Induced Acceleration of Phosphine Exchange in Metal Carbonyls by Pendant Groups of Coordinated Polyphosphines

Ping Ye
Eastern Illinois University
This research is a product of the graduate program in Chemistry at Eastern Illinois University. Find out more about the program.

Recommended Citation

Ye, Ping, "Induced Acceleration of Phosphine Exchange in Metal Carbonyls by Pendant Groups of Coordinated Polyphosphines" (1997). Masters Theses. 1794.
https://thekeep.eiu.edu/theses/1794

TO: Graduate Degree Candidates (who have written formal theses)
SUBJECT: Permission to Reproduce Theses

The University Library is receiving a number of requests from other institutions asking permission to reproduce dissertations for inclusion in their library holdings. Although no copyright laws are involved, we feel that professional courtesy demands that permission be obtained from the author before we allow theses to be copied.

PLEASE SIGN ONE OF THE FOLLOWING STATEMENTS:
Booth Library of Eastern Illinois University has my permission to lend my thesis to a reputable college or university for the purpose of copying it for inclusion in that institution's library or research holdings.

Author

I respectfully request Booth Library of Eastern Illinois University not allow my thesis to be reproduced because:
\qquad
\qquad
\qquad

Induced Acceleration of Phosphine Exchange in Metal Carbonyls
by Pendant Groups of Coordinated Polyphosphines (TITLE)
$B Y$

Ping Ye
196

THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science in Chemistry
IN THE GRADUATE SCHOOL, EASTERN ILLINOIS UNIVERSITY
CHARLESTON, ILLINOIS

I HEREBY RECOMMEND THIS THESIS BE ACCEPTED AS FULFILLING THIS PART OF THE CRADUATE DEGREE CITED ABOVE

Induced Acceleration of Phosphine Exchange in Metal Carbonyls by Pendant Groups of Coordinated Polyphosphines

By: Ping Ye
Advisor: Dr. Richard L. Keiter

Submitted date: Sept. 26, 1997
Approved by the thesis committee:

q/a9/97	
Dr. Elren A. Keiter	Date
Dr. Richard L. Keiter	$9 / 29 / 97$
Dr. Jerry W. Ellis	$9-29-1997$
Dr. Daniel J. Sheeran	Date
$9 / 29 / 97$	

Abstract

The kinetics and thermodynamics of isomerization of $(\mathrm{OC})_{5} \mathrm{CrPPh}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{PPh}_{2}\right)_{2}$ to its linkage isomer, $(\mathrm{OC})_{5} \mathrm{CrPPh}_{2} \mathrm{CH}\left(\mathrm{PPh}_{2}\right) \mathrm{CH}_{2} \mathrm{PPh}_{2}$, in chloroform-d have been studied with ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR. $$
(\mathrm{OC})_{5} \mathrm{Cr}\left[\eta^{1}-\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{PPh}_{2}\right)_{2}\right] \rightleftharpoons(\mathrm{OC})_{5} \mathrm{Cr}\left[\eta^{1}-\mathrm{PPh}_{2} \mathrm{CH}\left(\mathrm{PPh}_{2}\right) \mathrm{CH}_{2} \mathrm{PPh}_{2}\right]
$$

The equilibrium constants for the reaction are $3.60,2.61,2.04$, and 1.67 at $10^{\circ} \mathrm{C}$, $25^{\circ} \mathrm{C}, 40^{\circ} \mathrm{C}$, and $53^{\circ} \mathrm{C}$, respectively. The forward reaction becomes more favorable as the temperature is decreased. The values of $\Delta \mathrm{H}, \Delta \mathrm{S}$, and $\Delta \mathrm{G}\left(25^{\circ} \mathrm{C}\right)$ were determined to be $-13.6 \mathrm{~kJ} \mathrm{~mol}^{-1},-37.6 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$, and $-2.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively. The large decrease in entropy favors the reverse reaction while the decrease in enthalpy favors the forward reaction. Previous work has shown that for the analogous tungsten isomerization, values of $\Delta H, \Delta \mathrm{~S}$, and $\Delta \mathrm{G}\left(25^{\circ} \mathrm{C}\right)$ are $-12.2 \mathrm{~kJ} \mathrm{~mol}^{-1},-28 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$, and $-3.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively. ${ }^{51}$ It can be concluded that the greater decrease in entropy for the chromium reaction accounts for its overall diminished favorableness as compared to the tungsten reaction.

Rate constants for the forward reaction in chloroform at $10^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}, 40^{\circ} \mathrm{C}$ are 2.0 x $10^{-7} \mathrm{~s}^{-1}, 2.1 \times 10^{-6} \mathrm{~s}^{-1}$, and $1.7 \times 10^{-5} \mathrm{~s}^{-1}$ with half-lives to equilibrium of 31 days, 3 days, and 8 hours, respectively. These reactions are about an order of magnitude slower than the analogous tungsten reaction, but about four orders of magnitude faster than isomerization of $(\mathrm{OC})_{5} \mathrm{CrPPh}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{P}(\text { tol })_{2} .{ }^{55 \mathrm{c}}$ The enthalpy of activation, $\Delta \mathrm{H}^{*}$, for the forward and reverse reactions are $105 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $120 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively, larger by $12 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $15 \mathrm{~kJ} \mathrm{~mol}^{-1}$ than observed for tungsten. The entropy of activation, $\Delta \mathrm{S}^{\star}$, for the forward

and reverse reactions were found to be $1.4 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ and $40 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$, respectively. These values are considerably more positive than those obtained previously for tungsten ($28 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ and $-1.0 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$).

It is concluded that abnormally fast isomerization rates for $(\mathrm{OC})_{5} \mathrm{MPPh}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{PPh}_{2}\right)_{2}$ ($\mathrm{M}=\mathrm{Cr}, \mathrm{W}$) result because the short phosphine arm interacts with the equatorial carbonyl groups in the transition state, lowering the activation energy, and leading to labilization of the coordinated phosphorus atom which results in its replacement by the second phosphine arm. The concept of interaction between the short phosphine arm and the equatorial carbonyl groups is supported by long-range phosphorus-carbon coupling (${ }^{4} \mathrm{~J}_{\mathrm{PC}}$), believed to augmented by a through-space mechanism. The entropies of activation suggest that phosphorus exchange in chromium has a much more significant dissociative component than for the analogous tungsten system. It would be expected that the smaller chromium atom would be less likely to form a stable 7 -coordinate complex because of steric crowding.

Complexes, (OC$)_{5} \mathrm{WPPh}_{2} \mathrm{C}\left(\mathrm{PPh}_{2}\right)=\mathrm{CH}_{2}$ and $\left[(\mathrm{OC})_{5} \mathrm{WPPh}_{2}\right]_{2} \mathrm{C}=\mathrm{CH}_{2}$ have been synthesized for the first time. The crystal structure of the former compound has been determined. Unlike the similar (OC)5WPPh $\mathrm{CH}_{2} \mathrm{PPh}_{2}$ complex, the dangling phosphorus atom is not directed toward the equatorial carbonyl groups and no long-range phosphorus-carbon coupling (${ }^{4} \mathrm{~J}_{\mathrm{PC}}$) is observed.

Acknowledgements

I would like to thank Dr. Richard L. Keiter for his knowledge, guidance and encouragement.

I would like to thank Dr. Ellen A. Keiter for the training of operating the QE-300 NMR spectrometer.

I would also like to thank Dr. Ilia Guzei and Dr. Arnold Rheingold of the University of Delaware for doing the crystal structure analysis. Thank Dr. Giles L. Henderson for FTIR instruction, Dr. Jerry W. Ellis, Mr. Ken Osborne, and Mr. Jeremy Wheeler, for their helpful assistance, both within and outside the field of chemistry. I also extend my thanks to other faculty and staff of the Chemistry Department for all of their help.

The National Science Foundation is acknowledged for financial support.
Finally, I thank my husband for the help, understanding, and support he has given since long before this work was begun.

Table of Contents

Abstract i
Acknowledgements iii
Table of contents iv
List of figures. v
Chapter I. Kinetics and thermodynamics study of phosphine exchange in(OC) $)_{5} \mathrm{Cr}\left[\eta^{1}-\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{PPh}_{2}\right)_{2}\right]$
A. Introduction 1
B. Results and discussion 18
C. Experimental section. 36
Chapter II. Synthesis of $\left[(\mathrm{OC})_{5} \mathrm{WPPh}_{2}\right]_{2} \mathrm{C}=\mathrm{CH}_{2}$ and crystal structure of (CO) ${ }_{5} \mathrm{WPPh}_{2} \mathrm{C}\left(\mathrm{PPh}_{2}\right)=\mathrm{CH}_{2}$
A. Introduction 42
B. Results and discussion 45
C. Experimental section. 53
Figures 56
References 109
Appendix 115

List of Figures

1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}$ 56
2. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}$ 57
3. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}$ 58
4. ${ }^{1} \mathrm{H}$ NMR spectrum of $(\mathrm{OC})_{5} \mathrm{CrPPh}_{2} \mathrm{H}$ 59
5. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $(\mathrm{OC})_{5} \mathrm{CrPPh}_{2} \mathrm{H}$ 60
6. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $(\mathrm{OC})_{5} \mathrm{CrPPh}_{2} \mathrm{H}$. 63
7. IR spectrum of $(\mathrm{OC})_{5} \mathrm{CrPPh}_{2} \mathrm{H}$ in the carbonyl region. 64
8. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{Cl}_{2} \mathrm{Pd}\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}$ 65
9. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Cl}_{2} \mathrm{Pd}\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}$ 66
10. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{Cl}_{2} \mathrm{Pd}_{(}\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CHCH}_{2} \mathrm{PPh}_{2} \mathrm{Cr}(\mathrm{CO})_{5}$, 67
11. IR spectrum of $\mathrm{Cl}_{2} \mathrm{Pd}\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CHCH}_{2} \mathrm{PPh}_{2} \mathrm{Cr}(\mathrm{CO})_{5}$ in the carbonyl region. 68
12. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of isomers $(\mathrm{OC})_{5} \mathrm{Cr}\left[\eta^{1}-\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{PPh}_{2}\right)_{2}\right]$ (6)and $(\mathrm{OC})_{5} \mathrm{Cr}\left[\eta^{1}-\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CHCH}_{2} \mathrm{PPh}_{2}\right]$ (7), showing that the compound 6 isfirst formed from the reaction... 69
13. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of isomers $(\mathrm{OC})_{5} \mathrm{Cr}\left[\eta^{1}-\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{PPh}_{2}\right)_{2}\right]$ (6)and $(\mathrm{OC})_{5} \mathrm{Cr}\left[\eta^{1}-\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CHCH}_{2} \mathrm{PPh}_{2}\right]$ (7) as they move toward equilibrium.......... 74
14. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $(\mathrm{OC})_{5} \mathrm{Cr}\left[\eta^{1}-\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{PPh}_{2}\right)_{2}\right]$ (6) 75
15. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the mixture of $(\mathrm{OC})_{5} \mathrm{Cr}\left[\eta^{1}-\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{PPh}_{2}\right)_{2}\right](6)$ and $(\mathrm{OC})_{5} \mathrm{Cr}\left[\eta^{1}-\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CHCH}_{2} \mathrm{PPh}_{2}\right]$ (7) 78
16. $\ln \mathrm{K}$ vs. $1 / \mathrm{T}$ for isomerization of Cr complexes in CDCl_{3} solution 81
17. $\ln \mathrm{K}$ vs. 1/T for isomerization of Cr complexes in toluene- d_{8} solution 82
18. IR spectrum of the mixture of $(\mathrm{OC})_{5} \mathrm{Cr}\left[\eta^{1}-\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{PPh}_{2}\right)_{2}\right]$ (6) and $(\mathrm{OC})_{5} \mathrm{Cr}\left[\eta^{1}-\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CHCH}_{2} \mathrm{PPh}_{2}\right]$ (7) in the carbonyl region. 83
19. $\ln \left\{[6]-[6]_{\text {eq }}\right\}$ vs. time for isomerization of Cr complexes in CDCl_{3} at $10{ }^{\circ} \mathrm{C}$. 84
20. $\ln \left\{[6]-[6]_{\text {eq }}\right\}$ vs. time for isomerization of Cr complexes in CDCl_{3} at $25^{\circ} \mathrm{C}$ 85
21. $\ln \left\{[6]-[6]_{\text {eq }}\right\}$ vs. time for isomerization of Cr complexes in CDCl_{3} at $40^{\circ} \mathrm{C}$. 86
22. $\ln \left\{[6]-[6]_{\text {eq }}\right\}$ vs. time for isomerization of Cr complexes in toluene- d_{8} at $25^{\circ} \mathrm{C}$ 87
23. $\ln \left\{[6]-[6]_{\text {eq }}\right\}$ vs. time for isomerization of Cr complexes in toluene- d_{8} at $40^{\circ} \mathrm{C}$ 88
24. $\ln \mathrm{k}_{1}$ vs. $1 / \mathrm{T}$ for isomerization of Cr complexes in CDCl_{3} solution 89
25. $\ln \mathrm{k}_{-1}$ vs. $1 / \mathrm{T}$ for isomerization of Cr complexes in CDCl_{3} solution 90
26. $\ln \left(\mathrm{k}_{1} / \mathrm{T}\right)$ vs. 1/T for isomerization of Cr complexes in CDCl_{3} solution 91
27. $\ln \left(\mathrm{k}_{-1} / \mathrm{T}\right)$ vs. $1 / \mathrm{T}$ for isomerization of Cr complexes in CDCl_{3} solution 92
28. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{W}(\mathrm{CO})_{5} \mathrm{PPh}_{2} \mathrm{C}\left(\mathrm{PPh}_{2}\right)=\mathrm{CH}_{2}$ 93
29. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{W}(\mathrm{CO})_{5} \mathrm{PPh}_{2} \mathrm{C}\left(\mathrm{PPh}_{2}\right)=\mathrm{CH}_{2}$ 95
30. COSY spectrum of $\mathrm{W}(\mathrm{CO})_{5} \mathrm{PPh}_{2} \mathrm{C}\left(\mathrm{PPh}_{2}\right)=\mathrm{CH}_{2}$ 96
31. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathrm{W}(\mathrm{CO})_{5} \mathrm{PPh}_{2} \mathrm{C}\left(\mathrm{PPh}_{2}\right)=\mathrm{CH}_{2}$ 97
32. HETCOR spectrum of $\mathrm{W}(\mathrm{CO})_{3} \mathrm{PPh}_{2} \mathrm{C}\left(\mathrm{PPh}_{2}\right)=\mathrm{CH}_{2}$ 101
33. DEPT spectrum of $\mathrm{W}(\mathrm{CO})_{5} \mathrm{PPh}_{2} \mathrm{C}\left(\mathrm{PPh}_{2}\right)=\mathrm{CH}_{2}$ 102
34. Molecular structure of $\mathrm{W}(\mathrm{CO})_{5} \mathrm{PPh}_{2} \mathrm{C}\left(\mathrm{PPh}_{2}\right)=\mathrm{CH}_{2}$ 103
35. Observed ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\mathrm{W}(\mathrm{CO})_{5} \mathrm{PPh}_{2}\right]_{2} \mathrm{C}=\mathrm{CH}_{2}$ 104
36. Calculated ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\mathrm{W}(\mathrm{CO})_{5} \mathrm{PPh}_{2}\right]_{2} \mathrm{C}=\mathrm{CH}_{2}$ 105
37. IR spectrum of $\mathrm{W}(\mathrm{CO})_{5} \mathrm{NH}_{2} \mathrm{Ph}$ in the carbonyl region. 106
38. IR spectrum of $\mathrm{W}(\mathrm{CO})_{s} \mathrm{PPh}_{2} \mathrm{C}\left(\mathrm{PPh}_{2}\right)=\mathrm{CH}_{2}$ in the carbonyl region.
39. IR spectrum of $\left[\mathrm{W}(\mathrm{CO})_{5} \mathrm{PPh}_{2}\right]_{2} \mathrm{C}=\mathrm{CH}_{2}$ in the carbonyl region. 108

Chapter I: Kinetic and Thermodynamic Study of Phosphine Exchange in (OC) $\mathbf{5}_{5} \mathbf{C r}\left[\eta^{1}-\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathbf{C H}\left(\mathrm{PPh}_{2}\right)_{2}\right]$

A. Introduction

Metal carbonyl complexes and their phosphine derivatives play an important part in organometallic chemistry and in catalysis. ${ }^{1,2}$ Catalytic activity is generally related to the tendency of one ligand to be replaced by another and as a result ligand replacement processes have drawn considerable attention. Many previous studies have focused on CO substitution in $\mathrm{M}(\mathrm{CO})_{6}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}$, and W$)$ and $\mathrm{Fe}(\mathrm{CO})_{\text {s }}$ complexes by various ligands. ${ }^{3}$ Substitution of CO by phosphines in these complexes generally proceeds at elevated temperatures by dissociative (D) loss of CO, although an associative interchange mechanism ($\mathrm{I}_{\mathbf{2}}$) can be important as minor pathway. ${ }^{4}$

D mechanism: $\mathrm{M}(\mathrm{CO})_{6} \xlongequal[\mathrm{k}_{-1}]{\mathrm{k}_{1}} \mathrm{M}(\mathrm{CO})_{5}+\mathrm{CO}$
$\mathrm{M}(\mathrm{CO})_{5}+\mathrm{L} \xrightarrow{\mathrm{k}_{2}} \mathrm{M}(\mathrm{CO})_{5} \mathrm{~L}$
I_{a} mechanism: $\mathrm{M}(\mathrm{CO})_{6}+\mathrm{L} \xrightarrow{\mathrm{k}_{1}} \mathrm{M}(\mathrm{CO})_{6} \mathrm{~L} \xrightarrow{\mathrm{k}_{2}} \mathrm{M}(\mathrm{CO})_{5} \mathrm{~L}+\mathrm{CO}$

The well-known ligand $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}$ (dppe), was first synthesized in 1960. ${ }^{5}$ Since then it has been used to stabilize hundreds of transition metal complexes. ${ }^{6}$ It may function as a chelating, bridging, or dangling ligand:

Chelating

Bridging

Dangling

Chelated complexes of dppe are especially stable because five-membered rings are relatively strain-free. ${ }^{7}$ When heated, dangling and bridged dppe complexes rearrange to chelated complexes (Reaction 1). ${ }^{8}$

Although the thermal or photolytic conditions normally employed for carbonyl substitution favor the formation of chelated products, the inertness to substitution of group 6 metal carbonyls allows the possibility of synthesizing complexes of these metals in which dppe serves as a monodentate ligand.

