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Abstract 

Genetic data from a long-term (16-year) study of white-tailed deer (Odocoileus virginianus) on the 
U.S. Department of Energy's Savannah River Site (SRS) were examined to evaluate spatial and tem
poral genetic heterogeneity in this species. Based on our analyses of the long-term data set, three 
major findings emerged, all of which have important implications for management of white-tailed 
deer: (1) There exists significant spatial genetic heterogeneity in white-tailed deer based on ana
lyses of allozyme frequencies and mtDNA haplotypes. This heterogeneity exists on a much smaller 
spatial scale than would be expected for such a large and potentially mobile species as 0. virginia
nus. (2) The genetic structure of white-tailed deer at SRS is temporally dynamic and significant het
erogeneity exists within demographic units such as age and sex classes. (3) Levels of genetic varia
tion, as measured by multilocus heterozygosity, are frequently correlated to characteristics that are 
important determinants of ecological function in white-tailed deer populations. These findings are 
evaluated in the context of a general management model for 0. virginianus that is also applicable to 
other wildlife species. 

Key words: Odocoileus virginianus, allozymes, mtDNA, spatio-temporal heterogeneity, demographic . 
heterogeneity 

Introduction 

For most of this century, population geneti
cists and evolutionary biologists have as
sumed that populations consist of a large 
number of randomly breeding individuals 
(panmixia). This view made it easier to 
mathematically describe the behavior of po
pulations and resulted in a relatively static 
concept of their genetic characteristics. Lit
tle effort was expended in linking genetic 
and demographic changes in populations. 

1616-5047 /01/66/01-001 $15.00/0. 

Wildlife biologists considered changes in po
pulation numbers, quality of individuals 
within them, and other demographic para
meters as being due to environmental ef
fects, and genetic differences were often 
not considered at all. Despite this, the envi
ronmental or habitat model, which became 
the almost exclusive population dynamics 
paradigm in wildlife biology, was very suc
cessful in explaining population differences. 
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The term "genetics" was not even men
tioned in most wildlife management texts 
during the first two thirds of this century. 
Technological advances in the 1959& and 
1960s made it much easier to describe char
acter variation among individuals and to 
determine the genetic basis of this varia
tion. There was a virtual explosion in the 
number of studies that provided estimates 
of genetic variation in natural vertebrate 
populations (SMITH et al. 1982, 1994). As a 
result of these studies, it became clear that 
the model of a large panmictic population 
was not correct for most terrestrial and 
freshwater vertebrates (e.g. SMITH et al. 
1978; AVISB 1994). However, most of the 
data, especially for mammals, were from 
small relatively short lived forms (e.g. 
KREBS et al. 1973). Data from the white
tailed deer summarized here support the 
view that genetic heterogeneity over short 
distances may be common even in large, va
gile vertebrates. 
Temporal genetic heterogeneity over short 
time predicts the need for further refine
ment of habitat management models used 
in wildlife management. Characteristics of 
concern to natural resource management, 
including conservation, need to be thought 
of as being due to the influences of Envi
ronment (E; Habitat)+ Genetics (G; Geno
type) + Environment-Genetic Interactions 
(E*G). A holistic perspective would dictate 
that the environment-genetic interactions 
would be at least as important in determin
ing the characteristics of wildlife species as 
the main effects of genotype and environ
ment. Studies that document differential po
pulation responses to similar environmental 
changes may indicate the importance of en
vironment-genetic interaction and/or differ
ences in the genetic composition of the ref
erence populations. This interpretation 
stresses the importance of genetic factors in 
formulating management programs for both 
game and nongame species. 
Genetics is most likely to be important if 
management units have different genetic 
characteristics from each other and/or they 
show temporal variations in their genetic 
characteristics. Our primary objective is to 

examine existing genetic evidence ·to see 
how common spatial and temporal heteroge
neity is in white-tailed deer ( Odocoileus vir
ginianus, Zimmermann). Our purpose is to 
review the literature on the genetics of the 
white-tailed deer, present the results of some 
new analyses of data from a long-term study 
of this species, and to propose a new per
spective on the important conceptual issues. 

