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Abstract 

Title of Thesis: Azo Dyes Based on 1,10-Phenanthroline. 

Name: Minchong Mao 

Thesis directed by: Dr. Mark E. McGuire 

A series of new phenanthroline based azo-dye ligands, produced by diazotizing 5-

amino-1, 10-phenanthroline (5-NHrphen) and then coupling this intermediate to a variety 

of coupling components, has been synthesized and characterized. The coupling 

components used were P-naphthol, phenol, and 2,6-dimethylphenol, and the three dye 

ligands were named phen-azo-P-naphthol, phen-azo-p-phenol, and phen-azo-2,6-

dimethylphenol, respectively. 1H-NMR and IR spectra showed that the dyes exist 

primarily in the azo form in DMSO solution and as solids. UV-Vis spectra (in MeOH) 

showed intense (i:: = 104 M-1cm-1) absorptions ranging from 380 nm to 500 nm for these 

ligands. 

The ligand phen-azo-p-phenol has been coordinated to a Re(I) metal center 

through the phenanthroline linkage to form a stable polypyridyl complex, 

/ac-Re1(C0)3(phen-azo-p-phenol)Cl. When compared to the well-known complex/ac­

Re1(C0)3(phen)Cl, the new Re(I)-dye complex shows a greatly enhanced visible 

absorption band in the 3 70 - 400 nm range. This absorption is primarily due to a ligand­

centered transition in the coordinated phen-dye ligand. Preliminary emission spectra (in 

MeOH) reveal that/ac-Re1(C0)3(phen-azo-p-phenol)Cl, unlike its Re(I)-phen analog, 

does not emit. 
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Chapter 1: Introduction 

Polypyridyl transition metal complexes, especially those including d6 and d3 metal 

ions (e.g. Ru(II), Os(II), Re(I), Cr(III), Ir(III)), have been extensively studied by inorganic 

and physical chemists over the past two decades. Interest in the photochemistry of 

polypyridyl metal complexes can be traced to their potential practical applications in 

areas such as solar energy conversion. 1-4 For example, the electronic excited states of 

[Ru11(bpy)3] 2+ and [Ru11(phen)3f\bpy = 2, 2'-bipyridine; phen = 1,10-phenanthroline, see 

Fig. 1-1) can participate in redox processes in fluid solution. 5' 6 It was also discovered 

that both [Ru11(bpy)3] 2+ and [Ru11(phen)3] 2+ could function as photocatalysts for the 

decomposition of water into hydrogen and oxygen.7 Systems based on [Ru11(bpy)3f+ and 

[Re1(C0)3(LL)X] (LL= polypyridyl ligand) have been used as sensitizers and redox 

catalysts in the reduction of C02 to C0.8' 9 Moreover, the applications of polypyridyl 

transition metal complexes can be extended to the design of molecular-level electronic 

d . lo d DNA b 11-13 ev1ces an pro es. 

0----0 N N 

bpy phen 

Fig. 1-1 bpy and phen 

A common feature of polypyridine ligands such as bpy and phen is the presence 

of a vacant n* orbital that can accept electron density from the metal ion to form a type of 

7t bonding ( n-back bonding) that supplements the cr bonding arising from the donation of 

lone pairs of electrons from the ligand (in this case from the N-atoms). Then-back 

bonding stabilizes the resulting metal complexes, especially those with metal ions in low 



oxidation states. High electron density on the metal (of necessity in low oxidation states) 

can thus be delocalized onto the ligands. 

A general framework to analyze the bonding interactions between the metal ion 

and the ligands during the formation of the metal complex is shown in Fig. 1-2. 

Conceptually, the metal orbital diagram is combined with the ligand orbital diagram to 

arrive at a composite model for the entire system. 

Absorption of a photon of energy in the visible or ultraviolet (UV) region of the 

spectrum by a metal complex M leads to its transformation to an electronically excited 

state M*. 

M+hv~M* 

The types of electronic transitions have been classified as follows: 14 

Char~e transfer(CD - these transitions may arise from promotion of an electron 

from a metal-based MO to a ligand-based MO (metal-to-ligand charge transfer; 

MLCT, labeled as @) or vice versa (ligand-to-metal charge transfer; LMCT, 

labeled as®). 

Metal-centered (MC) - essentially metal-localized dd transitions (labeled as CD). 

Li~and-centered (LC) - these arise from (7t-7t *)transitions involving ligand­

localized orbitals (labeled as ®). 

metal 

(xt.*) -.--....- - • - --- -. - ---(it*) 

.... ...... 

...... .. -­(at)------

complex 

---(it) 

---(a) 

ligand 

1 : d - d (MC) 2: it - it• (LC) 3: d - it• (MLCl) 4: it - d* (LMCl) 

Fig. 1-2 Relative disposition of metal and ligand orbitals and possible electronic 

transitions in an octahedral ligand field of a transition metal complex (taken from ref. 14). 
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After initial electronic excitation, a complex in an upper excited state relaxes 

rapidly (in a few picoseconds or less) to the lowest energy excited state. Interesting 

electron or energy transfer processes typically occur from the lowest energy excited states 

in polypyridyl transition metal complexes. 14 For example: 

Mn (LL )3 
2+ + hv ~ Mn (LL )3 

2+ * 

II 2+ * III 3+ -M (LL )3 + Electron Acceptor ~ M (LL )3 + Electron Acceptor 

The identities of the lowest energy excited states in polypyridyl transition metal 

complexes can often be identified from an examination of their electronic absorption and 

electronic emission spectra. For the emission measurements it has been found that: 14 

1. Emission from MLCT transitons is usually intense and highly structured. It can 

be observed at both room temperature and 77 K. Lifetimes are typically 10-1000 

ns at room temperature and 1-10 µs at 77 K. 

2. Emission from LC transitions can seldom be observed in fluid solutions at room 

temperature. Emission at 77 K usually occurs at energies close (within~ 1000 

cm-1) to that observed for the free ligand. In addition, the lifetimes are fairly long 

(ms range). The band shapes can be similar in appearance to MLCT bands. 

3. Emission from MC transitions is broad and structureless and is usually relatively 

solvent independent. Emission at room temperature is rarely observed. Lifetimes 

at 77 K typically range from 10 to 500 µs. 

The nature of the lowest energy excited state can be altered through appropriate 

synthetic modifications (variation of metal and/or ligands). This is because the extent of 

crystal field splitting along with the relative disposition of the metal d orbitals with 

respect to ligand n orbitals vary with the nature of the metal ion and the ligands, leading 

to complexes having different types of lowest energy excited states and photochemical 

reactivity. Fig. 1-3 shows schematically the orbital disposition for a series of transition 

metal tris (bipyridine) complexes. The lowest energy excited state of [Fen(bpy)3] 2+ is 

3 



assigned as metal-centered (MC), those of Ru(II) and Os(II) as metal-to-ligand charge 

transfer (MLCT) and those of Rh(III) and Ir(Ill) as ligand centered (LC). 14 For the first 

row transition metal ion Fe2+, the ligand field splitting /1 is small, so the MC transitions 

are ofrelatively low energy. For Ru(II) and Os(II) complexes, the ligand field splitting /1 

is larger, and the LUMO (lowest unoccupied molecular orbital) is a bpy 7t* orbital. 

Therefore, the lowest energy excited states are MLCT for [Ru11(bpy)3]2+ and 

[Os11(bpy)3]2+. For metal ions such as Rh(III) and Ir(III), the crystal field is so large that 

the HOMO and LUMO orbitals are bpy 7t and 7t*, respectively. Therefore, the lowest 

energy excited state is LC. Moreover, Balzani et al 15' 16 showed that for another series of 

complexes [RuII(i-biq)2(LL)]2+ (i-biq = isobiquinoline), the lowest energy excited state is 

LC when LL= i-biq, and MLCT when LL= bpy. 

E 

:::::;::== - - - - - - - ----
L( it•) - : : .... ---- - - - - - - - - ---.---

M(eg) T,-
_L 

M(t29) - - - ____ ___.._ __ --

(d,it•) 

---------------------_.....__ --L(it) 

Ru 11,0s 11 Rh 111,lr111 

Fig. 1-3 Schematic representation of various orbital disposition in strong-field (nd6) 

complexes [M(LL)3]"+; LL= bpy (taken from ref. 14). 

Chemical solar energy conversion schemes depend on the synthesis of particular 

compounds that strongly absorb visible light. Figure 1-4 represents the overall process of 

an individual molecule capturing a photon of sunlight. 
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visible photons 
from sun 

\ 
M 

ground 
state 

* M 
excited 

state 

chemical work 

Fig. 1-4 Overall process of an individual molecule capturing a photon of sunlight. 

The design and synthesis of molecules (M) that strongly absorb sunlight over a 

broad spectrum of wavelengths would increase the probability of successfully harnessing 

the sun's energy. Three ways to approach this problem are: 

1. Construction of multimetallic complexes using bridging ligands that allow for 

significant metal-metal interactions. Ligands such as 2,2' -bipyrimidine (bpym) 

and 2,3-bis(2-pyridyl)pyrazine ( dpp) serve as templates for building multimetallic 

complexes. The structures of some of the bridging polypyridyl ligands commonly 

used for the synthesis of multimetallic complexes are shown in Fig. 1-5. 

Multimetallic systems often show CT transitions well into the visible spectrum. 17 

For example, the electronic spectroscopy of the monometallic complex 

[(NH3) 4Run(bpym)]2+ shows an intense MLCT band in the visible region centered 

at 402 nm while the bimetallic complex [((NH3) 4Run)2 (bpym)]4+ has intense 

MLCT absorption bands at 424 and 697 nm. 18a The bimetallic absorption maxima 

for [((NH3) 4Run)2 (bpym)]4+ are at lower energy than the [(NH3) 4Run(bpym)]2+ 

monomettallic absorption maxima. The reason for this shift is that coupling of 

two Ru(II) orbitals with the ligand n* LUMO orbital creates a set of bonding (\lfb), 

nonbonding (\lfn) and antibonding (\lfJ orbitals. (Fig. 1-6) The presence of the 

nonbonding (\lfn) HOMO in the bimetallic complexes gives rise to a lower energy 

transition than in the corresponding monometallic complex. A similar trend for a 

series ofRu(II) polypyridyl complexes was demonstrated by Rillema. 18b 

Specifically, for series of monometallic, bimetallic, trimetallic, and tetrametallic 

complexes, there was increasing absorption out in the red portion of the spectrum. 
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4,4'-bipyridine 
(4,4-bpy) 

tetraazaphenanthrene 
(TAP) 

Azo-2,2'-pyridine 
(Azpy) 

2,3-bis(2-pyridyl)­
pyrazine ( dpp) 

Hexaazatriphenyllene 
(HAT) 

2,5-bis(2-pyridyl)­
pyrazine (2,5-dop) 

~NI 
~ N 

2,3-bis(2-pyridyl)­
quinoxaline (dpq) 

F\_l-N\_ __ l~ 
'Lr\-Nf\d 

3,6-bis(2-pyridyl)­
tetrazine(bptz) 

Fig. 1-5 Examples of multidentate polypyridyl ligands used in the synthesis of 

multimetallic polypyridyl complexes (taken from ref. 14) . 