Dangling dppe complexes are the least abundant of the three structural types because of their tendency to undergo chelation, an event which occurs when a vacant coordination site becomes available. The early examples of dangling ligand complexes, all of which are substitutionlly inert, include $\left[\mathrm{Co}(\mathrm{NO})(\mathrm{CO})_{2}\left(\eta^{1}-\right.\right.$ dppe $)],{ }^{9}\left[\mathrm{Mn}(\mathrm{Cp})(\mathrm{CO})(\mathrm{NO})\left(\eta^{1} \text {-dppe }\right)\right]^{+},{ }^{10}\left[\mathrm{Co}(\mathrm{CN})_{2}\left(\eta^{1}\right.\right.$-dppe $)\left(\eta^{2}\right.$-dppe $\left.)\right],{ }^{11}$ $\left[\mathrm{Fe}(\mathrm{Cp})(\mathrm{CO})_{2}(\mathrm{NO})\left(\eta^{1} \text {-dppe }\right)\right]^{+},{ }^{12}$ and $\left\{\mathrm{Mo}(\mathrm{Cp})\left(\eta^{1} \text {-dppe }\right)_{2}\left[\mathrm{C}=\mathrm{C}(\mathrm{CN})_{2}\right]\right\}^{+13}$, ${ }^{13}$ and were observed or isolated as unexpected products.

The first dangling dppe complexes to be synthesized by design were reported in 1972 by two different groups, both targeting $\mathrm{M}(\mathrm{CO})_{5}\left(\eta^{1}\right.$-dppe) $(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}$, W). One approach was to displace aniline from $\mathrm{M}(\mathrm{CO})_{5}\left(\mathrm{NH}_{2} \mathrm{Ph}\right)$ with dppe (Reaction 2), ${ }^{14}$ while the other utilized strong Lewis acids to assist in the removal of X^{-}from $\left[\mathrm{M}(\mathrm{CO})_{5} \mathrm{X}\right]^{-}$in the presence of dppe (Reaction 3$) .{ }^{15}$

$$
\begin{align*}
& \mathrm{M}(\mathrm{CO})_{5}\left(\mathrm{NH}_{2} \mathrm{Ph}\right)+\text { dppe } \longrightarrow \mathrm{M}(\mathrm{CO})_{5}\left(\eta^{1}-\text { dppe }\right)+\mathrm{Ph}_{2} \mathrm{NH}_{2} \tag{2}\\
& {\left[\mathrm{M}(\mathrm{CO})_{5} \mathrm{X}\right]^{-}+\left[\mathrm{R}_{3} \mathrm{O}\right]^{+}+\text {dppe } \longrightarrow \mathrm{M}(\mathrm{CO})_{5}\left(\eta^{1}-\text { dppe }\right)+\mathrm{RX}+\mathrm{R}_{2} \mathrm{O}} \tag{3}
\end{align*}
$$

Both of these methods successfully prevent formation of chelated products because they can be carried out at temperatures below which CO is lost. However, the dppe-bridged complexes, $(\mathrm{CO})_{s} \mathrm{M}(\mu$-dppe $) \mathrm{M}(\mathrm{CO})_{s}$, form in addition to dangling ligand complexes in both reactions. ${ }^{16}$

The base-catalyzed addition of secondary phosphines to activated carboncarbon double bonds (hydrophosphination) is an efficient, established pathway for preparing dangling polyphosphine complexes. ${ }^{17,18}$ In 1983, Keiter's research group reported that the unidentate diphosphine complexes $\mathrm{Fe}(\mathrm{CO})_{4}\left(\eta^{1}-\mathrm{PPh}_{2}\right.$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)$ and trans- $\mathrm{Fe}(\mathrm{CO})_{3}\left(\eta^{1}-\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)_{2}$ can be prepared by base-promoted addition of $\mathrm{PPh}_{2} \mathrm{H}$ to $\mathrm{Fe}(\mathrm{CO})_{4}\left(\mathrm{PPh}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$ and trans-$\mathrm{Fe}(\mathrm{CO})_{3}\left(\eta^{1}-\mathrm{PPh}_{2} \mathrm{CH}=\mathrm{CH}_{2} \mathrm{PPh}_{2}\right)_{2}$, respectively. ${ }^{19}$ It was expected that $\mathrm{Fe}(\mathrm{CO})_{4}\left(\eta^{1}-\right.$ dppe) and $\mathrm{Fe}(\mathrm{CO})_{3}\left(\eta^{1} \text {-dppe }\right)_{2}$ would be quite stable with respect to chelation
because the substitution of PPh_{3} for CO in $\mathrm{Fe}(\mathrm{CO})_{4} \mathrm{PPh}_{3}$ has a very high activation free energy (Scheme I). 20,21

$$
\mathrm{Fe}(\mathrm{CO})_{4} \mathrm{PPh}_{3} \frac{-\mathrm{CO}(\text { slow })}{+\mathrm{CO}}\left[\mathrm{Fe}(\mathrm{CO})_{3} \mathrm{PPh}_{3}\right] \xrightarrow[\text { fast }]{\mathrm{PPh}_{3}} \operatorname{trans}-\mathrm{Fe}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)_{2}
$$

Scheme I

The addition reaction of $\mathrm{PPh}_{2} \mathrm{H}$ to $\mathrm{Fe}(\mathrm{CO})_{5-\mathrm{n}}\left(\mathrm{PPh}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)_{\mathrm{n}}(\mathrm{n}=1,2)$ gave $\mathrm{Fe}(\mathrm{CO})_{4}\left(\eta^{1}-\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)(65 \%)$ and gave trans- $\mathrm{Fe}(\mathrm{CO})_{3}\left(\eta^{1}-\mathrm{PPh}_{2} \mathrm{CH}_{2}\right.$ $\left.\mathrm{CH}_{2} \mathrm{PPh}_{2}\right)_{2}(79 \%)$ (Scheme II). The addition of the secondary phosphine may also be promoted by the free radical catalyst $2,2^{\prime}$-azobis(isobutyronitrile) (AIBN). ${ }^{22}$ Parallel reactions showed that base promotion gave higher yields than the radical pathway.

Scheme II

The reaction of $\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CH}_{2}$ with $(\mathrm{OC})_{5} \mathrm{WPPh}_{2} \mathrm{H}$ in the presence of base gives the chelated product, $(\mathrm{OC})_{4} \mathrm{~W}\left(\eta^{2}-\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)$. The chelation occurs because the intermediate $(\mathrm{OC})_{5} \mathrm{WPPh}_{2}{ }^{*}$ lose CO easily in the presence of
$\mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{CH}_{2}$ to form $(\mathrm{OC})_{4} \mathrm{~W}\left(\mathrm{Ph}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)\left(\mathrm{Ph}_{2} \mathrm{P}\right)^{-}$, which subsequently undergoes cyclization (Scheme III). ${ }^{23}$

Scheme III

Polyphosphines can also form stable six-membered ring chelated complexes. The reaction of trans $-(\mathrm{OC})_{4} \mathrm{M}\left(\mathrm{PPh}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)_{2}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$ with 2 mol of $\mathrm{PPh}_{2} \mathrm{H}$ in the presence of AIBN, via isomerization and cyclization gives the chelated product $(\mathrm{OC})_{4} \mathrm{~W}\left[\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{PPh}_{2}\right) \mathrm{CH}_{2} \mathrm{PPh}_{2}\right]$ (Scheme IV) . ${ }^{23}$

Scheme IV
Dangling ligand complexes have been used in the synthesis of dimetallic compounds bridged by polyphosphine. For example, a recent publication
describes the synthesis and characterization of a number of dimetallic compounds bridged by symmetric diphosphines, $(\mathrm{CO})_{5} \mathrm{M}\left(\mu-\mathrm{PPh}_{2}\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{PPh}_{2}\right) \mathrm{M}(\mathrm{CO})_{5}(\mathrm{M}=\mathrm{Cr}$, Mo, $\mathbf{W} ; \mathbf{n}=1,2,3) .{ }^{24}$ This was a surprising result because it had been previously believed that when $n=1$, the steric bulk of the phenyl groups combined with the small bite angle of bis(diphenylphosphino)methane (dppm), would make $(\mathrm{CO})_{s} \mathrm{M}\left(\eta^{1}-\mathrm{dppm}\right)$ too crowded to coordinate to another $\mathrm{M}(\mathrm{CO})_{5}$ unit. The ${ }^{31} \mathrm{P}$ NMR chemical shifts and coupling constants were inconsistent with the assigned structure and the synthesis was reinvestigated. In 1995, it was found that the dppm-bridged dimetallic species, $(\mathrm{CO})_{5} \mathrm{M}(\mu-\mathrm{dppm}) \mathrm{M}(\mathrm{CO})_{s}$ could be synthesized in toluene at $60^{\circ} \mathrm{C}$ by displacement of acetonitrile from (CO) $\mathrm{SW}(\mathrm{NCMe})$ in the presence of either (CO) ${ }_{5} \mathrm{M}\left(\eta^{1}-\mathrm{dppm}\right)$ or free dppm (Scheme V$)$. The product gave a ${ }^{31} \mathrm{P}$ chemical shift and J_{WP} values that were as expected. ${ }^{25}$

Scheme V

Dangling ligand complexes also have become important precursors for the synthesis of heterobimetallic compounds. Interest in these compounds as
models for surface and catalytic reactions has led to an extensive research area. ${ }^{26-}$
${ }^{29}$ Heterobimetallic complexes are of particular interest because the reactivities of different metals may be exploited in chemical transformations. ${ }^{30,31}$

Some recent examples of heterobimetallic complexes synthesized from dangling ligand complex precursors illustrate a significant interest in this area of research. The reaction of $\mathrm{RuCp}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}\left(\eta^{1}-\mathrm{dppm}\right)$ with $\mathrm{Pt}(\mathrm{COD}) \mathrm{Cl}_{2}$ gives the heterobinuclear complex $\mathrm{RuCp}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}(\mu-\mathrm{dppm}) \mathrm{PtCl}_{2}$ (Reaction 4) in which the diene has been displaced from platinum.

Reaction of $\mathrm{RuCp}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}(\mu-\mathrm{dppm}) \mathrm{PtCl}_{2}$ with $\mathrm{Tl}\left[\mathrm{PF}_{6}\right]$ in the presence of CO results in substitution of a single chloride at the ruthenium center to form $\left[\mathrm{RuCp}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)(\mu\right.$-dppm $\left.) \mathrm{PtCl}_{2}\right] \mathrm{PF}_{6}$ (Reaction 5). Assignment of the site of CO binding is based on spectroscopic and electrochemical data for the complex. The carbonyl peak in the ${ }^{13} \mathrm{C}$ NMR spectrum shows no platinum satellites. The IR spectrum of $\left[\mathrm{RuCp}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)(\mu-\mathrm{dppm}) \mathrm{PtCl}_{2}\right] \mathrm{PF}_{6}$ shows a CO band $\left(\nu_{\mathrm{co}}=\right.$ $1979 \mathrm{~cm}^{-1}$). In addition, there is a significant shift in the oxidation potential of the ruthenium center. ${ }^{32}$

$(\mathrm{DME}=$ ethylene glycol dimethyl ether)

In another paper it was reported that treatment of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Rh}_{2}(\mathrm{CO})\left\{\eta^{1}-\right.$ $\left.\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{PPh}_{2}\right\}\left(\mu-\eta^{1}: \eta^{1}-\mathrm{CF}_{3} \mathrm{C}_{2} \mathrm{CF}_{3}\right)$ with $\left(\eta^{5}-\mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Mn}(\mathrm{CO})_{2}($ thf $)$ or $\mathrm{Cr}(\mathrm{CO})_{5}($ thf $)$ gives the hetero-trinuclear products $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Rh}_{2}(\mathrm{CO})\{\mu-$ $\left.\mathrm{CF}_{3} \mathrm{C}_{2} \mathrm{CF}_{3}\right)\left\{\mu-\eta^{1}: \eta^{1}-\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{PPh}_{2}\right\}\left(\eta^{5}-\mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Mn}(\mathrm{CO})_{2}(\mathrm{I})$ and $\left(\eta^{5}-\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Rh}_{2}(\mathrm{CO})\left\{\mu-\mathrm{CF}_{3} \mathrm{C}_{2} \mathrm{CF}_{3}\right)\left\{\mu-\eta^{1}: \eta^{1}-\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{PPh}_{2}\right\} \mathrm{Cr}(\mathrm{CO})_{5}(\mathrm{n}=1-4)$ (II) in good yield. ${ }^{33}$ The dangling end of the unidentate attached bisphosphine in the complexes $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Rh}_{2}(\mathrm{CO})\left\{\eta^{1}-\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{PPh}_{2}\right\}\left(\mu-\eta^{1}: \eta^{1}-\mathrm{CF}_{3} \mathrm{C}_{2} \mathrm{CF}_{3}\right)$ was the target for the attachment of metal complexes $L^{\prime} M^{\prime}$.

I

II

The ligand 1,1-bis(diphenylphosphino)ethene (vdpp), which was of importance in our work, was first synthesized in $1982{ }^{34}$ Since then, its charm has been recognized because the double bond in vdpp provides the opportunity for the preparation of many transition metal complexes by addition reactions (Scheme VI). ${ }^{35}$

Scheme VI
Dangling vdpp complexes can also coordinate to a second metal atom to give a heterometallic complex. For example, treatment of rhenium pentahydride complex $\left[\mathrm{ReH}_{5}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}_{2}(\mathrm{vdpp}-\mathrm{P})\right]$ with silver iodide in dichloromethane solution gives $\left[\left\{\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3} \mathrm{P}\right\}_{2} \mathrm{H}_{3} \operatorname{Re}(\mu-\mathrm{vdpp})(\mu-\mathrm{H})_{2} \mathrm{AgI}\right]$ (Reaction 6).

$$
\widetilde{\mathrm{p}}=\mathrm{pdpp}
$$

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the product at $21{ }^{\circ} \mathrm{C}$ consisted of one singlet at $\delta 33 \mathrm{ppm}$ assigned to the two $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$ groups, two multiplets, one at 41 ppm assigned to the vdpp phosphorus atom bound to rhenium and a broad resonance at -8.1 ppm assigned to the vdpp phosphorus atom bound to silver. The broadness of the latter signal was due to rapid exchange of phosphorus at silver, ${ }^{36}$ which is common for silver phosphine complexes. ${ }^{37}$

Coordination of vdpp activates the vinylidene double bond towards nucleophilic (Michael) addition reactions. On coordination to group 6 metal carbonyls, the vinylidene double bond in $\left[\mathrm{M}(\mathrm{CO})_{4}\left(\mathrm{vdpp}-\mathrm{PP}{ }^{\prime}\right)\right]$ can be added to smoothly by a range of amines, hydrazines, or carbon nucleophiles. ${ }^{38,39}$

For example, treatment of $\left[\mathrm{M}(\mathrm{CO})_{4}\left(v d p p-\mathrm{pp}{ }^{\prime}\right)\right]$ with $\mathrm{Li}(\mathrm{C} \equiv \mathrm{CPh})$ in the presence of $\mathrm{Me}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2}(\mathrm{tmen})$ gives $\left\{\mathrm{M}(\mathrm{CO})_{4}\left[\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CHCH}_{2} \mathrm{C} \equiv \mathrm{CPh}\right]\right\}$ $(M=C r, M o$, or $W)$ as yellow or orange crystals in excellent yields. The participation of tmen is to increase the carbanion character of the acetylide(Scheme VII) ${ }^{38}$

Scheme VII

When coordinated to PtMe_{2}, the vinylidene double bond of vdpp in the complex $\left[\mathrm{PtMe}_{2}\left(\mathrm{vdpp}-\mathrm{PP}^{\prime}\right)\right]$ becomes more activated than when coordinated to
$\mathrm{M}(\mathrm{CO})_{4}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$ because platinum(II) is more polarizing than $\mathrm{M}(0) .{ }^{40,41}$ In other words, the greater electron-withdrawing power of PtCl_{2} makes the vinylidene double bond more susceptible to nucleophilic attack. These Michael addition reactions were monitored by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy. A solution of $\mathrm{Cl}_{2} \mathrm{Pt}\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CD}_{2} \mathrm{Cl}_{2}$ was cooled to $-80^{\circ} \mathrm{C}$ and an appropriate amount of hydrazine or amine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added by syringe and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were taken at intervals. The temperature was increased stepwise and further spectra taken until a reaction occurred. For $\mathrm{Me}_{2} \mathrm{NNH}_{2}$, the reaction occurred at $-40{ }^{\circ} \mathrm{C}\left(t_{1 / 2}=6 \mathrm{~min}\right)$, for $4-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NH}_{2}$ at $-80^{\circ} \mathrm{C}\left(\mathrm{t}_{1 / 2}=2 \mathrm{~min}\right)$ (Scheme VIII). The same reactions were repeated with $\mathrm{I}_{2} \mathrm{Pt}\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}$ and it was found that $\mathrm{Me}_{2} \mathrm{NNH}_{2}$ slowly commences reacting at $-50^{\circ} \mathrm{C}$, but the reaction did not go to completion until the mixture was warmed up to $0^{\circ} \mathrm{C}$. With 4- $\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NH}_{2}$ a slow reaction occurred at $-80^{\circ} \mathrm{C}\left(\mathrm{t}_{1 / 2}=18 \mathrm{~min}\right) .{ }^{42}$

Scheme VIII

The ligand 1,1,2-tris(diphenylphosphino)ethane (tppe), which embodies features of both dppm and dppe in respect of its potential for forming complexes
containing four- and five-membered chelate rings, was prepared in high yield, by the base-catalyzed $\left(\mathrm{KOBu}^{t}\right)$ addition of diphenylphosphine to the double bond of vdpp (Reaction 7). ${ }^{43}$

In principle, tppe can coordinate to a group 6 carbonyl moiety $M(C O)_{n}(n=3$, $4,5)$ in five ways.

