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ABSTRACT. Oviposition site location may be affected by (1) factors influencing the costs and benefits to the offspring (e.g., resource
availability, competition, predation risk) and (2) factors influencing the costs and benefits to the female (e.g., predation risk or mate ha-
rassment). In cases in which both the male and female are involved in locating a site, costs and benefits may differ for each parent and
the resulting oviposition site location may represent the outcome of selection pressures on one or both of them. We studied oviposi-
tion behavior in the black saddlebags dragonfly (Tramea lacerata Hagen), a species in which the male and female typically remain to-
gether (i.e., in tandem) while traveling among potential oviposition locations. Oviposition sites tended to be away from pond shoreline
at the outer edge of the vegetation on the water’s surface. We found that tandems distributed their oviposition locations widely
around the pond, and interactions with other dragonflies (typically other T. lacerata, either territorial males or tandems) led to a larger
distance between consecutive oviposition locations. Interestingly, for 10% of the tandems, the female became separated from the male
and oviposited solitarily multiple times. These solitary females spent significantly less time and traveled significantly smaller distances
between successive oviposition sites than when in tandem. Our results indicate that while some aspects of oviposition behavior and
site selection may be consistent between the male and female (e.g., the characteristics that make a site suitable), other aspects, such
as the distribution of sites, may be a result of a differing benefits and costs for the two sexes, perhaps as a consequence of potential
sperm competition.

Key Words: dispersion, egg laying, habitat selection, mate-guarding, territoriality

Behavioral decisions made during the selection of oviposition sites
may have a strong effect on the fitness of both parents and offspring
(Resetarits 1996). Behaviors associated with oviposition site selection
are particularly interesting in animals such as odonates (i.e., dragonflies
and damselflies), because the terrestrial adults must find optimal sites
for the success of their aquatic offspring. Buskirk and Sherman (1985)
suggested that a female’s choice of oviposition site may be strongly af-
fected by the ecology of their aquatic larvae. Furthermore, individual
female odonates may concentrate most of their eggs in one location
(e.g., Perithemis tenera; Jacobs 1955) or spread them out over a larger
area within or among breeding sites (e.g., Pantela flavescens; Schenk
et al. 2004). This spatial distribution of oviposition sites may relate to
egg predation and intraspecific competition among larvae that a species
experiences (Buskirk and Sherman 1985), and widely distributed ovi-
position sites may be a form of bet hedging, whereby the female spreads
risk to cope with environmental uncertainty (Buskirk and Sherman
1985, Hopper 1999).

The particular choice of oviposition sites, and the spatial distribution
of sites, may also be affected by the interactions a female has with com-
peting individuals (Koch 2006). For some species these interactions are
positive, such as the aggregating behavior in ovipositing females of
Sympetrum vicinum (McMillan 2000) and Argia moesta (Byers and
Eason 2009). In these species, the presence of conspecific females may
indicate a good oviposition site (McMillan 2000). Interactions may also
negatively affect a female’s oviposition success. For example, during
times of high male density, Koch (2006) observed some females adjust-
ing by hovering closer to the water, a change that decreased male ha-
rassment but increased their risk of predation. Such male harassment is
a consequence of sperm competition (Simmons 2001). Sperm competi-
tion exists in many odonates because the last male to copulate with the
female prior to oviposition has a higher probability of fertilizing her
eggs (Waage 1984, Alcock 1994).

Odonate species with last male advantage often guard their females
either by ovipositing in tandem (in physical contact with female), or by
accompanying the female without contact (Waage 1984, Corbet 1999,
Schenk et al. 2004). Some species participate in both types of mate
guarding depending on environmental and social factors (Latty 2006).
The type of mate guarding may also relate to the oviposition pattern of
the female (Buskirk and Sherman 1985; Schenk et al. 2004). For in-
stance, species that perform tandem oviposition typically have many
widely distributed oviposition sites within a limited area (Conrad and
Pritchard 1992), whereas noncontact guarding species localize oviposi-
tion sites (Schenk et al. 2004). Thus, links may exist between a species’
oviposition site choice and its mating system (Buskirk and Sherman
1985, Ware et al. 2012).

