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Abstract 

The kinetics and thermodynamics of isomerization of (OC)sCrPPh2CH2CH(PPh2)2 

to its linkage isomer, (OC)sCrPPh2CH(PPh2)CH2PPh2, in chloroform-d have been studied 

with 31P{1H} NMR. 

(OC)sCr[ Tl 1-PPh2CH2CH(PPh2)i] ~ (OC)sCr[ Tl 1-PPh2CH(PPh2)CHiPPh2] 

The equilibrium constants for the reaction are 3.60, 2.61, 2.04, and 1.67 at 10 °C, 

25 °C, 40 °C, and 53 °C, respectively. The forward reaction becomes more favorable as 

the temperature is decreased. The values of MI, AS, and AG(25 °C) were determined to 

be -13.6 kJ mor1
, -37.6 J mor1K·1

, and -2.4 kJ mor1
, respectively. The large decrease in 

entropy favors the reverse reaction while the decrease in enthalpy favors the forward 

reaction. Previous work has shown that for the analogous tungsten isomerization, values 

of AH, AS, and AG(25 °C) are -12.2 kJ mor1
, -28 I mor11t1

, and -3 .9 kJ mor1
, 

respectively.51 It can be concluded that the greater decrease in entropy for ~he chromium 

reaction accounts for its overall diminished favorableness as compared to the tungsten 

reaction. 

Rate constants for the forward reaction in chloroform at 10 °C, 25 °C, 40 °C are 2.0 x 

10-7 s"1
, 2.1 x 1 o..S s"1

, and 1. 7 x 10-5 s"1 with half-lives to equilibrium of 31 days, 3 days, 

and 8 hours, respectively. These reactions are about an order of magnitude slower than the 

analogous tungsten reaction, but about four orders of magnitude faster than isomerization 

of(OC)5CrPPh2CH2CH2P(tol)i. ssc The enthalpy of activation, Mr, for the forward and 

reverse reactions are 105 kJ mor1 and 120 kJ mor1
, respectively, larger by 12 kJ mor1 and 

15 kJ mor1 than observed for tungsten. The entropy of activation, AS .. , for the forward 



and reverse reactions were found to be 1.4 J mor1K·1 and 40 J mor1K·1, respectively. 

These values are considerably more positive than those obtained previously for tungsten (-

28 J mor1K·1 and -1.0 J mor1K.1
) . 

It is concluded that abnormally fast isomerization rates for (OC)sMPPh2CH2CH~Ph2h 

(M = Cr, W) result because the short phosphine arm interacts with the equatorial carbonyl 

groups in the transition state, lowering the activation energy, and leading to labilization of 

the coordinated phosphorus atom which results in its replacement by the second phosphine 

arm. The concept of interaction between the short phosphine arm and the equatorial 

carbonyl groups is supported by long-range phosphorus-carbon coupling (4Jpe), believed 

to augmented by a through-space mechanism. The entropies of activation suggest tl~at 

phosphorus exchange in chromium has a much more significant dissociative component 

than for the analogous tungsten system. It would be expe<;ted that the smaller chromium 

atom would be less likely to form a stable 7-coordinate complex because of steric 

crowding. 

Complexes, (OC)s WPPh2C(PPh2)=CH2 and [ (OC)s WPPh2hC=CH2 have been 

synthesized for the first time. The crystal structure of the former compound has been 

determined. Unlike the similar (OC)5WPPh2CH2PPh2 complex, the dangling phosphorus 

atom is not directed toward the equatorial carbonyl groups and no long-range 

phosphorus-carbon coupling (4Jpe) is observed. 
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Chapter I: Kinetic and Thermodynamic Study of 

A. Introduction 

Metal carbonyl complexes and their phosphine derivatives play an important 

part in organometallic chemistry and in catalysis. 1•
2 Catalytic activity is generally 

related to the tendency of one ligand to be replaced by another and as a result 

ligand replacement processes have drawn considerable attention. Many previous 

studies have focused on CO substitution in M(C0)6 ( M = Cr, Mo, and W) and 

Fe(CO)s complexes by various ligands.3 Substitution of CO by phosphines in these 

complexes generally proceeds at elevated temperatures by dissociative (D) loss of 

CO, although an associative interchange mecha~ism (I.) can be important as 

minor pathway. 4 

D mechanism: M(C0)6 =k=1 :::::::"'~ M(C0)5 + CO 
k.1 

M(CO)s + L k2 .. M(CO)sL 

la mechanism: M(C0)6 + L ki "' M(CO)~ k2 .. M(CO)sL + CO 

The well-known ligand Ph2PCH2CH2PPh2 (dppe), was first synthesized in 

1960. s Since then it has been used to stabilize hundreds of transition metal 

complexes.6 It may function as a chelating, bridging, or dangling ligand: 

1 



Ph2 
p 

L,.M~) 
p 
Ph2 

Chelating Bridging 

L~~PPh2 
n h p 2 

Dangling 

Chelated complexes of dppe are especially stable because five-membered rings 

are relatively strain-free. 7 When heated, dangling and bridged dppe complexes 

rearrange to chelated complexes (Reaction 1) . 8 

(OC)5WP~P~ 

(OC)5WP~PW(CO);J ~ 
(1 ) 

Although the thermal or photolytic conditions normally employed fo r carbonyl 

substitution favo r the formation of chelated products, the inertness to .substitution 

of group 6 metal carbonyls allows the possibility of synthesizing complexes of 

these metals in which dppe serves as a monodentate ligand . 

Dangling dppe complexes are the least abundant of the three structural types 

because of their tendency to undergo chelation, an event which occurs when a 

vacant coordination site becomes available. The early examples of dangling ligand 

complexes, all of which are substitutionlly inert , include [Co(NO)(COh(11 1
-

dppe)],9 
[ Mn(Cp)(CO)(NO)( 11 1-dppe)f, 10 [Co(CNh(11 1-dppe)( 11 2-dppe)], 11 

[Fe(Cp)(CO)i(NO)( 11 1-dppe)r,12 and {Mo(Cp)( 11 1-dppeh [C=C(CN)i]} \ 13 and 

were observed or isolated as unexpected products. 

2 



The first dangling dppe complexes to be synthesized by design were reported 

in 1972 by two different groups, both targeting M(CO).s(r11-dppe) (M=Cr, Mo, 

W). One approach was to displace aniline from M(CO) .s (NH2Ph) with dppe 

(Reaction 2), 14 while the other utilized strong Lewis acids to assist in the removal 

of x- from [M(CO).sXr in the presence of dppe (Reaction 3).15 

M(C0)5{NH2Ph) + dppe ---i•.- M(C0)5 (111
- dppe) + Ph2NH2 (2) 

Both of these methods successfully prevent formation of chelated products 

because they can be carried out at temperatures below which CO is lost. 

However, the dppe-bridged complexes, (CO).sM(µ-dppe)M(CO) .s, form in addition 

to dangling ligand complexes in both reactions. i 6 

The base-catalyzed addition of secondary phosphines to activated carbon

carbon double bonds (hydrophosphination) is an efficient, established pathway for 

preparing dangling polyphosphine complexes.17
•
18 In 1983, Keiter' s research 

group reported that the unidentate diphosphine complexes Fe(C0). (111-PPh2 

CH2CH2PPh2) and trans- Fe(C0)3(111-PPh2CH2CH2PPh2)2 can be prepared by 

base-promoted addition of PPh2H to Fe(CO).(PPh2CH=CH2) and trans

Fe(C0)3(111-PPh2CH=CH2PPh2)i, respectively.19 It was expected that Fe(C0).(11 1-

dppe) and Fe(C0)3(11 1-dppe)2 would be quite stable with respect to chelation 

3 



because the substitution of PPh3 for CO in Fe(C0)4PPh3 has a very high activation 

free energy (Scheme I). 20·21 

Scheme I 

The addition reaction of PPh2H to Fe(CO)s-n (PPh2 CH=CH2)n (n= l ,2) gave 

CH2PPh2)i ( 79%) (Scheme II). The addition of the secondary phosphine may also 

be promoted by the free radical catalyst 2,2 ' -azobis(isobutyronit rile) (AIBN).22 

Parallel reactions showed that base promotion gave higher yields than the radical 

pathway. 

PPh H 

2PPh 

Scheme II 

The reaction of Ph2PCH=CH2 with (OC)s WPPh2H in the presence of base 

because the intermediate (OC)s WPPh2- lose CO easily in the presence of 

4 



undergoes cyclization (Scheme 111).23 

Scheme III 

Polyphosphines can also form stable six-membered ring chelated complexes. 

The reaction of trans-(OC)4M(PPh2CH=CH2h (M = Cr, Mo, W) with 2 mol of . 
PPh2H in the presence of AIBN, via isomerization and cyclization gives the 

PPh CH CH PPh2CHCH2PPh2 
trans-(OC)AM,..... 2 = 2 + · PPh2 --1 ... ~ cis-(OC)4M,/ • 

.. 'PPh2CH=CH2 PPh2CH=CHi 

i 

Scheme IV 

Dangling ligand complexes have been used in the synthesis of dimetallic 

compounds bridged by polyphosphine. For example, a recent publication 

5 



describes the synthesis and characterization of a number of dimetallic compounds 

bridged by symmetric diphosphines, (CO)sM(µ-PPh2(CH2)nPPh2)M(CO)s (M=Cr, 

Mo, W; n = 1,2,3).24 This was a surprising result because it had been previously 

believed that when n= 1, the steric bulk of the phenyl groups combined with the 

small bite angle of bis( diphenylphosphino )methane ( dppm), would make 

(CO)sM(111-dppm) too crowded to coordinate to another M(CO)s unit. The 31P 

NMR chemical shifts and coupling constants were inconsistent with the assigned 

structure and the synthesis was reinvestigated. In 1995, it was found that the 

dppm-bridged dimetallic species, (CO)sM(µ-dppm)M(CO)s could be synthesized 

in toluene at 60 °C by displacement of acetonitrile from (CO)sW(NCMe) in the 

presence of either (CO)sM{11 1-dppm) or free dppm (Scheme V). The product gave 

a 31P chemical shift and Jwp values that were as expected.25 

(OC~W-P~PPhi + (OC)sW(NCMe) 
Ph2 

Phj>~PPhi + 2(0C)sW(NCMe) 

toluene 
60°C 

Scheme V 

Dangling ligand complexes also have become important precursors for the 

synthesis of heterobimetallic compounds. Interest in these compounds as 

6 



models for surface and catalytic reactions has led to an extensive research area. 26-

29 Heterobimetallic complexes are of particular interest because the reactivities of 

different metals may be exploited in chemical transformations.30·31 

Some recent examples of heterobimetallic complexes synthesized from 

dangling ligand complex precursors illustrate a significant interest in this area of 

research. The reaction of RuCp(PPh3)Cl(111-dppm) with Pt(COD)Ch gives the 

heterobinuclear complex RuCp(PPh3)Cl(µ-dppm)PtCh (Reaction 4) in which the 

diene has been displaced from platinum. 

