Eastern Illinois University The Keep

Commutators as Powers in Free Products of Groups

Leo Comerford
Eastern Illinois University, lpcomerford@eiu.edu
Charles C. Edmunds
MOUNT ST. VINCENT UNIVERSITY
Gerhard Rosenberger
UNIVERSITXT DORTMUND

Follow this and additional works at: http://thekeep.eiu.edu/math_fac
Part of the Mathematics Commons

Recommended Citation

Comerford, Leo; Edmunds, Charles C.; and Rosenberger, Gerhard, "Commutators as Powers in Free Products of Groups" (1994).
Faculty Research and Creative Activity. 3.
http://thekeep.eiu.edu/math_fac/3

COMMUTATORS AS POWERS IN FREE PRODUCTS OF GROUPS

LEO P. COMERFORD, JR., CHARLES C. EDMUNDS, AND GERHARD ROSENBERGER

(Communicated by Ronald M. Solomon)

Abstract

The ways in which a nontrivial commutator can be a proper power in a free product of groups are identified.

It is well known that in a free group, a nontrivial commutator cannot be a proper power. This seems to have been noted first by Schützenberger [2]. It is, however, possible for a nontrivial commutator to be a proper power in a free product. Our aim in this paper is to determine the ways in which this can happen.

Theorem 1. Let $G=*_{i \in I} G_{i}$, the free product of nontrivial free factors G_{i}. If $V, X, Y \in G$ and $V^{m}=X^{-1} Y^{-1} X Y=[X, Y]$ for some $m \geq 2$, then either
(1.1) $V \in W^{-1} G_{i} W$ for some $W \in G, i \in I$, and V^{m} is a commutator in $W^{-1} G_{i} W$; or
(1.2) m is even, $V=A B$ with $A^{2}=B^{2}=1$, and $V^{m}=\left[A, B(A B)^{(m-2) / 2}\right]$; or
(1.3) m is odd, $V=A C^{-1} A C$ with $A^{2}=1$, and $V^{m}=[A$, $\left.C\left(A C^{-1} A C\right)^{(m-1) / 2}\right]$; or
(1.4) $m=6, V=A B$ with $A^{2}=B^{3}=1$, and $V^{6}=\left[B^{-1} A B A, B(A B)^{2}\right]$; or
(1.5) $m=3, V=A B$ with $A^{3}=B^{3}=1$, and $V^{3}=\left[B A^{-1}, B A B\right]$; or
(1.6) $m=2, V=A B$ with $A^{2}=1$ and $B^{-1}=C^{-1} B C$ for some $C \in G$, and $V^{2}=\left[C^{-1} A, B\right]$; or
(1.7) $m=4, V^{2}=A B C$ with $A^{2}=B^{2}=C^{2}=1$, and $V^{4}=[B A, B C]$.

We recall that in a free product every element of finite order lies in a conjugate of a free factor. Thus we have the following consequence of Theorem 1.
Corollary 2. Let $G=*_{i \in I} G_{i}$, where no G_{i} has elements of even urder. If $V, X, Y \in G$ and $V^{m}=[X, Y]$ for some $m \geq 2$, then either $V \in W^{-1} G_{i} W$ for some $W \in G, i \in I$, and V^{m} is a commutator in $W^{-1} G_{i} W$ or $m=3$, $V=A B$ for some $A, B \in G$ with $A^{3}=B^{3}=1$, and $V^{3}=\left[B A^{2}, B A B\right]$.

Part (1.7) of Theorem 1 is somewhat unsatisfactory in that it describes the form of V^{2} rather than that of V. Among the ways in which an element V of a free product may have $V^{2}=A B C$ with $A^{2}=B^{2}=C^{2}=1$ is $V=D E$
with $D^{2}=E^{4}=1$, in which case $V^{2}=(D)\left(E^{2}\right)\left(E^{-1} D E\right)$. Not every solution is of this form, as shown by $G=\left\langle a, b ; a^{2}=b^{2}=(a b)^{2}=1\right\rangle *\left\langle c ; c^{2}=\right.$ 1) and $V=a c b c a b c$; here $V^{2}=(a c b c a)(b c a c b)(c a b c)$, a product of three elements of order two, but V is not a product of two elements of finite order. A classification of elements V satisfying the conditions of (1.7) has eluded us.