.--.. •a 
I • . .. 

• .. 'II'* 
~-. 

I . 

•• ,-•• a 
I '""•,. ,' .... _'I* , ,., 

:' ~ ~ "',·. ,' 
/ ,-' n ,' 

~ v1 H v .::'..-~ H v / 
1Jt fi ti . ;: ... ti 1ll ... 

2 Ru dir \ d I/I / 
·.. n ,• 

\.1J:~b 

Fig. 1-6 Molecular orbital diagram for monometallic and bimetallic Ru(II) complexes 

(taken from ref. 18a). 
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2. Attachment of several different ligands on the same metal center. Attempts 

have been made to make use of substituent effects and extensions of the ligand 7t 

system. 19'20. For example, tris(heteroleptic) complexes which contain three 

different bidentate ligands (e.g. [Run(bpy)(Me2bpy){(EtC02)2bpy}]2+ (bpy is 2,2'­

bipyridine, Me2bpy is 4,4'-dimethyl-2,2'-bipyridine, and (EtC02) 2bpy is 4,4' -

bis(carboxyethyl)-2,2'-bipyridine)) show enhanced MLCT absorptions throughout 

the UV and visible spectral region (200-700 nm), which are sufficiently long-lived 

to undergo efficient electron and energy transfer. 

3. Utilization of ligands that strongly absorb in the visible region. 

The work described in this thesis focuses on this third approach. This approach 

involves the synthesis of three highly-colored phenanthroline-based azo dyes (phen-azo-

h N-
dyes). Azo dyes are compounds containing azo groups ( -N?' ) which are 

linked to sp2 -hybridized carbon atoms. Azo dyes represent the largest group of colorants 

used as dyes and pigments. They are usually synthesized by diazotization of aromatic 

amines followed by azo coupling at higher pH with coupling components. The use of 

various aromatic and heterocyclic amines and variation in the coupling components 

provide a rich array of azo dyes and absorption properties. Phen-azo dye ligands in 

polypyridyl transition metal complexes might offer the following advantages: 

1. More efficient use of visible light for population of low lying excited states. 

As previously stated, important photophysical and photochemical processes 

occur from the lowest energy excited states of polypyridyl transition metal 

complexes. Absorption of photons of higher energies typically results in rapid 

internal decays to the lowest energy excited state. Since most phen and bpy 

derivatives do not absorb strongly at 'A> 400 nm21 -23 , the presence of phen-azo 

dye ligands might provide "antennas" for collection of visible photons. The 

idea is to absorb visible light photons at a highly absorbing but unreactive phen-

7 



azo dye ligands ("antenna fragment"), and then transfer the energy to the lowest 

energy excited state of the complex. 

2. Increased flexibility in "tuning" the nature of lowest energy excited states. 

For example, Re(I) complexes with the general formula Re\C0)3Cl(LL) (LL= 

bpy, phen or derivatives) typically show strong MLCT - based emission in the 

550 nm to 650 nm range.24'25 Appropriate choice of LL (e.g. phen-azo dye 

ligand; Aem ~ 600 nm) would lead to a complex where the LC and MLCT 

transitions were very close in energy. The lowest energy excited states for these 

complexes would thus be MLCT, LC, or a mixture of the two depending on 

subtle variations in LL, temperature, or medium. 

The first part of this thesis describes the synthesis and characterization of three 

phenanthroline-based azo dye ligands: phen-azo-P-naphthol, phen-azo-p-phenol and 

phen-azo-2,6-dimethylphenol. These syntheses were carried out by diazotizing 5-amino-

1,10-phenanthroline (5-NHrphen) and then coupling this intermediate to a variety of 

coupling components (Fig. 1-7). Coordination of transition metals through the 1, 10-phen 

N-atoms of the phen-azo dye ligands should produce complexes that are expected to 

retain the stability and redox properties of traditional polypyridyl complexes while 

possessing enhanced abilities to absorb visible light due to the presence of the dye 

moieties. 
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NH2 

6M HCl/ 0°C 

NaN02 JH20 

+ 
N==N Cl-

phenol 
pH= 13 

2,6-dimethylphenol 

pH= 13 

2-naphthol 

pH= 13 

Fig. 1-7 Synthesis of phen-azo-dyes. 
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The 5-NHrphen starting material can be produced (~90% yield) by reduction of 

5-NOrl,10-phenanthroline with hydrazine in absolute ethanol (Pd/C catalyst) using a 

procedure similar to that outlined by Nasielski-Hinkens et al. 26 (Fig. 1-8) 

NH2NH2·H20 

Pd/C, EtOH 

Fig. 1-8 Preparation of 5-NHrPhen. 

The synthesis of phenanthroline-based azo dyes is a two-step process. The first 

step is the diazotization of 5-NHrphen. In this step, an aqueous solution of 5-NHrphen 

is converted into the diazonium ion at a temperature of about 0° C by the action of 

sodium nitrite in the presence of HCl. The mechanism of this reaction is outlined in Fig. 

1-9.27' 28 Under very acidic conditions, the amine group is protonated, and the ammonium 

ion Ar-N +H 3 is attacked by the nitrosating reagent. The nitrosamine is quickly 

transformed into the diazonium ion via the diazo hydroxide. 
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Fig. 1-9 Mechanism ofDiazotization (taken from ref. 28). 

The second step is the azo coupling reaction. The diazonium ion formed during 

diazotization can react with a variety of" coupling components" in a subsequent 

electrophilic aromatic substitution of a nucleophilic substrate in the so-called "azo 

coupling" reactions. As diazonium ions are relatively weak electrophilic reagents, only 

aromatic compounds that carry electron donor substituents (-OH, -NH2, -NHR, etc.) can 

normally be used as coupling compounds. The reactions follow an SE2 mechanism in 

which in a first step the electrophilic reagent forms a covalent bond to the carbon at the 

reacting site of the coupling component. The intermediate formed is called a a-complex 

because of the covalent cr bond between the reaction partners. In a subsequent step, the 

proton is transferred to a proton acceptor (i.e. a base). Fig. 1-10 outlines the coupling 

reaction starting with an aromatic diazonium ion and using 2-naphtholate anion as the 

coupling component. Phenol and 2,6-dimethylphenol were also used as coupling 

reagents, and synthesis of the corresponding azo dyes was successful. (Fig. 1-7) 
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Fig. 1-10 Mechanism of coupling reaction (taken from ref. 28). 

The second part of this thesis involves the synthesis and characterization of a d6 

metal complex of one of the phen-azo-dye ligands (phen-azo-p-phenol). A phenol 

derivative was chosen over the naphthol derivative to reduce the chance of the metal ion 

binding to a site other than the 1, 10-phenanthroline portion of the ligand. (For example, 

the azo-ortho-hydroxy position of phen-azo-~-naphthol might offer a reasonable alternate 

binding site.) 

The target metal complex wasfac-Re1(C0)3 (phen-azo-p-phenol) Cl· This was 

chosen for several reasons: 

1) The complexfac-Re1(C0)3 (phen) Cl is easily synthesized and well 

characterized in the literature,29'30 and can serve as a basis of comparison. For 

example, electrochemical and IR data could be used to verify coordination 

through the 1,10-phenanthroline linkage infac-Re1(C0)3 (phen-azo-p-phenol) Cl· 

2)fac- Re1(C0)3(LL)Cl complexes typically show MLCT absorptions in the 350-

400 nm range, and emission in the 550-600 nm range. The emission is from an 

MLCT-based lowest energy excited state. When LL = phen-azo-p-phenol, 

absorption around 400 nm should be greatly enhanced. The lowest energy excited 

state, however, would still be expected to have MLCT character, and population 

of this state (and thus emission at 550-600 nm) might be significantly enhanced. 

Fig. 1-10 outlines the proposed syntheses ofbothfac-Re1(C0)3 (phen) Cl andfac­

Re\C0)3 (phen-azo-p-phenol) CL The syntheses are based on literature precedents.29'30 
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Fig. 1-11 Synthesis of Re(I) complexes containing phen and phen-azo-p-phenol. 
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Chapter 2: Experimental 

Materials: 5-Nitro-1,10-phenanthroline (5-NOz-phen) was available from previously 

studies45 and used without further purification. Aniline, 2,3,4,5,6-d-aniline, 1,10-

phenanthroline monohydrate, pentacarbonylchlororhenium(I) (Re1(C0)5Cl), phenol 

(C6H50H, 99%), hydrazine monohydrate (N2H4·H20, 99%), 10% Pd/C, and sodium 

nitrite (NaN02) were purchased from Aldrich Chemical Co. and used without further 

purification. f3-naphthol (99%) was purchased from Aldrich Chemical Co. and was either 

used as received or was recrystallized from 25:75 ethanol:H20 and sublimed before use. 

2,6-Dimethylphenol was purchased from Eastman Kodak Co. and used as received. 

Glacial acetic acid (99.7%) and diethyl ether (99.9%) were reagent grade and purchased 

from Fisher Chemical Co. and used as received. Acetone, chloroform, methanol, 2,2' ,4-

trimethylpentane, and 95% ethanol were purchased from E.M. Science and used as 

received. Dichloromethane was purchased from Mallinckrodt and used as received. 

Absolute ethanol was purchased from Midwest Grain Products and used as received. 

Aluminum oxide (Brockman activity I, neutral, 150 mesh) was purchased from Aldrich 

Chemical Co. and used as received. Silica gel (60-200 mesh) was purchased from Fisher 

Chemical Co. and used as received. The deuterated solvents CDC13 (99.8 atom% D), 

D20 (99.9 atom% D) and d6-DMSO (99.9 atom% D) were purchased from Cambridge 

Isotope Laboratories and used as received. The trifluoroacetic acid-d (CF3COOD, 99.5 

atom% D) was purchased from Aldrich and used as received. All water used for reactions 

and solutions was purified from a Millipore "Milli-Q" water system fed by house 

deionized water. 

Synthesis: 5-NHrl,10-phenanthroline (5-NHrphen): The starting material 5-NHr 

phen was prepared by reduction of 5-NOr 1, 10-phen with hydrazine in absolute ethanol 

(Pd/C catalyst) using a procedure similar to that outlined by Nasielski-Hinkens et al.26 In 

a 500-mL 3-neck flask, 0.4004 g (1. 778 mmol) of 5-NOz-phen was added with stirring to 

300 mL of absolute ethanol. The yellow 5-NOz-phen dissolved to form a light yellow 
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solution, and then 0.3658 g of 10% Pd/C was added slowly with stirring, forming a black 

suspension. Meanwhile, a solution of 1.082 mL ofN2H4·H20 in 30 mL of absolute 

ethanol was prepared in a separate 100-mL beaker. The N2Hiethanol solution was added 

to the 5-NOrphen mixture drop by drop from a separatory funnel over a 1 h time period. 

