
Eastern Illinois University
The Keep

Masters Theses Student Theses & Publications

2002

Phylogeography and Genetic Diversity of the Seal
Salamander (Desmognathus monticola)
Erin D. Casey
Eastern Illinois University
This research is a product of the graduate program in Biological Sciences at Eastern Illinois University. Find
out more about the program.

This is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses
by an authorized administrator of The Keep. For more information, please contact tabruns@eiu.edu.

Recommended Citation
Casey, Erin D., "Phylogeography and Genetic Diversity of the Seal Salamander (Desmognathus monticola)" (2002). Masters Theses.
1495.
https://thekeep.eiu.edu/theses/1495

https://thekeep.eiu.edu
https://thekeep.eiu.edu/theses
https://thekeep.eiu.edu/students
www.eiu.edu/biologygrad
www.eiu.edu/biologygrad
www.eiu.edu/biologygrad
mailto:tabruns@eiu.edu


THESIS/FIELD EXPERIENCE PAPER 
REPRODUCTION CERTIFICATE 

TO: Graduate Degree Candidates (who have written formal theses) 

SUBJECT: Permission to Reproduce Theses 

The University Library is receiving a number of request from other institutions asking 
permission to reproduce dissertations for inclusion in their library holdings. Although no 
copyright laws are involved, we feel that professional courtesy demands that 
permission be obtained from the author before we allow these to be copied. 

PLEASE SIGN ONE OF THE FOLLOWING STATEMENTS: 

Booth Library of Eastern Illinois University has my permission to lend my thesis to a 
reputable college or university for the purpose of copying it for inclusion in that 
institution's library or research holdings. 

Date 

I respectfully request Booth Library of Eastern Illinois University NOT allow my thesis to 
be reproduced because: 

Author's Signature Date 



Phylogeography and genetic diversity of the 

Seal salamander (Desmognathus monticola) 
(TITLE) 

BY 

Erin D. Casey 

THESIS 

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 
FOR THE DEGREE OF 

Master of Biological Sciences 

IN THE GRADUATE SCHOOL, EASTERN ILLINOIS UNIVERSITY 
CHARLESTON, ILLINOIS 

2002 
YEAR 

I HEREBY RECOMMEND THAT THIS THESIS BE ACCEPTED AS FULFILLING 
THIS PART OF THE GRADUATE DEGREE CITED ABOVE 

5/16 / fL 
DATE 

DATE 



Abstract 

Phylogeography is defined as the spatial distribution of tax.a with respect to 

geologic and geographic events. It is well documented that the distributions of many tax.a 

have been affected by glacial events during the Pleistocene Era. The patterns generated 

can be very complex and result from shifts in climate and/or vegetation. 

The Seal salamander, (Desmognathus monticola ), is one species that still has 

questions pertaining to its phylogeography. The range of this species extends from 

southwestern Pennsylvania to northern Alabama and Georgia, with a highly disjunct, 

state-endangered population in the Red Hills of Alabama. The main goal of this study is 

to determine the origin of this disjunct population through an extensive field survey. In 

addition, the utility of a relatively new genetic technique will be tested, with possible 

conservation implication for this population. 

Three hypotheses were proposed to explain the origin of the southern population. First, it 

is possible that this population may not be disjunct, but instead may have a continuous 

range extending throughout the state of Alabama. If disjunct, then two additional 

hypotheses could be proposed. The southern population may represent a recent 

derivative from the main range, or it may be a relictual population formed through 

historic glacial events in the Appalachian region. 

Based upon a review of topographic maps and an extensive field survey of this 

intervening region, we concluded that D. monticola were not present in this area and that 

the Red Hills population is truly disjunct. Thus, the first hypothesis could be rejected. 

To address the final two hypotheses, Intersimple Sequence Repeats were employed, and 

networks of relatedness were constructed using parsimony and neighbor-joining methods. 
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These data indicate the Red Hills population (10 bands) and the Tubmill population (8 

bands), in the northern extreme of the range, harbor the highest numbers of population­

specific bands. Remaining populations had three or fewer population-specific bands, and 

held only a subset of the bands present in the Red Hills and Tubmill populations. The 

Tubmill population was sister to the remaining populations; wherever, the Red Hills 

population was nested within each tree generated. To address this situation, constraint 

analyses were conducted to place the Red Hills as sister to all other populations. The tree 

generated was the same length of the unconstrained tree (L=570), which indicates that the 

Red Hills population could be sister to the remainder of the populations sampled. 

Our data thus indicate the potential for two refugial populations, possibly isolated 

during glacial events of the Pleistocene Era. A bi-directional recolonization from the 

northern and southern extremes may have occurred. The southern population was 

probably isolated due to shifts in climate and/or vegetation, while the northern population 

may be a more traditional glacial refugium. 
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Introduction 

In the study of dispersal and distribution of animals, it is important to see 
that the physical conditions lead, and that in a more or less definite 
succession the flora and fauna follow; thus the fauna comes to fit the habitat 
as a flexible material does a mold. The time passed when fauna! lists should 
be the aim of fauna! studies. The study must not only be comparative, but 
genetic, and much stress must be laid on the study of the habitat, not in a 
static, rigid sense, but as a fluctuating or periodical medium. 

