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Abstract

Contamination has a dramatic impact on the health of ecosystem and habitat suitability for the inhabited flora and fauna.
The Environmental Protection Agency (EPA) mandates an ecological risk assessment (ERA) that evaluates the potential ad-
verse impact of any anthropogenic activities on the ecosystem (US Environmental Protection Agency, 1997. Ecological Risk
Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessment. EPA/630/R-021011,
Washington, DC). This study provides a general framework and specific procedures to predict the contaminant exposure of mid-
sized mammals using a geographical information system (GIS)-based Monte Carlo simulation model. The model was applied
to the raccoons (Procyon lotor) on the Savannah River Site (SRS), a former nuclear production and current research facility.
Habitat behavioral data of 13 radiocollared male raccoons were used to determine home range and core areas. Combined with
other geographic data layers, such as distance to water, number of wetlands, and class landscape metrics, a logistic regression
model was used to inductively derive the resource selection functions that define the occurrence of raccoon. The cross validation
consistently revealed a high accuracy. A Monte Carlo simulation was then performed to estimate the likelihood of exposure and
contaminant uptake of the species weighted by the resource selection probability. This model adopted conservative assumptions
and spatial parameters. The proposed model served the purpose of assessing ecological risk and supporting decision-making.
Implementation issues for a GIS-based ecological risk assessment model are discussed.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Humans often modify landscapes and can have a
dramatic impact on resident flora and fauna, and subse-
quently, ecosystem health. Basic research has focused
on developing ecologically sound models that can be

0304-3800/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.ecolmodel.2005.04.001
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used in ecological assessments and has concentrated
its efforts to assess the magnitude and probability of a
specified undesirable outcome.

There are many types of ecological assessments;
each has differed in terms of goals, disciplines and
audiences (Suter, 1993). In the United States, the En-
vironmental Protection Agency (EPA) provides the
regulatory framework for ecological risk assessments
(ERA) to evaluate the potential adverse impact of hu-
man activities on the ecosystem (USEPA, 1997). An
ERA conducted on large federal government facilities,
such as the Department of Energy’s (DOE) Savannah
River Site (SRS), must comply with the specifications
outlined by the EPA (USEPA, 1997). The emphasis
of ERA activities on SRS has been largely focused
on the movement of radionuclides and other contam-
inants, and their effects on biotic and abiotic patterns
and processes. Previous ERA efforts have been focused
on spatially invariant approaches in the form of phys-
ical, statistical, or mechanistic models (Suter, 1993).
Following the example of many researchers (Haines-
Young et al., 1993; Sample, 1994; Frohn, 1997; Hun-
saker et al., 2001), DOE started incorporating the
techniques of geographic information science, includ-
ing remote sensing, geographic information systems
(GISs) and the global positioning system (GPS) into
the process of environmental assessment. However,
like any other emerging scientific discipline, there has
been a technological and educational gap in adopt-
ing GIS to its fullest potential in the application of
ERA. Gaines et al. (2005)argue that common prac-
tices of “contaminant exposure assessments [for the
SRS] took neither the spatial distribution of the pollu-
tant nor the movements of the individual species within
the landscape into account”. As a result, a critical need
has arisen for adopting spatially explicit modelling ap-
proaches for ERA to handle the dynamics imposed
by heterogeneous environments (Sample and Suter,
1994).

This article presents a GIS-based approach for mod-
elling habitat and ecological risk assessment by envi-
ronmental managers. The purposes of this paper are
(1) to provide a general framework and specific proce-
dures for a contaminant exposure simulation model in
wildlife species used as ecological endpoints in ERA,
and (2) to discuss problems and limitations in the im-
plementation of GIS-based ecological risk assessment
models.

2. Background

In order to understand the fate and transport of con-
taminants in the ecosystem, it is important to con-
sider wildlife as vectors of contamination in the food
chains of 0human and other predators. In fact, using
receptor species for targeted contaminant movement
is ideal for ERA because different species tend to be
appropriate for different spatial scales and may also be
ecosystem specific. The SRS currently uses 70 resident
wildlife species as focal receptors for the spatially ex-
plicit ERA modelling program that we describe in this
paper (Gaines et al., 2004). For illustration purposes, a
model for the raccoon (Procyon lotor) is demonstrated
for habitat and exposure modelling in this ERA pro-
cess.

