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Abstract

Snails in Lymnaeidae serve as intermediate hosts in the transmission of many
trematode species, including Fascioloides magna that is responsible for disease and death
in domestic livestock in North America. Previous classifications of lymnaeid snails have
relied primarily on morphological characters that exhibit high levels of homoplasy;
thereby, impeding a sound assessment of relationships in this group. The present study
provides a phylogenetic hypothesis for lymnaeid snails employing sequences from the
internal transcribed spacer (ITS) region of ntDNA, and addresses the evolution of
susceptibility to Fascioloides infection in lymnaeid snails. The final data set, comprising
ten species of lymnaeid snails and one species of Physidae, included 1368 characters, of
which 327 were parsimony-informative. Three major clades were recovered in neighbor-
joining analyses that consisted of individuals of Stagnicola caperata, Fossaria s.s., and
Stagnicola s.s. + F. Bakerlymnea sp. Stagnicola caperata, the main host of F. magna in
Minnesota, revealed a closer alliance to Fossaria spp. than to other species of Stagnicola,
suggesting that its placement in the stagnicoline sub-genus Hinkleyia is suspect.
Members of Fossaria s.s., that have tricuspid first lateral teeth in the radula, were
monophyletic to the exclusion of F. Bakerlymnea, a well-supported member of the
stagnicoline clade. Therefore, our estimate of lymnaeid phylogeny supports the
taxonomic scheme proposed by Baker (1911) that suggests members of Bakerlymnea be
classified as stagnicolines based on their shared bicuspid dentition. Although a
stagnicoline clade was strongly supported, there was low resolution of species within the
clade. Log-determinent distances between species of Stagnicola s.s. were less than those

observed between individuals of Stagnicola caperata, indicating that a region with higher
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rates of evolution is necessary to determine relationships in this group. Susceptibility to
Fascioloides magna infection is widespread in North American lymnaeid snails based on
experimental infections. However, an examination of naturally infected intermediate
hosts suggests that host status may be due to high exposure rates that result from close

interactions between intermediate and definitive hosts.
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As buds give rise by growth to fresh buds,
and these, if vigorous, branch out and overtop
on all sides many a feebler branch, so by generation
I believe it has been with the great Tree of Life,
which fills with its dead and broken branches
the crust of the earth, and covers the surface with
its ever branching and beautiful ramifications.
Charles Darwin
On the Origin of Species

Introduction

Lymnaeidae (Rafinesque, 1815) is a group of primarily aquatic snails that are
cosmopolitan in distribution, occurring in a variety of ecological habitats. The greatest
diversity of lymnaeid snails is found in the extensive freshwater ecosystems of the
northern United States and central Canada (Burch, 1982). Taxonomically, this group is
quite complex with between 57 to 100 species historically recognized in North America
alone (e.g., Baker, 1911; Hubendick, 1951; Clarke, 1973; Burch, 1982). Clearly,
classification of this group remains controversial despite considerable efforts. In
addition, lymnaeid snails serve as intermediate hosts for more than 70 trematode species
world-wide (Brown, 1978). Therefore, significance in investigating this group ranges
from taxonomic uncertainty to their role in transmitting parasitic disease.

On the American continents, lymnaeid snails serve as intermediate hosts for
fasciolid trematodes, a group of major medical and economic concern. Fasciola
hepatica, the causative agent of fascioliasis in humans and other mammals, is emerging
as a medical concern in parts of Central and South America, as well as the Caribbean
(Mas-Coma et al., 1999a, 1999b). In North America, F. hepatica and Fascioloides