CH2Ch., (4) 

Reaction of RuCp(PPh3)Cl(µ-dppm)PtCh wi.th Tl[PF6] in the presence of CO 

results in substitution of a single chloride at the ruthenium center to .form 

[RuCp(CO)(PPh3)( µ-dppm)PtCh]PF6 (Reaction 5). Assignment of the site of CO 

binding is based on spectroscopic and electrochemical data for the complex. The 

carbonyl peak in the 13C NMR spectrum shows no platinum satellites. The IR 

spectrum of [RuCp(CO)(PPh3)( µ-dppm)PtCh]PF6 shows a CO band (vco = 

l 979cm"1). In addition, there is a significant shift in the oxidation potential of the 

ruthenium center. 32 

7 



TIPFr/CO., 

DME 

(DME = ethylene glycol dimethyl ether) 

(5) 

In another paper it was reported that treatment of (11 5-CsHshRh2(CO){ 11 '-

Cr(CO)s(thf) g ives the hetero-trinuclear products (11 5
- C 5H5)2Rh2(CO){µ -

in good yield. 33 The dangling end of the unidentate attached bisphosphine in the 

complexes (11 5
- CsHshRh2(CO){ ri 1- Ph2P(CH2)n PPh2} (µ-11 1

: 11 1-CF3C2Cf 3) was . 
the target for the attachment of metal complexes L 'M'. 

I II 

8 



The ligand 1, 1-bis(diphenylphosphino)ethene (vdpp), which was of importance 

in our work, was first synthesized in 1982.34 Since then, its charm has been 

recognized because the double bond in vdpp provides the opportunity for the 

preparation of many transition metal complexes by addition react io ns (Scheme 

Vl).3s 

Ph2P'- 60°C H2C-PPh2 
( OC)5Cr[ CH2S( 0 )Me2] + /C=CH2 -CO • I \ - /H 

(OC)4Cr" /c-c, 
Ph2P -Me:iSO p H 

r;MNu I 

M Nu 2) EtOH 

a Na c:=CPh 

b K CH(CO-,Et)-, H2C-PPh2 
I \ H 

c K CH(COCH3h (OC)4Cr" /C( 
p C- Nu 
Ph2 H2 

Scheme VI 

Dangling vdpp complexes can also coordinate to a second metal atom to give 

a heterometallic complex. For example, treatment of rhenium pentahydride 

complex [ReH5{P(C6H11)3 }i(vdpp-P)] with silver iodide in dichloromethane 

solut ion gives [ { (C6H1 1hP }iH3Re(µ-vdpp)( µ- H)iAgI] (Reaction 6) . 

(6) 

p-'p = vdpp 

9 



The 31P{1H} NMR spectrum of the product at 21 °C consisted of one singlet at 

o 33 ppm assigned to the two P(C6H 11 ) 3 groups, two multiplets, one at 41 ppm 

assigned to the vdpp phosphorus atom bound to rhenium and a broad resonance at 

-8.1 ppm assigned to the vdpp phosphorus atom bound to silver. The broadness of 

the latter signal was due to rapid exchange of phosphorus at silver, 36 which is 

common for silver phosphine complexes.37 

Coordination of vdpp activates the vinylidene double bond towards 

nucleophilic (Michael) addition reactions. On coordinat ion to group 6 metal 

carbonyls, the vinylidene double bond in [M(C0)4(vdpp-PP')] can be added to 

smoothly by a range of amines, hydrazines, or carbon nucleophiles.38
'
39 

For example, treatment of [M(CQ)4(vdpp-pp')] with Li(C=CPh) in the 

(M = Cr, Mo, or W) as yellow or orange crystals i·n excellent yields. The 

part icipation of tmen is to increase the carbanion character of the 

acety lide(Scheme VII) . 38 

. tmen 
+ L1(C:::CPh)-----1-

Scheme VII 

When coordinated to PtMe2, the vinylidene double bond of vdpp in the 

complex [PtMe2(vdpp-PP')] becomes more activated than when coordinated to 

10 



M(CO),. (M = Cr, Mo, W) because platinum(II) is more polarizing than M(0).40·41 

In other words, the greater electron-withdrawing power of PtCh makes the 

vinylidene double bond more susceptible to nucleophilic attack. These Michael 

addition reactions were monitored by 31P{1H} NMR spectroscopy. A solution of 

ChPt(PPh2hC=CH2 in CH2Ch-CD2Ch was cooled to -80 °C and an appropriate 

amount of hydrazine or amine in CH2Ch was added by syringe and 31P{1H} NMR 

spectra were taken at intervals. The temperature was increased stepwise and 

further spectra taken until a reaction occurred. For Me2NNH2, the reaction 

occurred at -40 °C (t112 = 6 min), for 4-Me0C6H4CH2NH2 at -80 °C(t112 = 2 min) 

(Scheme VIII). The same reactions were repeated with hPt(PPh2)2C=CH2 and it 

was found that Me2NNH2 slowly commences reacting at -50 °C, but the reaction 

did not go to completion until the mixture was warmed up to 0 °C. With 

4-MeOC6H4CH2NH2 a slow reaction occurred at -80 PC(t112 = 18 min). 42 

Scheme VIII 

The ligand 1,1,2-tris(diphenylphosphino)ethane (tppe), which embodies 

features of both dppm and dppe in respect of its potential for forming complexes 

11 



containing four- and five-membered chelate rings, was prepared in high yield, by 

the base-catalyzed (KOBu1
) addition of diphenylphosphine to the double bond of 

vdpp (Reaction 7). 43 

Ph2P"". 

/C=CH2 + PPh2H 
Ph2P 

KOBu1 

(7) 

In principle, tppe can coordinate to a group 6 carbonyl moiety M(CO)n (n = 3, 

4, 5) in five ways. 

(A) (B) 

(C) (D) 

Among the chelated complexes, ring strain effects should be minimal in (D) 

due to the presence of a five-membered ring, but could be significant in (C) and 

substantial in (E) . The direct high-temperature {refluxing diglyme( 1, 1 ' -oxybis-(2-

methoxy ethane)]} reaction between tppe and M(CO)G( M = Cr, W, Mo) is 

12 



satisfactory as a preparative route to complexes of the type (0) if the reaction 

time is controlled. For (E), it was found better (essential for M = Cr) to use tppe 

to displace EtCN from /ac-[M(C0)3(EtCN)3 } . 
44 The monodentate species (A) and 

(B) were produced in a ea. 4: 1 ratio mixture by displacement of tetrahydrofuran 

(THF) from {M(COh (THF)] by tppe. There was no pure form of either (A) or 

(B) obtained from this reaction, but it was found possible to isolate (8) (M = Cr, 

Mo, W) in pure form indirectly (Reaction 8). 

(8) 

(8) 

Similarly, reaction (9), based on work by Shaw and co~workers fo r M = W,45 was 

used as a preparative route to (C.) (M = Cr, Mo, W) . 

(9) 

(C) 

A selective synthesis fo r (A) was later designed by using PtCl2 as a protecting 

(OCh W(11 '-PPh2 CH2 CH(PPh2)2] was disp laced with CN. (Scheme IX). 
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Ph2P'-
+ /C=CH2 

Ph2P 

Scheme IX 

Ph2 

Cl, /p'-

/
Pt, /C=CH2 

Cl P 
Ph2 

(OC)s WPPh2H i KOBu
1 

Ph2 
c1, P~ 

p( / PW(CO)s 
Cl/ 'p Ph2 

Ph2 

This reaction sequence also gave a mixture of (A) and (B) and as a result it was 

concluded that (A) and (B) exist in equilibrium. Thi s work represented the first 

experimental evidence for the exchange of terminal and° coordinated phosphorus 

groups in pentacarbonyl complexes of group 6. 46 Mo nitoring the produ.ct mixture 

with 31 P{1H}NMR spectroscopy revealed that (A), w hich formed first, slowly 

converted to (B) (reaction I 0) .-1 6 

ty1(CO)s 

Ph2P"- /PPh2 
CH- C 

Ph2P/ H2 
(10) 

(A) (B) 
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Intrigued by this highly unusual behavior, a kinetic and thermodynamic study 

was initiated . The results showed that isomer (B) is more stable than isomer (A) 

(6G29s = -3 . 86kJ/mol) even though the more sterically demanding end of the 

phosphine ligand is coordinated in (B). The entropy of activation (6S'" = -28 .2JK"1 

mor 1
) and enthalpy of activation (6H" = 92.6 kJ/mol) for the forward reaction 

strongly suggested a transition state which is associative in nature. The rate 

constant for the forward reaction at 55 °C was determined to be 3. 7 x I 0·4 s· 1
. For 

purposes of comparison phosphorus exchange in (OC)5W[ri 1-PPh2CH2 CH2P(p-

tolh] was also studied and it was found that the rate constant for isomerization 

was 3 .3 x I o·8 s· 1 (four orders of magnitude slower than reaction I 0), suggesting a 

reaction which is dissociative in nature. To account for the unusually fast rate of 

phosphine exchange in reaction I 0, a mechanistic model. was postulated in which 

the transition state consisted of interact ion of one phosphine arm with the cis 

carbonyl groups of tungsten, while the second phosphine arm displaces the labile 

coordinated phosphine (Scheme X). 47 rt is significant that .iJrc in (B) between the 

phosphorus atom of the short dangling phosphine and the carbonyl groups of 

tungsten was observed, suggesting a though-space interaction . 

Scheme X 
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The work in this thesis continues the thermodynamic and kinetic studies of 

phosphine exchange in dangling phosphine complexes by extending and 

completing the studies previously initiated for chromium. The purpose of the work 

is to gain further insight into the mechanism of isomerization, and to determine 

the extent to which the solvent medium influences rates of exchange and isomer 

stability. 

Chromium atoms are much smaller than tungsten atoms. If substitution of L' 

for L, L6M + L' = L5ML' + L (M = Cr, W), proceeds by associative mechanism, it 

would be expected that the reaction would go faster for the tungsten complex 

because a 7-coordinate transition state would be more stable when tungsten is the 

central metal atom than when the smaller chromium atorp is present. If the 

reaction proceeds by a dissociative mechanism, it would be expected that 

isomerization of the chromium complex would be faster than that of the tungsten 

complex because tungsten-phosphorus bonds are stronger than chromium

phosphorus bonds . Thus, by comparing the reaction rates of tungsten and 

chromium complexes, we can provide experimental evidence in support of an 

associative or dissociative mechanism. 

