Grove, 

PA). Paraformaldehyde (Cat. # 04042-500) was purchased from Fisher Scientific (St. 

Louis, MO). Triton X-100 (Cat. #T-9284), n-propyl gallate(Cat. # P-3130), and glycerol 

(Cat. # G-6279) were purchased from Sigma Chemicals (St. Louis, MO). 

10 



2.2. lVlethods 

2. 2.1 Adult mouse cortical neuronal culture 

For each experiment, a single female, 4 month old mouse was anesthetized with 

sodium pentobarbital (80 mg/kg). The entire cerebral cortex was dissected from the rest of 

the brain in 2 ml B27/Hibernate A medium [B27/Hibernate A with 0.5 mM glutamine] in 

a 35 mm diameter Petri dish placed at 4°C. The cortex was sliced (0.5 mm thickness) and 

transferred to a 50 ml tube containing 5 ml B27/Hibernate A medium. After warming for 8 

min at 30°C, slices were digested with 6 ml of a 2 mg/ml papain solution in Hibernate A 

for 30 min at 30°C in a gyrating water bath to keep the slices suspended. Slices were 

transferred to 2 ml B27/Hibernate A medium in a 15 ml tube. After 2 min at room 

temperature, slices were triturated 10 times with a siliconized 9-inch Pasteur pipette, and 

allowed to settle for 1 min. Approximately 2 ml of the supernatant was transferred to 

another tube, and the sediment resuspended in 2 ml B27/Hibernate A medium. The above 

step was repeated twice, and a total of 6 ml collected. The resultant supernatant was 

subjected to density gradient centrifugation at 800g for 15 min. The density gradient was 

prepared in four 1 ml steps of 35, 25, 20 and 15% Optiprep in B27/Hibernate A medium 

(v/v). The brain fraction containing the neurons was collected, and diluted in 5 ml 

B27 /Hibernate A medium. After centrifuging twice at 200g for 2 min, the cell pellets were 

resuspended in 3 ml B27/Neurobasal A medium [B27/Neurobasal A with 0.5 mM 

glutamine, no glutamate, 0.01 mg/ml gentamicin]. The cells in the suspension were 

counted in a hemacytometer, and 40,000 cells were plated in 50 µl aliquots on glass cover 

slips (12 mm diameter) previously coated overnight with 100 µI of 50 µg/ml poly-D-

lysine in water. Following 1 hr incubation in a humidified incubator at 37 °C and 5% C02 , 
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cover snps were transterred to a 24-well plate containing 0.4 ml B27/Neurobasal A 

medium. Cover slips were rinsed twice with B27 /Hibemate A medium, and then 0.4 ml 

growth medium [B27 /Neurobasal A medium with 5 ng/ml FGF2] was added to each well 

and the plate was further incubated. Neurite outgrowth, and viability assays were 

performed after 4 days of incubation, as described below. For culture periods greater than 

4 days, half of the medium was replaced with B27/Neurobasal A with 10 ng/ml FGF2 

every four days. 

2.2.2. Neurite Outgrowth Assay 

To assess neurite outgrowth, neurons were grown in growth medium (GM) alone 

or with other test reagents (E2, 5µg/ml human-apoE, etc). Following 3 days of incubation, 

the length of the longest neurite (neurite extension) and total length of neurites (combined 

length) of each neuron were measured using an inverted phase-contrast microscope. For 

each experiment, a minimum of 50 neurons were measured for each treatment condition. 

In experiments that involved the effects of estrogen and human apoE isoforms on 

neurite outgrowth, neurons from adult mice were prepared as described above. After 24 

hours incubation, human apoE isoforms or various concentrations of estrogen were added 

directly to the medium and continued incubating for another 48 hours. On the third day of 

culture, neurite outgrowth was quantified as described. 