magna, the giant liver fluke, are causative agents of animal diseases in both wild and
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domesticated mammals. The definitive host of F. magna in North America is white-
tailed deer, Odocoileus virginianus (Cheatum, 1951; Griffiths, 1962; Dutson et al., 1967,
Pursglove et al., 1977; Addison et al., 1988); however, domestic livestock sympatric with
deer are at risk to /. magna infection (Figure 1). Infection in cattle has resulted in
economic loss due to chronic disease and condemnation of livers at slaughter. In sheep
infection often results in death (Foreyt and Todd, 1976a, b). Fascioloides magna has a
disjunct range in North America (Figure 2), with isolated populations reported from the
Pacific Northwest, Rocky Mountains, Gulf Coast, and Great Lakes regions (Cheatum,
1951; Griffiths, 1962; Knapp and Shaw, 1963; Dutson et al., 1967; Behrand et al., 1973,
Pursglove et al., 1977, Foreyt, 1981; Schillhorn Van Veen, 1987; Knapp et al., 1992).
This is likely due to the requirement for suitable snail intermediate hosts and cervid
definitive hosts to complete the life cycle (Foreyt, 1990). Stagnicola caperata, S. elodes
(also called S. palustris), Fossaria parva, F. modicella, and F. bulimoides are the only
documented natural hosts of Fascioloides magna in North America (Sinitsin, 1930, 1933;
Swales, 1935; Griffiths, 1959; Laursen, 1993). However, Stagnicola catascopium, S.
exilis, Lymnea stagnalis, Pseudosuccinea columella, F. obrussa rustica, and F.
ferruginea have been infected in laboratory studies (Krull, 1933a, 1933b, 1934; Dutson et
al., 1967; Griffiths, 1973; ). Due to the reliance of F. magna on lymnaeid snails for
transmission, confidence in lymnaeid taxonomy is imperative for correct identification of
intermediate hosts, and a robust phylogeny is necessary to evaluate host-parasite
relationships.

Previous classifications of lymnaeid snails have defined species based upon shell

morphology, reproductive morphology, and radular teeth formulas, along with some
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emphasis on ecology. However, identification and classification has been compromised
by morphological and anatomical similarity between species of some genera (Bargues et
al., 2001), while other species exhibit high intraspecific variation in the presence of
different environmental conditions (Burch, 1982). Therefore, there is little consensus
among the available taxonomic keys. Different taxonomic schemes have recognized a
single genus (Walter, 1968), two genera (Hubendick, 1951; Clarke, 1973), and up to
seven genera (Baker, 1911; Burch, 1965, 1982) in the family. Proposed genera include
Lymnea, Bulimnea, Stagnicola, Fossaria, Radix, Psuedosuccinea, and Acella (Burch,
1982). Use of sub-groups within genera, of which many are considered artificial
(Hubendick, 1951; Walter, 1968), has contributed to the taxonomic confusion by putting
increased weight on characters like shell morphology that may exhibit extreme
homoplasy. Studies of immunology (Burch, 1968; Burch and Lindsay, 1968), karyology
(Burch, 1965; Inaba, 1969), cross-breeding (Burch and Ayers, 1973), and enzyme
electrophoresis (Rudolph and Burch, 1989) have either provided low systematic
resolution or disagreed with results from morphological examinations (Bargues et al.,
2001). Morphological examinations of reproductive organs have been useful in
differentiating some lymnaeid species, and may be more reliable than other
morphological characters for phylogeny reconstruction in this group (Hubendick, 1978;
Jackiewicz, 1988; Gloer and Meier-Brook, 1998).

Molecular data have been useful in evaluating relationships of European (Bargues
etal., 1997,2001; Bargues and Mas-Coma, 1997) and a limited number of North
American (Remigio and Blair, 1997a, 1997b; Remigio, in press) lymnaeid snails.

Sequences from 18S nrDNA have provided initial insights into lymnaeid relationships
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(Bargues et al., 1997, Bargues and Mas-Coma, 1997). However, this region is highly
conserved, and may not be appropriate for species-level differentiation. Previous
analyses of 16§ mtDNA (Remigio and Blair, 1997b; Remigio, in press) and the internal
transcribed spacer (ITS) from ntDNA (Remigio and Blair, 1997a; Bargues et al., 2001)
have shown promise in resolving relationships among lymnaeid genera. For example,
sequences from 16S mtDNA revealed a paraphyletic relationship among stagnicoline
snails, and produced a topology that disputed previous hypotheses regarding the
evolution of chromosome number in Lymnaeidae (Remigio and Blair, 1997b). In
addition, parsimony analyses of ITS sequences revealed that Stagnicola caperata did not
cluster with three additional species of Stagnicola s.s. (S. catascopium, S. emarginata,
and §. elodes), thus suggesting this taxon may deserve recognition as a distinct genus
(Remigio and Blair, 1997a). Stagnicola caperata has previously been classified as a
stagnicoline based on size, radular dentition, and, to a limited extent, shell morphology
(Burch, 1982). However, differences between S. caperata and other stagnicolines do
exist, most notably observed in the smaller size and pronounced periostracal ridges on
shells of S. caperata. In addition, S. caperata and species of Fossaria serve as the main
natural intermediate hosts for /. magna in the United States, which might indicate a close
alliance between these two groups. Determining the taxonomic position of Stagnicola
caperata will help to develop hypotheses regarding host susceptibility in Lymnaeidae.
Phylogenetic models have provided interesting insights into the evolution of
symbioses among a diverse array of organisms (Moran et al., 1995; Herre et al., 1996;
Clark et al., 2000), including parasites and their hosts (Hafner and Page, 1995; Baker et