Most studies of the spatial distribution among oviposition sites in
odonates have focused on species that oviposit in multiple breeding
sites (e.g., different ponds; Schenk et al. 2004). Relatively few studies
have quantified the distribution of oviposition sites within a breeding
site, especially for those species that have tandem oviposition, nor have
studies typically investigated how this distribution is affected by inter-
actions with the guarding male or other individuals. In this study, we in-
vestigated the oviposition site selection of the black saddlebags
dragonfly (Tramea lacerata Hagen). T. lacerata is a widely distributed
migratory species (Needham et al. 2000). The territorial males often pa-
trol large areas along the edges of ponds or lakes, and the females arrive
at the breeding site to copulate and oviposit in tandem with a male or,
more rarely, to oviposit alone (Dunkle 1989). The oviposition behavior
used by most Tramea sp. is particularly interesting because tandem for-
mation is interrupted continually during oviposition (Young 1967,
Sherman 1983). During tandem oviposition the male guides the female
to a site, releases the tandem grip, and the female dips to the surface of
the water to release eggs. Following oviposition the male grabs her
again and the tandem proceeds to a different location (Sherman 1983,
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Dunkle 2000). Dunkle (1989) observed that T. lacerata tandems occa-
sionally chase other dragonflies while searching for oviposition sites.
Oviposition for T. lacerata typically occurs in open water or on algae
mats (Dunkle 1989), and the larvae are often found among stems of
aquatic vegetation or masses of algae (Needham et al. 2000).

Specifically, in this study, we examine the following questions: (1)
Do tandems choose particular locations in which to oviposit? (2) Are
these locations concentrated or dispersed at the breeding site? (3) Is ovi-
position site selection affected by interactions with other dragonflies?
(4) Does oviposition behavior differ between females ovipositing in
tandem and those ovipositing alone? Based on the answers to these
questions, we speculate on how oviposition site selection represents an
outcome of selection pressures on the offspring, the male, and the
female.

Materials and Methods

Study Site. Observations of T. lacerata oviposition behavior were
made at Carman Pond (39�28034.5200 N, 88�10018.3100 W), a small
pond on the campus of Eastern Illinois University in Coles County,
Illinois, during 20 d in June-August, 2013. Carman pond is “L” shaped
with a total circumference of�300 m. The surrounding vegetation was
mowed low to the edge of the pond, facilitating observations.
Vegetation in the water at the pond’s edge consisted primarily of creep-
ing primrose (Ludwigia peploides), growing 4-5 m out into the pond
from the shoreline, as well as floating mats of green algae. Due to its
small size, we were able to view the entire pond from the inside corner
of the “L,” using binoculars to help view the far sides of the pond. If
necessary, the observer moved along the shoreline to better observe a
tandem. The edge of the pond was marked to facilitate our recording of
locations; marks were either placed on existing objects or on surveyor’s
flags that we placed at the edge every 5 m.

Observations were made between 1000 and 1600 hr on days, when
males were active on the pond and females were most likely to copulate
and oviposit (Lutz and Pittman 1970, P.V.S., unpublished data). To con-
trol for possible effects of temperature on their behavior, we only con-
ducted observations on days above 25�C. All observations were made
on unmarked individuals, but previous studies on marked individuals at
this and nearby ponds indicate that turnover at a particular location is
extremely high for males, with few males returning to the pond on suc-
cessive days (P.V.S., unpublished data). Thus, although we do not
know whether females were observed multiple times, the males of pairs
were likely to be different, at least between days.