Furthermore, a comparison of the activation parameters of tungsten and 

chromium complexes will provide additional mechanistic information. If the 

activation enthalpy for chromium is larger than for tungsten, it would suggest that 

the mechanism has a significant associative component because the smaller 

chromium atom would be less likely to support a 7-coordinate complex. But, if it 
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is larger for tungsten, it would suggest a significant dissociative component 

because the W-P bond is stronger than the Cr-P bond . 

The choice of solvent may also be of considerable importance as it could have 

a large influence on both the thermodynamics and kinetics of isomerization . If the 

lone electron pairs on the dangling phosphines are significantly solvated, the 

isomerization reaction would be influenced by the extent of lone pair-solvent 

interaction. Previous work on the isomerization of tungsten complexes was 

carried out in CDCl3, a solvent which could affect reaction rates by hydrogen 

bonding (weakly) between the solvent and dangling phosphorus lone pairs. 

Toluene, a solvent less polar than chloroform, might interact with the dangling 

phosphorus ligand less than chloroform and lead to significantly different reaction 

rates and positions of equilibrium . 
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B. Results and discussion 

1, 1-Bis(diphenylphosphino)ethene (vdpp) was prepared from Ph2PLi in dry 

THF according to the literature method. 34 

THF, R.T. 

24 hr. 

Ph2~-... HA 
A;c=c~ + 2LiCl 

Ph2PX' HA' 

1 

(1) 

The 1H NMR spectrum of 1 (Fig. I) showed a triplet at o 5.9 ppm, which is 

assigned to the C=CH2 protons. This is a second order AA'XX' spin system in 

which HA and HA' are chemically equivalent and magnetically nonequivalent. The 

observed triplet is a deceptively simple spectrum, in ~hich the separation of the 

two outer lines is I 3JP(X)H(A) + 3JP(X'>H<A>I. The 13C{1H} NMR spectrum (Fig.2) 

showed a triplet at o 135.7 ppm (1Jpc· = 9.4 Hz) assigned to C' of vinyl carbons 

(C'=C"H2), a triplet at o 136.1 ppm (2JPc" = 4 .9 Hz) assigned to the terminal 

carbon C" of C'=C"H2, and multiplets (from o 128.2 ppm to 134.5 ppm) 

assigned to the phenyl carbons. The 31P{1H}NMR spectrum (Fig.3) showed a 

single peak at o -2.9 ppm. Comparing with McFarlane's report,34 we agree with 

the chemical shifts of P (o -3 .9 ppm), the terminal carbon C"(o 135.5 ppm) and 

the phenyl carbons (o 128.5 to 136.0 ppm), but we do not agree with the chemical 

shift of C' (o 148.4 ppm) or the coupling constants (1Jpc· = 36.4 Hz, 2Jpc" = 8.1 

Hz). 
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The preparation of (OC)sCrPPhH was carried out from the subst itution of THF 

in Cr(CO)s THF by PPh2H, while Cr(C0)5 THF came from the UV irradiation of 

Cr(C0)6 in THF. 48 

Cr(C0)6 + THF UV 
8 hr 

Cr(CO)s THF + PPh2H 

Cr(C0)5THF + CO 

oc2 2o <() 
l h ~ ~ ?J 

r., oq~C.,--P,.H + 
.. :% 'a 

OC5 CO 0 
4 ~ Ii 

2 

THF 

The 1H NMR spectrum of complex 2 showed a doublet at o 6 .5 ppm (JrM = 

(2) 

(3) 

338 .9 Hz), which was assigned to proton H3 (Fig.4). The 13C{ 1H} NMR spectrum 

of complex 2 showed a doublet at o 22 1.0 ppm (2Jpc = ,7. l Hz) assigned to C 1, and 

a doublet at o 2 16 .2 ppm (2J .. c = 13.4 Hz) assigned to C2-s. The ipso carbons of 

the two phenyl groups gave a doublet at o 132.6 ppm ( 1Jpc = 38 .8 Hz), the ortho 

carbons gave a doublet at o 131.9 ppm (2Jpc = 11.3 Hz), the para carbons gave a 

doublet at o 130.4 ppm ("1Jpc = 1.5 Hz), and the meta carbon gave a doubl et at o 

129 .0 ppm ( Jpc = 9.6 Hz) (Fig.5). These assignments have been supported by J. 

H . Nelson ' s spectroscopy book .48
" The :; 1P{ 1H} NMR spectrum is a lso consistent 

with the structure of 2 (Fig.6). 

suggested that the n-acidity of PPh2H is relatively high compared with H3P and 

Ph3P , but lower than (EtO):;P, (PhO):;P, and X~P (X is halogen) (Fig . 7) . 
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A Cr(CO)sL complex has C4v symmetry, and gives rise to three allowed IR 

absorptions (two non-degenerate and one doubly degenerate), having the 

symmetry labels A1n>, A1<
2

> and E. The important one to focu s on is A1(1>, which 

corresponds to the symmetrical stretching motio n of the CO group lying opposite 

the ligand L. It is this CO that competes most directly with L fo r available 7t 

electron density and therefore is in a position to best reflect the rr acid ity of L. In 

the case of the phosphorus ligand s, the rr acidity increases as the electronegativity 

of any subst itutent on P increases. As these ligands become more and more 

competit ive for 7t electrons, CO receives less and less electron density and the 

C:=O stretching frequency increases accordingly.49 

The preparation of C'2Pd(Ph2P)iC=C H2 was carried out from the displacement 

(4) 

Complex 3 is quite insoluble and its formation was accompanied by the 

formation of an unidentified byproduct . The :; 1P{ 1H} NMR spect rum of compound 

3 and its byproduct showed singlets at o -20.6 ppm and -41.4 ppm (Fig.8), while 

the analogous platinum compound CliPt(Ph2P)iC= CH2 had a signal at 8 -3 l . 7 ppm 

with J p 1p = 3,244 Hz. 42 Although it was not possible to assign the signal for 3 with 
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certainty, previous work has shown that 3 1P chemical shifts for palladium 

complexes are in general downfield from the platinum complexes. Therefore, we 

believe the signal at -20.6 belongs to compound 3. Although palladium has an 

isotope with a nuclear spin, iosPd (22.23%), for which I = -5/2, the quadropolar 

property of this nucleus makes the palladium and phosphorus coupling 

unobservable under our experimental conditions. so The 1H NMR spectrum showed 

a set of signals at o 6.4 ppm which was assigned to the AA' portion of the 

AA'XX' (P2C=CH2) spin system (Fig. 9) , and is consistent with the 1H NMR 

spectrum of ChPt(Ph2Ph C=CH2. 42 Attempts to purify compound 3 by 

recrystallization and column chromatography were not successful. The 3 1P{1H} 

NMR spectrum showed a signal at o -41.4 ppm which was not identified. As most 

of the sample remained undissolved, we concluded that perhaps the sample was 

much more pure than the NMR spectra indicated_. Therefore, we continued on to 

the next reaction and it was successful. 

adding (OC)sCrPPh2H across the carbon-carbon double bond of compound 3 in 

the presence of KOBut. 

Ph2 H2 
t Cl, .,.Pb ,......c 

THF, KOBu Pd CH '-p Cr(CO) (5) ., / a 5 
R.T., 24 hr c( ' pc Ph2 

Ph2 
4 
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The 31 P{ 1H } NMR spectrum of 4 showed a doublet at o -27 .2 ppm (3Jpp = 3.2 

Hz) and a triplet at o 57 .4 ppm (3Jpp = 3.6 Hz) (Fig. I 0) . The IR spectrum, 

v(C=O), showed sig nals at 1939 (vs), 2065 (m) and 2059 (m) (Fig . 1 1 ) . 

Compared with C!iPt(Ph2P)iCHCH2PPh2C r(CO)s, 51 the chemical shift of the 

phosphorus atom bound to Pd is further downfield than that of the corresponding 

phosphorus atom bound to Pt , but the chemical shift of phosphorus bound to 

chromium remains essentially unchanged . The C=O stretching frequencies were 

not affected by the differences in the remote Pt and Pd atoms. Recrystallization 

and column chromatography were applied to purify 4, but still the signals at o -

38.6 ppm, -20.8 ppm and o 49.9 ppm were observed in 3 1P{ 1H} NMR spectru m. 

This reaction successfully avoided the formation of c he lated product 5 which 

occurs when (OC)sCrPPh2H reacts directly with (Ph2PhC=C H2. 46 

(6) 

5 

Potassium cyanide was employed to remove the C l2Pd from compound 4 and 

to release (OC)5Cr[ri 1-PPh2CH2CH(PPh2)i] 6, which partially isomerized to 

22 



+ 4KCN 

6 

absolute 
ethanol 

R.T., 54 hr (7) 

7 

T he 31PCH} NMR spectrum showed that this reaction first gave the product 6 

(Fig. 12), and then slowly converted to 7 at room temperature (Fig.13 ) . The 

spectrum of compound 6 showed a triplet at b 5.J .8 ppm (lrat>h.c = 2.6 Hz) and a 

doublet at b-2.8 ppm (3JP~Pl>.c = 2.4 Hz) . The spectrum of compound 7 gave a 

doublet of doublets at b 68 . 8 ppm (2 J Pd Pc = 193 . 2 Hz, 3 J PdPf = 21. 2 Hz), a doublet 

at b -10. 9 ppm (2Jrdrc = 193 . 1 Hz), and a doublet at b -16.0 ppm c3Jrdrr = 21.2 Hz). 

Coupling between P e and Pr was not observed . 