(A)

(B)

(C)

(D)

(E)

Among the chelated complexes, ring strain effects should be minimal in (D) due to the presence of a five-membered ring, but could be significant in (C) and substantial in (E). The direct high-temperature \{refluxing diglyme[1,1'-oxybis-(2methoxy ethane $)]\}$ reaction between tppe and $\mathrm{M}(\mathrm{CO})_{6}(\mathrm{M}=\mathrm{Cr}, \mathrm{W}, \mathrm{Mo})$ is
satisfactory as a preparative route to complexes of the type (D) if the reaction time is controlled. For (E), it was found better (essential for $M=\mathrm{Cr}$) to use tppe to displace EtCN from fac- $\left[\mathrm{M}(\mathrm{CO})_{3}(\mathrm{EtCN})_{3}\right\}{ }^{44}$ The monodentate species (A) and (B) were produced in a $c a .4: 1$ ratio mixture by displacement of tetrahydrofuran (THF) from $\left\{\mathrm{M}(\mathrm{CO})_{s}(\mathrm{THF})\right]$ by tppe. There was no pure form of either (A) or (B) obtained from this reaction, but it was found possible to isolate (B) ($M=C r$, Mo, W) in pure form indirectly (Reaction 8).

Similarly, reaction (9), based on work by Shaw and co-workers for $M=W,{ }^{45}$ was used as a preparative route to $(\mathrm{C}).(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$.

(C)

A selective synthesis for (A) was later designed by using PtCl_{2} as a protecting group. ${ }^{46}$ The complex $\mathrm{Cl}_{2} \mathrm{Pt}\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CHCH}_{2} \mathrm{PPh}_{2} \mathrm{~W}(\mathrm{CO})_{5}$ was prepared, and (OC) $)_{5} \mathrm{~W}\left[\eta^{1}-\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{PPh}_{2}\right)_{2}\right]$ was displaced with CN^{-}(Scheme IX).

Scheme IX

This reaction sequence also gave a mixture of (A) and (B) and as a result it was concluded that (A) and (B) exist in equilibrium. This work represented the first experimental evidence for the exchange of terminal and coordinated phosphorus groups in pentacarbonyl complexes of group $6 .^{46}$ Monitoring the product mixture with ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy revealed that (A), which formed first, slowly converted to (B) (reaction 10). ${ }^{46}$

(A)
(B)

Intrigued by this highly unusual behavior, a kinetic and thermodynamic study was initiated. The results showed that isomer (B) is more stable than isomer (A) $\left(\Delta G_{298}=-3.86 \mathrm{~kJ} / \mathrm{mol}\right)$ even though the more sterically demanding end of the phosphine ligand is coordinated in (B). The entropy of activation $\left(\Delta \mathrm{S}^{*}=-28.2 \mathrm{JK}^{-1}\right.$ mol^{-1}) and enthalpy of activation ($\Delta \mathrm{H}^{*}=92.6 \mathrm{~kJ} / \mathrm{mol}$) for the forward reaction strongly suggested a transition state which is associative in nature. The rate constant for the forward reaction at $55^{\circ} \mathrm{C}$ was determined to be $3.7 \times 10^{-4} \mathrm{~s}^{-1}$. For purposes of comparison phosphorus exchange in (OC) ${ }_{5} \mathrm{~W}\left[\eta^{1}-\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{P}(\mathrm{p}-\right.$ tol $)_{2}$] was also studied and it was found that the rate constant for isomerization was $3.3 \times 10^{-8} \mathrm{~s}^{-1}$ (four orders of magnitude slower than reaction 10), suggesting a reaction which is dissociative in nature. To account for the unusually fast rate of phosphine exchange in reaction 10 , a mechanistic model was postulated in which the transition state consisted of interaction of one phosphine arm with the cis carbonyl groups of tungsten, while the second phosphine arm displaces the labile coordinated phosphine (Scheme X). ${ }^{47}$ It is significant that ${ }^{4} \mathrm{~J}_{\mathrm{PC}}$ in (B) between the phosphorus atom of the short dangling phosphine and the carbonyl groups of tungsten was observed, suggesting a though-space interaction.

Scheme X

The work in this thesis continues the thermodynamic and kinetic studies of phosphine exchange in dangling phosphine complexes by extending and completing the studies previously initiated for chromium. The purpose of the work is to gain further insight into the mechanism of isomerization, and to determine the extent to which the solvent medium influences rates of exchange and isomer stability.

Chromium atoms are much smaller than tungsten atoms. If substitution of L' for $\mathrm{L}, \mathrm{L}_{6} \mathrm{M}+\mathrm{L}^{\prime}=\mathrm{L}_{5} \mathrm{ML}^{\prime}+\mathrm{L}(\mathrm{M}=\mathrm{Cr}, \mathrm{W})$, proceeds by associative mechanism, it would be expected that the reaction would go faster for the tungsten complex because a 7-coordinate transition state would be more stable when tungsten is the central metal atom than when the smaller chromium atom is present. If the reaction proceeds by a dissociative mechanism, it would be expected that isomerization of the chromium complex would be faster than that of the tungsten complex because tungsten-phosphorus bonds are stronger than chromiumphosphorus bonds. Thus, by comparing the reaction rates of tungsten and chromium complexes, we can provide experimental evidence in support of an associative or dissociative mechanism.

Furthermore, a comparison of the activation parameters of tungsten and chromium complexes will provide additional mechanistic information. If the activation enthalpy for chromium is larger than for tungsten, it would suggest that the mechanism has a significant associative component because the smaller chromium atom would be less likely to support a 7-coordinate complex. But, if it
is larger for tungsten, it would suggest a significant dissociative component because the W-P bond is stronger than the $\mathrm{Cr}-\mathrm{P}$ bond.

The choice of solvent may also be of considerable importance as it could have a large influence on both the thermodynamics and kinetics of isomerization. If the lone electron pairs on the dangling phosphines are significantly solvated, the isomerization reaction would be influenced by the extent of lone pair-solvent interaction. Previous work on the isomerization of tungsten complexes was carried out in CDCl_{3}, a solvent which could affect reaction rates by hydrogen bonding (weakly) between the solvent and dangling phosphorus lone pairs. Toluene, a solvent less polar than chloroform, might interact with the dangling phosphorus ligand less than chloroform and lead to significantly different reaction rates and positions of equilibrium.

B. Results and discussion

1. Synthesis of $(\mathbf{O C})_{5} \operatorname{Cr}\left[\eta^{1}-\mathrm{PPh}_{2} \mathbf{C H}_{2} \mathbf{C H}\left(\mathrm{PPh}_{2}\right)_{2}\right]$

1,1-Bis(diphenylphosphino)ethene (vdpp) was prepared from $\mathrm{Ph}_{2} \mathrm{PLi}$ in dry THF according to the literature method. ${ }^{34}$

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ (Fig.1) showed a triplet at $\delta 5.9 \mathrm{ppm}$, which is assigned to the $\mathrm{C}=\mathrm{CH}_{2}$ protons. This is a second order $\mathrm{AA}^{\prime} \mathrm{XX}^{\prime}$ spin system in which H_{A} and H_{A}, are chemically equivalent and magnetically nonequivalent. The observed triplet is a deceptively simple spectrum, in which the separation of the two outer lines is $\left|{ }^{3} \mathrm{~J}_{\mathrm{P}(\mathrm{X}) \mathrm{H}(A)}+{ }^{3} \mathrm{~J}_{\mathrm{P}\left(\mathrm{X}^{\top}\right) \mathrm{H}(A)}\right|$. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (Fig.2) showed a triplet at $\delta 135.7 \mathrm{ppm}\left({ }^{1} \mathrm{~J}_{\mathrm{PC}}{ }^{\prime}=9.4 \mathrm{~Hz}\right.$) assigned to C^{\prime} of vinyl carbons ($\mathrm{C}^{\prime}=\mathrm{C}^{\prime}{ }^{\prime} \mathrm{H}_{2}$), a triplet at $\delta 136.1 \mathrm{ppm}\left({ }^{2} \mathrm{~J}_{\mathrm{PC}}\right.$ " $=4.9 \mathrm{~Hz}$) assigned to the terminal carbon C' of $\mathrm{C}^{\prime}=\mathrm{C}^{\prime \prime} \mathrm{H}_{2}$, and multiplets (from $\delta 128.2 \mathrm{ppm}$ to 134.5 ppm)
assigned to the phenyl carbons. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (Fig.3) showed a single peak at $\delta-2.9 \mathrm{ppm}$. Comparing with McFarlane's report, ${ }^{34}$ we agree with the chemical shifts of $P(\delta-3.9 \mathrm{ppm})$, the terminal carbon $C^{\prime \prime}(\delta 135.5 \mathrm{ppm})$ and the phenyl carbons ($\delta 128.5$ to 136.0 ppm), but we do not agree with the chemical shift of $\mathrm{C}^{\prime}(\delta 148.4 \mathrm{ppm})$ or the coupling constants $\left({ }^{1} \mathrm{~J}_{\mathrm{PC}},=36.4 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{PC}}{ }^{\prime}=8.1\right.$ Hz).

The preparation of $(\mathrm{OC})_{5} \mathrm{CrPPhH}$ was carried out from the substitution of THF in $\mathrm{Cr}(\mathrm{CO})_{5}$ THF by $\mathrm{PPh}_{2} \mathrm{H}$, while $\mathrm{Cr}(\mathrm{CO})_{5}$ THF came from the UV irradiation of $\mathrm{Cr}(\mathrm{CO})_{6}$ in THF^{48}

2

The ${ }^{1} \mathrm{H}$ NMR spectrum of complex 2 showed a doublet at $\delta 6.5 \mathrm{ppm}\left(\mathrm{J}_{\mathrm{PH}}=\right.$ 338.9 Hz), which was assigned to proton H_{a} (Fig.4). The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of complex 2 showed a doublet at $\delta 221.0 \mathrm{ppm}\left({ }^{2} \mathrm{~J}_{\mathrm{PC}}=7.1 \mathrm{~Hz}\right)$ assigned to C_{1}, and a doublet at $\delta 216.2 \mathrm{ppm}\left({ }^{2} \mathrm{~J}_{\mathrm{PC}}=13.4 \mathrm{~Hz}\right)$ assigned to C_{2-5}. The ipso carbons of the two phenyl groups gave a doublet at $\delta 132.6 \mathrm{ppm}\left({ }^{1} \mathrm{~J}_{\mathrm{PC}}=38.8 \mathrm{~Hz}\right)$, the ortho carbons gave a doublet at $\delta 131.9 \mathrm{ppm}\left({ }^{2} \mathrm{~J}_{\mathrm{PC}}=11.3 \mathrm{~Hz}\right)$, the para carbons gave a doublet at $\delta 130.4 \mathrm{ppm}\left({ }^{4} \mathrm{~J}_{\mathrm{PC}}=1.5 \mathrm{~Hz}\right)$, and the meta carbon gave a doublet at δ $129.0 \mathrm{ppm}\left({ }^{3} \mathrm{~J}_{\mathrm{PC}}=9.6 \mathrm{~Hz}\right)($ Fig. 5). These assignments have been supported by J. H. Nelson's spectroscopy book. ${ }^{48 b}$ The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum is also consistent with the structure of 2 (Fig. 6).

For $(\mathrm{OC})_{5} \mathrm{CrPPh}_{2} \mathrm{H}$ the $\operatorname{IR}\left[v(\mathrm{CO})\left(\mathrm{cm}^{-1}\right)\right]$ data $\left(\mathrm{A}_{1}{ }^{(1)}: 1945, \mathrm{~A}_{1}{ }^{(2)}: 2067, \mathrm{E}: 1988\right)$ suggested that the π-acidity of $\mathrm{PPh}_{2} \mathrm{H}$ is relatively high compared with $\mathrm{H}_{3} \mathrm{P}$ and $\mathrm{Ph}_{3} \mathrm{P}$, but lower than $(\mathrm{EtO})_{3} \mathrm{P},(\mathrm{PhO})_{3} \mathrm{P}$, and $\mathrm{X}_{3} \mathrm{P}(\mathrm{X}$ is halogen) (Fig. 7).

A $\mathrm{Cr}(\mathrm{CO})_{5} \mathrm{~L}$ complex has $\mathrm{C}_{4 \mathrm{v}}$ symmetry, and gives rise to three allowed IR absorptions (two non-degenerate and one doubly degenerate), having the symmetry labels $\mathrm{A}_{1}{ }^{(1)}, \mathrm{A}_{1}{ }^{(2)}$ and E . The important one to focus on is $\mathrm{A}_{1}{ }^{(1)}$, which corresponds to the symmetrical stretching motion of the CO group lying opposite the ligand L . It is this CO that competes most directly with L for available π electron density and therefore is in a position to best reflect the π acidity of L. In the case of the phosphorus ligands, the π acidity increases as the electronegativity of any substitutent on P increases. As these ligands become more and more competitive for π electrons, CO receives less and less electron density and the $\mathrm{C} \equiv \mathrm{O}$ stretching frequency increases accordingly. ${ }^{49}$

The preparation of $\mathrm{Cl}_{2} \mathrm{Pd}\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}$ was carried out from the displacement of NCPh from $\mathrm{Cl}_{2} \mathrm{Pd}(\mathrm{NCPh})_{2}$ by $\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}$.

3

Complex 3 is quite insoluble and its formation was accompanied by the formation of an unidentified byproduct. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound 3 and its byproduct showed singlets at $\delta-20.6 \mathrm{ppm}$ and -41.4 ppm (Fig.8), while the analogous platinum compound $\mathrm{Cl}_{2} \mathrm{Pt}\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}$ had a signal at $\delta-31.7 \mathrm{ppm}$ with $\mathrm{J}_{\mathrm{PIP}}=3,244 \mathrm{~Hz}^{42}$ Although it was not possible to assign the signal for 3 with
certainty, previous work has shown that ${ }^{31} \mathrm{P}$ chemical shifts for palladium complexes are in general downfield from the platinum complexes. Therefore, we believe the signal at -20.6 belongs to compound 3 . Although palladium has an isotope with a nuclear spin, ${ }^{105} \mathrm{Pd}(22.23 \%)$, for which $\mathrm{I}=-5 / 2$, the quadropolar property of this nucleus makes the palladium and phosphorus coupling unobservable under our experimental conditions. ${ }^{50}$ The ${ }^{1} \mathrm{H}$ NMR spectrum showed a set of signals at $\delta 6.4 \mathrm{ppm}$ which was assigned to the AA^{\prime} portion of the $\mathrm{AA}^{\prime} \mathrm{XX}{ }^{\prime}\left(\mathrm{P}_{2} \mathrm{C}=\mathrm{CH}_{2}\right)$ spin system (Fig.9), and is consistent with the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Cl}_{2} \mathrm{Pt}\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}{ }^{42}$ Attempts to purify compound $\mathbf{3}$ by recrystallization and column chromatography were not successful. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum showed a signal at $\delta-41.4 \mathrm{ppm}$ which was not identified. As most of the sample remained undissolved, we concluded that perhaps the sample was much more pure than the NMR spectra indicated. Therefore, we continued on to the next reaction and it was successful.

The new compound $\mathrm{Cl}_{2} \mathrm{Pd}\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{CHCH}_{2} \mathrm{PPh}_{2} \mathrm{Cr}(\mathrm{CO})_{5}$ was synthesized by adding (OC$)_{5} \mathrm{CrPPh}_{2} \mathrm{H}$ across the carbon-carbon double bond of compound $\mathbf{3}$ in the presence of $\mathrm{KOBu}^{\mathrm{t}}$.

4

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 4 showed a doublet at $\delta-27.2 \mathrm{ppm}\left({ }^{3} \mathrm{~J}_{\mathrm{PP}}=3.2\right.$ Hz) and a triplet at $\delta 57.4 \mathrm{ppm}\left({ }^{3} \mathrm{~J}_{\mathrm{PP}}=3.6 \mathrm{~Hz}\right)$ (Fig.10). The IR spectrum, $v(\mathrm{C} \equiv \mathrm{O})$, showed signals at $1939(\mathrm{vs}), 2065(\mathrm{~m})$ and $2059(\mathrm{~m})$ (Fig.11). Compared with $\mathrm{Cl}_{2} \mathrm{Pt}\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{CHCH}_{2} \mathrm{PPh}_{2} \mathrm{Cr}(\mathrm{CO})_{5}$, ${ }^{51}$ the chemical shift of the phosphorus atom bound to Pd is further downfield than that of the corresponding phosphorus atom bound to Pt , but the chemical shift of phosphorus bound to chromium remains essentially unchanged. The $\mathrm{C} \equiv \mathrm{O}$ stretching frequencies were not affected by the differences in the remote Pt and Pd atoms. Recrystallization and column chromatography were applied to purify 4 , but still the signals at δ $38.6 \mathrm{ppm},-20.8 \mathrm{ppm}$ and $\delta 49.9 \mathrm{ppm}$ were observed in ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum.

This reaction successfully avoided the formation of chelated product 5 which occurs when $(\mathrm{OC})_{5} \mathrm{CrPPh}_{2} \mathrm{H}$ reacts directly with $\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}$. ${ }^{46}$

Potassium cyanide was employed to remove the $\mathrm{Cl}_{2} \mathrm{Pd}$ from compound 4 and to release $(\mathrm{OC})_{5} \mathrm{Cr}\left[\eta^{1}-\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{PPh}_{2}\right)_{2}\right]$ 6, which partially isomerized to $(\mathrm{OC})_{5} \mathrm{Cr}\left[\eta^{1}-\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CHCH}_{2} \mathrm{PPh}_{2}\right] 7$.