Sampling consi.derations 

Management decisions based upon data 
collected from public hunts need to be 
viewed with caution. Such data must be ex
amined to determine if inferences can be 
expanded beyond the limits of the available 
data in time and/or space. Basically this re
quires that animals are collected randomly 
with respect to variables of interest such as 
sex, age, antler morphology, genotype, etc. 
Deer collected on the Savannah River Site 
(SRS) in the southeastern United States, 
because of the limited public access and 
the details of the hunting methods used, 
can generally be considered to represent a 
random sample of individuals from the herd 
for most variables of interest (NovAK et al. 
1991). NovAK et al. (1991) found no hunter 
selectivity based upon sex but some selec
tivity based upon age (older deer being pre
ferentially selected) thus slightly biasing the 
distribution of ages upwards. Thus age-re
lated genetic changes may be harder to ~e
tect than genetic changes related to sexual 
differences. 

Spatial heterogeneity 

Many genetic studies have shown that 
white-tailed deer populations are subdi
vided spatially. The effect is most noticeable 
in analyses that encompass large geographic 
areas (CRONIN 1989; ELLSWORTH 1994 a, b; 
HILLESTAD 1984; KENNEDY et al. 1987). In 
these studies FsT (or a similar statistic that 
estimates the proportion of variance among 
populations) for both diploid (allozymes) 
and haploid (mitochondrial DNA 



[mtDNA]) genetic markers is large, indicat
ing strong differentiation between local 
populations. 
On a small geographic scale, it is possible 
that spatial subdivision would not exist for a 
large, potentially mobile mammal, such as 
the white-tailed deer. However, a number of 
studies reject this notion. Spatial differentia
tion of populations for allozyme frequencies 
was readily apparent in white-tailed deer 
from the Adirondack Mountains of New 
York (MAmEws and PORTER 1993), north
eastern Minnesota (CRONIN et al. 1991), and 
on an even smaller scale, the SRS, South Car
olina (MANLOVE et al. 1976; RAMSEY et al. 
1979), and Cumberland Island, Georgia 
(ROWLAND 1989). When studied, mtDNA 
markers usually, but not always show greater 
differentiation than those representing the 
nuclear genome. For example, CRONIN et al. 
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(1991) found the FsT value for mtDNA to 
be 9 times greater than the FsT for allozymes 
in mule deer from Montana but found no sig
nificant difference between mtDNA and al
lozyme-derived FsT values for white-tailed 
deer from Minnesota. 
Generally, genetic differentiation of popula
tions is attributed to reduced gene flow, his
toric events and/or genetic drift (CRONIN et 
al. 1991; ELLSWORTH et al. 1994 a, b; LEBERG 
et al. 1994). In white-tailed deer, gene flow 
is influenced strongly by the species' mating 
system, females being philopatric and males 
doing the majority of movement among 
breeding groups (NELSON and MECH 1987). 
The effect of extirpation in the late 1800s 
and subsequent restocking have had a pro
found effect on the spatial pattern of genetic 
differentiation of white-tailed deer popula
tions over most of their range. However, in 
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Fig. 1. Comparison of haploid (mtDNA) and diploid (allozyme) genetic markers for white-tailed deer populations 
collected in 1992 from the Savannah River Site (SRS; NmtDNA z 215, Nauoiym = 737) and Webb Wildlife Center 
(WEBB, NmtDNA • 31, nallozym .. 32). The populations are separated by approximately 100 km. Shown are aconitate 
hydratase (AH), adenosine deaminase (ADA), and L-iditol dehydrogenase (IDDH) (also known as sorbitol dehy
drogenase [SO ROH]), the three most variable of the 13 loci sampled. Designations for alleles refer to relative mo
bility in electrophoretic starch gels. Only haplotypes and alleles with frequencies> 0.01 are shown. 
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the coastal plain of South Carolina and 
Georgia, native herds were not hunted to 
extinction and restocking was minimal. Re
cent analyses of deer from SRS and Webb 
Wildlife Center, located 100 km apart on 
the coastal plain of South Carolina, docu
ment significant spatial heterogeneity in 
both nuclear and mtDNA genomes. Deer 
sampled from SRS and Webb center display 
markedly different genetic profiles for nu
clear and mitochondrial genes (Fig. 1). This 
and other studies (KENNEDY et al. 1987) in
dicate that for allozymes all alleles at a locus 
are present in most samples, although shifts 
in frequencies are often observed. In con
trast, mtDNA types, which are haploid and 
maternally inherited, are much more local
ized. Sometimes, sampling locations sepa
rated by only 20 km share no mtDNA types. 
Female white-tailed deer thus may be 
extremely philopatric (PURDUE et al. 2000). 
The role of female philopatry in the mainte
nance of genetic structure of white-tailed 
deer can be seen in an inadvertent "experi
ment" provided by the restocking of deer 
in Greene county on the piedmont of Geor
gia. Early in the twentieth century, native 
deer were extirpated from Greene and sur
rounding counties and never recolonized 
the area. In the late 1980s, extensive re
stocking was undertaken in the area. North
ern Greene county was supplied with 
60 deer from Ossabaw Island and 7 from 
adjacent Blackbeard island, Georgia 
(BLACKARD 1971). The Ossabaw Island deer 
carry a mtDNA type unique to the island 
and a few mainland localities on the lower 
coastal plain. In counties adjacent to 
Greene, deer were transplanted from Texas 
and Wisconsin. In 1994, the mtDNA of 
20 deer from Greene county were exam
ined. Seven of ten deer sampled in the 
northern part of the county carried the Os
sabaw island mtDNA type. The other three, 
plus 10 additional individuals from southern 
Greene county, displayed mtDNA types 
characteristic of deer from the Midwestern 
United States. After 40 years and 10-
20 generations, female deer from Ossabaw 
Island have apparently dispersed little be
yond their release site. These results rein-