Observations. For observations, we observed the pond until a male-
female tandemwas located. The tandemwas then followed until it sepa-
rated and the female left the pond or until its identity became uncertain.
Identity uncertainty occurred occasionally when a tandem would inter-
act with more than one additional tandem, which made it difficult to
keep track of the focal tandem. We refer to the start through end of an
observation on a single tandem as a ‘tandem bout’. For each tandem
bout, we recorded the time and location of events using a voice record-
er. Recorded events included copulation, pause, oviposition, interac-
tion, and end of bout. Copulation was recorded for those tandems in
which the initial copulation was observed. Our observations of ‘ovipo-
sition’ for T. laceratamatched those cited earlier: the pair pauses over a
potential oviposition site (usually about 25 cm above the water), the
male lets go of the female and she dips the tip of her abdomen into the
surface of the water to deposit eggs. Typically the tandem is then rein-
stated, with the female rising up from the water and the male dropping
lower to resume contact. We used ‘pause’ to describe when the male
and female hovered in tandem for a few seconds, as with oviposition,
but the male never released the female and they changed locations with-
out ovipositing. Both ovipositions and pauses are brief (<2 s) in dura-
tion, and thus are best represented as events rather than states with a
duration. ‘Interactions’ were defined as the tandem chasing, or being
chased by, another dragonfly or tandem. When an interaction occurred,
we also recorded the species with which they interacted. Interacting

species included T. lacerata, Tramea carolina/Tramea onusta [com-
bined for our purposes because they are difficult to distinguish in flight
(Dunkle 2000) and both species occur at our study pond (P.V.S.,
unpublished data)]), Libellula luctuosa, Libellula pulchella, and Anax
junius. These interactions were also brief, usually lasting no more than
a few seconds. We defined the ‘end’ of a tandem bout as when the
female flew up and away from the pond. Any attempted predation
events that occurred during a tandem bout were also recorded. An event
location was recorded to the nearest 1 m for both its location relative to
the perimeter of the pond and how far out into the pond it occurred from
edge of the water. For some individuals, we also recorded the distance
the perimeter ‘vegetation’ (i.e., primrose and algal mats) extended from
the shore, to allow us to compare the location of the oviposition and
pause events relative to vegetation. The vegetation extent wasn’t
recorded initially for tandems, and thus sample sizes are smaller when
we analyze this variable.

To determine density, for most observation days we recorded the
number of T. lacerata males that were active on the pond once an hour.
The density census closest to the tandem observation was then used as
its corresponding density. Density measurements were not taken on a
few of the observation days, which led to some differences in sample
sizes among some comparisons. Temperatures were obtained from a
weather station located within 1 km of the study pond. Temperature
readings were recorded by the station every 5 min, and for our data we
used the reading mostly closely corresponding to the time of a specific
tandem observation.

Analysis. Our data consisted of a number of events that occurred
sequentially during a tandem bout. For all comparisons that required
comparison of single events, we used the second event of the appropri-
ate type (e.g., second oviposition, or second pause) to avoid pseudore-
plication within tandems and to avoid any potential bias from using the
first event after we initially noticed the tandem. If the second event was
unusable for some reason (e.g., it was followed by interaction), we used
the next event that met the criteria for the statistical comparison.

In order to examine oviposition site locations relative to vegetation, we
needed to account for the fact that vegetation extended out from shore into
the pond at different distances for different pond locations. Accordingly,
using the second oviposition per tandem, we used a chi-square test to com-
pare the frequency of ovipositions across tandems that occurred within
0–25%, 25–50%, 50–75%, and 75–100% of the vegetation extent at that
location, with 0 and 100% corresponding to the shoreline and outer edge of
the vegetation, respectively. Ovipositions beyond the vegetation were con-
solidated into a>100% category. To examine the relative location of a tan-
dem’s pause and oviposition sites, we conducted a pair-wise comparison
with a tandem between the distance from the shoreline for a tandem’s sec-
ond oviposition event to the distance from shoreline for its second pause
event. Because bouts differed in duration, to compare oviposition fre-
quency, we used two relative values: ‘oviposition rate’ (i.e., the total num-
ber of oviposition events that occurred while being observed divided by the
total time observed) and ‘oviposition percentage’ [i.e., 100*the number of
oviposition events/(number of oviposition eventsþ number of pause even-
ts)]. Distances and latencies between consecutive ovipositions, pauses,
with or without interactions, etc. started with the second possible event that
met the necessary characteristic (e.g., oviposition event followed by one
interaction followed by an oviposition event). When calculating the aver-
age distance between consecutive ovipositions for each tandem, we
excluded those distances during which they crossed the pond between ovi-
position sites because the straight-line distance between sites in those
instances would not be the same as the distance determined by locations
marked on the pond perimeter. Finally, to determine the distance over
which an individual tandem spread its eggs, we calculated the distance
between a tandem’s two oviposition sites that were furthest from each other
during a bout, regardless of when the oviposition events occurred relative
to each other. We used JMP (v. 9; SAS Institute, Inc.) for statistical
comparisons. Comparisons are nonparametric due to nonnormality in the
distributions of the data.We report means as6 se.
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For notation, we refer to oviposition events as “O” and pause events
as “P”. The corresponding measure is given as a subscript. For example,
oviposition percentage is notated as “O%” and the latency for a pause
event to occur after an oviposition event is notated “O-Platency.”