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum showed that this reaction first gave the product 6 (Fig.12), and then slowly converted to 7 at room temperature (Fig.13). The spectrum of compound 6 showed a triplet at $\delta 51.8 \mathrm{ppm}\left({ }^{3} \mathrm{~J}_{\mathrm{PaPb}, \mathrm{c}}=2.6 \mathrm{~Hz}\right)$ and a doublet at $\delta-2.8 \mathrm{ppm}\left({ }^{3} \mathrm{~J}_{\text {PaPb,c }}=2.4 \mathrm{~Hz}\right)$. The spectrum of compound 7 gave a doublet of doublets at $\delta 68.8 \mathrm{ppm}\left({ }^{2} \mathrm{~J}_{\mathrm{PdPc}}=193.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{PdPf}}=21.2 \mathrm{~Hz}\right)$, a doublet at $\delta-10.9 \mathrm{ppm}\left({ }^{2} \mathrm{~J}_{\mathrm{PdPe}}=193.1 \mathrm{~Hz}\right)$, and a doublet at $\delta-16.0 \mathrm{ppm}\left({ }^{3} \mathrm{~J}_{\mathrm{PdPf}}=21.2 \mathrm{~Hz}\right)$. Coupling between P_{e} and P_{f} was not observed.

Typically, a P-C(ax) coupling constant is greater than a P-C(eq) coupling constant for phosphine substituted tungsten pentacarbonyl complexes. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 6 shows that the reverse is true for analogous chromium complexes, as the $\mathrm{P}-\mathrm{C}(\mathrm{eq})$ coupling constant $(12.9 \mathrm{~Hz})$ is larger than P $\mathrm{C}(\mathrm{ax})$ coupling constant (6.9 Hz) (Fig. 14). Similar coupling constant behavior of chromium complexes was reported in $1980 .{ }^{52 a}$ A general statement was made that the magnitude of the ${ }^{2} \mathrm{~J}_{P C}$ through-metal nuclear spin-spin coupling to the trans CO in $\mathrm{LM}(\mathrm{CO})_{s}$ complexes of $M o$ and W is significantly larger than that of the analogous coupling to the cis CO , whereas in $\mathrm{LCr}(\mathrm{CO})_{s}$ complexes the converse is true. ${ }^{52 b}$ The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of a similar compound, $(\mathrm{OC})_{5} \mathrm{CrPPh}_{2} \mathrm{Et}$, gave
$\mathrm{J}_{\mathrm{P} .(\mathrm{eq})}=13.7 \mathrm{~Hz}$, and $\mathrm{J}_{\mathrm{P} \cdot(\mathrm{ax})}=6.8 \mathrm{~Hz}$, which was in agreement with the assignment for compound 6. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 7 gave a doublet of doublets at δ $216.3 \mathrm{ppm}\left({ }^{2} \mathrm{~J}_{\mathrm{CP}}=12.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{CP}}=3.4 \mathrm{~Hz}\right)$ assigned to the equatorial carbonyl carbons (Fig.15). This long-range coupling was also reported for compound 9 $\left({ }^{4}{ }^{\mathrm{JPC}}=3.89 \mathrm{~Hz}\right) .{ }^{51}$

Our attempts to carry out free radical reactions to synthesize complex 6 were not successful. It was expected that $(\mathrm{OC})_{5} \mathrm{CrPPh}_{2} \mathrm{H}$ and $\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}$ in the presence of AIBN at elevated temperatures $\left(50^{\circ} \mathrm{C}\right.$ or $\left.60^{\circ} \mathrm{C}\right)$, would give complex 6, but the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum showed only a trace of desired product.

2. Equilibrium Studies of Isomerization of $\mathbf{6}$ and $\mathbf{7}$

The equilibrium studies were carried out in CDCl_{3} and toluene- d_{8} solutions at various temperatures. The equilibrium concentration of isomers 6 and 7 were determined by the integration of ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra. Meaningful integrations
were obtained by using a delay time of 15 s and a pulse width of $16 \mathrm{usec}(83$ degree). A one pulse decoupling during acquisition was not applied to eliminate NOE (Nuclear Overhauser Enhancement) effects on ${ }^{31} \mathrm{P}$ signal intensities. The equilibrium constants, $K=[7] /[6]$, are found in Table 1. For comparison, the K values of reaction 10 in CDCl_{3} solution from literature are also listed in Table 1.

8

9

Table 1. The equilibrium constants, K, of reactions A, B and C. A is reaction 10 in $\mathrm{CDCl}_{3} ; \mathrm{B}$ is reaction 9 in $\mathrm{CDCl}_{3} ; \mathrm{C}$ is reaction 9 in toluene- d_{8} solution.

K	$10^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$53^{\circ} \mathrm{C}$	Ref.
A	6.14 ± 0.04	4.74 ± 0.01	3.76 ± 0.05	3.01 ± 0.02	51
B	3.60 ± 0.04	2.61 ± 0.04	2.04 ± 0.04	1.67 ± 0.02	this work
C	N / A	2.18 ± 0.02	1.72 ± 0.04	1.58 ± 0.01	this work

The equilibrium constant, K, of each reaction decreases when the reaction temperature increased, which indicates that the forward reactions are exothermic. This is confirmed by the negative $\Delta \mathrm{H}$ values shown in Table 3. Among the reactions at the same temperature, the values of K decrease from A to C, and equilibrium positions correspondingly shift from right to left. For the tungsten reaction (A) the product is more stable than the reactant at all temperatures. If the reactant and product isomers were equally stable, the equilibrium constant would
be 2 because there are two possible attachments in the product isomer. For chromium (B) at $53^{\circ} \mathrm{C}$ we see that 7 is less stable than 6 , at $40^{\circ} \mathrm{C}$ the two isomers are equally stable, and at $25^{\circ} \mathrm{C}, 7$ is more stable than 6 . In toluene 7 is less stable than 6 at temperature above $25^{\circ} \mathrm{C}$.

Insight into the magnitudes of K are given by the determination of $\Delta \mathrm{H}, \Delta \mathrm{S}$, and $\Delta \mathrm{G}$ for the reactions. Standard equations (eq-1 and eq-2) shown below were used to determine thermodynamic parameters.

$$
\begin{align*}
& \Delta G=-R T \ln K=\Delta H-T \Delta S \tag{eq-1}\\
& \ln K=-\Delta H /(R T)+\Delta S / R \tag{eq-2}
\end{align*}
$$

In these equations, R is the gas constant, $\Delta G, \Delta H, \Delta S$ are the change of free energy, the change of enthalpy, and the change of entropy, respectively. The values of $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ can be calculated from the van't Hoff plot ($\ln \mathrm{K}$ vs. $1 / \mathrm{T}$) (Table 2).

$$
\begin{align*}
& \text { Slope }=-\Delta H / R \tag{eq-3}\\
& \text { Intercept }=\Delta S / R \tag{eq-4}
\end{align*}
$$

The plots of $\ln \mathrm{K}$ vs. $1 / \mathrm{T}$ were manipulated (Fig.16-17), and the values of $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ were obtained from equations 3 and 4 . The values of $\Delta \mathrm{G}$ at $25^{\circ} \mathrm{C}$ were obtained from the equation, $\Delta \mathrm{G}_{(298 \mathrm{~K})}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$. The results are shown in Table 3.

Table 2. The values of $\ln K$ and $1 / T$ of reactions A, B and C. A is reaction 10 in $\mathrm{CDCl}_{3} ; \mathrm{B}$ is reaction 9 in $\mathrm{CDCl}_{3} ; \mathrm{C}$ is reaction 9 in toluene $-\mathrm{d}_{8}$ solution.

$1 / \mathrm{T}\left(\mathrm{K}^{-1}\right)$	3.53×10^{-3}	3.36×10^{-3}	3.19×10^{-3}	3.07×10^{-3}	Ref.
$\ln \mathrm{K}(\mathrm{A})$	1.81 ± 0.01	1.56	1.32 ± 0.01	1.10 ± 0.01	51
$\ln \mathrm{~K}(\mathrm{~B})$	1.28 ± 0.01	0.96 ± 0.02	0.71 ± 0.02	0.51 ± 0.01	this work
$\ln \mathrm{K}(\mathrm{C})$	N / A	0.78 ± 0.01	0.54 ± 0.02	0.46 ± 0.01	this work

Table 3. The values of $\Delta H, \Delta S$, and $\Delta G_{(298 \mathrm{~K})}$ of reactions A, B and $C . A$ is reaction 10 in $\mathrm{CDCl}_{3} ; \mathrm{B}$ is reaction 9 in $\mathrm{CDCl}_{3} ; \mathrm{C}$ is reaction 9 in toluene- d_{8} solution.

	$\Delta \mathrm{H}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	$\Delta \mathrm{S}\left(\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$	$\Delta \mathrm{G}_{(298 \mathrm{~K})}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	Ref.
A	-12.25 ± 0.1	-28.2 ± 0.3	-3.86 ± 0.14	51
B	-13.63 ± 0.39	-37.62 ± 1.28	-2.42 ± 0.38	this work
C	-9.41 ± 1.90	-25.25 ± 6.10	-1.88 ± 2.63	this work

For reaction B, both ΔH and ΔS are more negative than for reaction A. The difference in the entropy change is most striking. The large negative $\Delta \mathrm{S}$ values in both cases suggest that as 6 isomerizes to 7 a significant restriction in freedom of movement results. It might be expected that there would be greater steric congestion in the chromium product than in the tungsten leading to a more negative ΔS.

It is apparent that the solvent plays an important role in these reactions. In toluene both $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ are less negative than in CDCl_{3}. This might suggest that toluene interacts more strongly with dangling phosphine groups than chloroform.

Isomer 6 may be somewhat stabilized relative to 7 as a result of this interaction.

The large decrease in entropy for these reactions is overcome by the negative enthalpy value leading to an overall favorable (negative) free energy of reaction. The negative free energy change is the driving force of the spontaneous reaction. The magnitude of the free energy becomes less negative from A to C, which is also consistent with the trend of the values of K .

Complex 7 is more themodynamically stable than $\mathbf{6}$ at lower temperatures even though the more sterically congested end of the phosphine ligand is coordinated in 7. An intramolecular interaction between the short phosphine arm and the carbonyl groups is postulated to explain this abnormal phenomenon (see scheme X). ${ }^{51}$ Supporting experimental evidence for this phosphine-carbonyl interaction, in addition to the large entropy decrease for the reaction, is also given by the presence of long-range phosphorus-carbon coupling in $7\left({ }^{4} \mathrm{~J}_{\mathrm{PC}}=3.4 \mathrm{~Hz}\right)($ Fig. 15$)$, which we believe is largely a through-space interaction. The similar long-range P C coupling in compound $9\left({ }^{4} \mathrm{~J}_{\mathrm{PC}}=3.8 \mathrm{~Hz}\right)^{51}$ is larger than that of 7 and this is in good agreement with the K values indicating that tungsten complex 9 is more stable than chromium complex 7.

The IR spectrum of 7 in the carbonyl region is consistent with $\mathrm{C}_{4 \mathrm{v}}$ symmetry suggesting that the interaction between the short arm phosphine of 7 and carbonyl groups is not localized (Fig.18). It has been reported that electronic differences in $\mathrm{LW}(\mathrm{CO})_{5}\left(\mathrm{~L}=\mathrm{PMe}_{\mathrm{n}} \mathrm{Ph}_{3-\mathrm{n}}\right)$ are too small to be determined by vibrational spectroscopy. ${ }^{52 C}$ Therefore, it is not surprising that the IR spectra of $\mathbf{6}$ and 7 are superimposable.

3. Kinetic Studies of Isomerization of 6 and 7 in $\mathbf{C D C l}_{3}$ and Toluene- \mathbf{d}_{8}.

This is a first-order reaction in which the net rate of disappearance of 6 is given by

$$
\begin{equation*}
-\mathrm{d}[6] / \mathrm{dt}=\mathrm{k}_{1}[6]-\mathrm{k}_{-1}[7] \tag{eq-5}
\end{equation*}
$$

where k_{1} and k_{-1} are rate constants of the forward and backward reactions, respectively.

When the reaction reaches equilibrium,

$$
\begin{align*}
& -\mathrm{d}[6] / \mathrm{dt}=0 \tag{eq-6}\\
& \mathrm{k}_{1}[6]_{\mathrm{eq}}=\mathrm{k}_{-1}[7]_{\mathrm{eq}} \tag{eq-7}\\
& {[7]_{\mathrm{eq}} /[6]_{\mathrm{eq}}=\mathrm{K}=\mathrm{k}_{1} / \mathrm{k}_{-1}} \tag{eq-8}
\end{align*}
$$

Also if 6 and 7 are the only complexes in the reaction system, it is true that

$$
\begin{equation*}
[6]+[7]=[6]_{\mathrm{in}}+[7]_{\mathrm{in}}=[6]_{\mathrm{eq}}+[7]_{\mathrm{eq}} \tag{eq-9}
\end{equation*}
$$

Where $[6]_{\text {in }}$ and $[7]_{\text {in }}$ are the initial concentrations of 6 and 7 and $[6]_{\mathrm{eq}}$ and $[7]_{\mathrm{eq}}$ are the equilibrium concentrations of 6 and 7, respectively.

Substitution of equations 8 and 9 into equation 5, and rearrangement, gives the relation

$$
\begin{equation*}
-\mathrm{d}[6] / \mathrm{dt}=\left(\mathrm{k}_{1}+\mathrm{k}_{-1}\right)\left\{[6]-[6]_{\mathrm{eq}}\right\} \tag{eq-10}
\end{equation*}
$$

Integration of equation 10 gives

$$
\begin{equation*}
\ln \left\{[6]-[6]_{\mathrm{eq}}\right\}=-\left(\mathrm{k}_{1}+\mathrm{k}_{-1}\right) \mathrm{t}+\ln \left\{[6]_{\mathrm{in}}-[6]_{\mathrm{eq}}\right\} \tag{eq-11}
\end{equation*}
$$

Therefore, a plot of $\ln \left\{[6]-[6]_{\text {eq }}\right\}$ versus t gives

$$
\text { slope }=-\left(k_{1}+k_{-1}\right)
$$

From the slope and equilibrium constant K , the individual forward and backward rate constants can be obtained.

$$
\begin{aligned}
& \mathrm{k}_{1}=(- \text { slope })(\mathrm{K}) /(1+\mathrm{K}) \\
& \mathrm{k}_{-1}=(\text {-slope }) /(1+\mathrm{K})
\end{aligned}
$$

Also, the half life to reach equilibrium can be calculated by

$$
\begin{equation*}
t_{1 / 2}=(\ln 2) / k \tag{eq-12}
\end{equation*}
$$

The time to go half way to equilibrium is given by

$$
\begin{equation*}
t_{1 / 2}^{\prime}=(\ln 2) /\left(k_{1}+k_{-1}\right) \tag{eq-13}
\end{equation*}
$$

Reaction 9 was carried out at $40^{\circ} \mathrm{C}$ in CDCl_{3}, and at $25^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$ in toluene- d_{8}. The change of concentration of 6 was detected by running ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra and taking integrals at appropriate time intervals.

The plots of $\ln \left\{[6]-[6]_{\mathrm{eq}}\right\}$ versus time at $10^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$ (the first two data points are from Lin's thesis ${ }^{54}$), $40{ }^{\circ} \mathrm{C}$ in CDCl_{3}, and the plots of $\ln \left\{[6]-[6]_{\mathrm{eq}}\right\}$ versus t at $25^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$ in toluene- d_{8} were manipulated (Fig. 19-23). ${ }^{53}$ The values of k_{1}, k_{-1} and $t_{1 / 2}$ ' were obtained, and shown in Table 4.

Table 4. Rate constants and half-lives to equilibrium for isomerization reactions of \mathbf{A}, B and \mathbf{C}. \mathbf{A} is reaction 10 in $\mathrm{CDCl}_{3} ; \mathbf{B}$ is reaction 9 in $\mathrm{CDCl}_{3} ; \mathbf{C}$ is reaction 9 in toluene- d_{8} solution.

	Temp. (K)	$\mathrm{k}_{1}\left(\mathrm{~s}^{-1}\right)$	$\mathrm{k}_{-1}\left(\mathrm{~s}^{-1}\right)$	$\mathrm{t}^{\prime}{ }_{1 / 2}$	Ref.
A	283	$(1.60 \pm 0.04) \times 10^{-6}$	$(2.61 \pm 0.06) \times 10^{-7}$	4.3 days	51
	298	$(1.18 \pm 0.01) \times 10^{-5}$	$(2.50 \pm 0.01) \times 10^{-6}$	13.5 hours	51
313	$(7.95 \pm 0.30) \times 10^{-5}$	$(2.11 \pm 0.10) \times 10^{-5}$	2.4 hours	51	
B	283	$(2.04 \pm 0.02) \times 10^{-7}$	$(5.64 \pm 0.20) \times 10^{-8}$	30.8 days	54
	298	$(2.10 \pm 0.02) \times 10^{-6}$	$(8.03 \pm 0.29) \times 10^{-7}$	2.8 days	54
	313	$(1.68 \pm 0.02) \times 10^{-5}$	$(8.22 \pm 0.17) \times 10^{-6}$	7.7 hours	this work
C	298	$(2.26 \pm 0.14) \times 10^{-6}$	$(1.04 \pm 0.06) \times 10^{-6}$	2.4 days	this work
	313	$(1.02 \pm 0.05) \times 10^{-5}$	$(5.92 \pm 0.31) \times 10^{-6}$	11.9 hours	this work

If the rate constants are known, the activation enérgy E_{a} can be obtained from the Arrhenius equation

$$
\begin{align*}
& k=A \cdot e^{[-E \mathbf{E} /(\mathrm{RT})]} \tag{eq-14}\\
& \ln k=\ln A-E_{2} /(\mathrm{RT}) \tag{eq-15}
\end{align*}
$$

where A is a preexponential factor. A plot of $\ln k$ versus $1 / \mathrm{T}$ gives

$$
\text { slope }=-E_{2} / R
$$

The plots of $\ln _{1}$ vs. $1 / \mathrm{T}$ and lnk_{-1} vs. $1 / \mathrm{T}$ were manipulated for reaction 9 in CDCl_{3} (Fig.24, 25). ${ }^{53}$ The values of E_{a} are shown in Table 5.

Table 5. The activation energy of reactions A, B and C. A is reaction 10 in $\mathrm{CDCl}_{3} ; \mathrm{B}$ is reaction $9 \mathrm{in} \mathrm{CDCl}_{3} ; \mathrm{C}$ is reaction 9 in toluene- d_{8} solution.