2.1. Habitat modelling

Considerable research has been conducted on mod-
elling habitat suitability for avian (Brotons et al.,
2004; Hirzel and Arlettaz, 2003; Mackay et al.,
2002; Manel et al., 1999) and mammalian species
(Jerina et al., 2003; Mace et al., 1999; Mlandenoff
et al., 1995; Fabricius and Mentis, 1992). Guisan
and Zimmermann (2000)provided an excellent re-
view on various steps of predictive habitat modelling
and considerations. In general, each model requires
as input factors, land cover areas as well as met-
rics that describe habitat size/shape (Store and Joki-
maki, 2003). Spatial characteristics (e.g., proximity,
size, heterogeneity, etc.) of habitat type are measured
and evaluated for the unique species demands. Habi-
tat suitability (or resource selection function) is then
modelled using one of many functions for combining
the factors. Weighted linear combination (e.g., ana-
lytic hierarchic process, multi-attribute utility theory),
generalized linear models (e.g., logistic regression),
rule-based or artificial neural networks (ANNs) for
combining factors have also been used. Most stud-
ies use deductive factor weights defined by experts
(Store and Jokimaki, 2003) or limited observation of
the species, while some studies have weighted the
factors empirically based on observed species use
of the habitats (Gaines et al., 2004). Manly et al.
(2002)provided comprehensive guidelines in design-
ing ecological studies for various habitat modelling
applications.
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Recently, many researchers have adopted GIS
for predicting habitat suitability for various species.
Radeloff et al. (1999)used four habitat parameters as
weighted linear function in a GIS to predict population
of German roe deer (Capreolus capreolus) for wildlife
management.Gerrald et al. (2001)employed simple
spatial operations such as map overlaying, spatial fil-
ters, and buffering to develop a habitat suitability model
for the San Joaquan kit fox (Vulpes macrotis mutica)
in California for planning purposes.Glenz et al. (2001)
modelled wolf (Canis lupes) habitat suitability by cor-
relating the habitat variables with logistic regression.
Debeljak et al. (2001)exploited the landscape and eco-
logical properties by GIS and utilized an expert system
of C5 to develop classification trees to assign habitat
suitability value for red deer in Slovenia.Kobler and
Adamic (2000)adopted a similar inductive approach
to identify brown bear (Ursus arctos) habitat by au-
tomating a learning machine from GIS thematic layers.
However, this research differs from previous literature
that it concerns the fate and transport of contaminants
for ecological risk assessment.

2.2. Exposure modelling

Several years ago,Pastorok et al. (1996a)docu-
mented the trends modelling wildlife exposure to toxic
materials. The authors criticized recent research in that
most assumed no spatial variation in habitat use, no
spatial or temporal variation in contaminant sources,
and that 100% of the contaminants were available to
the wildlife. Although research into one or more of
these problems has been conducted, few efforts have at-
tempted to address these spatially and temporally vary-
ing habitats and contaminants. In particular,Pastorok
et al. (1996b)and Johnson (2002)argue that land-
scape ecology concepts combined with spatial expo-
sure modelling approaches could be used to capture the
spatial variability in habitat use. Monte Carlo simula-
tions have been applied to the uncertainty in contami-
nant ingestion and body-burden parameter values (e.g.,
Torres and Johnson, 2001). One of the few spatially ex-
plicit exposure modelling approaches that include spa-
tial variation in habitat use and contaminant sources
was conducted byHenriques and Dixon (1996). In this
study, a GIS and Gaussian plume model were com-
bined with radio telemetry data to model exposure
estimates.

2.3. Raccoon habitat

The raccoon is commonly found throughout North
America, with high population levels and extended
range in a variety of habitats. In non-urbanized set-
tings, it usually inhabits wetlands, plains, and forest
with nearby water sources. However, it is extremely
adaptable and will utilize human-altered habitats as
well. Raccoons are considered potential agents of con-
taminant movement and dispersal due to their broadly
omnivorous diet that includes components of both ter-
restrial and aquatic food chains (Lotze and Anderson,
1979; Khan et al., 1995). Their high mobility and gen-
eralist adaptability allow them to potentially move in
and out of contaminated waste sites freely (Gaines et
al., 2002). This species is also a game animal that is
often hunted and consumed in areas close to the SRS.
Previous work has shown that SRS raccoons utilize
nearby hunting grounds off the SRS thereby potentially
serving as vectors of contaminant transport to offsite
habitats and to human consumers (Boring, 2001). For
these reasons, the raccoon is a useful receptor species
for both human and ecological risk assessments.

There have been difficulties, however, in using rac-
coons as indicator species for ERA. This is because the
raccoon is an opportunistic omnivore, which makes it
difficult to estimate its integrated trophic level within
the food web. The diversity of its habitat severely com-
plicates the contaminant uptake pattern and its inter-
pretation. Fortunately, recent studies have quantified
the contaminant burden of raccoon on the SRS and
correlated their relative trophic position using stable
isotopic analyses (Gaines et al., 2002). With this new
understanding of the relationship between contaminant
burden and trophic position, raccoons are ideal recep-
tor species for ERA. Thus, the raccoon was chosen as
an appropriate species in a demonstration of a predic-
tive simulation model integrating habitat and contam-
ination uptake parameters for estimating exposure to a
population.

2.4. Study area

The SRS is a 778 km2 former nuclear production
and current research facility located in west-central
South Carolina (Fig. 1) that has restricted public access
since 1952. Five nuclear production reactors were in-
stalled, produced plutonium, tritium and other nuclear
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Fig. 1. Location of the SRS and primary land cover types derived from Landsat TM imagery. Inset maps illustrate the waste sites used in this
research.

material for national defense and other industrial pur-
poses. The SRS halted nuclear production in 1964. In
1972 it was designated as the first US National Envi-
ronmental Research Park in the hope of studying the
ecological impacts from human activities on the envi-
ronment and public health (White and Gaines, 2000).
Numerous studies on the contamination of the ecosys-
tem and bioaccumulation of radionuclides and metals
to the food web have been conducted (Brisbin et al.,
1974; Ashley and Zeigler, 1980; Gladden et al., 1985;
Whicker et al., 1990).