Relative to (1.6), we record the following well-known consequence of the Conjugacy Theorem for Free Products [1, Theorem IV.1.4].
Lemma 3. If B is an element of a free product $G=*_{i \in I} G_{i}$ and $B^{-1}=C^{-1} B C$ for some $C \in G$, then either
(3.1) $B \in W^{-1} G_{i} W$ for some $W \in G, i \in I$, and there is a $C \in W^{-1} G_{i} W$ such that $B^{-1}=C^{-1} B C$ or
(3.2) $B=D E$ for some $D, E \in G$ with $D^{2}=E^{2}=1$.

Before proceeding with a proof of the theorem, we establish some notation and terminology for the free product $G=*_{i \in I} G_{i}$. Our usage is that of Lyndon and Schupp [1] unless otherwise noted. A product $P Q$ of elements P and Q of G is reduced if one of P, Q is trivial or if the last letter of the normal form of P is not inverse to the first letter of the normal form of Q. The product $P Q$ is fully reduced if P or Q is trivial or if the last letter of the normal form of P is from a free factor different from that of the first letter of the normal form of Q; we sometimes denote this by writing $P \cdot Q$. These notions extend to products of more than two factors, with the understanding that the noncancellation conditions continue to apply after trivial factors have been deleted. Thus a product $P_{1} \cdots P_{k}$ is fully reduced if and only if $\left|P_{1} \cdots P_{k}\right|=$ $\sum_{i=1}^{k}\left|P_{i}\right|$, where $|\mid$ denotes free product length.

An element P of G is cyclically reduced if $|P| \leq 1$ or the first and last letters of its normal form are not inverses and is fully cyclically reduced if $|P| \leq 1$ or the first and last letters of its normal form lie in different free factors of G.

A key ingredient in our analysis will be the characterization by Wicks of the fully reduced forms of a commutator in a free product. The following is a restatement of Lemma 6 of [3].

Lemma 4 (Wicks). If $U \in G=*_{i \in I} G_{i}$ is a commutator, either $U \in W^{-1} G_{i} W$ for some $W \in G, i \in I$, and U is a commutator in $W^{-1} G_{i} W$, or some fully cyclically reduced conjugate of U has one of the following fully reduced forms:
(4.1) $X^{-1} a_{1} X a_{2}$ with $X \neq 1, a_{1} \neq 1, a_{1}, a_{2} \in G_{i}$ for some $i \in I$, and a_{1} conjugate to a_{2}^{-1} in G_{i}; or
$X^{-1} a_{1} Y^{-1} a_{2} X a_{3} Y a_{4}$ with $X \neq 1, Y \neq 1, a_{1}, a_{2}, a_{3}, a_{4} \in G_{i}$ for some $i \in I$, and $a_{4} a_{3} a_{2} a_{1}=1$; or
(4.3) $X^{-1} a_{1} Y^{-1} b_{1} Z^{-1} a_{2} X b_{2} Y a_{3} Z b_{3}$ with $a_{1}, a_{2}, a_{3} \in G_{i}$ for some $i \in I$ and $a_{3} a_{2} a_{1}=1, b_{1}, b_{2}, b_{3} \in G_{j}$ for some $j \in I$ and $b_{3} b_{2} b_{1}=1$, and either not all of $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}$ are in any one free factor of G or each of X, Y, Z is nontrivial.

As a final preliminary step, we examine the ways in which both an element and its inverse can occur as fully reduced subwords of a proper power in a free product.

Lemma 5. Suppose that V is a fully cyclically reduced element of $G=*_{i \in I} G_{i}$ with $|V| \geq 2$, that $m \geq 1$, and that, for some $X, R, S, T \in G, V^{m}=$ $X^{-1} \cdot R=S \cdot X \cdot T$. Then one of the following is true:
(5.1) $|X| \geq|V|, X=X_{1} \cdot B \cdot A$ and $V=A \cdot B$ for some A, B, X_{1} with $A^{2}=B^{2}=1$, and $S X=V^{n} \cdot A$ for some $n<m$; or
(5.2) $\frac{1}{2}|V|<|X|<|V|, X=X_{1} \cdot X_{2} \cdot X_{3}$ and $V=X_{3} \cdot X_{2}^{-1} \cdot X_{1} \cdot X_{2}$ for some X_{1}, X_{2}, X_{3} with $X_{1}^{2}=X_{3}^{2}=1$, and $S=V^{n} \cdot X_{3} \cdot X_{2}^{-1}$ for some $n<m$; or

$$
\begin{equation*}
\text { with } X_{1}^{2}=1 \text {, and } S=V^{n} \cdot X_{2}^{-1} \text { for some } n<m \text {; or } \tag{5.3}
\end{equation*}
$$