Typically, a P-C(ax) coupling constant is greater than a P-C( eq) co.upling 

constant for phosphine substituted tungsten pentacarbonyl complexes. The 

13C { 1H} NMR spectrum of 6 shows that the reverse is true for analogous 

chromium complexes, as the P-C(eq) coupling constant ( 12 . 9 Hz) is larger than P-

C(ax) coupling constant (6. 9 Hz) (Fig. 14). Similar coupling constant behavior of 

chromium complexes was reported in l 980 .52
a A general statement was made that 

the magnitude of the 2Jpc through-metal nuclear spin-spin coupling to the trans 

CO in LM(C0)5 complexes of Mo and W is significant ly larger than that of the 

analogous coupling to the cis CO, whereas in LCr(CO)s complexes the converse is 

true.52
b The 13C{ 1H}NMR spectrum of a similar compound, (OC)sCrPPh2Et, gave 
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JP·(cq) = 13.7 Hz, and JP·(ax) = 6.8 Hz, which was in agreement with the assignment 

for compound 6. The 13C{1H} NMR spectrum of 7 gave a doublet of doublets at o 

216.3 ppm (2Jcp = 12.5 Hz, 4Jcp = 3.4 Hz) assigned to the equatorial carbonyl 

carbons (Fig. 15). This long-range coupling was also reported for compound 9 

(
4 J Pc = 3 . 8 9 Hz). s 1 

Our attempts to carry out free radical reactions to synthesize complex 6 were 

not successful. It was expected that (OC)sCrPPh2H and (Ph2P)iC=CH2 in the 

presence of AIBN at elevated temperatures (50 °C or 60 °C), would give complex 

6, but the 31P{1H} NMR spectrum showed only a trace of desired product. 

bezene, AIBN 
Cr(CO)sJ>Ph2H 600C, 2 hr 

2. Equilibrium Studies of Isomerization of 6 and 7 

6 

(9) 

The equilibrium studies were carried out in CDCh and toluene-ds solutions 

at various temperatures. The equilibrium concentration of isomers 6 and 7 were 

determined by the integration of 31P{1H} NMR spectra. Meaningful integrations 
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were obtained by using a delay time of 15 s and a pulse width of 16 usec (83 

degree). A one pulse decoupling during acquisition was not applied to eliminate 

NOE (Nuclear Overhauser Enhancement) effects on 3 1P signal intensities. The 

equilibrium constants, K = [7]/ [6], are found in Table 1. For comparison, the K 

values of reaction 10 in CDCh solution from literature are also listed in Table 1. 

/'-....../ PPl"2 
(OC)sWPL "-. 

Ph2 PPl"2 

Ph 
(OC)sWPz~ 

/ PPl"2 (10) 
Pi"2P 

8 9 

Table 1. The equilibrium constants, K, of reactions A, B and C. A is reaction 
10 in CDCh; B is reaction 9 in CDCh; C is reaction 9 in toluene-da solution. 

K 10 °C 25 °C 40 °C 53 °C Ref. 

A 6.14 ± 0.04 4.74 ± 0.01 3.76 ± 0.05 3·.0l ± 0 .02 51 

B 3.60 ± 0.04 2.61 ± 0.04 2.04 ± 0 .04 1.67 ± 0 .02 this work 

c NIA 2.18 ± 0 .02 1.72 ± 0 .04 1.58 ± 0.01 this work 

The equilibrium constant, K, of each reaction decreases when the reaction 

temperature increased, which indicates that the forward reactions are exothermic. 

This is confirmed by the negative 6H values shown in Table 3. Among the 

reactions at the same temperature, the values of K decrease from A to C, and 

equilibrium positions correspondingly shift from right to left. For the tungsten 

reaction (A) the product is more stable than the reactant at all temperatures. If the 

reactant and product isomers were equally stable, the equilibrium constant would 
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be 2 because there are two possible attachments in the product isomer. For 

chromium (B) at 53 °C we see that 7 is less stable than 6, at 40 °C the two 

isomers are equally stable, and at 25 °C, 7 is more stable than 6. In toluene 7 is 

less stable than 6 at temperature above 25 °C. 

Insight into the magnitudes of K are given by the determination of AH, AS, 

and AG for the reactions. Standard equations ( eq-1 and eq-2) shown below were 

used to determine thermodynamic parameters. 

AG = -RT lnK = AH - TAS 

lnK = -AH/(RT) + AS/R 

(eq-1) 

(eq-2) 

In these equations, R is the gas constant, AG, AH, AS are the change of free 

energy, the change of enthalpy, and the change of entropy, respectively. The 

values of AH and AS can be calculated from the van' t Hoff plot (lnK vs. 1/T) 

(Table 2). 

Slope = -AH/R 

Intercept = AS/R 

(eq-3) 

(eq-4) 

The plots of lnK vs. 1 /T were manipulated (Fig.16-17), and the values of AH 

and AS were obtained from equations 3 and 4. The values of AG at 25 °C were 

obtained from the equation, AGc29sK> = AH - T AS . The results are shown in Table 

3. 
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Table 2. The values of lnK and l/T of reactions A, B and C. A is reaction 10 in 
CDCh; B is reaction 9 in CDCh; C is reaction 9 in toluene-da solution. 
l/T (K-1

) 3 .53 xl0"3 3.36x10·3 3.19 x10·3 3.07x10·3 Ref. 

lnK (A) 1.81 ± 0.01 1.56 1.32 ± 0.01 1.10 ± 0 .01 51 

lnK (B) 1.28 ± 0.01 0.96 ± 0.02 0 .7 1 ± 0.02 0.51 ± 0.01 this work 

lnK (C) NIA 0.78 ± 0 .01 0 .54 ± 0.02 0.46 ± 0.01 this work 

Table 3. The values of AH, AS, and AGc29sK) of reactions A, B and C. A is 
reaction 10 in CDCh; B is reaction 9 in CDCh; C is reaction 9 in toluene-d8 
solution. 

AH (kJ mor1
) AS (J mor1 K"1

) AG(298K)(kJ mor1
) Ref. 

A -12.25 ± 0 .1 -28 .2 ± 0 .3 -3 .86 ± 0 .14 51 

B -13 .63 ± 0.39 -37.62 ± 1.28 -2.42 ± 0 .38 this work 

c -9.41 ± 1.90 -25 .25 ± 6.10 -1.88 ± 2.63 this work 

For reaction B, both AH and AS are more negative than for reaction A . The 

difference in the entropy change is most striking. The large negative AS values in 

both cases suggest that as 6 isomerizes to 7 a significant restriction in freedom of 

movement results . It might be expected that there would be greater steric 

congestion in the chromium product than in the tungsten leading to a more 

negative AS. 

It is apparent that the solvent plays an important role in these reactions. In 

toluene both AH and AS are less negative than in CDCh. This might suggest that 

toluene interacts more strongly with dangling phosphine groups than chloroform. 

Isomer 6 may be somewhat stabilized relative to 7 as a result of this interaction. 
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The large decrease in entropy for these reactions is overcome by the negative 

enthalpy value leading to an overall favorable (negative) free energy of reaction. 

The negative free energy change is the driving force of the spontaneous reaction. 

The magnitude of the free energy becomes less negative from A to C, which is 

also consistent with the trend of the values of K. 

Complex 7 is more themodynamically stable than 6 at lower temperatures even 

though the more sterically congested end of the phosphine ligand is coordinated in 

7. An intramolecular interaction between the short phosphine arm and the 

carbonyl groups is postulated to explain this abnormal phenomenon (see scheme 

X). si Supporting experimental evidence for this phosphine-carbonyl interaction, in 

addition to the large entropy decrease for the reaction, is also given by the 

presence of long-range phosphorus-carbon coupling in 7 ('4Jpc = 3.4 Hz) (Fig.15), 

which we believe is largely a through-space interactio'n. The similar long-range P

C coupling in compound 9 (4Jpc = 3 .8 Hz)si is larger than that of 7 and this is in 

good agreement with the K values indicating that tungsten complex 9 is more 

stable than chromium complex 7. 

The IR spectrum of 7 in the carbonyl region is consistent with C4v symmetry 

suggesting that the interaction between the short arm phosphine of 7 and carbonyl 

groups is not localized (Fig.18). It has been reported that electronic differences 

in LW(CO)s (L=PMenPhJ-n) are too small to be determined by vibrational 

spectroscopy. sic Therefore, it is not surprising that the IR spectra of 6 and 7 are 

superimposable. 
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3. Kinetic Studies of bomerization of 6 and 7 in CDCb and Toluene-d8• 

/'....../PPhi 
(OC)~rP L ""' 

Ph2 PPhi 

6 

Ph2 
(OC)sCrP'~ 

/ ·pphi 
Phif> 

7 

(9) 

This is a first-order reaction in which the net rate of disappearance of 6 is 

given by 

-d[6]/dt = k1[6] - k..1(7] 

where k1 and k..1 are rate constants of the forward and backward reactions, 

respectively. 

When the reaction reaches equilibrium, 

-d[6]/dt = 0 

k1(6]cq = k.1(7]cq 

(7]cq/(6]cq = K = k1/k.1 

(eq-5) 

(eq-6) 

(eq-7) 

(eq-8) 

Also if 6 and 7 are the only complexes in the reaction system, it is true that 

(6] + (7] = (6]in + (7]in = (6]cq + (7]cq (eq-9) 

Where [ 6]in and [7]in are the initial concentrations of 6 and 7 and [ 6]cq and [7]cq 

are the equilibrium concentrations of 6 and 7, respectively. 

Substitution of equations 8 and 9 into equation 5, and rearrangement, gives the 

relation 

-d(6]/dt = (k1 + k.1){(6] - (6]cq} (eq-10) 

Integration of equation 10 gives 

ln{(6] - (6]cq} = - (k1 + k.1) t + ln{[6]in - (6]cq} (eq-11) 

29 



Therefore, a plot of ln{[6] - [6]cq} versus t gives 

slope = - (k1 + k.1) 

From the slope and equilibrium constant K, the individual forward and backward 

rate constants can be obtained. 

k1 = (-slope )(K)/( I + K) 

k..1 = (-slope)/( 1 + K) 

Also, the half life to reach equilibrium can be calculated by 

t112 = (ln2)/k (eq-12) 

The time to go half way to equilibrium is given by 

t 112 ' = (ln2)/( k1 + k..1) (eq-13) 

Reaction 9 was carried out at 40 °C in CDCh, and at 25 °C and 40 °C in 

toluene-d8. The change of concentration of 6 was detected by running 31P{1H} 

NMR spectra and taking integrals at appropriate time ·intervals. 

The plots of ln{[6] - [6]cq} versus time at 10 °C, 25 °C (the first two data 

points are from Lin's thesis54 
) , 40 °C in CDCh, and the plots of ln{[6] - [6]cq} 

versus t at 25 °C and 40 °C in toluene-ds were manipulated (Fig. 19-23). 53 The 

values of k i, k.1 and t112' were obtained, and shown in Table 4 . 
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Table 4. Rate constants and half-lives to equilibrium for isomerization reactions 
of A, B and C. A is reaction I 0 in CDCh; B is reaction 9 in CDCh; C is reaction 9 
in toluene-ds solution. 

Temp. (K) k1 (s-1
) k_1 (s-1) t' 1/2 Ref. 