force the idea that white-tailed deer are ge
netically subdivided on a finer geographic 
scale than is apparent based upon their 
body size and vagility. 

Demographic heterogeneity 

Management decisions are usually made for 
a herd or larger grouping of individuals. 
However, smaller subsets of individuals 
(age or sex classes) may be progressing 
along separate evolutionary trajectories sub
ject to differing ecological challenges. These 
demographic groups may exhibit different 
spatial or temporal patterns for both indivi
duals and genotypes. Thus, genetic variabil
ity must be analyzed with respect to demo
graphic classes of age and/or sex within a 
spatio-temporal context. The SRS deer herd 
provides a unique opportunity to analyze 
such data because of the size of the data set 
within years (Minimum= 409, Maxi
mum= 1999, Total= 14221 deer), number 
of years for which data are available (16) 
and limited public access to the site. 
Demographic heterogeneity in the SRS 
deer herd was analyzed for the years 1974-
1989 based upon 7 polymorphic loci avail
able in all years. Data for two highly poly
morphic loci, ~-hemoglobin and transferrin, 
were not available for the year 1980, so that 
year was not included in the analysis. Thus, 
all deer were categorized ·for multilocus 
heterozygosity class based upon 7 loci 
(HCI was 0, 1, 2, 3 and 4+ heterozygous 
loci, and H [arcsine of square root RC/Total 
number loci scored]), year of collection 
(TIME), age class (AGE) (0.5, 1.5, 2.5, 
3.5+ years), sex (SEX), and spatial unit 
(SPACE) (swamp or upland herd). Ex
panded definitions of the above variables 
can be found in SCRIBNER et al. (1985) and 
NOVAK et al. (1991). 
Probabilistic regression (PROBIT) analysis 
indicates that the distribution of AGE is a 
function of both TIME and SPACE 
(x,2 == 61.65, P < 0.0001 and x,2 = 13.09, 
P = 0.0003, respectively). However, the dis
tribution of SEX is a function of TIME but 
not SPACE (x,2 = 48.24, P < 0.0001 and 



