Eastern Illinois University The Keep

Masters Theses

Student Theses & Publications

2014

Morphological and Ecological Investigations of Species of Bulrush (Scirpus) in Illinois

Julian G. Moore *Eastern Illinois University* This research is a product of the graduate program in Biological Sciences at Eastern Illinois University. Find out more about the program.

Recommended Citation

Moore, Julian G., "Morphological and Ecological Investigations of Species of Bulrush (Scirpus) in Illinois" (2014). *Masters Theses*. 1255. https://thekeep.eiu.edu/theses/1255

This is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact tabruns@eiu.edu.

MORPHOLOGICAL AND ECOLOGICAL INVESTIGATIONS OF CRYPTIC SPECIES OF BULRUSH (*SCIRPUS*) IN ILLINOIS.

 $\mathbf{B}\mathbf{Y}$

JULIAN G. MOORE

THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE – BIOLOGICAL SCIENCES

IN THE GRADUATE SCHOOL, EASTERN ILLINOIS UNIVERSITY CHARLESTON, ILLINOIS

2014

I HEREBY RECOMMEND THAT THIS THESIS BE ACCEPTED AS FULFILLING THIS PART OF THE GRADUATE DEGREE CITED ABOVE

			f
THESIS COMMITTEE CHAIR	DATE	THE SIS COMMITTEE MEMBER	DATE
DEPARTMENT/SCHOOL CHAIR	DATE	THESIS COMMITTEE MEMBER	DATE

Abstract

Two closely related species of bulrush, *Scirpus atrovirens* (Green bulrush) and *Scirpus* georgianus (Georgia bulrush), are widely distributed in Illinois. They are difficult to separate in the field, but readily distinguishable under magnification in the lab. These two species have been found in moist meadows, shallow marshes, edges of wet forests, and ditches. The objective of this study was to evaluate the morphological and ecological distinctness of the species with the aim toward discovering and describing other features to distinguish them reliably. Eighty plants of Scirpus atrovirens and 80 of Scirpus georgianus were examined. Fifty S. atrovirens and 50 S. georgianus were collected in the field at different counties in Illinois. Thirty S. atrovirens and 30 S. georgianus specimens were measured from Stover-Ebinger Herbarium at Eastern Illinois University in Charleston, IL, University of Illinois in Champaign herbarium, and the Morton Arboretum in Lisle, IL. Parameters measured on both species were spikelet length/width (mm), culm width (mm), rachilla length (mm), scale length/width (mm), plant height (cm), and achene length/width (mm). A t-test performed showed a significant difference between the species in spikelet length and width, rachilla length, scale length and width, culm width, and achene length and width. There was no significant difference in plant height. Scirpus atrovirens was larger in several morphological characteristics than S. georgianus. Analysis of field data showed that within 30 m of S. atrovirens, 61 different plant species were found. Thirty- four different plant species were found within 30 m of S. georgianus. Only five plant species were found within 30 m of both S. atrovirens and S. georgianus: Glyceria striata, Phalaris arundinacea, Agrostis alba, Juncus dudleyi, and Carex lupulina. Soil data was examined for numerous collections sites. Seventy- nine percent of Scirpus atrovirens examined occurred in silty loam, while 88% of Scirpus georgianus examined occurred in silty loam. There were 31 families that were found

ii

within 30 m of *S. atrovirens*, and 16 families that were found within 30 m of *S. georgianus*. Poaceae had the highest percentage (29%) of plant species found within 30 m of *S. georgianus*. Cyperaceae had the highest percentage (24%) of plant species found within 30 m of *S. atrovirens*. Herbaceous perennials had the highest percentage (51%) of each type of plant species found within 30 m of *S. atrovirens*. Herbaceous perennials had the highest percentage (76%) of each type of plant species found within 30 m of *S. georgianus*. Native species had the highest percentage (90%) present compared to non native species (10%) of plant species found within 30 m of *S. atrovirens*. Native species had the highest percentage (85%) present compared to non-native species (15%) found within 30 m of *S. georgianus*. The Sorensen Index was used to measure the similarity in communities between *S. atrovirens* and *S. georgianus*. The Sorensen Index between the aggregate communities around each of the two species was 0.3. The Sorensen Index of 0.3 from this study indicates that the plant community was significantly different between the two species. *Scirpus atrovirens* and *Scirpus georgianus* are different from each other morphologically and ecologically.

Acknowledgements

I would like to thank Dr. Gordon Tucker for his help and guidance through this project. I sincerely appreciate the knowledge and support he has given me. He has been instrumental in answering all my questions from beginning to end of my thesis. I also would like to thank my committee member Dr. Janice Coons for her guidance. Dr. Janice Coons is an outstanding teacher, and her classes have taught me a lot. I worked with her during my freshman year of undergraduate, and she was the one who encouraged my interest in plants

In addition, I want to thank the curators of the EIU Stover-Ebinger herbarium, the University of Illinois Herbarium, and the Morton Arboretum for their loans of specimens used in this study. This study would not be possible without those specimens.

Table of Contents

ABSTRACT	.ii
ACKNOWLEDGEMENTS	.iv
LIST OF TABLES	vi
LIST OF FIGURES	.vii

INTRODUCTION	1
MATERIALS AND METHODS	3
RESULTS	4
DISCUSSION	6
REFERENCES	

LIST OF TABLES

Table 1. Timeline of species collection and data collection	9
Table 2. Soil type and how many Scirpus atrovirens	
and Scirpus georgianus were found at each location	10
Table 3. Soil type and how many Scirpus atrovirens	
and Scirpus georgianus from herbarium collections	.12
Table 4. Summary of occurrence of Scirpus atrovirens	
and Scirpus georgianus on various soil type	.15
Table 5. Species associated with collections of Scirpus atrovirens	
and Scirpus georgianus	16

