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Abstract 

The cosmic microwave background explorer, COBE, and the 

Balloon Observations of Millimetric Extragalactic Radiation and 

Geophysics, BOOMERanG, have collected data from the universe and 

detected relic anisotropies indicative of one of the earliest events of 

the universe, decoupling. Hidden in the correlation between these 

temperature fluctuations is the signature of the global shape, or 

topology, of the early universe. It is possible to calculate the 

temperature fluctuations as due to primeval adiabatic densicy 

temperature fluctuations from the Sachs-Wolfe effect, which contains 

a topological term. Here we investigate some of the spaces and how 

they affect the microwave background. 

A large class of spaces can be understood with some tools of 

topology associated with the way curves and volumes divide a space. 

The three tools of interest are the Euler Characteristic, the Betti 

numbers and fundamental domains. We intend to demonstrate the 

relationship between topology and anisotropy by creating a general 

equation that contains a topological term based on a topological 

invariant, the Betti Numbers of a manifold, and a term based on the 

temperature fluctuations. 

We will also extend the work of Silk on classifying the finite flat 

spaces through the use of a new three-dimensional plotting 



technique. These graphs demonstrate the inadequacy of the current 

CMB data's topological predictive properties. As many shapes can 

produce the observed peaks. We will also extend the work of Inoue 

on classifying compact hyperbolic manifolds in two ways. First we 

demonstrate that the compact hyperbolic eigenmodes can be 

represented by a pF q function, and do not need to be calculated 

individually. Secondly, we extend the power spectrum plot the high 

angular resolution, large l, and compare compact hyperbolic 

manifolds to the observed peak in the BOOMERanG data at l = 200. 
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Introduction 

What is the shape of the space? What is the shape of the universe we live in? 

These questions are very difficult to even think about The spatial universe 

is three dimensional and hard to comprehend because it is just so big. The 

solution to this problem is very similar to a problem mankind has already 

solved, What is the shape of the Earth? Let's start there. Centuries ago, it 

was common to believe that the Earth was flat This notion seems silly today, 

but look out the window, when the surface of the Earth is examined in small 

pieces it seems very flat Early people wondered if the Earth went on 

forever, or if there was an edge. If it did have an edge, could they fall off? It 

is now obvious that the surface of the Earth is not flat, but nearly a sphere. It 

does not go on forever, but it does not have any edges, or boundaries. 

Theoretically, one could take a trip all the way around the Earth, thousands 

of miles and come back to the starting place. Could this happen in our 

universe, also? Could a spaceship be flown in a straight line away from the 

Earth and eventually find itself right back where it started? Would we even 

be able to tell we were back on the Earth, or would it look different to us after 

the trip? By combining what we know about the history of the universe, 

specifically the Big Bang, and topology, the study of shapes, the universe 

might take shape right before our eyes. 



The Early History of Cosmological Topology 

Is the universe finite or infinite, simply or multiply connected, 

orientable or not? Does it have holes? What is its global shape? 

These questions have been pondered for thousands of years. Many 

believed the answers to these questions were contained in Einstein's 

theory of General Relativity. This is not the case. General relativity 

deals only with local geometrical properties of the universe, such as 

curvature. It does not contain global information such as topology. 

(1) 

At the beginning of the Twentieth century, many finite spaces 

without boundaries had been discovered and classified; many of 

these spaces were of non-trivial topology. On a finite space without a 

boundary, light could travel completely around the universe and 

return to where it began, like a jet plane flying around the earth. 

This idea was very exciting. Imagine looking into the night sky and 

seeing light from our very sun coming back to us as starlight. 

Schwarzschild remarked (2] in 1900: "One could imagine that as a 

re~ult of enormously extended astronomical experience, the entire 

universe consists of countless identical copies of our Milky Way, that 

the infinite space can be partitioned into cubes each containing an 

exactly identical copy of our Milky Way. Would we really cling on to 

the assumption of infinitely many identical repetitions of the same 

world?" Schwarzschild's imaginary infinite universe could also be 

2 



described as a universe shaped as a three dimensional torus, or 

simply one Milky Way cube that is connected such that by exiting 

one side of the cube one will enter the other side. 

After Einstein's 1915 discovery of General Relativity, many 

believed the answers to these cosmological questions were contained 

in Einstein's new equations. This would not prove to be the case. 

General relativity deals only with local geometrical properties of the 

universe, such as curvature. Since Einstein's equations are coupled 

nonlinear partial differential equations, they describe only local 

geometrical properties of spacetime. They allow us to calculate the 

components of the curvature tensor at any non-singular point in 

spacetime. Einstein's equations do not fix the global structure of 

spacetime. More than one (and sometimes an infinite set of) 

topologically distinct global shapes correspond to any given metric 

solution of the field equations (1). 

Einstein believed that the universe must be finite and chose a 

sphere as the shape of. ~e universe for his static cosmological 

solution. In fact, he does not mention any other possible alternatives 

to the spherical case. In a letter to Weyl, Einstein writes: 

"Nevertheless I have like an obscure feeling which leads me to prefer 

the spherical model. I have a feeling that manifolds in which any 

closed curve can be continuously contracted to a point are the 
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simplest ones" [3] His choice of the sphere does not seem to be based 

on physical reasoning. 

Freidman and Lemaitre discovered non-static cosmological 

solutions that are now referred to as the big bang theory of the 

creation of the universe. This meant the universe had a beginning, 

and was not infinitely old. They also worked on the curvature of the 

universe, and they realized the cosmological constant's sign gave 

important information about the type of three dimensionaJ space we 

live on. A positive curvature would imply spherical, a negative 

curvature would imply a hyperbolic space, and a zero curvature 

would describe Euclidian space. Freidman was also able to show 

that one solution to Einstein's equations could describe several 

topological spaces. 

The development of the big bang theory and our understanding 

of the events that followed have put significant constraints on 

possible shapes of the universe. A great deal of work has been done 

on flat models of the universe [4,5,6, 7] and the study of compact 

hyperbolic models has begun[8,9,10]. The angular resolution with 

which we study the sky has gotten smaller and smaller and this 

improved data has supplied even greater constraints to the global 

shape. How these topics are related will be explored in the following 

chapters. 
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THE BEGINNING 

It is now generally accepted that the future of the universe must 

have been determined in the first few moments of the Big Bang. In 

the last twenty years, a convincing theory of the origin and evolution 

of the universe has developed, known as the standard cosmological 

model. Although there are other models, such as the Steady State 

theory, this is the most widely accepted. Imagine going back to the 

earliest of times, as close to the Big Bang as possible, and following 

the chain of events as the universe cools, expands, and takes shape. 
" 

The first time we have knowledge of is the Planck era 10-43 

seconds after the Big Bang. Before this time, it is widely believed that 

the four fundamental forces (gravity, electromagnetism, strong and 

weak) were unified, or acted as one force. As the universe expanded, 

it also cooled. This cooling caused the four forces to separate one by 

one from the combined force. This separating out is analogous to the 

phase changes a substance undergoes as it cools. Water can cool 

from 90° C to 10° C and its basic form will not change. When it 

reaches 0° C, it undergoes a phase change and will begin to change 

form. The forces stayed unified until a certain temperature, about 

1032 K, and then gravity separated from the other forces. This period 

is known as the Grand Unified Era, or GUT, and there was no 

difference between quarks and leptons. At 10-35 seconds after the Big 

Bang, the temperature of the universe was 1027 K and the strong force 
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"condensed out." The universe was now filled with quarks and many 

different types of leptons. At about this time the universe underwent 

inflation, growing in size by a factor of up to 1050• The size of the 

universe changed from smaller than a proton, to larger than a 

grapefruit. 