x2 = 0.69, P = 0.4075, respectively). Thus, 
analyses of genetic heterogeneity in· rela
tion to AGE and SEX must be perfonned 
with the appropriate spatial and temporal 
variables in the analysis. 
Probabilistic regression using a Gompertz 
distribution for HC (GOMPIT) analysis in
dicates that there are significant SPACE 
(x2 = 7.32, P = 0.0068) and TIME 
(x2 = 101.64, P < 0.0001) effects, a marginal 
AGE (x2 = 6.59, P = 0.0863) effect and no 
SEX (x2 = 0.02, P = 0.8989) effect. Unfortu
nately, interactions among dependent vari
ables cannot be analyzed using a probabilis
tic regression approach to account for 
TIME and/or SPACE heterogeneity of 
SEX and AGE. Therefore, an ANOVA 
was performed with H as the dependent 
variables and the main effect of SEX 
(F = 0.53, P = 0.4676), AGE (F = 0.82, 
P = 0.4799), TIME (F = 3.84, P < 0.0001), 
and SPACE (F = 4.19, P = 0.0406), and the 
two-way interactions of SEX and AGE 
(F = 1.11, P = 0.3417), SEX and TIME 

- Female 
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(F = 1.87, P = 0.0242), AGE and TIME 
(F = 1.17, P = 0.2066), AGE and SPACE 
(F = 0.34, P = 0.7930), and TIME and 
SPACE (F = 1.64, P = 0.0621). No higher 
order interactions were significant, and 
were therefore not included in the model. 
The significant interaction of SEX and 
TIME is due to differenees in H between 
males and females in different years 
(Fig. 2). There is no consistent sexual bias 
in H, 6 years show no significant difference, 
5 years show a male bias for higher H, and 
4 years show a female bias (Fig. 2). 
Previous .analysis for the effects of age, sex, 
year and spatial location on single locus 
heterozygosity (h) for j3-hemoglobin by 
CHESSER et al. (1982) revealed slightly dif
ferent results. Sex was not found to be an 
important variable although it is unclear 
whether a sex by year interaction was 
tested. This analysis was performed over 
only a three year time .span, for only a sin
gle locus and used simple tests of indepen
dence that did not analyze ~ariables concur-
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Fig. 2. Multilocus. heterozygosity values for male and female deer for the years 1974 through 1989. The year 
1980 is not included as indicated in the text. 
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rently. As indicated by the analyses per
formed here, there is a much larger range 
of variation in all variables when analyzed 
over a longer time span. In addition, longer 
time series are more likely to include peri
ods of environmental stress. Thus, results 
based upon data that are limited in time, 
space Qr number of loci should be viewed 
with caution. Differences in results can also 
be seen in the studies of SMITH et al. (1990) 
where a significant spatial effect was seen 
and SCRIBNER et al. (1985) where a signifi
cant effect of space was not seen. The first 
study included data from a longer time se
ries (13 years) than the second (6 years) 
but both estimated H using the same seven 
loci used here. 
The above analyses illustrate the need to 
examine demographic effects on genetic 
heterogeneity in light of spatial and tempor
al variation of both demographic and genet
ic variables. Management decisions based 
upon only the main effect, SEX, would not 
be the same as those based upon the inter
action of SEX and TIME. The interaction 
of SEX and TIME is not surprising for the 
SRS white-tailed deer herd given the rela
tionships between male body mass and fat 
levels (SCRIBNER et al. 1989), female fat lev
els and their relationship to pregnancy 
(COTHRAN et al. 1987), conception date of 
females (RHODES and JOHNS 1993) and fe
male age specific body mass (RHODES et al. 
1991). It is unclear if white-tailed deer are 
unusual for mammals in how they partition 
genetic variation in space and time. 
Although other studies have analyzed de
mographic heterogeneity, few have looked 
at the interaction of age and/or sex with 
space and none have analyzed differences 
over a comparable time span (SMITH et al. 
1994). The interaction of SEX and TIME 
has direct consequences for the estimation 
of genetically effective population sizes 
and minimum viable population sizes. If dif
ferent demographic units are present in a 
population and each is progressing along in
dependent or semi-independent evolution
ary trajectories then management plans 
need to encompass this heterogeneity. Man
agement decisions must be based upon in-

formation gathered to assess the additional 
· ecological and genetic dynamics that such 
population substructuring introduces. 

