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Abstract

A spatially explicit model of raccoon (Procyon lotor) distribution for the U.S. Department of Energy’s (DOE) Savannah

River Site (SRS) in west-central South Carolina was developed using data from a raccoon radio-telemetry study and visualized

within a Geographic Information System (GIS). An inductive approach was employed to develop three sub-models using the

ecological requirements of raccoons studied in the following habitats: (1) man-made reservoirs, (2) bottomland hardwood/

riverine systems, and (3) isolated wetland systems. Logistic regression was used to derive probabilistic resource selection

functions using habitat compositional data and landscape metrics. The final distribution model provides a spatially explicit

probability (likelihood of being in an area) surface for male raccoons. The model is a stand-alone tool consisting of algorithms

independent of the specific GIS data layers to which they were derived. The model was then used to predict contaminant

burdens in raccoons inhabiting a riverine system contaminated with radiocaesium (137Cs). The predicted 137Cs burdens were

less than if one would assume homogeneous use of the contaminated areas. This modelling effort provides a template for DOE

managed lands and other large government facilities to establish a framework for site-specific ecological assessments that use

wildlife species as endpoints.

D 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Understanding the fate and effects of environ-

mental pollutants is an important concern, particularly

when wildlife may act as vectors of contamination to
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the food chain of humans or other predators. To

properly quantify these potential risks, species must

be studied and subsequently modelled at the land-

scape level (Cairns, 1993; Cairns and Niederlehner,

1996) using both population and individual level

parameters (Akçakaya, 2001; Matsinos and Wolff,

2003). The North American raccoon (Procyon lotor)

has seldom been considered for both ecological and

human-based risk assessments, although it is com-

monly harvested and consumed throughout the south-

eastern United States (South Carolina Department of

Natural Resources, 1996a,b,2000). Several character-

istics of raccoons make them potential agents of

contaminant movement and dispersal including: (1)

high population levels with an extended range

throughout North America in a variety of habitats,

(2) their proclivity to travel extended distances

(Glueck et al., 1988; Walker and Sunquist, 1997;

Gehrt and Fritzell, 1998), (3) a propensity to utilize

human-altered habitats in combination with an ability

to move freely in and out of contaminated waste sites

(Hoffmann and Gottschang, 1977; Clark et al., 1989;

Khan et al., 1995), and (4) a broadly omnivorous diet

which includes components of both terrestrial and

aquatic food chains (Lotze and Anderson, 1979; Khan

et al., 1995). However, the fact that raccoons are

opportunistic omnivores, which hinders the ability to

estimate their integrated trophic position and the fact

that they occupy a variety of habitats, has severely

complicated interpretations of contaminant uptake

patterns (Gaines et al., 2002).

For these reasons, the U.S. Environmental Protec-

tion Agency (EPA) and other organisations like the

U.S. Department of Energy (DOE) have avoided

using raccoons as indicator species for ecological risk

assessments. This species has been well studied on the

DOE’s Savannah River Site (SRS) and recently,

through stable isotopic analyses, the relative trophic

positions occupied by different raccoon populations

has been quantified and correlated with contaminant

burdens shown by this species at this site (Gaines et

al., 2002). With these key pieces of information,

researchers can now use raccoons as focal species for

ecological risk assessments. To accomplish this, the

probability that a raccoon may occupy a particular

habitat or ecosystem must be established. Using these

parameters, exposure and uptake estimates can be

refined to better predict what the contaminant burden

might be in an individual occupying a habitat mosaic

within a contaminated area (Sample and Suter, 1994).

Past modelling efforts have shown that home range

size alone can have a dramatic effect on exposure and

uptake estimates and that although larger home ranges

decrease predicted contaminant burdens, they also

lead to a higher probability of extreme exposures

(Marinussen and van der Zee, 1996). These proba-

bilities can be modelled when both the home range

size and probability of an organism occupying a

contaminated region are taken into consideration.

Here, such a model is presented that predicts male

raccoon distribution on the SRS using probabilistic

resource selection functions. Although the assimila-

tion and depuration rates of contaminants in raccoons

may not necessarily be linearly related to their

proportional use of contaminated habitats, our

approach represents a first step to demonstrate how

uptake models can be established and then later

refined for quantitative risk assessments. Specifically,

this raccoon distribution model was applied to predict

the relative body burden of male raccoons inhabiting a

stream system contaminated with radiocaesium

(137Cs) that borders a private hunting ground outside

of the SRS boundary. Three different body burden

estimates were predicted based on three consecutive

yearly raccoon harvests near this hunting ground.

These body burdens were then used to calculate a

human-based risk assessment for those individuals

who may consume raccoon meat from such animals.

These results were then considered in terms of

ecological risk assessment.