At 10-12 seconds after the Big Bang, the universe entered what is 

known as the Hadron era; because the hadrons were the dominant 

form of matter. The last "force phase change" took place as the weak 

force and the electromagnetic force developed separate qualities. 
" 

Quarks began to combine in threes to form protons and neutrons, but 

the temperature was still high enough that these baryons would 

collide and break back into quarks. The universe continued to 

expand and cool, when the temperature reached about 1013K, 

baryonic collisions were not energetic enough to smash themselves 

apart. The number of protons and neutrons stabilized and all quarks 

were now combined inside them. Lighter particles dominated the 

universe, Uke electrons, positrons, neutrinos and photons. In the 

next few seconds, electrons went through a similar creation and 

annihilation process as the hadrons, first they had enough energy to 

collide and break apart, but when the temperature of the universe 

went below 101° K, electrons and positrons lacked the energy to break 

apart and their number stabilized. 
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This marked the beginning of the radiation dominated era in the 

early universe. Photons and neutrinos contained most of the energy 

in the universe, and would for the next 300,000 years. At this point 

the universe was at a temperature of about 3000 K. Nuclear fusion 

had taken place in the first hour of the universe, creating deuterium, 

helium and possibly even lithium nuclei, but up until this point the 

universe had been too hot for electrons to be captured by these bare 

nuclei. The photons in the universe had too much energy to allow the 

electrons to bind to form atoms. About 300,000 years after the big 

bang, the energy of the photons dropped enough to allow atoms to 

form. This period is known as the Era of Recombination. Prior to this 

time period, the universe would have looked like the hot, glowing, 

opaque gas (like the sun) everywhere. The entire universe was a 

plasma. After recombination, hydrogen atoms would no longer 

interact with the lower energy photons. The temperature of the 

radiation and the matter had up until this point been the same. Now 

that they interacted much less frequeJ:?-tly, and their temperatures 

would begin to diverge. Photons that ha.a been previously bouncing 

from particle to particle could now travel freely though space. 

Suddenly, the universe was transparent. All observations made with 

radio telescopes can see back only to the moment of transparency. No 

matter how good the technology becomes, it is impossible to use 

electromagnetic waves to see farther in the past. 

7 



Parameters of the Universe 

In order to make predictions about the shape of the universe, it 

is very important to understand the physical limitations of the 

universe. These parameters will determine almost everything we 

know about the universe. The parameters are: the density of the 

baryons in the universe, the cosmological constant, the Hubble 

constant, the age of the universe, the temperature of the cosmic 

microwave background, and the density of the cold dark matter in 

the universe. 

The Hubble constant, developed by Edwin Hubble in 1919, 

measures the expansion rate of the universe. This "constant" has 

changed over time, so it is common to refer to Ho the expansion rate 

of the universe right now. The value of Ho is generally thought to be 

65 km/s/Mpc ± 15 km/s/Mpc. The Hubble constant is very useful 

in helping to produce dimensionless density parameter, n, using the 

following equation 

0 = 87tpG/3H2 (1) 

where p is the density and G is the gravitational constant. If 0 > 1, 

the density of matter in the universe is sufficient for expansion to be 

reversed (sometimes called the Big Crunch). If 0 = 1, the universe will 

expand at a slower and slower rate. If 0 < 1, the expansion will 
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continue forever and the universe will become colder (commonly 

called the Big Chill). 

The density of baryons, protons and neutrons, in the universe 

is Os = .03 ± 20o/o. This value is very small, and if the universe were 

only made of baryons, the Big Chill would be inevitable. There are 

other things that must be considered when finding the total density 

of the universe. Remember that not all matter in the universe is 

glowing, and is therefore very difficult to observe. This cold dark 

matter is thought to have a density in the following range, OcoM = 0 -
" 

0.97. The great uncertainty of this number is because it is hard to 

detect. Another number that helps determine the total density of the 

universe is the cosmological constant, A. This is the quantity that 

Einstein created in 1917 so that General Relativity would predict a 

static universe. Although the universe is now known to be 

expanding, the constant has remained, and now represents the 

energy density of a vacuum. The common prediction of this value is 

between 0 <A< 0.7. 

The parameter that is most accurately known is the 

temperature of the universe. It is measured from the cosmic 

microwave background radiation that permeates all of space. The 

accepted value is T = 2. 728K ± 0.1 %. The last parameter that ios 

important is the age of the universe. The current prediction about 

the age of the universe is based on the Hubble constant and the 
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density parameters. It is estimated to be about 12 billion years ± 2 

billion years since the Big Bang. 

It is amazing to think we have such great knowledge of the vast 

universe, but it is important to note the great uncertainty in these 

parameters. NASA is planning to launch two satellites in the next 

decade that should reduce the uncertainty of these numbers to less 

than lo/o. 
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Cosmic Microwave Background Radiation 

This point marks the end of the Radiation-dominated era of the 

universe and begins the Matter-dominated era of the universe. The 

radiation, freed from constant interaction with the matter, continues 

to expand with the universe. This expansion of the universe has 

caused the radiation to be stretched, or redshifted, by a factor of z = 

1000. Because of this, the photons have a wavelength of 10 cm and 

are now observable only in the microwave range of the 

electromagnetic spectrum. As the universe cooled, the radiation 
" 

cooled down from a recombination temperature of about 3000 K to 

the 2. 726 K observed today. Because this radiation existed 

everywhere in the early universe, it is detectable at approximately the 

same intensity from all parts of the sky. The radiation is cosmic, 

existing everywhere in space. There are about 400 photons of this 

radiation moving at the speed of light through every square centimeter 

of the universe at all times. It has filled all of space at all times since 

recombination. The radiation is given a special name, the cosmic 

microwave backgound (CMB) radiation. The discovery and 

understanding of the cosmic microwave background in 1964 has 

provided a great amount of new information about the universe. It 

has provided data about the temperature of the early universe, 
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z=lOOO recombination 

observer 

Figure 1: Photons Traveling from the Recombination Period [12] 

helped establish a time frame for the big bang, and it allowed 

astronomers to look back in time and conclude the universe was very 

homogenous and isotropic. 

Initial measurements of the cosmic microwave background 

proved difficult because the Earth's atmosphere is almost completely 

opaque to microwave frequencies. Good observations can only be 

made from balloons at very high altitudes, or, better yet, on orbiting 

spacecraft. The most accurate map of our entire sky was collected by 

the Cosmic Background Explorer (COBE) satellite, which was 

launched in 1989. 

All early predictions about the COBE data assumed that COBE 

would show that the CMB was smooth everywhere. The average 

temperature of the CMB has been accurately measured to 2. 726 K, 
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but it is not the same everywhere. Very small temperature 

fluctuations, on the magnitude of± 100 µK, have been detected (see 

Figure 2). The blue areas are cooler than the average temperature by 

about 10-4 K and the red areas are warmer than average by 10-4 K. 

The cooler regions would have been slightly denser than the warmer 

regions in the early universe. This means that at the time of 

recombination, the matter and radiation could not have been 

completely uniform. The density of the matter in the early universe 

was smooth, but not perfectly smooth. Little bumps in the matter 

distribution were like seeds for the formation of the large-scale 

structure of the universe. 

FIGURE 2: COBE map of temperature anisotropies in the CMB.[11] 

These denser areas, or clusters of matter, could have evolved into the 

large clusters of matter (galaxies) in today's universe. The COBE data 

biggest shortcoming is the angular resolution of its measurement, 
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about 7°. Substantial clusters of galaxies can fit into such a large 

measurement. 

An interesting effect occurs because of the cosmological 

horizon. Large chunks of matter will not begin to fall towards a 

wrinkle, or gravitational well, until the wrinkle reaches the horizon of 

the matter. Before that, the matter does not feel the gravitational 

effects. COBE does reveal the large scale wrinkles in the early 

universe before matter has had enough time to collect in the cooler 

regions. Examining widely separated angles from the COBE data only 

shows the primordial wrinkles because the distances between the 

wrinkles are too great for matter to have begun to feel gravity. 