The reaction mixture was heated to reflux for 2 h, and then it was cooled to room 

temperature in a water bath. The dark green-black mixture was filtered using Whatman 

#1 filter paper. The green-yellow filtrate was evaporated in the hood and the solid was 

vacuum dried for 3 h. Yield: 0.3089 g (89% based on 5-NOrphen). Purity was checked 

by 1H-NMR. 

Phenyl-azo-2-naphthol: This compound was synthesized using a method analogous to 

that described by Hart and Craine31 for the preparation of phenyl-azo-2-naphthol. In a 

typical preparation, 1.5 mL of H20 and 2.0 mL of cooled 6 M HCl were added slowly 

with stirring and cooling to 0.500 mL (5.49 mmol) of aniline in a 25-mL beaker (kept at 

0 °C in an ice bath). The light yellow aniline dissolved in the HCl to form a colorless 

solution. Stirring was continued for 3 min. Meanwhile, a solution of 0.25 g ofNaN02 

(3.6 mmol) in 2.5 mL ofH20 was prepared in a separate 6-dram vial and cooled to 0 °C 

in an ice bath. The NaN02 solution was added slowly to the aniline/HCl solution, and the 

color gradually turned to light yellow. No precipitate was formed in this step. Stirring 

and cooling were continued for another 3 min. 

In a 40-mL beaker, 0.103 g (0. 708 mmol) of P-naphthol was dissolved in 2 mL of 

10% NaOH solution at room temperature. Water (5 mL) was added to the beaker, and 

then 2 mL of the diazotized aniline (1.688 mmol) mixture was transferred into the P­

naphthol solution all at once with stirring. A dark orange precipitate formed 

immediately, and the stirring was continued for 2 min. The pH of the mixture was > 13 at 

this time. The reaction mixture was then transferred to a 15-mL Buchner funnel 

containing a glass frit filter (F).a The mixture filtered slowly. The dark orange solid in 

the frit was thoroughly washed with water and the filtrate was light orange. The solid 

a Glass frit properties: C - coarse M - medium F - fine 
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was dried under vacuum for 3 h. Yield of crude phenyl-azo-2-naphthol: 0.1678 g (95.4% 

based on P-naphthol). Purity was checked by 1H-NMR. 

2,3,4,5,6-d5-Phenyl-azo-2-naphthol: This compound was synthesized by using a method 

analogous to the preparation ofphenyl-azo-2-naphthol. In a typical preparation, 0.5 mL 

of H20 and 0.667 mL of cooled 6 M HCl were added slowly with stirring and cooling to 

0.167 mL (1.832 mmol) of2,3,4,5,6-d5-aniline in a 25-mL beaker (kept at 0 °C in an ice 

bath). The light yellow 2,3,4,5,6-d5-aniline dissolved in the HCl to form a colorless 

solution. Stirring was continued for 3 min. Meanwhile, a solution of 0.083 g ofNaN02 

(1.2 mmol) in 0.830 mL of H20 was prepared in a separate 6-dram vial and cooled to 

0 °C in an ice bath. The NaN02 solution was added slowly to the aniline/HCl solution, 

and the color gradually turned to light yellow. No precipitate was formed in this step. 

Stirring and cooling were continued for another 3 min. 

In a 40-mL beaker, 0.103 g (0. 708 mmol) of P-naphthol was dissolved in 2 mL of 

10% NaOH solution at room temperature. Water (5 mL) was added to the beaker, and 

then 2 mL of the diazotized 2,3,4,5,6-d5-aniline (1.688 mmol) mixture was transferred 

into the P-naphthol solution all at once with stirring. A dark orange precipitate formed 

immediately, and the stirring was continued for 2 min. The pH of the mixture was > 13 at 

this time. The reaction mixture was then transferred to a 15-mL Buchner funnel 

containing a glass frit filter (F). The mixture filtered slowly. The dark orange solid in the 

frit was thoroughly washed with water and the filtrate was light orange. The solid was 

dried under vacuum for 3 h. Yield of crude 2,3,4,5,6-d5-phenyl-azo-2-naphthol: 0.1778 g 

(99 .1 % based on P-naphthol). Purity was checked by 1H-NMR. 

Phen-azo-2-naphthol: This compound was synthesized by using a method analogous to 

that used for the preparation ofphenyl-azo-2-naphthol. In a typical preparation, 1.5 mL 

of cooled 6 M HCl was added slowly with stirring and cooling to 0.0610 g (0.3125 

mmol) of 5-NHrphen in a 6-dram vial (kept at 0 °C in an ice bath). The yellow-green 5-

NHrphen dissolved in the HCl to form a red solution. Stirring was continued for 3 min. 
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Meanwhile, a solution of0.0220 g ofNaN02 (0.3188 mmol) in 0.836 mL ofH20 was 

prepared in a separate 4-dram vial and cooled to 0 °C in an ice bath. The NaN02 solution 

was added all at once to the 5-NHrphen/HCl solution, and the color turned to dark 

orange. No precipitate was formed in this step. Stirring and cooling were continued for 

another 3 min. 

In a 40-mL beaker, 0.0451 g (0.3125 mmol) of ~-naphthol was dissolved in 4 mL 

of 10% NaOH solution at room temperature. Water (10 mL) was then added to the 

beaker. The diazotized phenathroline mixture was then transferred into the ~-naphthol 

solution all at once with stirring. A dark red precipitate formed immediately, and the 

stirring was continued for 2 min. The pH of the mixture was > 13 at this time. The 

reaction mixture was then transferred to a 15-mL Buchner funnel containing a glass frit 

filter (F). The mixture filtered very slowly. The dark red solid in the frit was thoroughly 

washed with water and the filtrate was dark red-purple. The solid was dried under 

vacuum for 3 h. The dried solid was rinsed with 25 mL of diethyl ether (to remove any 

remaining ~-naphthol), the resulting suspension was filtered, and the solid was dried 

under vacuum for 3 h. Yield of crude phen-azo-2-naphthol: 0.0650 g (55.8% based on 5-

NHrphen). 

The crude phen-azo-2-naphthol was purified by silica gel chromatography. A 

20-mg sample of solid was dissolved in 1.5 mL of 85:15 acetic acid:methanol and loaded 

onto a silica gel column which was 20 cm long and 1.1 cm wide. The column was 

developed with 85: 15 acetic acid:methanol with a flow rate of 20 drops/min. Over a 

20-min time period, four different bands developed from bottom to top: light yellow, light 

pink, red and dark purple. Based on the results of TLC, the desired compound was 

thought to be the red fraction. About 30 mL of the red fraction was collected from the 

column, and this solution was filtered through a 30-mL F-frit to remove small silica 

particles. The solution was evaporated in the hood and the solid was vacuum dried at 

100 °C for 5 h. Yield: 10 mg (28% based on 5-NHrphen). Mp: 225-230 °C. Elemental 

analysis: Calcd for C22H14N40·1H20·0.2HC2H30 2: %C 70.72, %H 4.45, %N 14.73. 

Found: %C 70.84, %H 4.13, %N 14.78. 
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Alumina chromatography was also employed to purify the crude phen-azo-2-

naphthol. In this procedure, 20 mg of crude product was dissolved in 1.5 mL of 95% 

ethanol and loaded onto an alumina column which was 26 cm long and 1.1 cm wide. The 

column was developed using 50:50 EtOH:CHC13 with a flow rate of 20 drops/min. Over 

a 30-min time period, three different bands developed from bottom to top: red, pink and 

dark purple. Based on the results of TLC, the desired fraction (red fraction) was eluted 

first and the impurities formed the pink and dark purple bands. About 20 mL of desired 

fraction was collected, and it was filtered through a 30-mL F-frit to remove small alumina 

particles. The red solution was evaporated in the hood and the product was vacuum dried 

at 120 °C for 8 h. Yield: 8.0 mg (22% based on 5-NHrphen). Purity was checked by 1H­

NMR. 

Phen-azo-p-phenol: In a typical preparation, 1.5 mL of cooled 6 M HCl was added 

slowly with stirring and cooling to 0.0610 g (0.3125 mmol) of 5-NHrphen in a 6-dram 

vial (kept at 0 °C in an ice bath). The yellow-green 5-NHrphen dissolved in the HCl to 

form a red solution. Stirring was continued for 3 min. Meanwhile, a solution of 0.0220 g 

of NaN02 (0.3188 mmol) in 0.836 mL ofH20 was prepared in a separate 4-dram vial 

and cooled to 0 °C in an ice bath. The NaN02 solution was added all at once to the 5-

NHrphen/HCl solution, and the color turned to dark orange. No precipitate was formed 

in this step. Stirring and cooling were continued for another 3 min. 

In a 40-mL beaker, 0.0294 g (0.3125 mmol) of phenol was dissolved in 4 mL of 

10% NaOH solution at room temperature. Water (10 mL) was then added to the beaker. 

The diazotized phenathroline mixture was then transferred into the phenol solution all at 

once with stirring. A dark brown precipitate formed immediately, and the stirring was 

continued for 2 min. The pH of the mixture was > 13 at this time. The reaction mixture 

was then transferred to a 15-mL Buchner funnel containing a glass frit filter (F). The 

mixture filtered very slowly. The dark red solid in the frit was thoroughly washed with 

water and the filtrate was dark brown-purple. The solid was dried under vacuum for 3 h. 

The dried solid was rinsed with 25 mL of diethyl ether (to remove any remaining phenol), 

18 



the resulting suspension was filtered, and the solid was dried under vacuum for 3 h. 

Yield of crude phen-azo-p-phenol: 0.0503 g (53.3% based on 5-NHrphen). 

Alumina chromatography was employed to purify the crude phen-azo-p-phenol. 

In this procedure, 20 mg of crude product was dissolved in 1.5 mL of 95% ethanol and 

loaded onto an alumina column which was 26 cm long and 1.1 cm wide. The column was 

developed using 60:40 EtOH:CHC13 with a flow rate of20 drops/min. Over a 30-min 

time period, three different bands developed from bottom to top: pink, yellow and dark 

purple. Based on the results of TLC, the yellow fraction was thought to be the target 

compound, and this fraction was eluted right after the pink impurity. Another impurity 

formed a dark purple band which barely moved and remained at the top of the column. 

About 20 mL of the desired fraction was collected, and it was filtered through a 30-mL F­

frit to remove small alumina particles. The yellow solution was evaporated in the hood 

and the product was vacuum dried at 120 °C for 8 h. Yield: 7.0 mg (19% based on 5-

NHrphen). Mp: 280-282 °C. Elemental analysis: Calcd for C18H12N40· 1H20: %C 

67.91, %H 4.43, %N 17.60. Found: %C 68.28, %H 4.28, %N 17.36. 

The crude phen-azo-p-phenol could also be purified by silica gel chromatography. 

A 20-mg sample of solid was dissolved in 1.5 mL of 90: 10 acetic acid:methanol and 

loaded onto a silica gel column which was 20 cm long and 1.1 cm wide. The column was 

developed with 90: 10 acetic acid:methanol with a flow rate of 20 drops/min. Over a 20-

min time period, three different bands developed from bottom to top: light yellow, purple 

and dark purple. Based on the results of TLC, the desired compound was thought to be 

the yellow fraction. About 30 mL of the yellow-orange fraction was collected from the 

column, and this solution was filtered through a 30-mL F-frit to remove small silica 

particles. The solution was evaporated in the hood and the solid was vacuum dried at 

120 °C for 8 h. Yield: 8.1 mg (22% based on 5-NHrphen). Purity was checked by 1H­

NMR. 