LIST OF FIGURES

Figure 1. Counties where Scirpus atrovirens and Scirpus georgianus were
collected20
Figure 2. Image of a cluster of spikelets. Taken from gobotany.net
Figure 3. Image of a culm
Figure 4. Image of the rachilla which encloses the scale and achene23
Figure 5. Spikelet length (mm) for Scirpus atrovirens and Scirpus georgianus
Figure 6. Spikelet width (mm) for Scirpus atrovirens and Scirpus georgianus25
Figure 7. Rachilla length (mm) for Scirpus atrovirens and Scirpus georgianus
Figure 8. Scale length (mm) for Scirpus atrovirens and Scirpus georgianus
Figure 9. Scale width (mm) for Scirpus atrovirens and Scirpus georgianus
Figure 10. Culm width (mm) for <i>Scirpus atrovirens</i> and <i>Scirpus georgianus</i> 29
Figure 11. Plant height (cm) for Scirpus atrovirens and Scirpus georgianus
Figure 12. Achene length (mm) for Scirpus atrovirens and Scirpus georgianus
Figure 13. Achene width (mm) for Scirpus atrovirens and Scirpus georgianus32
Figure 14. Pie chart showing the families surrounding <i>Scirpus georgianus</i>
Figure 15. Pie chart showing the families surrounding <i>Scirpus atrovirens</i>
Figure 16. Pie chart showing the percentage of each type of plant species
found within 30 m of <i>Scirpus atrovirens</i> 35
Figure 17. Pie chart showing the percentage of each type of plant species
found within 30 m of <i>Scirpus georgianus</i>
Figure 18. Pie chart showing the percentage of native vs. non-native plant
species found within 30 m of <i>Scirpus atrovirens</i>
Figure 19. Pie chart showing the percentage of native vs. non-native plant
species found within 30 m of <i>Scirpus georgianus</i>

Introduction

Two closely related species of bulrush, *Scirpus atrovirens and Scirpus georgianus*, are widely distributed in Illinois. The two species are in Cyperaceae. Both are obligate wetland species and important in wetland delimitations and wetland restorations. The presence of either *S. atrovirens* or *S. georgianus* would indicate that a plant community is a legally regulated wetland. Both species have been regularly used in wetland restoration work in the Midwest. They are difficult to distinguish in the field, but readily distinguishable under magnification in the lab.

Aquatic and wetland vascular plants range from small sundew plants to large river and lake inhabiting pondweeds. Aquatic plants have developed similar special modifications to aid survival in a wet environment (Correll and Correll 1975). Such adaptations for certain plant species include presence of both underwater and floating leaves, deeply dissected leaves, thick waxy leaves, and specialized pollination mechanisms (Correll and Correll 1975). The ecosystems of aquatic and wetland habitats consist of characteristic ecotypes for each kind of system (Ssegawa and Kalema 2008).

The genus *Scirpus* consists of a large number of aquatic, grass- like species and is commonly known as bulrush. The genus has about 35 species, found mostly in temperate regions of Northern Hemisphere. The greatest diversity is in North America, where 12 species occur; there are 11 species in China and 5 in Europe (Liang & Tucker, 2009). These species are often planted to inhibit soil erosion and to provide habitat for waterfowl and other wildlife (Schuyler 1967). They usually have clusters of small, brown spikelets. The genus *Scirpus* is diagnosed by a combination of the following characteristics. The rachilla is a diminutive axis of a spikelet that

bears the florets. The achene is a small, dry, indehiscent one-seeded fruit. The achene does not receive a typical supply of vascular tissue (Chute 1930). It usually only has a single trace. A culm is the stem of any type of plant. A spikelet is a small or secondary spike having a varying number of reduced flowers each subtended by one or two scale-like bracts. Bristles are a stiff hairlike structure on plants. The filament of a plant is a slender stalk that bears and holds the pollen sacs (anthers). A complete description follows, based on Schuyler (1967) and Liang & Tucker (2009).

Green bulrush (*Scirpus atrovirens*) occurs in every county of Illinois. Habitats include wet prairies, wet clay prairies, wet sand prairies, wet dolomite prairies, sloughs in drier prairies, openings in floodplain forests, marshes, sedge meadows, seeps, edges of ponds and rivers, and drainage ditches (Flora of North America 2002). Grasslike leaves are broad linear and yellow green to dark green with rough edges (Mohlenbrock 1963). The blooming period occurs during early to mid-summer. The root system consists of rhizomes and fibrous roots (Schuyler 1967). There are many spikelets that are 5-10 mm long and 1-3 mm wide, and the pollination is by wind (Larridon et al 2011). The achene is tan to nearly white. There are as many as to 8 leaves per culm, and the culm is green and glabrous. The outer scale of each flower is ovate. The leaves are alternate and the venation of the leaf blades is parallel (Zhang et al. 2004). The stems are 3-angled, leafy, and 0.5-1.5 m long (Henrickson and Herbst 1988).

Georgia bulrush (*Scirpus georgianus*) has been found in moist meadows, shallow marshes, edges of wet forests, and ditches. It is a monocot with simple leaf type and an alternate leaf arrangement. It grows in dense, low tufts as high as 1.5 meters in height. The leaves are 6-12 per culm. The leaf blade is flat or rolled inwards at the edges. The leaf blade is 6-13 mm wide. Georgia bulrush spikelets are in clusters of 4-35. The inflorescence is terminal and branched at the tip of the plant (Zhang et al. 2004). Bristles are attached at the base of the achene. The

achenes are pale brown to almost white. Georgia bulrush filaments often persist long after the anthers have been shed (Mohlenbrock 2002). *Scirpus georgianus* occasionally hybridizes with *S. atrovirens* and *S. hattorianus* (Reutemann et al 2012).

Limited research has been done on *S. atrovirens* and *S. georgianus* regarding how the two species can be distinguished using various types of data. The objective of this study was to evaluate morphological and ecological distinctness of the species *S. atrovirens* and *S. georgianus* with aim toward discovering and describing other features to distinguish them reliably in the field.