A large proportion of the SRS is forested, with a
mixture of evergreen and hardwood trees in various
stages of growth (White and Gaines, 2000). Most areas
of the SRS are in close proximity to a water body – in-
cluding creeks, rivers, wetland depressions, bays, and
nuclear reactor cooling reservoirs (although no longer
in use for cooling reactor water). The largest contigu-
ous wetlands are associated with the Savannah River
Swamp in the southern portion of the SRS.

A major SRS drainage tributary that has been
disturbed via large contaminant inputs is the Tims
Branch-Steeds Pond depositional system located in the
northwest of the SRS (Fig. 1). The simulation model
for the raccoon was applied to this system to deter-
mine potential contaminant exposure. The boundaries
of these waste units are delineated by the DOE based
on gamma spectroscopy and mass spectroscopy of soil

and sediment samples. Although the heterogeneity of
the contamination is currently being mapped (Gaines
and Punshon, unpublished data), the spatial extent of
the contamination had to be considered homogeneous
for the purpose of this model since these data are not
yet available. Steed’s Pond was historically a farm pond
prior to the establishment of the SRS and served as
a de facto settling basin for contaminated sediments
produced by upstream processing facilities from the
mid-1950s until 1985 (Evans et al., 1992). This pond
was reduced from 5.7 to 4.5 ha after partial failure and
repair of its dam in the 1960s. Contaminants accumu-
lated within the pond were predominantly U, Ni and Al
– which were subsequently left exposed in the wetland
environment. Vegetation quickly colonized the area,
stabilizing much of it from erosion, with the exception
of several unvegetated areas.

It is estimated that approximately 44,000 kg of de-
pleted U were released into Steed’s Pond (Pickett,
1990). Ninety-seven percent of the gross�-activity
released by the SRS was to the Steed’s Pond-Tims
Branch stream system, with 61% of this activity being
released between 1966 and 1968 (Evans et al., 1992).
Until 1979, effluent discharge went to a drainage ditch
that flowed into Tims Branch and then into Steed’s
Pond. Due to a breach of the wooden spillway in 1984,
Steed’s Pond released sediment-bound contaminants
into the Tims Branch depositional environment which
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continues during episodic storm events (Batson et al.,
1996). Previous investigations have shown that U is
bioavailable to wildlife residing in the Steed’s Pond
region (Punshon et al., 2003a,b). We demonstrate this
model, using U as the focal contaminant, using Steed’s
Pond as a distinct waste site and the Tims Branch de-
positional area as a second distinct waste site.

3. Methodology

A conceptual model was developed to describe the
steps for habitat and exposure modelling undertaken in
this research (Fig. 2). First, a receptor species (i.e., the
raccoon) was chosen from the list of receptor species
at the SRS appropriate for modelling exposure in the
focal waste units. This species was chosen based on
the knowledge that it uses this site for foraging and
thus would potentially be exposed to toxicants. Next,
the desired data layers were developed and compiled
into a GIS database by using existing data layers, re-
mote sensing, and/or field data collection. A proba-
bilistic resource selection model (i.e., habitat use map)
was developed to map the spatial distribution of esti-
mated occupation probabilities. Model validation was
performed to evaluate the predictive ability and accu-
racy of the habitat distribution portion of the model. By
using the framework of a generalized exposure model
(Sample and Suter, 1994), the level of contaminant
burden of individuals occupying different areas in a
contaminated area was predicted. A Monte Carlo sim-
ulation was used to estimate contaminant exposure for
the raccoon population using the Steed’s Pond waste
site and Tims Branch depositional waste site.

The procedures developed in this study closely fol-
low the specifications suggested by theUSEPA (1997).
This article presents an illustration of a typical receptor
species simulation model for ERA using the raccoon as
the endpoint species. The proposed general framework,
however, is intended to serve as a template, which can
be easily adapted to other receptor species with appro-
priate modifications of model parameters.

3.1. Raccoon home range

For this study, home range is defined as the “area
included in the daily, seasonal and annual travels of an
individual animal” (Bolen and Robinson, 2003). Dur-

Fig. 2. Conceptual model of the proposed ERA framework.
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ing the period of March 1999 and August 2000, 13 male
raccoons were radiocollared and located 845 times.
Only male raccoons were used in order to preclude the
complication of removing females with young from the
studied population, which would have had an adverse
effect on the spatial movements and population struc-
ture of this raccoon population. From previous studies
(Boring, 2001), it was determined that adult female
raccoons have a similar pattern of habitat selection to
male raccoons. The daytime resting areas of the ra-
diocollared raccoons were tracked once every week by
a portable telemetry receiver, and recorded by using
a handheld GPS unit. Nighttime locations were ob-
tained from triangulation of azimuth data from track-
ing stations (Boring, 2001). The maximum triangula-
tion error of the telemetry data of raccoon used in this
research was 3.24 ha (Boring, 2001). All points were
obtained at a minimum of 4 h apart to achieve indepen-
dence (Swihart and Slade, 1997). Moreover, individual
raccoons were not relocated within a 12 h period. No
significant diurnal or seasonal variation in habitat uti-
lization was found. Raccoon location data were then
pooled across days and seasons. By using the Max-
imum Likelihood Estimator (Lenth, 1981), point es-
timates of the raccoon locations were created (White
and Garrott, 1990). The 95% home range ellipses were
computed by using the Adaptive Kernal Method of the
program CALHOME (Worton, 1987; Kei et al., 1996).
The final home range estimates were based only on
animals that have≥30 radiolocations (Seaman et al.,
1999).

