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The supramolecular patterns of three polymorphs of a chiral sulfo-

namidecinnamic acid reveal components effectively organized into

predetermined hydrogen-bonded dimers with favorable <3.8 Å olefin

spacing for enantioselective single-crystal-to-single-crystal [2 + 2]

photodimerization reactions.

Chemical transformations in molecular crystals have experienced

resurgence over the last decade due in part to greater accessibility of

reactive phases.1 Prior to this time many prominent examples of both

intra-2 and intermolecular3 programmed reactivity offered important

impetus and practical insight into the structural features responsible

for controlling solid-state reactions. From a structural standpoint, the

main difference between these general classes of reactions is in their

implementation: unimolecular strategies require a well-placed cova-

lently bonded tether(s) between reacting centers whereas intermo-

lecular processes necessitate exquisite supramolecular control.

Significant attention to the first reaction type is not surprising, given

that the relative orientation of the reacting centers is often more

manageable within the confines of the single molecules.

The recent fundamental change in approach to exploring multi-

component solid-state reactivity originated from the systematic

development of robust supramolecular synthons.1 This collective

work, directed primarily at [2 + 2] photocycloadditions, exploited the

complementary cohesive properties of hetero- and homomeric func-

tional group associations for organizing reactivity. Though such

advances provide transferable methods for the spatial control of

reactants, extending these strategies to include enantioselective reac-

tions continues to pose significant challenge.4 How to integrate

molecular/supramolecular chirality and chemical reactivity is at the

center of this dilemma. This challenge has been extensively addressed

for unimolecular processes via chiral induction,5 but enantiopure

reaction outcomes involving two or more molecules remain a formi-

dable obstacle due in part to insufficient structural tools for orga-

nizing reactive motifs. Incremental advances to this field will likely

make use of next generation materials to extend the current margins

of crystal engineering, developing innovative crystal reactions and

other material properties of practical importance.

Our recent entry into multi-molecular photodimerization reactions

integrated the structural preferences of sulfonamidecinnamic acids

and the asymmetric organization of quasiracemic crystals.6 The

design strategy behind these compounds complements current

methods that assemble reactive components by promoting reaction

atom economy and the construction of chiral crystalline environ-

ments for enantioselective transformations. Our crystallographic

investigation of racemic and quasiracemic sulfonamidecinnamic acids

1 and 2 revealed structures with isostructural relationships

(Scheme 1). Each molecule adopted key ‘fish hook’ topologies and

formed supramolecular dimers. For racemate 1, these motifs con-

sisted of pairs of heterochiral centrosymmetrically related molecules,

while the analogous dimer in quasiracemate 2 showed the intended

reduction in symmetry due to the distinct chemical properties of the

dimer components. Both 1 and 2 effectively align adjacent C]C

bonds and underwent UV initiated single-crystal-to-single-crystal

(SCSC) reactions. In the case of 1, the reaction gave a single racemic

cyclobutane photoproduct, while quasiracemate 2 proceeded in

a similar manner, but with an enantioselective outcome. The unique

asymmetric organization of 2 produced a homochiral photo-

dimerization product that represents a rare example of an engineered

chiral bimolecular solid-state reaction.

Taking advantage of the potentially fertile crystal chemistry of

sulfonamidecinnamic acid frameworks, this contribution extends our

previous work by exploring a single-component homochiral

Scheme 1 Design strategy, supramolecular chemistry, and solid-state

photodimerization of racemate 1 and quasiracemate 2.
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sulfonamidecinnamic acid. Alanine 3, an enantiopure precursor to

racemate 1 and quasiracemate 2, provides an interesting opportunity

to investigate solid-state reactivity and reliability of the hydrogen-

bonded dimer motif using a single-component enantiopure building

block.

An important factor in the design of sulfonamidecinnamic acids 1

and 2 focused on exploiting the strong preference of racemates to

crystallize with inversion relationships.7 While it is conceivable that

this strategy could apply to other racemic and quasiracemic phases,

the use of single-component homochiral compounds to form the

desired inversion (or near inversion) related hydrogen-bonded dimers

seemed less feasible. The consequence of this apparent structural

incompatibility—i.e., component homochirality and the intended

dimer motif centrosymmetry—to supramolecular assembly was

unclear. A best-case scenario would involve use of complementary

carboxyl/carboxyl interactions to assemble homodimers with near

inversion related motifs. Because the design criteria of these systems

included the appropriate framework and an assortment of hydrogen

bonded donor (NH, OH, and CH) and acceptor (C]O and S]O)

groups, other viable modes of molecular association are possible (e.g.

catemeric patterns). Investigating this material (3) should further our

current understanding of the structural parameters required to

generate photoreactive hydrogen bonded dimers for this general

compound class.