2.2.3. ApoE quantification 

Two ml of medium from three-day-old cultures were collected and centrifuged to 

eliminate suspended cells. ApoE was imrnunoprecipated by incubating the medium with 2 

µg of monoclonal anti-apoE (3Hl) on ice for 1 hr. Following incubation, 50 µl of 10% 

Protein A-Sepharose CL-4B was added, and the medium was further incubated on ice for· 
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1 hr on a shaker. The medium vvas centrifuged at 10,000g for 15 min at 4 °C, and the 

supernatant discarded. The pellet was boiled for 5 min in 2X Lammeli sample buffer and 

electrophoresed on 4-20% SDS-polyacrylamide gradient gels in an EC120 Mini gel 

vertical system. The samples were run at 80 V until separation began, and then at 140 V 

until the dye front neared the bottom of the gel (Bellosta et. al., 1995). 

Following electrophoresis, the gel was placed in transfer buffer (3.03 g Tris-base, 

14.4 g glycine, 200 ml methanol, 800 ml dH20) on a shaker for 10 min. The transfer 

membrane, Millipore Irnmobilon-P Transfer Membrane, was first soaked in methanol for 

5 sec then washed in dH20 for 5 min to remove excess methanol. The proteins in the gel 

were transferred to the Irnmobilon-P membrane using a Bio-Rad Trans-blot Transfer Cell 

following manufacturer's protocol. 

Blots were washed twice (5 min each) with TBST buffer [TBS buffer with 0.05% 

Tween 20]. Blots were then incubated in goat anti-human apoE (1:5,000 dilution in TBST 

buffer) for 1 hour on a shaker at room temperature. The membrane was then washed 4 

times (10 min each) in TBST buffer. Blots were incubated in HRP-conjugated rabbit anti

goat IgG (1:10,000 dilution in TBST buffer) for 1 hr on a shaker at room temperature, 

washed 5 times (10 min each) with TBST buffer, incubated with Pierce SuperSignal West 

Pico Chemiluminescent Substrate, and then exposed to Kodak BioMax Light-2 film. A 35 

kDa band was visualized which is consistent with the published molecular weight of apoE. 

Bands were quantified by densitometry (Scion Image). 

2. 2. 4. Immunocytochemistry 

Cells from 4-day old cultures were rinsed with warm PBS (3TC) and fixed with 

4% paraformaldehyde in PBS for 20 min at room temperature. After rinsing twice with 
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PBS, cells were permeabilized with 0.5% Triton X-100 in PBS for 5 mm. Cells were 

rinsed again with PBS, and then blocked with blocking solution [5% normal goat serum, 

0.05% Triton X-100 in PBS] for l hr. Cells were incubated overnight at 4'C with mouse 

anti-neurofilament 200 (1:40), or mouse anti-GFAP (1:1,200) in the blocking solution. 

After rinsing four times with PBS, cells were incubated with FITC-conjugated goat anti

mouse IgG-Fab2 (1:200) in blocking solution for 60 min. Cells were washed four times in 

PBS, slips were mounted in anti-photobleach medium (0.85 M n-propyl gallate, 60% 

glycerol in TBS). Immunoreactive cells were counted and photographed on an Olympus 

BXSO microscope with appropriate fluorescence excitation filters. Controls without 

primary antibody were negative. 

For-BSLl labeling of microglia, cells were fixed as described above, rinsed with 

warm PBS, and incubated with fluorescein conjugated BSLl (1:100 dilution) for 15 min at 

room temperature. Following incubation the cells were rinsed with PBS, and fixed with 

4% paraformaldehyde in PBS for 5 min. After rinsing in PBS, slips were mounted and 

photographed as described above. 