al., 1998; Hugot, 1998; DeJong et al., 2001; Xiao et al., 2001; Refardt et al., 2002).
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Molecular data, in particular, allow for robust analyses of host-parasite relationships by
providing independent estimates of phylogeny for both the host and parasite lineage(s)
(Page et al., 1998), while also reducing the phylogenetic noise that results from
morphological characters highly influenced by the association (Downes, 1990). In
addition, studies that have used molecular, morphological, and parasitiological data in
concert (e.g., Hugot, 1998) have been more successful in resolving host phylogeny.

In the absence of a robust host phylogeny, associations between host and parasite
can be useful in evaluating relationships. Xiao et al. (2001) used Hexamita infections of
fish in the family Xenocyprinae as a character for phylogenetic analysis, along with
segments from the mitochondrial genome, and found that host phylogeny based on
parasite fauna was congruent with that based on mtDNA sequences. Snail-trematode
interactions show equal promise for revealing patterns of parallel evolution due to high
host specificity exhibited by most digenean trematodes for their molluscan host (Roberts
and Janovy, 1996). For instance, mapping patterns of susceptibility to trematode
infection on snail phylogeny has been used in the development of hypotheses regarding
host and parasite biogeography, as well as predicting new potential host species due to
their genetic similarity to known host species (DeJong et al., 2001). Similar patterns
have been found between lymnaeid snails and fasciolid trematodes (Bargues and Mas-
Coma, 1997), but these studies have not included North American snails or Fascioloides
magna. 1 hypothesize that inclusion of North American lymnaeid snails in the
phylogeny, in addition to mapping Fascioloides susceptibility, will provide additional
insights into the evolution of fasciolid susceptibility in lymnaeid snails, allowing for

inference of the ancestral character states and the origins of susceptibility.
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My goals are to estimate phylogeny for lymnaeid snails in enzootic fluke regions
of Minnesota using internal transcribed spacer sequences, and use this phylogenetic
hypothesis as an evolutionary framework to examine the phylogenetic distribution of
susceptibility to Fascioloides magna infection in lymnaeid snails. In adciition, the
evolution of radular dentition will be explored on this framework, as it is typically used to

define species of Fossaria.



Methods
Sampling of Fascioloides magna and Lymnaeid Snails

Fascioloides magna adults and eggs were collected from white-tailed deer in
November of 1999, 2000, and 2001 during fire-arm hunts supervised by the MnDNR at
St. Croix State Park, MN. Fascioloides magna adults were collected by slicing the liver
in approximately 0.25 inch intervals, and removing worms from cysts within the organ.
Adult worms were deposited into warm, 0.9% saline solution or distilled water for
several hours to shed eggs. Eggs were concentrated by sedimentation, washed several
times with distilled water, and incubated at room temperature until fully embryonated (~3
weeks). They were then kept at 4°C to suspend development, so that small aliquots of
eggs could be hatched as needed for infection studies.

Lymnaeid snails were collected from eight sites in six counties in Minnesota.
Wetland habitats (sensu Eggers and Reed, 1987) sampled were emphemeral
ponds/ditches, marshes, prairie potholes, lakes, and streams. Specimens either were kept
alive in containers of water packed on ice or were fixed in 100% ETOH in the field.
Snails were identified based on shell morphology and radular dentition using available
taxonomic keys (e.g., Clarke, 1973; Burch, 1982). Eight putative species from three
genera within Lymnaeidae were identified (Table 1): one from Lymnea (stagnalis), four
from Stagnicola (caperata, catascopium, exilis, and elodes); and tﬁree from Fossaria
(Bakerlymnea sp., obrussa rustica, and parva). Snail colonies were established in
separate 10-gallon aquaria for each of five species of lymnaeid snails (S. caperata, S.
exilis, S. elodes, S. stagnalis and S. catascopium) for use in infection studies. A species

from the genus Physa, a proposed sister group to Lymnaeidae (Hubendick, 1947, 1978),
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was collected for use as an outgroup, and sequences for five additional lymnaeid snails
were retrieved from GenBank to compliment taxon sampling (Table 1).
Infection Study