Chiral sulfonamide 3 was synthesized using a previously reported

two-step process that incorporates chiral (alanine) and photoreactive

(cinnamic acid) components.6‡ Slow evaporation crystal growth

studies of 3 from acetone (3-I) or 2-butanone (3-IIa and IIb) resulted

in three distinct crystalline forms as determined by X-ray

crystallography.x Compound 3-IIa underwent a reversible tempera-

ture-dependent phase transformation to IIb with data collections

performed on the same crystalline sample at 296 and 100 K,

respectively. The asymmetric units of 3-I, IIa, and IIb consist of a pair

of homochiral symmetry-independent molecules of 3 (Z0 ¼ 2) that

adopt the desired molecular ‘fish hook’ conformation (Fig. 1) and

assemble to give nearly equivalent homomeric dimers via carboxyl

head-to-head interactions. Interestingly, regardless of the diversity of

these crystalline phases and imposed chirality of the components, the

overall alignment of each homodimer of 3-I and II mimics inversion

symmetry in triclinic space group P1. The extent these motifs imitate

true centrosymmetric relationships was investigated using the

program Continuous Symmetry Measures (CSMs) recently developed

by the Avnir group.8 The CSM method assesses the degree of

symmetry by comparing the atomic spatial arrangement of a mole-

cule or motif to that of its nearest achiral counterpart. Values range

from 0 for motifs that possess the prescribed symmetry to 100 for

highly distorted patterns. Applying this method to each homodimer

motif of 3 gave CSM values [3-I (0.14), 3-IIa (0.16), and 3-IIb (0.15)]

that indicated patterns with near inversion symmetry relationships

similar to those observed for 1 and 2.

In addition to hydrogen-bonded dimers, inspection of the crystal

packing of each phase reveals a variety of N–H/O and C–H/O

interactions. As shown in Fig. 2a, homodimers of 3-I align by use of

N–H/O]C and C–H/O ] S contacts to give 2D patterns.

Compounds 3-IIa and 3-IIb, related by a topotaxial phase change,

differ by several subtle structural features. As can be seen in Fig. 3,

slight variations in component and dimer conformations are also

accompanied by a change in hydrogen-bond topologies. For 3-IIa,

neighboring dimers assemble by use of N–H/O]C, N–H/S]C,

and C–H/O]S hydrogen bonds, while the motifs of 3-IIb utilize

N–H/O]C and C–H/O]S contacts for crystal cohesion. A

prominent distinction of these structures is the apparent lack of N–

H/S]C contacts for 3-IIb and the notable difference in alignment

of molecular stacks along the a-axes of these structures.

Our previous crystallographic study of 1 and 2 revealed compa-

rable translationally stacked hydrogen-bonded dimers with nearly

Fig. 1 Design strategy for the construction of photoreactive homo-

dimers and asymmetric units (50% probability) of the three crystalline

phases of 3.

Fig. 2 Crystal packing of 3-I showing (a) hydrogen bond patterns and

(b) homodimer alignment (H atoms deleted for clarity).

This journal is ª The Royal Society of Chemistry 2011 CrystEngComm, 2011, 13, 3134–3137 | 3135
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equal intra- and inter-dimer olefin distances (<3.7 Å). While each

route satisfied the geometry criteria proposed by Schmidt9 for [2 + 2]

photodimerization reactions, tracking the reaction by X-ray diffrac-

tion showed product formation exclusively by the intra-dimer route.

In contrast to the structural patterns reported for 1 and 2, multiple

reaction pathways seem less likely for 3-I because of the proximity of

the intra- and interdimer contacts (Fig. 2b). Contacts within the

dimer for 3-I consist of 3.79 Å olefin spacing whereas >6 Å for the

next nearest neighbors. Inspection of Fig. 4 shows the two phases of

3-II organized into translational stacks of homodimers with favorable

intra- and interdimer olefin contacts; the latter being slightly preferred

based on distance criteria.