3.2. Probability resource selection model

For a better estimation of the likelihood of a species
foraging in a particular area, it is important to con-
sider habitat composition and their spatial character-
istics. The resource selection model was developed
using a habitat map (Fig. 1) derived from supervised
classificationof Landsat Thematic Mapper imageries
(30 m resolution) collected in February, April and July
1997 (Pinder et al., 1998; Gaines et al., 2004). The
habitat map was later improved by using soils data
(Looney et al., 1990) and the US Forest Service man-
agement plan for the SRS. The raccoon model was de-
veloped from habitat usage information derived from
the radio-telemetry study for male raccoons (seeGaines
et al., 2005for detailed methodology) using an in-

ductive approach (Corsi et al., 2000; Gaines et al.,
2004). The 95% home range polygon was merged to
represent one study location. Raccoons had overlap-
ping home ranges and did not appear to be territo-
rial; therefore merging the home ranges represented the
available habitat for raccoons (Boring, 2001; Gaines
et al., 2005). To determine the appropriate scale at
which to investigate resource selection, we used the
maximum triangulation error for each radiolocation
(3.24 ha;Boring, 2001; Gaines et al., 2005), as the
minimum unit that could be used to investigate habitat
structure. This process was repeated at two larger reso-
lutions, 10 and 15 ha, which was the average size of the
30 and 50% core areas found within the raccoon’s home
range.

To investigate habitat associations, a hexagonal
mesh was draped over the data layers used to ana-
lyze habitat composition for each scale. The hexagonal
mesh allowed those pixels whose centroid fell within
the boundary of the hexagon to be analysed. Since the
resolution of the habitat map was 30 m× 30 m com-
pared to a much larger 10 ha× 10 ha resolution of the
hexagonal mesh, both omission and commission error
is minimal. Specifically, logistic regression was used
to derive probabilistic resource selection functions us-
ing habitat characteristics and landscape indices as in-
dependent variables (Manly et al., 2002; Hosmer and
Lemeshow, 2000; seeGaines et al., 2005for detailed
methodology). These variables included: (1) habitat
area, (2) number of wetlands within the core area,
(3) distance to water, and (4) class landscape met-
rics (McGairal and Marks, 1993). Raccoon presence
or absence in a hexagon was used as the dichotomous
response variable. The number of times a raccoon uti-
lized a hexagon within the study area was determined
(e.g., 0− n) and used as a weighting function for the
independent variables within the regression. To mini-
mize collinearity among explanatory variables, a cor-
relation matrix was used to determine what variables
provided redundant information. To derive the most
parsimonious variable combinations that best discrim-
inated used landscapes, the Akaike information criteria
(Akaike, 1974; Manly et al., 2002) was used for con-
tributing variables. Each resolution was modelled to
determine at what scale SRS raccoons were most sen-
sitive to habitat structure and a hexagonal size of 10 ha
was deemed most appropriate based on model conver-
gance and maximum rescaledR2 values (seeGaines et
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Table 1
Logistic parameters and estimates for the raccoon distribution model

Variable Parameter estimate

Intercept 2.6935
Presence of wetland 1.4623
Mean patch edge (meters) 0.1435
Mean perimeter-to-area ratio 0.0283
Water/marsh (WATMAR) −10.6217
Grasses and forbs −9.1636
Dense-canopy pines −12.0898
Evergreen hardwoods 15.7592
Upland hardwoods −10.1934
Upland oak hardwoods −19.2744
Mixed-composition floodplain hardwoods −4.1054
Floodplain oak forests 20.7499
Upland scrub forests −17.1781

al., 2005, for further detail). The raccoon model used
here was based on 13 independent variables (Table 1).
The result of the model was a probability map indi-
cating the likelihood of raccoon use across the SRS
(Fig. 3).

3.3. Monte Carlo simulation for exposure
estimates

Estimating the exposure of raccoons to a haz-
ardous material requires an empirical relationship be-

tween the probability of foraging at a location and
the risk of contamination exposure from using re-
sources at that location. The probability resource se-
lection model provides the functional basis for the
ERA. This model was implemented using knowledge
of the spatial distributions of contaminants, an an-
imal’s home range, and spatial extent of the waste
site.

The exposure to a raccoon at a location is computed
as a function of body weight, ingestion rate of media,
and the concentration of contaminants within the me-
dia. The total exposure to raccoons foraging at a waste
site was modelled as a function of the ratio of waste
site area to home range area weighted by the probabil-
ity of the animal occurring within the area defined by
its hypothetical home range:

Ej = P

(
WSA

HR

[
m∑

i=1

(
IRiCij

BW

)])
(1)

where Ej is the total exposure to contaminantj in
mg/kg/d,P is the average probability of the species in-
habiting a waste site, WSA is the waste site area within
the home range in ha, HR is the home range area in
ha,m is the total number of ingested media (e.g., food,
water, soil), IRi is the ingestion rate for mediaI, Cij

is the concentration of contaminantj in mediumi in

Fig. 3. Probability of a raccoon using locations in the SRS. The hexagonal tessellation uses a unit size of 10 ha, equivalent to the average core
area of a raccoon. Inset maps illustrate the waste sites used in this research.
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mg/kg; BW is the whole body weight of the endpoint
species in kg.