Phen-azo-2,6-dimethylphenol: In a typical preparation, 1.5 mL of cooled 6 M HCl was 

added slowly with stirring and cooling to 0.0610 g (0.3125 mmol) of 5-NHrphen in a 6-
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dram vial (kept at 0 °C in an ice bath). The yellow-green 5-NHrphen dissolved in the 

HCl to form a red solution. Stirring was continued for 3 min. Meanwhile, a solution of 

0.0220 g ofNaN02 (0.3188 mmol) in 0.836 mL ofH20 was prepared in a separate 4-

dram vial and cooled to 0 °C in an ice bath. The NaN02 solution was added all at once to 

the 5-NHrphen/HCl solution, and the color turned to dark orange. No precipitate was 

formed in this step. Stirring and cooling were continued for another 3 min. 

In a 40-mL beaker, 0.0380 g (0.3125 mmol) of 2,6-dimethylphenol was dissolved 

in 4mLof10% NaOH solution at room temperature. Water (10 mL) was then added to 

the beaker. The diazotized phenathroline mixture was then transferred into the 2,6-

dimethylphenol solution all at once with stirring. A dark brown precipitate formed 

immediately, and the stirring was continued for 2 min. The pH of the mixture was > 13 at 

this time. The reaction mixture was then transferred to a 15-mL Buchner funnel 

containing a glass frit filter (F). The mixture filtered very slowly. The dark red solid in 

the frit was thoroughly washed with water and the filtrate was dark purple. The solid was 

dried under vacuum for 3 h. The dried solid was rinsed with 25 mL of diethyl ether (to 

remove any remaining 2,6-dimethylphenol), the resulting suspension was filtered, and the 

solid was dried under vacuum for 3 h. Yield of crude phen-azo-2,6-dimethylphenol: 

0.0786 mg (76.6% based on 5-NHrphen). 

Alumina chromatography was employed to purify the crude phen-azo-2,6-

dimethylphenol. In this procedure, 20 mg of crude product was dissolved in 1.5 mL of 

95% ethanol and loaded onto an alumina column which was 26 cm long and 1.1 cm wide. 

The column was developed using 90: 10 EtOH:CHC13 with a flow rate of 20 drops/min. 

Over a 30-min time period, three different bands developed from bottom to top: yellow, 

pink and dark purple. The desired (based on TLC) yellow fraction was eluted first, and 

the impurities formed pink and dark purple bands. About 20 mL of the desired fraction 

was collected, and it was filtered through a 30-mL F-frit to remove small alumina 

particles. The yellow solution was evaporated in the hood and the product was vacuum 

dried at 120 °C for 8 h. Yield: 7.8 mg (31 % based on 5-NHrphen). Mp: 272-276 °C. 
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Elemental analysis: Calcd for C20H16N40· 1H20: %C 69.35, %H 5.24, %N 16.17. Found: 

%C 69.85, %H 4.90, %N 15.98. 

The crude phen-azo-2,6-dimethylphenol could also be purified by silica gel 

chromatography. A 20-mg sample of solid was dissolved in 1.5 mL of90:10 acetic 

acid:methanol and loaded onto a silica gel column which was 20 cm long and 1.1 cm 

wide. The column was developed with 90: 10 acetic acid:methanol with a flow rate of 20 

drops/min. Over a 20-min time period, three different bands developed from bottom to 

top: light yellow, purple and dark purple. Based on the results of TLC, the desired 

compound was thought to be the yellow fraction. About 30 mL of the yellow fraction 

was collected from the column, and this solution was filtered through a 30-mL F-frit to 

remove small silica particles. The solution was evaporated in the hood and the solid was 

vacuum dried at 120 °C for 8 h. Yield: 8.8 mg (35% based on 5-NHrphen). 

/ac-Re1(C0)3(phen)Cl This compound was synthesized by using a method analogous to 

that reported by Guarr et al 29'30 for the preparation of/ac-[(Mebpy-Mebpy)Re1(C0)3Cl]. 

Methanol (80 mL) was added to a 250-mL 3-neck RB flask that was equipped with a 

reflux column and a stirring bar, and the methanol was deoxygenated with N2 for 25 min. 

Re\C0)5Cl (0.1000 g, 0.2764 mmole) was added with stirring, followed by 0.0548 g 

(0.2764 mmole) of 1,10-phenanthroline monohydrate. The mixture was refluxed under 

N2. The solution was clear and colorless when the ligand was added, but became light 

yellow after 20 min. After 1 h, some yellow solid precipitated. Refluxing and stirring 

·were continued under N2 for 6 h. The reaction mixture was cooled to room temperature, 

resulting in the precipitation of more yellow solid. The reaction mixture was then 

transferred to a 15-mL Buchner funnel containing a glass frit filter(F). The yellow solid in 

the frit was thoroughly washed with 5 mL methanol and the filtrate was light yellow. The 

solid was dried under vacuum for 3 h. Yield of crude/ac-Re1(C0)3(phen)Cl: 0.0971 g 

(72.3% based on phen). 

The crude/ac-Re\C0)3(phen)Cl was purified by recrystallization. The yellow 

solid was dissolved in 80 mL of CH2Cl2 in a 500-mL beaker, and then 160 mL of2,2',4-
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trimethylpentane was dripped into this solution causing precipitation. The mixture was 

filtered on a 15-mL F frit. The solid was washed with a few drops of methanol, and then 

dried under vacuum for 3 hr. Yield of purifiedfac-Re\C0)3(phen)Cl: 0.0825 g (61.4% 

based on phen). Mp: 343-348 °C. Elemental analysis: Calcd for C15H8ClN20 3Re: %C 

37.08, %H 1.66, %N 5.77. Found: %C 36.95, %H 1.73, %N 5.73. 

/ac-Re1(C0)3(pben-azo-p-pbenol)Cl This compound was synthesized by using a 

method analogous to the preparation ofRe1(C0)3(phen)Cl. Methanol (120 mL) was 

added to a 250-mL 3-neck RB flask that was equipped with a reflux column and a stirring 

bar, and the methanol was deoxygenated with N2 for 25 min. Re1(C0)5Cl (0.0454 g, 

0.126 mmole) was added with stirring, followed by 0.0400 g (0.126 mmole) ofphen-azo­

p-phenol. The mixture was brought to reflux under N2. The resulting solution was clear 

and dark orange when the ligand was added, but became very bright orange after 2 h. 

Refluxing and stirring were continued under N2 for 21 h. Reaction progress was 

monitored by TLC using EtOH as solvent. The solution was cooled to room temperature, 

and the solvent was then removed by roto-evaporation. The resulting brown-yellow solid 

was dried under vacuum for 3 h. Yield of crudefac-Re1(C0)3(phen-azo-p-phenol)Cl: 

0.0802 g (93.9% based on phen-azo-p-phenol). 

The crude/ac-Re1(C0)3(phen-azo-p-phenol)Cl was washed with 10 mL of2,2',4-

trimethylpentane to remove unreacted Re1(C0)5Cl. The resulting suspension was filtered, 

and the brown-yellow solid was dried under vacuum for 3 h. The solid was added to 10 

mL of methanol in a 25-mL RB flask equipped with a reflux column and a stirring bar. 

The dark orange suspension was refluxed for 25 min, and the hot mixture was filtered on 

a 15-mL F frit. The dark yellow solid was washed with a few drops of cold methanol, 

and the filtrate was dark orange. The solid obtained was dried under vacuum for 3 hr. 

Yield of purifiedfac-Re1(C0)3(phen-azo-p-phenol)Cl: 0.0501 g (58.7% based on phen­

azo-p-phenol). Mp: 316-320 °C. Elemental analysis: Calcd for C21H12ClN40 4Re: %C 

41.62, %H 2.00, %N 9.25. Found: %C 42.50, %H 2.48, %N 8.63. 

22 



Methods: Melting point measurements were performed on a Laboratory Devices 

MEL-TEMP. 1H-NMR spectra were obtained using a General Electric QE-300 FT-NMR 

spectrometer. UV-Vis spectra were recorded on a Shimadzu UV-3100 

spectrophotometer. FT-IR spectra were recorded using a Nicolet 20-DXB instrument. 

Elemental analyses were carried out by Atlantic Microlabs, Norcross, GA. 
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Chapter 3: Results and Discussion 

Synthesis and Purification of Phenanthroline-Based Dyes 

(1) A possible self-coupling reaction of 5-NHrphen: 

In traditional azo coupling reactions, the diazotization step needs to be carried out 

at as low a temperature as possible (generally 0-5 °C) in order to prevent the 

decomposition of the diazonium ion.28 Since diazotization is an exothermic reaction, the 

NaN02 solution is usually added slowly to prevent the temperature from rising too 

rapidly. Adding the NaN02 solution slowly will always result in the temporary 

coexistence of diazonium ion and unreacted amine in the solution, which generates the 

possibility of self coupling(Fig. 3-1 ). The self-coupling reaction should not be favored, 

however, because under the acidic conditions employed (pH < 1 ), any free amine would 

be protonated to form the ammonium ion (Ar-NH3\ The protonated amine should not 

react readily as a coupling component because the added proton depletes the electron 

density of the amine, greatly lowering the coupling reactivity. Consistent with this 

reasoning, the model reactions using aniline as the starting material were carried out 

successfully, with no apparent self-coupling of the aniline. 

Ar-NHi 
6M HCl I 0 °C 

NaN02 1H20 

+ 
Ar-N- N Cl 

Ar- NHi 

N.R 

Ar'- OH 

Ar-N=N-Ar-NH2 

self-coupling product 

Fig. 3-1 Self-coupling reaction of amine 
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Initially, the diazotization of 5-NHz-phen was carried out using the same 

procedure as used for aniline. However, when the NaN02 solution was added slowly to 

the acidified 5-NHz-phen, a dark red precipitate (not solution) formed immediately. 

When this mixture was added to a basic P-naphthol solution (the coupling component), 

no coupling reaction occurred. This was confirmed by performing a control experiment. 

In this experiment, diazotized 5-NHz-phen was mixed with the basic solution used to 

dissolve the P-naphthol (i.e. no p-naphthol present). The solid product obtained from this 

control experiment had a 1H-NMR spectrum identical to the product obtained with P­

naphthol. This indicated that the product resulted from a reaction that did not involve P­

naphthol. The dark red product generated from this reaction did not dissolve in typical 

organic solvents, such as CDC13, acetone, or DMSO. The 1H-NMR spectrum taken in 

trifluoroacetic acid-d (Fig. 3-21) shows four sets of multiplets between 8.0 and 8.6 ppm. 