Materials and Methods

The field collection and survey of this study was conducted in June-October 2012 and 2013 (Table 1). Fifty *S. atrovirens* and 50 *S. georgianus* were collected in the field at different counties in Illinois including Alexander, Bond, Boone, Carroll, Champaign, Clark, Clay, Clinton, Coles, Cook, Crawford, Cumberland, Douglas, Edgar, Edwards, Effingham, Jackson, Jasper, Jo Daviess, Kendall, Lake, LaSalle, Lawrence, Livingston, Macoupin, Marshall, Marion, Mason, McHenry, Mercer, Moultrie, Ogle, Pope, Richland, Rock Island, Saline, Schuyler, Shelby, Vermilion, Wabash, Washington, Whiteside, Will, Williamson, Woodford, and Union (Figure 1). The location site, latitude and longitude, soil type, and number of *S. atrovirens* and *S. georgianus* found at each site was collected. The county, herbarium, collector number, and USDA soil was recorded (Table 3). The latitude and longitude or the township range section of a specimen was recorded as well (Table 3). The summary of occurrence of *Scirpus atrovirens* and *Scirpus georgianus* on various soil type was recorded (Table 4). The species were later examined under a dissecting microscope (AmScope model SM-3BZ-80S) to record the

morphological characteristics. Eighty plants were examined for *Scirpus atrovirens* and *Scirpus georgianus*, respectively, including 30 specimens of each species used for measurement from Stover-Ebinger Herbarium at Eastern Illinois University in Charleston, IL, University of Illinois in Champaign herbarium, and the Morton Arboretum in Lisle, IL (Table 3). All measurements were recorded using an ocular micrometer at 30 X magnification. Parameters measured on both species were spikelet length/width (mm) (Figure 2), culm width (mm) (Figure 3), rachilla length (mm) (Figure 4), scale length/width (mm) (Figure 4), plant height (cm), and achene length/width (mm) (Figure 4). These parameters are correlated with being associated with *Scirpus* to distinguish characteristics. Measurements were taken on the middle for each parameter on every specimen *S. atrovirens* and *S. georgianus*. The specimens were pressed, and dried at 45C for 3-5 days, and stored in a steel herbarium cabinet after being collected. The plant species within 30 m of *S. atrovirens* and *S. georgianus* was recorded (Table 5). The morphological characteristics of the two species were compared using a t-test to determine significant differences. The means and standard errors were calculated for the morphological characteristics. The floristic quality index and the Sorensen index were calculated as well.

Results

Scirpus atrovirens was found mainly in the northern part of Illinois, while *Scirpus georgianus* was found mainly in the southern part of Illinois (Figure 1). There were 15 counties where both *S. atrovirens* and *S. georgianus* were located. Those counties were Clark, Clinton, Cook, Douglas, Effingham, Lawrence, Macoupin, Mason, Pope, Saline, Vermilion, Wabash, Washington, Will, and Woodford (Figure 1). *Scirpus atrovirens* had a larger mean spikelet length 8.1 ± 0.2 than *S. georgianus* 4.2 ± 0.2 (Figure 5). *Scirpus atrovirens* had a larger mean spikelet width 5.5 ± 0.1 than *S. georgianus* 2.8 ± 0.1 (Figure 6). *Scirpus atrovirens* had a larger mean rachilla length 4.4 ± 0.1 than *S. georgianus* 3.1 ± 0.1 (Figure 7). *Scirpus atrovirens* had a larger mean scale length 1.8 ± 0.1 than *S. georgianus* 1.4 ± 0.1 (Figure 8). *Scirpus atrovirens* had a larger mean scale width 0.9 ± 0.1 than *S. georgianus* 0.7 ± 0.1 (Figure 9). *Scirpus atrovirens* had a larger mean culm width 6.5 ± 0.1 than *S. georgianus* 4.3 ± 0.1 (Figure 10). Plant height did not show a significant difference between the two species (Figure 11). *Scirpus atrovirens* had a larger mean achene length 1.2 ± 0.1 than *S. georgianus* 0.7 ± 0.1 (Figure 12). *Scirpus atrovirens* had a larger mean achene width 0.7 ± 0.1 than *S. georgianus* 0.4 ± 0.1 (Figure 13).

The plant communities/habitats that *S. atrovirens* was found included wetlands, open grassy fields, marshes, edge of streams, floodplain forest, edge of lake, flatwoods, lowland field, streambank, and wet depression (Table 2). The plant communities/habitats that *S. georgianus* was found included open grassland, prairie restoration, floodplain forest, wet field, edge of deciduous forest, edge of pond, mesic upland, and mesic woodland (Table 2). Seventy- nine percent of *Scirpus atrovirens* examined occurred in silty loam, while 88% of *Scirpus georgianus* examined occurred in silty loam (Table 4).

Sixty one different plant species were found within 30 m of *S. atrovirens*, and 34 different plant species that were found within 30 m of *S. georgianus* (Table 5). Only five plant species: *Glyceria striata, Phalaris arundinacea, Agrostis alba, Juncus dudleyi,* and *Carex lupulina* were common (Table 5). There were 16 families that were found within 30 m of *S. georgianus* (Figure 14), and 31 families that were found within 30 m of *S. atrovirens* (Figure 15). Poaceae had the highest percentage (29%) of plant species found within 30 m of *S. georgianus* (Figure 14). Asteraceae had the second highest percentage (15%) of plant species found within 30 m of *S. georgianus* (Figure 14). Cyperaceae had the highest percentage (24%) of plant species found within 30 m of *S. atrovirens* (Figure 15). Asteraceae had the second highest percentage (10%) of plant species found within 30 m of *S. atrovirens* (Figure 15).

plant species found within 30 m of *S. atrovirens* (Figure 15). Herbaceous perennials had the highest percentage (51%) of each type of plant species found within 30 m of *S. atrovirens* (Figure 16). Sedges had the second highest percentage (24%) of each type of plant species found within 30 m of *S. atrovirens* (Figure 16). Herbaceous perennials had the highest percentage (76%) of each type of plant species found within 30 m of *S. georgianus* (Figure 17). Trees had the second highest percentage (9%) of each type of plant species found within 30 m of *S. georgianus* (Figure 17). Native species had the highest percentage (90%) present compared to non native species (10%) of plant species found within 30 m of *S. atrovirens* (Figure 18). Native species had the highest percentage (85%) present compared to non-native species (15%) found within 30 m of *S. georgianus* (Figure 19).

Discussion

There was a significant difference found in some morphological characteristics between Green bulrush and the Georgia bulrush. Spikelet length, spikelet width, rachilla length, scale length, scale width, achene length, achene width, and culm width were all larger in *Scirpus atrovirens* compared to *Scirpus georgianus*. A few parameters were correlated as well. A large achene length/width tended to have a large scale length/width, as a small achene length/width tended to have a small scale length/width. *Scirpus atrovirens* was indicative of being found within 30 m of Cyperaceae and Asteraceae. Herbaceous perennials and sedges were the type of plants found near *S. atrovirens. Scirpus georgianus* was indicative of being found within 30 m of Poaceae and Asteraceae. Herbaceous perennials and trees were the type of plants found near *S. georgianus*. Both species were surrounded by native plants. Most collections of both species

occurred on silty loam, and no difference in habitat with regard to soil could be shown in this study.