A 283 (1.60 ± 0.04) x 10-6 (2.61 ± 0.06) x I 0-7 4.3 days 51 

298 (1.18 ± 0.01) x 10-s (2.50 ± 0.01) x 10-6 13.5 hours 51 

313 (7.95 ± 0.30) x 10-s (2.11±0.10) x 10-s 2.4 hours 51 

B 283 (2 .04 ± 0.02) x 10-1 (5 .64 ± 0.20) x 10-1 30.8 days 54 

298 (2.10 ± 0.02) x 10-6 (8 .03 ± 0.29) x 10-1 2.8 days 54 

313 (1 .68 ± 0.02) x 10-s (8.22 ± 0.17) x 10-6 7. 7 hours this work 

c 298 (2.26 ± 0.14) x I 0-6 (I.04 ± 0.06) x 1 o-6 2.4 days this work 

313 (1.02 ± 0.05) x I o-s (5.92 ± 0.31) x 10-6 11.9 hours this work 

If the rate constants are known, the activation ene'rgy E. can be obtained from 

the Arrhenius equation 

k = A·e[-Ea/(RT)J 

Ink = lnA - E./(R T) 

where A is a preexponential factor. A plot of Ink versus l/T gives 

slope = - E.IR 

(eq-14) 

(eq-15) 

The plots of lnk1 vs. l/T and lnk_1 vs. l/T were manipulated for reaction 9 in 

CDCh (Fig.24, 25).s3 The values ofE1 are shown in Table 5. 
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Table 5. The activation energy of reactions A, B and C. A is reaction 10 in 
CDCh; B is reaction 9 in CDCh; C is reaction 9 in toluene-di solution. 

E. (forward) (kJ mor1
) E. (backward) (kJ mor1

) Ref. 

A 95 .3 ± 1.8 107.0 ± 1.6 51 

B 108.31 ± 0.43 122.34 ± 1.12 this work 

c 77.76 90.01 this work 

The free energy of activation, AG .. , is also related to the rate constant, k, 

k = (k'T/h)-e(-&G;e/(RT)J (eq-16) 

where k' is Boltzmann' s constant and h is Planck's constant. Taking the logarithm 

of both sides gives 

ln(k/T) = -AG .. /(RT) + ln(k '/h) 

Recognizing that AG'' = Air' - T AS .. (eq-17) 

we have 

ln(k/T) = AH .. /(RT) + AS .. /R + ln(k'/h) (eq-18) 

Therefore, the Eyring plot [the plot of ln(k/T) versus l/T] gives AH .. from the 

slope and AS .. from the intercept. n 

slope = -AWIR 

intercept = AS .. /R + ln(k ' /h) 

The values of AS .. are of interest because values below -10 eu indicate an 

associative reaction, while values greater than + 10 eu indicate a dissociative 

reaction. 4c,ssa, s6 
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The plots of ln(k/T) versus l/T were manipulated for reaction 9 in CDCh (Fig. 

26, 27). The values of AW,AS'', and AG" are shown in Table 6. Because of the 

incomplete data for reaction 9 in toluene-da, the activation parameters for this 

reaction are questionable. 

Table 6. The values of AW,AS'', and AG" for the reactions of A, B, and 
C. A is reaction 10 in CDCh; B is reaction 9 in CDCh; C is reaction 9 in 
toluene-da solution. 

A B c 

AWc(kJ mor1
) 92.6±1.9 105 ± 0.46 75 .22 

Ali b (kJ mor1
) 104.5 ± 1.8 119.87 ± 1.16 87.48 

AH (kJ mor1
) -11.9 ± 2.6 -14.87 ± 1.25 -12.26 

AS"'r(J mor1K"1
) -28 .2 ± 6.2 1.41 ± 1.58 -100.60 

AS" b (J mor1K·1
) -1.0 ± 6 40.41 ± 3.91 , -65 .93 

AS (J mor1K·1
) -27.2 ± 8.6 -39 ± 4.22 -34.67 

AG"'r(kJ mor1
) 101.0 ± 2.6 105.42 ± 0.66 105 .20 

AG\ (kJ mor1
) 104.8 ± 2.5 107.83 ± 1.64 107.13 

AG(kJ mor1
) -3 .8 ± 3.6 -2.41±1.77 -1.93 

Ref. 51 this work this work 

The reaction rates of the tungsten complexes are faster than those of the 

chromium complexes. As discussed in the introduction, this result is consistent 

with a reaction that proceeds by an associative mechanism because it would be 

expected that a 7-coordinate transition state would be more stable when tungsten 
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is the central metal atom than when the smaller chromium atom is present. A 

comparison of the entropy of activation shows that values are significantly more 

positive for the chromium than for the tungsten complexes in chloroform. It can 

be concluded that the isomerization for the chromium complexes proceeds with a 

greater dissociative component than for the tungsten complexes. It makes sense 

that an associative mechanism may become less favorable as the central metal 

atom becomes smaller. 

Both the tungsten and chromium reactions are unexpectedly fast for d6 low

spin complexes. Many works have confirmed the substitutionally inert nature of 

d6 complexes. 53 For example, the dissociative rate constant (k1) for CO 

substitution by phosphine in W(C0)6 at 30 °C is 1 x 10 ·14 s·1. ss. The rate 

constant for PPh3 dissociation from (OC)5CrPPh3 is 3 x 10"11 s·1 at 30 °C,55b about 

six orders of magnitude slower than the rate of isom~rization in reaction 9. 

The mechanistic model presented in scheme X (Page 15) can explain the 

dramatic acceleration of the reaction. The interaction of the dangling phosphine 

arm with a carbonyl ligand leads to a weakening of the metal-phosphorus bond, 

allowing the other dangling phosphine arm to displace the coordinated phosphine. 

The isomerization of (OC)s W[ 11 1-PPh2CH2CH2P(p-tol)i], lacking an accelerating 

arm, proceeds at the expected slower rate {k1 = 2.03 x 10-8 s·1, k.1 = 1.25 x 10"8 s·1 

at 55 °C). 51 The isomerization of (OC)sCr[111-PPh2CH2CH2P(p-tol)2] is also very 

slow (k1 = 1.22 x 10-8 s·1, k.1 = 0.65 x 10"8 s"1 at 55 °C).55
c 

The activation energy of chromium complexes in CDCh solution is larger than 

that of tungsten complex in the same solution, which is in agreement with the 

34 



difference in their reaction rates. The activation enthalpy of chromium (-14.87 ± 

1.25 kJ mor1
) is not significantly different from that of tungsten (-11.9 ± 2.6 kJ 

mor1
). Both of the reactions are accompanied with a large decrease of entropy 

(-27.2 ± 8.6 J mor1K"1 for W complexes, -39 ± 4.22 J mor1K"1 for Cr complexes), 

again a sign that the products of isomerization have less freedom to move. The 

activation free energy of chromium (-2.41 ± 1. 77 kJ mor1
) is slightly less negative 

than that of tungsten (-3.8 ± 3.6 kJ mor1
) . 

The solvent can influence both rates and mechanisms of reactions. Sometimes 

the solvent alters the rate without influencing the mechanism by changing the 

force between reacting particles and hence altering the readiness with which they 

approach each other. But it would be unusual if the solvent changed the 

mechanism without changing the rate. ~7 In this study, the replacement of CDCh 

. 
with toluene-d8 does not influence the rates much, but dramatically decreases the 

activation energies. Toluene-ds also changes the activation entropy of the 

forward reaction from 1.41 ± 1.58 eu to -69.93 eu, although the overall .!\S 

(-34.67 eu) is very close to that of isomerization in CDCh (-39 ± 4.22 eu). How 

toluene-d8 makes such a big difference is not clear. Unfortunately only two data 

points were obtained and it is possible that a great deal of experimental error 

exists in these measurements. 

These results suggest that complex reactivity may be greatly influenced by the 

intramolecular interaction, the central metal atom and the solvent. Further studies 

are necessary to understand the nature of solvent interaction in these systems. 
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C. Experimental Section 

Reactions were carried out under a nitrogen atmosphere as many of the 

reactants and products are air-sensitive. Tetrahydrofuran(THF) was dried by 

sodium metal in the presence of benzophenone, and was freshly distilled under 

N2 before use. All other solvents were used without further purification. The 

other chemicals were obtained from Sigma-Aldrich and other commercial 

suppliers and also used without further purification. 

The infrared spectra (CHCh) of the carbonyl groups in the complexes were 

recorded on a Nicolet 20 DXB Fourier Transform Spectrometer. 

Phosphorus-31 nuclear magnetic resonance spectroscopy (NMR) was used to 

characterize the compounds, determine equilibrium constants and measure the 

rates of isomerization. The instrument used was a General Electric QE-300 NMR 

spectrometer. 

All melting points were taken by a capillary melting point apparatus 

(Arthur H. Thomas Company). 

Irradiation was carried out in a quartz vessel equipped with a 400 watt 

ultraviolet lamp. 

Elemental analyses were done by the microanalytical laboratory in University 

of Illinois at Urbana-Champaign. Structural analyses performed at the Chemistry 

Department at University of Delaware. 
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Preparation of PPh2Li 

Syringes were used to transfer PPh2H (21.8 mL, 0.125 mol) and BuLi (62 .5 

mL, 0.125 mol) to 150 mL of dry THF. The PPh2H was added followed by 

dropwise addition of BuLi over 0.5 hour. The solution turned red after the 

addition of BuLi. The reaction mixture was stirred for 36 hours. 

Preparation of (Ph2Pl2C=CH2 (vdppl 

The above solution was added via syringe over 45 min to 150 ml of dry THF 

containing ChC=CH2 (5 .00 mL, 0 .0625 mol). The dark red solution was stirred 

for 24 hours. Diluted HCl ( 100 mL, 2 M) was added to the reaction mixture 

causing the red color to disappear and two layers to develop. The yellow top 

layer was separated from the colorless bottom layer with a separatory funnel. The 

top layer was dried with MgS04 after which the solvent was removed under high 

vacuum. The yellow residue crystallized from CH2Cli/CH30H giving white 

crystals of (Ph2P)iC=CH2 (11.282 g, 45 .5%). mp 110-113 °C. 31P{1H}NMR: 

0 -2.9 ppm, 1H NMR: 0 5.9 ppm {JP-H (tran1) + Jp_H (ci1) = 29.4 Hz }, 13C{1H} NMR: 

o 136.1 ppm (2Jp.c = 4.9 Hz), o 135.7 ppm ( 1Jp.c = 9.4 Hz), o 128.2 ppm to 

134.5 ppm ( multiplet of phenyl group). 

Preparation of (0ChCrPPh2H 

A solution of Cr(C0)6 (5.000 g, 22. 7 mmol) in 250 mL dry THF was 

irradiated for 8 hours with UV light. The colorless solution turned to red. To 

this red solution, Ph2PH (3. 95 mL, 22. 7 mmol) was added via a syringe. This 
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mixture was allowed to stir for 1.5 hour. The color changed from red to yellow, 

and became white-greenish at the end. The solvent was removed under vacuum. 