2. Study areas

The SRS is an 804 km2 former nuclear production

and current research facility located in west-central

South Carolina, USA (33.18N, 81.38W; Fig. 1) that

has been closed to public access since 1952. In 1972,

the SRS was designated as the nation’s first National

Environmental Research Park to provide land where

basic ecology and human impacts on the environment

could be studied (White and Gaines, 2000). Raccoons

that were used for movement studies described below

were collected from three locations on the SRS. These

locations were chosen to represent the typical ecosys-

tems in which this species resides. Specifically, this

K.F. Gaines et al. / Science of the Total Environment 341 (2005) 15–3116



species tend to favour aquatic riparian areas, rather

than mesic upland areas (Lotze and Anderson, 1979;

Khan et al., 1995). Raccoons were collected from an

87-ha former reactor cooling reservoir (Pond B) and a

disturbed stream flood-plain (Steel Creek) directly

contaminated by 137Cs releases. Both of these systems

have been intensely studied with regard to the

bioaccumulation of 137Cs in resident flora and fauna

(Brisbin et al., 1974a,b; Evans et al., 1983; Gladden et

al., 1985; Brisbin et al., 1989; Whicker et al., 1990;

Gaines et al., 2000). Pond B (part of the Par Pond

reservoir system) received cooling water that was

contaminated with 137Cs from leaking reactor fuel

elements. Although other small leakages occurred, the

largest discharge of 137Cs took place from 1963 to

1964 and amounted to 5.7�1012 Becquerels (Bq).

This reservoir system originally received water and

current water levels in Par Pond are maintained from

the Savannah River, which borders the SRS.

The Steel Creek watershed drains into an inundated

riverine swamp delta that is contiguous with the

Savannah River (Fig. 1). Two production reactors

discharged effluents into Steel Creek containing

cooling water mixed with purge water from basins

used to store irradiated reactor fuel and target

assemblies. From 1954 through 1978, approximately

1.06�1013 Bq 137Cs that leaked from defective

experimental fuel assemblies were discharged into

Fig. 1. Map of the Department of Energy’s Savannah River Site showing areas where raccoons were tracked (Pond B, Steel Creek, and Craig’s

Pond) during the radio-telemetry study used to create the three raccoon distribution submodels. Raccoon trap-lines used for model validation are

shown along with radiocaesium (137Cs) isopleths.

K.F. Gaines et al. / Science of the Total Environment 341 (2005) 15–31 17



Steel Creek via this purge water (Ashley and Zeigler,

1980).

A third location, Craig’s Pond/Sarracenia Bay

(hereafter Craig’s Pond), was chosen as a typical

Carolina bay ecosystem. Carolina bays are naturally

occurring shallow elliptical wetland depressions

(Lide, 1997) that provide ample food for raccoons.

Most of these bays on the SRS are surrounded by

forested areas that provide raccoon shelter. Craig’s

Pond is a 78.2-ha wetland depression that represents

the largest open-water Carolina bay on the SRS

(Davis and Janecek, 1997). The much smaller

Sarracenia Bay (4.0 ha) is located approximately

200 m from Craig’s Pond. There have been no

reported direct inputs of 137Cs or other contaminants

into onsite areas of the Craig’s Pond/Sarracenia Bay

complex. Although a private company located next to

the SRS, Chem Nuclear, operates a low-level radio-

active waste disposal facility, the closest burial ground

is approximately 2.2 km from the Craig’s Pond area

and Chem Nuclear management reports that there

have been no direct inputs of contaminants to the

system (personal communication to M. Arbogast;

Arbogast, 1999). Despite the lack of direct contam-

inant inputs into the area, previous investigations have

revealed elevated levels of 137Cs in raccoons collected

from the Craig’s Pond/Sarracenia Bay area (Arbogast,

1999), which are likely due to movements to waste

sites within the SRS boundary (Boring, 2001).

3. Raccoon model development

3.1. Radio-tracking and home range determination

Thirteen radiocollared male raccoons were located

845 times between March 1999 and August 2000.

Male raccoons were used in this long-term study to

preclude taking females with young out of the

population. Animals were located during the day

(0700–1900 h) once per week by approaching day-

time resting locations on foot using a portable

telemetry receiver (AVM Instrument, Livermore,

CA, USA; Telonics, Mesa, AZ, USA) coupled with

a flexible two-element yagi antenna (Telonics).

Raccoon locations were recorded using a handheld

Global Positioning System (Garmin, Olathe, KS,

USA). Night locations (1900–0700 h) were estimated

using triangulation methods (White and Garrott,

1990), in which a minimum of two (usually three)

compass bearings were recorded from surveyed

tracking stations established along roads (see Boring,

2001 for more detailed description of tracking).

Azimuth data obtained from triangulation was pro-

cessed using the Lenth (1981) Maximum Likelihood

Estimator (as presented by White and Garrott, 1990)

to produce point estimates of animal locations. The

program CALHOME (Kie et al., 1996) was used to

construct 95% overall home ranges using the Adap-

tive Kernel Method (Worton, 1987). CALHOME

utilizes the Epanechnikov kernel (Worton, 1989) and

assumes that the data follow a bivariate normal

probability distribution when calculating the optimal

bandwidth hopt (called a smoothing parameter by

Worton, 1989). When animal location data appeared

to be non-normally distributed (i.e. animals appeared

to be using several core areas), the bandwidth was

decreased in 10% increments until the lowest possible

least-squares cross-validation (LSCV) score was

reached without causing the 95% home range poly-

gons to break up into several polygons (Kie et al.,

1996). Per direction of the CALHOME authors,

bandwidths were never reduced below 0.8 of the

optimal as determined by the program (Kie, personal

communication, Kie et al., 1996). Home range

estimates were derived only for animals with z30

radiolocations (Seaman et al., 1999). All 13 raccoons

used in this study had z30 radiolocations. Seasons

and daytime/nighttime locations were pooled since no

significant seasonal or diurnal habitat utilization

differences were found (Boring, 2001).