Results

General Oviposition Behavior. We observed 106 total tandems, with
94 of those remaining as a tandem (i.e., contact guarding; see later) for
the entire observation. These 94 tandems were observed for an average of
379.36 21.7 s. Tandem bouts included 10.96 0.78 oviposition events
and 8.76 0.64 pause events. For comparison, the three bouts that were
known to be complete (i.e., watched from tandem arrival on the pond fol-
lowing copulation to when the female left the pond) lasted an average
555.3 s and included 15.3 oviposition events and 12.7 pause events.
Individual tandems had slightly but significantly more oviposition events
than pauses within a given bout (median difference¼ 1 event,
range:� 15 to 32 events; Wilcoxon matched pairs, S¼ 583, P¼ 0.01).
Most pauses were not simply attempted ovipositions that were disturbed,
because only 5% (44/879) of all pauses we observed were associated
with an interaction with another dragonfly. Not surprisingly, tandems that
paused less often relative to oviposition events (i.e., had a higher O%)
tended to have a higher Orate (ovipositions/s; Spearman Correlation,
rs¼ 0.74,N¼ 94,P< 0.0001).

Following an oviposition, a tandem took longer before ovipositing
again than if the oviposition were following a pause (median difference
O-Olatency minus P-Olatency¼ 9 s, range: �158 to 58 s, N¼ 82;
Wilcoxon S¼ 758, P¼ 0.0003). However, the distance to the next ovi-
position location is similar following an oviposition and following a
pause (median O-Odistance minus P-Odistance¼ 1 m, range:�60 to 96 m,
N¼ 82; Wilcoxon S¼ 206, P¼ 0.29). Male density on the pond was
positively correlated with temperature (rs¼ 0.28, N¼ 73, P¼ 0.01),
but neither temperature nor density was significantly correlated with
O% (density: rs¼�0.11, N¼ 86, P¼ 0.31; temperature: rs¼ 0.08,
N¼ 81, P¼ 0.45) or Orate (density: rs¼�0.06, N¼ 86, P¼ 0.56; tem-
perature: rs¼ 011,N¼ 81, P¼ 0.35).

Oviposition locations averaged 4.06 0.06 m into the pond from the
shore edge (N¼ 1066 oviposition events pooled across tandems), with
the vegetation extending out into the pond an average of 4.46 0.03 m
(N¼ 513) at the oviposition sites. The locations tended to occur toward
the outer edge of the vegetation or algae on the surface of the water, with
most of the oviposition sites within the last 25% of the vegetation or in
the water just beyond the edge of the surface vegetation (Fig. 1, oviposi-
tions within 0-25% vegetation extent: 1/24 tandems, 25-50%: 0/24, 50-
75%: 0/24, 75-100%: 16/24, >100%: 7/24, v2¼ 39.8, df¼ 3,
P< 0.0001). Furthermore, a tandem’s successful ovipositions were sig-
nificantly farther out (relative to the vegetation) than their pauses (median
difference ovip to pause location¼ 0 m, range: �0.25 to 1.13 m,
Wilcoxon matched pairs, S¼ 26, P¼ 0.04, N¼ 22). Consecutive ovipo-
sitions were spread 7.86 0.6 m apart (N¼ 91) along the shoreline (Fig.
2), and as a consequence, a tandem’s ovipositions for the entire bout were
spread widely around the pond (mean distance between a tandem’s fur-
thest oviposition sites¼ 60.16 4.9 m, range¼ 1-145 m; N¼ 91).
Tandems for which we observed more ovipositions had a larger maxi-
mum spread between oviposition sites (N¼ 91, rs¼ 0.52,P< 0.0001).