Unreacted Cr(C0)6 as confirmed by IR, separated from the green oily residue 

when CH3QH was added. The green filtrate obtained by filtration was taken to 

dryness under vacuum. The product, flat green crystals, was recrystallized from 

CH2Ch/CH30H. Yield: 0 .756 g, 8.8%; mp: 59-65 °C; IR[v(C=O) (cm"1)]: 1945 

(vs), 2067 (m); 31P{1H} NMR: o 33.4 ppm; 1H NMR: o 6.5 ppm (1Jp.ff = 338.9 

Hz), 7.4 to 7.6 ppm (multiplet of phenyl group); 13C {1H} NMR: o 129.0 ppm 

(3Jp.c = 9.6 Hz), 130.4 ppm (4Jp.c = 1.5 Hz), 131.9 ppm (2Jp.c = 11.3 Hz), 132.6 

ppm (4Jp.c = 38 .8 Hz), 216.2 ppm{2JP-C(ax) = 13.4 Hz} , 221.0 ppm {2JP·C(cq) = 7 .1 

Hz}. 

Preparation of CliPd(PhiPliC=CH2 

A mixture of (C6HsCN)iPdCh (1.000 g, 2 .61 mmol) and (Ph2P)iC=CH2 

(1.034 g, 2.61 mmol) were stirred in 25 mL CH2Ch for 48 hours. A yellow solid 

formed and was collected by filtration . Yield : 1.270 g, 84.8%; 31P{1H} NMR: 

o -20.6 ppm; 1H NMR: o 6.4 ppm (AA' part of AA'XX' second order spectrum 

from P2C=CH2 proton), 7.4 ppm to 7.9 ppm (multiplet of phenyl group). 

Preparation of ChPd(PPh2hCHCH2PPh2Cr(COb 

The mixture of ChPd(PPh2)iC=CH2 (1.270 g, 2.20 mmol) and CrPPh2H 

(0.837 g, 2.20 mmol) were stirred in 40 mL dry THF for 24 hours with 0.112 g 

(1.0 mmol ) of catalytic potassium tert-butoxide ( KOBut). The red solution was 
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refluxed at 80 °C for 2 hours and cooled to room temperature. The solvent was 

removed under vacuum and the dark brown residue was recrystallized with 

CH2Ch/CH30H. A brown solid was obtained by filtration. Yield: 1.275 g, 

60.9%; IR[v(C=O) (cm"1
)] : 1939(vs), 2065(m); 31P{1H}NMR: o -27.2 ppm (3Jp.p 

= 3.2 Hz), 57.4 ppm (3Jp.p = 3.6 Hz). 

Synthesis of CCO)~CrCn 1-PPh2CH2CHCPPh2hJ (6) and COCl~CrCn 1-

PPh2CH(PPh2lCH2PPh2l (7l 

A mixture of ChPd(PPh2)iCHCH2PPh2Cr(CO)s (0.700 g, 0 .735 mmol) and 

KCN (0.191 g, 2 .94 mmol) were stirred in 50 mL absolute ethanol for 54 hours. 

The solvent was removed under vacuum. The residue was recrystallized with 

CH2Ch/CH30H, and separated by filtration. The yellow filtrate was taken to 

dryness. A yellow solid was obtained from repeated crystallization from 

CH2Ch/CH30H. Yield : 0.170 g, 29.9%. IR[v(C=O) (cm-1
)] : 1940 (vs), 2062 

(m); The 31P{1H} NMR spectrum showed that the product was a mixture of 

isomer 6 and 7. The 31P{1H} NMR spectrum of 6: o -2.8 ppm (3Jp.p = 2.4 Hz), 

51.8 ppm (3Jp.p = 2.6 Hz); The 31P{1H}NMR spectrum of isomer 7: o -16.0 ppm 

(3Jp.p = 21.2 Hz), -10.9 ppm (2Jp.p = 193.1 Hz), 68 .8 ppm (2Jp.p = 193.2 Hz, 3Jp.p 

= 21.2 Hz); The 13C{1H} NMR spectrum of 6: o 216.4 ppm (2JP-C(cq) = 12.9 Hz), 

221.8 ppm (2IP-C(ax) = 6.9 Hz); The 13C{1H} NMR spectrum of 7: o 216.3 ppm 

(2IP-C(cq) = 12. 5 Hz, 4
IP-C(eq) = 3 .4 Hz), 221. 7 ppm (2IP-C(ax) = 5 .1 Hz). Isomer 7 

was less soluble, and was isolated from the filtrate by further recrystallization. 

But the more soluble isomer 6 was not successfully purified, although it was 
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formed initially from this reaction, it partially isomerized to isomer 7 once it 

existed in the solution. 

Synthesis of (0Cl.Crln1-PPh2CHCPPhilCHiPPhil 

The chelate complex formed at 53 °C from the mixture of (C0)5Cr[Tt 1
-

PPh2CH2CH(PPh2)2] and (OC)sCr[Tt 1-PPh2CH(PPh2)CH2PPh2] in CDCh solution. 

31P{1H}NMR spectrum: o -14.4 ppm (2Jp.p = 24. lHz), 70.7 ppm (3Jp.p = 21.0Hz), 

88.3 ppm (2Jp.p = 23 .6Hz, 3Jp.p = 21.2Hz) which was consistent with the chelated 

complex, (OC) .. Cr[Tt2-PPh2CH(PPh2)CH2PPh2].43 Also, there were other signals in 

the 31P{1H}NMR spectrum which were not identified: o -96.5 ppm, 14.3 ppm, 

30.3 ppm, 47.8 ppm, 55 .1 ppm and 55 .9 ppm. No chelation products were 

observed in toluene-ds solution under the same conditions. 

Equilibrium and Kinetic Measurements 

A mixture of isomers A and B ( 40.0 mg, 0.0516 mmol) was dissolved in 0.50 

mL of CDCh and separately in 0. 50 mL toluene-ds, frozen in liquid nitrogen and 

flame sealed under vacuum. The sample in CDCh was investigated at 40 °C and 

at 53 °C, while the sample in toluene-d8 was studied at 15 °C, 25 °C, 40 °C and 53 

°C. A constant temperature bath was used to maintain a constant temperature. 

The NMR probe was brought to the corresponding temperature and 31P{1H}NMR 

spectra were recorded in appropriate time intervals. In an effort to optimize the 

quantitative study a delay time of 15 sec (D5 = 15 s) and a pulse width of 16 usec 

(P2 = '16 us, 83 degree) were used. Integrations were carried out following 
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standard procedures in which the width at half-height was obtained for each signal 

and multiplied by ± 31 .8 to give an integral that included 99% of the intensity. 

Four integrations were averaged to avoid bias in the measurement of the isomer 

ratio. Equilibrium was assumed to have been reached when the integral ratio of 

isomers remained stable after three consecutive runs at reasonable time intervals 

for each specific temperature. 

41 



Chapter II: Synthesis of [(OC)5WPPh2hC=CH2 

and crystal structure of (CO)sWPPh2C(PPh2)=CH2 

A. Introduction 

The diphosphine ligand, bis(diphenylphosphino)methane (dppm), is a very 

important ligand in organometallic chemistry and homogeneous catalysis. 7 The 

two available coordination sites of dppm makes it possible to chelate a single 

metal center to stablize a catalyst fragment or to bridge two metal centers to 

allow cooperative catalytic reactions to occur at adjacent sites. These bridging 

systems require a second bridging atom or molecule, or a metal-metal bond as a 

single dppm ligand is not sufficient to hold the metals together. A third role of 

dppm is forming a monodentate ligand complex with 'one phosphine remaining 

uncoordinated. This coordination of one phosphine end does not significantly 

reduce the reactivity of the unbound end of phosphine, which is indicated by its 

ability to undergo chelation, protonation, quaternization and even coordination to 

a second metal fragment. 14
' ' ss 

The coordination of a second metal fragment to the free end of (OC)sM(11 1
-

dppm) (M = Cr, Mo, W) does not occur at room temperature because of the steric 

hindrance of the phenyl groups. However, the preparation of (OC)s W(µ-dppm)

W(CO)s can be carried out from either (OC)sW(NCMe) and dppm or from 

(OC)sW (NCMe) and (OC)sW(11 1-dppm) at 60 °C. The thermal dissociation of a 

carbonyl ligand is not likely under these reaction conditions (Scheme V in chapter 
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I). 24· 2s Likewise, the dppm bridged complex, [Ru2( Tt s -CsHs)2( 1, 10-

phenanthroline)i(µ-dppm)] 2
+, forms in refluxing EtOH, while only the 

monodentate complex forms at room temperature. s9 On the other hand, the 

ethylene-bridged ligand, bis ( diphenylphosphino )ethane ( dppe ), readily formed 

bimetallic complexes at room temperature or below.12· 141
• 

60 

The solid state structures of (OC)sW(11 1-dppm) (10) and (OC)sW(µ-dppm)-

W(CO)s (11) are very interesting.61 The lone pair of electrons on the dangling 

phosphine in 10 is oriented toward the W(CO)s unit in the solid state, and the 

3 1P{1H} and 13C{1H} NMR data indicate that this is also the major conformation 

of 10 in solution. Formation of 11 from 10 requires rotation about both P-C bonds 

in Ph2PCH2PPh2 and an extreme increase in the P-C-P bond angle from 111.5° to 

133.1° (Scheme XI). 

10 

(OC)5W(NCMe) 

toluene, 60 °C 

Scheme XI 

11 

Of interest in our work is the ligand, 1, I-bis( diphenylphosphino )ethene 

(vdpp), as a dangling or bridging ligand coordinated with W(CO)s units. Based on 

the presence of the rigid carbon-carbon double bond, we predicted that in the 

dangling complex, (CO)s WPPh2C(PPh2)=CH2 (12), the lone electron pair on the 

dangling end of vdpp would not be directed toward equatorial carbonyl groups in 
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the solid state or in solution. If this were true, the addition of a second W(CO)s 

to 12 forming [(OC)sWPPh2hC=CH2 (13) might take place at room temperature, 

because the lone electron pair on the dangling phosphine of 12 is in an exposed 

position, and could readily attack the incoming tungsten metal center. Contrary to 

the formation of 11 from 10, the change of configuration of vdpp would be small 

during the formation of 13 from 12. Both 12 and 13 were synthesized in this 

study, and the x-ray crystal structure of 12 was determined. 
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B. Results and discussion 

1. Synthesis and Characterization of (C0)5WPPh2C(PPh2)=CH2 (12) 

Compound 12 was synthesized from a 1.4:1 ratio ofW(CO)sNH2Ph and 

(Ph2P)2C=CH2 in toluene at room temperature, The excess ofW(CO)sNH2Ph was 

used because the unreacted (Ph2P)iC=CH2 was hard to remove from the products. 