Scirpus atrovirens spikelets are ovoid or narrowly ovoid. The spikelets are 5-10mm long. The scales are dark brown and persistent about 1.2-2.1 mm long. The achenes are mostly 1-1.3 mm long. Achenes are pale brown to almost white, elliptic or obovate in outline, plumply trigonous or plano-convex. The perianth bristles are persistent. The scales are dark brown with pale midribs, elliptic or broadly elliptic (Flora of North America 2002). The summit of the sheath is V-shaped (Lagrange et al 2011). The sheath of the Green bulrush has slightly raised cross connections between the veins (Mohlenbrock 1963).

Scirpus georgianus scales are reddish-brown or dark brown about 1-1.8 mm long. The spikelets are sessile, ovoid, and between 3-6 mm long. Achenes are pale brown to almost white, elliptic or obovate in outline, plumply trigonous or plano-convex. The achenes are 0.6-1.2 mm long. *Scirpus georgianus* is distinctive in having the perianth bristles absent (Flora of North America 2002). *Scirpus atrovirens* has been depicted as slightly more robust plant than *Scirpus georgianus* (Mohlenbrock 1963).

The Sorensen Index was used to measure the similarity in communities between *S*. *atrovirens* and *S. georgianus*. The Sorensen Index between the aggregate communities around each of the two species was 0.3. In the study done by Dalirsefat et al. (2009), the calculated Sorensen index from the study was 1.00 which showed that the similarity of habitats were highly related. The Sorensen Index of 0.3 from this study indicates that the plant community was significantly different between the two species. The floristic quality index is an indication of native vegetative quality of an area. An index of 1-19 indicates low vegetative quality. Wetlands

with a FQI of 20 or greater are considered high quality aquatic resources. The floristic quality index for the plant species found within 30 m of *S. atrovirens* was 25.1, which indicates that there were high quality aquatic resources. The floristic quality index for the plant species found within 30 m of *S. georgianus* was 18.8, which indicates that there was low vegetative quality.

The findings in this study added additional characteristics to be used to distinguish between *Scirpus atrovirens* and *Scirpus georgianus*. Using a 20 X hand lens, one could easily identify several morphological differences, which include spikelet length/width, culm width, and plant height (in addition to presence/absence of perianth bristles, which has traditionally been used). Furthermore, the ecological differences found between *S. atrovirens* and *S. georgianus* will assist in field identification. The ecological differences in the field could be assessed with the plants found within 30 m of *S. atrovirens* and *S. georgianus* mentioned in this study. Examining the plant species within 30 m of *S. atrovirens* and *S. georgianus* would help with identifying which species is present in that area. For example, referring to Figures 14 and 15, *Scirpus georgianus* typically occurs in locations with about 29% Poaceae and only 3% other Cyperaceae. Contrastingly, around *Scirpus atrovirens*, about 8% Poaceae and 24% Cyperaceae is the typical composition.

Future studies should examine additional characteristics, such as the leaf sheath, bract, involucral leaf, filament, and anther. These characteristics could be examined, because they are common among *Scirpus* and might show differences among length and width measurements. Studies in the future could also look at the Green bulrush and the Georgia bulrush in different states to compare if the differences between the species shown in this study.

|--|

June 2012-October 2012	Collect Scirpus atrovriens and Scirpus
	georgianus at different counties in Illinois
November 2012-January 2013	Record morphological data on species
	collected from different counties in Illinois
January 2013-April 2013	Record morphological data on species
	collected from herbariums at Eastern Illinois,
	University of Illinois, and Morton Arboretum
June 2013-October 2013	Collect Scirpus atrovriens and Scirpus
	georgianus at different counties in Illinois
November 2013-January 2014	Record morphological data on species
	collected from different counties in Illinois
January 2014-March 2014	Record morphological data on species
	collected from herbariums at Eastern Illinois,
	University of Illinois, and Morton Arboretum

Table 2. Soil type and how many *Scirpus atrovirens* and *Scirpus georgianus* were found at each location. Soil types determined using online data provided by Natural Resources Conservation Service (2014).

County	Location	Latitude	Longitude	USDA	Number of	Number of
				Soil	Scirpus	Scirpus
Alexander	edge of	37.0053	-89.1764	Camden silt	anovirens	3
1 inchaireoi	pond	01100000	0,11,01	loam		5
Bond	marshes	38.9989	-89.5736	Shoals Silt	1	
				Loam		
Boone	streambank	42.3347	-88.8612	Hurst Silt	1	
0 11	1 6	42.0044	00.1567	Loam	1	
Carroll	edge of	42.0944	-90.1567	Sawmill	1	
	streams			Loam		
Champaign	lowland	40 1164	-88 2433	Marseilles	2	
Champungh	field	1011101	00.2 100	Silt Loam	_	
Clark	wet field	39.2992	-87.9925	Ozaukee	1	3
				Silt Loam		
Clay	flatwoods	38.6689	-88.4856	Marseilles	2	
				Silt Loam		
Clinton	open	38.6056	-89.6820	Camden silt	1	3
0.1	grassland	20.4061	00.17(1			
Coles	open	39.4961	-88.1/61	Hurst Silt	4	
Cook	floodplain	41 6028	-87 7439	Sawmill	2	2
COOK	forest	41.0020	01.1437	Silty Clay	2	2
				Loam		
Crawford	prairie	39.0053	-87.7391	Marseilles		3
	restoration			Silt Loam		
Cumberland	wet field	39.3194	-88.4528	Hurst Silt	1	2
		2 0 40 4 7	00.00.01	Loam		
Douglas	wet field	39.6847	-88.3064	Frankfort	1	4
				Silty Clay		
Edwards	marshes	38 3775	-88 0561	Marseilles	2	
Luwarus	marsnes	30.3773	-00.0501	Silt Loam	2	
Effingham	open	39.1200	-88.5433	Camden silt	2	2
e	grassland			loam		
Jackson	open	37.6175	-89.2089	Ozaukee	1	
	grassland			Silt Loam		
Jasper	mesic	39.0467	-88.3164	Camden silt		2
	woodland	10.0505		Ioam		
Lake	marshes	42.3636	-87.8447	Shoals Silt	2	
		1		Loam		