	$\mathrm{E}_{\mathbf{a}}$ (forward) $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	$\mathrm{E}_{\mathbf{a}}($ backward $)\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	Ref.
A	95.3 ± 1.8	107.0 ± 1.6	51
B	108.31 ± 0.43	122.34 ± 1.12	this work
C	77.76	90.01	this work

The free energy of activation, $\Delta \mathrm{G}^{*}$, is also related to the rate constant, k ,

$$
\begin{equation*}
k=\left(k^{\prime} T / h\right) \cdot e^{[-\Delta G z(R T)]} \tag{eq-16}
\end{equation*}
$$

where k ' is Boltzmann's constant and h is Planck's constant. Taking the logarithm of both sides gives

$$
\begin{equation*}
\ln (\mathrm{k} / \mathrm{T})=-\Delta \mathrm{G}^{*} /(\mathrm{RT})+\ln \left(\mathrm{k}^{\prime} / \mathrm{h}\right) \tag{eq-17}
\end{equation*}
$$

Recognizing that $\Delta \mathrm{G}^{*}=\Delta \mathrm{H}^{*}-\mathrm{T} \Delta \mathrm{S}^{*}$
we have

$$
\begin{equation*}
\ln (\mathrm{k} / \mathrm{T})=\Delta \mathrm{H}^{*} /(\mathrm{RT})+\Delta \mathrm{S}^{*} / \mathrm{R}+\ln \left(\mathrm{k}^{\prime} / \mathrm{h}\right) \tag{eq-18}
\end{equation*}
$$

Therefore, the Eyring plot [the plot of $\ln (\mathrm{k} / \mathrm{T})$ versus $1 / \mathrm{T}$] gives $\Delta \mathrm{H}^{+}$from the slope and $\Delta \mathrm{S}^{*}$ from the intercept. ${ }^{53}$

$$
\begin{aligned}
& \text { slope }=-\Delta H^{*} / R \\
& \text { intercept }=\Delta S^{*} / R+\ln \left(k^{\prime} / h\right)
\end{aligned}
$$

The values of $\Delta \mathrm{S}^{*}$ are of interest because values below - 10 eu indicate an associative reaction, while values greater than +10 eu indicate a dissociative reaction. ${ }^{4 c, 55 a, 56}$

The plots of $\ln (\mathrm{k} / \mathrm{T})$ versus $1 / \mathrm{T}$ were manipulated for reaction 9 in CDCl_{3} (Fig. 26,27). The values of $\Delta \mathrm{H}^{*}, \Delta \mathrm{~S}^{\neq}$, and $\Delta \mathrm{G}^{\neq}$are shown in Table 6. Because of the incomplete data for reaction 9 in toluene $-d_{8}$, the activation parameters for this reaction are questionable.

Table 6. The values of $\Delta \mathrm{H}^{\neq}, \Delta \mathrm{S}^{\neq}$, and $\Delta \mathrm{G}^{\neq}$for the reactions of A, B, and C. \mathbf{A} is reaction 10 in $\mathrm{CDCl}_{3} ; \mathrm{B}$ is reaction 9 in $\mathrm{CDCl}_{3} ; \mathrm{C}$ is reaction 9 in toluene- d_{8} solution.

	A	B	C
$\Delta \mathrm{H}^{ \pm} \mathrm{f}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	92.6 ± 1.9	105 ± 0.46	75.22
$\Delta \mathrm{H}^{ \pm}{ }_{\mathrm{b}}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	104.5 ± 1.8	119.87 ± 1.16	87.48
$\Delta \mathrm{H}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	-11.9 ± 2.6	-14.87 ± 1.25	-12.26
$\Delta \mathrm{S}^{ \pm}{ }_{\mathrm{f}}\left(\mathrm{J} \mathrm{mol}{ }^{-1} \mathrm{~K}^{-1}\right)$	-28.2 ± 6.2	1.41 ± 1.58	-100.60
$\Delta \mathbf{S}^{ \pm}{ }_{\mathrm{b}}\left(\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$	-1.0 ± 6	40.41 ± 3.91.	-65.93
$\Delta \mathrm{S}\left(\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$	-27.2 ± 8.6	-39 ± 4.22	-34.67
$\Delta \mathrm{G}^{ \pm} \mathrm{f}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	101.0 ± 2.6	105.42 ± 0.66	105.20
$\Delta \mathrm{G}^{\ddagger}{ }_{\mathrm{b}}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	104.8 ± 2.5	107.83 ± 1.64	107.13
$\Delta \mathrm{G}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	-3.8 ± 3.6	-2.41 ± 1.77	-1.93
Ref.	51	this work	this work

The reaction rates of the tungsten complexes are faster than those of the chromium complexes. As discussed in the introduction, this result is consistent with a reaction that proceeds by an associative mechanism because it would be expected that a 7-coordinate transition state would be more stable when tungsten
is the central metal atom than when the smaller chromium atom is present. A comparison of the entropy of activation shows that values are significantly more positive for the chromium than for the tungsten complexes in chloroform. It can be concluded that the isomerization for the chromium complexes proceeds with a greater dissociative component than for the tungsten complexes. It makes sense that an associative mechanism may become less favorable as the central metal atom becomes smaller.

Both the tungsten and chromium reactions are unexpectedly fast for d^{6} lowspin complexes. Many works have confirmed the substitutionally inert nature of d^{6} complexes. ${ }^{53}$ For example, the dissociative rate constant (k_{1}) for CO substitution by phosphine in $\mathrm{W}(\mathrm{CO})_{6}$ at $30^{\circ} \mathrm{C}$ is $1 \times 10^{-14} \mathrm{~s}^{-1} .{ }^{552}$ The rate constant for PPh_{3} dissociation from (OC) ${ }_{5} \mathrm{CrPPh}_{3}$ is $3 \times 10^{-11} \mathrm{~s}^{-1}$ at $30^{\circ} \mathrm{C},{ }^{55 \mathrm{~b}}$ about six orders of magnitude slower than the rate of isomerization in reaction 9 .

The mechanistic model presented in scheme X (Page 15) can explain the dramatic acceleration of the reaction. The interaction of the dangling phosphine arm with a carbonyl ligand leads to a weakening of the metal-phosphorus bond, allowing the other dangling phosphine arm to displace the coordinated phosphine. The isomerization of $(\mathrm{OC})_{s} \mathrm{~W}\left[\eta^{1}-\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{P}(p \text {-tol })_{2}\right]$, lacking an accelerating arm, proceeds at the expected slower rate $\left(\mathrm{k}_{1}=2.03 \times 10^{-8} \mathrm{~s}^{-1}, \mathrm{k}_{-1}=1.25 \times 10^{-8} \mathrm{~s}^{-1}\right.$ at $\left.55{ }^{\circ} \mathrm{C}\right) .{ }^{51}$ The isomerization of $(\mathrm{OC})_{5} \mathrm{Cr}\left[\eta^{1}-\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{P}(p \text {-tol })_{2}\right]$ is also very slow $\left(\mathrm{k}_{1}=1.22 \times 10^{-8} \mathrm{~s}^{-1}, \mathrm{k}_{-1}=0.65 \times 10^{-8} \mathrm{~s}^{-1}\right.$ at $\left.55^{\circ} \mathrm{C}\right) .{ }^{55 \mathrm{c}}$

The activation energy of chromium complexes in CDCl_{3} solution is larger than that of tungsten complex in the same solution, which is in agreement with the
difference in their reaction rates. The activation enthalpy of chromium (-14.87 \pm $\left.1.25 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ is not significantly different from that of tungsten $(-11.9 \pm 2.6 \mathrm{~kJ}$ mol^{-1}). Both of the reactions are accompanied with a large decrease of entropy (-27.2 $\pm 8.6 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ for W complexes, $-39 \pm 4.22 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ for Cr complexes), again a sign that the products of isomerization have less freedom to move. The activation free energy of chromium $\left(-2.41 \pm 1.77 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ is slightly less negative than that of tungsten $\left(-3.8 \pm 3.6 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$.

The solvent can influence both rates and mechanisms of reactions. Sometimes the solvent alters the rate without influencing the mechanism by changing the force between reacting particles and hence altering the readiness with which they approach each other. But it would be unusual if the solvent changed the mechanism without changing the rate. ${ }^{57}$ In this study, the replacement of CDCl_{3} with toluene- d_{8} does not influence the rates much, but dramatically decreases the activation energies. Toluene $-\mathrm{d}_{8}$ also changes the activation entropy of the forward reaction from $1.41 \pm 1.58 \mathrm{eu}$ to -69.93 eu , although the overall $\Delta \mathrm{S}$ $(-34.67 \mathrm{eu})$ is very close to that of isomerization in $\mathrm{CDCl}_{3}(-39 \pm 4.22 \mathrm{eu})$. How toluene- d_{8} makes such a big difference is not clear. Unfortunately only two data points were obtained and it is possible that a great deal of experimental error exists in these measurements.

These results suggest that complex reactivity may be greatly influenced by the intramolecular interaction, the central metal atom and the solvent. Further studies are necessary to understand the nature of solvent interaction in these systems.

C. Experimental Section

Reactions were carried out under a nitrogen atmosphere as many of the reactants and products are air-sensitive. Tetrahydrofuran(THF) was dried by sodium metal in the presence of benzophenone, and was freshly distilled under N_{2} before use. All other solvents were used without further purification. The other chemicals were obtained from Sigma-Aldrich and other commercial suppliers and also used without further purification.

The infrared spectra $\left(\mathrm{CHCl}_{3}\right)$ of the carbonyl groups in the complexes were recorded on a Nicolet 20 DXB Fourier Transform Spectrometer.

Phosphorus-31 nuclear magnetic resonance spectroscopy (NMR) was used to characterize the compounds, determine equilibrium constants and measure the rates of isomerization. The instrument used was a General Electric QE-300 NMR spectrometer.

All melting points were taken by a capillary melting point apparatus (Arthur H. Thomas Company).

Irradiation was carried out in a quartz vessel equipped with a 400 watt ultraviolet lamp.

Elemental analyses were done by the microanalytical laboratory in University of Illinois at Urbana-Champaign. Structural analyses performed at the Chemistry Department at University of Delaware.

Preparation of $\mathbf{P P h}_{2} \mathbf{L i}$

Syringes were used to transfer $\mathrm{PPh}_{2} \mathrm{H}(21.8 \mathrm{~mL}, 0.125 \mathrm{~mol})$ and $\mathrm{BuLi}(62.5$ $\mathrm{mL}, 0.125 \mathrm{~mol}$) to 150 mL of dry THF. The $\mathrm{PPh}_{2} \mathrm{H}$ was added followed by dropwise addition of BuLi over 0.5 hour. The solution turned red after the addition of BuLi . The reaction mixture was stirred for 36 hours.

Preparation of $\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}(\mathrm{vdpp})$

The above solution was added via syringe over 45 min to 150 ml of dry THF containing $\mathrm{Cl}_{2} \mathrm{C}=\mathrm{CH}_{2}(5.00 \mathrm{~mL}, 0.0625 \mathrm{~mol})$. The dark red solution was stirred for 24 hours. Diluted $\mathrm{HCl}(100 \mathrm{~mL}, 2 \mathrm{M})$ was added to the reaction mixture causing the red color to disappear and two layers to develop. The yellow top layer was separated from the colorless bottom layer with a separatory funnel. The top layer was dried with MgSO_{4} after which the solvent was removed under high vacuum. The yellow residue crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}$ giving white crystals of $\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}(11.282 \mathrm{~g}, 45.5 \%) . \mathrm{mp} 110-113{ }^{\circ} \mathrm{C} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$: δ-2.9 ppm, ${ }^{1} \mathrm{H}$ NMR: $\delta 5.9 \mathrm{ppm}\left\{\mathrm{J}_{\mathrm{P}-\mathrm{H}(\text { (rans })}+\mathrm{J}_{\mathrm{P}-\mathrm{H}(\mathrm{cis})}=29.4 \mathrm{~Hz}\right\},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 136.1 \mathrm{ppm}\left({ }^{2} \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=4.9 \mathrm{~Hz}\right), \delta 135.7 \mathrm{ppm}\left({ }^{1} \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=9.4 \mathrm{~Hz}\right), \delta 128.2 \mathrm{ppm}$ to 134.5 ppm (multiplet of phenyl group).

Preparation of $(\mathrm{OC})_{5} \mathrm{CrPPh}_{2} \mathrm{H}$

A solution of $\mathrm{Cr}(\mathrm{CO})_{6}(5.000 \mathrm{~g}, 22.7 \mathrm{mmol})$ in 250 mL dry THF was irradiated for 8 hours with UV light. The colorless solution turned to red. To this red solution, $\mathrm{Ph}_{2} \mathrm{PH}(3.95 \mathrm{~mL}, 22.7 \mathrm{mmol})$ was added via a syringe. This
mixture was allowed to stir for 1.5 hour. The color changed from red to yellow, and became white-greenish at the end. The solvent was removed under vacuum. Unreacted $\mathrm{Cr}(\mathrm{CO})_{6}$ as confirmed by IR, separated from the green oily residue when $\mathrm{CH}_{3} \mathrm{OH}$ was added. The green filtrate obtained by filtration was taken to dryness under vacuum. The product, flat green crystals, was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}$. Yield: $0.756 \mathrm{~g}, 8.8 \%$; mp: $59-65^{\circ} \mathrm{C}$; IR $\left[v(\mathrm{C} \equiv \mathrm{O})\left(\mathrm{cm}^{-1}\right)\right]: 1945$ (vs), $2067(\mathrm{~m}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 33.4 \mathrm{ppm} ;{ }^{1} \mathrm{H}$ NMR: $\delta 6.5 \mathrm{ppm}\left({ }^{1} \mathrm{~J}_{\mathrm{P}-\mathrm{H}}=338.9\right.$ $\mathrm{Hz}), 7.4$ to 7.6 ppm (multiplet of phenyl group); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 129.0 \mathrm{ppm}$ $\left({ }^{3} \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=9.6 \mathrm{~Hz}\right), 130.4 \mathrm{ppm}\left({ }^{4} \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=1.5 \mathrm{~Hz}\right), 131.9 \mathrm{ppm}\left({ }^{2} \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=11.3 \mathrm{~Hz}\right), 132.6$ $\operatorname{ppm}\left({ }^{4} \mathrm{~J}_{\mathrm{P}-\mathrm{C}}=38.8 \mathrm{~Hz}\right), 216.2 \mathrm{ppm}\left\{{ }^{2} \mathrm{~J}_{\mathrm{P}-\mathrm{C}(\mathrm{ax})}=13.4 \mathrm{~Hz}\right\}, 221.0 \mathrm{ppm}\left\{{ }^{2} \mathrm{~J}_{\mathrm{P}-\mathrm{C}(\mathrm{eq})}=7.1\right.$ Hz .

Preparation of $\mathrm{Cl}_{2} \mathrm{Pd}\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}$

A mixture of $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CN}\right)_{2} \mathrm{PdCl}_{2}(1.000 \mathrm{~g}, 2.61 \mathrm{mmol})$ and $\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}$ $(1.034 \mathrm{~g}, 2.61 \mathrm{mmol})$ were stirred in $25 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ for 48 hours. A yellow solid formed and was collected by filtration. Yield: $1.270 \mathrm{~g}, 84.8 \% ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta-20.6 \mathrm{ppm} ;{ }^{1} \mathrm{H}$ NMR: $\delta 6.4 \mathrm{ppm}\left(\mathrm{AA}^{\prime}\right.$ part of $\mathrm{AA}^{\prime} \mathrm{XX'}^{\prime}$ second order spectrum from $\mathrm{P}_{2} \mathrm{C}=\mathrm{CH}_{2}$ proton), 7.4 ppm to 7.9 ppm (multiplet of phenyl group).

Preparation of $\mathrm{Cl}_{2} \mathrm{Pd}\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CHCH}_{2} \mathrm{PPh}_{2} \mathrm{Cr}(\mathrm{CO})_{5}$

The mixture of $\mathrm{Cl}_{2} \mathrm{Pd}\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}(1.270 \mathrm{~g}, 2.20 \mathrm{mmol})$ and $\mathrm{CrPPh}{ }_{2} \mathrm{H}$ $(0.837 \mathrm{~g}, 2.20 \mathrm{mmol})$ were stirred in 40 mL dry THF for 24 hours with 0.112 g $(1.0 \mathrm{mmol})$ of catalytic potassium tert-butoxide $\left(\mathrm{KOBu}^{\mathrm{t}}\right)$. The red solution was
refluxed at $80^{\circ} \mathrm{C}$ for 2 hours and cooled to room temperature. The solvent was removed under vacuum and the dark brown residue was recrystallized with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}$. A brown solid was obtained by filtration. Yield: 1.275 g , 60.9\%; IR[v(C $\left.\equiv \mathrm{O})\left(\mathrm{cm}^{-1}\right)\right]: 1939(\mathrm{vs}), 2065(\mathrm{~m}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}: \delta-27.2 \mathrm{ppm}\left({ }^{3} \mathrm{~J}_{\mathrm{P}-\mathrm{P}}\right.$ $=3.2 \mathrm{~Hz}), 57.4 \mathrm{ppm}\left({ }^{3} \mathrm{~J}_{\mathrm{P} \cdot \mathrm{P}}=3.6 \mathrm{~Hz}\right)$.