3.2. Data structure and model development

The best approach for determining the likelihood

of a species being in a specific area is through the

understanding of key life history components. The

success of applying life history components to

dynamic ecological models in a GIS is dependent

upon the quality of habitat data available. The SRS

habitat GIS data layers supply such information with

the key component being the 2000 habitat data layer

(HABMAP) with 33 habitat classifications (Table 1).

Other integral data layers essential to model develop-

ment were those associated with watershed hydrol-

ogy—river/streams, reservoirs, as well as Carolina

K.F. Gaines et al. / Science of the Total Environment 341 (2005) 15–3118



bays and other isolated wetlands. These data layers

were used to determine the minimum distance to

water and the number of wetlands within a core

raccoon area.

The detailed HABMAP of the SRS was con-

structed with the purpose of describing the abundance

and distributions of habitats and land uses surround-

ing the SRS. Habitat information was classified with

intentions to assess which animal species may be

present at a location for use in ecological risk

assessments (Pinder et al., 1998). The map was

compiled from supervised classifications of Landsat

Thematic Mapper Data collected in February, April

and July 1997, to allow proper assessment of habitats,

with a pixel size of 30 m. Additional detail was

supplied by cross-referencing the classifications of

spectral data with soil data (Looney et al., 1990) and

the U.S. Forest Service management plan for the SRS.

In 2000, this habitat map was updated using timber

harvest information provided by the U.S. Forest

Service and was ground truthed by various SRS

researchers.

For the purposes of providing meaningful habitat

categories germane to the life history of the raccoon,

certain habitat classes were merged into single

categories a priori to any habitat analyses (Table 1).

Specifically, the 14 pine categories were merged into

either bopen-canopy pineQ or bdense canopy pineQ.
Other habitat categories were also merged and used in

the model as single potential variables if the original

habitat category did not enter the model. Specifically,

the open wetland habitats (HABID 2 and 8, Table 1)

were merged into the variable WATMAR; herbaceous

habitats (HABID 4 to 6, Table 1) were merged into the

variable GRASS; upland hardwood habitats (HABID

23 to 25, Table 1) were merged into the variable

UPHRDWD; and floodplain forest habitats (HABID

26 to 31, Table 1) were merged into the variable

FLDPLN. Again, these merged habitat categories

were only used as potential variables in the logistic

regression if the original habitat categories did not

contribute to the model. Therefore, an individual

habitat that was used in a merged category was never

used in the model if the category into which it was

merged was used.

The raccoon model was developed from three sub-

models using the habitat usage information derived

from the radio-telemetry study for male raccoons.

Table 1

Categories, area, and percent composition of habitats for the 2000

version of the SRS HABMAP (Pinder et al., 1998)

HABID Habitat category Hectare

(ha)

Percent

composition

(%)

1 Industrial 525.42 1

2 Water 1822.32 2

3 Bare Soil/Bare Surface 236.97 0

4 Sparse Herbaceous Vegetation 1085.58 1

5 Grasses and Forbs 3076.11 4

6 Shrubs, Grasses and Forbs 2555.46 3

7 Disturbed and Revegetated in

1997

124.29 0

8 Marsh/Macrophyte 416.88 1

9 Open-canopy Pine 29804.04 37

9M Young, open-canopy loblolly 3631.23 5

9M Open-canopy loblolly 12053.6 15

9M Young, open-canopy longleaf 2615.85 3

9M Open-canopy longleaf 2709.09 3

9M Open-canopy slash 1587.51 2

9M Young, open-canopy slash 6882.21 9

9M Open-canopy pines 324.54 0

11 Dense-canopy Pines 13741.38 17

11M Young, dense-canopy loblolly 2546.46 3

11M Dense-canopy loblolly 54 0

11M Dense-canopy longleaf 4153.77 5

11M Young, dense-canopy longleaf 64.17 0

11M Young, dense-canopy slash 2874.69 4

11M Dense-canopy slash 3702.24 5

11M Dense-canopy pines 346.05 0

23 Evergreen Hardwoods 845.37 1

24 Upland Hardwoods 6373.98 8

25 Upland Oak Hardwoods 1469.07 2

26 Mixed-composition Floodplain

Hardwoods

1323.63 2

27 Floodplain Oak Forests 1323 2

28 Floodplain Sweetgum Forests 7010.73 9

29 Mixed Bottomland Hardwoods 3486.96 4

30 Bottomland Hardwoods and

Cypress

308.43 0

31 Baldcypress/Water Tupelo 2595.87 3

32 Upland Scrub Forests 2131.02 3

33 Wetland Scrub Forests 84.78 0

The map was compiled from supervised classifications of Landsat

Thematic Mapper Data from February, April and July 1997 with a

resultant pixel size of 30 m. Additional detail was supplied by cross-

referencing the classifications of spectral data with soil data

(Looney et al., 1990) and the U.S. Forest Service management

plan for the SRS and habitat categories were updated in 2000. An

identification number (HABID) was given to each habitat category

and is often referenced as such in the text. An bMQ was given as a

HABID if that habitat category was merged into the above numeric

category before GIS analyses were performed.