$|X|<|V|, X=X_{1} \cdot X_{2}$ and $V=X_{2} \cdot X_{1}^{-1} \cdot S_{2} \cdot X_{1}$ for some X_{1}, X_{2}, S_{2} with $X_{2}^{2}=1$, and $S=V^{n} \cdot X_{2} \cdot X_{1}^{-1} \cdot S_{3}$ for some $n<m$; or
(5.5) $|X| \leq \frac{1}{2}|V|-1$ and $V=X^{-1} \cdot V_{2} \cdot X \cdot V_{3}$ for some nontrivial V_{2}, V_{3} and $S=V^{n} \cdot X^{-1} \cdot V_{2}$ for some $n<m$.
Proof of Lemma 5. If X is empty, clause (5.5) applies with $V=V_{2} \cdot V_{3}$ a fully reduced factorization of V such that $S=V^{n} \cdot V_{2}$ for some $n<m$. We suppose, then, that $X \neq 1$.

If $|X| \geq|V|$, we factor V as $A \cdot B$ so that $S X=V^{n} \cdot A$ with $|A|<|V|$. It follows that $X=X_{1} \cdot B \cdot A$ for some X_{1}. But since $X^{-1}=A^{-1} \cdot B^{-1} \cdot X_{1}^{-1}$ is an initial subword of $V^{m}=(A \cdot B)^{m}, A^{-1}=A$ and $B^{-1}=B$. This is the situation described in (5.1). We assume, henceforth, that $|X|<|V|$.

Let n be the largest integer such that $\left|V^{n}\right| \leq|S|$, and let S_{1}, V_{1} be such that $S=V^{n} \cdot S_{1}$ and $V=X^{-1} \cdot V_{1}$. We cannot have $\left|S_{1}\right|=|X|$ or $\left|S_{1}\right|+|X|=|V|$, for that would violate our hypotheses on the fully reduced factorizations of V^{m}.

Suppose that $\left|S_{1}\right|<|X|$ and $\left|S_{1}\right|+|X|>|V|$. Then X factors as $X_{1} \cdot X_{2} \cdot X_{3}$ with $X^{-1}=S_{1} \cdot X_{1}^{-1}, V=S_{1} \cdot X_{1} \cdot X_{2}$, and X_{1} and X_{2} nonempty. Now $S_{1}=X_{3}^{-1} \cdot X_{2}^{-1}$, so $V=X_{3}^{-1} \cdot X_{2}^{-1} \cdot X_{1} \cdot X_{2}$. But $S X=V^{n+1} \cdot X_{3}$, which implies that $X_{3}^{-1}=X_{3}$, and $V=X_{3}^{-1} \cdot X_{2}^{-1} \cdot X_{1}^{-1} \cdot V_{1}$, which yields $X_{1}^{-1}=X_{1}$. This is the situation of (5.2), and we note that $|V|<\left|S_{1}\right|+|X|$ and $\left|S_{1}\right|<|X|$ imply that $|V|<2|X|$.

Next suppose that $\left|S_{1}\right|<|X|$ and $\left|S_{1}\right|+|X|<|V|$. Then X factors as $X_{1} \cdot X_{2}$ with $S_{1}=X_{2}^{-1}$ and $V=S_{1} \cdot X \cdot T_{1}$ for some T_{1}, so $V=X_{2}^{-1} \cdot X_{1} \cdot$ $X_{2} \cdot T_{1}=X_{2}^{-1} \cdot X_{1}^{-1} \cdot V_{1}$. It follows that $X_{1}^{-1}=X_{1}$, and we are in situation (5.3).