The contaminant exposure modelled by Eq.(1) is
a modified exposure estimation based on the work of
Sample and Suter (1994), in which the proportion of
the contaminated area that is suitable for the animal’s
use is replaced with the probability derived from the re-
source selection model. This offers improved rigor for
estimating exposure because it eliminates the ambigu-
ity inherent in defining suitability. To get a distribution
of the total exposure of a single raccoon as well as a
potential population foraging near the waste site can be
derived using a Monte Carlo simulation of the proba-
bility of raccoon use within the waste site area.

Monte Carlo simulation uses random number gen-
erators to simulate a variety of statistical and experi-
mental conditions, often based on sample observations
(Gentle and James, 1998; Murdoch, 2000). Here, we
sampled hypothetical home ranges spatially by ran-
domly assigning a centroid within a specified area
around the waste site, based on the uniform distribu-
tion. This procedure mimics sampling from the popula-
tion of possible home ranges. This example uses spatial
units (hexagons) smaller than the animal’s home range.
Therefore, during the simulation process, hypothetical
home range ellipses must be used. We then calculate
exposure for each sampled hypothetical home range
based on the joint occurrence of model values (e.g.,
habitat use) and the model estimated probabilities of
finding a raccoon in a cell within the selected home
range. In this study, the model values were the joint oc-
currence of waste area contamination and habitat use.
A circular sampling unit (hypothetical home range el-
lipse) was used to deal with the problem of potential
directional bias of simulated home ranges in selecting
overlapped core areas to be used in calculating expo-
sure (Marinussen and van der Zee, 1996). Since the
spatial distribution of habitat use was known (i.e., the
probability resource selection model), a uniform PDF
(rather than a non-uniform) PDF could be used. The
simulation is expressed in the following steps (Fig. 4a):

1. The desired waste site(s) or sources of contamina-
tion to be modelled were identified. Because of the
nature of contamination, and the spatial relationship
between the home range of the species and the waste
site(s), buffering of the waste sites was necessary
to extend the risk of exposure by an a priori thresh-

old of distance. This supplies a dynamic area–home
range ratio (Eq.(1)).

2. Based on the home range information derived from
the telemetry data, a circular home range was used.
The waste site was buffered using a radius of 90%
of the home range. This parameter can be modified
based on user input/a priori knowledge about the
species.

3. A Monte Carlo simulation was performed to simu-
late the risk of exposure of the population to the con-
tamination in an iterative fashion. For each iteration,
a circular home range was randomly created across
the space with the constraint that its centroid was
inside the buffered waste site. The home range was
then used to spatially query the probability values
of all core areas that were located within. An area-
weighted average probability (P) was computed for
all selected core areas. By using the intersection
rule of topological operation, the area of (buffered)
waste site(s) that lies within the home range (HR)
could be calculated. With known information about
the total number of ingested media (m), the inges-
tion rate (IRi) and the concentration of contaminant
j in mediumi (Cij), and the body weight of the end-
point species (BW) from the field data or previous
literature, the total exposure (Ej) was computed (Eq.
(1); Gaines et al., 2004; Gaines et al., 2005). This
procedure was performed 30,000 times for both the
Tims Branch and the Steeds Pond sites. The pro-
cedure provides an estimate of the underlying dis-
tribution of a raccoon’s exposure at the two sites.
The histogram of the 30,000 simulated exposures
provides a visual approximation to the distribution.
The quantiles of the ranked exposures are unbiased
estimates of the true population quantiles.

Often investigators are interested in making infer-
ences about the mean exposure at a waste site, but we
can almost never assume that the distribution of the
mean is the same as that of the population. Hence, we
need to perform a similar procedure to estimate the
distribution of mean exposure. Earlier studies showed
that a population of approximately 30 raccoons occu-
pies the Tims Branch site and approximately 10 at the
Steeds Pond site (Boring, 2001; Gaines, 2003). Hence,
we randomly sample 30 home ranges for Tims Branch
and 10 home ranges for Steeds Pond, estimate the 30
(or 10) exposures and take the average. This procedure
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Fig. 4. (a) A data processing flow diagram of the Monte Carlo simulation for exposure estimation. (b) The graphic user interface of the proposed
wildlife exposure tool.

is repeated 1000 times for each site. This produces a
Monte Carlo random sample of average exposures. As
above, the resulting 1000 means provide an estimate
of the distribution of mean exposure using histograms
and quantiles. The 2.5th and 97.5th elements in the
ranked data vector of means are the estimated lower
and upper bounds, respectively, of the 95% confidence
interval. The mean exposures and their corresponding
95% confidence intervals provide the information nec-
essary to conduct hypothesis testing about the mean
exposure at the waste units. In practice, a researcher
could test the hypothesis that the mean exposure was
zero, or below (above) a given regulatory limit by using
the appropriate confidence bound (upper or lower).