Charles Adams, 1901 

The appearance of the term "phylogeography" has increased steadily since it was 

first coined by Avise et al. (1987) while determining distribution patterns in marine 

species. Phylogeography is defined as the spatial distribution of organisms with respect 

to historic geographic events (Avise, 1998). As a sub-discipline ofbiogeography, it 

utilizes dispersal and vicariance events to explain modem distributions of taxa. The 

perspectives of this field were broadened with the introduction of mitochondrial DNA 

sequencing techniques in the 1970's by allowing intraspecific networks to be constructed 

(Avise, 2000). The increased reliance upon these techniques is due in part to the ease and 

cost effectiveness of PCR as well as the higher genetic variation often seen in these 

markers. In tum, this increase in genetic variation has permitted finer scale studies of ' 

population differentiation, potentially lending insight into past distributional relationships 

(reviewed by Futuyma and Mayer, 1980, Giddings et al., 1989, Otte and Endler, 1989). 

Typically, mitochondrial DNA sequences are employed in phylogeographic studies (close 

to 70 percent of present literature) due to the rapid rate of evolution observed in many 

mtDNA regions. Despite the high level of variation that mtDNA sequences usually 

display, it is often necessary to resort to other techniques, such as AFLPs, RAPDs, and 
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RFLPs, that provide even more variation when examining phylogeographic patterns, 

estimating genetic diversity and delimiting very closely related species (e.g., A vise et al., 

1979; Birt et al., 1995; Angers and Bernatchez, 1998; Beebee and Rowe, 2000; Schmitt 

and Seitz, 2001 ). 

Phylogeographic patterns have been studied in many taxa (reviewed by A vise, 

1998, 2000; Futuyma and Mayer, 1980; Giddings et al., 1989; Otte and Endler, 1989), 

~uch as amphibians (e.g., McGuigan et al., 1998; Garcia-Paris et al., 1998), fishes (e.g., 

Wilson and Hebert, 1996), birds (e.g., Gill et al., 1993), invertebrates (e.g., Juan et al., 

1996) and plants (e.g., Soltis et al., 1992, 1997; Mort et al. 2002a). In reptiles, Zamudio 

et al. (1997) surveyed- mtDNA regions, specifically the ND4 and cytochrome B genes, 

within short homed lizards (Phrynosoma douglasi). The overall goal of this study was to 

determine the phylogeographic pattern of this geographically widespread, ecologically 

and morphologically variable species that occurs throughout western North America. 

Nucleotide variation was found at the population level, with fairly deep divergences 

between clades. A clade of P. douglasi sister to remaining populations of the species was 

recovered in the Pacific Northwest (ID, CA, OR, WA). The network ofrelationships that 

was constructed revealed associations between mtDNA patterns, climatic shifts, and 

geographic events in particular regions. 

Geographic barriers, such as mountain ranges, can impact the present distribution 

oftaxa. Aerial insects, such as the tropical butterfly, Heliconius erato, of South and 

Central America, have shown phylogeographic structure as well as related diversification 

via Mullerian mimicry (Brower, 1994). Two phylogroups were discerned using mtDNA 

sequences, with the Andes Mountain range in northeastem South America serving as a 
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long-term barrier to dispersal. Within each group, little sequence divergence was found 

even between allopatric, morphologically dissimilar populations. The split between the 

phylogroups separated by the Andes Mountain range is estimated to have occurred 

approximately 1.5 to 2.0 Mya as a vicariance event, with more recent and rapid evolution 

in wing coloration. 

Outcomes of phylogeographic research can also have conservation implications. 

Management concerns in the harbour porpoise (Phocoena phocoena) due to mortality-

related interactions with commercial fisheries have driven studies to assess the inter- and 

intra-population genetic variation by sequencing portions of the mtDNA control region. 

High genetic divergence was found between the three basins under consideration 

(Northeast Pacific, North Atlantic, and Black Sea), with no shared haplotypes among the 

basins. Some population structuring was found in the Pacific Northwest basin, with high 

levels of genetic diversity between some of the populations. Three basins were 

characterized by unique haplotypes with significant divergence among basins, thus 

indicating the necessity of maintaining populations at the regional level (Rosel et al., 

1995). 

Five categories were described by Avise et al. (1987) to classifyphylogeographic 
i 

patterns based on data from mtDNA sequences and other techniques (Fig. 1 ). These 

patterns range along a continuum from Category I, representing large genetic and 

geographic gaps detailing deep allopatric lineage separations between populations 

possibly due to long term extrinsic barriers to Category V, which describes a shallow 

gene tree, with widespread and common yet closely related and restricted lineages often 

exhibiting low to medium contemporary gene flow. A classic Category I example has 
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been noted in studies of the southeastern pocket gopher ( Geomys pinetis) using RFLP 

patterns (Avise et al. 1979). A deep genetic east-west partitioning ofmtDNA haplotypes 

was revealed, with specific localization ofhaplotypes in correspondence to geographic 

location. In the southeastem United States, the bowfin (Amia calva) displays Category V 

traits (Bermingham and A vise, 1986). The distribution of one mtDNA form is 

characterized as ancestral due to its common and widespread occurrence, and its center 

position in a star phylogeny. In addition, it was the closest relative to a distinct group of 

lineages occurring in the Gulf of Mexico drainages. Between these two categorical 

extremes are sympatric populations that exhibit deep gene lineages (Category II), 

lineages that display a relatively recent genetic divergence, while being geographically 

localized (Category III), and recent geographic splits between populations that still 

exhibit high gene flow (Category N). 

In total, the phylogeographic patterns described can often be complex and highly 

variable. It is now well established that past glacial activities and climatic shifts have 

been major factors affecting the historical distributions of a wide spectrum of taxa. 