To investigate the solid-state reactivity of 3, samples were irradi-

ated using a 200 W Xe(Hg) arc lamp.{ A UV tail-irradiated10 single-

crystal of 3-I remained intact thus providing an opportunity to assess

reaction progress by single-crystal X-ray diffraction. The projections

of the crystal structure of 3-I shown in Fig. 5 correspond to a 2 h

exposure that resulted in quantitative conversion to the rctt cyclo-

butane photoproduct. Nominal motion of reactant molecules

presumably drives the efficiency and SCSC behavior of this

transformation and helps to retain the reactant hydrogen-bond

framework during photodimerization (Fig. 2a and 5b). Because each

supramolecular dimer consists of pairs of identical homochiral

components with S configuration, the absolute asymmetry of these

reactant molecules translates to chiral reaction profiles and enantio-

pure photoproducts.

In a similar fashion, the sample corresponding to 3-IIa and IIb was

illuminated via the tail-irradiation technique. The low temperature

phase 3-IIb lacked any observable reactivity after a 3 h exposure as

indicated by the lack of electron density in the crystal structure

(100 K) corresponding to product phase. Upon warming to 296 K,

the sample converted to 3-IIa and subsequent UV exposure for 0.5 h

resulted in a severely fractured sample. X-Ray data collection using

a segment of the original crystal revealed comparable photochemical

behavior to 3-I. Although the reactant phase of 3-IIa suggested two

possible reaction paths (i.e., intra- and interdimer paths), crystallo-

graphic assessment indicated quantitative conversion and product

formation by an intradimer process. To our surprise, a comparison of

the crystal structures of photoproduct phases 3-I and 3-IIa revealed

nearly indistinguishable unit cell parameters and packing patterns.

While the transformation of 3-I reactant to photoproduct involves

only modest motion, photodimerization of 3-IIa requires extensive

molecular reorganization. The substantial movement of 3-IIa crystal

components associated with photodimerization and a phase change

likely follows a complex process resulting in partial crystal degrada-

tion.

In conclusion, we have successfully organized pairs of ‘fish hook’

shaped molecules into supramolecular dimers that persist despite the

use of racemic (1), quasiracemic (2), and one-component homochiral

(3) molecular scaffolds. This approach provides a powerful structural

tool to align adjacent olefinic groups with <3.8 Å separation for UV

initiated quantitative single-crystal-to-single-crystal transformations.

Dimer motifs observed for 3-I and II exhibit reduced symmetry due

to the S absolute configuration of the components. The asymmetry of

the building blocks translates to chiral supramolecular motifs that in

turn encode the stereochemical outcome of the photodimerization

Fig. 3 Crystal structure projections of the (a) room temperature and

(b) low temperature phases of 3-II showing the variation in hydrogen-

bond patterns (H atoms removed for clarity).

Fig. 4 Crystal structure projections of the (a) room temperature and

(b) low temperature phases of 3-II showing alignment of homodimer

motifs (H atoms removed for clarity).

Fig. 5 UV irradiated 3-I showing (a) alignment of homodimer (50%

probability) and (b) hydrogen bond architecture (H atoms deleted for

clarity).
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process. This rational approach to programmed reactivity in molec-

ular crystals circumvents the need for secondary molecules or metal

atoms to align reacting centers and makes use of a new asymmetric

auxiliary method to control the absolute asymmetry of photo-

dimerizations.
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Notes and references

‡ Synthesis of compound 3. Preparation of 3 was carried out using
a parallel procedure as described for sulfonamidecinnamic acids 1 and 2.6

41% overall yield. Mp 170 �C (dec.). Compound 3-I: 1H-NMR(acetone-
d6, 400 MHz, ppm): d 7.91 (d, J ¼ 16.3 Hz, 2H, Ar–H), 7.90 (d, J ¼ 12.0
Hz, 1H, N–H), 7.89 (d, J¼ 16.3 Hz, 2H, Ar–H), 7.73 (d, J¼ 16.1 Hz, 1H,
Csp2–H), 6.68 (d, J ¼ 16.1 Hz, 1H, Csp2–H), 4.05 (dq, J ¼ 7.2 and 12.0,
1H, CH), 1.35 (d, J ¼ 7.2, 3H, CH3). Single crystals were obtained by
sample dissolution in minimal amount of warm acetone (3-I) or 2-buta-
none (3-II) followed by slow evaporation at room temperature to yield
colorless transparent plates or needles, respectively.