When scales smaller than the horizon are examined the process 

of structure formation can be observed. The small-scale fluctuations 

are actually sound waves in the early photon baryon fluid . 

Gravitation squeezes the fluid together and the radiation pressure 

resists it. The fluid heats as it is compressed, when it expands the 

fluid gets cooler. Sound waves in radiation can be observed as hot 

and cold spots in the sky. Acoustic oscillations are created 
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Figure 3 : Spring model of Acoustic Oscillations[12} 

as the fluid settles into the gravitational wells, or large scale cold 

spots. The shorter the wavelength, or back and forth motion of the 

matter, the faster the fluid oscillates. (12) These oscillations 

produced the cosmic microwave background fluctuations that have 

been observed today. Because the distances between the hot and cold 

spots are smaller than the horizon, matter will have collected in the 

gravitational potential wells, creating structures that are observable 

today. 
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Topology Part 1: Topological Invariants 

A part of Topology deals with the general properties associated 

with the classification of all possible spatial shapes. The topology of 

a space consists of those properties that do not change when a 

surface is smoothly deformed. Examples of topological invariants 

include the Euler Characteristic, Betti number, connectivity, 

orientability, total curvature of the surface, and the number of holes 

and lrnots contained by the surface. The geometry of a space 

consists of the set of objects invariant under the action of symmetry. 
" 

Examples of geometric properties are area, distance, and angle 

measure. The geometry of a basketball changes when you blow it up 

from completely flat to sphere shaped. The size of the basketball 

changes, the surface area and volume increase and an angle drawn 

on the completely deflated basketball will become larger when the 

basketball is inflated. The inflation does not change the topology of 

the basketball. The universe has expanded in the same fashion as 

the inflated basketball. The data that mat be used to determine the 

shape of the universe is the Co~mic Microwave Background radiation 

given off billions of years ago. The geometry of the universe has 

most certainly changed as it has expanded during this time, but the 

topology will have stayed the same. 

It will be important to differentiate between local geometry and 

global topology. Local geometry are those properties observable in a 
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infinitesimally small region of the surface, while global topology refers 

to the surface as a whole. The sphere and the cube have the same 

global topologies, but their local geometry is different. 

There are many properties that must be considered when 

discussing the topology of an object. A surface is homogeneous if 

the local geometry is constant across the entire surface. A sphere or 

a plane is homogeneous, but a torus in not. Another important 

property of surfaces is whether it is bounded, or has an edge. A 

plane has no edges, but putting a hole in it will give it an boundary. 

Surfaces may also be classified as finite or infinite. A finite surface 

can be enclosed; an infinite surface goes on forever. While there are 

no boundaries on a sphere, it is finite. A surface is closed if it has no 

edges and is finite. The number of holes, or handles, in a surface is 

called the genus of the surface. 

In 1750, Leonhard Euler published a paper that invented the 

mathematics of topology. In this paper, he develops a fundamental 

value for classifying spaces called the Euler Characteristic. The 

Euler Characteristic, x, of a polyhedral surface is found by counting 

the vertices, faces and edges of the polyhedron and using the 

following formula: 

Vertices - Edges + Faces = x ( 1) 
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To find the Euler characteristic of a two dimensional square, consider 

the following diagram: 

Figure 4 : Euler Characteristic of a Square 

To find the Euler Characteristic of a circle, it is helpful to break the 

circle up into smaller sections, or tiles. The number or size of the 

tiles can be chosen arbitrarily, which will of course change the 

number of vertices, edges and faces, but the same Euler constant 

will always be reached. Dividing a shape into smaller non-

overlapping local sections, or triangulating the surface, will become 

very useful as the shapes become more complicated. 

Number of Vertices = 2 
Number of Edges = 3 
Number of Faces = 2 

v 
x.=2 - 3+2=1 

The Euler Characteristic of a circle is 1. 

Figure 5 : Euler Characteristic of a Circle with Two Tiles 
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CIRCLE WITH 3 TILES 

E 
Number of Vertices = 4 

F E 

V E---/.., F 
E F E E 

~ 

Number of Edges = 6 
Number of Faces = 3 

x=4-6+3=1 

Again, the Euler Characteristic of a circle is 1. 

Figure 6 : Euler Characteristic of a Circle with Three Tiles 

Topologically, the circle is the same as a square, which is easy to 

visualize, just stretch the edges of the circle until it is in the form of a 

square. Deformation does not change topological properties. 

The method of determining the Euler Characteristic remains 

the same for shapes in three dimensions or more. To find the Euler 

characteristic of a two dimensional square cube, consider Figure 7: 

CUBE 

Number of Vertices = 8 
Number of Edges = 12 
Number of Faces = 6 

x = 8-12 + 6 = 2 

The Euler Characteristic of a cube is 2. 

Figure 7 : Euler Characteristic of a Cube 

The Euler Characteristic of this complicated polyhedron also has a 

value of 2 . 

19 



POLYHEDRON 

Number of Vertices = 48 
Number of Edges = 72 
Number of Faces = 26 

x = 48 - 72 + 26 = 2 

The Euler Characteristic of this shape is also 2. 

Figure 8 : Euler Characteristic of a Polyhedron 

The cube and this polyhedron are topologically equivalent. Actually, 

the Euler Characteristic is an invariant for all simple polyhedra. 

Using the polyhedron from the previous example, it is easy to 

demonstrate, in Figure 6, that a sphere is topologically equivalent to 

the polyhedron by deformation. Because they are topologically the 

same, the Euler Characteristic of the sphere must also be 2. 

Figure 9 : Deformation of a Polyhedron into a Sphere 

Euler incorrectly predicted that all polyhedra would have an 

Euler Characteristic of 2. Antoine-Jean Lhuilier noticed this was not 

correct for a simple open-ended cylinder, or any solids 
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CYLINDER 

Number of Vertices = 0 
Number of Edges = 2 
Number of Faces = 2 

x=0-2+2=0 

The Euler Characteristic of a cylinder is 0. 

Figure 10 : Euler Characteristic of a Cylinder 

with holes in them. In 1813, Lhuilier published a paper introducing 

the number of holes, or the genus, into the Euler equation. 

'X = 2 - 2g (2) 

Where g represents the number of holes in an object. A more 

complicated surface with one hole is called a torus, or a donut shape. 

Imagine taking the ends of the simple cylinder and 

Figure 11 : Cylinder Deformed into a Torus 

wrapping them around until they fit together (Figure 11). This 

deformation of the cylinder should not change its topological 

properties, therefore, the Euler Characteristic of a torus should be 0. 

To find the Euler characteristic of a torus and a two-torus, consider 

Figure 12 and Figure 13: 
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TORUS 

Number ofVertices = 16 
Number of Edges = 32 
Number ofFaces = 16 

x = 16 - 32 + 16 = 0 

The Euler Characteristic of a torus is 0 . 

Figure 12 : The Euler Characteristic of a Torus 

TWO-TORUS 

Number of Vertices = 28 
Number of Edges = 60 
Number of Faces = 30 

x = 28 - 60 + 30 = -2 

The Euler Characteristic of a two- torus is -2. 

Figure 13 : The Euler Characteristic of a two-torus 

It is important to note that the shape of the object, the size of the 

hole, or the shape of the hole does not affect the topology. A donut is 

topologically equivalent to a coffee cup; they both have one hole, or a 

genus of one. 

Finally, surfaces may be orientable or non-orientable . If an 

object completes one trip around the surface and returns to the 

starting point reversed, like a mirror image, the surface is non-

orientable. A non-orientable surface is commonly referred to as 
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having a twist or a crosscap. Mobius strips and Klein Bottles are 

non-orientable, an example of a klein bottle is shown below in figure 

14. If all paths around the surface return and the traveler 

unchanged, the surface is orientable. 