Individuals of L. stagnalis, S. exilis, and two populations of S. caperata were
exposed to 3-6 miracidia in a 48-well plate for 3 hours in modiﬁcafion of Foreyt and
Todd (1978) and Laursen (1993). An infection tank was established for each species
where snails were housed and fed frozen lettuce ad libidum for 40 days to allow for larval
amplification. On day 40 post-infection, snails were crushed to determine infection
status. Individual species were coded as susceptible to infection if any individual of that
species contained redia or cercaria, or susceptibility based on experimental infection was
known from previous studies.
Phylogenetic Study

Whole DNA was extracted from either frozen or preserved foot tissue using a
HotSHOT protocol (Truett et al, 2000) modified for snails (J.A.T. Morgan, pers. comm.).
A small amount of tissue (~ 3 mg) from each snail was dissected and pulverized ina 1.5
ml tube using sterile micro-grinders with 150 uL of an alkaline lysis reagent (25 mM
NaOH and 0.2 mM disodium EDTA at pH 12). Ground samples were incubated at 95°C
for one hour, then cooled to 25°C prior to the addition of 150 uL of neutralizing reagent
(40 mM Tris-HCl at pH 5). Presence of whole DNA was verified by electrophoreses on a
1% agarose gel followed by staining with ethidium bromide. The complete ITS region
(ITS1-5.8S - ITS2) of the nrDNA was amplified using the primers BD1 and BD2 of
Degnan et al. (1990). Individual reactions contained 1 uL of template DNA in a 100 uL

reaction mixture with sterile double-distilled water, 0.2 mM of dNTP’s, 10X PCR buffer,
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5% DMSO, 0.25 uM primer concentrations, and one-half unit of TAQ polymerase.
Amplification used 40 cycles of 94°C for 45 seconds, 48°C for one minute, and 72°C for
four minutes. PCR products were purified using QIAquick® PCR purification kit
following manufacturers instructions (QIAGEN Inc., Valencia, CA) and were
resuspended in 35-50 uL sterile double-distilled water. DNA fragments were sequenced
using external primers BD1 and BD2 (Degnan et al., 1990), internal primers ER1 and
ER2 (Remigio and Blair, 1997a), and a Dye Terminator Cycle Sequencing Kit
(Beckman-Coulter, Fullerton, CA), and visualized on a Beckman-Coulter CEQ 2000XL
automated sequencer. Sequences were edited with Sequencher (Gene Codes, Ann Arbor,
MI), and edited contigs were initially aligned using ClustalX (Thompson et al., 1997)
followed by visual adjustment. Distance and Parsimony analyses were conducted using
PAUP* (Swofford, 1998) on a G-4 Macintosh (400 mHz). The data set was analyzed
using 1000 replications of RANDOM TAXON addition with NNI branch-swapping,
which generated a pool of “starting” trees, the shortest of which were subsequently used
for more rigorous analyses employing TBR branch-swapping. The relative support for
the clades recovered by these analyses was assessed using fast bootstrapping (Mort et al,
2000). Susceptibility to infection was coded for terminal taxa, and phylogenetic
distribution of susceptibility was examined using MacClade (Maddison and Maddison,

1992).



Results

Sequence data

Sequences for sixteen individuals, comprising 11 species and four genera, were
included in the final data set (Appendix 1). The final alignment included 1368 sites, with
759 constant and 609 variable characters, of which 327 were parsimony-informative.
Mean base frequencies for individual nucleotides were 17% (A), 31% (C), 29% (G), and
23% (T), with a G + C content of 60%. No significant shifts in nucleotide usage were
observed across taxa based on a chi-square test (x” = 25.6, df =45, P > 0.99).
Evolutionary distances computed using a log-determinant model (Lockhart, 1994) ranged
from 0.08 to 54% among ingroup taxa, with smallest distances observed among
stagnicoline snails, excluding S. caperata (Table 2). Pairwise sequence comparisons
revealed 27.8 transitions and 38.1 transversions on average, and a mean transition to
transversion ratio of 0.73:1, suggesting standard models of evolution would apply
(Swofford et al., 1996). The average proportion of sites differing between sequences was
0.167.
Lymnaeid Phylogenetics

