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Effect of Surface Stability on Core Muscle 
Activity for Dynamic Resistance Exercises

Jeffrey M. Willardson, Fabio E. Fontana, and Eadric Bressel

Purpose: To compare core muscle activity during resistance exercises performed on 
stable ground vs. the BOSU Balance Trainer. Methods: Twelve trained men per-
formed the back squat, dead lift, overhead press, and curl lifts. The activity of the 
rectus abdominis, external oblique abdominis, transversus abdominis/internal oblique 
abdominis, and erector spinae muscles was assessed. Subjects performed each lift 
under three separate conditions including standing on stable ground with 50% of a 
1-RM, standing on a BOSU Balance Trainer with 50% of a 1-RM, and standing on 
stable ground with 75% of a 1-RM. Results: Significant differences were noted 
between the stable 75% of 1-RM and BOSU 50% of 1-RM conditions for the rectus 
abdominis during the overhead press and transversus abdominis/internal oblique 
abdominis during the overhead press and curl (P < .05). Conversely, there were no 
significant differences between the stable 75% of 1-RM and BOSU 50% of 1-RM 
conditions for the external obliques and erector spinae across all lifts examined. Fur-
thermore, there were no significant differences between the BOSU 50% of 1-RM and 
stable 50% of 1-RM conditions across all muscles and lifts examined. Conclusions: 
The current study did not demonstrate any advantage in utilizing the BOSU Balance 
Trainer. Therefore, fitness trainers should be advised that each of the aforementioned 
lifts can be performed while standing on stable ground without losing the potential 
core muscle training benefits.

Keywords: biomechanics, exercise performance, physical performance, resis-
tance training, sport medicine, strength training

During the last ten years, the prescription of exercises designed specifically 
to emphasize core stability have increased in popularity.1 The term core is used to 
describe the lumbopelvic and abdominal regions of the body, and stability of the 
core is thought to be essential to provide a foundation for movement of the upper 
and lower extremities, to support loads, and to protect the spinal cord and nerve 
roots.2,3 Core stability is highly dependent on tension development in muscles that 
originate on the lumbar vertebrae (eg, erector spinae) and pelvis (eg, rectus abdo-
minis, external oblique abdominis, internal oblique abdominis, and transversus 
abdominis).4,5

Willardson is with the Kinesiology and Sports Studies Department, Eastern Illinois University, 
Charleston, IL; Fontana is now with the Health, Physical Education, and Leisure Services Department, 
University of Northern Iowa, Cedar Falls, IA; and Bressel is with the Health, Physical Education, and 
Recreation Department, Utah State University, Logan UT.
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The use of unstable surfaces has increased in popularity when prescribing 
exercises for core stability training.6–19 Free weight exercises that were previously 
performed on stable ground and benches are now commonly performed on unsta-
ble surfaces. For example, the squat is now commonly performed while standing 
on balance discs and the overhead press is now commonly performed while seated 
on a stability ball.6,7,9,11,15

Previous research has demonstrated greater activation in the core muscles 
when free weight lifts were performed on unstable surfaces.6,7,16 Anderson and 
Behm6 compared core muscle activity (eg, abdominal stabilizers, upper lumbar 
erector spinae, lumbosacral erector spinae) during three squat lifts with varying 
levels of instability: (1) an unstable squat performed while standing on balance 
discs, (2) a stable squat performed with a free weight bar while standing on stable 
ground, and (3) a very stable squat performed in a Smith machine while standing 
on stable ground. The authors demonstrated that the activity of all muscles exam-
ined increased progressively from the very stable to the unstable squat.

Similarly, Behm et al7 demonstrated greater activation in the upper lumbar 
and lumbosacral portions of the erector spinae when the dumbbell chest press was 
performed while lying on a stability ball vs. a stable bench. In a related study, 
Norwood et al16 compared core muscle activity (eg, latissimus dorsi, rectus abdo-
minis, internal oblique abdominis, and erector spinae) during four bench press 
lifts with varying levels of instability: (1) stable (traditional style), (2) upper body 
instability (lying on a Swiss ball), (3) lower body instability (feet on a BOSU Bal-
ance Trainer), and (4) dual instability (lying on a Swiss ball and with feet on a 
BOSU Balance Trainer). The authors demonstrated that the activity of all muscles 
examined was greatest for the dual instability bench press.