The product was recrystallized from CH2Ch/CH30H and the 31P{1H} NMR 

spectrum revealed that a mixture of 12 and 13 was present. This showed that, 13 

can be formed at room temperature and that the dangling phosphine in compound 

12 is accessible. 

.. (11) 

12 

The 31P{1H} NMR spectrum of 12 showed a doublet at o -12.1 ppm (2Jp.p = 

68.4 Hz), which was assigned to P2 and a doublet with tungsten satellite signals at 

o 30.2 ppm (1Jp.w = 245 .9 Hz, 1
Jp.p = 68.4 Hz) assigned to P1. In addition the 

signals of oxidized P were observed at o 27. 9 ppm (Fig. 28). The 1H NMR 

spectrum showed a doublet of doublets at B 5.9 ppm {Jp.ff(tran•> = 44.0 Hz, Jp.ff(cia) 

= 6.2 Hz} assigned to the C=CH2 proton. Geminal proton-proton coupling was 

not observed (Fig. 29). Assignments were supported by a COSY (COrrelated 

SpectroscopY) spectrum of 12 (Fig.30). The 13C{1H} NMR spectrum (Fig.31) 
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showed a doublet at o 199.2 ppm {2JP-C(ax) = 22.5 Hz} , which was assigned to the 

axial carbonyl carbon. The expected satellite signals from the coupling of this 

carbon to W were too weak to be observed under our experimental conditions. A 

doublet and its satellite signals, assigned to the equatorial carbonyl carbons, were 

observed at cS 197.3 ppm {2JP-C(eq)= 7.0 Hz, 1Jcw = 126.3 Hz} . Benson's 13C{1H} 

NMR data of (OC)s WPPh2CH2PPh2 gave a doublet of doublets for the analogous 

carbons at cS 197.6 ppm {2Jc_p = 6.9 Hz, 4Jc-P = 3.0 Hz},61 indicating that the 

dangling end of the phosphine ligand is directed toward the equatorial carbonyl 

carbon of its W(CO)s unit . However, there is no evidence of this long-range C-P 

coupling in our spectrum. This is consistent with our prediction that the lone 

electron pair of the dangling phosphine P in 12 is not oriented toward equatorial 

carbons in solution. The downfield signals at cS 144.7ppm, 144.5 ppm were 

examined carefully and assigned to the vinyl carbons (C=CH2). Two dimensional 

NMR spectra were run on 12. The HETCOR (HETeronuclear chemical shift

CORrelation) spectrum showed the cross-link between cS 5.9 ppm in the 1H NMR 

spectrum and cS 144.5 ppm in the 13C{1H} NMR spectrum~ therefore, the signals at 

cS 144.5 ppm were assigned to the vinyl carbons. The APT (Attached Proton Test) 

gave more information that the investigated carbon had two protons attached. 

Therefore, this carbon was specified as the terminal carbon of the vinyl group 

(Fig. 32). The DEPT spectrum (Distortionless Enhancement by Polarization 

Transfer) gave a small doublet at about cS 144.5 ppm in the CH2 subspectrum, 

although the peak list did not include these two peaks because of our parameter 

setting (Fig. 33). In addition, the expansion of the 13C{1H} NMR spectrum in this 
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region was in agreement with the structure (Fig. 3 lb). The 13C{1H} NMR data of 

12 are given in (Table 7). The notations of the atoms are consistent with those in 

the molecular structure (Fig.34). 

Table 7. The 13C{1H} chemical shifts and spin couplings of compound 12. 

Atoms o (ppm) Coupling Constants (Hz) 

C1 199.2 2Jc-P(l) = 22.5 

C2-s 197.3 2Ic-P(I) = 7.0, 1Jc.w = 126.3 

cl8 144.7 1Ic-P(l) = 19.5, 1Ic-P(2) = 46.5 

C19 144.5 2Jc-P(l) = 1.1, 2Ic-P(2) = 15.5 

C11,11 134.3 11c-P(l) = 12.9, 3Ic-P(2) = 2.8 

C2s,3 1 133.4 1Jc-P(2) = 42.2 , 3Jc-P(l) = 2.8 

C6,10,12,16 133 .0 2 Ic-Pc1> = 12.0, 4Jc-P(2) = 1.7 

C20,24,26,3o 133 .7 21c-P(2) = 20.8 

C1,9,l3,1S 128.3 3Jc-P(l) = 7.3 

C21,23,21,29 128.0 3Jc-P(2) = 9. 7 

Ca.14 129.0 singlet 

C22,2a 130.2 4JC-P(l) = 1.2 
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2. Structure of compound 12 in the solid state 

The structure of compound 12 is shown in (Fig. 34). The figure gives a clear 

view that the lone electron pair of the uncoordinated end of vdpp is not directed 

toward the equatorial carbonyl groups in solid state. Selected bond distances and 

angles are given in (Table 8). The tungsten atom is coordinated to five carbonyl 

ligands and one phosphine in approximate C4v symmetry~ the P-W-Ccax) angle is 

175.3° and the P-W-Cccq) angles range from 87.6° to 97.0°, averaging 91.2°. Bond 

distances about tungsten atom are typical for monosubstituted tungsten 

pentacarbonyl complexes, range from 1.989 A to 2.042 A, and averaging 2.027 A. 

The CO bond trans to the P atom has the shortest W-C distance, as expected for a 

carbonyl group trans to a weaker 7t-acid . 

Table 8. Selected bond distances and bond angles of C31H220sP2 W 

W-C(l) 1.989(7) W-C(5) 2.033(7) 

W-C(2) 2 .039(8) W-C(3) 2.031(7) 

W-C(4) 2.042(8) W-P(l) 2.530(2) 

P(l)-C(l 7) 1.828(6) P(l)-C(l8) 1.835(6) 

P(l )-C(l 1) 1.833(6) P(2)-C(31) 1.823(6) 

P(2)-C(25) 1.824(6) P(2)-C(l 8) 1.851(6) 

0(1)-C(l) 1.145(8) 0(2)-C(2) 1.122(8) 

0(3)-C(3) 1.133(7) 0(4)-C(4) 1.131(9) 

0(5)-C(5) 1.141(8) C(18)-C(19) 1.309(8) 
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Continue of table 8. 

C(l)-W-C(5) 90.4(3) C(l)-W-C(2) 87.4(3) 

C(5)-W-C(2) 89.9(3) C(l)-W-C(3) 90.8(3) 

C(5)-W-C(3) 177.7(2) C(2)-W-C(3) 88.2(3) 

C(l)-W-C(4) 86.6(3) C(5)-W-C(4) 88.8(3) 

C(2)-W-C(4) 173.8(3) C(3)-W-C(4) 93.2(3) 

C(l)-W-P(l) 175.3(2) C(5)-W-P(l) 91.3(2) 

C(2)-W-P(l) 97.0(2) C(3)-W-P(l} 87.6(2) 

C(4)-W-P(l) 89.1(2) C(l 7)-P(l}-C(l8} 101.0(3) 

C(l 7)-P(l)-C(l l} 104.3(3) C(l8}-P(l}-C(l l} 101.3(3) 

C(l 7)-P(l}-W 116.3(2) C(18}-P(l}-W 118.7(2) 

C(l 1)-P(l)-W 113.1(2) C(31 )-P(2)-C(25) 102.1(3) 

C(31)-P(2)-C(l8} 102.2(3) C(25)-P(2)-C(l 8) 101.3(3) 

0(1 )-C(l}-W 179.5(6) 0(2)-C(2)-W 176.9(7) 

0(3)-C(3)-W 178.6(5) 0(4)-C(4)-W 178.4(6) 

0(5)-C(5)-W 178.6(5) P( 1)-C(l8}-P(2) 114.5(3) 

C(6)-C(l l}-P(l} 117.4(4) C(lO}-C(l l}-P(l) 123.9(4) 

C(12)-C(l 7)-P(l} 122.5(5) C( 16)-C( 17)-P( 1) 118.3(5) 

C(l 9}-C(l 8)-P(l) 120.4(5) C(l 9}-C(l 8)-P(2) 124.7(5) 

C(20)-C(25)-P(2) 125.8(5) C(24 )-C(2 5 )-P(2) 116.7(5) 

C(26)-C(31 )-P(2) 125.2(5) C(30)-C(31 )-P(2) 116.4(5) 
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formula C31H220~P2W 

formula weight 720.28 

space group P21/c 

a, A 13 .412(5) 

b, A 9.556(11) 

c, A 22.435(8) 

J3, deg 92. 77(3) 

v A3 , 2872(4) 

z 4 

cryst color, habit colorless block 

D(calc), g cm3 1.666 

µ(MoKa), cm·1 41.72 

temp, K 248(2) 

T(max)/T(min) 0.308/0.251 

diffractometer Siemens P4 

radiation MoKa(A. = 0.71073 A) 

R(F) , %• 3.06 

R(wF2
), %• 6.81 

•Quantity minimized= R(wF2
) = I;[w(F/-F/ )2]/ I;[wF0

2
)
2]112; 

R = I:6./I;(Fo), 6. = l(Fo - Fc)I 
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3. Synthesis and Characterization of [(OC)sWPPh2]lC=CH2 (13) 

Compound 13 was synthesized from a 3: I ratio of W(CO)sNH2Ph and 

(Ph2P)iC=CH2 in toluene at room temperature. The product was a mixture of 12 

and 13. The synthesis of 13 was also carried out from a 2: I ratio of W(CO)s-

NH2Ph and (Ph2P)2C=CH2 in toluene at 55 °C. This reaction gave some 

unexpected crystals of 12 which were separated with tweezers from a mixture of 

12 and 13. 