Parsimony analyses of the aligned data set recovered 250 minimum-length trees
of 900 steps (Figure 3). Homoplasy appeared to be low as assessed by the consistency
index (0.8778) and retention index (0.8503). Variation among tree topologies was
limited to the clade representing Stagnicola spp., in which low sequence divergence was
observed; mean sequence divergence between Stagnicola elodes, S. catascopium, S.
exilis, and S. emarginata was 0.00571, based on pairwise sequence comparisons. Strict

consensus analyses of the minimum length trees recovered the same three major clades as
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parsimony analyses (Figure 3) with strong bootstrap support: 1) individuals of S.
caperata (100%); 2) Stagnicola spp. — F. (Bakerlymnea) sp. (100%); and, 3) F. o. rustica
+ F. parva (100%). Placement of Fossaria truncatula and Lymnea stagnalis in the
consensus tree were suspect in light of previous hypotheses of lymnaeid taxonomy and
phylogeny (Burch, 1982; Remigio and Blair, 1997; Remigio, in press). In addition, this
topology did not show high support for relationships among Stagnicola s.s. An
examination of branch-lengths (Figure 3) suggested long-branch attraction could be a
factor, possibly causing parsimony analyses to be misleading (Felsenstein, 1978).

Greater sequence divergence was observed for S. caperata, F. truncatula, F. o. rustica, F.
parva, and L. stagnalis in contrast to nominal taxa in Stagnicola (i.e., S. catascopium, S.
elodes, S. exilis, and S. emarginata). These unequal rates of change among ingroup taxa
can cause tree topology to be incongruent with phylogenetic relationships (Felsenstein,
1978; Hendy and Penny, 1989).

Additional analyses were conducted to test topology from parsimony analyses
using methods less prone to long-branch phenomena. One method used was neighbor-
joining analyses with log-determinent (Lockhart, 1994) distances; this method is better
suited for long-branch phenomena since it operates under a wider set of models and is
robust to base changes across taxa (Hillis et al., 1996). The resulting topology (Figure 4)
resolved three distinct clades with high bootstrap support: 1) Stagnicola spp. + F.
(Bakerlymnea) sp. (100%); 2) individuals of S. caperata (99%); and, 3) Fossaria spp.
(81%). Neighbor-joining analyses also resolved a close alliance between S. caperata and
species of Fossaria, as opposed to other stagnicolines, but support for this relationship
was low (< 50%). Constraining the topology from neighbor-joining analyses, employing
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a log-detertiment model, in parsimony analyses produced a tree with 13 additional steps,
which is less than a 2% difference from the initial tree produced by parsimony analyses.
Therefore, tree topology produced by neighbor-joining analyses was not appreciably
different than the maximum parsimony tree, and was accepted as the best estimate of
relationships among lymnaeid snails from Minnesota.

Traits for susceptibility based on experimental and natural infections, along with
radular dentition, were coded to examine their phylogenetic distribution (Table 3) using
topology from neighbor-joining analyses. Snails susceptible to Fascioloides magna
infection, as determined from infection studies in our laboratory and from a review of
literature, as well as species that are known intermediate hosts of F. magna were coded
with a value of one. Radular dentition, determined from slide mounts of the organ, was
also included (Table 3) since it has been used to define groups within the genus Fossaria

(Baker, 1911; Burch, 1982).



Discussion

Phylogenetics of North American Lymnaeid Snails

Taxonomic certainty and a robust phylogenetic hypothesis for lymnaeid snails are
imperative for correctly identifying hosts of Fascioloides magna and interpreting host-
parasite relationships in the group, respectively. The present study indicates that DNA
sequences of the internal transcribed spacer region will resolve relationships between
genera in Lymnaeidae, as first proposed by Remigio and Blair (1997a). Clades
comprising Stagnicola caperata, Fossaria s.s, and Stagnicola s.s. + F. Bakerlymnea sp.
were strongly supported in both parsimony and distance analyses. However, until
additional sequences from the ITS region are included to overcome unequal rates of
change along different branches, distance methods that use multiple-hit corrections are
more reliable for assessing relationships in this group (Hendy and Penny, 1989; Hillis et
al., 1996). Particularly, distance methods employing a log-determinent model (Lockhart,
1994; Steel, 1994), which operates under a wider set of models and is robust to changes
in base composition across taxa, will be most successful (Hillis et al., 1996).