Analyses of chloroplast and mitochondrial DNA haplotypes and the geographic 

distribution of these haplotypes were used to infer the effect of past glacial events in 

shaping the genetic architecture of the Pacific Northwest flora and fauna (reviewed by 

A vise, 2000; Soltis et al., 1991, 1992, 1997). Sequences of cpDNA were conducted in 

five plant species, each representing diverse life histories. A division of haplotypes into 

two clades was recovered, with the split occurring in central Oregon. It is hypothesized 

that several populations among the southern clade may represent refugia from Pleistocene 

glacial events (Soltis et al., 1991, 1992, 1997). This genetic architecture with respect to 
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geologic events is typical of taxa of this geographic area. Similar patterns have been 

documented in rainbow trout (Onchorynchus mykiss; Thorgaard, 1983) as well as in song 

sparrows (Melospiza melodia; Zink and Ditrnann, 1993). 

Likewise, in eastern North America, postglacial recolonization patterns have been 

examined using molecular data. For example, mtDNA RFLP data were employed to 

examine the genetic diversity of the lake trout (Salvelinus namaycush) in terms of 

influential glacial events during the Pleistocene Era. RFLP analyses of these regions 

revealed the origins of modem populations from various refugia in the Atlantic, 

Mississippian, and Beringian regions of North America. Similar phylogeographic 

patterns have emerged within freshwater fish native to the southeastem United States 

(Bermingham and Avise, 1986). Thus, throughout many regions in North America, 

Pleistocene glacial events have been shown to affect the genetic architecture and 

geographic distributions of many taxa. 

Similarly, the distributions of the Desmognathus salamanders (Family: 

Plethodontidae) may have been affected by glacial events, and thus raise phylogeographic 

questions pertaining to the range of many species within the genus. Distributions 

frequently are comprised of disjunct populations, with isolates existing as far as 150 

miles from the continuous range (Conant and Collins, 1998). In addition, 

morphological conservatism and community structure of these salamanders has 

complicated species delimitation and has led to increased reliance upon genetic data to 

ascertain species boundaries and to clarify species distributions. Multiple species 

frequently exist as syrnpatric populations, with as many as six species being reported in 

the same location (Southerland, 1986; Tilley and Bernardo, 1993). Under such 
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circumstances, it is often necessary to rely upon genetic techniques to accurately discern 

species. Enzyme electrophoresis is commonly employed to study genetic differentiation 

within and among species of Desmognathus, as well as for the identification and 

recognition of new and/or cryptic species within the genus (Tilley and Schwerdtfeger, 

1981; Means and Karlin, 1989; Tilley, 1997; Mead et al., 2001). However, enzyme 

electrophoresis has shown inconsistencies within Desmognathus. For example, 

populations of D. ocoee show variation up to distances of 1 OOm or greater, at which point 

a genetic ''plateau" occurs and differentiation among populations is no longer detected. 

fu other species in the genus (e.g., D. ochrophaeus), enzyme electrophoresis has shown 

little to no variation even between populations separated by distances as great as 1 OOOkm 

(Tilley, 1997). 

More recently, DNA-based methods have been employed to reconstruct 

phylogenies, estimate genetic diversity, and establish networks of relatedness for groups 

in which enzyme electrophoresis has shown low levels of variation. Several DNA 

methods are available for this latter application, such as the sequencing of rapidly 

evolving DNA regions (e.g., Avise, 2000; Soltis and Soltis, 2000; Mort et al., 2001, 

2002b) and the use of so-called "hyper-variable" PCR based methods (e.g., RAPDs, 

AFLPs, microsatellites, and ISSRs; reviewed by Wolfe and Liston, 1998). For 

phylogeographic studies of animals, sequencing ofmtDNA regions has shown utility for 

determining distribution patterns (e.g., Titus and Frost, 1996; Titus and Larson, 1996; 

Sullivan et al., 1997; Taberlet et al., 1998; Veith et al., 1998; Durand et al., 1999; Avise, 

2000; Hewitt, 2001;). However, withinDesmognathus, low support for species-level 

relationships was uncovered (Titus and Larson, 1996). Thus, it is sometimes necessary to 
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use techniques that yield even higher variation, such as ISSRs, RAPDs, and 

microsatellites (reviewed by Avise, 1994). 

One such technique that has shown utility in detecting variation in even recently­

derived taxa is analyses ofintersimple sequence repeats (ISSRs). To date, ISSR analyses 

have primarily been applied to plants, and no studies have been reported on the use of 

this technique when studying the phylogeography of Plethodontid taxa. Comparisons 

between allozymes, RAPDs, and ISSRs have shown ISSRs to have considerably more 

variation than the other techniques (Wolfe and Liston, 1998; Esselman et al., 1999; Li 

and Ge, 2001; Meng and Chen, 2001; Mort et al., 2002a). ISSRs are PCR-based and 

employ a single primer that· is designed from di- or trinucleotide repeat motifs (i.e. 

microsatellite regions). Unlike RAPD primers, ISSR primers are not random and are 

typically 8-10 base pairs longer, thus allowing for higher annealing temperatures. In turn, 

these higher annealing temperatures yield more repeatable results and an increased 

confidence in band homology of an individual. The data generated from ISSRs are 

predominantly dominant/recessive markers that are scored as band present or absent 

(Wolfe and Liston, 1998); thus, these data are analyzed in the same manner as RAPDs or 

other similar data (e.g., AFLPs ). A key benefit ofISSRs, and other PCR-based methods, 

is that they allow for non-destructive sampling since PCR can be employed with only a 

very small tissue sample from each individual. Therefore, these PCR-based techniques 

are ideal for studies of rare or threatened species. 

One species of Desmognathus whose phylogeography is still in question is the 

semi-aquatic salamander D. monticola. The present range of D. monticola extends from 

southwestern Pennsylvania through northern Georgia and Alabama (Fig. 2). In addition, 

7 



a highly disjunct, state-endangered population is located in the coastal plain region of the 

Red Hills in Alabama, separated from the main range by approximately 150 miles 

(Conant and Collins, 1998). However, the origin of this population is still in question. 