LaSalle	streambank	41.3455	-88.8425	Ozaukee Silt Loam	1	
Lawrence	open grassland	38.7169	-87.8614	Camden silt loam	2	4
Livingston	flatwoods	41.0233	-88.3061	Marseilles Silt Loam	2	
Macoupin	floodplain forest	39.4464	-89.7809	Shoals Silt Loam	1	1
Marion	mesic upland	38.6269	-88.9456	Hurst Silt Loam		3
Mason	wet field	40.3000	-90.0609	Camden silt loam	1	1
McHenry	open grassland	42.1655	-88.2942	Hurst Silt Loam	2	
Moultrie	edge of deciduous forest	39.5994	-88.6078	Camden silt loam		1
Pope	open grassland	37.4989	-88.5878	Shoals Silt Loam	2	2
Richland	edge of pond	38.7308	-88.0853	Hurst Silt Loam		1
Rock Island	flatwoods	41.5094	-90.5787	Camden silt loam	2	
Saline	marshes	37.7383	-88.5406	Shoals Silt Loam	2	1
Schuyler	mesic upland	40.1211	-90.5631	Camden silt loam		2
Vermilion	wet field	40.1244	-87.6300	Hurst Silt Loam	2	2
Wabash	wet depression	38.4108	-87.7614	Ozaukee Silt Loam	1	
Washington	open grassland	38.5285	-89.1316	Camden silt loam	1	2
Will	open grassland	41.5894	-88.0578	Hurst Silt Loam	3	1
Williamson	edge of pond	37.7306	-88.9331	Shoals Silt Loam		2
Woodford	floodplain forest	40.7214	-89.2728	Camden silt loam	4	2
Union	mesic woodland	37.4603	-89.2470	Ozaukee Silt Loam		1

Table 3. Soil types from herbarium collections used in the current study. Specimens limited to those with precise label data (latitude and longitude, or Township-Range-Section) that could associated with mapped soil types, using online resource provided by Natural Resources Conservation Service (2014). (SG= *S. georgianus*, SA= *S. atrovirens*)

	Collector-	Herbarium					
County	number		Latitude	Longitude	TRS	USDA Soil	Species
					T16S	Darwin Silty	
Alexander	Hill 31787	ILLS			R2W S12	Clay	SG
A1 1	Basinger	ньс			T16S	Alvin Sandy	SC
Alexander	10/45	ILLS			R2W S16	Loam	<u>SG</u>
Clorit	Tuelter 11710	ЕПІ	20 4222	87.0042		Camden silt	SG
Clark	Tucker 11/10	EIU	39.4323	-87.9042	T10N	Stov Silt	20
Clark	Tucker 11763	FIII			R12W S2	L oam	SG
	1 dekei 11765	LIC			R12 W 52	Shoals Silt	50
Clark	Tucker 14175	EIU	39.2043	-87.9292		Loam	SG
		210	0712010	0117272	T12N	Stov Silt	
Clinton	Tucker 11765	EIU			R13W S4	Loam	SG
					T1N R4W	Hurst Silt	
Clinton	Ebinger 28738	EIU			S28	Loam	SG
						Sawmill	
					T41N R9E	Silty Clay	
Cook	Stoynoff 552	MOR			S/2 S19	Loam	SA
						Sawmill	
a 1	a	1.000			T51N R7E	Silty Clay	G A
Cook	Stoynoff 515	MOR			S/3 S17	Loam	SA
	XX7'11 1					Frankfort	
Cook	wilneim	MOP	41 5717	87 8677		Silty Clay	SG
COOK	Tueker	MOK	41.3717	-87.8077		Shoala	50
Cumborland	1 UCKEI 15708	EIII	20 2227	99 1954		Loom	SG
Cumbertanu	13708	LIU	39.2221	-00.1034	TON D7E	LUaiii	20
Cumberland	Ebinger 27340	FILI			19N K/E S/1	Shoals Loam	SG
Cumbertand	Longer 27540				541	Ozaukee Silt	50
DuPage	Sturner 481	MOR	41 8169	-88 0484		Loam	SA
2 01 080					T54N R6E	Ozaukee Silt	
DuPage	Sturner 475	MOR			S/4 S18	Loam	SA
					T54N R8E	Ozaukee Silt	
DuPage	Sturner 439	MOR			S/3 S17	Loam	SA
						Drummer	
					T17N R3E	Silt Clay	
Edgar	Ebinger 13947	EIU			S3	Loam	SA
						Drummer	
Edeen	FI : 12075	FIL			T11N R6E	Silt Clay	C A
Eagar	Ebinger 13875	EIU			54	Loam	SA
					T16N	Drummer Silty Clay	
Edgar	Ebinger 8710	FIL			110IN R12W/822	Loam	SA
Lugai	Longer 0/19				N12W 002	LUain	ы

					T6N R9E	Darmstadt	
Jasper	Edgin 417	EIU			S27 NE/4	Silt Loam	SG
					T8N R8E	Racoon Silt	
Jasper	Ebinger 27940	EIU			S 31	Loam	SG
						Racoon Silt	
Jasper	Kessler 238	EIU	38.9167	-88.2000		Loam	SG
						Racoon Silt	
Jasper	Tucker 13633	EIU	38.9367	-88.1875		Loam	SG
					T4S	Hurst Silt	
Jasper	Tucker 14561	EIU			R10W S3	Loam	SG
					T2N R6W		
Jasper	Kessler 240	EIU			S18	Shoals Loam	SG
					T26N R2E	Sparta	
Jo Daviess	Ebinger 26662	EIU			S29	Loamy Sand	SA
						Drummer	
L D I		FIL			TT/N	Silty Clay	G A
Jo Daviess	Ebinger 8620	EIU			R12W S33	Loam	SA
						Drummer	
L D '	F1 : 0010	FIL			TT/N	Silty Clay	C A
Jo Daviess	Ebinger 8812	EIU			R14W S31	Loam	SA
	0 1 1 1				T21N	Drummer	
IZ	Schulenberg	MOD			131N	Silty Clay	S A
Kendall	/3-819	MOR			R13E S20	Loam	SA
	C - 11 1				T24NDCE	Drummer	
IZ	Schulenberg	MOD			134N K6E	Silty Clay	S A
Kendali	/0-813	MOR			518	Loam	SA
	C - 11 1				T27N D7E	Drummer	
Kandall	Schulenberg	MOD			13/N K/E	Silty Clay	S A
Kendan	73-831 El:	MOR			510 T22N	Loam	SA
T G 11	Ebinger	FIL			133N	Marseilles	G 4
LaSalle	13092	EIU			R6E \$31	Silt Loam	SA
					T34N R4E	Marseilles	G 4
LaSalle	Ebinger 13554	EIU			S29	Silt Loam	SA
						Ava Silt	
Marion	Murphy 2927	ILLS	38.7013	-89.0975		Loam	SG
						Cisne-Huey	
Marion	Murphy 2939	ILLS	38.6599	-89.1050		Silt Loam	SG
						Silty	
Marion	Murphy 2971	ILLS	38.5802	-89.1093		Orthents	SG
					T14S		
Marion	Tucker 14130	EIU			R3W S11	Shoals Loam	SG
				_		Marseilles	
Marshall	Murphy 5075	ILLS	40.9907	-89.4549		Silt Loam	SA
	Ebinger				T32N	Marseilles	
Marshall	13502	EIU			R2E S27	Silt Loam	SA
						Marseilles	
Marshall	Murphy 5076	ILLS	40.9907	-89.4549		Silt Loam	SA
	Phillippe					Stronghurst	
Mercer	40839	ILLS	41.1003	-90.6071		Silt Loam	SA