K.F. Gaines et al. / Science of the Total Environment 341 (2005) 15–31 19



Therefore, the final model only applies to the

distribution of male raccoons on the SRS. An

inductive approach (Corsi et al., 2000; Gaines et al.,

in press) was used to develop the three sub-models

using the ecological requirements of raccoons inhab-

iting the following ecotones: (1) reservoir systems

(using data from Pond B raccoons), (2) bottomland

hardwood/riverine systems (using data from the Steel

Creek raccoons), and (3) isolated wetland systems

(using data from Craig’s Pond raccoons). Wetland

ecotones were chosen for monitoring raccoon pop-

ulations because this species has a proclivity for water

and past studies have indicated that home ranges and

movements are centred near waterbodies (Jenkins et

al., 1979; Gehrt and Fritzell, 1998). For each of the

three sub-models, the 95% home range polygons of all

raccoons studied in that area were merged to represent

one study location. Raccoons in each of these areas

had overlapping home ranges and did not appear to be

territorial; therefore, merging the home ranges repre-

sented the available habitat for raccoons inhabiting

these systems. For the purposes of this study, home

range is defined as the barea included in the daily,

seasonal and annual travels of an individual animalQ
(Bolen and Robinson, 2003) as calculated by the

methods described above. Since the maximum trian-

gulation error for each radiolocation was an area of

3.24 ha (Boring, 2001), the minimum area that could

be used to investigate habitat structure was individual

units of that size. This scale represents the immediate

habitat structure available at the location an individual

was located.

To investigate habitat associations at this scale, a

mesh of 3.24-ha hexagons was draped over the data

layers used to analyze habitat composition. The

hexagonal mesh has the intrinsic advantage that all

neighboring cells of a given cell are equidistant from

the cell’s center point. This is useful in radial

searches and retrievals around the cell’s centroid.

Further, a hexagonal polygon is the least complex

shape (lowest edge/area ratio) that most closely

approximates a circle that can still be meshed

without overlapping or producing gaps. This lower

edge effect is desirable for habitat analyses and

allows transparent and highly explicable analyses of

landscape pattern. It also facilitates multiple scale

landscape pattern analyses such as the one performed

here (Elkie et al., 1999). The hexagonal mesh

allowed those pixels whose centroid fell within the

boundary of the hexagon to be analysed. Since the

resolution of the HAPMAP was 30 m2 compared to

a much larger 10-ha resolution of the hexagonal

mesh, both omission and commission error is

minimal. This process was repeated at two larger

resolutions, 10 and 15 ha, which was the average

size of the 30% and 50% core areas found within the

raccoon’s home range. Raccoon 95% home ranges

ranged from 143.7 to 372.0 hectares (ha) and

averaged 216.1F70.0 ha. The core area represents

the areas that were used consistently (as represented

as a percentage) by the raccoon within its home

range. Each resolution was modelled to determine at

what scale SRS raccoons were most sensitive to

habitat structure and a hexagonal size of 10 ha was

deemed most appropriate based on model conver-

gence and maximum rescaled r2 values (see Gaines

et al., in press for further detail). Specifically, none

of the 3.24-ha sub-models statistically converged and

all 15-ha sub-models had very low maximum

rescaled r2 values as compared to the 10-ha sub-

models. Habitat distribution and landscape indices

(Appendix A) were determined for each hexagon and

used as independent variables to be considered for

analysis of habitat selection under the assumption that

the habitat associations were largely influenced by

habitat composition. The specific variables used were:

(1) Habitat area (for each of the habitats that were

available in the merged 95% home range

polygon),

(2) Number of wetlands present in a hexagon,

(3) Distance to nearest wetland,

(4) Class Landscape Metrics-Patch Density and

Size Metrics, Edge Metrics, Shape Metrics

(Appendix A) using FRAGSTATs ver 2.0; see

McGarigal and Marks (1995) for further arith-

metic narrative.

In these models, the class for the landscape metric

represented the scale of the predictive parameters. The

size of the hexagon defined the scale at which the

species resource use of the SRS was predicted (in this

case 10 ha). These class-level indices describe the

structure of the landscape for each hexagon and

therefore can be used as predictive parameters with

the response variable. Logistic regression was used to

K.F. Gaines et al. / Science of the Total Environment 341 (2005) 15–3120



derive probabilistic resource selection functions using

the independent variables described above (Manly et

al., 2002; Hosmer and Lemeshow, 2000). The number

of times a raccoon utilized a hexagon within the study

area was determined (e.g. 0–n) and used as a

weighting function for the independent variables

within the regression. To minimize collinearity among

explanatory variables, a correlation matrix was used to

determine what variables provided redundant infor-

mation. To derive the most parsimonious variable

combinations that best discriminated used landscapes,

the Akaike information criteria (Akaike, 1974; Manly

et al., 2002) was used for contributing variables.

Model output was the probability ( p) within a

hexagon that the variable attribute combination at

any given site defines the species habitat (Chou, 1997;

Apps et al., 2001; see Tables 2–4 for model parameter

output).