Synthesis of $\left.(\mathrm{CO})_{5} \mathrm{Cr} \eta^{1}-\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{PPh}_{2}\right)_{2}\right\rfloor(6)$ and $(\mathrm{OC})_{5} \mathrm{Cr} \eta^{1}{ }^{1}-$

$\left.\mathbf{P P h}_{2} \mathbf{C H}\left(\mathbf{P P h}_{2}\right) \mathbf{C H}_{2} \mathbf{P P h}_{2}\right]$ (7)

A mixture of $\mathrm{Cl}_{2} \mathrm{Pd}\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CHCH}_{2} \mathrm{PPh}_{2} \mathrm{Cr}(\mathrm{CO})_{5}(0.700 \mathrm{~g}, 0.735 \mathrm{mmol})$ and $\mathrm{KCN}(0.191 \mathrm{~g}, 2.94 \mathrm{mmol})$ were stirred in 50 mL absolute ethanol for 54 hours. The solvent was removed under vacuum. The residue was recrystallized with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}$, and separated by filtration. The yellow filtrate was taken to dryness. A yellow solid was obtained from repeated ćrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}$. Yield: $0.170 \mathrm{~g}, 29.9 \%$. IR $\left[v(\mathrm{C} \equiv \mathrm{O})\left(\mathrm{cm}^{-1}\right)\right]: 1940(\mathrm{vs}), 2062$ (m); The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum showed that the product was a mixture of isomer 6 and 7. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $6: \delta-2.8 \mathrm{ppm}\left({ }^{3} \mathrm{~J}_{\mathrm{P}-\mathrm{P}}=2.4 \mathrm{~Hz}\right)$, $51.8 \mathrm{ppm}\left({ }^{3} \mathrm{~J}_{\mathrm{P}-\mathrm{P}}=2.6 \mathrm{~Hz}\right)$; The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum of isomer 7: $\delta-16.0 \mathrm{ppm}$ $\left({ }^{3} \mathrm{~J}_{\mathrm{P}-\mathrm{P}}=21.2 \mathrm{~Hz}\right),-10.9 \mathrm{ppm}\left({ }^{2} \mathrm{~J}_{\mathrm{P}-\mathrm{P}}=193.1 \mathrm{~Hz}\right), 68.8 \mathrm{ppm}\left({ }^{2} \mathrm{~J}_{\mathrm{P}-\mathrm{P}}=193.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{P}-\mathrm{P}}\right.$ $=21.2 \mathrm{~Hz})$; The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $6: \delta 216.4 \mathrm{ppm}\left({ }^{2} \mathrm{~J}_{\mathrm{P}-\mathrm{C}(\mathrm{eq})}=12.9 \mathrm{~Hz}\right)$, $221.8 \mathrm{ppm}\left({ }^{2} \mathrm{~J}_{\mathrm{P}-\mathrm{C}(\mathrm{xx})}=6.9 \mathrm{~Hz}\right)$; The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 7: $\delta 216.3 \mathrm{ppm}$ $\left({ }^{2} \mathrm{~J}_{\mathrm{P}-\mathrm{C}(\mathrm{eq})}=12.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{P}-\mathrm{C}(\mathrm{qq})}=3.4 \mathrm{~Hz}\right), 221.7 \mathrm{ppm}\left({ }^{2} \mathrm{~J}_{\mathrm{P}-\mathrm{C}(\mathrm{xx})}=5.1 \mathrm{~Hz}\right)$. Isomer 7 was less soluble, and was isolated from the filtrate by further recrystallization. But the more soluble isomer 6 was not successfully purified, although it was
formed initially from this reaction, it partially isomerized to isomer 7 once it existed in the solution.

Synthesis of $\left.(\mathrm{OC})_{4} \mathbf{C r} \eta^{2}-\mathrm{PPh}_{2} \mathbf{C H}\left(\mathrm{PPh}_{2}\right) \mathrm{CH}_{2} \mathbf{P P h}_{2}\right]$

The chelate complex formed at $53^{\circ} \mathrm{C}$ from the mixture of $(\mathrm{CO}){ }_{5} \mathrm{Cr}\left[\eta^{1}-\right.$ $\left.\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{PPh}_{2}\right)_{2}\right]$ and $(\mathrm{OC})_{5} \mathrm{Cr}\left[\eta^{1}-\mathrm{PPh}_{2} \mathrm{CH}\left(\mathrm{PPh}_{2}\right) \mathrm{CH}_{2} \mathrm{PPh}_{2}\right]$ in CDCl_{3} solution. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum: $\delta-14.4 \mathrm{ppm}\left({ }^{2} \mathrm{~J}_{\mathrm{P}-\mathrm{P}}=24.1 \mathrm{~Hz}\right), 70.7 \mathrm{ppm}\left({ }^{3} \mathrm{~J}_{\mathrm{P}-\mathrm{P}}=21.0 \mathrm{~Hz}\right)$, $88.3 \mathrm{ppm}\left({ }^{2} \mathrm{~J}_{\mathrm{P}-\mathrm{P}}=23.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{P}-\mathrm{P}}=21.2 \mathrm{~Hz}\right)$ which was consistent with the chelated complex, $(\mathrm{OC})_{4} \mathrm{Cr}\left[\eta^{2}-\mathrm{PPh}_{2} \mathrm{CH}\left(\mathrm{PPh}_{2}\right) \mathrm{CH}_{2} \mathrm{PPh}_{2}\right] .{ }^{43}$ Also, there were other signals in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum which were not identified: $\delta-96.5 \mathrm{ppm}, 14.3 \mathrm{ppm}$, $30.3 \mathrm{ppm}, 47.8 \mathrm{ppm}, 55.1 \mathrm{ppm}$ and 55.9 ppm . No chelation products were observed in toluene- d_{8} solution under the same conditions.

Equilibrium and Kinetic Measurements

A mixture of isomers \mathbf{A} and $\mathbf{B}(40.0 \mathrm{mg}, 0.0516 \mathrm{mmol})$ was dissolved in 0.50 mL of CDCl_{3} and separately in 0.50 mL toluene- d_{8}, frozen in liquid nitrogen and flame sealed under vacuum. The sample in CDCl_{3} was investigated at $40^{\circ} \mathrm{C}$ and at $53{ }^{\circ} \mathrm{C}$, while the sample in toluene- d_{8} was studied at $15^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}, 40^{\circ} \mathrm{C}$ and 53 ${ }^{\circ} \mathrm{C}$. A constant temperature bath was used to maintain a constant temperature. The NMR probe was brought to the corresponding temperature and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded in appropriate time intervals. In an effort to optimize the quantitative study a delay time of $15 \sec (\mathrm{D} 5=15 \mathrm{~s})$ and a pulse width of 16 usec ($\mathrm{P} 2={ }^{\prime} 16 \mathrm{us}, 83$ degree) were used. Integrations were carried out following
standard procedures in which the width at half-height was obtained for each signal and multiplied by ± 31.8 to give an integral that included 99% of the intensity. Four integrations were averaged to avoid bias in the measurement of the isomer ratio. Equilibrium was assumed to have been reached when the integral ratio of isomers remained stable after three consecutive runs at reasonable time intervals for each specific temperature.

Chapter II: Synthesis of $\left[(\mathbf{O C})_{5} \mathbf{W P P h}\right]_{2} \mathbf{C}=\mathbf{C H}_{\mathbf{2}}$ and crystal structure of $(\mathbf{C O})_{5} \mathbf{W P P h}_{2} \mathbf{C}\left(\mathrm{PPh}_{2}\right)=\mathbf{C H}_{\mathbf{2}}$

A. Introduction

The diphosphine ligand, bis(diphenylphosphino)methane (dppm), is a very important ligand in organometallic chemistry and homogeneous catalysis. ${ }^{7}$ The two available coordination sites of dppm makes it possible to chelate a single metal center to stablize a catalyst fragment or to bridge two metal centers to allow cooperative catalytic reactions to occur at adjacent sites. These bridging systems require a second bridging atom or molecule, or a metal-metal bond as a single dppm ligand is not sufficient to hold the metals together. A third role of dppm is forming a monodentate ligand complex with one phosphine remaining uncoordinated. This coordination of one phosphine end does not significantly reduce the reactivity of the unbound end of phosphine, which is indicated by its ability to undergo chelation, protonation, quaternization and even coordination to a second metal fragment. ${ }^{14 a, 58}$

The coordination of a second metal fragment to the free end of $(O C)_{s} M\left(\eta^{1}-\right.$ $\mathrm{dppm})(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$ does not occur at room temperature because of the steric hindrance of the phenyl groups. However, the preparation of $(\mathrm{OC})_{5} \mathrm{~W}(\mu-\mathrm{dppm})$ $\mathrm{W}(\mathrm{CO})_{s}$ can be carried out from either (OC) ${ }_{\mathbf{s}} \mathrm{W}(\mathrm{NCMe})$ and dppm or from $(\mathrm{OC})_{s} \mathrm{~W}(\mathrm{NCMe})$ and $(\mathrm{OC})_{s} \mathrm{~W}\left(\eta^{1}-\mathrm{dppm}\right)$ at $60^{\circ} \mathrm{C}$. The thermal dissociation of a carbonyl ligand is not likely under these reaction conditions (Scheme V in chapter
I). ${ }^{24,25}$ Likewise, the dppm bridged complex, $\left[\mathrm{Ru}_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(1,10-\right.$ phenanthroline $\left.)_{2}(\mu-\mathrm{dppm})\right]^{2+}$, forms in refluxing EtOH, while only the monodentate complex forms at room temperature. ${ }^{59}$ On the other hand, the ethylene-bridged ligand, bis (diphenylphosphino)ethane (dppe), readily formed bimetallic complexes at room temperature or below. ${ }^{12,14 a, 60}$

The solid state structures of $(O C)_{5} W\left(\eta^{1}-\mathrm{dppm}\right)(10)$ and (OC) ${ }_{5} W(\mu-\mathrm{dppm})$ $\mathrm{W}(\mathrm{CO})_{s}$ (11) are very interesting. ${ }^{61}$ The lone pair of electrons on the dangling phosphine in 10 is oriented toward the $\mathrm{W}(\mathrm{CO})_{s}$ unit in the solid state, and the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data indicate that this is also the major conformation of $\mathbf{1 0}$ in solution. Formation of $\mathbf{1 1}$ from $\mathbf{1 0}$ requires rotation about both $\mathrm{P}-\mathrm{C}$ bonds in $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}$ and an extreme increase in the $\mathrm{P}-\mathrm{C}-\mathrm{P}$ bond angle from 111.5° to 133.1° (Scheme XI).

10
11

Scheme XI

Of interest in our work is the ligand, 1,1-bis(diphenylphosphino)ethene (vdpp), as a dangling or bridging ligand coordinated with $\mathrm{W}(\mathrm{CO})_{s}$ units. Based on the presence of the rigid carbon-carbon double bond, we predicted that in the dangling complex, $(\mathrm{CO})_{5} \mathrm{WPPh}_{2} \mathrm{C}\left(\mathrm{PPh}_{2}\right)=\mathrm{CH}_{2}(12)$, the lone electron pair on the dangling end of vdpp would not be directed toward equatorial carbonyl groups in
the solid state or in solution. If this were true, the addition of a second $\mathrm{W}(\mathrm{CO})_{s}$ to 12 forming $\left[(\mathrm{OC})_{5} \mathrm{WPPh}_{2}\right]_{2} \mathrm{C}=\mathrm{CH}_{2}(13)$ might take place at room temperature, because the lone electron pair on the dangling phosphine of $\mathbf{1 2}$ is in an exposed position, and could readily attack the incoming tungsten metal center. Contrary to the formation of 11 from 10 , the change of configuration of vdpp would be small during the formation of 13 from 12. Both 12 and 13 were synthesized in this study, and the x-ray crystal structure of 12 was determined.

B. Results and discussion

1. Synthesis and Characterization of $(\mathbf{C O})_{5} W_{W P h}^{2} \mathbf{C}\left(\mathbf{P P h}_{2}\right)=\mathbf{C H}_{2}$ (12)

Compound 12 was synthesized from a $1.4: 1$ ratio of $\mathrm{W}(\mathrm{CO})_{5} \mathrm{NH}_{2} \mathrm{Ph}$ and $\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}$ in toluene at room temperature, The excess of $\mathrm{W}(\mathrm{CO})_{5} \mathrm{NH}_{2} \mathrm{Ph}$ was used because the unreacted $\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}$ was hard to remove from the products. The product was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}$ and the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum revealed that a mixture of 12 and 13 was present. This showed that, 13 can be formed at room temperature and that the dangling phosphine in compound 12 is accessible.

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1 2}$ showed a doublet at $\delta-12.1 \mathrm{ppm}\left({ }^{2} \mathrm{~J}_{\mathrm{P}-\mathrm{P}}=\right.$ 68.4 Hz), which was assigned to P_{2} and a doublet with tungsten satellite signals at $\delta 30.2 \mathrm{ppm}\left({ }^{1} \mathrm{~J}_{\mathrm{P}-\mathrm{w}}=245.9 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{P}-\mathrm{P}}=68.4 \mathrm{~Hz}\right)$ assigned to P_{1}. In addition the signals of oxidized P were observed at $\delta 27.9$ ppm (Fig. 28). The ${ }^{1} \mathrm{H}$ NMR spectrum showed a doublet of doublets at $\delta 5.9 \mathrm{ppm}\left\{\mathrm{J}_{\mathrm{P}-\mathrm{H}(\text { trans })}=44.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{P}-\mathrm{H} \text { (cis) }}\right.$ $=6.2 \mathrm{~Hz}\}$ assigned to the $\mathrm{C}=\mathrm{CH}_{2}$ proton. Geminal proton-proton coupling was not observed (Fig. 29). Assignments were supported by a COSY (COrrelated SpectroscopY) spectrum of 12 (Fig.30). The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (Fig. 31)
showed a doublet at $\delta 199.2 \mathrm{ppm}\left\{{ }^{2} \mathrm{~J}_{\mathrm{P}-\mathrm{C}(\mathrm{ax})}=22.5 \mathrm{~Hz}\right\}$, which was assigned to the axial carbonyl carbon. The expected satellite signals from the coupling of this carbon to W were too weak to be observed under our experimental conditions. A doublet and its satellite signals, assigned to the equatorial carbonyl carbons, were observed at $\delta 197.3 \mathrm{ppm}\left\{{ }^{2} \mathrm{~J}_{\mathrm{P}-\mathrm{C}(\mathrm{eq})}=7.0 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{CW}}=126.3 \mathrm{~Hz}\right\}$. Benson's ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data of $(\mathrm{OC})_{5} \mathrm{WPPh}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}$ gave a doublet of doublets for the analogous carbons at $\delta 197.6 \mathrm{ppm}\left\{{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=6.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{P}}=3.0 \mathrm{~Hz}\right\},{ }^{61}$ indicating that the dangling end of the phosphine ligand is directed toward the equatorial carbonyl carbon of its $\mathrm{W}(\mathrm{CO})_{s}$ unit. However, there is no evidence of this long-range C-P coupling in our spectrum. This is consistent with our prediction that the lone electron pair of the dangling phosphine \mathbf{P} in $\mathbf{1 2}$ is not oriented toward equatorial carbons in solution. The downfield signals at $\delta 144.7 \mathrm{ppm}, 144.5 \mathrm{ppm}$ were examined carefully and assigned to the vinyl carbons ($\mathrm{C}=\mathrm{CH}_{2}$). Two dimensional NMR spectra were run on 12. The HETCOR (HETeronuclear chemical shiftCORrelation) spectrum showed the cross-link between $\delta 5.9 \mathrm{ppm}$ in the ${ }^{1} \mathrm{H}$ NMR spectrum and $\delta 144.5 \mathrm{ppm}$ in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum; therefore, the signals at $\delta 144.5 \mathrm{ppm}$ were assigned to the vinyl carbons. The APT (Attached Proton Test) gave more information that the investigated carbon had two protons attached. Therefore, this carbon was specified as the terminal carbon of the vinyl group (Fig. 32). The DEPT spectrum (Distortionless Enhancement by Polarization Transfer) gave a small doublet at about $\delta 144.5 \mathrm{ppm}$ in the CH_{2} subspectrum, although the peak list did not include these two peaks because of our parameter setting (Fig. 33). In addition, the expansion of the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum in this
region was in agreement with the structure (Fig. 31b). The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data of 12 are given in (Table 7). The notations of the atoms are consistent with those in the molecular structure (Fig.34).

Table 7. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ chemical shifts and spin couplings of compound 12.

Atoms	$\delta(\mathrm{ppm})$	Coupling Constants (Hz)
C_{1}	199.2	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{P}(1)}=22.5$
C_{2-5}	197.3	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{P}(1)}=7.0,{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{W}}=126.3$
C_{18}	144.7	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{P}(1)}=19.5,{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{P}(2)}=46.5$
C_{19}	144.5	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{P}(1)}=1.1,{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{P}(2)}=15.5$
$\mathrm{C}_{11,17}$	134.3	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{P}(1)}=12.9,{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{P}(2)}=2.8$
$\mathrm{C}_{25,31}$	133.4	${ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{P}(2)}=42.2,{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{P}(1)}=2.8$
$\mathrm{C}_{6,10,12,16}$	133.0	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{P}(1)}=12.0,{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{P}(2)}=1.7$
$\mathrm{C}_{20,24,26,30}$	133.7	${ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{P}(2)}=20.8$
$\mathrm{C}_{7,9,13,15}$	128.3	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{P}(1)}=7.3$
$\mathrm{C}_{21,23,27,29}$	128.0	${ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{P}(2)}=9.7$
$\mathrm{C}_{8,14}$	129.0	${ }^{5} \mathrm{singlet}$
$\mathrm{C}_{22,28}$	130.2	${ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{P}(1)}=1.2$

2. Structure of compound 12 in the solid state

The structure of compound 12 is shown in (Fig. 34). The figure gives a clear view that the lone electron pair of the uncoordinated end of vdpp is not directed toward the equatorial carbonyl groups in solid state. Selected bond distances and angles are given in (Table 8). The tungsten atom is coordinated to five carbonyl ligands and one phosphine in approximate $\mathrm{C}_{4 \mathrm{v}}$ symmetry; the $\mathrm{P}-\mathrm{W}-\mathrm{C}_{(\mathrm{ax})}$ angle is 175.3° and the $\mathrm{P}-\mathrm{W}-\mathrm{C}_{(\mathrm{eq})}$ angles range from 87.6° to 97.0°, averaging 91.2°. Bond distances about tungsten atom are typical for monosubstituted tungsten pentacarbonyl complexes, range from $1.989 \AA$ to $2.042 \AA$, and averaging $2.027 \AA$. The CO bond trans to the P atom has the shortest $\mathrm{W}-\mathrm{C}$ distance, as expected for a carbonyl group trans to a weaker π-acid.