3.4. Graphical user interface

For practical purposes, the model was implemented
as a dynamic linked library (DLL) in Environmental
Systems Research Institute (ESRI©) ArcMap (the GIS
used by the DOE) using Visual Basic. The graphi-

cal user interface (GUI) tool utilizes forms and the
associate objects (e.g., combo boxes) to allow user
interactions (Fig. 4b). The user is allowed to se-
lect input GIS data layers directly from the current
data frames or browse from existing datasets. Spe-
cific instructions and the data processing flow di-
agram are also provided in the tool for intuitive
learning.

Users have the flexibility in defining single or mul-
tiple waste sites as sources of contamination. As noted
in the previous section, the optional buffering fea-
ture takes local population risk from contaminants into
consideration by simulating many hypothetical home
ranges near the waste site instead of merely focusing on
a central location of one animal’s possible home range,
hence leading to a more realistic estimation of total ex-
posure. The buffering option also allows the centroids
of the species’ home range to be positioned beyond the
boundary of the waste site(s). This extends the model’s
capability by allowing the species’ home range to over-
lap a small portion with the waste site(s) thus providing
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an entire distribution that estimates exposure (Fig. 5).
It was assumed that the users have a priori informa-
tion about the contaminant of concern in deciding a
distance threshold in buffering the waste site(s). This
is the norm for DOE-based risk assessments. The user
is required to input the dimensions (e.g., radius) of the
circular home range in the textboxes available. Sim-
ilar to selecting a waste site(s), the users can either
select or browse for an existing probability data layer
that represents the likelihood of the species in the de-
fined core areas (Gaines et al., 2005; Gaines, 2003).
Contamination information for all media of a species
(e.g., number of ingested media, ingestion rate, con-
centration level, body weight) must be preprocessed
and input as a lumped value. This information is avail-
able for DOE risk assessors and was computed from

empirical data for this demonstration (Gaines, 2003).
The modelling tool was designed to ultimately allow
direct linkages to a list of media in an existing table or
spreadsheet.

The model output was created in a dBase table (dbf).
The output consists of a table of estimated exposure (Ej)
from the Monte Carlo simulation and a summary table
that stores the mean exposure of every 1000-iterations.
By using built-in functions available in ArcMap, the
set of estimated exposure values can be summarized to
create a histogram, which aids interpretation and fur-
ther analysis of the PDF of the modelled total exposure.
For verification purposes, the spatial parameters used
for each randomly generated home range, query results,
and all variables used in Eq.(1) are also stored in the
output.

Fig. 5. Two random home ranges created to model the uranium exposure to raccoons from the waste unit. Home range A was created with its
centroid within the boundary of the waste unit while home range B was created with its centroid outside the waste unit boundary but inside the
buffered waste site (buffer distance of 90% of home range).
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4. Results

The best logistic regression model was selected
for minimizing error in predicting locations that were
known to be used by raccoons based on observational
data (Table 1). As populations are generally sampled
rather than completely observed, it is difficult to ascer-
tain that individuals have never/will never use a spe-
cific location. However, observing an individual using
a location is thus, more certain (assuming the obser-
vational method is reliable) (Hodgson et al., 1988).
When creating a model for predicting use/non-use of
a spatial location the model can always be parame-
terized to minimize omission errors at the expense of
incurring more commission errors. One-hundred per-
cent omission accuracies can result from a very conser-
vative parameterization (although typically very high
commission errors will occur). The model parameteri-
zation approach is a careful balance of the known reli-
ability of the observations. Thus, our regression model
was somewhat biased toward the reliability of our data
and was expected to be a better predictor of habitats
used. However, the home range study coupled with the
hexagonal mesh approach gave the best assessment of
quantifying habitats that were not used by raccoons.
A leave-one-out cross-validation approach was used
to determine the overall accuracy of the habitat model
for predicting the use and non-use of locations by rac-
coons. This approach iteratively drops one observation
at a time, and predicts the missing observation using the
fitted model. This is repeated for each observation in
the data set. The validation results were 62 and 100%
accurate for predicting non-used and used locations,
respectively. Not surprisingly, the best predictive vari-
ables with positive associations with raccoon use were
floodplain oak forests and evergreen hardwoods (i.e.,
cypress) (Table 1). The best negatively associated vari-
ables were upland oak hardwoods, upland scrub forests,
dense-canopy pines, and water/marsh.

The general framework and specific procedures de-
scribed above were applied to the Steeds Pond and Tims
Branch depositional waste sites. The results presented
in this paper document the expected exposure of rac-
coons to U contamination from this site. The raccoon
population modelled in this simulation includes only
those that would visit the site.

Based on home range calculations for raccoon pop-
ulations on the SRS (Boring, 2001), the model used a

Table 2
Monte Carlo exposure estimates for the populations at Tims Branch
and Steeds Pond

Variable Monte Carlo estimate

Tims Branch
Population mean 0.3779
Population standard deviation 0.3192
0.025 and 0.975 quantiles of
distribution

(0.0159, 1.3910)

Steeds Pond
Population mean 0.0686
Population standard deviation 0.0362
0.025 and 0.975 quantiles of
distribution

(0.0052, 0.1200)

circular home range with a radius of 675 m. A buffer
distance of 90% of the original home range radius
(i.e., 607.5 m) was used to include randomly located
home ranges surrounding the waste site. This allowed
the simulation to include animals within a population
whose home range partially overlaps with the waste
site. For illustration purposes,Fig. 5presents the map
of home ranges created in two iterations. A lumped
value of the contaminated media consumed was as-
sumed to be 3.5 mg/kg/day for potential U uptake of the
species. This amount was based on raccoon food items
collected at each waste site (seeSample and Suter, 1994
for specific allometric equations; seeGaines, 2003for
applications using a resource selection model). Since
Steeds Pond is within the Tims Branch depositional
system, a single value could be used.