3.3. Geographic Information System Application

A final GIS data layer representing the probability

of raccoon inhabiting a hexagon was constructed by

applying the probabilistic function derived from the

Table 2

Logistic regression summary statistics for the 10-ha RIVER model

Analysis of maximum likelihood estimates

Variable df Parameter

estimate

Standard

error

Chi-

square

P-value

Intercept 1 2.6935 3.5036 0.5910 0.4420

# of wetlands 1 1.4623 0.9484 2.3771 0.1231

MPE 1 0.1435 0.1174 1.4934 0.2217

MPAR 1 0.0283 0.0199 2.0295 0.1543

WATMAR 1 �10.6217 2.5856 16.8759 b0.0001

Grasses and Forbs 1 �9.1636 4.4515 4.2376 0.0395

Dense-canopy Pines 1 �12.0898 2.5696 22.1366 b0.0001

Evergreen Hardwoods 1 15.7592 4.1773 14.2321 0.0002

Upland Hardwoods 1 �10.1934 2.4213 17.7236 b0.0001

Upland Oak

Hardwoods

1 �19.2744 12.0674 2.5511 0.1102

Mixed-composition

Flood plain

Hardwoods

1 �4.1054 1.6858 5.9308 0.0149

Flood plain oak forests 1 20.7499 13.4171 2.3917 0.1220

Upland Scrub Forests 1 �17.1781 10.4071 2.7245 0.0988

Observations (n=80) are the number of 10-ha hexagons used in the

Steel Creek study area. The Akaike information criteria (AIC)

(Akaike, 1974; Manly et al., 2002) was used for the model-building

process.

Table 3

Logistic regression summary statistics for the 10-ha RESERVOIR

model

Analysis of maximum likelihood estimates

Variable df Parameter

estimate

Standard

error

Chi-

square

P-value

Intercept 1 �196.0 64.7579 9.1582 0.0025

# of wetlands 1 4.9697 1.3483 13.5854 0.0002

Minimum distance

to water

1 �0.6525 0.1618 16.2748 b0.0001

MSI 1 �16.3869 7.5050 4.7675 0.0290

MPFD 1 89.9499 28.1622 10.2016 0.0014

AWMPFD 1 85.5610 40.5046 4.4621 0.0347

WATMAR 1 13.0723 3.4804 14.1074 0.0002

Shrubs, Grasses

and Forbs

1 12.7037 5.2978 5.7500 0.0165

Upland Hardwoods 1 8.1614 3.3228 6.0328 0.0140

Upland Oak

Hardwoods

1 �19.8173 6.5401 9.1816 0.0024

Mixed-composition

Flood plain

Hardwoods

1 �13.8339 9.3859 2.1724 0.1405

Mixed Bottomland

Hardwoods

1 14.4381 5.6103 6.6230 0.0101

Open-canopy Pine 1 18.7779 5.1308 13.3946 0.0003

Dense-canopy Pine 1 9.5450 2.6027 13.4494 0.0002

Upland Scrub Forests 1 �26.7682 8.6775 9.5159 0.0020

Observations (n=67) are the number of 10-ha hexagons used in the

Pond B study area. The Akaike information criteria (AIC) (Akaike,

1974; Manly et al., 2002) was used for the model-building process.

Table 4

Logistic regression summary statistics for the 10-ha BAY model

Analysis of maximum likelihood estimates

Variable df Parameter

estimate

Standard

error

Chi-

square

P-value

Intercept 1 �14.3268 9.8457 2.1174 0.1456

# of wetlands 1 2.5552 1.0587 5.8253 0.0158

NUMP 1 2.1849 1.4738 2.1980 0.1382

MPS 1 6.0283 5.2150 1.3362 0.2477

Minimum distance

to water

1 �0.1211 0.0602 4.0450 0.0443

Open-canopy Pine 1 4.0463 2.3382 2.9947 0.0835

Dense-canopy Pine 1 1.7099 1.2681 1.8182 0.1775

Evergreen

Hardwoods

1 �16.7700 7.2016 5.4225 0.0199

Mixed Bottomland

Hardwoods

1 9.6507 6.3609 2.3019 0.1292

Observations (n=66) are the number of 10-ha hexagons used in the

Craig’s Pond study area. The Akaike information criteria (AIC)

(Akaike, 1974; Manly et al., 2002) was used for the model-building

process.
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logistic regression to the appropriate hexagon based

on the following rules:

(1) The river sub-model was the principal model

applied since most of the non-industrial facility

areas on the SRS are associated with one of the

major river/stream drainages.

(2) The reservoir sub-model was applied to the

three adjacent hexagons surrounding any reser-

voir and was dominant over the river model.

That is, even if there was a riverine habitat in

any of the three hexagons surrounding a

reservoir, the reservoir sub-model was applied.

This distance was based on movements derived

from the home range analyses.

(3) The bay sub-model was applied to those

hexagons that intersected a bay and was

dominant over the river and reservoir sub-

models. This minimal distance was also derived

from movement data associated with the home

range analyses and the juxtaposition of bays

relative to the river drainages.