Fitness correlates and energetics 

Fitness correlates 

A fitness correlate may be defined as a phe
notypic characteristic in which the degree 
of expression is related to the survival and/ 
or reproductive success (fitness) of an indivi
dual. Numerous relationships between mul
tilocus heterozygosity (H) and fitness corre
lates have been demonstrated in a long
term study of white-tailed deer on the SRS 
(reviewed by RHODES and SMITH 1992). 
Within age classes of male deer, His related 
to (a) body mass and fat levels (SCRIBNER et 
al. 1989), (b) antler size (SCRIBNER et al. 
1989), (c) antler symmetry' and Boone and 
Crocket scores (SMITH et al. 1991), (d) fre
quency of spike antlers (SCRIBNER et al. 
1984), and (e) testicle size in fawns (URB
STON 1976). Hin female deer is correlated 
with (a) the frequency of twin fetuses (CHES
SER and SMITH 1987; JOHNS et al. 1977), 
(b) age-specific body mass (RHODES et al. 
1991), (c) conception date and fetal growth 
rate (COTHRAN et al. 1983; RHODES and 
JoHNs 1993), and (d) body fat levels prior to 
conception and loss of fat during pregnancy 
(COTHRAN et al. 1987). Fetal growth rate is ~ 
also related to the overall Hof the fetus (Co
THRAN et al. 1983; LEBERG et al. 1990). 
SMITH and RISENHOOVER (1993) demon
strated a positive association between Hand 
production of offspring in eight species of 
cervids. In addition, relationships between 
H and fitness correlates have been observed 
in many other organisms (ALLENDORF and 
LEARY 1986; MmoN and GRANT 1984). Thus, 
H likely integrates many important genetic 
characteristics of forest organisms. 
The general trend of these relationships de
scribed for white-tailed deer is for expres
sion of the reference character to increase 
(e.g., antler size) or decrease ( e. g., inci
dence of spiked antlers) with increasing 
number of heterozygous loci. However, the 



functional relationship varies depending on 
both the specific character and the age of 
the deer. In addition, there is evidence to 
suggest that expression of a reference char
acter may decrease slightly at high H levels 
compared to that of intermediate levels 
(e.g., CHESSER and SMITH 1987) although 
this may be an artifact of small sample size 
at older age classes. 
In most cases, H explains only a small per
centage of the variability in characteristics. 
For example, H is responsible for only 10-
15 % of the variability in main beam length 
and diameter of antlers, number of antler 
points, and incidence of spiked antlers 
(SCRIBNER and SMITH 1990). Therefore, fac
tors such as age, body condition, habitat, 
and resource quality, as well as their inter
action with H, must be considered when ex
plaining the expression of fitness-related 
characteristics in individual deer. 
Although H may only account for a small 
amount of the variability in characters, deer 
with high H generally grow faster, have 
higher body fat levels and higher reproduc
tive rates than deer with low H. These rela
tionships suggest that deer with various le
vels of H may partition their energy 
differently. The potential relationship of H 
to energetics requires further consideration. 

Heterozygosity and energetics 

An organism's energy budget can be de
scribed by I :: A + E, where I is the total 
amount of energy (Kcal* g body mass-1) 