Table 8. Selected bond distances and bond angles of $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{P}_{2} \mathrm{~W}$

W-C(1)	$1.989(7)$	W-C(5)	$2.033(7)$
W-C(2)	$2.039(8)$	$\mathrm{W}-\mathrm{C}(3)$	$2.031(7)$
W-C(4)	$2.042(8)$	$\mathrm{W}-\mathrm{P}(1)$	$2.530(2)$
$\mathrm{P}(1)-\mathrm{C}(17)$	$1.828(6)$	$\mathrm{P}(1)-\mathrm{C}(18)$	$1.835(6)$
$\mathrm{P}(1)-\mathrm{C}(11)$	$1.833(6)$	$\mathrm{P}(2)-\mathrm{C}(31)$	$1.823(6)$
$\mathrm{P}(2)-\mathrm{C}(25)$	$1.824(6)$	$\mathrm{P}(2)-\mathrm{C}(18)$	$1.851(6)$
$\mathrm{O}(1)-\mathrm{C}(1)$	$1.145(8)$	$\mathrm{O}(2)-\mathrm{C}(2)$	$1.122(8)$
$\mathrm{O}(3)-\mathrm{C}(3)$	$1.133(7)$	$\mathrm{O}(4)-\mathrm{C}(4)$	$1.131(9)$
$\mathrm{O}(5)-\mathrm{C}(5)$	$1.141(8)$	$\mathrm{C}(18)-\mathrm{C}(19)$	$1.309(8)$

Continue of table 8.

C(1)-W-C(5)	90.4(3)	C(1)-W-C(2)	87.4(3)
C(5)-W-C(2)	89.9(3)	C(1)-W-C(3)	90.8(3)
C(5)-W-C(3)	177.7(2)	C(2)-W-C(3)	88.2(3)
C(1)-W-C(4)	86.6(3)	C(5)-W-C(4)	88.8(3)
C(2)-W-C(4)	173.8(3)	C(3)-W-C(4)	93.2(3)
C(1)-W-P(1)	175.3(2)	C(5)-W-P(1)	91.3(2)
C(2)-W-P(1)	97.0(2)	C(3)-W-P(1)	87.6(2)
C(4)-W-P(1)	89.1(2)	$\mathrm{C}(17)-\mathrm{P}(1)-\mathrm{C}(18)$	101.0(3)
$\mathrm{C}(17)-\mathrm{P}(1)-\mathrm{C}(11)$	104.3(3)	$\mathrm{C}(18)-\mathrm{P}(1)-\mathrm{C}(11)$	101.3(3)
$\mathrm{C}(17)-\mathrm{P}(1)-\mathrm{W}$	116.3(2)	$\mathrm{C}(18)-\mathrm{P}(1)-\mathrm{W}$	118.7(2)
$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{W}$	113.1(2)	$\mathrm{C}(31)-\mathrm{P}(2)-\mathrm{C}(25)$	102.1(3)
$\mathrm{C}(31)-\mathrm{P}(2)-\mathrm{C}(18)$	102.2(3)	$\mathrm{C}(25)-\mathrm{P}(2)-\mathrm{C}(18)$	101.3(3)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{W}$	179.5(6)	$\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{W}$	176.9(7)
$\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{W}$	178.6(5)	$\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{W}$	178.4(6)
$\mathrm{O}(5)-\mathrm{C}(5)-\mathrm{W}$	178.6(5)	$\mathrm{P}(1)-\mathrm{C}(18)-\mathrm{P}(2)$	114.5(3)
$\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{P}(1)$	117.4(4)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{P}(1)$	123.9(4)
$\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{P}(1)$	122.5(5)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{P}(1)$	118.3(5)
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{P}(1)$	120.4(5)	$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{P}(2)$	124.7(5)
$\mathrm{C}(20)-\mathrm{C}(25)-\mathrm{P}(2)$	125.8(5)	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{P}(2)$	116.7(5)
$\mathrm{C}(26)-\mathrm{C}(31)-\mathrm{P}(2)$	125.2(5)	$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{P}(2)$	116.4(5)

Table 9. Crystallographic data for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{P}_{2} \mathrm{~W}$

formula	$\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{P}_{2} \mathrm{~W}$
formula weight	720.28
space group	$P 2{ }_{1} / \mathrm{c}$
a, \AA	13.412(5)
b, \AA	9.556(11)
c, \AA	22.435(8)
β, deg	92.77(3)
V, \AA^{3}	2872(4)
Z	4
cryst color, habit	colorless block
D (calc), $\mathrm{g} \mathrm{cm}^{3}$	1.666
$\mu(\mathrm{MoK} \alpha), \mathrm{cm}^{-1}$	41.72
temp, K	248(2)
$T(\max) / T(\min)$	0.308/0.251
diffractometer	Siemens P4
radiation	$\operatorname{MoK} \alpha(\lambda=0.71073 \AA)$
$R(F),{ }^{\text {a }}$	3.06
$R\left(\mathrm{wF}^{2}\right), \%^{2}$	6.81

${ }^{2}$ Quantity minimized $\left.=R\left(w F^{2}\right)=\Sigma\left[w\left(F_{o}^{2}-F_{c}^{2}\right)^{2}\right] / \Sigma\left[w F_{o}^{2}\right)^{2}\right]^{1 / 2} ;$ $R=\Sigma \Delta / \Sigma\left(F_{o}\right), \Delta=\left|\left(F_{o}-F_{c}\right)\right|$

3. Synthesis and Characterization of $\left[(\mathrm{OC})_{5} \mathrm{WPPh}_{2}\right]_{2} \mathrm{C}=\mathrm{CH}_{2}$ (13)

Compound 13 was synthesized from a $3: 1$ ratio of $\mathrm{W}(\mathrm{CO})_{5} \mathrm{NH}_{2} \mathrm{Ph}$ and $\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}$ in toluene at room temperature. The product was a mixture of $\mathbf{1 2}$ and 13. The synthesis of $\mathbf{1 3}$ was also carried out from a $2: 1$ ratio of $\mathrm{W}(\mathrm{CO})_{s-}$ $\mathrm{NH}_{2} \mathrm{Ph}$ and $\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}$ in toluene at $55^{\circ} \mathrm{C}$. This reaction gave some unexpected crystals of $\mathbf{1 2}$ which were separated with tweezers from a mixture of 12 and 13.

13
The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 13 showed a central line and a second order ABX pattern (Fig. 35). The satellite pattern consists of two ab subspectra indicated by lines $1,3,5,7$ and by lines $2,4,6,8$, but as lines 2 and 5 , line 4 and 7 are overlapping, only 6 satellite lines are shown in this pattern instead of the expected 8 lines. ${ }^{25}$ The satellite pattern was analyzed and the coupling constants were calculated. ${ }^{34,62,63}$ The coupling constants are as follows: ${ }^{2} \mathrm{~J}_{\mathrm{P}-\mathrm{P}}=20.2 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{P}-\mathrm{w}}=$ $248.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{P}-\mathrm{w}}=1.6 \mathrm{~Hz}$. These magnitudes are comparable to those found in $(\mathrm{OC})_{s} \mathrm{~W}\left(\mu-\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{W}(\mathrm{CO})_{s}$, a similar compound in which both ends of the phosphorus ligand are coordinated with a $\mathrm{W}(\mathrm{CO})_{s}$ unit. ${ }^{25}$ The ${ }^{1} \mathrm{~J}_{\mathrm{P}-\mathrm{w}}$ of 248.8 Hz observed for $\mathbf{1 3}$ is also similar to that of $\mathbf{1 2}(245.9 \mathrm{~Hz})$. It is well known that the magnitude of ${ }^{1} \mathrm{~J}_{\mathrm{P} \text {-w }}$ increases as the electronegativities of the substituents on phosphorus increase. ${ }^{25,64}$

The $A B X$ pattern of spectrum of 13 was simulated (Fig.36). In the $A B X$ pattern, the number of spin nuclei is 3 and the calculated coupling constants were entered as: $\mathrm{J}_{(1,2)}=20.2 \mathrm{~Hz}, \mathrm{~J}_{(1,3)}=248.8 \mathrm{~Hz}, \mathrm{~J}_{(2,3)}=1.6 \mathrm{~Hz}$. The model spectrum perfectly fits the real spectrum. The big surprise was, when the value of $\mathrm{J}_{(2,3)}$ was slightly adjusted, it was revealed that only a tiny range of $\mathrm{J}_{(2,3)}$ values (1.4-1.9 Hz) gave a 6 line ABX pattern. Value outside of this range gave an 8 line pattern.

C. Experimental Section

Preparation of $\mathrm{W}(\mathrm{CO})_{5} \mathrm{NH}_{2} \mathrm{Ph}$

The mixture of $\mathrm{W}(\mathrm{CO})_{6}(10 \mathrm{~g}, 28.4 \mathrm{mmol})$ and aniline $(10.35 \mathrm{~mL}, 113.6$ mmol) were irradiated in 400 mL dry THF for 9 hours. The solution turned to yellow. The THF was removed completely by rotavaporation. The oily residue was coagulated by adding dilute HCl , and washed with deionized water. The yellow solid was collected by filtration and was sublimed under vacuum at $35^{\circ} \mathrm{C}$ for 24 hours to remove unreacted $\mathrm{W}(\mathrm{CO})_{6}$. Yield: $9.53 \mathrm{~g}, 80.5 \% . \mathrm{mp}: 109-$ $111{ }^{\circ} \mathrm{C} . \operatorname{IR}\left[v(\mathrm{C} \equiv \mathrm{O})\left(\mathrm{cm}^{-1}\right)\right]: 1933(\mathrm{vs}), 1978(\mathrm{~m})$.

Preparation of $(\mathrm{CO})_{5} \mathbf{W C}\left(\mathrm{PPh}_{2}\right)_{2}=\mathrm{CH}_{2}$

A mixture of $\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}(0.951 \mathrm{~g}, 2.4 \mathrm{mmol})$ and $\mathrm{W}(\mathrm{CO})_{5} \mathrm{NH}_{2} \mathrm{Ph}(1.420 \mathrm{~g}$, 3.4 mmol) was stirred in 30 mL of toluene for 24 hours. The solvent was removed under vacuum. The yellow residue was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}$, and sand-colored crystals were chromatographed over silica. The first band was eluted by a $1: 9$ volume ratio of ethyl acetate/petroleum ether. The solvent was removed and the product was recrystallized with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}$, faint yellow crystals. Yield: $0.713 \mathrm{~g}, 41.2 \% . \mathrm{mp}: 146-150^{\circ} \mathrm{C}$. IR $\left[\mathrm{v}(\mathrm{C}=0)\left(\mathrm{cm}^{-1}\right)\right]: 1940$ (vs), 2071 (m); ${ }^{1} \mathrm{H}$ NMR: $\delta 5.9 \mathrm{ppm}\left\{\mathrm{J}_{\mathrm{P}-\mathrm{H}(\mathrm{trans})}=44.0 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{P}-\mathrm{H}(\mathrm{cis})}=6.2 \mathrm{~Hz}\right\} ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}: \delta$ $-12.1 \mathrm{ppm}\left({ }^{2} \mathrm{~J}_{\mathrm{P}-\mathrm{P}}=68.4 \mathrm{~Hz}\right), 30.2 \mathrm{ppm}\left({ }^{2} \mathrm{~J}_{\mathrm{P} . \mathrm{P}}=68.4 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{P} . \mathrm{W}}=245.9 \mathrm{~Hz}\right)$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 199.2 \mathrm{ppm}\left\{{ }^{2} \mathrm{~J}_{\mathrm{P}-\mathrm{C}(\mathrm{ax})}=22.5 \mathrm{~Hz}\right\}, 197.3 \mathrm{ppm}\left\{{ }^{2} \mathrm{~J}_{\mathrm{P}-\mathrm{C}(\mathrm{qq})}=7.0 \mathrm{~Hz}\right.$, $\left.{ }^{1} \mathrm{~J}_{\mathrm{CW}}=126.3 \mathrm{~Hz}\right\}, 144.7 \mathrm{ppm}\left({ }^{1} \mathrm{~J}_{\mathrm{PC}}=46.5 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{PC}}=19.5 \mathrm{~Hz}\right), 144.5 \mathrm{ppm}\left({ }^{2} \mathrm{~J}_{\mathrm{PC}}=\right.$
$\left.15.5 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{PC}}=1.1 \mathrm{~Hz}\right), 134.3 \mathrm{ppm}\left({ }^{1} \mathrm{~J}_{\mathrm{PC}}=12.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{PC}}=2.8 \mathrm{~Hz}\right), 133.4 \mathrm{ppm}$ $\left({ }^{1} \mathrm{~J}_{\mathrm{PC}}=42.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{PC}}=2.8 \mathrm{~Hz}\right), 133.7 \mathrm{ppm}\left({ }^{2} \mathrm{~J}_{\mathrm{PC}}=20.8 \mathrm{~Hz}\right), 133.0 \mathrm{ppm}\left({ }^{2} \mathrm{~J}^{\mathrm{PC}}=\right.$ $12.0 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{PC}}=1.7 \mathrm{~Hz}$), $130.2\left({ }^{4} \mathrm{~J}_{\mathrm{PC}}=1.2 \mathrm{~Hz}\right.$), 129.0 ppm (singlet), 128.3 ppm $\left({ }^{3} \mathrm{~J}_{\mathrm{PC}}=7.3 \mathrm{~Hz}\right), 128.0 \mathrm{ppm}\left({ }^{3} \mathrm{~J}_{\mathrm{PC}}=9.7 \mathrm{~Hz}\right)$.

Growing Crystals of $(\mathbf{C O})_{5} \mathbf{W C}\left(\mathrm{PPh}_{2}\right)_{2}=\mathrm{CH}_{2}$

Pure (CO) ${ }_{5} \mathrm{WC}\left(\mathrm{PPh}_{2}\right)_{2}=\mathrm{CH}_{2}$ was dissolved in a minimal amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and a pipette was used to transfer the saturated solution to a clean 5 mm NMR tube. Approximate the same amount of $\mathrm{CH}_{3} \mathrm{OH}$ was slowly dribbled into the tube so that $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{CH}_{3} \mathrm{OH}$ formed the discrete layers. The tube was placed in the dark and not disturbed for 2 days. A yellow crystal formed and was collected by filtration. The quality of the single crystal was evaluated with a polarizing microscopy.

Preparation of $\left[(\mathrm{CO})_{5} \mathrm{WPPh}_{2}\right]_{2} \mathrm{C}=\mathrm{CH}_{2}$

The mixture of $\left(\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}(0.476 \mathrm{~g}, 1.2 \mathrm{mmol})$ and $\mathrm{W}(\mathrm{CO})_{5} \mathrm{NH}_{2} \mathrm{Ph}(1.501 \mathrm{~g}$, 3.6 mmol) were stirred in 15 mL toluene for 7 days. The solvent was removed under vacuum. The dark green oil was recrystallized with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}$. The faint yellow solid obtained was chromatographed over silica. With a 1:9 ethyl acetate/ petroleum ether eluant, a first faint yellow band of $(\mathrm{CO})_{s} \mathrm{WC}\left(\mathrm{PPh}_{2}\right)_{2}=\mathrm{CH}_{2}$ appeared first. A second yellow band, $\left[(\mathrm{CO})_{s} \mathrm{WPPh}_{2}\right]_{2}-\mathrm{C}=\mathrm{CH}_{2}$, was obtained, and a third strong yellow band was not identified. The second fraction was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}$. The product, faint yellow crystal, was obtained with considerable loss.

Yield: $0.217 \mathrm{~g}, 17.3 \% \mathrm{mp}: 178-180^{\circ} \mathrm{C}$. IR $\left[v(\mathrm{C} \equiv \mathrm{O})\left(\mathrm{cm}^{-1}\right)\right]: 1944$ (vs), $2071(\mathrm{~m})$;
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}: \delta 36.2 \mathrm{ppm}\left({ }^{2} \mathrm{~J}_{\mathrm{P}-\mathrm{P}}=20.2 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{P}-\mathrm{w}}=248.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{P}-\mathrm{w}}=1.6 \mathrm{~Hz}\right)$. Anal. Calcd. for $\mathrm{C}_{36} \mathrm{H}_{22} \mathrm{O}_{10} \mathrm{P}_{2} \mathrm{~W}_{2}$: C, $41.41 \% ; \mathrm{H}, 2.12 \%$. found: $\mathrm{C}, 40.56 \% ; \mathrm{H}, 2.24 \%$.

Figure 7. The IR spectrum of $(\mathrm{OC})_{5} \mathrm{CrPPh}_{2} \mathrm{H}$ in carbonyl region in CHCl_{3}

Figure 9. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Cl}_{2} \mathrm{Pd}\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{C}=\mathrm{CH}_{2}$ in CDCl_{3}

Figure 11. The IR spectrum of $\mathrm{Cl}_{2} \mathrm{Pd}_{(}\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CHCH}_{2} \mathrm{PPh}_{2} \mathrm{Cr}(\mathrm{CO})_{5}$ in carbonyl region in CHCl_{3}
PPM

Figure 16. Plot of $\ln \mathrm{K}$ vs. $1 / \mathrm{T}$ for isomerization of Cr complexes in $\mathrm{CDCl}_{3} . \mathrm{K}$ is the equilibrium constant of the reaction.

equilibrium constant of the reaction.

Figure 19. Plot of $\ln \left\{[6]-[6]_{\text {eq }}\right\}$ vs. time for isomerization of Cr complexes in CDCl_{3}, at $10^{\circ} \mathrm{C}$.
[6] is the concentration of $(\mathrm{OC})_{5} \mathrm{Cr}^{[} \eta^{1}-\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{PPh}_{2}\right)_{2}$] at a certain time, [6] eq is the
concentration of $(\mathrm{OC})_{5} \mathrm{Cr}\left[\eta^{1}-\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{PPh}_{2}\right)_{2}\right]$ at equilibrium.