Now suppose that $\left|S_{1}\right|>|X|$ and $\left|S_{1}\right|+|X|>|V|$. We factor X as $X_{1} \cdot X_{2}$ with $V=S_{1} \cdot X_{1}$ and factor S_{1} as $X^{-1} \cdot S_{3}$. Then $V=X_{2}^{-1} \cdot X_{1}^{-1} \cdot S_{3} \cdot X_{1}$ and, since $S \cdot X=V^{n+1} \cdot X_{2}, X_{2}^{-1}=X_{2}$; this is (5.4).

Finally, suppose that $\left|S_{1}\right|>|X|$ and $\left|S_{1}\right|+|X|<|V|$. In this case, S_{1} factors as $X^{-1} \cdot V_{2}$ for some V_{2} and $V=S_{1} \cdot X \cdot V_{3}$ for some V_{3}. Then $V=X^{-1} \cdot V_{2} \cdot X \cdot V_{3}$, where necessarily V_{2} and V_{3} are nonempty, and (5.5) applies.
Proof of Theorem 1. Each of the forms specified for V (or, in (1.7), V^{2}) in the conclusion of Theorem 1 is preserved if V is replaced by a conjugate of itself, so we lose no generality in assuming that V is fully cyclically reduced. If $V \in G_{i}$ for some $i \in I$, then Lemma 4 tells us that (1.1) holds. We suppose, then, that $|V| \geq 2$.

By Lemma 4, some fully cyclically reduced conjugate of V^{m} has the form specified in (4.1), (4.2), or (4.3). After again replacing V by a fully cyclically reduced conjugate and relabeling in (4.2) and (4.3) if necessary, we may assume that V^{m} has form (4.1), or form (4.2) with $|X| \geq|Y|$, or form (4.3) with $|X| \geq|Y|$ and $|X| \geq|Z|$.

Let $P=a_{1}$ and $Q=a_{2}$ in form (4.1), $P=a_{1} Y^{-1} a_{2}$ and $Q=a_{3} Y a_{4}=$ $a_{3} Y a_{1}^{-1} a_{2}^{-1} a_{3}^{-1}$ in form (4.2), and $P=a_{1} Y^{-1} b_{1} Z^{-1} a_{2}$ and $Q=b_{2} Y a_{3} Z b_{3}=$ $b_{2} Y a_{1}^{-1} a_{2}^{-1} Z b_{1}^{-1} b_{2}^{-1}$ in form (4.3). In each instance, $V^{m}=X^{-1} \cdot P \cdot X \cdot Q$ and Q is conjugate to P^{-1} in G. Further, $|P|=|Q|=1$ in (4.1), $|P| \leq|X|+2$ and $|Q| \leq|X|+2$ in (4.2), and $|P| \leq 2|X|+3$ and $|Q| \leq 2|X|+3$ in (4.3). We proceed by cases according to which clause of the conclusion of Lemma 5 is satisfied, with $R=P X Q, S=X^{-1} P$, and $T=Q$.

Case (5.1). Suppose that $X=X_{1} \cdot B \cdot A$ and $V=A \cdot B$ for some X_{1}, A, B with $A^{2}=B^{2}=1$, that $X_{1}^{-1} P X_{1}=(A B)^{k} A$ for some $k, 0 \leq k \leq m-3$, and that $Q=B(A B)^{m-k-3}$.

If m is even, (1.2) is satisfied, while if m is odd, Q conjugate to P^{-1} implies that B is conjugate to A and (1.3) holds.

Case (5.2). Suppose that $X=X_{1} \cdot X_{2} \cdot X_{3}$ and $V=X_{3} \cdot X_{2}^{-1} \cdot X_{1} \cdot X_{2}$ for some X_{1}, X_{2}, X_{3} with $X_{1}^{2}=X_{3}^{2}=1$, that $P=X_{2} X_{3} X_{2}^{-1}\left(X_{1} X_{2} X_{3} X_{2}^{-1}\right)^{k}$ for some $k, 0 \leq k \leq m-3$, and $Q=X_{2}^{-1} X_{1} X_{2}\left(X_{3} X_{2}^{-1} X_{1} X_{2}\right)^{m-k-3}$.