3.4. Model validation

A randomization function was employed as the

statistical validation procedure to evaluate the strength

of the model’s prediction (Manly, 1998). The leave-

one-out cross-validation procedure was used to

produce the predicted binomial observation (0 vs. 1)

by dropping the data of one observation from the

dependent variables and re-estimating the response

from the tested model (Neter et al., 1990). The

observation was then put back into the data set and

the procedure was repeated until all observations were

used. The model’s validity was then judged by

dividing the number of observations for which there

were accurate estimates by the total number of

observations in the data set.

A second validation was performed by comparing

the model’s prediction of raccoon use to a trap-line

census from 1977 to 1982 (Jenkins et al., 1979). Ten

transects, each approximately 3.2 km long, within

the SRS were used to trap raccoons every fall (Fig.

1). Captured animals were marked and released. No

recaptures were used in the validation process. Three

spatial scales were used to determine how well the

model performed compared to the furbearer trap

data. A 1500-m buffer of each trap-line representing

the average diameter of a raccoon home range, a

750-m buffer representing the average radius of a

raccoon home range, and the actual hexagon (390-m

ddiameterT) of the distribution model that the trap-

line overlaid on, were used to investigate the model’s

predictive strength. The number of individual rac-

coons that were trapped in each trap-line over the 5-

year period was compared to the mean probability of

raccoon occurrence for each scale by summarizing

usage by four categories: low, medium, high, and

very high. Specifically, trap data were separated into

four even categories of low (0–4), medium (5–9),

high (10–14), and very high (15–18) based on the

highest frequency of catches. Distribution probabil-

ities were also broken into the same evenly

distributed categories (low (0–0.25), medium (0.26–

0.50), high (0.51–0.75), very high (0.76–1.0)). To

ensure that habitats did not change significantly

between the trapping period and the habitats from

the 2000 habitat map, the areas within the 1500-m

buffer zone were compared to a habitat map from

1988 using a paired t-test. This habitat map had the

same habitat categories as the 2000 habitat map

within those buffer zones. No significant habitat

changes were found (P’sN0.95); therefore, a Spear-

man’s rank correlation was used to test how well the

trap-line categories and the probabilistic model

categories correlated using each transect as a

replicate.

4. Body-burden estimates

4.1. Spatially explicit uptake 137Cs estimates for steel

creek

137Cs uptake models were constructed from

information collected for male raccoons from three

consecutive annual trapping efforts in Steel Creek

located near the border of the SRS (Fig. 2) that is

next to a private hunting ground. This population was

used because individuals spent 100% of their time in

contaminated areas (as determined from the radio-

telemetry study), thereby providing the expected

mean upper limit of 137Cs uptake in muscle tissue

for individuals living in that contaminated floodplain.

Mean 137Cs levels declined significantly from the first
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trap effort to the third trap effort (Year 1: 0.127 Bq

g�1, Year 2: 0.063 Bq g�1and Year 3: 0.029 Bq g�1;

all activities are reported for wet weight; see

Arbogast, 1999; Boring, 2001 and Gaines et al.,

2000 for analytical counting methods). The first two

trapping efforts (Arbogast, 1999; Gaines et al., 2000)

removed 10 individuals from the population each

year (spring 1997 and spring 1998). The third

trapping effort (spring 1999; Boring, 2001) were

those individuals used in the telemetry study that was

used for model development. Areas were trapped

until no more individuals were caught after an

additional 2-week period. Therefore, it is assumed

that the sample size represents the population of male

raccoons for the immediate area. For the first trapping

effort, muscle was removed from raccoons and

analyzed for 137Cs. For the second trap effort, both

muscle and whole body 137Cs burdens were deter-

mined and a simple linear regression was performed

to determine their predictive relationship. For the

third trap effort, whole body 137Cs burdens were

determined for all captured raccoons (n=14). The

Fig. 2. Map of the Steel Creek region contaminated with radiocaesium (137Cs), as shown by isopleths, downstream from the L-Lake reactor-

cooling reservoir. Hexagons (10 ha) represent the raccoon distribution model’s prediction probability (0VPV1) of raccoon occurrence.
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muscle concentration was estimated using the simple

linear regression model developed from the second

trap effort (wet weight muscle concentration [Bq

g�1]=1.7041*whole body [Bq g�1]+0.0031; r2=

0.9617; Arbogast, 1999).

A model to predict the spatial distribution of 137Cs

levels in raccoon muscle tissue for the Steel Creek

region (Fig. 2) was constructed by multiplying the

amount of 137Cs in the raccoon muscle tissue by the

probability of an animal being in the contaminated

regions of Steel Creek located downstream of the L-

lake reactor cooling reservoir. The areas where

raccoons were trapped had the highest probabilities

of occurrence in the 137Cs-contaminated areas of Steel

Creek as can be seen by the gamma over flight data

(Fig. 2). The EPA 10�6 human cancer risk from

consumption for 137Cs was calculated and applied to

the model as a data layer that displayed the risk level

in relation to the distribution of 137Cs and the species’

probability of occurrence in that location. The EPA’s

guidelines for Superfund sites (USEPA, 1989) was

used to estimate the amount of game meat at the

average 137Cs level recorded that an individual could

consume per year and still maintain the risk from

eating the particular game food below the EPA action

level of 1�10�6 excess lifetime fatal cancers. This

estimation was derived using the EPA’s Integrated

Risk Information System (IRIS; USEPA, 1997). This

calculation was based on the equation:

EC ¼ SF�M � IR ð1Þ

where: EC=Excess Cancer (cases year�1); SF=Slope

Factor (cases Bq�1)=3.16�10�11 excess lifetime fatal

cancers Bq�1 (Eckerman et al., 1999); M=Game

Muscle Specific Activity (Bq g�1 wet mass); IR=In-

gestion Rate (g year�1).