Figure 31b. The expansion of vinyl region

Figure 37. The IR spectrum of $\mathrm{W}(\mathrm{CO})_{5} \mathrm{NH}_{2} \mathrm{Ph}$ of carbonyl region in CHCl_{3}

References:

1. Hegedus, L.S.; Norton, J.R.; Finke, R.G. Principles and Applications of Organotransition Metal Chemistry. University Science Books: Mill Valley, CA, 1987.
2. Pignolet, L.H. Homogeneous Catalysis with Metal Phosphine Complexes. Plenum Press: New York, 1983.
3. Kirtley, S.W. Comprehensive Organometallic Chemistry. Wilkinson,G.; Stone, F.G.A.; Abel, E.W., Eds; Perganon: Oxford, U.K., 1982, Vol 3.
4. (a) Darenbourg, D.F. Adv. Organomet. Chem. 1982, 21, 113. (b) Howell, J.A.S.; Burkinshaw, P.M. Chem. Rev. 1983, 83, 227. (c) Graham, J.R.; Angelici, R. J. Inorg. Chem. 1967, 6, 2082.
5. Chatt, J.; Hart, F.A. J. Chem. Soc. 1960, 1378.
6. Levason, W. The Chemistry of Organophosphorus Compounds; Hartley, F.R., Ed.; John Wiley, New York, 1990.
7. (a) Puddephatt, R.F. Chem. Soc. Rev. 1983, 12, 99. (b) Chandret, B.; Delavanx, B.; Poilblanc. R. Coord. Chem. Rev. 1988, 86, 191.
8. (a) Werner, H.; Prinz, R.; Bundschuh, E.; Deckelmann, K. Angew. Chem. 1966, 5, 606. (b) Hor, T.S.A.; Chan, H.S.O. Inorg. Chem. Acta. 1989, 160, 53. (c) Hor. T.S.A. J. Organomet. Chem. 1988, 340, 51.
9. Mawby, R.J.; Morris, D.; Thorsteinson, E.M.; Basolo, F. Inorg. Chem. 1996, 5, 27.
10. King, R.B.; Etraty, A. Inorg. Chem. 1969, 8, 2374.
11. Rigo, P.; Longato, B.; Fevero, G. Inorg. Chem. 1972, 11, 300.
12. Brown, M.L.; Dramer, J.L.; Ferguson, J.A.; Meyer, T.J.; Winterton, N. J. Am. Chem. Soc. 1972, 94, 8707.
13. King, R.B.; Saran, M.S. J. Am. Chem. Soc.1973, 95, 1817.
14. (a) Keiter, R.L.; Shah, D.P. Inorg. Chem. 1972, 11, 191. (b) Keiter, R.L.; Cary, L.W. J.Am. Chem. Soc. 1972, 94, 9232.
15. (a) Connor, J.A.; Jones, E.M. McEwen A.K. J.Organomet. Chem. 1972, 43, 357. (b) Conner J.A.; Day, J.P.; Jones, E.M.; McEwen, G.K. J. Chem. Soc. 1973, 347.
16. Keiter, R.L.; Borger, R.D.; Hamerski, J.J.; Garbis, S.J.; Leotsakos, G.S. J. Am. Chem. Soc. 1977, 99, 5224.
17. Iggo, J.A.; Shaw, B.L. J. Chem. Soc., Dalton Trans. 1985, 1009-1013.
18. Rahn, J.A.; DeCian, A.; Nelson, J.H. Inorg. Chem. 1989. 28. 215-217
19. Keiter, R.L.; Arnold, R.L.; Hamerski, J.J.; Charles, C.K. Organometallics 1983, 2, 1635-1635.
20. Siefert, E.E.; Angelici, R.J. Organomet. Chem. 1967, 8, 374.
21. Modi, S.P.; Atwood, J.D. Inorg. Chem. 1983,22 26-28.
22. Keiter, R.L.; Bradack, W.J.; Borger, R.D.; Cary, L.W. Inorg. Chem. 1982, 21, 1256.
23. Keiter, R.L.; Sun, Y.Y.; Brodack, J.W.; Cary, L.W. J. Am. Chem. Soc. 1979. 101, 2638.
24. Özer, Z.; Özkar, S.; Pamuk, H.Ö. Z. Naturforsch.,48b, 1993, 37.
25. Benson, J.W.; Keiter, E.A.; Keiter, R.L. J. Organomet. Chem. 1995, 495, 77.
26. Bruce, M.I. J. Organomet. Chem. 1985, 283, 339.
27. Bruce, M.I. J. Organomet. Chem. 1983. 242, 147.
28. Soriaga, M.P. Chem. Rev. 1990, 90, 771.
29. Gonzalez, R.D. Appl. Surf. Sci. 1984, 19, 181.
30.He, Z.; Jugan, N.; Neibecker, E.; Mathieu, R.; Bunnet, J.J. J. Organomet. Chem. 1992, 426. 247.
31.Delavaux, B.; Chaudret, B.; Devillers, J.; Dahan, F.; Commenges, G.; Poilblanc, R. J. Am. Chem. Soc. 1986, 108, 3703.
30. Orth, S.D.; Terry, M.R.; Abboud, K.A.; Dodson, B.; McElwee-White, L. Inorg. Chem. 1996, 35, 916.
31. County, G.R.; Dickson, R.S.; Jenkins, S.M.; Johnson, J.; Paravagna, O. J. Organomet. Chem. 1997, 530, 49.
32. Colquhoun, I.J.; McFarlane, W. J. Chem. Soc. Dalton Trans. 1982, 1915.
33. Weber, L.; Wewers, D. Chem. Ber. 1985, 118, 3560.
34. Carr, S.W.; Fontaine, X.L.R.; Shaw, B.L. J. Chem. Soc. Dalton Trans. 1991, 1025.
35. Muetterties, E.L.; Alegranti, C.W. J. Am. Chem. Soc. 1972, 94, 6386.
36. Hassan, F.S.M.; Shaw, B.L.; Thornton-Pett, M. J. Chem. Soc. Dalton Trans. 1988, 89.
37. Herring, A.M.; Koskimes, S.M.K.; Shaw, B.L. J. Organomet. Chem. 1988, 338, 13.
40.Fontaine, X.L.R.; Hassan, F.S.M.; Higgins, S.J.; Jacobsen, G.B.; Shaw, B.L.; Thornton-Pett, M. J. Chem. Soc., Chem. Commum., 1985, 1635.
41.Hassan, f.S.M.; Higgins, S.J.; Jacobsen, G.B.; Shaw, B.L.; Thornton-Pett, M. J. Chem. Soc. Dalton Trans. 1988, 3011.
38. Higgins, S.J.; Shaw, B.L. J. Chem. Soc. Dalton Trans. 1989, 1527.
39. Bookham, J.L.; McFarlane, W. J. Chem. Soc. Dalton Trans. 1988, 503.
40. Kubas, G.J. Inorg. Chem. 1983, 22, 692.
41. Cooper, G.R.; Hassan, F.; Shaw, B.L.; Thornton-Pett, M. J. Chem. Soc., Chem. Commun., 1985, 614.
42. Keiter, R.L.; Keiter, E.A.; Olson, D.M.; Bush, J.R.; Lin, W.; Benson, J.W. Organometallics, 1994, 13.
43. Chatt, J.; Hart, F.A. J. Chem. Soc. 1960, 1378.
44. (a) Smith, J.G.; Tompson, D.T. J. Chem. Soc. (A) 1967, 1694. (b) Nelson, J.H. private communication.
45. Huheey, J.E.; Keiter, E.A.; Keiter, R.L. Inorganic Chemistry. HarperCollins College Publishers: New York, 1993.
46. Drago, R.S. Physical Methods in Chemistry. W.B. Saunders Company. 1977, 510.
47. Keiter, R.L.; Benson, W.J.; Keiter, A.E.; Lin, W.; Jia, Z.; Olson, M.D.; Brandt, E.D.; Wheeler, J. unpublished.
48. (a) Bodner, M.G.; May, P.M.; McKinney, E.L. Inorg. Chem. 1980, 19, 1951. (b) Bodner, M.G. Inorg. Chem. 1975, 14, 2694. (c) Bancroft, M.G.; Dignard-Bailey, L.; Puddephatt, R.J. Inorg. Chem. 1986, 25, 3675.
49. (a) Wilkins, R.G. Kinetics and Mechanism of Reactions of Transition Metal Complexes, $2^{\text {nd }}$ ed.; VCH: New York, 1991. (b) Atwood, J.D. Inorganic
and Organometallic Reaction Mechanisms; Brooks/Cole: Monterey, 1985.
(c) Basolo, F.; Pearson, R.G. Mechanisms of Inorganic Reactions. $2^{\text {nd }}$ ed.; John Wiley: New York, 1967.
54.Lin, W. Master's degree thesis in the chemistry department of Eastern Illinois University. 1995.
50. (a) Atwood, J.D.; Brown, T.L. J. Am. Chem. Soc. 1976, 98, 3160. (b) Wovkulich, M.J.; Atwood, J.D. J. Organomet. Chem. 1980, 184, 77. (c) Jia, Z. Master's degree thesis in the chemistry department of Eastern Illinois University. 1995.
51. Wieland, S.; van Eldik, R. Organometallics 1991, 10, 3110.
52. Amis, E.S. Solvent Effects on Reaction Rates and Mechanisms. Academic Press: New York and London, 1966.
53. Rottink, M.K.; Angelici, R.J. Inorg. Chem. 1993, 32, 2421.
54. Albers, M.O.; Liles, D.C.; Robinson, D.J.; Singleton, E. J. Organomet. Chem. 1987, 323, C39.
55. (a) Alyea, E.C.; Ferguson, G.; Fisher, K.J.; Gossage, R.A.; Jennings, M.C. Polyhedron 1990, 9, 2393. (b) Grim, S.O.; Barth, R.C.; Mitchell, J.D.; Del Gaudio, J. Inorg. Chem. 1977, 16, 1776. (c) Juh, L.S.; Eke, U.B.; Liu, L.K. Organometallics 1995, 14, 440.
61.Benson, J.W.; Keiter, R.L.; Keiter, E.A. unpublished.
56. Colquhoun, I.J.; McFarlane, H.C.E.; McFarlane, W.; Nash, J.A.; Keat, R.; Rycroft, D.S.; Thompson, D.G. Org. Magn. Reson. 1979, 12, 473.
57. Bovey, F.A. Nuclear Magnetic Resonance, $2^{\text {nd }}$ edn, Academic Press, San Diego, 1987.
58. (a) Grim, S.O.; Wheatland, D.A.; McFarlane, W. J. Am. Chem. Soc. 1967, 89, 5573. (b) Keiter, R.L.; Verkade, J.G. Inorg. Chem. 1969, 8, 2115. (c) Fischer, E.O.; Knauss, L.; Keiter, R.L.; Verkade, J.G.; J. Organomet. Chem. 1972, 37, C7. (d) Verkade, J.G.; Mosbo, J.A. Phosphorus-31 NMR spectroscopy in stereochemical Analysis, VCH, Deerfield Beach, 1987.

Appendix

1. The kinetic data of isomerization of 6 and 7 in CDCl_{3}

Plot I $\left(\ln \{[6]-[6] \mathrm{eq}\}\right.$ vs. time, $\left.10^{\circ} \mathrm{C}\right)\left(\right.$ from Lin's thesis ${ }^{54}$)

Time (s)	$\ln \{[6]-[6] \mathrm{eq}\}$
0	-3.84
88620	-3.85
180300	-3.9
336480	-3.93
515100	-3.98
962520	-4.09
1133160	-4.16
1305840	-4.2
1563720	-4.23

Slope $=(-2.6 \pm 0.1) \times 10^{-7} ;$ Intercept $=-3.8419 \pm 0.0079$

Plot II ($\ln \{[6]-[6] \mathrm{eq}\}$ vs. time, $\left.25^{\circ} \mathrm{C}\right)\left(\right.$ from Lin's thesis ${ }^{54}$)

Time (s)	$\ln \{[6]-[6] \mathrm{eq}\}$
0	-4.41
15300	-4.45
73680	-4.61
99180	-4.75
181980	-4.85
350760	-5.4
508260	-5.81
606840	-6.14
701760	-6.47

Slope $=(-2.9 \pm 0.1) \times 10^{-6} ;$ Intercept $=-4.39945 \pm 0.02324$

Plot III $\left(\ln \{[6]-[6] e q\}\right.$ vs. time, $\left.40^{\circ} \mathrm{C}\right)$

Time (s)	$\ln \{[6]-[6]$ eq $\}$	$\Delta \ln \{[6]-[6]$ eq $\}$
0	-1.211	0.0150
6910	-1.411	0.0296
21025	-1.743	0.0286
35165	-2.064	0.0352
76695	-3.147	0.1316

Slope $=(-2.5 \pm 0.04) \times 10^{-5} ;$ Intercept $=-1.21517 \pm 0.01515$

Plot IV ($\operatorname{lnk}_{\mathrm{f}}$ vs. $1 / \mathrm{T}$)

$1 / \mathrm{T}\left(\mathrm{K}^{-1}\right)$	lnk $_{f}$	Δ lnk $_{\boldsymbol{f}}$
0.00353	-15.4071	0.0385
0.00336	-13.0752	0.0347
0.00319	-10.9955	0.0169

Slope $=-13,027.22 \pm 51.56 ;$ Intercept $=30.63 \pm 0.17$

Plot V $\left[\ln \left(k_{f} / \mathrm{T}\right)\right.$ vs. $\left.1 / \mathrm{T}\right]$

$1 / \mathrm{T}\left(\mathrm{K}^{-1}\right)$	$\ln \left(\mathrm{k}_{\mathrm{f}} / \mathrm{T}\right)$	$\Delta \ln \left(\mathrm{k}_{f} / \mathrm{T}\right)$
0.00353	-21.05255	0.00014
0.00336	-18.77225	0.00012
0.00319	-16.74175	0.00005

Slope $=-12,729.85 \pm 55.88 ;$ Intercept $=23.93 \pm 0.19$

Plot VI ($\operatorname{lnk}_{\mathrm{b}}$ vs. $1 / \mathrm{T}$)

$1 / \mathrm{T}\left(\mathrm{K}^{-1}\right)$	$\operatorname{lnk}_{\mathrm{b}}$	$\Delta \operatorname{lnk}_{\mathrm{b}}$
0.00353	-16.6908	0.0394
0.00336	-14.0345	0.0362
0.00319	-11.7085	0.0204

Slope $=-14,714.90 \pm 135.41 ;$ Intercept $=35.32 \pm 0.46$

Plot VII $\left[\ln \left(\mathrm{k}_{\mathrm{b}} / \mathrm{T}\right)\right.$ vs. $\left.1 / \mathrm{T}\right]$

$1 / \mathrm{T}\left(\mathrm{K}^{-1}\right)$	$\ln \left(\mathrm{k}_{b} / \mathrm{T}\right)$	$\Delta \ln \left(\mathrm{k}_{\delta} / \mathrm{T}\right)$
0.00353	-22.33626	0.00014
0.00336	-19.73160	0.00012
0.00319	-17.45470	0.00007

Slope $=-14.417 .53 \pm 139.73 ;$ Intercept $=28.62 \pm 0.47$
2. Kinetic data of isomerization of 6 and 7 in toluene- d_{8}

Plot I ($\ln \{[6]-[6] e q\}$ vs. time, $\left.25^{\circ} \mathrm{C}\right)$

Time (s)	$\ln \{[6]-[6]$ eq $\}$	$\Delta \ln \{[6]-[6]$ eq $\}$
0	-2.23493	0.0418
73140	-2.23493	0.0680
156360	-2.55105	0.0287
244800	-2.95651	0.0430
321780	-3.05761	0.1962
400920	-3.27017	0.1664
479580	-3.77226	0.2750
576900	-4.13517	0.2253
655140	-4.19971	0.3590

Slope $=(-3.3 \pm 0.2) \times 10^{-6} ;$ Intercept $=-2.09 \pm 0.07$

Plot II $\left(\ln \{[6]-[6] e q\}\right.$ vs. time, $\left.40^{\circ} \mathrm{C}\right)$

Time (s)	$\ln \{[6]-[6]$ eq $\}$	$\Delta \ln \{[6]-[6]$ eq $\}$
0	-0.78307	0.0264
9645	-0.97551	0.0228
26975	-1.38629	0.0412
41495	-1.69282	0.0424
79255	-2.48891	0.0771
164285	-3.68888	0.3124
251165	-4.82831	0.9763

Slope $=(-1.61 \pm 0.08) \times 10^{-5} ;$ Intercept $=-0.95 \pm 0.09$

Plot III ($\operatorname{lnk}_{\mathrm{f}}$ vs. 1/T)

$1 / \mathrm{T}\left(\mathrm{K}^{\text {1 }}\right)$	Ink $_{\mathrm{f}}$	link $_{\mathrm{f}}$
0.00336	-12.9991	0.0607
0.00319	-11.4950	0.0504

Slope $=-9353.18 ;$ Intercept $=18.39$

Plot IV $\left[\ln \left(k_{f} / T\right)\right.$ vs. $\left.1 / T\right]$

$1 / T\left(\mathrm{~K}^{-1}\right)$	$\ln \left(\mathrm{k}_{\mathrm{f}} \mathrm{T}\right)$	$\Delta \ln \left(\mathrm{k}_{f} / \mathrm{T}\right)$
0.00336	-18.69624	0.00020
0.00319	-17.24120	0.00016

Slope $=\mathbf{- 9 0 4 7 3 . 8 0 ;}$ Intercept $=11.66$

Plot V ($\operatorname{lnk}_{\mathrm{b}}$ vs. 1/T)

$1 / \mathrm{T}\left(\mathrm{K}^{-1}\right)$	Ink $_{\mathrm{b}}$	Δ lnk $_{\mathrm{b}}$
0.00336	-13.7785	0.0609
0.00319	-12.0373	0.0518

Slope $=-10826.91 ;$ Intercept $=22.55$

Plot VI $\left[\ln \left(\mathrm{k}_{\mathrm{b}} / \mathrm{T}\right)\right.$ vs. $\left.1 / \mathrm{T}\right]$

$1 / T\left(\mathrm{~K}^{-1}\right)$	$\ln \left(\mathrm{k}_{b} / \mathrm{T}\right)$	$\Delta \ln \left(\mathrm{k}_{b} / \mathrm{T}\right)$
0.00336	-19.47556	0.00020
0.00319	-17.78353	0.00017

Slope $=-10521.53 ;$ Intercept $=15.83$