Predators (primarily largemouth bass, Macropterus salmoides)
attacked 14 of the 106 total tandems at some point during the bout, and
one tandem was attacked twice. Four of the 15 predation attempts were
on the female while she was ovipositing, four occurred while the tandem
was paused at a site, six were on the tandem as it was flying between loca-
tions, and one occurred on the male while he was guarding the oviposit-
ing female (this was the only successful predation we observed).

Solitary versus Tandem Females. During our observations, we
never observed a female to only oviposit alone. However, 11/106
(10%) tandems had a period of time in which the female did not return
to the male between ovipositions. This typically occurred if the male
either began chasing another male during her oviposition or she left the
male after she oviposited but before he could grab onto her again. We
never observed these solitarily ovipositing females return to the male,
but in two cases (18%), they were grabbed by another male and she
copulated with him prior to leaving the pond. Density of males on the
pond did not differ significantly between bouts in which the pair
remained in tandem and those that included some solitary oviposition
(median density for solitary¼ 5 males, range: 4-11 males, N¼ 6;
median for tandem¼ 6 males, range: 3-11 males, N¼ 86; Wilcoxon
S¼ 229, P¼ 0.43), although the sample size is small for solitary
females for which we had corresponding pond densities.

Fig. 1. Distribution of oviposition events relative to the vegetation
edge. A value of 0 represents the shoreline, and a value of 1.0
represents the outer edge of the vegetation. Proportions> 1.0
represent ovipositions that occurred in the water beyond this outer
edge. Data are from all ovipositions by all tandems for which we had
data on the extent of vegetation (N¼ 286 oviposition events).

Fig. 2. Distribution of distance between consecutive (second to
third) oviposition sites for an individual tandem.
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The change in oviposition behavior from tandem to solitary affected the
spatial and temporal patterns of oviposition. For instance, when not return-
ing to themale, the female took significantly less time between ovipositions
than when returning to the male in tandem (median latency solitary minus
tandem¼�13 s, range: �32 to �4 s, N¼ 9; Wilcoxon S¼ 22.5,
P¼ 0.004), moved a significantly shorter distance (median distance soli-
tary minus tandem¼�3 m, range: �68 to 0 m, N¼ 9; Wilcoxon S¼ 18,
P¼ 0.008), and had a significantly higher O% (median solitary minus
tandem¼ 35%, range: 8.3-100%, N¼ 11; Wilcoxon S¼ 33.0, P¼ 0.001)
and Orate (median solitary minus tandem¼ 0.18 events/s, range, 0.08 to
0.35 events/s,N¼ 11;Wilcoxon S¼ 33.0,P¼ 0.001).

Interactions. 102/106 (96%) of the tandems interacted at least once
with another dragonfly during the tandem observation, with tandems
averaging 5.56 0.4 (N¼ 106) interactions per tandem observation.
These interactions typically lasted <5 s and involved either the tandem
pair pursuing a nearby dragonfly or a nearby dragonfly pursuing the
tandem. Interactions occurred mostly with other black saddlebags; 309/
535 (58%) of all interactions (pooled across all tandems) in which the
other dragonfly could be identified were with a single black saddlebag
male and 13%were with other black saddlebag tandems. Of the remain-
ing interactions, 18% were with a L. luctuosa male, 8% were with an
A. junius male or tandem, 1.5% were with a L. pulchella male or
tandem, and 1% were with T. carolina/T. onusta male or tandem. The
frequency at which a tandem had interactions (number of interactions/
s) was positively correlated with density, but the pattern was not statisti-
cally significant (rs¼ 0.19,N¼ 86, P¼ 0.07).