In each of the aforementioned studies, greater instability consistently elicited 
higher levels of core muscle activity.6,7,16 However, the amount of resistance that 
could be safely used on the unstable surfaces was limited, and subjects may have 
been lifting at very low percentages of their maximal strength. Because healthy 
individuals are capable of lifting at higher intensities when on a stable surface vs. 
an unstable surface, there is a need for research to compare differences in core 
muscle activity with loads that are typical and safe for each condition. This may 
allow for meaningful comparisons that could be applied in practical settings. 
Therefore, the purpose of this study was to compare core muscle activity during 
resistance exercises performed on stable ground vs. the BOSU Balance Trainer. 
Based on previous research showing elevated muscle activity during more unsta-
ble conditions, we hypothesized that use of a BOSU Balance Trainer would elicit 
higher levels of core muscle activity compared with performing lifts on stable 
ground.

Methods

Subjects

Twelve trained men volunteered to participate in this study (see Table 1 for char-
acteristics). All subjects had consistently trained with weights a minimum of 4 
years for the purpose of gaining maximal strength and muscle mass. The number 
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of subjects was based on an effect size of 0.25 SD with an alpha level of 0.05 and 
power at 0.80.19

To qualify for inclusion, subjects were initially screened using the Physical 
Activity Readiness Questionnaire (PAR-Q) and determined to be healthy. None of 
the subjects had incurred any low back, knee, or ankle injuries during the previous 
year, and all subjects had consistently performed the lifts used in the study as part 
of their resistance training programs. Before data collection, this study was 
approved through the institutional review board and subjects were required to sign 
a consent form in accordance with human subject regulations. Subjects were per-
mitted to continue with their usual resistance training regimens throughout the 
study. However, they were restricted from lifting weights the same day before a 
testing session.

Experimental Design

A quasi-experimental crossover design was employed whereby subjects per-
formed four lifts (ie, dead lift, back squat, overhead press, and curl) at two intensi-
ties (50% 1-RM and 75% 1-RM) and on two surfaces (ie, stable ground and unsta-
ble BOSU Balance Trainer). The electromyographic (EMG) activity of various 
core muscles was analyzed for each condition after a 5-week familiarization 
period.

Familiarization Sessions

A 5-week familiarization period was implemented so that each subject received 
adequate practice for each lift while standing on the BOSU and to assess maximal 
strength. Subjects attended one training session per week during which each lift 
was practiced while standing on the BOSU. A BOSU Balance Trainer can be 
described as half sphere mounted on a stable platform that is designed to make 
resistance exercises more challenging by increasing balance demands. The BOSU 
was positioned so that subjects were required to balance with the stable platform 
side up (see Figure 1). During the first practice session, subjects performed 2 sets 
of 15 repetitions of each lift while utilizing an unloaded Olympic barbell (ie, 20 
kg). The same number of sets and reps were used during subsequent practice ses-
sions but the load was increased to 50% of their maximal resistance. During weeks 

Table 1  Subjects’ Characteristics

Variable Mean Standard Deviation

Age (y) 21.50 1.31
Height (m) 1.79 0.06
Body Mass (kg) 83.17 9.25
1-RM Squat (kg) 135.58 24.94
1-RM Dead lift (kg) 156.58 10.78
1-RM Overhead Press (kg) 69.17 10.36
1-RM Curl (kg) 56.17 5.57
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2, 3, 4, and 5, maximal strength testing was assessed while standing on stable 
ground for each lift.

Maximal Strength Assessment

Because of safety concerns, maximal strength was not assessed while standing on 
the BOSU Balance Trainer. During the lengthy familiarization period, it was 
apparent that working with higher loads (75% of a 1-RM) on the BOSU was 
unsafe for subjects, despite the strenuous safety precautions. Therefore, the inten-
sity of lifts performed on the BOSU Balance Trainer represented a percentage of 
maximal strength relative to stable ground. Maximal strength was assessed twice 
for each lift: during weeks 2 and 4 for the back squat and overhead press, and 
during weeks 3 and 5 for the dead lift and curl. For safety reasons, all testing ses-
sions took place while standing inside a lifting cage, in which catch pins were set 
at the bottom point in the range of motion for each lift. Two experienced spotters 
were present for each testing session.20,21

Maximal strength testing for all lifts proceeded as follows: for the first 
warm-up set, 5 to 10 repetitions were performed at 40% to 60% of the perceived 
maximum. Following a 1-min rest and light stretching, 3 to 5 repetitions were 
performed at 60% to 80% of the perceived maximum. At this point, the resistance 
was increased to the same level or a level that was approximately 2 to 5 kg higher 