Neighbor-joining analyses found a closer alliance between Stagnicola caperata,
the primary intermediate host of F. magna in Minnesota, and members of the genus
Fossaria, in contrast to other members of Stagnicola. Although support for this
relationship was low (<50%), a recent study employing sequences from the 16S mtDNA
region revealed a similar alliance between S. caperata and fossariad snails (Remigio, in
press). This relationship disputes previous taxonomic schemes (Baker, 1928; Burch,
1982) which place S. caperata in the stagnicoline subgenus Hinkleyia. Also, S. caperata

exhibits extreme differences in shell morphology from other members of Stagnicola (e.g.,
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smaller size and pronounced periostracal ridges); therefore, all available evidence
suggests that its placement in the subgenus Hinkleyia is discordant with both
morphological and molecular data.

Species of Fossaria have rarely been included in phylogenetic studies, mostly due
to the difficulty in locating and identifying members of this group. The present study
includes more species of Fossaria than have previously been evaluated. Fossaria
obrussa rustica, I'. parva, and I. fruncatula formed a well-supported clade (81%) and a
strong relationship was supported between F. o. rustica and F. parva (100%) in neighbor-
joining analyses. [Fossaria Bakerlymnea sp. was excluded from the clade of other species
of Fossaria, and instead clustered with the stagnicoline clade. Exclusion of F.
Bakerlymnea sp. from the Fossaria clade is also supported by differences in radular
dentition (see below). More than 40 species of Fossaria have beeﬁ described, but it is
likely that many are synonyms (Burch, 1982). Extensive sampling of Fossaria species is
needed to resolve, with confidence, relationships among members of the genus, and to
evaluate taxonomy in this group effectively. Furthermore, continued use of molecular
data in Fossaria may provide markers useful for the identification of cryptic species in
the group, as this method has been successful in other snail (Jones et al., 1997, 1999) and
invertebrate taxa (Walton et al., 1999).

Species from Stagnicola s.s. (e.g., S. elodes, S. emarginata, S. catascopium, and
S. exilis) form a well-supported clade (100%), but relationships within the clade are
largely unresolved. In fact, the average percent nucleotide difference from pairwise

sequence comparisons (Table 2) were higher between individuals of S. caperata (3%)
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than those observed between species comprising the Stagnicola s.s. clade (0.6%). One
clade within Stagnicola, consisting of S. exilis, S. catascopium (from Minnesota), and

F. Bakerlymnea sp., was moderately supported (74%); but, seems unreliable due to low
sequence divergence. Unlike other genera in Lymnaeidae, particularly Fossaria,
members of Stagnicola s.s. have distinctive shell characteristics that have allowed more
reliable identification of taxa. Previous descriptions of Stagnicola s.s. have
circumscribed species into two groups, elodes and emarginata/catascopium (Burch,
1982). Members of the e/odes group, including S. exilis, typically have narrow,
elongated spires and inhabit stagnant waters such as ditches and marshes. Species in the
emarginata’catascopium group have more globose body whorls with shorter spires and
are found in open and/or flowing water systems (e.g., lakes and streams). However, shell
morphology among stagnicoline snails is greatly influenced by environmental conditions
(Burch, 1968; Burch and Lindsay, 1973; Patterson and Burch, 1978), which may explain
the discrepancies seen between highly diverse shell morphology and low sequence
divergence. Failure of both ITS nrDNA (this study) and 16S mtDNA sequences (Remigio
and Blair, 1997b; Remigio, in press) to resolve relationships in Stagnicola robustly
indicates that additional data are needed to determine species relationships. If this group
has undergone recent speciation events, then molecular studies that employ even more
rapidly evolving markers, and maybe hybridization studies, will be necessary to define
Stagnicola species. Also, studies that examine the effects of limnological variables on
shell morphology may be necessary to determine how environmental factors are

influencing putative taxa.
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The phylogenetic position of Lymnea stagnalis was unresolved in neighbor-
joining analyses, reflecting the high sequence divergence between L. stagnalis and other
North American lymnaeids (e.g., 21.5 % on average from pairwise sequence
comparisons). Other studies employing molecular data (Barques et al., 2001; Remigio, in
press) consistently place N. American L. stagnalis as a sister to European Stagnicola
species, suggesting a recent introduction from Eurasia (Remigio and Blair, 1997b;
Remigio, in press). Like stagnicoline snails, L. stagralis exhibits environmental
variations in shell morphology that have resulted in assignment of sub-species names.
With at least two type species recognized by both morphological and molecular data
(Clarke, 1973; Burch, 1982; Remigio, in press), molecular studies employing population-
level markers will be necessary to evaluate relationships among the various conspecifics.
Fossariad Snails and the Evolution of Radular Dentition