It is typical for a phenanthroline that is asymmetrically substituted at the 5,6 positions to 

have two sets of multiplets (two sets of 4 peaks) in the aromatic region of its 1H-NMR 

spectrum. For example, 5-NHz-phen shows these two multiplets at around 7.50 ppm and 

7.75 ppm (Fig. 3-7), while these peaks overlap slightly in 5-NOz-phen at around 7.95 

ppm (Fig. 3-8). The four sets of multiplets in Fig. 3-21 imply the presence of two 

different unsymmetrically substituted phenanthrolines. On the basis of the insolubility of 

the product and the 1H-NMR spectra, a tentative "self-coupling" structure can be deduced 

as shown in Fig. 3-2. The upfield pair of multiplets could be assigned to the phen 

containing the -NH2 group. The -NH2 signal itself can not be observed in trifluoroacetic 

acid because of HID exchange. 

phen-azo-phen 

Fig. 3-2 Self coupling product of 5-NHz-phen 
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Additional evidence for self-coupling of phen can be observed in the IR spectrum 

(Fig. 3-27). The characteristic azo stretching vibration band can be observed at 1449 

cm-1. This frequency is consistent with the literature value32 of1450 cm-1. Moreover, a 

strong broad absorption at 3256 cm-1 can be assigned to the N-H stretching vibration.34 

Usually, primary aromatic amines display strong C-N stretching absorption in the 1340-

1250 cm-1 region, and a medium peak can be observed at 1323 cm-1 in Fig. 3-27. A band 

at 737 cm-1 can be assigned to the C-H out of plane bending of three adjacent H atoms in 

each ring of the phenanthroline. This is a typical absorption of 5,6-substituted 

phenanthroline derivatives. The 737 cm-1 band was abnormally strong in Fig. 3-27 

compared to that of phen-azo-2-naphthol (Fig. 3-24), phen-azo-p-phenol (Fig. 3-25), and 

phen-azo-2,6-dimethylphenol (Fig. 3-26). This is probably because of the existence of 

two phen rings. 

Since the phenanthroline self-coupling product was not the target compound, no 

attempts were made on final purification. However, a crude sample was sent out for 

elemental analysis. The result was: Calcd for C24H15Nr 1H20-: %C 68.71, %H 4.08, %N 

23.38. Found: %C 70.55, %H 4.18, %N 23.38. 

In subsequent diazotizations of phen, the NaN02 was kept in slight excess 

(phen:NaN02 = 1: 1.1) and it was added to the acidified phen solution all at once in an 

attempt to discourage self-coupling. This method appeared to give satisfactory results 

and yields in subsequent coupling reactions with phenols. 

(2) Coupling temperature and pH value: 

The aromatic and heteroaromatic diazonium ions formed in Fig. 1-9 are subject to 

irreversible decomposition reactions. (Fig. 3-3) The C-N bond of the diazonium ion may 

dissociate heterolytically or homolytically, depending on the structure of the diazonium 

ion and the reaction conditions.28 Since the diazo decomposition reactions have larger 

activation energies than the desired coupling reactions, diazotization and the subsequent 

coupling reactions (theoretically) need to be carried out at as low a temperature as 

possible. For the preparation of phen-azo-2-naphthol, phen-azo-p-phenol, and phen-azo-
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2,6-dimethylphenol, diazotization of the phenanthroline was always done at low 

temperature. The subsequent coupling reactions were attempted at both room 

temperature and at 0-5 °C. It was found that low-temperature coupling seemed to 

improve the yield slightly, but the purity of the products (as checked by 1H-NMR) was 

not improved. For phen-azo-p-phenol, more impurities showed up in the 1H-NMR 

spectra when the coupling reaction was carried out at low temperature. 

The coupling reaction is base catalyzed.28 Basic conditions shift the equilibrium 

of the phenolic coupling component to favor the deprotonated form (Ar-0 l The 

deprotonated form is much more reactive towards electrophilic attack by the diazonium 

ion. Therefore, after carrying out diazotization of the phenanthroline under strongly 

acidic conditions, the coupling reactions must be performed at pH values greater than the 

pKa's of the phenols. The pKa's of phenol, 2,6-dimethylphenol and P-naphthol are 9.99, 

10.59, and 9.57, respectively.32 These phenols were dissolved in aqueous NaOH before 

coupling and the final pH values after the coupling reactions were measured to be> 13. 

+ 

Ar-N:=N 

/ Ar-N 
+ 

,, 
Ar +N2 N-X 

+Nu 

Ar·+ N2 + X· 
Ar-Nu 

Diazo tars Ar-Ar Ar-~, etc. 
N-Ar 

---7----7 indicates two or more steps 

Fig. 3-3 The decomposition of diazonium ion (taken from ref. 28). 
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(3) Starting materials I chromatographic materials 

P-Naphthol (99%) was purchased from Aldrich Chemical Co. and was used as 

received or was recrystallized from 25:75 ethanol:H20. The 1H-NMR spectra of the 

crude coupling product of diazotized phenanthroline and P-naphthol showed that it did 

not appear to make any difference whether or not the purified P-naphthol was used in the 

reaction. Also, the yield was about the same when using purified P-naphthol. Moreover, 

the 1H-NMR spectra of crude and purified P-naphthol were very similar. 

Two different lots of Aldrich aluminum oxide (both~ 150 mesh, Brockman I, 

neutral) were used for chromatographic separation. The eluant of Lot# 09009KT alumina 

was very cloudy. Apparently, some small particles of alumina were washed out by the 

solvents and passed through either the glass wool plug or coarse glass frit in the columns. 

The particle size of the Aldrich alumina was~ 0.105 mm. The pore size of the coarse 

glass frit ranged from 0.04 mm to 0.06 mm. Therefore, no alumina particles should have 

come through, at least not in the columns using glass frits. The reason for this problem 

was not clear. Interestingly, a different lot of the same material (Lot# 06405DW) worked 

better, as the eluants from columns made of this material were much clearer (but were 

still filtered through fine glass frits with pore sizes of 0.0040 mm- 0.0055 mm). 

( 4) Elemental analysis. 

The phen-azo dyes were vacuum dried at 120 °C before being sent out for 

elemental analyses but still appeared to be approximately monohydrates in all cases. The 

1H-NMR spectra of all three phen-azo dyes showed significantly increased water peaks at 

3 .4 ppm as compared to that of DMSO blank spectra. This result is common for azo 

dyes.40 

The sample ofphen-azo-2-naphthol (for elemental analysis) was purified by silica 

gel chromatography using a combination solvent of acetic acid and MeOH. Acetic acid 

proved to be quite difficult to remove completely. In the 1H-NMR of the purified solid, a 

small peak at 1.90 ppm (-CH3 from acetic acid) integrated to ~0.5 H, equivalent to~ 0.2 

HC2H30 2. Therefore, 0.2 HC2H30 2 was included in the elemental analysis result for 
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phen-azo-P-naphthol. The phen-azo-p-phenol and phen-azo-2,6-dimethylphenol samples 

(for elemental analysis) were purified by alumina chromatography using a combination 

solvent ofEtOH and CHC13. EtOH and CHC13 can more easily be removed from the 

products, leaving only residual water. 

1H-NMR Spectra 

( 1) Starting materials 

The 1H-NMR spectra of 5-NHrphen, 5-NOrphen, and phen are shown in Figs. 3-7, 3-8, 

and 3-9, respectively, and peak assignments are listed in Table 3-1. For 5-NHrphen, 

assignment of the singlet at 6.15 ppm to -NH2 was confirmed by the integration (2H) and 

by the disappearance of the signal upon addition ofD20. Almost all the 1H resonances 

show the effects of the electron releasing -NH2 and electron withdrawing -N02 groups. 

The effect is especially pronounced at position 6 on the ring, where the 5-NOrphen and 

5-NHrphen signals differ by> 2 ppm. 

(2) Phen-azo-P-naphthol 

The 1H-NMR spectra for phen-azo-P-naphthol are shown in Figs. 3-13 a, b. 

Direct assignment of peaks is complicated by overlapping signals from the phen and 

naphthol rings. In order to more clearly make assignments, a model reaction was 

designed in which 2,3,4,5,6-d-aniline would be diazotized and coupled to P-naphthol 

(Fig. 3-4a). It was thought that the deuterated aniline moiety would be a suitable 

electronic analog of phenanthroline. More importantly, it would be 1H-NMR "silent", 

allowing for clearer assignments of P-naphthol resonances in the complicated 1H-NMR 

spectrum of phen-azo-P-naphthol. Because of the expense involved in using deuterated 

aniline, and in order to optimize experimental conditions, a reaction using aniline and P­

naphthol was run first (Fig. 3-4b). In this reaction, aniline was diazotized by NaN02 in 

HCl at 0 °C and coupled to P-naphthol in the presence ofNaOH. The product of this 

29 



reaction was phenyl-azo-P-naphthol (Sudan I). 

~~, 
D D 

NaN02 

HCI/ 0-5 °C 

o­

D D 
NaOH 

Fig. 3-4a Model reaction using 2,3,4,5,6-d-aniline and P-naphthol 

NaN02 

HCI/ 0-5 °C 

0- N -:::::- N 
-Bo 

/, 

OH 

~ 
0 
NaOH 

08H 

o-N-:::::-N-
/, 

Fig. 3-4b Model reaction using aniline and P-naphthol 

The 1H-NMR spectrum of the phenyl-azo-P-naphthol is shown in Fig. 3-10 a, b. 

All peaks integrate to 12H, the total number expected for phenyl-azo-P-naphthol. The 

peak at 15.8 ppm is assigned to the -OH proton. This assignment is based on the 1H­

NMR spectrum reported for p-methoxy-phenyl-P-naphthol (in d6-acetone) in the 

literature.33 The peak at 15.8 ppm disappeared upon the addition ofD20 to the sample, 
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confirming this as the -OH resonance. The hydroxyl proton is shifted dramatically 

downfield due to its taking part in H-bonding (vide infra). 

Sudan I is a commercially available dye, and the spectrum of a sample purchased 

from Aldrich is shown in Fig. 3-11 a, b. The identical peak patterns of Fig. 3-10 and Fig. 

3-11 confirmed that the model reaction was carried out successfully and phenyl-azo-P­

naphthol was indeed produced. 

2,3,4,5,6-d-Aniline was then diazotized and coupled to P-naphthol using exactly 

the same experimental conditions as in the previous model reaction. The 1H-NMR 

spectrum of the 2,3,4,5,6-d-phenyl-azo-P-naphthol product is shown in Fig. 3-12 a, b. All 

signals in Fig. 3-12 are from the P-naphthol moiety. Peak assignments for 2,3,4,5,6-d­

phenyl-azo-p-naphthol were made using Silverstein et ai34 and are listed in Table 3-2. 

For the purpose of comparison, chemical shift data for phenyl-azo-P-naphthol are also 

included. The significance of these data are that the 1 H-NMR peak pattern for P-naphthol 

attached to an aromatic ring through an azo linkage at position 1 was determined. 

As mentioned previously, the 1H-NMR spectra for phen-azo-p-naphthol are 

shown in Figs. 3-13 a, b. The data are summarized in Table 3-3. (For the purpose of 

comparison, the chemical shift data for related compounds such as phenyl-azo-P-naphthol 

(Fig. 3-10), 5-NOz-phen (Fig.3-8), and P-naphthol (Fig. 3-14) are also included.) 