Figure 1 — Back squat performed while standing on the BOSU Balance Trainer.
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than the perceived maximum, and a maximal repetition was attempted. If that 
repetition was successful, an additional 2 to 5 was added to the bar, and following 
a 5-min rest, another maximal repetition was attempted. This process was repeated 
until a failed attempt occurred. The 1-RM (one-repetition maximum) was recorded 
as the last successfully completed attempt.20,21

Experimental Data

Following the familiarization period, experimental data were collected during 
week 6, at which time subjects performed 1 set of 3 repetitions of each lift while 
standing on stable ground or standing on the BOSU Balance Trainer with 50% of 
a 1-RM. Each subject also performed 1 set of each lift while standing on stable 
ground with 75% of a 1-RM. All repetitions were performed at a controlled 
cadence using a digital timer. To control for order effects, the lifts (ie, back squat, 
dead lift, overhead press, curl) and conditions (ie, BOSU 50% 1-RM, stable 50% 
1-RM, stable 75% 1-RM) were counterbalanced and randomly assigned using the 
Latin square procedure.

Electromyographic signals were recorded using Delsys DE-2.1 differential 
surface electrodes, which contained preamplifiers (10) potted in polycarbonate 
enclosures (Delsys Inc., Boston, MA, USA). The electrode configuration included 
two silver bars each 10 mm long  1 mm in diameter. The interelectrode distance 
was 10 mm with a typical common-mode rejection ratio of 92 dB, with a mini-
mum at 84 dB. The input impedance was greater than 15 MΩ at 100 Hz and the 
noise was <1.2 V. The surface electrodes were positioned on the skin over the 
rectus abdominis (RA), external oblique abdominis (EO), transversus/internal 
oblique abdominis (TA/IO), and erector spinae (ES). A common reference elec-
trode was placed on the skin over the anterior superior iliac spine.14,22

The aforementioned muscles were selected because they are can be observed 
with surface EMG and because they are important components of the core muscle 
group.1–5 The electrodes were positioned according to previously published 
procedures.14,22 Note that the TA/IO location of 2 cm inferior and medial to the 
anterior superior iliac spine is the point at which the transversus abdominis blends 
with the internal oblique abdominis muscle; therefore, the activity of these two 
muscles could not be separated.

Electromyographic activity from the selected muscles for each subject was 
recorded on the right side only. To ensure high fidelity of the EMG signals, the 
skin at each site was shaved, cleaned with rubbing alcohol, and lightly abraded 
with sandpaper before electrode placement. Medical-grade adhesive was used to 
affix the electrodes to the skin. The collection of EMG activity began on the verbal 
command “go,” at which time subjects began their repetitions and the EMG 
system was manually triggered to record 10 s of data between a bandwidth of 20 
Hz and 450 Hz (Butterworth design with 3-dB points at 20 and 450 Hz and a roll-
off = 12 dB/oct). Electromyographic signals were amplified by a factor of 10,000 
using a Delsys Bagnoli-4 amplifier (Delsys Inc.). The amplified signals were sam-
pled at 1000 Hz with a 16-bit A/D card (National Instruments E-series) and sub-
sequently used for the analytical procedures.

Collected EMG signals were analyzed by computing the root mean square 
(RMS) over an 8-s window for each repetition for each lift. The RMS over the 
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middle 8 seconds of the 10-s window was chosen to correspond with the 8-s lift-
ing cadence per repetition (ie, 4 seconds eccentric and 4 seconds concentric) and 
to give a global measure of activity. Next, an average RMS over the three repeti-
tions for each condition was computed. The average RMS value of each muscle 
was then normalized to average reference RMS values computed for each muscle 
during an EMG reference assessment.

Reference EMG assessments for each muscle were obtained by asking sub-
jects to perform maximal voluntary contractions (MVCs) consistent with previ-
ously published procedures.14,22 Reference muscle actions were obtained after a 
rest period of 10 minutes following the experimental assessments to allow for suf-
ficient recovery because there were a high number of conditions and lifts.23 For 
muscles RA and TA/IO, subjects lay supine on a stable flat surface with hips and 
knees flexed and feet secured by an assistant. Subjects crossed their arms over 
their chest and on the command “go” attempted to maximally curl-up against 
manual resistance. For muscle EO, the same aforementioned procedures were fol-
lowed, but the curl-up included a twist to the left. For muscle ES, subjects lay 
prone on stable flat surface with feet secured by an assistant; the hands were posi-
tioned behind the head and on the command “go” they attempted to extend at the 
trunk maximally against manual resistance. Each test was performed twice, and 
each effort was held for 3 seconds with a 30-s rest between repetitions. Muscle 
EMG activity were recorded and analyzed for the entire 3 seconds effort using the 
same collection and analysis parameters described previously. Accordingly, our 
dependent measure was a normalized EMG (NEMG) value as a percent of the 
reference contraction.