Historically, taxonomists have recognized members of Fossaria based on their
small size and marked absence of the shell characteristics used to define other taxa.
Burch (1982) identified two subgenera within Fossaria, based upon differences in radular
dentition. Species of Fossaria s.s. (e.g., F. obrussa rustica, F. parva, and F. truncatula)
have tricuspid teeth in the first lateral position, whereas . Bakerlymnea spp. (e.g., F.
bulimoides, . cubensis, and F. dalli) are bicuspid. Bicuspid radular dentition is a trait
shared between the Bakerlymnea group and Stagnicola species, causing Baker (1928) to
classify bicuspid fossariad snails as the subgenus Nasonia in Stagnicola. Internal
transcribed spacer sequences support the relationship proposed by Baker, since
F. Bakerlymnea sp. was well-resolved within the stagnicoline clade (Figure 4). An

examination of the phylogenetic distribution of radular dentition suggests a single origin
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for tricuspid, first lateral teeth that is limited to Fossaria s.s. (Figure 5). Based on our
estimate of phylogeny, radular dentition may provide more reliable phylogenetic signal
than shell morphology or ecology in this group. Noteworthy is that sequences from 16S
mtDNA (Remigio, in press) do not agree with our results, instead suggesting that
bicuspid and tricuspid /“ossaria are congeners in accordance with Burch (1982). Both the
neighbor-joining tree presented here and the 16S phylogeny proposed by Remigio (in
press) included only one species from the Bakerlymnea group. Therefore, it is not yet
clear whether the Bakerlymnea group is monophyletic. Inclusion of additional species
from Bakerlymnea is required to test the monophyly of this taxon and ascertain its
position in the family. In addition, using a combination of molecular markers may be
necessary to elucidate the patterns of evolution of radular dentition; since ITS ntDNA
and 16S mtDNA have very different rates and modes of evolution (Hillis and Dixon,
1991) that may cause them to continue to be counteractive.
Evolution of Susceptibility to Fascioloides Infection

Experimental infections show that susceptibility to /. magna infection is
widespread among the taxa sampled in this study, as all lymneaid species tested show
some degree of susceptibility to infection. Stagnicola emarginata has not been tested,
therefore, no conclusions can be made regarding its susceptibility. Fossaria
Bakerlymnea sp. is not coded because it is not identified to species. However, it is likely
that both of these species would be susceptible to /. magna infection if tested, especially
F. Bakerlymnea sp., since members of this group include Fossaria bulimoides and F.

cubensis that are intermediate hosts found naturally infected in the United States.

17



Only a subset of species experimentally susceptible to /. magna infection serve as
natural intermediate hosts (Figure 6). These include S. caperata, S. elodes, and F. parva
in the United States, as well as /. truncatula in Europe. Each of these species is
commonly found in ephemeral waters, such as woodland ponds and ditches, where deer
may be more likely to forage. Therefore, host status among lymnaeid snails may be a
function of high exposure rates that result from close interactions between intermediate
and definitive hosts in endemic areas. Studies of cervid foraging behavior lend support to
different feeding strategies in enzootic and fluke-free regions of Minnesota (Laursen,
1993), providing one explanation for increased contact between intermediate and
definitive hosts. The northeast region of Minnesota that is endemic to F. magna typically
has low sodium concentrations in terrestrial vegetation and aquatic systems (Botkin et al .,
1973; Helgensen et al., 1973; Jordan et al., 1973; Olcott et al., 1978). Deer in these areas
make increased use of sodium-rich mineral licks, such as seeps or small springs (Weeks
and Kirkpatrick, 1976; Fraser and Hristienko, 1981). These ephemeral sites are also
suitable habitat for intermediate host species; therefore, frequent use by deer would
increase contact between intermediate and definitive hosts, and would help perpetuate the
fluke (Laursen, 1993).