2.2.5 Statistical Analysis 

All experiments were repeated four times using different preparations of adult 

mouse cortical neurons, and reagents. The data in individual experiments were presented 

as the mean ± standard error, and statistical analysis (unpaired, two tailed t-test) was 

performed using Statview software. 
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3. Results: 

3.1. Characterization of adult mouse cortical neuronal culture 

I modified techniques for the in vitro culture of neurons from adult mice as 

prev10us described (Brewer, 1997). The total recovery of viable cells after 3 days in 

culture averaged 65-70% of the cells plated. Fig. 1 shows the results for 

immunofluorescent labeling of cell types in the culture. The majority of the cells in culture 

were neurofilament positive, representing - 70% of the cells (Fig. lA). GFAP positive 

cells comprised an average of 13%, while BSLl stained cells represented about 14% of 

the total cells in culture. These three markers identified an average of 97% of the viable 

cells present in a three-day old culture. Representative morphologies of immunostained 

cells are shown in Fig. lB. Neurofilament 200 immunoreactive cells displayed several 

long processes· with branches. GF AP positive cells had a smaller number of processes with 

fewer branches. Microglial cells were flat and round with very few short processes. The 

concentration of apoE in the medium of a 3-day-old WT culture, as determined by 

quantitative immunoblotting, was 25-37 ng/ml. Medium from apoE KO culture had no 

detectable apoE. 

3.2. Effects of E2 on neurite outgrowth from adult mouse cortical neurons derived from wide 

type mice 

Cultures of AMC neurons from wild type mice were treated with 0.1 pM, 1.0 pM, 

0.1 nM, 1.0 nM .and 10 nM of E2, and neurite extension and combined length of neurites 

in cultures were quantified. E2 concentrations were added at 24 hours and neurite 

outgrowth was monitored at 72 hours. AMC neurons treated 1 pM, 0.1 nM and 1 nM E2 

had significantly longer (p<O. 01) neurite extension and combined length as compared to 

15 



Figure 1 
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Fig 1. lmmunofluorescent labeling of cell types in the adult 
mouse cortical culture (A) Cortical neuronal cultures were 
grown for 4 days, fixed and stained for NF200, GFAP, and 
BSL 1 as described in Methods. For each antigen, three 
coverslips were immunostained, and immunopositive cell in 
12 fields/slip were counted and expressed as a percentage of 
total viable cells. (B) Representative morphologies of 
immunostained cells in cortical culture. 
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Medium E2 

Fig. 2A. Effects of E2 on N eurite Outgrowth from Adult 
Mouse Cortical Neurons. Phase contrast photographs of 
representation neurons from wide type mice was incubated 
for 3 days in medium alone and in medium containing 
O.lnM E2. Scale bar = 30µm. 
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Fig. 2B. Quantification of the Effects of E2 of the Dose Response on 
Neurite Extension (a) and Combined Length (b) from Adult Mouse 
Cortical Neurons. Neurite extension and combined length measured 
for 120 neurons from each group as described under Methods. Data 
are mean ±SElVI (n=120). 
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neurons grown in medium alone (Fig. 2.). 

3. 3 Ejfects of £2 on apoE secretion from adult mouse cortical neurons derived from ivide 

t_vpe mice 

AMC cultures from wild type mice were incubated with varying concentration of 

estrogen as described above. The secreted apoE in the medium was quantified by 

immunoprecipitation followed by immunoblotting. MIC cultures treated with 1.0 pM, 0.1 

nM and 1.0 nM E2 secreted significantly more apoE concentration (p<0.01) than that in 

culture grown in medium alone (Fig. 3.). 

3. 4. Time course of £2 on apoE secretion from adult mouse cortical neurons 

The time course of apoE secretion in AMC culture was evaluated by incubating the 

culture with 0.1 nM E2 for 0, 0.1, 0.5, 1.0, 4.0, 16.0, 36.0, 48.0 hours. Following 

incubation, the medium was collected and secreted apoE was quantified by 

immunoprecipitation followed by immunoblotting. ApoE secretion significantly increased 

(p<0.01) after 4 hr, and plateaued after 16 hr incubation (Fig. 4.). These data suggest a 

time-dependent increase in apoE secretion as a function of E2 incubation. 