ingested, A is assimilated energy, and E is 
egested energy (egestion). Assimilated en
ergy is partitioned into three categories 
with A= M + G + R where M is mainte
nance energy and G + R represents assimi
lated energy used for growth or reproduc
tion (i.e., secondary productivity). 
A number of investigations have demon
strated a relationship between H and ener
getic parameters (reviewed by MmoN and 
GRANT 1984). H has been correlated with 
decreased rate of oxygen consumption 
(KOEHN and SHUMWAY 1982; MmoN and 
KOEHN 1985; MmoN et al. 1986) and a low-
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er rate of protein turnover (HAWKINS et al. 
1986). These findings suggest differences in 
maintenance metabolism among individuals 
with varying levels of H. 
We hypothesize that increased energetic ef
ficiency could explain the effects of H on fit
ness-related characteristics in white-tailed 
deer. Hypothetical energy budgets for an or
ganism with varying H are depicted in Fig. 3. 
In both homozygous and heterozygous indi
viduals, a portion of assimilated energy must 
be utilized for maintenance metabolism (M) 
which includes energy used for normal ac
tivity. The remaining energy can be used 
for secondary productivity (G + R). How
ever, in the more heterozygous individual, 
increased energetic efficiency as a result of 
higher H could reduce the amount of assimi
lated energy required for maintenance me
tabolism (M). A slight decrease in the 
amount of energy needed for maintenance 
could permit heterozygous individuals to 
partition much more energy for growth 
and reproduction (G + R, Fig. 3 a). 
The above hypothesis assumes that ingested 
energy (I) is relatively constant among indi
viduals. However, individuals with higher H 
may be able to ingest more energy as a re
sult of aggressive behavior (GARTEN 1976) 
or an increased scope of activity (MITTON 
and GRANT 1984). Consequently, assimi
lated energy would be greater among more 
heterozygous individuals, providing more 
energy for growth and reproduction, even 
if energetic efficiency is not affected by H 
(Fig. 3 b). 
The effect of H on energetics is most likely 
to result in a. selective advantage during 
periods of stress (KOEHN and SHUMWAY 
1982; RonHousE and GAFFNEY 1984; ThsKA 
et al. 1990). TusKA et al. (1990) demon
strated that old-field mice of varying H dif
fer regarding feeding efficiency only as food 
quality is decreased. These results suggest 
that the effects of temporal variation of H 
may be to decrease the ability to detect dif
ferences in H among individuals during 
non-stressful periods. 
These findings may explain the inconsis
tency of some relationships between H and 
fitness correlaFes observed in white-tailed 
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deer. For example, a relationship between 
H and the frequency of twin fetuses was ob
served among does from the SRS during 
the 1970s (CHESSER and SMITH 1987; JoHNs 

A 
LOW H 

B 
LOW H 

et al. 1977) whereas no such relationship 
was found during the 1980s (RHODES et al. 
1991). Future investigations concerned with 
documenting H effects in white-tailed deer 

HIGH H 

HIGH H 

Fig. 3. Hypothetical energy budgets for an organism with relatively low and high levels of heterozygosity (H). 
High H may increase the amount of energy available for growth (G) and reproduction (R) by: (A) Reducing the 
percentage of assimilated energy needed for maintenance (M) via effects on metabolic efficiency or: (B) Increas
ing the amount of assimilated energy via effects on foraging and ingestion. The size of each circle is related to 
the amount of ingested energy. 
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should take into account spatial and tem
poral variation in environmental quality as. 
well as in H. 
The influence of H on energetics is related 
to· individual fitness and quality of indivi
duals in a population. Genetic variability 
could be especially important in allowing 
forest organisms to persist with increasing 
levels of anthropogenic and non-anthropo
genic stress. Understanding the role of ge
netic variation has important implications . 
for both conservation and management 
practices of forest wildlife species. 
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boundaries of management units. In addi
tio11, conservation efforts need to recognize 
that many forms of a species having unique 
combinations of genes may occur in subpop
ulations separated by short distances. Spa
tial heterogeneity in gene frequencies has 
been recognized in a wide diversity of ani
mals, and its management implications have 
been recognized as important in :fisheries 
management (RYMAN and UTTER 1987). 
Wide scale fragmentation of forested habi
tat can lead to reduction of census and ef
fective population sizes, which may fall be-
low the minimum viable size (Sour.E 1987). 
One of the most important long-term ef-General management model 

c fects of falling below the minimum viable 
Genetic analyses of white-tailed deer popu- population size is stochastic loss of genetic 
lations, as well as other animal populations, variability, which is important for both the 
have provided insights about their function- future evolution and the ecological func
ing that need to be incorporated in future tioning of populations. Small populations 
management plans (SMITH et al. 1976). The may also be more susceptible to the effects 
results of these analyses are especially im- of inbreeding, especially if population num
portant to the formulation of management bers are reduced quickly and kept low for 
plans. They are as follows: 1) animal popula- an extended period of time (Tu:oRNHILL 
tions, especially white-tailed deer, show ge- 1993). Although we do not know whether 
netic heterogeneity over relatively short dis- genetic variability causes changes in popu
tances and among demographic units within lation parameters and/or is a result of them, 
populations, 2) white-tailed deer popula- .it would seem prudent to manage popula-