Within D. monticola, both enzyme electrophoresis (Tilley et al., 1978; Tilley et al., 1990; 

Tilley and Bernardo, 1993; Tilley, 1997) and mtDNA sequencing (Titus and Larson, 

1996; Mabry and Mort, unpub.) have been unsuccessful in identifying genetic diversity. 

Thus, in order to address the origin of the Red Hills population as well as other 

phylogeographic questions, it is necessary to employ a technique that yields a higher 

degree of genetic variation. 

The origin of this highly disjunct southern population raises phylogeographic 

questions with respect to the glacial history of the Appalachian region. Three explicit 

hypotheses are advanced to explain the occurrence of the disjunct D. monticola 

population: 

» The southern population may not be disjunct, but instead, insufficient 

fieldwork in this area may have lead to inaccurate range documentation. 

However, if this population is truly disjunct, then it is possible that: 

» The Red Hills population could be a relatively recent dispersal event, 

possibly human-mediated. 

~ The Red Hills population could be relictual having been isolated during 

the past glacial events. 

Thus, the primary goal of my research is to resolve conflicting hypotheses 

regarding the origin of the Red Hills population of D. monticola in Alabama while 

constructing phylogeographic patterns of this species by sampling numerous populations 
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throughout the range. The utility of ISSRs in the Plethodontid salamander family and in 

phylogeographic studies will be determined for use in future research of similar taxa. 

Additionally, the accurate range of D. monticola will be established through extensive 

field sampling in central Alabama and a survey of existing populations in the Red Hills 

region will assess the conservation strategies necessary to maintain this region's 

threatened population. 
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Methods 

Field sampling 

Desmognathus monticola is widely distributed from Pennsylvania southward to 

Georgia and Alabama (Fig. 2), typically inhabiting banks along first or second order 

streams or seeps containing coarse, rocky substrate (Conant and Collins, 1998; Petranka, 

1998). Suitable habitat for populations of D. monticola throughout the range were 

identified by examining topographic maps as well as contacting herpetologists familiar 

with the genus in specific regions of the country. Southern populations in Alabama and 

Georgia were located with the assistance ofDrs. Carlos Camp (Piedmont College, 

Georgia) and Craig Guyer (Auburn University, Alabama). Michelle Mabry (Davis and 

Elkins College, West Virginia) assisted in the location and collection of the North 

Carolina populations. GPS coordinates and elevation was recorded for each population 

(Table 1). 

At each site, individual D. monticola were located by sifting through substrate 

along stream banks and searching under cover objects (i.e. rocks and logs). Once 

captured, specimens were sexed by identifying maxillary teeth on the chin of males or by 

the presence of eggs in females. Tail tissue was collected from D. monticola at all sites 

using a sterile razor blade or scissors to remove approximately 0.5 cm of the tail tip. 

Tissue samples were placed in sterile 1.5 ml microcentrifuge tubes and transported to the 

laboratory on ice. Samples were then stored at -20°C in the laboratories at Highlands 

Biological Station until being shipped on ice to Eastern Illinois University. In addition, 

D. monticola from the Tubmill population in Pennsylvania were provided by Michelle 

Mabry (Davis-Elkins College). 
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Voucher specimens were also collected for populations in Georgia, Alabama, 

Florida and North Carolina, euthanized using Chloretone (1,l,1-trichloro-2-methyl-2-

propanol) and preserved in 70% ethanol. Alabama specimens will be housed in the 

Herpetological collections at Auburn University (AUM 35506-35510/Haines Island Park, 

Monroe County, Alabama). Florida specimens are the property of Paul Moler of the 

Florida Fish and Wildlife Commission (Gainesville, Florida) while specimens from 

Georgia and North Carolina will be housed in the herpetological collections at Eastern 

Illinois University. Due to the declining populations in West Virginia, Tennessee, and 

Kentucky, picture vouchers were taken for specimens in accordance with state permit 

regulations and housed at Eastern Illinois University. 

DNA Extraction and Genetic Analyses 

Small amounts (approximately 0.6 grams) of thawed tail tissue were homogenized 

in l .5ml microcentrifuge tubes using sterile grinders. DNA was extracted using the 

Promega Wizard Kit (Promega Corporation, Madison) and Qiagen DNeasy Tissue Kit 

(Qiagen, Inc., Valencia). Test gels (1 % agarose) were run for all samples to check for 

the presence of high-molecular weight DNA. ISSR reactions were conducted in 25µL 

volumes using 2.5µ1 of 1 Ox Promega buffer, 4.0µ1 of 1.25 mM DNTPs, 2.5µ1 of 50mM 
j 

MgCh, 0.5µ1of50µm primer, 0.5µ1 of DNA and between 0.5 to lU ofTAQ Polymerase. 

Two primers were used for this study: MANNY ((CAC)4-RC) and 807-1 ((AG)8-RG). 

Amplifications were conducted on a Stratagene RoboCycler (Stratagene, La Jolla) with a 

program of 2 minutes at 94°C; 35 cycles of 45sec at 94°C, 50sec at 46°C (MANNY) or 

48°C (807-1), and 3min at 72°C. 
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ISSR reactions were electrophoresed on horizontal 1 % agarose gels (1: 1 ratio of 

Sequem Gold Agarose and Sigma Low EEO Agarose) until a migration distance of 10 cm 

was reached (approximately 3.5 hours). Gels were stained in ethidium bromide for 30 

minutes, and destained in distilled water for 30 minutes. Bands were visualized under 

UV-light, and images were captured using a Fotodyne bench top gel documentation 

system. Kodak lD Image Analysis Software Package (Eastman Kodak Corporation, 

Rochester) was used to score the individual band presence and estimate the size of each 

fragment. ISSR reactions were replicated once to verify the presence or absence of each 

band. 