Snails that were infected under laboratory conditions may be susceptible to
infection as a result of shared ancestry (i.e., genetic similarity), but not found as natural
hosts due to differences in habitat use. Susceptible species, such as S. catascopium are
typically found in large lakes and streams, while Stagnicola exilis and Lymnea stagnalis
are commonly found in marshes and prairie potholes. Larger aquatic habitats with deeper

water could make snail location by F. magna larvae more difficult, reducing the number
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of infected intermediate hosts. This may prevent infection in numbers required for
continued transmission. In addition, a case can be made for moderate levels of resistance
in some snail taxa. Stagnicola exilis and L. stagnalis are generally considered poor
intermediate hosts, as they are only readily infected at juvenile life stages (Campbell and
Todd, 1955a, 1955b; Griffiths, 1973; Wu and Kingscote, 1953, 1954). This is not typical
of natural intermediate hosts, which remain susceptible throughout their lifetime. It is not
clear whether this change in susceptibility from juvenile to adult snail is due to
physiological differences or development of resistance prompted by historic exposure.
Either way, it is obvious that genetic and ecological variables need to be evaluated in

concert to better understand host susceptibility.
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Table 1: Lymnaeid snails sampled for infection and phylogenetic studies, with
reference to sample location.

Species Sampled

Locality

Country

Genbank Accession Number

Lymnea stagnalis
Fossaria obrussa rustica
Fossaria parva
Fossaria truncatula

Fossaria (Bakerlymnea) sp.

Stagnicola caperata 1
Stagnicola caperata 2
Stagnicola caperata 3
Stagnicola elodes-1
Stagnicola elodes 2
Stagnicola elodes 3
Stagnicola exilis
Stagnicola catascopium 1
Stagnicola catascopium 2
Stagnicola emarginata
Physa sp.

Douglas County, MN
Kanabec County, MN
Crow Wing County, MN
Minho

Pine County, MN
Mille Lacs County, MN
Mille Lacs County, MN

Manitoba

Pine County, MN
Traverse County, MN

Ann Arbor, M|
Mille Lacs County, MN
Crow Wing County, MN

Ann Arbor, Ml
Ann Arbor, M|
Kanabec County, MN

USA
USA
USA

Portugal

USA
USA
USA

Canada

USA
USA
USA
USA
USA
USA
USA
USA

*

*

*

AJ243018 (Mas-Coma et al., 2001);
AJ243017 (Barges et al., 2001)
*

*

*
AF013139 (Remigio and Blair,

*

*
AF013138 (Remigio and Blair,

*

*

AF013143 (Remigio and Blair,
AF013141 (Remigio and Blair,
*

1997a)

1997a)

1997a)
1997a)

* Genbank accession number available from authors
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Figure 1: Life cycle of Fascioloides magna courtesy of Stromberg et al. (1983) that
describes each stage in the development of the parasite: a) eggs are shed in feces of
infected deer, b) miracidia hatch from eggs in an aquatic environment, c) miracidia
penetrate snails and undergoes larval amplification, d) cercaria emerge from snail, and, )

encyst to become metacercaria, a stage infective to deer and domestic livestock.
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Figure 2: Map adapted from Griffiths (1962) documenting the occurrence of

Fascioloides magna in white-tailed deer in the United States.
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Figure 3: One of 250 minimum-length trees produced by parsimony analyses employing
a heuristic search (100 replicates) and a tree-bisection-reconnection branch-swapping
algorithm. Trees were 900 steps, with a consistency index of 0.8778 and a retention
index of 0.8503. Bootstrap values (500 replicates) are shown above branches, while

branch-length values are below branches.
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Figure 4: Neighbor-joining dendrogram inferred using the log-determinent/paralinear

model, with bootstrap values (500 replicates) shown above branches.

41



81

100

— F. {o.) rustica

L stagnafs

100

73

— 8. caperala

T by

F. runcatufa

— S. glodes 2

— S.caperata 2

S caperata 3

S. slodes 1

S, smarginata

S. catascopium 1

S. slodes 3

I7

— 8. exifs

— &. catascopium 2

L F. Balerymnea sp.

Physa sp.




Figure 5: Topology from neighbor-joining analyses examining the evolution of radular

dentition. Tricuspid lymnaeid snails are located on dashed branches.
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Figure 6: Topology from neighbor-joining analyses coded for known intermediate

hosts of Fascioloides magna. Host species are shown in boxes.
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Appendix 1: Aligned data set of internal transcribed spacer sequences for lymnaeid
snails sampled that was used in parsimony and distance analyses.
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