In Tims Branch, the total exposure frequency dis-
tribution was positively skewed (Fig. 6a). Exposure
amounts ranged up to 1.41 mg/kg/day. The mean prob-
ability of the species inhabiting the area surrounding
Tims Branch remains relatively low, particularly to the
west of Tims Branch (Fig. 3). Thus, a positively skewed
distribution is not surprising for an isolated waste site.

Unlike Tims Branch, the total exposure fre-
quency distribution was more uniform in Steed’s
Pond (Fig. 6b). Exposure amounts ranged up to
0.13 mg/kg/day. Predicated raccoon use around Steed’s
Pond was more uniform than around Tims Branch
(Fig. 3). Population mean, standard deviation and 95%
confidence bounds for both sites are shown inTable 2.
However, the numeric values of the frequency distri-
bution of Steed’s Pond were much lower than Tims
Branch. This is because the home range size is much
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Fig. 6. Histogram of the frequency distribution of uranium exposure and its cumulative frequency percentage at (a) Tims Branch, (b) Steed’s
Pond.

larger than the area of Steed’s Pond, which lowers the
ratio of waste site area within the home range and home
range area in the exposure estimation.

For both sites, the Monte Carlo results for mean
exposure are shown inTable 3. Mean exposure esti-
mates for Steeds Pond and Tims Branch are 0.3752
and 0.0686 mg/kg/day, respectively. Histograms of the
Monte Carlo means are shown inFig. 7a and b. As a

Table 3
Monte Carlo exposure estimates for the mean exposure

Site Mean exposure 95% confidence interval

Tims ranch 0.3752 (0.2602, 0.5023)
Steed’s pond 0.0686 (0.0463, 0.0905)
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result of the uniform PDF of random ellipse centroids,
the histogram of the simulated mean exposures appears
to be much closer to the normal distribution than the
underlying population. Also as expected, the 2.5th and
97.5th percentiles for the mean (shown as 95% con-
fidence bounds) are much tighter than for the highly
variable underlying population.

5. Discussion

The developed exposure model is a complex spa-
tially explicit model that is composed of resource se-
lection functions, contaminant exposure modelling and
simulation modelling. Like all models, the framework
is an attempt to simulate reality with certain simplifica-
tions and underlying assumptions. It is, thus, useful to
discuss the limitations of implementing such a spatially
explicit ecological model.

Many studies have described spatial characteris-
tics, such as edge effects, patch size and shape and
overall landscape heterogeneity as important factors in
controlling ecological processes within a fragmented
landscape (Haefner et al., 1991; Laurance and Yensen,
1991; Zheng and Chen, 2000). This study used a hexag-
onal mesh rather than the traditional square tessela-
tion as the hexagon has an intrinsic advantage that all
neighboring cells are equidistant from the centroid of
the center cell. Moreover, a hexagonal tesselation con-
tributes to a lower edge effect (e.g., edge/area ratio) that
closely approximates a circle and can still represent a
matrix without any edge mismatch. However, the ex-
posure estimation will still suffer from an edge effect if
the waste site is located “too close” to the boundary of
the habitat use probability model (i.e., hexagonal mesh)
relative to its home range size. For efficiency purposes,
the strategy adopted in this study for this edge prob-
lem was to use mean area-weighted probability among
the selected core areas within the hypothetical home
range polygons. The Monte Carlo simulation also helps
to minimize the bias by ensuring enough spatial sam-
ples from all directions. Other alternatives may include
spatial extrapolation, quantification of edge effects and
delineation area of edge influence (Zheng and Chen,
2000).

The effect of spatial aggregation has long been
known as an important issue in any kind of ecolog-
ical analysis and assessment (Clark and Avery, 1976;

Marinussen and van der Zee, 1996). In this research, the
scale of a raccoon’s home range and core area (i.e., size
of a hexagon) had been defined under careful consider-
ation and testing. Home range was determined based on
the procedures described in the previous section. Core
areas of 3.24, 10 and 15 ha, had also been tested in de-
veloping the probability resources selection model. As
noted, 3.24 ha is the maximum triangulation error for
the telemetry data (Boring, 2001), while 10 and 15 ha
are the average size of the 30 and 50% core areas found
within the raccoon’s home range, respectively. Previous
analysis showed that 10 ha model was most appropriate
among the three scales (Gaines, 2003). Inappropriate
scale in representing the probability resources selection
model would lower the overall accuracy in predicting
the likelihood of raccoon’s presence across space. This
may further lead to unreliable results in modelling ex-
posure and hence poor decision made based on the in-
formation. Therefore, similar attempts in using home
range/core area of another species for ERA must care-
fully choose the appropriate scale for that particular
ecosystem.