Only bands that were consistent between replicates were included in the data set, 

and bands were scored as present (1) or absent (0) for each primer. A data matrix was 

produced for each individual primer as well as for a combined data set including both 

primers. All analyses were conducting using.PAUP* (Swofford, 1998) running on a 

PowerMac (G4). Both unrooted and mid-point rooted dendrograms were inferred under 

parsimony and neighbor-joining criteria. For the latter, analyses were conducted 

employing both total character and Nei and Li distances. Relative support for the 

relationships resolved by each of these analyses was assessed under the same optimality 
l 

criterion using bootstrap analyses (Felsenstein, 1985). These analyses were conducted 

using 1000 replicates with 10 random replicates each and TBR-branch swapping. 

Constraint analyses were employed to determine the potential for a sister relationship 

between the Red Hills population and remaining taxa. 
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Results 

Field Collections 

Collections of tail tips took place from May to July of 2001. A total of 111 

individuals from 10 populations were sampled across the entire range of D. monticola 

from Pennsylvania to Alabama (Table 1 ). The number of individuals collected per 

population ranged from one to twenty-two, although only populations from which at least 

five individuals was sampled were included in the ISSR survey. Across the range, 

elevations at which D. monticola populations were found ranged from as low as 63 feet 

above sea level in the Red Hills (AL) to 2382 feet in Cane Brake Creek (TN); however, 

only one individual was found in the latter site and was not included in subsequent 

studies. Populations typically occurred in first or second order streams or seep·s located 

within or adjacent to hardwood forests. 

To assess the potential for D. monticola populations to exist between the 

Appalachian range and the Red Hills population, topographic maps were examined to 

locate suitable habitat locations. In addition, local herpetologists (C. Guyer and G. 

Folkerts, Auburn University) were contacted for guidance to potential sites. An extensive 

survey of the most suitable habitat for D. monticola populations between the Red Hills 

population in Monroe County, AL and the northern Alabama populations in Clay County 

was conducted over a period of seven total days, representing approximately 35 hours in 

the field. Relative to other locations in the range, this sampling effort was much higher. 

However, these surveys were still unsuccessful in locating suitable habitat. In addition, 

the vegetation in this area did not resemble that of the Red Hills or of the Appalachian 
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Mountain range. Because no D. monticola individuals were found within this area, it 

appears as ifthe Red Hills individuals do represent a truly disjunct population. 

JSSR Banding 

In total, 23 primers were surveyed, of which 13 displayed banding patterns. 

Variation suitable to address the goals of this project was detected in six of these primers. 

Two primers showed high levels of variation and were optimized: MANNY ((CAC)4-

RC) and 807-1 ((AG)8-RG). Five individuals from nine populations in Pennsylvania, 

West Virginia, North Carolina, Alabama, and Georgia were used in the genetic study. 

The majority of bands for both primers ranged from 350 to 1500 base pairs in length. 

MANNY produced a total of 521 scorable bands, with an average of 11.6 bands 

per individual and 57.9 bands per population. Ten bands were unique at the individual 

level, with two bands identifying MC3 and one band present in each of the following 

individuals: NT21, NT22, WA3, MC4, CW2, BSl-1, WAS, and NT9. A total oftwenty 

bands were population-specific, identifying the following populations: Bluestone (2 

bands), Red Hills (8 bands), Coweeta (2 bands), Sosebee Cove (3 bands), and Tub Mill (5 

bands). Forty-nine percent of the bands were shared among all populations sampled. 

807-1 yielded 701 total bands, with an average of 15.6 per individual and 77.9 

bands per population. Three bands were individual specific, identifying each of the 

following individuals by one band: BS2-2, MC3, and BSl-2. A total of nine bands were 

population-specific, with three bands identifying Tubmill, two bands for Red Hills, and 

one band for each of the following populations: Bluestone, Nancytown, Highlands 

Plateau, and Coweeta. Seventy-five percent of the bands were shared among all 

populations. 
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Overall, the combined data set comprised 112 bands that were scored as 

presence/absence. Twenty-nine bands were specific at the population level {Table 2), and 

thirteen were specific to individuals. Sixty-three percent of all bands were shared by 

more than one population. The Red Hills population was quite distinct in having ten 

population-specific bands, highest by comparison to other populations. In addition, the 

Tubmill population (PA) at the northern extreme of the range also had a high number of 

population-specific bands, designated by eight unique character states. The remaining 

seven populations that were included in the survey had three or fewer population-specific 

bands each. 

JSSR Analyses 

A network ofrelatedness based upon neighbor joining and parsimony optimality 

criterion was constructed for both primers, and all trees produced were mid-point rooted. 

The combined data set based upon both primers included 112 characters, 99 of which 

were parsimony informative. Parsimony analyses yielded 12 trees of 605 steps in length. 

All 12 trees converged on similar topology, and one will be used for further discussion 

(Fig. 3). Support for relationships as assessed via bootstrap analyses (Felsenstein, 1985) 

was moderate to low for populations. Likewise, support within populations was 

generally lower, with most bootstrap values falling below 50 percent. Four clades that 

designated populations were resolved in this tree. Individuals from Red Hills (73%), 

Tubmill {<50%), Sosebee Cove (<50%), and Coweeta (<50%) each grouped as 

populations, with varying amounts of bootstrap support. The Tubmill population was 

placed sister to a clade containing individuals from populations in North Carolina, 

Georgia, and northern Alabama. The remaining populations were largely unresolved due 
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to low phylogenetic signal, i.e. very few population-specific bands. Some relationships 

within populations were recovered with moderate support. Within Tubmill, two sub­

clades of two individuals received 68 and 83 percent support, respectively. The two sub­

clades within Tubmill also grouped to form a clade receiving 60 percent support. Sosebee 

Cove (61 %) and Highlands Plateau (52%) each contained a single sub-clade. The Red 

Hills population had four individuals forming a sub-clade that received 55 percent 

support. Several groups of individuals within Bluestone, Mt. Cheaha, and Nancytown 

formed sub-clades that received less than 50 percent support. 