3. 5. Effects of £2 on adult mouse cortical neurons from apoE deficient (apoE KO) mice 

To examine the impact of apoE deficiency on E2 effects on neurite outgrowth, I 

incubated Al\1C neurons from apoE KO and wide type control mice (C57BL/6) with the 

physiological concentration (0.1 nM) of E2. Following 3 days of incubation neurite 

outgrowth was monitored. Results from this study demonstrated that E2 had no significant 

effect on neurite outgrowth from AMC neurons derived from apoE KO mice (Fig. 5). 
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Fig.3. Effects of E2 on ApoE Secretion from Adult Mouse 
Cortical Neurons. AMC culture from wide type mice was 
incubated for 3 days in medium alone or in medium containing 
virious concentration of E2. Medium was collectd and ApoE 
in 2ml of medium was immunoprecipitated and immunoblotted 
as described in methods section. A. Photograph of a 
representative immunoblot. B. Densitometric scanning of 
immunoblot obtained from three independent experiments. Data 
are presented as its mean ± SEM (n=3). 
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immunopricipitaed and immunoblotted as described in 
Method section. A. Photograph of a representative 
immunoblot. B. Densitometric scanning of immunoblot 
obtained from three independent experiments. Data are 
presented as its mean ± SEM. 

21 



lVIedium Ethanol 
~ . ;. 

'' : 

·' •< .. 

E2 

Fig. SA. Effects of E2 on Neurite Outgrowth from ApoE KO 
AMC Neurons. Phase contrast photograph of representation 
neurons from ApoE KO mice grown for 3 days in medium 
alone, in medium containing O.lnM ethanol or O.lnM E2 
dissolved ethanol. 
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Fig. 6A. Combined Effects of E2 and Recombinant Human ApoE on 
N eurite Outgrowth from ApoE KO AMC Neurons. Phase contrast 
photograph of representation neurons from apoE KO mice grown in 
3 days in medium alone, in medium containing O.lnM ethanol, 
O.lnM E2, 5 µg/ml purified human apoE2, 5 µg/ml purified human 
apoE3 and 5 µg/ml purified human apoE4. 
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3. 6. Effects of £2 on neurite outgrowth from adult mouse cortical neurons derived from 

apoE KO mice in presence of recombinant human apoE isoforms 

Previous studies from our laboratory have shown that apoE isoforms can 

modulate neurite outgrowth from M1C neurons. In the present study we examined if 

apoE isofom1s can alter neurite outgrowth promoting effect of E2. As shown in Fig. 6, 

incubation of AMC culture with human apoE2 and apoE3 significantly (p<0.01) 

increased both neurite extension and combined length. In contrast to apoE2 and apoE3, 

addition of human apoE4 did not essentially affect (p>0.05) neurite outgrowth. 

Furthermore, the presence of human apoE2 or apoE3 greatly augmented E2 effects 

(p<0.01) on promoting neurite outgrowth, whereas the presence of apoE4 had no 

significant effect (p>0.05). 

3. 7. Effects of E2 on adult mouse cortical neurons derived from human apoE transgenic 

mice 

I next examined the effect of E2 on neurite outgrowth from AMC neurons derived 

from transgenic mice expressing human apoE3 or human apoE4. Consistent with 

previous studies AMC neurons from apoE3 mice grown in medium alone had greater 

neurite extension and combined length as compared to those neurons derived from apoE4 

transgenic mice (Holtzman et al., 1995). Furthermore, incubation of AMC neurons from 

apoE3 transgenic mice with E2 significantly increased neurite outgrowth, whereas 

incubation of AMC neurons from apoE4 transgenic mice with E2 had no significant 

effect (Fig. 7.). 

Western blot analysis of human apoE secretion revealed that both apoE3 and 

apoE4 Alv1C cultures secrete similar amounts of apoE. E2 treatment upregulated apoE 
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Fig. 7A. Effects of E2 on Neurite Outgrowth from AMC 
Neurons Derived from Transgenic Mice {Tg) 
Expressing Human ApoE3 or Human ApoE4. Phase 
contrast photograph of representation neurons grown 
on medium alone or in medium containing O.lnM E2. 
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secretion in both apoE3 and apoE4 cultures, similar to that in wild type culture. There was 

no significant difference in the amount of apoE secreted by AMC cultures from apoE3 and 

apoE4 mice treated with E2 (Fig. 8.). 
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· 4. Discussion: 