For phen-azo-P-naphthol, all peaks integrate to 14H, which is the total number 

expected. The peak at 16.7 ppm in Fig. 3-13a had an integrated intensity slightly less 

than one proton. As for Sudan I, this signal was assigned to the azo-OH on the basis of 

literature precedent.33 The peak at 16.7 ppm disappeared upon the addition ofD20 to the 

sample, confirming this as the -OH resonance. Intramolecular hydrogen bonding (Fig. 3-

5) explains why the peak from the hydroxylic proton is found at abnormally low field. 

The intramolecular hydrogen bonding decreases the electron density around the proton, 

and thus moves the proton absorption to lower field. 

Fig. 3-5 depicts the two possible tautomers for phen-azo-p-naphthol. The 

azo/hydrazone tautomerization is a well-known phenomenon for phenyl-azo-P­

naphthol.41 The position of the equilibrium has been found to be both solvent and 
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33 41 . temperature dependent. ' Apparently, for phenyl-azo-P-naphthol m DMSO, the 

equilibrium favors the azo form since the hydroxylic proton signal at 16. 7 ppm integrates 

to nearly one proton. The -NH resonance, expected at around 10.2 ppm (on the basis of 

literature reports for p-methoxy-phenyl-P-naphthol in d6-acetone33) is either nonexistent 

or too small to be detected in DMSO. Almost all the 1H resonances from the naphthol 

fragment in phen-azo-P-naphthol are shifted downfield compared with P-naphthol (Fig. 

3-14). This is most likely due to the effects of the linkage of the electron withdrawing 

azo group. The effect is especially pronounced at position 8' on the ring, where the P­

naphthol and phen-azo-P-naphthol 1H resonaces differ by~ 1 ppm. Moreover, 

differences between the phenyl-azo-P-naphthol and phen-azo-P-naphthol can also be 

observed. In phen-azo-P-naphthol, the heterocyclic phenanthroline ring appears to 

decrease the electron density of the P-naphthol ring (relative to the phenyl derivative), as 

evidenced by small downfield shift (0.05-0.14 ppm) in P-naphthol resonances (Table 3-

3). 

I 

N ,, 
N 

Azo 

H--0 
I 

-N 

I 'N= 

Hydrazone 

Fig. 3-5 The tautomerization and intramolecular hydrogen bond of phen-azo-2-naphthol 

(3) Phen-azo-p-phenol 

The 1H-NMR spectrum for phen-azo-p-phenol is shown in Fig. 3-15, and the data 

are summarized in Table 3-4. (For the purpose of comparison, the chemical shift data for 

phenol (Fig. 3-16) and 5-NOrphen (Fig. 3-8) are also included.) The 1H-NMR signals 

for phen-azo-p-phenol integrate to 12H, which is the total number expected. A very 

broad peak at 10.4 ppm in Fig. 3-15 has an integrated intensity of about one proton. 

32 



Assignment of this signal to the azo -OH was made based on the 1H-NMR spectrum of 

phenol (Fig. 3-16) in which the -OH proton resonance is at 9.35 ppm. The peak at 10.4 

ppm disappeared upon the addition of D20 to the sample, confirming this as the -OH. 

Since the phen-azo-p-phenol could not have an intramolecular hydrogen bond like phen 

azo-p-naphthol, the -OH signal was not moved dramatically downfield. Assignment of 

other peaks was straightforward based on the assignments for phen-azo-p-naphthol 

(Table 3-4). 

( 4) Phen-azo-2,6-dimethylphenol 

The 1H-NMR spectra for phen-azo-2,6-dimethylphenol in d6-DMSO are shown in 

Fig. 3-17 a, b, and the data are summarized in Table 3-5. (For the purpose of comparison, 

the chemical shift data for 2,6-dimethylphenol in d6-DMSO (Fig. 3-19 a, b) and 5-NOr 

phen (Fig. 3-8) are also included.) Assignment of peaks was made based on the 

assignments for phen-azo-p-naphthol (Fig. 3-13), phen-azo-p-phenol (Fig. 15), and 2,6-

dimethylphenol (Fig. 3-19). Six -CH3 protons can be observed at 2.33 ppm in Fig. 3-17a. 

The 1H-NMR signals for phen-azo-2,6-dimethylphenol integrate to approximately 15H, 

which is one less than the total number expected. By comparison with the chemical shift 

of2,6-dimethylphenol in d6-DMSO, which has an-OH resonance at 8.14 ppm, we found 

that the missing signal in Fig. 3-17 is the -OH resonance. From experience with 1H-NMR 

assignments for phen-azo-p-phenol, we expected that the -OH peak in the phen-azo-2,6-

dimethylphenol would shift downfield by about 1 ppm compared with the -OH peak in 

2,6-dimethylphenol (to around 9.1 ppm). Possibly, this -OH peak was buried by three 

phenanthroline signals from 9.0 - 9.5 ppm. In fact, those three peaks (as a group) do 

integrate to more than three protons. 

An effort was made to find the -OH signal in the 2,6-dimethylphenol moiety by 

taking the 1H-NMR spectra in CDC13• The 1H-NMR spectra for phen-azo-2,6-

dimethylphenol and 2,6-dimethylphenol in CDC13 are shown in Fig. 3-18a, b, and Fig. 3-

20a, b, respectively, and the data are summarized in Table 3-5. The 1H-NMR signals for 

phen-azo-2,6-dimethylphenol in Fig. 3-18a integrate to l 6H, which is the total number 
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expected. Six -CH3 protons can be observed at 2.40 ppm in Fig. 3-18 a. A broad peak at 

5.3 ppm in Fig. 3-18a has an integrated intensity of about one proton. Assignment of this 

signal to the azo -OH was made based on the 1H-NMR spectrum of 2,6-dimethylphenol 

(Fig. 3-20) in which the -OH proton resonance is at 4.6 ppm. The peak at 5.3 ppm 

disappeared upon the addition of D20 to the sample, confirming this as the -OH. A 

questionable peak with significant intensity (about six protons) appeared at 1.3 ppm. 

This is neither the water peak in the CDC13 (the chemical shift of dissolved water in 

CDC13 is~ 1.5 ppm.) nor from contaminated CDC13. (The blank CDC13 has no such 

signal, and the NMR tube had been cleaned and dried completely.) Additionally, no such 

peak appeared in the 1H-NMR spectra in d6-DMSO. The reasons for this strange peak are 

not well-understood. 

( 5) Re(I) complexes 

The 1H-NMR spectra of/ac-Re1(C0)3(phen)Cl and/ac-Re1(C0)3(phen-azo-p­

phenol)Cl are shown in Fig. 3-22 and Fig. 3-23, respectively. The data are summarized in 

Table 3-6. (For the purpose of comparison, the chemical shift data for phen-azo-p-phenol 

(Fig. 3-15), phenol (Fig. 3-16), and phen (Fig. 3-9) are also included.) Assignments of 

proton resonances were made by analogy to the model of phen and phen-azo-p-phenol 

ligands. 

The peak patterns for phen and/ac-Re1(C0)3(phen)Cl are very similar. All peaks 

from phen in/ac-Re1(C0)3(phen)Cl are shifted downfield upon metal attachment by 0.33-

0.48 ppm. This is due to the positive charge from the Re(I) center. In addition, the three 

carbonyl groups attached to Re(I) also compete with phen for electron density from n­

backbonding. Therefore, the overall electron density of the phen ring is decreased 

(relative to free phen) upon the attachment of the Re\C0)3Cl fragment, causing the 

downfield shift in 1H resonances. A similar downfield shift can be observed in the 

resonances of the phen moiety of/ac-Re\C0)3(phen-azo-p-phenol)Cl (0.29-0.43 ppm) 

compared with the phen fragment of free phen-azo-p-phenol ligand. This result implies 

that attachment of the -Re\C0)3Cl fragment to phen-azo-p-phenol occurs through the 
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1, 10-phen linkage. This is confirmed by the very small downfield shift (0.04 - 0.1 ppm) 

for phenol moiety of coordinated phen-azo-p-phenol when compared to the free ligand. 

Since the Re(I) attachment is remote from the phenol ring, the effect of metal 

coordination is relatively small. 

IR Spectra 

(1) phen-dye ligands 

As described previously, for phen-azo-P-naphthol, each of the phen-dye ligands 

can theoretically exist as either the azo or hydrazone tautomers, or a mixture of both. 

From 1H-NMR data, both the P-naphthol and phenol derivatives seem to exist primarily 

in the azo form in d6-DMSO. A CDC13 solution of the dimethylphenol derivative appears 

to also contain a large percentage of the azo tautomer. 

IR spectra can in theory, also be used to distinguish between the azo and 

hydrazone forms of these ligands. The azo forms would be expected to show -OH and 

(weak) -N=N- stretches. Alternately, the hydrazone forms would be expected to show N­

H and C=O ( quinone) stretches. 

Unfortunately, DMSO is not an ideal IR solvent, and the ligands were not soluble 

enough in CHC13 to obtain suitable spectra (even after several hundred scans on the FT­

IR). Therefore, solid state spectra (in KBr) were obtained for the three phen-dye ligands. 

These spectra are shown in Figs. 3-24, 3-25, and 3-26, for the P-naphthol, phenol, and 

dimethylphenol derivatives, respectively. 

In practice, the presence of -OH and -NH absorptions in KBr pellets of these 

samples is hard to decipher. A significant amount of water is present in these pellets, 

both from the KBr and the water of crystallization. The P-naphthol derivative is further 

compromised by the presence of acetic acid. In addition, significant H-bonding 

interactions are most likely operating in these samples, both intramolecular CP-naphthol 

derivative) and intermolecular (phenol derivatives). Silverstein et ai34 have noted that 

these interactions can be encouraged by using condensed phase samples. 
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Two absorptions that might be somewhat easier to observe in the IR spectra 

would be the azo stretch (for azo tautomers) and the C=O (quinone) stretch (for 

hydrazone tautomers). Each of these two absorptions could be affected by H-bonding 

interactions, and the -N=N- stretch has the additional problem of being weak due to the 

non-polar nature of the N=N bond. Aromatic (trans) azo compounds typically show 

-N=N- absorption in the 1440- 1410 cm-1 range.32 It should be noted that weak 

absorptions at 1450 cm-1, 1450 cm-1, and 1455 cm-1 were observed for the P-naphthol, 

phenol, and dimethylphenol derivatives, respectively. (The dimethylphenol derivative 

may be more difficult to interpret due to interfering -CH3 absorptions.) More 

significantly, all three ligands do not show absorptions in the 1690-1660 cm-1 range for 

quinones (C=O). Therefore, these compounds appear to exist as primarily the azo 

tautomers in the solid state. 

(2) Re(I) complexes 

The IR spectra (in KBr) for/ac-Re1(C0)3(phen)Cl and/ac-Re1(C0)3(phen-azo-p­

phenol)Cl are shown in Fig. 3-28 and Fig. 3-29, respectively. A summary of the carbonyl 

stretching frequencies for these two compounds is found in Table 3-7. 