These interactions did affect some aspects of a tandem’s behavior.
For example, interactions seemed to cause a tandem to travel farther
between ovipositions; the distance between consecutive ovipositions
was greater if the tandem had an interaction between oviposition events
rather than just having an oviposition event followed by another ovipo-
sition event (Fig. 3; median difference¼ 3 m, range: �46 to 79 m,
N¼ 45, Wilcoxon matched-pairs, S¼ 216, P¼ 0.007). However, we
found no significant difference in latency between consecutive oviposi-
tion events with and without an intervening interaction (median
difference¼ 3 s, range:�55 to 105 s, N¼ 45, Wilcoxon matched-pairs,
S¼ 125.5, P¼ 0.13). Tandems had a smaller average distance between
consecutive oviposition sites when the rate of interactions was higher
(rs¼�0.22, P¼ 0.03, N¼ 91). Those tandems that interacted at a
higher rate also had significantly lower O% (rs¼�0.20, N¼ 94,

P¼ 0.048) but the negative correlation between interaction rate and
Orate was not significant (rs¼�0.17,N¼ 94, P¼ 0.09).

Discussion

We found that sequential ovipositions by T. lacerata tandems were
spread spatially. As such, their behavior matches descriptions of ovipo-
sition behavior of some other odonates (e.g., Sympetrum fonscolombii;
Schenk et al. 2004) as well as some species in other insect taxa (e.g.,
butterflies; Root and Kareiva 1984). In the case of T. lacerata, the ovi-
positions were spread around a single breeding site (i.e., the pond) dur-
ing an oviposition bout (e.g., Hetaerina vulnerata; Alcock 1982).
Furthermore, we found that these locations were dependent on the pres-
ence of the male and on interactions with other odonates.

For T. lacerata tandems, the spread between oviposition sites
around the pond typically seemed to be “voluntary.” Most consecutive
oviposition site locations were at least a few meters apart, and tandems
often continued to move around the pond between ovipositions, result-
ing in a distribution of eggs over a relatively large area. Spreading out
oviposition sites is often suggested to be either a result of selection to
avoid the risk of putting all the reproductive output in one location
(Hopper 1999), or an attempt to decrease competition among offspring
(e.g., Averill and Prokopy 1987). In odonates, spatial risk spreading has
been suggested previously for species that oviposit in different ponds
(e.g., P. flavescens; Schenk et al. 2004), but it might apply to locations
within a pond as well. Avoiding competition among offspring is also
plausible, especially given the effects of predation and cannibalism
among odonate larvae (Crumrine et al. 2008), and the fact that we found
that tandem T. lacerata frequently chased other tandems supports this
idea, although other possible explanations for tandem chases exist (e.g.,
avoiding harassment while ovipositing).

In contrast to T. lacerata, some odonate species lay all of their eggs
in one location during their pond visit (e.g., P. tenera; Jacobs 1955,
Switzer 1997), and others lay them all in a restricted area (e.g., different
locations within a male’s territory (e.g., Erythemis simplicicollis;
McVey 1988)). Because it is not immediately apparent how risk and
competition would be different for the larvae of these species, other fac-
tors besides those affecting larvae may also be involved. One possibil-
ity is provided by Buskirk and Sherman (1985), who suggested that
spatial distribution among oviposition sites may be correlated with a
species’ mating system. They found support for the hypothesis that
females that oviposit in tandem tend to choose more widely distributed
oviposition sites (Buskirk and Sherman 1985, Ware et al. 2012).

Interestingly, our observations of T. lacerata suggest that the bene-
fits of spreading ovipositions spatially may not be the same between
males and females. When females were no longer reforming a tandem
with their male, their oviposition behavior changed: they oviposited
more rapidly and moved a shorter distance. Although we don’t know
whether the total number of eggs released was altered, we do know that
the change in a female’s oviposition behavior had two primary conse-
quences: she laid multiple batches of eggs in the same confined area
and she spent less time on the pond. Similarly, Sherman (1983) found
that female T. carolina, when ovipositing without a male guarding
them, had oviposition bouts of shorter duration than tandem females.