Figure 14: Klein Bottle 

The sphere and torus are orientable. Orientable surfaces also have 

unique cross products. In a nonorientable surface, two people living 

on the same space might define the right hand rule in different 

directions. An orientable space could be defined as a space where all 

observers agree on the direction of the right hand rule. Orientability 

is a property of shapes that was not included in Euler's treatment of 

topological invariants, but it is included in a classification system 

developed by Betti in the 1800's. 
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Betti numbers are topological numbers that only depend upon 

the overall global topology of the manifold. Betti numbers can be 

used to classify a large class of differentiable metric spaces. Any 

linear combination of Betti numbers is also a topological invariant, 

and the most important of these is the alternating sum, which gives 

the Euler Characteristic in any dimension[ 15]. 

(3) 

/3o represents the number of connected components of any space, M, 

in N dimensions. Po must equal 1 when discussing the shape of the 

universe, another unconnected piece would not be detectable. If M is 

compact and orientable, then the Betti numbers are symmetric, that 

is for any pth Betti number, /k. 

/]p = ffe·p. (4) 

This is known as the Poincare' duality. Because of this, all /JN of 

orientable surfaces must also be equal to one. Moreover, if M is 

simply connected, then /k = 0, where 0 < p < N. 

The Betti numbers for a two dimensional sphere, S2, are 

/3o = i, P1 = o, fo = i (5) 

Which gives an Euler Characteristic of 
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(6) 

The genus, or number of holes, of a surface is reflected in P1 . Each 

hole or handle provides two ways in which the surface can be divided 

up in to independent cycles. Another way to think about the cycles is 

to imagine a circle drawn on the shape. Any place the circle could 

not contract to a point but instead gets stuck around a hole counts 

as a cycle. This method works for any N dimensional space, where 

the shape being contracted is of any dimension less than or equal to 

N-1. Neither of the orange circles in Figure 16 will be able to contract 

to a point because of the hole in the torus, thus a P1 of 2 cycles. 

Figure 16: Number of independent cycles on a torus 

Thus P1 = 2g, where g is the genus of the surface. A two dimensional 

torus can be cut into cycles in two ways, it has P1 = 2, and it has 

genus, g= 1. The Betti numbers for a two dimensional torus, T2, are: 

/Jo = 1, P1 = 2, /Ji = 1 (7) 

The Euler Characteristic is found to be 

(8) 

25 



Cycles on a sphere can always be collapsed down to a singular point. 

In other words, no sphere of any dimension, SN, has a hole. So the 

Betti numbers for any n-dimensional sphere go as 

/Jo =/JN = 1, /)p = 0 (9) 

The Euler Characteristic is therefore 

(10) 

z( SN) = 2 if N is even . (11) 

Table 1 gives the Betti numbers for all two dimensional spaces and 

" Table 2 gives the Betti numbers for selected three dimensional 

spaces. 

T bi 1 B tt• N b • IS a e • e 1 um ers o 0 1mens1ona 1paces • 

Name Symbol g b c J3o Jh f32 
Sphere s2 0 0 0 1 0 1 

Torus T2 1 0 0 1 2 1 

Plane E2 0 0 0 1 0 1 

Disk 02 0 1 0 1 1 1 

Projective P2 0 1 1 1 1 0 
Planes 
Klein K2 1 0 1 1 2 0 
Bottle 

Mobius M2 0 0 2 1 1 0 
Strip 

T bi 2 B tt• N b fTh • IS a e . e 1 um ers o ree 1mens1ona ,paces • 

Symbol J3o f31 f32 f33 
s3 1 0 0 1 

T3 T2xS1 1 3 3 1 
s2xS1 1 1 1 1 
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Topological Sums 

Topology also presents rules for the adding spaces together to 

find their sum or multiplying spaces to find their product. This is 

useful here because the universe may not be a simple shape, it is 

more likely to be very complicated. To develop a shape that could 

describe the universe may require combining many simple spaces. 

Consider any two spaces in the same number of dimensions, S1 

and S2 • Each of these spaces can be identified by their Euler 

Characteristics, X1 and X2. Each shape will also have a genus, or 

number of holes, g1 and g2. The Euler sum of the two topological 

spaces is given by the following equation [ 14]: 

x ( g 1 ) + x ( g2 ) = x ( gi + g2 ) + x ( 0 ) ( 12) 

The sum of the spaces gives two new shapes, X ( g1 + g2 ) + X ( 0 ). 

X ( 0 ) = 2 is a space with a genus of zero, or an object with no 

· holes. This is the topological equivalent of a sphere. The other shape 

formed will simply have the total number of holes of the original two 

shapes. A torus X ( 1 ) = O, added to a torus X ( 1 ) =O will give: 

x ( 1 ) + x ( 1 ) = x ( gl + g2 ) + x ( 0 ) 

0 + 0 = x ( gl + g2 ) + 2 
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l ( gl + g2 ) = -2 (15) 

An object with X = -2 is a two-torus, T2
• Why would a torus plus a 

torus not equal just the two torus? When adding spaces, the entire 

surface of the two spaces must continue to exist after the addition. 

Consider two separate torodial, T2. spaces each with g=l and X = 0. 

Imagine placing these two tori together so they only came into contact 

at one point on each surface. When the two spaces are added, these 

two points would be lost creating the connection between the two. 

Points on the spaces cannot vanish, so this is not an accurate 

representation of how the spaces combine. Consider the same two 

tori. Distort each space so a small hemisphere protrudes from the 

space but does not tear the space (figure 17). 

0 0 

Figure 17: Adding two tori, T2 
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Cut out the hole in each space leaving a hole in each torus and two 

separate hemispheres. Combine the two tori along the open hole to 

create a smooth seam. This is the combined space with g = g1 + g2. 

0 0 0 

Figure 18: The sum of two tori, T2 

Also combine the two hemispheres together to form a sphere with g = 

0. So the general form of the equation for a new space formed by 

addition is 

x ( gl + g2 ) = l ( gl ) + x ( g2 ) - l ( 0 ) (16) 

It is simple to note from this equation that by adding a sphere, 82, to 

any space the topology of the two objects will remain the same. 
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Multiplication of Spaces 

Recall the formula for a product manifold in terms of the Euler 

Characteristic: 

x(M x N) = x(M) x z(N) (17) 

If this is written in terms of Betti numbers it becomes [15]: 

Pk(MxN)= LPP(M)xpq(N) (18) 
p+q=k 

These are called the Kunneth formulas for product manifolds. 

It is instructive here to construct some model spaces. To find 

the product of two circles, S 1, using the Euler Characteristic: 

xcs1 x s1
) = x(S1

) x x(S1
) =ox o = o (19) 

The Betti numbers can also be used to develop a product. 

pk(Sl x SI)= LPp(Sl) x pq(Sl) (20) 
p+q=k 

Po ( S 1 
x S 1) = Po ( S 1) x Po ( S 1) = 1 x 1 = 1 (21) 

A shape with x=O, and /lo = l , Pi = 2, /Ji = l, is a torus, T2. 
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The product of 2 tori, T2, can be shown to be a four dimensional 

torus, T4. It is simple to show that the Kunneth relations for the 

product yield (15): 

Po = P4 = 1 
T4: P1 = p3 = 4 

P2 = 6 

Solving for the Euler Characteristic we find: 

(24) 

z(r4) = z(T2
) x z(T2

) =o x o = o (25) 

All tori of any dimension, TN, will have an Euler Characteristic of 0, 
" 

because a fundamental multiple of all tori is a simple circle, S1, with 

an Euler Characteristic of zero. Table 3 shows the products, in terms 

of Betti numbers, of some one and two-dimensional compact spaces. 