Statistical Analysis

The reliability between the maximal strength tests for the back squat, dead lift, 
overhead press, and curl was assessed using Pearson correlations. The NEMG of 
the core muscles was compared using a 3 (Conditions)  4 (Lifts)  4 (Muscles) 
repeated-measures ANOVA. The lower-bound correction was applied when the 
Mauchly’s test of sphericity was violated. Significance of interactions and main 
effects was based on an alpha level of P < .05. All statistical comparisons were 
made using SPSS version 14.0 (SPSS Inc., Chicago, IL).

Results
The Pearson correlations indicated that the results for the maximal strength tests 
were highly reliable (back squat = .97; dead lift = .89; overhead press = .84; curl 
= .84). The 3  4  4 repeated ANOVA indicated a significant three-way interac-
tion for condition  lift  muscle (F18, 198 = 5.33; P < .01; ηp

2 = .33). Further 
analysis on the three-way interaction was conducted using a 3 (Conditions)  4 
(Lifts) repeated-measures ANOVA for each of the four muscles independently. 
Post hoc comparisons were calculated as necessary using the Bonferroni correc-
tion factor.
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Rectus Abdominis

The 3  4 repeated-measures ANOVA for the RA muscle indicated a significant 
interaction for condition  lift (F6, 66 = 5.56; P < .05; ηp

2 = .34). Post hoc compari-
sons indicated that the stable 75% of 1-RM overhead press elicited significantly 
greater activity vs. all other combinations of conditions and lifts (P < .05; see 
Figure 2). There were no other significant comparisons.

External Oblique Abdominis

The 3  4 repeated-measures ANOVA for the EO muscle indicated that the inter-
action for condition  lift was not significant. However, the main effects for con-
dition (F2, 22 = 27.57; P < .01; ηp

2 = .72) and lift (F2, 22 = 10.02; P < .01; ηp
2 = .48) 

were significant. Post hoc comparisons for condition indicated that the stable 75% 
of 1-RM was significantly different from the stable 50% of 1-RM (P < .01), but 
not significantly different from the BOSU 50% of 1-RM (P = .40). Furthermore, 
the BOSU 50% of 1-RM condition was not significantly different from the stable 
50% of 1-RM condition (P = .43). Post hoc comparisons for lift indicated that the 
overhead press was significantly different from the back squat (P < .01), dead lift 
(P < .01), and curl (P < .01; see Figure 3). There were no other significant differ-
ences between lifts.

Figure 2 — Normalized rectus abdominis activity. *Stable 75% 1-RM overhead press 
significantly greater activity vs. all other combinations of conditions and lifts (P < .05).
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Transversus Abdominis / Internal Oblique Abdominis

The 3  4 repeated-measures ANOVA for the TA/IO muscles indicated a signifi-
cant interaction for condition  lift (F6, 66 = 10.61; P < .01; ηp

2 = .49). Post hoc 
comparisons indicated that the back squat and dead lift were not significantly dif-
ferent across all combinations of conditions and lifts. For the overhead press, the 
stable 75% of 1-RM elicited significantly greater activity vs. the BOSU 50% of 
1-RM (P < .05). However, the BOSU 50% of 1-RM overhead press was not sig-
nificantly different from the stable 50% of 1-RM overhead press (P = 1.0). For the 
curl, the stable 75% of 1-RM elicited significantly greater activity vs. the BOSU 
50% of 1-RM (P < .01) and the stable 50% of 1-RM (P < .05). However, the 
BOSU 50% of 1-RM curl was not significantly different from the stable 50% of 
1-RM curl (P = 1.0; see Figure 4).