What may differ between males and females that results in this
change in behavior? For males, one likely possibility is the threat of
sperm competition. Males may leave a location and move about the
pond in response to the presence a competing male. We found that fol-
lowing an interaction, tandems moved significantly farther before their
next oviposition. The predominant interaction was with single male
conspecifics, as Young (1967) noted for tandem T. onusta, and thus tan-
dems may be avoiding conspecific males to avoid the risk of female
takeover. In our study, when a female was ovipositing solitarily after
being separated from her tandem male, she was occasionally grabbed
by a different male and subsequently copulated with that new male.
Therefore, sperm competition seems to represent a real risk for male
T. lacerata. Tandems that experienced higher rates of interactions had a

Fig. 3. Average distance (6 se) between a tandem’s consecutive
oviposition sites with and without an interaction (i.e., chase by or
chasing another dragonfly or dragonfly tandem) occurring between
the oviposition events (N¼ 45 tandems).
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smaller average interoviposition site distance overall, which, in combi-
nation with the result that individual interactions increase distance, sug-
gests that distances between sites may decrease once a tandem has
found an area relatively free from conspecific harassment. Females, on
the other hand, may experience higher predation risk than the males
during oviposition (e.g., Convey 1992, Rehfeldt 1996). Consequently,
the female may adopt a strategy to avoid lengthy mate guarding, instead
choosing spend less time laying eggs in a relatively small area and leave
the pond. Unfortunately, our observations of predation attempts are too
limited to test this idea, and regardless, alternative hypotheses exist,
and obtaining a better understanding on whether the male, female, or
both have “control” of the tandem and oviposition locations will be crit-
ical to interpreting differences in solitary and tandem behavior.

Although our sample size was small for solitary females, male den-
sity did not differ between those tandems that remained together and
those that included some solitary ovipositions by the female. As such,
our results differed from studies of species in which males change
guarding behavior based on density (e.g., from contact to noncontact
guarding; Latty 2006) as well as from those of Sherman (1983) on
T. carolina. Sherman (1983) found that female T. carolina only ovipos-
ited alone when few males were present at the breeding site (such as
occurred in the early morning or on overcast days); in these cases,
females were alone for the whole oviposition bout. In contrast, our
observations were taken in the middle of the day on sunny days and
females started their bout in tandem with a male, so although we cannot
determine whether female T. lacerata oviposited alone during other
times of the day, we can conclude that the solitarily ovipositing females
we observed were not simply avoiding male harassment by choosing
times of day without males (cf. Sherman 1983).

Our observations also yielded some clues as to the selection of par-
ticular oviposition sites by T. lacerata. We were able to compare a tan-
dem’s oviposition events to occurrences when the pair paused, but
didn’t actually oviposit, at the location. For many of these pauses, the
lack of oviposition was not a result of interference from other odonates,
suggesting that the tandem may have been rejecting the location for
some reason. And, while they did not move further following a pause
compared with following an oviposition, we did find evidence that sites
chosen for oviposition were farther out from shore than sites at which
the tandem simply paused. In addition, oviposition sites overall tended
to be located at or just beyond the outer edge of vegetation.

Combined, these observations suggest that T. lacerata prefer to ovi-
posit in relatively deep water at the edge of surface vegetation and algal
mats or just beyond that edge, over submerged vegetation. This site
choice may be a result of selection pressures on eggs and larvae. In
order to avoid predation of larvae, females tend to oviposit in dense
vegetation, and to avoid desiccation a female may oviposit in open
water (Buskirk and Sherman 1985). The black saddlebags may achieve
a balance between the dual selection pressures of predation and desicca-
tion by ovipositing within the vegetation near the edge of open water.

Overall, this study has furthered the understanding of tandem ovipo-
sition and has given light to the events and possible tradeoffs associated
with and affecting oviposition site selection. Future studies would bene-
fit from focusing on whether a tandem’s oviposition sites tend to occur
in areas with relatively little harassment from single males, as predicted
if males in tandem are adjusting their site choice in response to inter-
actions. In addition, comparing the number and size of eggs laid by
females, when solitary versus in a tandem, could help determine more
definitively the consequences of a female changing the spatial distribu-
tion of eggs under those conditions (Schenk et al. 2004).
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