Four strong bands for/ac-Re\C0)3(phen)Cl at 2018 cm-1, 1933 cm-1, 1904 cm-1, 

and 1879 cm-1 are assigned to the three carbonyl groups based on the results reported for 

/ac-Re1(C0)3(Me2bpy)Cl in KBr43 (Me2bpy = 4,4'-dimethyl-2,2'-bipyridine). (Also, the 

literature reports three carbonyl stretching bands for/ac-Re(C0)3(phen)Cl in CH2Cl2 at 

2015 cm -1, 1912 cm-1 and1890 cm-1.43) The carbonyl stretching peaks for/ac­

Re\C0)3(phen)Cl are all at lower frequency than that of Re1(C0)5Cl. (Table 3-7) This is 

because upon coordination with the phen ring, the rhenium(!) accepts two pairs of 

electrons from the phenanthroline N atoms to form cr bonds. These cr bonds increase the 

electron density at the metal center, thus enhancing the Re~ CO back donation. Since 

the LUMO of the CO is the an* antibonding orbital, the Re~ CO back donation 

decreases the bond order and bond energy of CO, decreasing the stretching frequency. 
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Infac-Re\C0)3(phen-azo-p-phenol)Cl, only three carbonyl stretching peaks can 

be observed at 2026 cm-1, 1920 cm-1 and1896 cm-1• Since phen-azo-p-phenol appears 

(from 1H-NMR data) to be slightly more electron deficient than phen, it would be 

expected that Re(I) ~CO backbonding would be less effective infac-Re\C0)3(phen­

azo-p-phenol)Cl relative to the phen derivative. This would cause an increase in the CO 

stretching frequencies. This prediction appears accurate for only one observed transition 

(2018 cm-1 ~ 2026 cm-1 shift). There appears to be a decrease in stretching frequencies 

for the other regions. However, it is unclear exactly which transitions are 

increasing/decreasing, since the three peaks in the region for the phen derivative (1933 

cm-1, 1904 cm-1, and 

1879 cm-1) combine to give two equally intense transitions at 1920 cm-1 and 1896 cm-1. 

It should also be noted that a weak absorption at 1447 cm-1 appears in thefac­

Re1(C0)3(phen-azo-p-phenol)Cl spectra, with no absorption in the 1690 - 1630 cm-1 

range. This implies that the phen-azo-p-phenol ligand is in the azo form when 

coordinated to Re(I). 

UV-Vis Spectra 

(1) phen-dye ligands 

The UV-Vis spectrum (in MeOH) of phen-azo-P-naphthol, phen-azo-p-phenol, 

and phen-azo-2,6-dimethylphenol are shown in Fig. 3-32, 3-35, and 3-38, respectively. 

(For the purpose of comparison, the UV-Vis spectra (in MeOH) of P-naphthol (Fig. 3-

34), phenol (Fig. 3-37), 2,6-dimethylphenol (Fig. 3-40), and 1,10-phen (Fig. 3-31) were 

also included.) The Amax and E values are summarized in Table 3-8. 

The absorption spectrum of 1,10-phen in MeOH (Fig. 3-31) shows two maxima (n 

~ n*) at 230 nm and 263 nm. Since all three dye ligands contain the phen moiety, it 

would be expected that the UV -Vis spectrum of each dye would contain strong 

absorptions in these two regions. This expectation appears to be met in phen-azo-P­

naphthol (224 nm, 273.5 nm), phen-azo-p-phenol (222 nm, 273.5 nm), and phen-azo-2,6-

dimethylphenol (222 nm, 273.5 nm). The 224 nm maximum in phen-azo-P-naphthol 
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appears enhanced relative to the 273.5 nm band, probably due to the large single 

absorbance peak in the UV for P-naphthol (222.5 nm). The phen-azo-p-phenol and phen­

azo-2,6-dimethylphenol dyes actually show an extra absorption maximum in the UV 

(~252 - 254 nm), probably due to the phenol and dimethylphenol moieties. 

The most interesting portion of the electronic spectra of the free phen-dye ligands 

is the visible. For example, both phen-azo-p-phenol and phen-azo-2,6-dimethylphenol 

exhibit intense (E = 3 x 104 M-1 cm-1) absorption maximum in the 380-390 nm region, 

with significant tailing to > 500 nm. Moreover, phen-azo-P-naphthol shows an intense 

absorption at ~500 nm, with tailing past 580 nm. The introduction of the azo group is 

obviously responsible for these transitions. However, the azo group itself shows only 

weak n ~ n* transitions. For example, Fig. 3-6 shows the structure oftrans-azobenzene. 

The long wavelength maximum for this compound is 450 nm, but the absorptivity is quite 

low (E = 463 M-1 cm-1). This weak transition has been assigned as n ~ n* arising from 

unshared pairs of electrons on the azo nitrogens.28 

Fig. 3-6 The structure of trans-azobenzene 

The intense long wavelength absorptions of the three phen-dye ligands most likely 

arise from transitions that have been shifted and/or enhanced by the interaction of the azo 

and hydroxyl groups with the aromatic and heterocyclic ring systems. Whether these 

transitions can formally be labeled as n ~ n* or 7t ~ n* is not clear at this time. 

It should be noted that the long-wavelength absorptions of the phenol and 

dimethylphenol dyes appear fairly symmetrical, while that for the P-naphthol derivative 

appears asymmetric (high energy shoulder around 423 nm). For the analogous 1-phenyl­

azo-2-naphthol, it has been suggested that the longer wavelength absorption is due to the 
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hydrazone form and the shorter wavelength absorption due to the azo form.44 This 

equilibrium could be operating here in MeOH for phen-azo-~-naphthol. 

It should be noted that the E values presented in Table 3-8 for the three phen-dye 

ligands were obtained from Beer's Law plots of five different concentrations. Sample 

plots for the three dyes are shown in Fig. 3-33, 3-36, and 3-39. The E values for other 

compounds listed in Table 3-8 were either calculated form single concentrations or 

retrieved from the literature. 

(2) Re(I) complexes 

The UV-Vis spectra (in MeOH) of/ac-Re1(C0)3(phen)Cl andfac-Re1(C0)3(phen­

azo-p-phenol)Cl are shown in Fig. 3-41 and Fig. 3-42. The Amax(E) values for these and 

related compounds are listed in Table 3-8. 

The spectra of/ac-Re\C0)3(phen)Cl in MeOH (Fig. 3-41) can be compared with 

that of 1,10-phenanthroline monohydrate in the same solvent (Fig. 3-31). It can be seen 

that the peaks at 273 nm and 217 nm forfac-Re1(C0)3(phen)Cl are most likely 7t ~ 7t* 

transitions arising from the phenanthroline portion of the molecule. These peaks are 

slightly shifted compared to 1,10-phen (Amax= 264 nm and 229 nm). This is typical for 

polypyridine ligands chelated to positively charged transition metal center.38'39 The peak 

at 3 70 nm ( E = 4.17 x 103) for fac-Re1(C0)3(phen)Cl is assigned to the low energy metal 

to ligand charge transfer band (MLCT) arising from promotion of an electron from the 

HOMO (d7t) t2g Re(I) orbital to the LUMO 7t* orbital of the 1,10-phen. (This is close to 

that reported in the literature for a CH2Cl2 solution of the complex (377 nm).37) 

The spectrum of fac-Re1(C0)3(phen-azo-p-phenol)Cl in MeOH (Fig. 3-42) can be 

compared with that of phen-azo-p-phenol (Fig. 3-35) in the same solvent. It can be seen 

that the high energy absorption at 222 nm in the free ligand appears to be blue-shifted 

significantly (almost off the x-scale, actually). This is a similar but more severe shift than 

that seen previously between free 1,10-phen (229 nm) and of/ac-Re1(C0)3(phen)Cl (217 

nm). The peak at 273.5 nm in free phen-azo-p-phenol appears to be red-shifted slightly in 
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the metal complexes (280 nm), while the 252 nm absorption in the free ligand is slightly 

blue-shifted (to 248 nm). 

The most important feature in the UV-Vis spectra offac-Re\C0)3(phen-azo-p­

phenol)Cl is the strong absorption at 390 nm (E = 3.35 x 10\ This peak, in fact, is a 

mixture of MLCT and ligand-centered (LC) bands. The MLCT absorption maximum for 

fac-Re\C0)3(phen-azo-p-phenol)Cl would be expected to be slightly red-shifted 

compared to that for phen derivative. For example, Wrighton et. al reported a shift from 

377 nm to 397 nm for replacement of phen by 5-NOrphen infac-Re\C0)3(LL)Cl 

complexes in CH2Cl2 solution.37 Since the azo group in the phen-azo-p-phenol would be 

expected to exert an electron withdrawing influence (similar to -N02 in 5-NOrphen), the 

MLCT band forfac-Re1(C0)3(phen-azo-p-phenol)Cl might be expected to red-shift about 

10-20 nm. Interestingly, the Amax forfac-Re1(C0)3(phen-azo-p-phenol)Cl is red-shifted 

by 10 nm compared to the phen derivative. It is also remarkable that the E value for this 

Amax is quite close to the sum of the E values for thefac-Re1(C0)3(phen)Cl MLCT band 

and the Amax for free phen-azo-p-phenol. This implies that both the MLCT for fac-

Re1( C0 )3(phen-azo-p-phenol)Cl and the LC transition for coordinated phen-azo-p-phenol 

are red-shifted~ 10 nm relative to thefac-Re1(C0)3(phen)Cl and free phen-azo-p-phenol, 

respectively. If the Amax (at 380 nm) of free phen-azo-p-phenol originated from a 7t ~ n* 

transition, it could be that lowering of the n* energy level (relative to the 7t level) due to 

coordination of Re(I) could be responsible for the red-shift in the LC transition for the 

coordinated ligand. 

Preliminary emission measurements were obtained for both the fac­

Re\C0)3(phen)Cl (Fig. 3-43) andfac-Re\C0)3(phen-azo-p-phenol)Cl (Fig. 3-44) in 

MeOH solution. When excited near its Amax (MLCT band),fac-Re1(C0)3(phen)Cl did 

emit at~ 560 nm, consistent with literature reports.37 However, whenfac­

Re1(C0)3(phen-azo-p-phenol)Cl was irradiated at its Amax(390 nm), no emission was 

observed (Fig. 3-44). This is most likely due to the fact that the LC transition for 

coordinated phen-azo-p-phenol dominates at this wavelength, and excited state decay 
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proceeds via nomadiative pathways. These results are, however, only preliminary -

further spectroscopic work is planned for both free and coordinated phen-azo-dye ligands. 
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Summary 

The use of 5-NHr 1, 10-phenanthroline and variety of coupling components 

produces three azo dyes absorbing over a wide range of visible wavelengths. The phen­

azo-p-phenol ligand attached to a -Re1(C0)3Cl fragment through the phenanthroline 

linkage. This is supported by both FT-IR and 1H-NMR spectral data. Transition metal 

complexes ofphen-dye ligands will, in theory, be complexes that retain the stability and 

redox properties of traditional polypyridyl complexes while possessing enhanced abilities 

to absorb visible light due to the presence of the dye moiety. Such complexes may be 

useful in areas such as solar energy conversion and photosynthesis. The design and 

synthesis of these kind of molecules that strongly absorb sunlight over a broad spectrum 

of wavelengths will increase the probability of successfully harnessing the sun's energy. 