As in the previous case, (1.2) applies if m is even, and if m is odd, Q conjugate to P^{-1} implies that X_{3} is conjugate to X_{1} and (1.3) obtains.

Case (5.3). Suppose that $|X|<|V|, X=X_{1} \cdot X_{2}$ and $V=X_{2}^{-1} \cdot X_{1} \cdot X_{2} \cdot T_{1}$ for some X_{1}, X_{2}, T_{1} with $X_{1}^{2}=1$, and that $P=X_{2} T_{1} X_{2}^{-1}\left(X_{1} X_{2} T_{1} X_{2}^{-1}\right)^{k}$ for some $k, 0 \leq k \leq m-2$, and $Q=T_{1}\left(X_{2}^{-1} X_{1} X_{2} T_{1}\right)^{m-k-2}$.

We first notice that since $|P| \leq 2|X|+3 \leq 2|V|+1$ and $|Q| \leq 2|X|+3 \leq$ $2|V|+1$, we have $m \leq 6$. Now Q is conjugate to P^{-1}, so P and Q must have fully cyclically reduced conjugates of the same length. It is not hard to see that this implies that either $k=m-k-2$ or $T_{1}^{2}=1$. If $T_{1}^{2}=1$, we find as in previous cases that (1.2) applies if m is even and that (1.3) applies if m is odd. We suppose, then, that $T_{1}^{2} \neq 1$ and $k=m-k-2$. The possibilities to consider are that $m=2$ and $k=0, m=4$ and $k=1$, and $m=6$ and $k=2$.

If $m=2$ and $k=0, T_{1}$ is conjugate to T_{1}^{-1} and (1.6) holds.
If $m=4$ and $k=1, Q=T_{1} X_{2}^{-1} X_{1} X_{2} T_{1}$ and $P=X_{2} T_{1} X_{2}^{-1} X_{1} X_{2} T_{1} X_{2}^{-1}$, a conjugate of Q. Now $T_{1}^{2} \neq 1$, so Q is not in a conjugate of a free factor of G, but since Q is conjugate to P^{-1}, Q is conjugate to Q^{-1}. By Lemma 3, then, $Q=D E$ for some D, E with $D^{2}=E^{2}=1$. But then $V^{2}=X_{2}^{-1} X_{1} X_{2} D E$, and (1.7) applies.

Suppose, then, that $m=6$ and $k=2$. We must have $|X|=|V|-1$ and $|P|=|Q|=2|V|+1$, so X_{2} is empty and T_{1} has length one. Let us write $X_{1}=C^{-1} \cdot a \cdot C$ with $C \in G$ and $a \in G_{i}$ for some $i \in I$ and $a^{2}=1$ and $T_{1}=b \in G_{j}$ for some $j \in I$ with $b^{2} \neq 1$. We then have $P=Q=$ $b \cdot C^{-1} \cdot a \cdot C \cdot b \cdot C^{-1} \cdot a \cdot C \cdot b$, so $b^{2} \cdot C^{-1} \cdot a \cdot C \cdot b \cdot C^{-1} \cdot a \cdot C$ is a fully cyclically reduced conjugate of P which, like P, is conjugate to its inverse. There must then be a factorization $C_{1} \cdot C_{2}$ of C such that one of the following
holds:

$$
\begin{align*}
& C_{1}^{-1} a C_{1} C_{2} b^{-1} C_{2}^{-1} C_{1}^{-1} a C_{1} C_{2} b^{-2} C_{2}^{-1} \tag{1}\\
& \quad=b^{2} C_{2}^{-1} C_{1}^{-1} a C_{1} C_{2} b C_{2}^{-1} C_{1}^{-1} a C_{1} C_{2}, \\
& C_{2} b^{-1} C_{2}^{-1} C_{1}^{-1} a C_{1} C_{2} b^{-2} C_{2}^{-1} C_{1}^{-1} a C_{1} \tag{2}\\
& \quad=b^{2} C_{2}^{-1} C_{1}^{-1} a C_{1} C_{2} b C_{2}^{-1} C_{1}^{-1} a C_{1} C_{2}, \\
& C_{1}^{-1} a C_{1} C_{2} b^{-2} C_{2}^{-2} C_{1}^{-1} a C_{1} C_{2} b^{-1} C_{2}^{-1} \tag{3}\\
& \quad=b^{2} C_{2}^{-1} C_{1}^{-1} a C_{1} C_{2} b C_{2}^{-1} C_{1}^{-1} a C_{1} C_{2}, \\
& C_{2} b^{-2} C_{2}^{-1} C_{1}^{-1} a C_{1} C_{2} b^{-1} C_{2}^{-1} C_{1}^{-1} a C_{1} \\
& \quad=b^{2} C_{2}^{-1} C_{1}^{-1} a C_{1} C_{2} b C_{2}^{-1} C_{1}^{-1} a C_{1} C_{2} . \tag{4}
\end{align*}
$$