Neighbor joining analyses were conducted based upon distance matrices inferred 

using both Nei and Lf and total character distances as implemented in PAUP* (Swofford, 

1998). Nei and Li's distance matrix scores only positive matches, whereas total character 

length assumes homology for negative characters (band absent). Because bands may be 

absent for many reasons, it is inappropriate to consider band absence as homologous for 

ISSR data. Therefore, the most appropriate distance matrices to use for neighbor joining 

are those estimates based on Nei and Li's methodology. All neighbor joining analyses 

c9nverged on trees yielding similar topologies (Fig. 4). The Red Hills population held 

together and was strongly supported (98%), while nesting within the remaining 

populations. The Tubmill population was sister to the majority of the other populations. 

Coweeta was the third population recovered, forming a clade (53%) nested with most 

populations. Several sub-clades within populations were moderately resolved. Three 

individuals from both Nancytown (51 %) and Sosebee Cove (>50%) formed sub-clades. 

Within the Tubmill population, two sub-clades consisting of pairs of individuals had 67 

and 81 percent support. Individuals from Wayah formed two sub-clades, containing two 
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and three individuals, respectively. Two individuals from both Highlands Plateau 

(<50%), and Mt. Cheaha (68%) also formed sub-clades. 

Comparing the results of the neighbor joining and parsimony methods indicate 

that the topologies are largely congruent. For example, the same three populations were 

recovered in both analyses: Coweeta, Red Hills, and Tubmill. Similar clades were also 

recovered within populations such as the grouping of individuals within Coweeta, 

Nancytown, Red Hills and Tubmill. In both trees, the Tubmill population was sister to a 

larger clade comprised of the majority of other populations. The inconsistencies noted 

among taxa within several populations is most likely due to lack of phylogenetic signal in 

the ISSR data set. This lack of signal may indicate recently derived populations that have 

not had sufficient time to accumulate mutations (Mort et al., 2002a, 2002b) 
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Discussion 

According to Conant and Collins (1998), the range of D. monticola extends 

throughout the Appalachian Mountains from southwestern Pennsylvania to northern 

Alabama. In addition, a highly disjunct, state-endangered population has been recognized 

in southern Alabama (Fig. 2). This population is located in Monroe County and is 

approximately 150 miles south of the nearest population of the main range. However, it 

is unknown how extensively the habitat has been surveyed between the main range and 

the Red Hills population. Without this information, it is unclear as to whether this 

population represents a true isolate. Therefore, it is necessary to first establish if the Red 

Hills population is truly disjunct prior to investigating its origin. To address this 

question, extensive sampling and habitat surveys were conducted throughout this 

intervening region. 

Prior to fieldwork, topographic maps of Alabama were studied to determine if 

suitable habitat existed between the northern continuous range and the highly disjunct 

population in southern Alabama. After examination, it did not appear that suitable 

habitat for D. monticola was present in this area of Alabama. However, field sampling 

was necessary to confirm this lack of habitat as assessed from topographic maps. 

Therefore, potential habitats between the continuous range and the disjunct population 

were surveyed extensively in an attempt to locate additional populations. These surveys 

failed to locate suitable habitat or additional populations of D. monticola. The Red Hills 

population appears to be disjunct. Furthermore, Drs. Craig Guyer and George Folkerts 

(Auburn University, Alabama), both familiar with the distributions of Desmognathus 

species in Alabama, supported these conclusions. Thus, all available data indicate that 
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the Red Hills population is truly disjunct and is separated from the main range by 

approximately 150 miles. 

The overall topography of the Red Hills is deeply dissected and distinct from that 

of the surrounding area. To the north of the Red Hills lies a region of the Piedmont of 

Alabama referred to as the Black Belt, while the remainder of the coastal plain lies to the 

south (Diamond, 1987). The biota of the Red Hills is distinct from these surrounding 

areas and harbors a high degree of endemic taxa (Diamond, 1987), including the Red 

Hills Salamander (Phaeognathus hubrichti). A comparison of vegetation of the Red Hills 

with that of D. monticola sites in the Appalachians seemed to indicate an overall 

similarity. h1 fact, many of the dominant species in the Red Hills regions are also found 

in the Appalachian mountains of northern Alabama (Diamond, 1987; Dodd, 1991, see 

Carroll et al., 2000). Between these regions, there is a dramatic shift in vegetation from a 

deciduous hardwood forest to a forest dominated by coniferous trees. This shift in 

vegetation could be a major factor explaining the lack of populations in this particular 

area of Alabama. 

Isolated populations, such as the southern Alabama population of D. monticola, 

often present phylogeographic questions pertaining to their origin. Changes in climate 

due to glacial events can lead to circumstances such as shifts in vegetation, or range 

contraction/expansion events. These events can result in irregular distributional patterns 

oftaxa, such as isolated or refugial populations, as some of the examples noted in earlier 

in the flora and fauna of the Pacific Northwest (e.g., Thorgaard, 1983; Soltis et al., 1991, 

1992, 1997; Zink and Ditmann, 1993) and the Southeastern United States (e.g., 

Bermingham and A vise, 1986). As in the state-endangered Red Hills population, there 
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are often conservation concerns associated with these disjunct populations. Clearly, 

determining the origins and genetic status of these populations is essential and can aid in 

deciding upon the best management practices and necessary levels of protection. 