Table 3: Betti Number Multiplication Table 

si s2 T2 

si 1,2,1 l,l,1,1 .. 1,3,3,1 

s2 1,1,l,l 1,0,2,0,1 ..__1,2,2,2, 1 

T2 1,3,3,1 1,2,2,2,1 1,4,6,4,1 

E2 1,1,l,l 1,0,2,0, 1 1,2,2,2,l 

n2 1,2,2,1 1,1,2,1,l 1,3,4,3, 1 

p2 1,2, 1,0 1,l,l,l,O 1,3,3, 1,0 

K:z 1,3,2,0 1,2,l,2,0 1,4,5,2,0 

M2 1,2, 1,0 l,l,l,1,0 1,3,3, 1,0 
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General Expression of Topology and Anisotropy 

The fundamental goal of this work is to explicitly display the 

connection between the topology of the universe and the underlying 

empirical signature of that topology as indicated by anisotropies in 

the cosmic microwave background radiation. Betti numbers, and 

their associated topological invariants, will be used to provide a 

description of the topology of the universe. The space spanned by the 

Betti numbers will then be combined in a simple expression with the 

characterization of the anisotropies using the Sachs-Wolfe effect. An 
" 

ideal representation would be a single expression that accepts the 

Betti numbers that specify a certain topology and the parameters 

that define the cosmological model to be tested. Such parameters 

include[l 7]: the density of matter, the density of radiation, the value 

of Ho, and the local spatial curvature, k. A term must also be added 

that explains the local geometry of the surface, and this comes from 

general relativistic terms gµv · The Betti numbers contains 4 values in 

three dimensions, gµv contains 10 values, and the other terms 

contain one number each. This means the equation would be some 

space in 18 dimensions and would be incredibly difficult to solve. By 

symmetry, the 10 gµv terms simplify to only four, all of which are 

related to the radius of the universe. The radius of the universe 

information is contained in Ho, and can be left out of the equation. 
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There are a variety of ways to look for topological variations in 

the equations that actually describe the dynamics of the universe. 

Unfortunately the most direct and obvious method, using the 

Einstein field equations, does not yield any global topological 

information beyond the specification of a set of initial conditions in 

the early universe (18,19). Newer more speculative theories, such as 

superstring theory and Ashtekar loop space, allow for topological 

change but until they are developed further, they will not connect 

directly with the current data. It is also necessary to assume that the 

large-scale global topology of the universe has not changed over time 

since the period of recombination [20](small-scale changes are 

expected, i.e. wormholes, etc.). 

In 1967, Sachs and Wolfe were able to show that large scale 

fluctuations in the cosmic background radiation temperature as a 

function of position across the sky provides a way to measure the 

large scale fluctuations in the cosmological mass distribution in the 

standard cosmological model. These fluctuations from the nearly 

homogenous mass distribution can be seen in terms of Newtonian 

gravitational potential (21). Small fluctuations in mass density in the 

early universe would have created gravitational potential. As photons 

passed through this change in gravitational potential they were 

redshifted. Because redshifted photons have less energy, they would 

show up today as temperature fluctuations in these early photons. 
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Imagine a path that traces back to the early universe at a very 

high red-shift where the mass density contrast averaged over some 

commoving (expanding with the universe) scale x is op/p=ox. The 

Newtonian gravitational potential energy caused by this fluctuation is 

[ 18]: 

</J,....., G8M 
ax 

G 8M 4 3 
- -;rpb (ax) 
ax M 3 

(26) 

(27) 

" 
The expansion rate scales as H oc a-3/ 2 in the Einstein-de Sitter limit, 

and the density difference goes as oM I M = ox oc a(t). This means that 

the gravitational potential <P from the mass fluctuation is independent 

of time. The only way for the radiation to reach us is to first escape 

from the potential, which causes a gravitational redshift, ov / v - <P· 

This will also cause a change in the cosmic microwave background 

temperature. The CMB anisotropy that is caused by the mass 

density fluctuation on a comoving scale x at the Hubble distance is 

given by [18] 

8T 
T 

(28) -- ,._, 

A more detailed calculation carried out by Sachs and Wolfe goes as 

OF( e, </J) =}_<I>( 1ls1s 'rs1s 'e, </J) + 2 170 <I>' (17, r' e, </J)d17. (29) 
T 3 ~& 
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The first term in equation 29 is the direct Sachs Wolfe effect and the 

second term is the integrated Sachs Wolfe effect which describes the 

topology of all non-trivial spaces. Here 11 represents conformal time, 

110 is the present conformal time, 11sts is the conformal time at 

recombination (from the surface of last scattering), and <I>' = o<I>. The 

change in potential from recombination to the present day can be 

represented by [22) 

<I> ' '+3H(l + c; )<I>'-c;v<I> + (2H'+(l + c; )H)<I> = 0 (30) 

where His the conformal Hubble factor and Cs is the speed of sound 

compared to the speed of light in the cosmological fluid. If the 

universe is flat, we have cs = 0, H = 2 / 11 and <I>' = 0. Because of this, 

the integrated Sachs Wolfe effect in equation 29 vanishes and the 

temperature fluctuations are all described by the first term. The 

presence of either a cosmological constant or curvature will cause the 

decay of the potential, <I>, and consequently a decay in the first term 

and the integral becomes the important term. 

Because the cosmic microwave background data is taken in all 

directions from our sky, it can be represented as a two dimensional 

sphere. This skymap can be modeled as an angular power spectrum, 

which is shown as an expansion in spherical harmonics. The 

multipole expansion of the sky temperature as a function of angular 

position has the form [4) 
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or (n)= Laf'J:t<n) 
T Im 

' 

(31) 

m ./ H5 ~ Ox . (ky) m a1 = -2m - 2 ~-2 ) 1 ~ (n) 
c k k 

(32) 

where )z is the Zth order spherical Bessel function. 

The third part of the general equation is related to the spatial 

curvature. The interesting properties of the curvature are indicated 

by its sign, k = -1, 0 , + 1. Spacetime can be considered flat if k is 

zero. If k is negative that implies a negative curvature, as in 'a 

compact hyperbolic manifold. This curvature parameter can be 

easily added to the general equa tion using the following function[ 1] 

Sk(X) = sinh(X) if k = -1 

Sk (X) = (X) if k = 0 

Sk (X) = sin(X) if k = 1 
(33) 

A general function that can describe the CMB anisotropies can 

be composed of only the discreet Betti number space, T('3), and the 

anisotropy information, F, which will contain the term Sk(X.}, taken as 

a direct product. This results in 
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One would not expect any coupling between these two spaces, since 

the local differential equations do not contain any topological 

information. 
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Finite Flat Models 

There has been extensive study of the six possible flat, 

orientable, compact topologies for the universe. These six cases have 

received so much attention because they can be solved analytically. 

The mode functions can be analytically obtained which makes the 

solution for the angular power spectrum straightforward. Because of 

this, the second term from the Sachs-Wolfe effect equals zero. 