	Phillippe					Fayette Silt	
Ogle	40701	ILLS	41.9948	-89.4703		loam	SA
						Belknap Silt	
Richland	Hill 38917	ILLS	38.7145	-88.1135		Loam	SG
					T19N	Holton Silt	
Saline	Hill 30768	ILLS			R14W S20	Loam	SA
						Holton Silt	
Saline	Hill 38085	ILLS	38.8305	-88.4218		Loam	SG
					T9s R6E	Colp Silt	
Saline	Hill 32373	ILLS			S11 NW/4	Loam	SG
					T1N R2W	Cisne silt	
Schuyler	Rebman 2947	ILLS			S 8	loam	SG
					T12N R5E		
Shelby	Ebinger 24114	EIU			S 7	Miami Loam	SA
					T28N	Ipaya Silt	
St Clair	Hill 34325	ILLS			R4W S29	Loam	SA
						Wakeland	
St. Clair	Hill 34336	ILLS	38.5458	-89.8400		Silt Loam	SA
					T13S		
	Basinger				R2W S13	Menfro Silt	
Union	10761	ILLS			NW/4	Loam	SG
	Phillippe					Shaffton	
Vermilion	27576	ILLS	40.0708	-87.5750		Loam	SG
					T2S	Alford Silt	
Wabash	Ebinger 28784	EIU			R13W S1	Loam	SG
					T1S R5W	Hurst Silt	
Washington	Ebinger 27599	EIU			S22 NE/4	Loam	SG
					T3S R7W	Hurst Silt	
Washington	Ebinger 27601	EIU			S24 NE/5	Loam	SG
	Phillippe					Ogle Silt	
Whiteside	29086	ILLS	41.9000	-90.0160		Loam	SA
						Elliott Silty	
Will	Murphy 5240	ILLS	41.3165	-87.7993		Clay Loam	SA
					T40N R7E	Elliot Silty	
Will	Murphy 5248	ILLS			S22	Clay Loam	SA
						Bonnie Silt	
Williamson	Hill 34659	ILLS	37.8166	-88.9583		Loam	SG
						Huntsville	
Woodford	Marcum 5661	ILLS	40.6569	-89.1306		Silt Loam	SA
						Ipava Silt	
Woodford	Murphy 2205	ILLS	40.7869	-89.3545		Loam	SA

Table 4. Summary of occurrence of Scirpus atrovirens and Scirpus georgianus on various soiltypes.

Soil Type	Scirpus atrovirens	Scirpus georgianus
Loam	1	5
Clay Loam or Silty Clay Loam	15	4
Silt Loam (or Silty Orthents)	63	70
Sandy Loam or Loamy Sand	1	1

Table 5. Species associated with collections of *Scirpus atrovirens* and *S. georgianus*. Values for Coefficient of Conservatism (**CC**) and Wetness are those provided by Taft et al. (1997) for floristic analysis of Illinois plant communities.

Family	Scientific Name	Common Name	CC	Wetness	S.atrovirens	S.georgianus
Alismataceae	Alisma	American	2	-5	Х	
	subcordatum	water plantain				
Amaranthaceae	Amaranthus	Tall waterhemp	1	-5	Х	
	tuberculatus					
Apiaceae	Daucus carota	Wild Carrot	0	4		Х
Apocynaceae	Asclepias	Swamp	4	-5	Х	
	incarnata	Milkweed				
Araceae	Lemna minor	Common	3	-5		Х
		duckweed				
Araceae	Wolffia	Brazilian	6	-5		Х
	brasiliensis	watermeal				
Araliaceae	Aralia racemosa	American	8	5	Х	
		spikenard				
Asteraceae	Achillea	Common	0	3		Х
	millefolium	Yarrow				
Asteraceae	Erigeron	Philadelphia	3	-3	Х	
	philadelphicus	fleabane				
Asteraceae	Eupatorium	Spotted Joe-	5	-5	Х	
	maculatum	Pye Weed				
Asteraceae	Helenium	Common	3	-4	Х	
	autumnale	Sneezeweed				
Asteraceae	Latris	Prairie Blazing	6	1	Х	
	pycnostachya	Star				
Asteraceae	Oligoneuron	Riddell's	7	-5	Х	
	riddellii	goldenrod				
Asteraceae	Solidago	Giant	3	-3	Х	
	gigantea	goldenrod				
Asteraceae	Solidago	Grass-Leaved	3	-2		X
	graminifolia	Goldenrod				
Asteraceae	Solidago juncea	Early	4	5		X
		Goldenrod				
Asteraceae	Solidago rugosa	Wrinkleleaf	8	-1		X
		Goldenrod				
Asteraceae	Vernonia	Missouri	5	-1		X
	missurica	ironweed				
Balsaminaceae	Impatiens	Common	2	-3	X	
	capensis	Jewelweed				