If (1) is true, a length comparison on the fully reduced products on the two sides shows that

$$
C_{1}^{-1} a C_{1} C_{2} b^{-1} C_{2}^{-1}=b^{2} C_{2}^{-1} C_{1}^{-1} a C_{1} C_{2}
$$

and

$$
C_{1}^{-1} a C_{1} C_{2} b^{-2} C_{2}^{-1}=b C_{2}^{-1} C_{1}^{-1} a C_{1} C_{2} .
$$

The left sides of these two equations begin with the same normal form letter, so looking at the right sides we get $b^{2}=b$, a contradiction. Similarly, (2) yields

$$
C_{2} b^{-1} C_{2}^{-1} C_{1}^{-1} a C_{1}=b^{2} C_{2}^{-1} C_{1}^{-1} a C_{1} C_{2}
$$

and

$$
C_{2} b^{-2} C_{2}^{-1} C_{1}^{-1} a C_{1}=b C_{2}^{-1} C_{1}^{-1} a C_{1} C_{2},
$$

from which we get the contradiction $b^{2}=b$ if C_{2} is nonempty or the equation $b^{-1}=b^{2}$ if C_{2} is empty. This last possibility corresponds to (1.4). If (3) holds, we get

$$
C_{1}^{-1} a C_{1} C_{2} b^{-2} C_{2}^{-1}=b^{2} C_{2}^{-1} C_{1}^{-1} a C_{1} C_{2}
$$

and

$$
C_{1}^{-1} a C_{1} C_{2} b^{-1} C_{2}^{-1}=b C_{2}^{-1} C_{1}^{-1} a C_{1} C_{2} .
$$

As in (1), we derive the contradiction $b^{2}=b$. Finally, if (4) is true,

$$
C_{2} b^{-2} C_{2}^{-1} C_{1}^{-1} a C_{1}=b^{2} C_{2}^{-1} C_{1}^{-1} a C_{1} C_{2}
$$

and

$$
C_{2} b^{-1} C_{2}^{-1} C_{1}^{-1} a C_{1}=b C_{2}^{-1} C_{1}^{-1} a C_{1} C_{2}
$$

This yields the contradictions $b^{-1}=b$ if C_{2} is empty and $b^{2}=b$ if C_{2} is nonempty.

Case (5.4). Suppose that $|X|<|V|, X=X_{1} \cdot X_{2}$ and $V=X_{2} \cdot X_{1}^{-1} \cdot S_{2} \cdot X_{1}$ for some X_{1}, X_{2}, S_{2} with $X_{2}^{2}=1$, that $P=S_{2}\left(X_{1} X_{2} X_{1}^{-1} S_{2}\right)^{k}$ for some k, $0 \leq k \leq m-2$, and $Q=X_{1}^{-1} S_{2} X_{1}\left(X_{2} X_{1}^{-1} S_{2} X_{1}\right)^{m-k-2}$.

Replacing V by its fully cyclically reduced conjugate $X_{1} X_{2} X_{1}^{-1} S_{2}$ and changing notation reduces this to Case (5.3).

Case (5.5). Suppose that $|X| \leq \frac{1}{2}|V|-1, V=X^{-1} \cdot V_{2} \cdot X \cdot V_{3}$ for some V_{2}, V_{3}, that $P=V_{2}\left(X V_{3} X^{-1} V_{2}\right)^{k}$ for some $k, 0 \leq k \leq m-1$, and that $Q=V_{3}\left(X^{-1} V_{2} X V_{3}\right)^{m-k-1}$.