This leaves only [ 4] 

OT(8,</J) I 
T = 3 <t>( 1ls1s 'rs1s '()' </J) (36) 

where ~Tl = fdt/ a(t) is the conformal time between today and 

recombination. The potential for a compact manifold, <I> , can be 

thought of in terms of an eigenmode expression 

(37) 

So the expression for oT/Tbecomes 

(38) 

By identifying the value of <I> in terms of the three directions of k (kx, 

ky, kz) the equation can be exactly solved. 
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If the temperature fluctuations are adiabatic, the Sachs-Wolfe 

relationship can be solved as a series [4] 

OT (n) = _ Hg ~ <5x exp(iyk • n) 
T c2 L...i k2 

k 
(39) 

where y is the radius of the decoupling sphere, given by y = 2c/ Ho, n 

describes a direction in the sky, Ok is the density fluctuation in 

Fourier space and the sum is on wave numbers k. To simplify the 

equation, a rotationally invariant coefficient can be defined as [18] 

(40) 

This implies the average Zth multipole of the temperature fluctuation 

is given by 

(41) 

If the universe being modeled is simply connected, it has a 

positive curvature. There is only one possible topology, three-

dimensional sphere, 83 . All wave vectors are allowed, and the sum 

can be switched to an integral, which gives (24] 

/a 2 ) = ; a 2 ) r (I + ( n - 1) I 2 )r ( ( 9 - n) I 2) 
\ 

/ 
\ 

2 r(/ + (5- n) I 2)r((3 + n)2) (42l 
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In a multiply connected universe, the simplest of which is the 

torus, T3, not all wave vectors are allowed as they can wrap around 

the surface and interfere with themselves. For a torodial universe, 

only integral multiples of some wave vector are allowed along each of 

the three axes [5]. The space can easily be modeled using a 

parallelepiped tiling as shown below (FIGURE 19). 

Figure 19: Tiling Flat Space With parallelepipeds 

This shape is built on the parallelepiped by identifying: x ~ x + h, y 

~ y + b, z ~ z +c. By identifying the shape in this way, the eigen 

value is restricted to the following: 

The sum from the Sachs- Wolfe equation cannot be changed to an 

integral, because not all wave functions exist, therefore, it must be 

completed along each of the three axes as shown. 
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(44) 

There are three other compact flat topologies that can be modeled 

using the parallelepiped. Their triangulation and gravitational 

potential values, <I>, are shown in table 4. 

Table 4: Flat Compact Parallelepiped Topologies [6] 

SHAPE 

Opposite faces 
identified 

Opposite faces 
identified, with 

one pair rotated 
through an angle 

1t 

Opposite faces 
identified, with 
one pair rotated 

through an angle 
1t/2 

First rotate about 
x by 1t, then rotate 
about y by 1t, then 
rotate about z by 

1t. 

EIGENMODES 

1C 
k = - n z 

c 

21C 21C 
k:c =-,; j.ky =bw, 

1C 
k =-n 

z 2c 

1C 
k = - n z 

c 

41 

<I> 

<I> <I> intr 12 
jwn = j-wne 

<I> _ <I> i1l"(j+w+n) . - . e JWn - 1-wn 



A correlation function can also be created that relates two 

points in the sky1 n and n'1 commonly called Ci. Cz represents the 

angular power spectrum. This correlation function is defined as [6] 

(45) 

The previous table is expanded to include Cz 1s for each of the cases in 

Table 5. 

Table 5: C1Values for Flat Compact Parallelepiped Topologies 

SHAPE 

Opposite faces 
identified 

Opposite faces 
identified1 with 

one pair rotated 
through an angle 

7t 

Opposite faces 
iden tified1 with 

one pair rotated 
through an angle 

7t/2 

First rotate about 
x by 7t1 then rotate 
about y by 1t1 then 
rotate about z by 

7t. 

C1 ~ L p~:) 11 ( tJ.17k )2 

)Wn 

. 2 l 2 

C1 oc L P(~) ]f (li17k) LII/,m(k)I 
jwn k 21 + 1 m=-1 

(1 + ei(n+m)1r/2 + ei(n+m)?r + ei(n+m)31r/2 ) 

. 2 l 2 

C1 oc L P(~) ]f (li1Jk) LIYi,m(k)I 
jwn k 21 + 1 m=-l 

(1 + ei(n+m)1r/2 + ei(n+m)1r + ei(n+m)31r/2) 
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There are two other compact, orientable, flat spaces that 

cannot be created from a parallelepiped tiling [6]. To model these 

shapes, a hexagonal tiling is required , as shown in Figure 20 

Figure 20: Hexagonal tiling 

The three pairs of opposite sides of the hexagon are identified with 

each other. The face of the hexagon undergoes a rotation of 2n/3 in 

one case and n / 3 in the later. The eigenmodes and gravitational 

Table 6 : Flat Compact Hexagonal Topologies 

SHAPE EIGENMODES <I> 

Opposite sides of <I> ikz 
k = 27i(11i + n3) , = <I> 1tz"3nz e x hexagon 

identified, face 
Jt h {.2n[ 1 1 ]] 
k - (n2 +n2) . k = nz 

ex '-,; n2 (x- ...fjy}+ n3 (x+ ...fjy) 
rotated at an 
angle of 2n/3 

y- b z 3c 

Opposite sides of <I> ikz = <I> 1tz"3nz e x hexagon k = 27i(11i +n3)' 

identified, face 
Jt h {.2n[ I 1 ]] 

k - (nz + n1) ' k = nz 
ex '-,; n2(x- ...fjy) + n3 (x+ ...fj y) 

rotated at an 
angle of 7t I 3 

,- h z 6c 

43 



potential are given in Table 6. The values for the angular power 

spectrum are given in Table 7. 

Table 7: CrValues for Flat Compact Hexagonal Topologies 

SHAPE Cr 

Opposite sides of 
c cc L P(k) J1(fl17k)2 ±1y, (k)I 

2 
hexagon 

identified, face l . k 3 21 + l l,m 
JWn m--l 

rotated at an angle (1 + ei(nz+m)21r/3 + ei(nz+m)41r/3) 
of 27t/3 

Opposite sides of c oc L P(k) J1(A17k)2 ±1Y. (k)I 
2 

hexagon l . k 3 21 + 1 l,m 

identified, face JWn m--l " 
(1 + ei(nz+m)tr/3 + ei(nz+m)2tr/3 + ei(nz+m)!C rotated at an angle 

of 7t/3 + ei(nz+m)4tr/3 + ei(nz+m)5irl3) 
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Compact Hyperbolic Spaces 

The mode functions for the flat models can be analytically 

obtained, on the other hand, no closed analytic expression of the 

eigenmodes is known for compact hyperbolic spaces. Therefore, the 

analysis of the CMB anisotropy in compact hyperbolic models has 

been considered very difficult. To overcome the difficulty, Inoue (9] 

proposed a numerical approach he called the direct boundary 

element method (DBEM) for computing the eigenmodes of the 

Laplace-Beltrami operator. Inoue has found that the expansion 
"' 

coefficients behave as if they were random Gaussian numbers. The 

angular power spectrum for some compact hyperbolic shapes can be 

obtained using this approach. 

Temperature fluctuations in a multiply-connected cosmological model 

can be written as linear combinations of independent components of 

temperature correlations in a simply connected cosmological model. 

Assuming the initial fluctuations are random Gaussian, 

perturbations are adiabatic and super-horizon scalar type, the two-

point temperature correlation in a compact hyperbolic cosm"Otogical 

model is written as (8] 

L (<I>v<I>v' )~1m,'f'm1 41mL:,,,m' , {4 7) 
v,v',f,m,f' ,m' 
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where 

(48) 

P<1>(v) is the initial power spectrum, Vol(Q) is the volume of the 

fundamental domain found using the program Snappea [16], 11· is the 

conformal time at decoupling and 110 is the conformal time at the 

present. 

1 'lo d<l> 
Fv1(TJ0) = - <!>1(TJ.)Xv1(17oTJ•) + 2 f dTJ- 1 Xv1(TJ0TJ), 

3 dTJ ,.,. 

<!> 
1 

( TJ) = 5( sinh 
2 

17 - 317 sinh TJ + 4 cosh 17 - 4) 
( cosh 17 - 1) 3 

(49) 

(SO) 

(51) 

Using these terms, a formula for the angular spectrum can be created 

[9] 

I 

(2/ + I)C1 = L (la1ml 2
) 

m=I 

(52) 

=" 4n-4P~(v) I l2IF 12 
~ v(v2 + l)Vol(Q) c;,,m vl · (53) 

It is Inoue's assertion that for the 14 eigenmodes he calculated, the 

expansion coefficient, ~v1m value will behave as random Gaussian 
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numbers (10). This assumption works very well on almost all parts of 

the fundamental domain. These random numbers will not give the 

correct value if the point tested is very near a boundary or punctue in 

the space. This allows one an approximate method for computing the 

angular power spectrum. Only solutions for two such spaces have 

been attempted, the smallest Thurston manifold and the smallest 

Weeks manifold. 