Future research work will involve the synthesis of a series of phen-azo-amine 

ligands: phen-azo-aniline and phen-azo-o-naphtholamine. This may provide an even 

broader range of absorption in the visible region. In addition, detailed solvent and 

temperature dependence studies will further clarify the azo <:::> hydrazone equilibria 

conditions. Re1-dye complexes will be further investigated with regards to their excited 

state properties in order to determine whether or not the presence of the dye ligands will 

enhance production of useful states by visible light absorption. 
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Table 3-1 

1H-NMR for 5-NOrphen, phen, and 5-NHrphen a 

Chemical shift (ppm)0 

2 3 4 5 6 7 8 9 11 

5-NOrphen 9.29 7.97 8.89 - 9.04 8.78 7.94 9.24 -

es)c 
1,10-phen 9.12 7.79 8.51 8.01 8.51 7.79 9.12 -

est 
5-NHrphen 8.67 7.52 8.04 - 6.86 8.66 7.73 9.05 6.15 

est est 

a DMSO was used as solvent. 

b All chemical shift values, except where indicated, represent centers of multiplets. 

c S = singlet. 

3 3 3 
2 2 

11 

5 
NH2 N02 

6 

9 
8 

phen S-NH2-phen S-N02-phen 
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Table 3-2 
I 
H-NMR for 2,3,4,5,6-d phenyl-azo-P-naphthol and 

phenyl-azo-P-naphthol a 

a. Aniline moiety: 

Chemical shift (ppmt 

2 3 4 5 6 

Phenyl-azo-P-naphthol 7.89 7.56 7.39 7.56 7.89 

2,3,4,5,6-d-phenyl- - - - - -

azo-P-naphthol 

b. P-naphthol moiety. 

Chemical shift (ppm)0 

3' 4' 5' 6' 7' 8' 9' 

Phenyl-azo-P- 6.95 7.80 7.98 7.48 7.63 8.57 15.8 

naphthol est 
2,3 ,4,5 ,6-d-phenyl- 6.94 7.80 7.97 7.48 7.64 8.58 15.8 

azo-P-naphthol (S)c 

a DMSO was used as solvent. 

b All chemical shift values, except where indicated, represent centers of multiplets. 

c S = singlet. 

9' 
9' 

OH OH 

*N~N D 
6 

5 

D D 7' 6' 

phenyl-azo-2-naphtho I 2,3,4,5,6-d-phenyl-azo-2-naphthol 
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Table 3-3 

1H-NMR for phen-azo-P-naphthol and related compounds a 

a. Phen moiety: 

Chemical shift (ppm)b 

2 3 4 5 6 7 8 9 

phen-azo-P-naphthol 9.26 8.02 8.75 - 8.67 8.75 7.83 9.10 

es)c 
5-NOrphen 9.29 7.97 8.89 - 9.04 8.78 7.94 9.24 

est 

b. P-naphthol moiety: 

Chemical shift (ppm)b 

1' 3' 4' 5' 6' 7' 8' 9' 

Phen-azo-P-naphthol - 7.02 7.85 8.07 7.55 7.71 8.71 16.7 

est 
Phenyl-azo-P-naphthol - 6.95 7.80 7.98 7.48 7.63 8.57 15.8 

es)c 
P-naphthol 7.12 7.08 7.68 7.75 7.24 7.37 7.76 9.74 

es)c es)c 

a DMSO was used as solvent. 

b All chemical shift values, except where indicated, represent centers of multiplets. 

c S = singlet. 

9' 
3 3 

OSH ' 
,.,:::; N -1..' 4' 
N~ 

8' 5' 

7' 6' 

7 1 6 I 

5-N02-phen phenyl-azo-2-naphthol phen-azo-2-naphthol 
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Table 3-4 

1H-NMR for phen-azo-p-phenol and related compounds 

a. Phen moiety: 

2 

phen-azo-p-phenol a 9.32 

phen-azo-~-naphthola 9.24 

5-NOrphen a 9.29 

b. phenol moiety: 

2' 

Phen-azo-p-phenol a 7.02 

phenol a 6.76 

phenolb 6.83 

a DMSO was used as solvent. 

b CDC13 was used as solvent. 

3 

7.93 

8.02 

7.97 

3' 

8.05 

7.16 

7.24 

Chemical shift (ppmt 

4 5 6 7 8 9 

9.14 - 8.16 8.70 7.82 9.23 

(S)d 

8.75 - 8.67 8.75 7.83 9.07 

est 
8.89 - 9.04 8.78 7.94 9.24 

(S)d 

Chemical shift (ppm) 

4' 5' 6' 7' 

- 7.02 8.05 10.6 (S)d 

6.76 7.16 6.76 9.35 (S)d 

6.93 7.24 6.83 4.54 (S)d 

c All chemical shift values, except where indicated, represent centers of multiplets. 

d S = singlet. 

3 3 
H 

H 

H 

H 
9 

8 

5-N02-phen phenol phen-azo-p-phenol 

46 



Table 3-5 

1H-NMR for phen-azo-2,6-dimethylphenol and related compounds 

a. Phen moiety: 

phen-azo-2,6-dimethylphenol a 

phen-azo-2,6-dimethylphenol b 

phen-azo-p-phenol a 

5-NOrphen a 

b. 2,6-dimethylphenol moiety: 

Phen-azo-2,6-dimethylphenol a 

Phen-azo-2,6-dimethylphenol b 

2,6-dimethylphenol a 

2,6-dimethylphenol b 

a DMSO was used as solvent. 

b CDC13 was used as solvent. 

2 3 

9.34 7.81 

9.32 7.68 

9.32 7.93 

9.29 7.97 

3' 4' 

7.80 -

7.81 -

6.88 6.62 

6.97 6.75 

Chemical shift (ppmt 

4 5 6 7 8 9 

9.13 - 8.12 8.69 7.93 9.22 
(S)d 

9.22 - 8.01 8.39 7.73 9.32 
(S)d 

9.14 - 8.16 8.70 7.82 9.23 
(S)d 

8.89 - 9.04 8.78 7.94 9.24 
(S)d 

Chemical shift (ppmt 

5' 7' 8' 9' 

7.80 - 2.33 (S)d 2.33 (S)d 

7.81 5.25 2.40 (S)d 2.40 (S)d 

6.88 8.14 2.15 (S)d 2.15 (S)d 

6.97 4.6 2.25 2.25 

c All chemical shift values, except where indicated, represent centers of multiplets. 
d S = singlet. 

3 

8' 

5-NOi-phen 2,6-dimethylphenol phen-azo-2,6-dimethylphenol 
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Table 3-6 

1 H-NMR assignment for Jae-Re1( C0)3(phen)Cl, Jae-Re1( CO )3(phen-azo-p-phenol)Cl 

and related compounds a 

a. Phen moiety: 

Chemical shift (ppmt 

2 3 4 5 6 7 8 9 

Jae-Re1(C0)3(phen)Cl 9.45 8.12 8.99 8.34 est 8.99 8.12 9.45 

1,10-phen 9.12 7.79 8.51 8.01 (SY' 8.51 7.79 9.12 

Jae-Re1
( CO )3(phen-azo- 9.66 8.22 9.44 - 8.45 9.13 8.12 9.55 

p-phenol)Cl (S)c 

phen-azo-p-phenol 9.32 7.93 9.14 - 8.16 8.70 7.82 9.23 

(S)c 

b. phenol moiety: 

Chemical shift (ppm)b 

2' 3' 4' 5' 6' 7' 

Jae-Re\ CO )3(phen-azo-p- 7.06 8.09 - 7.06 8.09 10.7 

phenol)Cl 

Phen-azo-p-phenol 7.02 8.05 - 7.02 8.05 10.6 

phenol 6.76 7.16 6.76 7.16 6.76 9.35 

a DMSO was used as solvent. 

b All chemical shift values, except where indicated, represent centers of multiplets. 
c S = singlet. 

3 3 

5 5 

6 6 

9~ 

8 

phen 
/ac-Re(C0)3(phen)Cl /ac-Re(C0)3(phen-azo-p-phenol)Cl 
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Table 3-7 

Carbonyl Stretching Frequencies a 

Complex 

Re1(CO)sCl0 

fac-Re1(CO)J((CH3) 2bpy) Cl 0 

fac-Re'(CO)J(phen)Cl (literature)" 

fac-Re1(C0)3(phen)Cl (this work) 

fac-Re'(C0)3(phen-azo-p-phenol)Cl 

a In K.Br unless otherwise noted. 

b Reference 43. Taken in K.Br. 

c Reference 37. Taken in CH2Cl2• 

Vc=0 (cm-1 ) 

2151 2044 2013 

2018 1932 1919 

2015 1912 1890 

2018 1933 1904 

2026 1920 1896 
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Table 3-8 

UV -Vis data for phen-azo dyes and related compounds. 

Compounds solvent Amax (nm) (E in M"1cm-1 ) 

phen-azo-2-naphthol MeOH 498.0 (2.03 x lff') 

422.5 (sh) 

324.5 (sh) 

273.5 (2.43 x 104) 

224.0 (6.17 x 104) 

2-naphthol MeOH 330.5 (2.08 x 10"') 

318.5 (1.95 x 103) 

285.5 (3.45 x 103) 

274.5 (4.79 x 103) 

264.5 (4.24 x 103) 

253.0 (sh) (2.91 x 103) 

225.5 (7.29 x 104) 

phen-azo-p-phenol MeOH 380.0 (2.77 x 10'+) 

273.5 (2.23 x 104) 

252.0 (2.36 x 104) 

222.0 (3.34 x 104) 

phenol MeOH 280.0 (sh) 

273.0 (1.68 x 103) 

217.5 (5.49 x 103) 
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Table 3-8 (contd) 

phen-azo-2,6- MeOH 389.5 (2.28 x lff') 

dimethyl phenol 273.5 (sh) 

254.0 (2.06 x 104) 

4 222.0 (3.10 x 10 ) 

2,6-dimethylphenol MeOH 280.0 (sh) 

273.0 (1.40 x 103) 

215.0 (sh) 

phen MeOH 263.5 (2.74 x 104 ) 

229.5 (4.26 x 104) 

phen a CH3CN 275(sh), 263, 230, 226, 197 

/ac-Re1(C0)3(phen)Cl MeOH 370.0 (4.17 x 10"') (broad) 

291.5 (sh) 

273.5 (2.62 x 104) 

258.0 (sh) 

217.0 (sh) 

fac-Re1( CO )3 (phen-azo-p- MeOH 390.0 (3.35 x 104 ) 

phenol)Cl 280.0 (2.34 x 104) 

4 248.0(3.15 x 10) 

a reference 3 6. 
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