Since it was determined that the Red Hills population is disjunct, two main· 

hypotheses were proposed to explain the origin of this population. First, this southern 

population could represent a relatively recent colonization event from the main range. 

Typically, this type of population would likely have lower genetic diversity due to the 

reduction in population size and associated genetic bottleneck that characterize derivative 

populations (Fig. 5). These populations would be expected to exhibit a lower diversity of 

bands, and a lower proportion of population-specific bands with respect to the larger, 

source population(s). Furthermore, a derivative population would be expected to hold a 

nested position within a dendrogram of the remaining populations. 

Alternatively, the Red Hills population could represent a refugial population. It is 

now well documented that glacial events during the Pleistocene affected the distributions 

oftaxa throughout the United States, and many examples have been documented in the 

southeast region (e.g., Bermingham and Avise, 1986). For example, mtDNA haplotype 

divergence was examined in chickadees throughout the southeastern United States. A 

contact zone in central Alabama was potentially identified, with a relatively recent 

divergence of lineages occurring during the Pleistocene. In addition, taxa sampled from 

the formerly glaciated areas exhibited low sequence divergence, probably due to the 

range expansion events (Gill et al., 1993). Many taxa in the southeastern United States 

exhibit similar phylogeographic patterns. The Red Hills population could likely represent 

an ancestral population that served as a source for more recent colonizations of D. 
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monticola into the Appalachian Mountains. These refugial populations tend to harbor 

higher amounts of genetic diversity, and more recently-derived populations would then 

largely display only a subset of the diversity found in the source population (Fig. 6). 

Thus, when assessed with a genetic technique, refugial populations would be expected to 

show a higher number of unique bands compared to the derivative population. In 

addition, the source population would be expected to form a sister clade with respect to 

the remaining populations sampled. 

In plants, phylogeographic studies often employ cpDNA RFLPs (e.g., Soltis et al., 

1991, 1992, 1997). Research focused on animal distributions more often use mtDNA 

sequences, due to the ·appropriate rate of evolution for this type of analysis. However, 

mtDNA sequences, even in the rapidly evolving D-loop region, were unable to detect 

nucleotide divergence between populations in D. monticola (Titus and Larson, 1996; 

Mabry and Mort, unpub.). Thus, a technique yielding higher levels of genetic variation 

was necessary to achieve the goals of this study. 

Analyses of ISSR data indicate that the Red Hills population harbors a high 

diversity of unique bands in comparison to other populations. In total, ten bands specific 

to the Red Hills individuals were noted in the combined ISSR data matrix. Other 

populations that were sampled had only a subset of those bands that were present in the 

Red Hills population and also appear to harbor much lower genetic diversity. One 

exception to this pattern is the Tubmill population in the northern extreme of the range, 

which possessed the second highest number of population-specific bands (eight) and 

appeared to harbor an overall higher band diversity. 
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Both distance and parsimony based bootstrap analyses of the combined data set 

strongly support the monophyly of the Red Hills clade. Support for the other populations 

was generally very low and varied. The Coweeta population from the central part of the 

range and the northern extreme population of Tubmill were the only other populations 

that formed clades yielding bootstrap support. The least diversity and lowest support 

occurred within the populations towards the center of the main range, such as Highlands 

Plateau (1 population-specific band) and Wayah (0 population-specific bands) in 

southwestem North Carolina. For example, the Highlands Plateau population contained a 

single population specific band, whereas the W ayah population had only one band that 

was unique to a single individual. 

Considering the criteria for source and recently-derived populations (Figs. 5 and 

6), the origin of the southern Alabama population can be addressed. This population fits 

the expectations of a source population. The Red Hills population possesses a high 

number of population-specific bands. In addition, the overall genetic diversity of this 

population compared to other populations appears to be higher than in the main range. 

The remaining populations displayed only a subset of the bands present in the Red Hills. 

These conclusions suggest that the Red Hills population may have served as the source 

for more current populations in the Appalachian Mountains. However, both parsimony 

and neighbor joining analyses placed the Red Hills population in a nested position 

relative to the other populations. 

To test the position of the Red Hills population, constraint analyses were 

conducted by placing this population in a sister position with respect to the remaining 

populations in the parsimony tree. The tree produced from these analyses was the same 
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length as the unconstrained tree (L=570), representing no increase in tree length. 

Therefore, strong evidence was not found against the sister placement of the Red Hills 

population. 

Thus, the Red Hills fits all expectations of a source population. This disjunct 

population displays a high genetic diversity and more population-specific bands when 

compared to the remaining populations. The other sampled populations appear to harbor 

only a subset of diversity that is present in the Red Hills. Although this southern 

population is nested within the dendrogram, the constraint analyses support the status of 

this population as sister to the remaining range. Based on these criteria, the Red Hills 

population appears to represent a source population, probably serving as a glacial 

refugium during the Pleistocene. 

A general lack of resolution was found in populations towards the center of the 

range in North Carolina, Georgia, and West Virginia. With the exception of the Coweeta 

(NC), the remaining six populations did not form clades with high bootstrap support 

(<50%). These more central populations also appeared to harbor lower genetic diversity 

and fewer population-specific bands (0-3 bands), relative to the Red Hills and Tubmill 

populations, with ten and eight, respectively. Our data set comprised of 112 characters 

was within the general range of other ISSR studies (e.g., Esselman et al., 1999; Joshi et 

al., 2000; Culley and Wolfe, 2001; Patzak, 2001; Raina et al., 2001; Wolfe and Randle, 

2001; Mort et al., 2002a). This overall lack of resolution within the central portion of the 

range is likely due to the lower phylogenetic signal noted for these populations. Even 

though our data set was similar in size to other studies, additional data is required to 

resolve the relationships among these more recently-derived populations. However, the 
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present study clearly documents the utility ofISSRs for phylogeographic studies in 

amphibians. 