An estimated consumption rate of 12, 350-g meals

per year was based on interviews with sportsmen who

consume raccoon meat in South Carolina (Gaines et

al., 2000).

5. Results

The best-fit logistic regression model for the river

raccoon distribution sub-model used nine habitat

categories, wetland presence and two landscape

metrics (Table 2). The parameter estimates of the

number of wetlands, evergreen hardwoods, floodplain

oak forests and both landscape metrics were positive,

indicating that raccoons favoured these habitats.

However, raccoons avoided grasses and forbs, water/

marsh, both pine categories, upland hardwoods,

upland oak hardwoods, and upland scrub forests as

indicated by the negative parameter estimate. Based

on the rules described in the methods, this model was

applied to 81% of the total area of the SRS. Validation

procedures showed that this model predicted non-use

correctly 62% of the time and predicted use correctly

100% of the time.

The reservoir model also used nine habitat catego-

ries with three landscape metrics and two wetland

metrics (Table 3) and comprised 10% of the total SRS

area. Raccoons favored increased area of upland oak

hardwoods, mixed-composition flood plain hard-

woods and upland scrub forests. The minimum

distance to water and mean shape index (MSI)

landscape metric parameter estimates were also

positive. The parameter estimates were negative for

the number of wetlands, mean patch fractal dimension

(MPFD), area-weighted mean patch fractal dimension

(AWMPFD), water/marsh, shrubs/grasses and forbs,

upland hardwoods, mixed bottomland hardwoods, and

both pine categories. This model predicted non-use

correctly only 40% of the time, and predicted use

correctly 97% of the time.

The bay model used only four habitat categories,

two landscape metrics, and two wetland metrics

(Table 4) and was applied to 9% of the SRS based

on the rule-based system. The parameter estimates of

the number of wetlands, both pine categories, mixed

bottomland hardwoods, number of patches (NUMP),

and mean patch size (MPS) were positive. The

parameter estimates for evergreen hardwoods and

minimum distance to water were negative. This model

performed the poorest in validation procedures with

only 17% of non-use predicted correctly. However, it

did predict usage correctly 98% of the time. As a

whole, the three distribution models combined also

tended to over predict usage of areas that had low

trapping success based on the 5-year furbearer

trapping data (Table 5).

The furbearer trap-line data used as an independent

validation, correlated well with the raccoon distribution

model’s prediction strength at the smallest scale where
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only the actual hexagon that the trap-line fell on was

used (r=0.66, P=0.03, df=9; Table 5). All other scales

did not correlate with the trap-line data (PN0.50).

The predicted 137Cs burdens in raccoons inhabiting

the entire contaminated Steel Creek system and

estimated consumption risk as predicted by utilizing

the distribution model, were only 69% of their

original estimated values which assumed 100% use

by raccoons (Table 6a,b). Specifically, 137Cs burdens

were 0.088, 0.043 and 0.020 Bq g�1 wet muscle, with

the corresponding estimated additional life time

cancer risks from consuming raccoons of 3.7�10�7,

2.3�10�7, and 6.4�10�7 for harvests 1 through 3,

respectively (Table 6b).

6. Discussion

Using a multimodel approach to estimate species

occurrence provided the necessary means to develop

distribution models that were appropriate to different

ecosystems. These sub-models then could be utilized

to estimate potential 137Cs burdens to raccoons that

reside in contaminated systems, thereby providing a

potentially more realistic estimate of human con-

sumption and ecological risk. However, any model

is an estimation that relies on the quality of the

input data as well as the parameters that are

estimated, and therefore has inherent biases and

inaccuracies and should be used with appropriate

caution. The raccoon distribution model was derived

using data only from adult male raccoons and

therefore some of its aspects may not be applicable

to some other age/sex cohorts. However, this model

Table 5

Predicted raccoon distributions on the Department of Energy’s

Savannah River Site as compared to furbearer trapping data from

1977 to 1982 along 10–3.2-km trap-lines (Fig. 1)

Trap-

line

Total

catches

(1977–

1982)

Total

catch

category

One

hexagona
750-m

bufferb
1500-m

bufferc

1 1 Low Medium High High

2 15 High Very High High Medium

3 18 Very High Medium Medium Medium

4 12 Medium High High High

5 4 Low Medium High High

6 15 High Very High Very High Very High

7 1 Low Medium High Medium

8 4 Low Low Medium Medium

9 7 Medium Medium Medium Medium

10 3 Low Low Medium Medium

Trap data are broken into four even categories of low (0–4), medium

(5–9), high (10–14), and very high (15–18) based on the highest

frequency of catches. Distribution probabilities are also broken into

the same evenly distributed categories (0–0.25, 0.26–0.50, 0.51–

0.75, 0.76–1.0). A 1500-m buffer of each trap-line representing the

average diameter of a raccoon home range, a 750-m buffer

representing the average radius of a raccoon home range, and the

actual hexagon (390-m ddiameterT) of the distribution model that the

trap overlaid on, were used to investigate the model’s prediction

strength.
a Spearman rank correlation (r=0.66, P=0.03, df=9).
b Spearman rank correlation (r=0.10, P=0.78, df=9).
c Spearman rank correlation (r=0.02, P=0.95, df=9).