Ph2P' 
/C=CH2 + 2 W(C0)5NH2Ph 

Ph2P 
(12) 

13 

The 31P{1H}NMR spectrum of 13 showed a central line and a second order ABX 

pattern (Fig. 3 5). The satellite pattern consists of two ab subspectra indicated by 

lines I, 3, 5, 7 and by lines 2, 4, 6, 8, but as lines 2 and 5, line 4 and 7 are 

overlapping, only 6 satellite lines are shown in this pattern instead of the expected 

8 lines. 25 The satellite pattern was analyzed and the coupling constants were 

calculated.34•62•63 The coupling constants are as follows: 2Jp.p• = 20.2 Hz, 1Jp.w = 

248.8 Hz, 3Jp.w = 1.6 Hz. These magnitudes are comparable to those found in 

(OC)s W(µ-PPh2CH2PPh2)W(CO)s, a similar compound in which both ends of the 

phosphorus ligand are coordinated with a W(CO)s unit. 25 The 1Jp.w of 248.8 Hz 

observed for 13 is also similar to that of 12 (245 .9 Hz). It is well known that the 

magnitude of 1 Jp.w increases as the electronegativities of the substituents on 

phosphorus increase. 25'64 
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The ABX pattern of spectrum of 13 was simulated (Fig.36). In the ABX 

pattern, the number of spin nuclei is 3 and the calculated coupling constants were 

entered as: Ic1 ,2) = 20.2 Hz, I c1,3) = 248.8 Hz, I c2,3) = 1.6 Hz. The model spectrum 

perfectly fits the real spectrum. The big surprise was, when the value of Ic2,3) was 

slightly adjusted, it was revealed that only a tiny range of Ic2,3) values ( 1.4 - 1. 9 

Hz) gave a 6 line ABX pattern. Value outside of this range gave an 8 line pattern. 
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C. Experimental Section 

Preparation of W(COhNH2Ph 

The mixture ofW(C0)6 (10 g, 28.4 mmol) and aniline (10.35 mL, 113.6 

mmol) were irradiated in 400 mL dry THF for 9 hours. The solution turned to 

yellow. The THF was removed completely by rotavaporation. The oily residue 

was coagulated by adding dilute HCl, and washed with deionized water. The 

yellow solid was collected by filtration and was sublimed under vacuum at 

35 °C for 24 hours to remove unreacted W(C0)6. Yield : 9.53 g, 80.5%. mp: 109-

111 °C. IR[v(C=O) (cm-1)]: 1933 (vs), 1978 (m). 

Preparation of CCOhWCCPPh2h=CH~ 

A mixture of (Ph2P)iC=CH2 (0.951 g, 2.4 mmol) and W(CO)sNH2Ph (1.420 g, 

3 .4 mmol) was stirred in 3 0 mL of toluene for 24 hours. The solvent was removed 

under vacuum. The yellow residue was recrystallized from CH2Ch I CH30H, and 

sand-colored crystals were chromatographed over silica. The first band was eluted 

by a I :9 volume ratio of ethyl acetate/petroleum ether. The solvent was removed 

and the product was recrystallized with CH2Ch/CH30H, faint yellow crystals. 

Yield: 0.713 g, 41.2%. mp: 146-150 °C. IR [v(C=O) (cm-1)]: 1940 (vs), 2071 

(m); 1H NMR: o 5.9 ppm {JP-H(tran•> = 44.0 Hz, JP-H(ci•> = 6.2 HzL 31P{1H}NMR: o 

-12.1ppm(2Jp.p=68.4 Hz), 30.2 ppm(2Jp.p = 68.4 Hz, 1Jp.w = 245.9 Hz); 

13C{1H}NMR: 0199.2 ppm {2Jp.c(ax> = 22.5 Hz}, 197.3 ppm {21P-C(cq) = 7.0 Hz, 

1Jcw = 126.3 Hz} , 144.7 ppm (1Jpc = 46.5 Hz, 1Jpc = 19.5 Hz), 144.5 ppm (2Jpc = 
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15.5 Hz, 2Jpc = 1.1 Hz), 134.3 ppm (1Jpc = 12.9 Hz, 3Jpc = 2.8 Hz), 133 .4 ppm 

(1Jpc = 42.2 Hz, 3Jpc = 2.8 Hz), 133.7 ppm (2Jpc = 20.8 Hz), 133 .0 ppm (2Jpc = 

12.0 Hz, 'Jpc = 1.7 Hz), 130.2 ('Jpc = 1.2 Hz), 129.0 ppm (singlet), 128.3 ppm 

(3Jpc = 7.3 Hz), 128.0 ppm (3Jpc = 9. 7 Hz). 

Growing Crvstals of CCOhWCCPPhah=CHa 

Pure (CO)s WC(PPh2)i=CH2 was dissolved in a minimal amount of CH2Ch and 

a pipette was used to transfer the saturated solution to a clean 5 mm NMR tube. 

Approximate the same amount of CH3QH was slowly dribbled into the tube so 

that CH2Ch and CH3QH formed the discrete layers. The tube was placed in the 

dark and not disturbed for 2 days. A yellow crystal formed and was collected by 

filtration . The quality of the single crystal was evaluated with a polarizing 

microscopy. 

Preparation of lCCOhWPPhzhC=CH3 

The mixture of (Ph2P)2C=CH2 (0.476 g, 1.2 mmol) and W(CO)sNH2Ph (1.501g, 

3. 6 mmol) were stirred in 15 mL toluene for 7 days. The solvent was removed 

under vacuum. The dark green oil was recrystallized with CH2Ch/ CH30H. The 

faint yellow solid obtained was chromatographed over silica. With a 1 :9 ethyl 

acetate/ petroleum ether eluant, a first faint yellow band of (CO)s WC(PPh2)i=CH2 

appeared first . A second yellow band, [(CO)sWPPh2h-C=CH2, was obtained, and a 

third strong yellow band was not identified. The second fraction was recrystallized from 

CH2Ch/CH30H. The product, faint yellow crystal, was obtained with considerable loss. 
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Yield: 0.217 g, 17.3%. mp: 178-180 °C. IR[v(C=O) (cm-1)]:1944 (vs), 2071 (m); 

31PCH}NMR: o 36.2 ppm (2Jp.p = 20.2 Hz, 2JP-w = 248.8 Hz, 3Jp.w = 1.6 Hz). Anal . . Calcd. 

for C3Jl2201oP2W2: C, 41.41%; H, 2.12%. found: C, 40.56%; H, 2.24%. 
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Appendix 

1. The kinetic data of isomerization of 6 and 7 in CDCh 

Plot I (ln{[6]-[6]eq} vs. time, 10 °C) (from Lin's tbesis54
) 

Time (s) ln{[6]-(6]eq} 

0 -3 .84 
88620 -3.85 
180300 -3.9 
336480 -3.93 
515100 -3.98 

962520 -4.09 
1133160 -4.16 
1305840 -4.2 
1563720 -4.23 

Slope = (-2.6 ± 0.1) x 10-7; Intercept = -3.8419 ± 0.0079 

Plot II (ln{[6]-[6]eq} vs. time, 25 °C) (from Lin ' s thesis54
) 

Time (s) In{ [6]-[6)eq} 

0 -4.41 

15300 -4.45 
73680 -4.61 
99180 -4.75 
181980 -4.85 
350760 -5.4 
508260 -5.81 
606840 .{).14 

701760 .{).47 

Slope = (-2.9 ± 0.1) x 10.(); Intercept = -4.39945 ± 0.02324 
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Plot Ill (ln{[6]-[6]eq} vs. time, 40 °C) 

Time (s) ln{[6]-[6)eq} Aln{[6)-[6]eq} 

0 -1.211 0.0150 
6910 -1.411 0.0296 

21025 -1.743 0.0286 
35165 -2.064 0.0352 
76695 -3.147 0.1316 

Slope= (-2.5 ± 0.04) x 10-~; Intercept = -1.21517 ± 0.01515 

Plot IV (lnlcr vs. lff) 

lfl'(K"') Ink, Alnkc 
0.00353 -15.4071 0.0385 
0.00336 -13.0752 0.0347 
0.00319 -10.9955 0.0169 

Slope= -13,027.22 ± 51.56; Intercept = 30.63 ± 0.17 

Plot V [ ln(k{f) vs. lff] 

ltr(K•I) ln(k{f) Aln(k{f) 

0.00353 -21.05255 0.00014 
·o .00336 -18.77225 0.00012 
0.00319 -16.74175 0.00005 

Slope = -12,729.85 ± 55.88; Intercept = 23.93 ± 0.19 
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Plot VI (lnkb vs. lff) 

lff(K1
) lnkt, Alnko 

0.003S3 -16.6908 0.0394 
0.00336 -14.034S 0.0362 
0.00319 -l l.708S 0.0204 

Slope = -14,714.90 ± 135.41; Intercept = 35.32 ± 0.46 

Plot VIl [ln(ktlf) vs. lff] 

I ltr(K1> I ln(kJT) I AJ.n(kv'l) 

0.00353 -22.33626 0.00014 
0.00336 -19.73 160 0.00012 
0.00319 -17.45470 0.00007 

Slope = -14.417.53 ± 139.73; Intercept = 28.62 ± 0.47 

2. Kinetic data of isomerization of 6 and 7 in toluene-ds 

Plot I (ln{[6]-[6]eq} vs. time, 25 °C) 

Time (s) ln{[6]-[6]eq} &ln{[6]-[6]eq} 

0 -2.23493 0.0418 
731'40 
156360 
2'4'4800 
321780 
'400920 
'479580 
576900 
6551'40 

-2.23493 
-2.55105 
-2.95651 
-3.05761 
-3.27017 
-3.77226 
-'4.13517 
-'4.19971 

0.0680 
0.0287 
0.0430 
0.1962 
0.1664 
0.2750 
0.2253 
0.3590 

Slope = (-3 .3 ± 0.2) x 10"°~ Intercept = -2.09 ± 0.07 
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Plot II (ln{[6]-[6]eq} vs. time, 40 °C) 

Time (s) ln{ [6]-[6]eq} Aln{ [6]-[6]eq} 

0 -0.78307 0.0264 
9645 -0.97551 0.0228 

26975 -1 .38629 0.0412 
41495 -1 .69282 0.0424 
79255 -2.48891 0.0771 
164285 -3.68888 0.3124 
251165 -4.82831 0.9763 

Slope = (-1.61±0.08) x 10-s; Intercept= -0.95 ± 0.09 

Plot III (lnkr vs. lff} 

1fT (K1
) lnkr Alnkr 

0.00336 -12.9991 0.0607 
0.00319 -11.4950 0.0504 

Slope = -9353.18; Intercept= 18.39 

Plot IV [ln(klf) vs. lff] 

1fT(K-1
) ln(klT) Aln(k{f) 

0.00336 -18.69624 0.00020 
0.00319 -17.24120 0.00016 

Slope = -90473.80; Intercept= 11.66 
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Plot V (In.kb vs. ltr) 

1/T (Kl) In~ A~ 

0.00336 -13.7785 0.0609 
0.00319 -12.0373 0.0518 

Slope = -10826.91 ; Intercept= 22.55 

Plot VI [ln(kt/I) vs. lfl'] 

1/T(K-1) ln(kJT) Aln<kt/f) 

0.00336 -19.•47556 0.00020 
0.00319 -17.78353 0.00017 

Slope = -10521.53; Intercept = 15.83 
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