Post hoc comparisons for the TA/IO muscles also indicated that the stable 
75% of 1-RM overhead press and curl elicited significantly greater activity vs. the 
stable 75% of 1-RM dead lift and back squat (P < .05). The stable 50% of 1-RM 
overhead press elicited significantly greater activity vs. the stable 50% of 1-RM 
dead lift and back squat (P < .05). There were no significant differences across 
lifts for the BOSU 50% of 1-RM condition (see Figure 4).

Erector Spinae

The 3  4 repeated-measures ANOVA for the ES muscle indicated that the inter-
action for condition  lift and main effect for condition were not significant. 

Figure 3 — Normalized external oblique activity. *Across lifts, stable 75% 1-RM condi-
tion significantly different from stable 50% 1-RM condition (P < .01), but not significantly 
different from BOSU 50% 1-RM condition (P = .40).
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However, the main effect for lift was significant (F2, 22 = 45.37; P < .01; ηp
2 = .81). 

Post hoc comparisons for lift indicated that the dead lift elicited significantly 
greater activity vs. the back squat (P < .01), overhead press (P < .01), and curl (P 
< .01). The back squat elicited significantly greater activity vs. the overhead press 
(P < .01) and curl (P < .01). The overhead press and curl were not significantly 
different (P = .07; see Figure 5).

Discussion
The current study was unique in that previous studies compared callisthenic exer-
cises on stable vs. unstable surfaces7,14 or compared lifts performed on stable 
ground vs. callisthenic exercises on unstable surfaces.10,17 This is one of the few 
studies to compare relatively stable vs. unstable lifts. The key finding of the cur-
rent study was that there were no significant increases in core muscle activity 
when performing the dead lift, back squat, overhead press, and curl on the BOSU. 
The stable 50% of 1-RM and the BOSU 50% of 1-RM conditions were not signifi-
cantly different across all muscles and lifts examined.

However, there were some significant differences noted when the load was 
increased to 75% of 1-RM on stable ground. Unfortunately, subjects were not 
assessed with higher loads on the BOSU. Therefore, the current study was unable 
to fully examine the potential interaction between the load and surface stability. 

Figure 4 — Normalized transversus abdominis/internal oblique activity. *Stable 75% 
1-RM overhead press significantly greater activity vs. BOSU 50% 1-RM overhead press (P 
< .05). #Stable 75% 1-RM curl significantly greater activity vs. BOSU 50% 1-RM curl (P 
< .01) and stable 50% of 1-RM curl (P < .05). The back squat and dead lift were not signifi-
cantly different across all combinations of conditions and lifts.
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Because standing on the BOSU increased balance demands, the 50% of 1-RM 
intensity may have been higher in relative terms. However, the findings were 
unique for each muscle and lift examined, and the stable 75% of 1-RM condition 
was not always significantly different from the other conditions.

For the RA muscle, the stable 75% of 1-RM overhead press elicited signifi-
cantly greater activity across all combinations of conditions and lifts. However, 
the mean activity level was relatively low at approximately 10% MVC (see Figure 
2). Norwood et al16 demonstrated similar results for the barbell bench press when 
performed with increasing instability. Because the RA functions as a prime mover 
for lumbar flexion, this muscle may not contribute largely to spinal stability during 
supine and standing postures in which the trunk is maintained in a statically 
extended position.

For the EO muscle, the overhead press elicited significantly greater activity 
vs. all other lifts (see Figure 3). These results were consistent with the function of 
the EO muscle in maintaining spinal stability in the frontal plane. During perfor-
mance of the standing overhead press, the body can be likened to an inverted 
pendulum, which necessitates bilateral activation of the EO muscles to resist dis-
ruptive torques associated with postural sway.10

For the TA/IO muscles, the overhead press and curl elicited the largest activa-
tion levels; during these lifts, significantly greater activity was noted for the stable 
75% of 1-RM condition vs. the BOSU 50% of 1-RM condition (see Figure 4). The 
TA/IO muscles have been emphasized as important contributors to spinal stability. 

Figure 5 — Normalized erector spinae activity. *Across conditions, dead lift significantly 
greater activity vs. back squat (P < .01), overhead press (P < .01), and curl (P < .01). 
#Across conditions, back squat significantly greater activity vs. overhead press (P < .01) 
and curl (P < .01); across conditions, overhead press and curl not significantly different (P 
= .07).
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For example, studies have demonstrated that the TA/IO were among the first mus-
cles activated during unexpected loading of the trunk, and during upper and lower 
extremity movements, regardless of the direction of limb movement.24–26 The 
results of the current study suggest that to effectively train the stabilizing function 
of the TA/IO muscle, the overhead press and curl lifts can be performed while 
standing on stable ground. There was no evidence to indicate that standing on the 
BOSU would provide a superior training stimulus for these muscles.