x Crystal structure determination. X-Ray diffraction data for 3-I and II
were collected with a Bruker APEX-II equipped with a graphite-mono-
chromator using Cu Ka radiation (l ¼ 1.54178 Å).
Crystal data for 3-I (reactant): C12H13NO6S, Mr ¼ 299.29, triclinic space
group P1, a ¼ 7.1020(2), b ¼ 8.0330(2), c ¼ 11.9154(3) Å, a ¼ 95.252(1),
b ¼ 104.650(1), g ¼ 99.577(1)�, V ¼ 642.12(3) Å3, Z ¼ 2, Dc ¼ 1.548 g
cm�3, m ¼ 2.509 mm�1, F000 ¼ 312, T ¼ 100(2) K, 2qmax ¼ 68.23�, 11 522
reflections collected (3910 unique), R1 ¼ 0.0268 and wR2 ¼ 0.0706 [I >
2s(I)], Rint ¼ 0.0186, GOF ¼ 1.07, flack ¼ 0.037(14).
Crystal data for 3-I (photodimerized): C24H26N2O12S2, Mr ¼ 598.59,
triclinic space group P1, a ¼ 7.0754(3), b ¼ 8.3189(3), c ¼ 11.0891(5) Å,
a ¼ 94.832(2), b ¼ 102.101(3), g ¼ 102.424(3)�, V ¼ 617.51(4) Å3, Z ¼ 1,
Dc ¼ 1.610 g cm�3, m ¼ 2.609 mm�1, F000 ¼ 312, T ¼ 296(2) K, 2qmax ¼
68.19�, 12 740 reflections collected (3847 unique), R1¼ 0.0301 and wR2¼
0.0810 [I > 2s(I)]. Rint ¼ 0.0238, GOF ¼ 1.05, flack ¼ 0.035(16).
Crystal data for 3-IIa (reactant): C12H13NO6S, Mr ¼ 299.29, triclinic
space group P1, a ¼ 7.2536(2), b ¼ 8.0615(2), c ¼ 12.2344(2) Å, a ¼
79.453(1), b ¼ 80.663(1), g ¼ 71.819(1)�, V ¼ 663.96(3) Å3, Z ¼ 2, Dc ¼
1.497 g cm�3, m ¼ 2.426 mm�1, F000 ¼ 312, T ¼ 296(2) K, 2qmax ¼ 68.24�,
13 758 reflections collected (4145 unique), R1¼ 0.0365 and wR2¼ 0.0906
[I > 2s(I)], Rint ¼ 0.0386, GOF ¼ 1.03, flack ¼ 0.040(18).
Crystal data for 3-IIa (photodimerized): C24H26N2O12S2, Mr ¼ 598.59,
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68.23�, 12 839 reflections collected (3874 unique), R1¼ 0.0543 and wR2¼
0.1215 [I > 2s(I)]. Rint ¼ 0.0719, GOF ¼ 1.03, flack ¼ 0.05(3).
Crystal data for 3-IIb: C12H13NO6S, Mr ¼ 299.29, triclinic space group
P1, a ¼ 7.2300(1), b ¼ 7.9762(1), c ¼ 12.5729(2) Å, a ¼ 87.318(1), b ¼
77.649(1), g ¼ 63.576(1)�, V ¼ 633.305(16) Å3, Z ¼ 2, Dc ¼ 1.570 g cm�3,
m ¼ 2.544 mm�1, F000 ¼ 312, T ¼ 100(2) K, 2qmax ¼ 67.86�, 12 884
reflections collected (3904 unique), R1 ¼ 0.0321 and wR2 ¼ 0.0836 [I >
2s(I)]. Rint ¼ 0.0346, GOF ¼ 1.03, flack ¼ 0.021(14).
Empirical absorption corrections were applied using SADABS.11 Struc-
tures solved by direct methods and refined by full-matrix least-squares
analysis on F2 using X-SEED12 equipped with SHELXS.13 All non-
hydrogen atoms were refined anisotropically by full-matrix least-squares
on F2 by the use of the SHELXL13 program. H atoms (for OH and NH)
were located in difference Fourier synthesis and refined isotropically with
O/N–H distances restrained to 0.85(2) Å. The remaining H atoms were
included in idealized geometric positions with Uiso ¼ 1.2Ueq of the atom
to which they were attached (Uiso ¼ 1.5Ueq for methyl groups)

{ Photochemical experiments. UV illumination studies for 3-I and IIa
were carried out at room temperature (296 K) using a focused 200 W

Xe(Hg) arc lamp (Newport Corp., 67005, 6292) equipped with a 360 nm
optical edge filter (Newport Corp., CGA-360). For sample 3-IIb, the
crystal was irrradiated with a flexible light guide while mounted on the
diffractometer at 100 K.
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