- tions, ·and probably those of other species, tforis in a way that i:niaiinizes the chance of_ 
are generally dynamic over short time peri- losing genetic variability. 
ods, and 3) levels of genetic variability are The genetic structure of populations is tem
frequently correlated to many characteris- porally dynamic over time periods that in
tics that are important determinants of eco- elude the length of typical studies (SMITH 
logical functioning of populations and of et al. 1990). This dynamic behavior of popu
concem to natural resource managers. lations may result from the interactions 
Although the correlation of genetic variabil- from smaller groups that differ from each 
ity and phenotypic characteristics do not other genetically. Animals that disperse 
usually explain a large proportion of the to- among these subpopulations to breed may 
ta! variation, each correlation may be some- have relatively outbred offspring with high
what independent such that the overall ef- er levels. of genetic variability and different 
fects on the ecologieal dynamics of the phenotypic characteristics than those that : 
population function are very important. breed within the subpopulation in which 
White-tailed deer show a surprising amount they were born. Management of forest ha
of spatial genetic heterogeneity even in bitats (e.g., maintaining corridors) to allow 
areas like the SRS where the habitats are this type of ~spersal among subpopulations 
not severely fragmented. In areas where may be essential to the long-term health of 
forested habitats are becoming even more many of forest animals (liARRis 1984), espe
fragmented {HARRIS 1984), spatial hetero- cially large vertebrates. 
geneity in gene frequency may be further One measure of the success of various man
increased. Spatial genetic heterogeneity agement programs could be the degree to 
needs to be taken into account in defining which we maintain the genetic integrity of 
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the species. Genetic integrity must 'not be 
based on a static concept of the genetic 
characteristics of the species. Populations 
are extremely dynamic through space and 
time, and i~ seems prudent to manage biolo
gical resources so that they continue to ex
hibit their normal variation in both space 
and time (NORSE et al. 1986). Thus, we are 
trying to manage species that are likely to 
be genetically different in both space and 
time, and these genetic differences are 
likely to have direct relationships with bio
logical characteristics important to both 
the survival of the species and the produc
tion of benefits for humans. As human so-

Zusammenfassung 

ciety continues to increase its impact on 
every habitat on earth, it will be challenging 
to devise management and conservation 
strategies for our precious life support sys
tems, especially forests. 
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Genetische Heterogenitat beim WeiBwedelhirsch: Fiir die Wildbewirtschaftung relevante 
Erkenntnisse aus einer Langzeitstudie 

Oaten aus einer Langzeitstudie (16 Jahre) an WeifSwedelhirschen (Odocoileus virginianus) aus dem Sa
vannah River Site (SRS) des U.S .. Department of Energy wurden im Hinblick auf das Vorkommen von 
raumlicher und zeitlicher genetischer Heterogenitat bei dieser Art analysiert. Die Untersuchung er
brachte drei wesentliche Befunde, die auch fUr die Bewirtschaftung des Weif!.wedelhirsches von Be
deutung sind: (1) Wie aus der Analyse von Allozymfrequenzen und mtDNA-Haplotypen hervorging, 
besteht in Populationen des Weif!.wedelhirsches eine ausgepragte· raumliche genetische Heterogeni
tat, und zwar auf wesentlich geringerem Raum, als man dies bei einer potentiell so mobilen Art erwar
ten wUrde. (2) Die genetische Struktur der WeifSwedelhirsche am SRS ist zeitlich unterschiedlich und es 
gibt eine ausgepragte Heterogenitat zwischen demographischen Entitaten wie Alters- und Geschlech
terklassen. (3) Die in elektrophoretischen Untersuchungen ermittelte Heterozygotierate ist haufig mit 
Merkmalen korreliert, die fUr die okologischen Beziehungen in WeifSwedelhirschbestanden bedeutsam 
sind. Diese Befunde wurden im Rahmen eines generellen Bewirtschaftungsmodells fUr 0. virginianus 
evaluiert, das auch fUr andere Wildtierarten anwendbar ist. 
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