For the ES muscle, the dead lift and back squat elicited the largest activation 
levels (approximately 45% to 65% MVC); conversely, the overhead press and curl 
elicited the smallest activation levels (see Figure 5). The activity of the ES muscle 
was not significantly different between conditions. This finding may have impor-
tant relevance in clinical settings; the results of the current study suggest that 
individuals may achieve a similar training stimulus for this muscle by standing on 
stable ground or by standing on the BOSU balance trainer. A surprising finding 
was the nonsignificant differences between the stable 50% of 1-RM and stable 
75% of 1-RM across all lifts examined; this may indicate that lifting at higher 
intensities (ie, >75% of a 1-RM) is required to elicit greater activation levels or the 
EMG equipment used was not sensitive enough to detect differences.

In contrast, Hamlyn et al10 reported significantly greater activation in the 
upper lumbar erector spinae and the lumbosacral erector spinae during the back 
squat and dead lift performed on stable ground with 80% of 1-RM vs. the super-
man and side-bridge exercises performed on a stability ball. Similarly, Nuzzo et 
al17 reported significantly greater activation in the longissimus and multifidus 
muscles for the back squat and dead lift performed on stable ground with 50%, 
70%, and 90% of 1-RM vs. the quadruped, pelvic thrust, and back extension exer-
cises performed on a stability ball. The conflicting results of the current study vs. 
Hamlyn et al10 and Nuzzo et al17 might be due to the different exercises examined 
for the unstable condition, and the stability ball exercises being performed with-
out utilizing external resistance.

This study had certain limitations that should be noted. First, maximal 
strength was not assessed for lifts while standing on the BOSU; therefore, the 
relative intensity was not equated between the stable and unstable conditions. 
However, when selecting an appropriate load, a fitness trainer would be well 
advised to select a lower intensity load relative to stable ground, rather than 
attempting to measure maximal strength while standing on the BOSU. We believe 
this strategy might be safer and more time efficient.

Secondly, muscle activity during the concentric and eccentric phases of each 
lift were not analyzed separately. Previous research has demonstrated different 
neural recruitment patterns for concentric, eccentric, and isometric muscle 
actions.27 However, the core muscles assessed in the current study acted isometri-
cally as stabilizers; therefore, a global measure of activity was selected to repre-
sent the average activity over an entire repetition of each lift. We cannot rule out 
the possibility that differences between conditions may have been more pro-
nounced had the phases of each lift been separated. This should be examined in 
future research.

Thirdly, reference muscle actions took place postexercise, which may have 
confounded the normalization procedures owing to the effects of fatigue. However, 
a recent review cited several studies that demonstrated full recovery of isometric 
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force production within 2 to 4 minutes following various exercise tasks.23 In the 
current study, subjects rested 10 minutes following the experimental assessments; 
we believe this would have allowed sufficient recovery for maximal force 
production during the reference muscle actions.

Practical Applications
Fitness trainers can apply the results of this investigation when programming 
exercises to improve the stabilizing function of the core muscles. The key finding 
was that there were no significant increases in core muscle activity when perform-
ing the dead lift, back squat, overhead press, and curl on the BOSU. Therefore, 
fitness trainers should be advised that each of the aforementioned lifts can be 
performed while standing on stable ground without losing the potential core 
muscle training benefits. Regardless of the condition, the overhead press and curl 
elicited greater activation levels in the RA, EO, and TA/IO muscles, whereas the 
back squat and dead lift elicited greater activation levels in the ES muscle.

Conclusion
Significant differences were noted between the stable 75% of 1-RM and BOSU 
50% of 1-RM conditions for the rectus abdominis during the overhead press and 
transversus abdominis/internal oblique abdominis during the overhead press and 
curl (P < .05). Conversely, there were no significant differences between the stable 
75% of 1-RM and BOSU 50% of 1-RM conditions for the external obliques and 
erector spinae across all lifts examined. Furthermore, there were no significant 
differences between the BOSU 50% of 1-RM and stable 50% of 1-RM conditions 
across all muscles and lifts examined. Overall, the current study did not demon-
strate any advantage in utilizing the BOSU Balance Trainer. Future research might 
examine the possibility of utilizing higher intensity loads while lifting on this 
device.
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