Since $|P| \leq 2|X|+3 \leq|V|+1$ and $|Q| \leq 2|X|+3 \leq|V|+1$, we have $m \leq 3$. We first consider the case that $m=2$. If $k=0, Q=V_{3} X^{-1} V_{2} X V_{3}$ conjugate to $P^{-1}=V_{2}^{-1}$ implies that $V_{3}^{2}=1$ and V_{2} is conjugate to V_{2}^{-1}; (1.6) applies. If $k=1, P=V_{2} X V_{3} X^{-1} V_{2}$ is conjugate to $Q^{-1}=V_{3}^{-1}$, so $V_{2}^{2}=1, V_{3}$ is conjugate to V_{3}^{-1}, and again (1.6) applies.

Now suppose that $m=3$. In this event, we must have $|X|=\frac{1}{2}|V|-1$ and $|P|=|Q|=|V|+1$, so $\left|V_{2}\right|=\left|V_{3}\right|=1$. Let us write $V_{2}=a \in G_{i}$ for some $i \in I$ and $V_{3}=b \in G_{j}$ for some $j \in I$. Then since $Q=b\left(X^{-1} a X b\right)^{2-k}$ is conjugate to $P^{-1}=a^{-1}\left(X b^{-1} X^{-1} a^{-1}\right)^{k}$, either $a^{2}=b^{2}=1$ and a is conjugate to b, as described in (1.3), or $a^{2} \neq 1, . b^{2} \neq 1, k=1$, and there is a factorization $X_{1} \cdot X_{2}$ of X such that one of the following holds:

$$
\begin{align*}
& X_{2} b^{-1} X_{2}^{-1} X_{1}^{-1} a^{-2} X_{1}=b^{2} X_{2}^{-1} X_{1}^{-1} a X_{1} X_{2} \tag{5}\\
& X_{1}^{-1} a^{-2} X_{1} X_{2} b^{-1} X_{2}^{-1}=b^{2} X_{2}^{-1} X_{1}^{-1} a X_{1} X_{2} \tag{6}
\end{align*}
$$

If (5) is true, either X_{2} is empty and $a^{3}=b^{3}=1$ as in (1.5) or X_{2} is nonempty and $X_{2} b^{-1}=b^{2} X_{2}^{-1}$, so that $X_{2}=b^{2} X_{3}$ and $X_{2}^{-1}=X_{3}^{-1} b^{-1}$ for some X_{3}, producing the contradiction $b^{2}=b$. If (6) is true, $X_{2}^{2}=1$ and

$$
X_{1}^{-1} a^{-2} X_{1} X_{2} b^{-1}=b^{2} X_{2}^{-1} X_{1}^{-1} a X_{1}
$$

If X_{1} is nonempty, $X_{1}=X_{4} b^{-1}$ and $X_{1}^{-1}=b^{2} X_{4}^{-1}$ for some X_{4}, whence $b^{-1}=b^{-2}$, a contradiction. Thus X_{1} is empty, and $a^{-2} X_{2} b^{-1}=b^{2} X_{2}^{-1} a$ implies that $b^{-1}=a$ and $X_{2}=X_{2}^{-1}$. Thus $V=X a X a^{-1}$ with $X^{2}=1$, and (1.3) applies.

References

1. Roger C. Lyndon and Paul E. Schupp, Combinatorial group theory, Springer-Verlag, Berlin, Heidelberg, and New York, 1977.
2. Marcel Paul Schützenberger, Sur l'equation $a^{2+n}=b^{2+m} c^{2+p}$ dans un groupe libre, C. R. Acad. Sci. Paris Sér. I Math. 248 (1959), 2435-2436.
3. Malcolm J. Wicks, Commutators in free products, J. London Math. Soc. (2) 37 (1962), 433444.

Department of Mathematics, Eastern Illinois University, Charleston, Illinois 61920
E-mail address: cflpc@eiu.edu
Department of Mathematics, Mount St. Vincent University, Halifax, Nova Scotia, Canada B3M 2J6

E-mail address: cedmunds@linden.msvu.ca
Fachbereich Mathematik, Universität Dortmund, 4600 Dortmund 50, Germany
E-mail address: UMA004\%DDOHRZ11.BITNET@vm.gmd.de