We have extended Inoue's work further by creating a method 

for calculating the large l values of the of the angular power spectrum 

for compact hyperbolic manifolds. The eigenmode expansion 

function, X.A, from equation (50} can be replaced with the more 

general pFq Hypergeometric function as shown in equation (54} 

(54) 

A very large class of twice differentiable functions that are oscillatory 

can be expressed as pFq functions. The general form of a pFq function 

(24] is given in equation (55). 

(55} 

Where (a}k is the Pochhammer function (26], 

(a)k = a(a + l)(a + 2) ... (a+ k - 1) =(a+ k - l)!. 
(a - 1)! (56) 
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For example, the pFq function when p = 2 and q = 1 would be [25} 

(57) 

The pFq function is a sufficiently general function to capture 

anisotropies for nearly all compact hyperbolic manifold functions. 

Each new set of p and q will give a new function and most likely a 

new fundamental domain of a compact hyperbolic manifold. The 

sensitivity of the selection of the pFq function to the Cz value is small 

for large l values because the error at the boundary is small " 

compared to the number of waves that will fit across the fundamental 

domain. If the point of observation is not near a singular point or a 

boundary, the eigenmodes of many compact hyperbolic manifolds can 

be expressed as some combination of pFq functions. We agree with 

Inoue that this is most likely true for an observer on the Earth. 

Table 8 contains some common oscillatory functions 

represented as pFq functions. Another special pFq function occurs so 

frequently in CMB fluctuation calculations it should be included here 

is the special case where x is held constant at 1. [26) 

F, (a b· c· I) = r(c)r(c - a - b) 
2 1 

' ' ' r(c - a)r(c-b) (58) 
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Table 8: pF q Representation of Common Oscillating Functions(26] 

Type of pFq Representation 
Function 

Ul traspherical T!(x) (n+2.8)! ( 1-xJ 
P 2 F; -n,n+2P+l;l+P~ 

2 n!p! 2 

Legendre ( 1- xJ Pn(x)= 2 F1 -n,n+l;l; 
2 

Associated (n+m) l(J-x2
)"'

2 
( 1-x) 

Legendre 
pnm (x) = · 2 Fi m- n, m + n + l;l + m;--

(n -m)! zmm! 2 

Chebyshev ( I 1-xJ T,, ( x )= 2 Fi - n, n; 2 ; 2 " 

Bessel e- ;x ( x r ( I ) Jv(x) = 0 
2 1 Fi v+ 

2
;2v+1;2ix 

Spherical -a ( ) v+l/2 

J v+l/2 ( X) = e x 1 F1 ( V + 1;2 V + 2;2ix) Bessel (v + 3 I 2)! 2 

Using this generalization, power spectrum graphs, Cz, can be 

created for high angular resolution or large l. Figure 21 was created 

using ~he Spherical Bessel case of the pF q function at small values of 

l. 
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Figure 21: Spherical Bessel pFq Representation of the 
eigenmodes at small L " 

There are peaks that represent structure as would be expected. The 

same graph can be represented at higher l values, shown in figure 22. 

.LOO too 200 400 $00 600 

l multipole 

Figure 22: Spherical Bessel pFq Representation of the 
eigenmodes at large l 
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The peaks are still present, but the magnitude has become 

significantly lower. As long as the wavelength of the eigenmodes is 

small and there are many waves within the fundamental domain, 

their endpoints on the boundary become less important. This means 

the type of pF q function used is not really important, many values of p 

and q will give a good approximation of the space. 

More rigorous study will determine if the random Gaussian 

method is an acceptable replacement for the expansion coefficient. 

With the low resolution CMB data we currently have, the pFq 

... 
functions seem to be a good approximation, the major test of their 

validity will be the higher resolution of the MAP and PLANCK 

satellites. Until then, this method provides a powerful way to explore 

many compact hyperbolic manifolds without the complicated 

eigenmode calculation. 
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Angular Power Spectrum Plots 

In this work we analyze temperature fluctuations in the cosmic 

background radiation for the simplest multiply connected topology, 

the three dimensional torus, T3. The measurements are compared to 

a value ~ which is equal to 

180° 
I= ­

~(} . 

where B equals the angular measure of the sky. A large value of l 

(54) 

indicates a higher resolution. Because the perturbations depend on 

an unknown constant, the normalization of the power spectrum 

I ok I 2, it is convenient to develop the data in terms of a ratio that 

eliminates the constant. The torus will be compared to the simply 

connected universe, S3, by a ratio T3 /S3 . Eliminating the constant 

will eliminate a value of l, l= 1. This is acceptable because l= 1 

corresponds to the dipole which can be attributed to the Earth's 

motion with respect to the universal cosmic background radiation. 

The power spectrum will be restricted to n= 1 which is commonly 

accepted in the standard cosmological model. 

The ratio of temperature fluctuations in between a torus, T3, 

and a sphere, S3 , are shown in Figure 23. The various peaks in the 

graph would imply differences in the toroclial shaped universe to the 

simply connected sphere universe. For the early values of l the 

temperature fluctuations seem to vanish. This is expected in a 
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cubically symmetric universe (Zel'dovich). The ratio of toms size to 

horizon size is 0.45. 

lj(af)I' (n=l)] 
1_(ai)s' 

10 

8 

6 

4 

2 

10 20 30 

l multipole 

40 

FIGURE 23: Power Spectrum, T3 / S3 , Torus smaller than horizon. 

By simply altering the parameters of the equation, like the value of 

the Hubble constant, the size of the torus compared to the horizon, or 

the matter density, many different sizes and shapes of peaks can be 

created. This is demonstrated in Figure 24 and 25. 

log[(af) (n = 1)] 
(al) 

6 

2 

- 2 

-4 

-6 

I multipole 

Figure 24: Power Spectrum, T3/S3 , High Density 

In Figure 24, the density is increased, and the pattern of the peaks 

becomes very sinusoidal. 
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Figure 25: Power Spectrum, T3 /S3 , Small Density. 

There is much interest in large values of l since the Boomerang data 

reported a peak at Z- 200. Figure 26 compares the temperature 

fluctuations to l = 600. The size of the torus compared to the horizon 

is O.OSo/o. After l = 100, this graph is no longer interesting. 

15 

10 

log[( ai) (n = l)J s 
(ai) 

100 200 300 400 500 600 

-5 

I multipole 

Figure 26: Power Spectrum, T3 /S3 , High Angular Resolution 

A peak at large l values can be obtained by changing the constraints 

of the equation. The torus has been expanded to 0.25%> of the size of 

the horizon in Figure 27. Because the position and height of the 
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peak can be adjusted almost any peak can be created assuming the 

right parameters. 

8 

6 

loJ (a;) (n = 1)] 
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Figure 27: Power Spectrum, T3 /S3 , High Angular Resolution, 
High Density 

A three dimensional graph can be created using the power 

spectrum ratio, the angular resolution (l multipole) and the 

probability of temperature fluctuation. These graphs contain a great 

amount of information. The difference between the sphere and torus 

becomes quite obvious, and complicated structure is quite evident. 

Just as with the two dimensional plots presented previously, the 

three dimensional plots are very sensitive to changes in the universal 

parameters. 
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Temp. Fluctuation ProbabiJity 

Figure 28: 3-D Power Spectrum, T3 /S3 , Torus smaller than the 
horizon. 