Ceratophyllaceae	Ceratophyllum	Coontail	3	-5	X	
	demersum					
Cornaceae	Cornus	Alternateleaf	7	5	X	
	alternifolia	dogwood				
Cornaceae	Cornus	Roughleaf	2	0	X	
	drummondii	dogwood				
Cyperaceae	Carex cristatella	Crested Sedge	3	-4	X	
Cyperaceae	Carex frankii	Frank's sedge	4	-5	X	
Cyperaceae	Carex	Limestone	2	-4	X	
	granularis	Meadow Sedge				
Cyperaceae	Carex	Bottlebrush	6	-5	Х	
	hystericina	sedge				
Cyperaceae	Carex lacustris	Hairy sedge	6	-5	X	
Cyperaceae	Carex lupulina	Hop sedge	5	-5	X	
Cyperaceae	Carex lupulina	Hop sedge	5	-5	X	Х
Cyperaceae	Carex stricta	Upright Sedge	5	-5	Х	
Cyperaceae	Carex	Blunt Broom	3	-4	Х	
51	tribuloides	Sedge				
Cyperaceae	Carex	Fox Sedge	3	-5	Х	
51	vulpinoidea	e				
Cyperaceae	Schoenoplectus	Softstem	4	-5	X	
	tabernaemontan	bulrush				
	i					
Cyperaceae	Scirpus cyperinus	Woolgrass	5	-5	X	
Cyperaceae	Scirpus fluviatilis	River Bulrush	3	-5	X	
Cyperaceae	Scirpus lineatus	Drooping	3	-5	X	
		Bulrush				
Cyperaceae	Scirpus	Rufous Bulrush	3	-5	Х	
	pendulus					
Equisetaceae	Equisetum	Field Horsetail	0	0	X	
_	arvense					
Fabaceae	Cassia	Partridge Pea	1	4		Х
	fasciculata					
Fabaceae	Lathyrus	Marsh pea	7	-5	X	
	palustris	-				
Fagaceae	Quercus bicolor	Swamp White	7	-4		Х
C	~	Oak				
Fagaceae	Quercus	Bur Oak	5	1		Х
	macrocarpa					
Hypericaceae	Hypericum	St John's wort	0	-5	X	
	perforatum					
Juncaceae	Juncus dudleyi	Dudley's Rush	4	0	X	Х
Juncaceae	Juncus effusus	Common rush	4	-5		Х
Juncaceae	Juncus nodatus	Common rush	6	-5		X
Lamiaceae	Lycopus	American	3	-5	X	
	americanus	Bugleweed				

Lamiaceae	Mentha arvensis	Wild Mint	4	-1	Х	
Lythraceae	Lythrum alatum	Winged	5	-5	Х	
		Loosestrife				
Molluginaceae	Mollugo	Carpetweed	0	0	Х	
	verticillata	-				
Oleaceae	Fraxinus	Green ash	2	-3	Х	
	lanceolata					
Oleaceae	Fraxinus	Red ash	5	-3	Х	
	pennsylvanica					
Onocleaceae	Onoclea	Sensitive fern	5	-3	Х	
	sensibilis					
Osmundaceae	Osmunda regalis	Royal fern	8	-5	Х	
Penthoraceae	Penthorum	Ditch	2	-5		Х
	sedoides	Stonecrop				
Poaceae	Agrostis alba	Redtop	0	-3	X	X
Poaceae	Agrostis	Redtop	0	-3	Х	
	gigantea					
Poaceae	Calamagrostis	Bluejoint	3	-5		Х
	canadensis					
Poaceae	Dichanthelium	Deertongue	4	-3		Х
	clandestinum					
Poaceae	Elytrigia repens	Couch grass	0	3	Х	
Poaceae	Glyceria striata	Fowl	4	-5	Х	Х
		Mannagrass				
Poaceae	Hordeum	Foxtail barley	0	-1		Х
	jubatum					
Poaceae	Leersia	Rice Cutgrass	3	-5		Х
	oryzoides					
Poaceae	Panicum	Switchgrass	4	-1		Х
	virgatum					
Poaceae	Phalaris	Reed	0	-4	Х	Х
	arundinacea	Canarygrass				
Poaceae	Poa trivialis	Rough	0	-3	Х	
		bluegrass				
Poaceae	Spartina	Prairie	4	-4		Х
	pectinata	cordgrass				
Poaceae	Sphenopholis	Slender	5	0		Х
	intermedia	wedgescale				
Polygalaceae	Polygala	Purple	5	3		Х
	sanguinea	Milkwort				
Polygonaceae	Polygonum	Spotted	0	-3	Х	
	persicaria	ladysthumb				
Polygonaceae	Rumex crispus	Yellow Dock	0	-1	Х	
Primulaceae	Lysimachia	Lanceleaf	6	0		Х
	lanceolata	Loosestrife				
Kanunculaceae	Caltha palustris	Yellow Marsh	7	-5	Х	

		Marigold				
Ranunculaceae	Clematis	Love vine	3	0	Х	
	virginiana					
Rosaceae	Fragaria	Virginia	2	1		Х
	virginiana	Strawberry				
Rosaceae	Potentilla	Common	3	4		Х
	simplex	Cinquefoil				
Rubiaceae	Cephalanthus	Common	4	-5		Х
	occidentalis	Buttonbush				
Rubiaceae	Galium	Stiff marsh	6	-5	Х	
	tinctorium	bedstraw				
Salicaceae	Populus	Eastern	2	-1	X	
	deltoides	cottonwood				
Sparganiaceae	Sparganium	Broadfruit bur-	5	-5	X	
	eurycarpum	reed				
Thelypteridaceae	Thelypteris	Marsh fern	7	-4	Х	Х
	palustris					
Tiliaceae	Tilia americana	American	5	3	Х	
		basswood				
Typhaceae	Typha latifolia	Common	1	-5	Х	
		Cattail				
Urticaceae	Laportea	Wood-nettle	2	-3	Х	
	canadensis					
Verbenaceae	Verbena hastata	Blue Vervain	3	-4	Х	
Verbenaceae	Verbena	White Vervain	3	-1	Х	
	urticifolia					
Violaceae	Viola	Sand Violet	6	-2		X
	fimbriatula					
Vitaceae	Vitis riparia	Frost grape	2	-2	Х	
Vitaceae	Vitis vulpina	Fox Grape	4	-2		X

Figure 1. Counties where *Scirpus atrovirens* and *Scirpus georgianus* were collected. Taken from plants.usda.gov/

Figure 2. Image of a cluster of spikelets. Taken from gobotany.net.