E2 replacement therapy appears to delay the onset of Alzheimer's disease, but the 

mechanisms for this action are not known. E2 loss is not an issue for males, because they 

produce endogenous E2 throughout their lives. ApoE is of special importance in the 

nervous system. ApoE with a source of cholesterol promote marked neurite extension in 

cultured dorsal root ganglion cells. ApoE is involved in the response to neural injury 

(Boyles et al., 1990; Poirier et al., 1991; Poirier, 1994), maintainance of dendritic 

complexes (Masliah et al., 1995) and neuronal remodeling in vitro (Nathan et al., 1994; 

Fafan et al., 1996) and in AD (Arendt et al., 1997). 

Previous studies have demonstrated an apoE isoform-specific effect on neurite 

outgrowth from both central nervous system- (Neuro-2a cells and GT2 trk 9 cells) and 

peripheral nervous system- (dorsal root ganglion cells) derived neurons (Nathan et al., 

1994; Bellosta et al., 1995; Holtzman et al., 1995; Nathan et al., 1995). In the presence of 

lipoprotein, apoE3 enhances neurite outgrowth, whereas apoE4 inhibits neurites 
I 

outgrowth. Our laboratory has previously shown that apoE4 inhibits and apoE3 promotes 

neurite outgrowth in cultured AMC neurons through the low-density lipoprotein receptor-

related protein pathway (Nathan et al., 2002). It is now recognized that apoE2 and E3 

gene is relatively protective against sporadic AD, while apoE4 gene increases several-

fold the chances of developing the disease (Sapolsky, et al., 2000). The recent data also 

suggest the apparent greater risk of AD in female carriers of e4 than in males (Poirier et 

al., 1993; Payami et al., 1996; Rao et al., 1996). This could be attributed to an E2 

deficient state combined with the e4 genotype to diminish neuronal plasticity. 
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Because apoE mRNA levels in the brain are induced by E2 (Srivastava et al., 

1996; Stone et al., 1997), I hypothesize that E2 will support neurite outgrowth in M1C 

culture via increased apoE production. Consistent with this hypothesis, results from this 

study have suggested that E2 increases apoE secretion from AMC neurons derived from 

wild type mice in a dose dependent manner. Furthermore, E2 promotes neurite outgrowth 

from AMC neurons in a dose dependent fashion. Further support for the role of apoE in 

mediating E2 effects on neurite outgrowth comes from my studies on apoE KO mice. E2 

has no significant effect on neurite outgrowth from AMC neurons derived from apoE KO 

mice, suggesting that apoE plays a vital role in mediating the effect of E2 on neurite 

outgrowth. 

In this study by using two different model systems I have shown that E2 has 

isoform specific effects on neurite outgrowth in the presence of human apoE. Results 

from my recombinant apoE experiments clearly demonstrate that E2 could greatly 

promote neurite outgrowth in the presence of apoE2 or apoE3, but has no effect in the 

presence of apoE4, the isoform implicated in AD. These results are consistent with my 

studies using transgenic mice. E2 increased neurite outgrowth in AMC neurons derived 

from apoE3 mice, but not in apoE4 mice. How apoE isoforms modulate E2 effects on 

neurite outgrowth is not clear from this study. 

Based on my results, I have developed a model that might help to explain the 

potential role of E2 and apoE in the pathogenesis of AD. The model proposes that AD is 

an imbalance between neuronal injury and efficient repair. In this model, neurons that are 

debilitated by age are more susceptible to neurotoxic agents (e.g., amyloid peptide, and 

free radicals). The damage inflicted by these injurious agents signal the need for repair or 
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remodeling of the neurons and neurites. At this stage, the presence of E2 will maintain 

the secretion of apoE in the brain. If apoE2 or apoE3 is the isofom1 of apoE produced in 

the brain then they may support the repair processes. In contrast if apoE4 is produced in 

the brain it may not support repair very well and thus may contribute to the onset of AD. 
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