Figure 28 shows the power spectrum for the same parameters 

as figure 23, only measuring to an l value of 20. The same 

relationship and parameters will also demonstrate fluctuations at 

high l as shown in figure 29. 

to 

Temp. Fluctuation Probability 

l 

Figure 29: 3-D Power Spectrum, T3 /S3 , Torus smaller than the 
horizon, High angular resolution 
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By increasing the value of the Hubble constant used in the Figure 28 

by 20% and keeping the other parameters constant, the ripples in the 

graph can be shifted to a higher l value as demonstrated in Figure 

30. 

loJ (ai} (n = 1)] 
L(ai} 

Temp. Fluctuation Probability 

I 

Figure 30: 3-D Power Spectrum, T3 /S3 , Torus smaller than the 
horizon, Ho increased by 20o/o 

By altering the parameters of the universe within current accepted 

values, many shapes can be shown to fit the present data. This 

means that our present knowledge of the temperature fluctuations of 

the CMB is not accurate enough to eliminate many possibilities. The 

next section will describe our current knowledge of the data, and the 

future possibilities. 
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Boomerang 

The measurement of the Cosmic Microwave Background 

radiation took a great leap forward on April 26, 2000. A project 

called Balloon Observations of Millimetric Extragalactic Radiation 

and Geophysics, or BOOMERANG, launched a lx106 m 3 balloon that 

carried a telescope above the Antarctic for 10 days in the winter of 

1998 [18]. In order to make the extremely sensitive measurements, 

the balloon was lifted above 99o/o of the Earth's atmosphere to a 

height of approximately 37 kilometers. BOOMERANG was only able 
" 

to map 2.5% of the sky, but its resolution was over 40 times that of 

the COBE satellite [20]. 

BOOMERANG images help to determine the geometry of space. 

By observing the characteristic size of hot and cold spots in the 

BOOMERANG images, the geometry of space can be determined. 

Cosmological simulations predict that if our universe has a flat 

geometry, (in which standard high school geometry applies), then the 

BOOMERANG images _will be dominated by hot and cold spots of 

around 1 degree in sizelbottom center). If, on the other hand, the 

geometry of space is curved, then the bending of light by this 

curvature of space will distort the images [ 19). If the universe is 

closed, so that parallel lines converge, then the images will be 

magnified by this curvature, and structures will appear larger than I 

degree on the sky (bottom left). Conversely, if the universe is open, 
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and parallel lines diverge then structures in the images will appear 

smaller (bottom right). Comparison with the BOOMERANG image 

(top) indicates that space is nearly flat. 

25° 

FIGURE 40 : [21] 

The data from the Boomerang mission shows a strong peak at 

l = 200 (Figure 41). This is a peak at less than 1 ° angular resolution, 

which drops of steeply until l = 400. This steep drop is consistent 

with a structure predicted from acoustic oscillations in the adiabatic 

cold dark matter.[16] There is also evidence for one or more peaks 
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between l = 200 and l = 1000. These peaks are shorter than the peak 

at 200, but must also be explained. It was demonstrated in the 

previous chapter that peaks could be described in this l range by 

simply changing any of a number of cosmological parameters. The 

important point to notice is the peaks in the previous chapter were 

created on a torodial space, which is not simply connected. The 

Boomerang data does not eliminate complicated topological structure 

such as multiply connected spaces. 

bttt "10dels 
80 12i.,:<).351 h=70, n;:C g1 T/S::{l 21 , !~h2:{).0Z. 
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20 ~-------------------------------------0 100 200 300 400 500 600 700 800 
multipole I 

Figure 41: CMB Angular Power Spectra From Boomerang [21) 

Many different groups have taken cosmic microwave 

background data, including the boomerang group, the COBE satellite 

and many other balloon-launched detectors. The complete total of 

this data is presented in figure 42. The high l values are obviously 
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not as explored as the small l's. This will change soon as the MAP 

and Planck satellites are due to be launched within the next five 

years. 

- BOOMERanG 
lOO - MAXIMA 

Previous 

80 

40 

20 COBE 

100 

l 
Figure 42: Angular Power Spectrum of CMB Anisotropies [12) 

While COBE and Boomerang put considerable constraints on the 

topology of the universe, there are many things we cannot be sure of. 

The shape of the universe will remain a mystery until the 

cosmological parameters are known to greater uncertainty. Until 

then there are many combinations of parameters that can be used to 

describe the observed data. 
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Conclusion 

The quest to determine the global topology of the universe is a 

celebrated and ancient question. In general the laws of physics that 

are differential are local and do not determine the shape. The last 50 

years have seen an ever increasing and, for the most part converging, 

series of observations that have significantly reduced the number of 

-
possibilities associated with the shape of the universe. The most 

important topologically amongst these is the cosmic microwave 

background anisotropies collected from the COBE satellite and the 

BOOMERanG high atmosphere balloon. The data they provide is not 

accurate enough to make definite predictions on the topology. In the 

next decade, MAP and PLANCK will probe the microwave anisotropies 

to a much higher resolution. 

The current goal of cosmological topology is to classify as many 

of the possible manifolds, flat, compact hyperbolic and positively 

curved, before the data comes in. With this set of manifolds 

classified, then build a set of CMB skymaps that match each possible 

shape. When MAP and PLANCK provide us with more-accurate data, 

it will be easy to compare the data to the existing maps to find 

possible matches expanding our lmowledge of the universe. 
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Appendix A 

Mathematica Code for the Power Spectrum of 

Compact Hyperbolic Manifolds at High l Using 

pFq Representations 
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Compact Hyp. Code.nb 

al.m. : • 4 Pi" 4 ; 

pn :al; 

U :a 1.0; 

Pk,. u "pn; 

epnu : • Random [ ] ; 

Vol. : • . 96; 

confto : • 0 .1; 

conftf := 1.1; 

Phi : "'5 (Sinh(conftf] - 3 conftf Sinh[conftf] + 4 Cosh[conftf] - 4) I (Cosh[conftf] -1) "3; 

Fnul. : "' {2 Pi I confto}" (. 5) Bessel.J(l. + 0. 5, confto]; 

Pri.nt[Fnul.]; 

Coef : "' (al.m. Pk) (epnu) "21 (Vol. (21+1)); 

Cl : "'Coef (Phi Fnul.) "2; 

Clg :•Coef (PhiHypergeometricPFQRequl.arized.[{2, l}, {1}, 1)) "2; 

Print(Cl, 1); 

Plot[Cl, {l, O, 5}, Plotpoints -> 5]; 

Plot[Cl.g, {l, 2, 700}, Plotpoints -> 5]; 

Printed by Mathematica for Students 
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Appendix B 

Mathematica Code for the Three 

Dimensional Power Spectrum Plots of the 

Ratio Torus, T3, to Sphere, S3. 
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3DPowerSpect. Code.nb 

n : = 1 ; 

Gl = Gamma(lt + {D - 1) / 2); 

G2 =Gamma( (9 - D) / 2) ; 

G3 = Gamma(lt + (5 - D) / 2); 

G4 = Gamma( (3 + D) 2); 

ALN = (Gl G2) I (G3 G&) ; 

ALN2 = ALN" 2 ; 

GS= Loq[ALN2]; 

G6 = Abs (GS) ; 

y = 20; 

L = 1 ; 

a= 2 Pi ; 

vi = (ayi / (cL)) ; 

j1 = (Pi I (2 vi)) " (1 / 2) Besse1J[x + 1 / 2 , vi]; 

ALT2 =Sum( (vi)" (-3) (j1 " 2) , (i, 1 , 20}) ; 

RNT = Loq[ALT2 / ALN2) ; 

P1o t3D[:RNT , (x, 1, 50) , (c , .1, 20} , P1otpoints -> 40] ; 

Printed by Mathematica for Students 
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