Figure 3. Image of a culm. Taken from Flora of North America.

Figure 4. Image of the rachilla which encloses the scale and achene. Taken from Flora of North America.

Figure 5. Spikelet length (mm) for *Scirpus atrovirens* (minimum length: 5 mm, maximum length: 10 mm) and *Scirpus georgianus* (minimum length: 3 mm, maximum length: 6 mm). Means ± standard errors. N=80, P<0.000.

Figure 6. Spikelet width (mm) for *Scirpus atrovirens* (minimum width: 5 mm, maximum width: 8 mm) and *Scirpus georgianus* (minimum width: 2 mm, maximum width: 3 mm). Means \pm standard errors. N=80, P<0.000.

Figure 7. Rachilla length (mm) for *Scirpus atrovirens* (minimum length: 3 mm, maximum length: 5 mm) and *Scirpus georgianus* (minimum length: 2 mm, maximum length: 4 mm). Means \pm standard errors. N=80, P<0.000.

Figure 8. Scale length (mm) for *Scirpus atrovirens* (minimum length: 1.6 mm, maximum length: 2.1 mm) and *Scirpus georgianus* (minimum length: 1.2 mm, maximum length: 1.5 mm). Means \pm standard errors. N=80, P<0.000.

Figure 9. Scale width (mm) for *Scirpus atrovirens* (minimum width: 0.7 mm, maximum width: 1.1 mm) and *Scirpus georgianus* (minimum width: 0.4 mm, maximum width: 0.8 mm). Means \pm standard errors. N=80, P<0.000.

Figure 10. Culm width (mm) for *Scirpus atrovirens* (minimum width: 6 mm, maximum width: 8 mm) and *Scirpus georgianus* (minimum width: 4 mm, maximum width: 5 mm). Means ± standard errors. N=80, P<0.000.

Figure 11. Plant height (cm) for *Scirpus atrovirens* (minimum height: 105 mm, maximum height: 110 mm) and *Scirpus georgianus* (minimum height: 104 mm, maximum height: 111 mm). Means ± standard errors. N=80, P=0.53.

Figure 12. Achene length (mm) for *Scirpus atrovirens* (minimum length: 1.1 mm, maximum length: 1.3 mm) and *Scirpus georgianus* (minimum length: 0.6 mm, maximum length: 0.8 mm). Means ± standard errors. N=80, P<0.000.

Figure 13. Achene width (mm) for *Scirpus atrovirens* (minimum width: 0.5 mm, maximum width: 0.8 mm) and *Scirpus georgianus* (minimum width: 0.3 mm, maximum width: 0.4 mm). Means ± standard errors. N=80, P<0.000.

Figure 14. Pie chart showing the families found within 30 m of S. georgianus.

Figure 15. Pie chart showing the families found within 30 m of *S. atrovirens*.

Figure 16. Pie chart showing the percentage of each type of plant species found within 30 m of *S. atrovirens*.

Figure 17. Pie chart showing the percentage of each type of plant species found within 30 m of *S. georgianus*.

Figure 18. Pie chart showing the percentage of native vs. non-native plant species found within 30 m of *S. atrovirens*.

Figure 19. Pie chart showing the percentage of native vs. non-native plant species found within 30 m of *S. georgianus*.

References

- Chute, Hettie. 1930. The morphology and anatomy of the achene. *American Journal of Botany* 17(8): 627-702.
- Correll, D. and H. Correll. 1975. Aquatic and wetland plants of southwestern United States. Vol. I and II. Stanford University Press, Stanford, CA.
- Dalirsefat, S., A. Meyer, and S. Mirhoseini. 2009. Comparison of similarity coefficients used for cluster analysis with amplified fragment length polymorphism markers in the silkworm, *Bombyx mori. Journal of Insect Science* 9: 1-8.
- Flora of North America. 2002. Magnoliophyta: Commelinidae (in part): Cyperaceae. New York, New York.
- Henrickson, J. and D. Herbst. 1988. *Uncinia* Pers. (Cyperaceae) in the Hawaiian Islands. *Pacific Science* 42: 3-4.
- Lagrange, A., M. Ducousso, P. Jourand, C. Majorel, and H. Amir. 2011. New insights into the mycorrhizal status of Cyperaceae from ultramafic soils in New Caledonia. *Canadian Journal of Microbiology* 57: 21-28.
- Larridon, I., M. Reynders, W. Huygh, K. Bauters, K. Van De Putte, M. Muasya, P. Boeckx, D. Simpson, A. Vrijdaghs, P. Goetghebeur. 2011. Affinities in *Cyperus* lineages (Cyperaceae) revealed using molecular phylogenetic data and carbon isotope analysis. *Botanical Journal of the Linnean Society* 167: 19-46.

- Liang, S. Y., & G.C. Tucker. 2010. *Scirpus* Linnaeus. *In*: Wu, C. Y., et al. (eds.), Flora of China 23: 171—174. Science Press, Beijing and Missouri Botanical Garden Press, St. Louis.
- Mohlenbrock, Robert. 1976. Sedges: Cyperus to Scleria. Southern Illinois University Press, Carbondale, IL
- Mohlenbrock, Robert. 1963. The Cyperaceae of Illinois. *American Midland Naturalist* 70(1): 1-46.
- Mohlenbrock, Robert. 2002, Vascular Flora of Illinois, Samuel Mead, Augusta, IL.
- Reutemann, A., L. Lucero, N. Guarise, and A. Vegetti. 2012. Structure of the Cyperaceae inflorescence. *Botanical Review* 78(2): 184-204.
- Schuyler, Alfred. 1967. A taxonomic revision of North American leafy species of *Scirpus*. *Proceedings of the Academy of Natural Sciences of Philadelphia* 119(1): 295-323.
- Ssegawa, P. and J. Kalema. 2008. Species communities and associations formed by the family Cyperaceae Juss. in some of Uganda's wetlands. *African Journal of Ecology* 46: 98-108.
- Taft, J.B., G.S. Wilhelm, D.M. Ladd, & L.A. Masters. 1997. Floristic Quality assessment for vegetation in Illinois: a method for assessing vegetation integrity. *Erigenia* 15: 3-95.
- Zhang, X., K. Wilson, and J. Bruhl. 2004. Sympodial structure of spikelets in the tribe Schoeneae (Cyperaceae). *American Journal of Botany* 91: 24-36.