As noted above, the Tubmill population in southwestern Pennsylvania represents 

the northern extreme of the range of D. monticola. The results of our ISSR analyses 

deviated from the pattern of low resolution noted in the other populations, but instead 

displayed higher genetic diversity (Table 2). In fact, this population displayed the second 

highest number of population-specific bands, with eight unique to the population (Table 

1), and held a sister position relative to the remainder of the populations sampled. In 

addition, the Tubmill population was second to the Red Hills in overall number of bands. 

This area in southwestern Pennsylvania remained unglaciated during the most recent 

glacial periods (Wright and Frey, 1965). Thes.e results indicate the possibility for a 

second refugium present in the northern extreme of the range. 

Both the Red Hills and Tubmill populations exhibit higher genetic diversity and 

increased number of population-specific bands relative to the other populations. 

Furthermore, both parsimony and neighbor joining analyses recover clades comprising 

individuals from these populations (Figs. 3 and 4). If these populations served 

historically as sources for subsequent recolonization, they would be expected to form a 

sister group relationship with the remaining populations (Fig. 6). Tubmill is a sister 

lineage in both parsimony and neighbor joining analyses, whereas the Red Hills 

population is nested well within both dendrograms. However, constraining the Red Hills 

population to hold a sister position in our parsimony analyses yielded a tree with the 

same overall length (L=570). Thus, the ISSR data are similar for both the Red Hills and 

Tubmill populations and are consistent with the expectations for a refugial population. 
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The results of the present study support the possibility for two glacial refugium at the 

northern and southern extremes of the range, with subsequent bi-directional 

recolonization events. 
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Conclusions 

The Red Hills population of D. monticola is disjunct from the main range by 

approximately 150 miles. To determine the origin of this population, ISSRs were 

employed for the first time in amphibian taxa. This technique yielded informative, 

scorable data, and may prove useful for similar studies in other amphibians. The Red 

Hills population appears to have served historically as a source for subsequent 

recolonization events, possibly during glacial events of the Pleistocene. In addition, the 

Tubmill population in southwestern Pennsylvania may represent a second refugial 

population and the source of more recent northern populations. The population in 

Pennsylvania more likely represents a 'true' glacial refugium, in that much of the 

surrounding area in southwestern Pennsylvania was glaciated. The Red Hills population 

is more likely an isolate due to shifts in vegetation and climate as a result of glaciation in 

more northern areas. 

The Red Hills population is currently protected at the state level, primarily due to 

the decline of suitable habitat in this area. The practice of clear-cutting by timber 

industries throughout Alabama has greatly altered the original landscape of this state, and 

destroyed much of the suitable habitat for this species. The influences of this practice are 

extensive, and continue to have negative impacts on many taxa and associated 

ecosystems. Our results will further support the listing of the Red Hills population at the 

state level, and possibly indicate a need for a more protected status for both the 

population and of the habitat of this species in southern Alabama. Inclusion of additional 

northern populations and more individuals from each population as well as an extensive 

vegetative survey would be recommended for future research, as it would assist in teasing 
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apart the phylogeographic patterns of D. monticola and lend additional insight into the 

status of the Red Hills population. 
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Table 2. Total population specific bands for primers MANNY and 807-1 for the 

nine populations of Seal salamanders sampled across the entire range. 

Population #bands 

Bluestone (WV) 3 

Coweeta (NC) 3 

Highlands Plateau (NC) 1 

Mt. Cheaha (AL) 0 

Nancytown (GA) 1 

Red Hills (AL) 10 

Sosebee Cove (GA) 3 

Tubmill (PA) 8 

Wayah(NC) 0 
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Figure 1. Five phylogeographic categories, as described by A vise et al. (1987). 

Figure 2. · Range of D. monticola, extending from southwestern Pennsylvania to 

Alabama. Note the disjunct population in southern Alabama (Conant and Collins 

1998). 

Figure 3. One of 12 minimum-length trees inferred from parsimony analyses oflSSR 

data for nine populations of D. monticola. Branch lengths (above) and bootstrap 

values (below) are noted by the corresponding branch. Population codes: 

TM=Tubmill (PA), BS=Bluestone National Scenic River (WV), HP= Highlands 

Plateau (NC), WA=Wayah Bald (NC), CW=Coweeta Hydrologic Laboratory 

(NC), NT=Nancytown (GA), SC=Sosebee Cove (GA), MC=Mt. Cheaha (AL), 

RH=Red Hills (AL). 

Figure 4. Neighbor-joining tree with mid-point rooting based upon a Nei and Li's 

distance matrix. Bootstrap values are shown above branches. Population codes: 

TM=Tubmill (PA), BS=Bluestone National Scenic River (WV), HP=Highlands 
j 

Plateau (NC), WA=Wayah Bald (NC), CW=Coweeta Hydrologic Laboratory 

(NC), NT=Nancytown (GA), SC=Sosebee Cove (GA), MC=Mt. Cheaha (AL), 

RH=Red Hills (AL). 

38 



Figure 5. Schematic for the characteristics of a recent derivative population. These 

populations typically undergo a genetic bottleneck, decreasing overall diversity 

relative to the source population. 

Figure 6. Characteristics of source population(s) and subsequent colonization events. A 

range contraction event could lead to a refugial population that contains high 

levels of genetic diversity. Subsequent recolonization events would result in 

founder populations that are lower in genetic diversity relative to the refugial 

population. 
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