Precision is yet another spatial issue to consider. In
this research, each 10 ha core area is represented by a
single value in a hexagon to indicate the likelihood of
raccoons occupying that particular habitat. However,
the accuracy of the final exposure estimation might be
sensitive to rapid spatial changes in habitat use. Dif-
ferent habitat use estimations may result from differ-
ent origins for the tessellation. This origin problem is
not inherent in the exposure estimation using a Monte
Carlo simulation. However, this origin effect will be
true for either grid or hexagonal tessellations.

This research used a circular home range to avoid di-
rectional bias in the process of spatial sampling. How-
ever, other shapes of home range might be desired in
some cases. For example, a raccoon is known for fa-
voring prey along wooded areas with streams, rivers
and lakes. An elliptical home range oriented parallel
to the water body might better represent the likelihood
of raccoons in using that kind of habitat. This would
affect the spatial sampling and hence the final expo-
sure estimation to the contaminants. Future versions
of this model will employ such home range geome-
tries. A major consideration of the ecological validity
of this modelling effort is the choice of the receptor
species to be modelled and using the proper hypothet-
ical home range size. For example, although raccoons
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Fig. 7. Histogram of bootstrapped mean exposure of (a) 30 simulated raccoons at Tims Branch, and (b) 10 simulated raccoons at Steed’s Pond.

are generally found throughout the SRS, there are in-
herently areas that they will avoid such as large upland
pine habitats. Therefore merely querying the GIS data
layer of the raccoon habitat predictor portion of the
exposure model would identify those areas before a
full randomization would be employed. Following this
logic, an individual’s home range size may vary based
on available resources (e.g., larger home ranges in ar-
eas with fewer resources). These parameters must be
considered prior to the implementation of the simula-
tion modelling, and can be easily done by querying the

hexagonal units near the focal waste sites. However,
using habitat generalists such as the raccoon as focal
receptor species can minimize these potential errors.

The goal of this article was to provide a gen-
eral framework for GIS-based exposure modelling for
ERA. Any ecological assessment that implements GIS
must consider the issues above and take into consid-
eration the model assumptions and solutions to those
issues. The elements of concern for Tims Branch are
U and Ni, as well as other heavy metals (Punshon et
al., 2003a,b). Both U and Ni have been shown to be
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bioavailable to small mammals in this system (Punshon
et al., 2003b). Murray (2003)has shown that availabil-
ity of metals in Tims Branch may also have been influ-
enced by the relative trophic position of primary and
secondary consumers. However, the dynamics of the
Tims Branch food web have still not been entirely de-
fined. Undoubtedly, raccoons are an integral part of the
community structure of Tims branch and the popula-
tion has a very high risk of exposure and subsequent
uptake based on their feeding habits. Further,Murray
(2003)also showed that the presence of U in muscle
tissue in water snakes (Nerodia spp.) correlated to DNA
double-strand breakage, re-emphasizing that although
U and other potentially toxic metals may not biomag-
nify or even bioaccumulate in high levels, they must be
monitored from a hierchical ecosystem approach rather
than at the compartment level. Using an exposure as-
sessment helps identify these potential risks.

Based on the EPA’s Integrated Risk Information
System (IRIS), neither a reference dose (RfD) nor a
reference concentration (RfC) has been derived for U
(IRIS, 1997). However, the US Department of Health
and Human Services, through the Agency for Toxic
Substances and Disease Registry (ATSDR) has pub-
lished a toxicological profile for U (ATSDR, 1999) and
a minimal risk level (MRL) of 2.0× 10−3 mg/kg/day
has been derived for intermediate-duration oral expo-
sure (protective for chronic-duration oral exposure)
to soluble compounds of U based on a LOAEL of
0.05 mg U/kg/day d for renal effects in rabbits (Gilman
et al., 1998). If the U is in an insoluble form, the
risk would be lower (ATSDR, 1999). This MRL
is a protective level for humans and not raccoons;
however the predicted exposure risk to raccoons ex-
ceeds this limit as well as the LOAEL for rabbits.
Bertsch et al. (1994)showed that the U in soil in
Tims Branch was in a soluble form. However, current
studies (Savannah River Ecology Laboratory, unpub-
lished data) have shown that solubility may change
through the trophic media. Specifically, insoluble U
may be somewhat soluble when ingested, depending
on the solubility characteristics of the U salt. That
is, the solubility and thus the toxicity of U lies in
predicting what fraction of U might be soluble in
the gut which would entail using “simulated” gas-
tric solutions to assess solubility from various ma-
trices upon ingestion. Future research must focus on
understanding how U move through these environmen-

tal matrices in relation to trophic compartmental expo-
sure.

6. Conclusion

The habitat and exposure model developed in this
study can be used as a template for ERA and environ-
mental management. The model incorporated GIS, re-
source selection functions and simulation to analyze
a population distribution, identify areas of concern,
and quantify the risk of exposure of an indicator
species to particular waste site(s). With careful con-
sideration of the spatial issues discussed above, this
model can be extended to other receptor species for
a variety of waste sites. Future research can be di-
rected towards extending the model to address as-
sumptions adopted in this research. It will also be
useful to validate the exposure estimates based on long-
term data of the body burden of raccoons for known
contaminants.
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