Table 6

(a,b) 137Cs Raccoon Muscle Tissue (Bq g�1) least square (LS) mean, upper and lower confidence intervals (CI), and excess lifetime cancer risks

(1�10�6) predicted to have resulted from consumption of raccoon meat for the Steel Creek region of the Department of Energy’s Savannah

River Site (SRS)

Harvest 137Cs Raccoon muscle tissue (Bq g�1) Excess cancer risk

LS Mean Lower (95% CI) Upper (95% CI) LS Mean Lower (95% CI) Upper (95% CI)

(a)

1 0.127 0.073 0.22 5.39�10�7 3.10�10�7 9.34�10�7

2 0.063 0.036 0.109 2.68�10�7 1.53�10�7 4.63�10�7

3 0.029 0.018 0.047 1.23�10�7 7.64�10�8 2.00�10�7

(b)

1 0.088 0.050 0.152 3.71�10�7 2.13�10�7 6.43�10�7

2 0.043 0.025 0.075 1.84�10�7 1.05�10�7 3.19�10�7

3 0.020 0.012 0.0324 8.48e�08 5.26�10�8 1.37�10�7

(a) shows the values under the assumption that raccoons utilize the region uniformly and (b) shows values based on the raccoon distribution

model.
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should be generally appropriate for adult female

raccoons since, during the radio-telemetry study

used to derive this model, it was determined that

female raccoons use similar habitats to male

raccoons (Boring, 2001). The logistic regression

parameters for each sub-model showed that raccoons

favored the predominant wetland habitats found in

each of the ecotones. The river and bay sub-models

indicated that raccoons tended to stay closer to a

variety of wetland habitats, possibly exploiting them

for a variety of food resources, while the reservoir

model showed the opposite. In that case, raccoons

tended to consistently stay near the main reservoir

water body and did not utilize other water bodies

that were found in their home range. This may

possibly be explained by the fact that the reservoir

itself provides ample food resources as well as large

tree stands that can be exploited for denning. The

landscape metrics for the river and reservoir sub-

models indicated that raccoons favoured larger

patches with high shape complexity and avoided

small complex patches. Again, this may have to do

with resource availability. For the isolated wetland

sub-model, patch complexity did not influence

raccoon habitat choice, possibly because pine is

the dominant habitat surrounding most of the

isolated wetlands found on site and these stands

have little patch diversity.

The validation procedures indicated that all three

sub-models were weakest in predicting non-use, but

did perform very well predicting use. This omission

error may be due to three major factors. First, the data

available/used in the modelling effort did not

adequately represent the areas raccoons avoided. This

is one possible source of error; however, if this were

the case a higher omission error would have been

expected for used habitats as well. Secondly, raccoons

may have been using what was defined as unused

resources and the sampling effort did not capture that

use. All areas monitored for the modeling effort were

trapped for over 3 years and every effort was made to

monitor the entire population. Lastly, the bias

associated with the categorisation of used and unused

habitats for the logistic regression could have con-

tributed to this error. This most likely contributes the

most error, since unused habitats were classified as

areas that raccoons were never encountered. An

alternative classification could have been low use

versus high use. This classification scheme was not

employed because it was difficult to determine what

blow useQ would be in a biological sense. More

importantly, this model was derived for the purposes

of use in a risk assessment that estimates 137Cs uptake

and transport, and was constructed to err on the side of

over prediction in order for these estimates to be

conservative. Conversely, it could be problematic to

utilise the model to determine if raccoons were the

appropriate receptor organism for a particular study

site. However, this difficulty could be avoided by

using raccoons as receptor species in the areas with

the highest probabilities. Therefore, when utilising the

final predictive model for the SRS, users should be

aware that over prediction of raccoon use could occur.

However, the strongest model for both use and non-

use was the river model that is applied to the largest

portion of the SRS, followed by the reservoir and bay

models.

The raccoon trap data also support the cross-

validation findings, with the smaller scale (one

hexagon) validation having the same or higher

category as the raccoon trap category, except for

transect 3 which was predicted to be used less as

compared with other trap-lines. Moreover, as the scale

(trap-line buffer) of this validation increased the

model’s prediction strength decreased with miscate-

gorisation having no apparent pattern. Since the

distribution modelling effort indicated that 10 ha is

the most appropriate scale to look at raccoon habitat

preference, it is also likely that this is the appropriate

scale to look at for trap-line validation.

The final probabilistic distribution model can

facilitate both human and ecological risk assessments.

Researchers have used these methods to model

management scenarios for ecosystem restoration (see

DeAngelis et al., 1998), however, relatively few

studies have implemented these techniques to aid in

the ecological risk assessment process especially in

predicting contaminant exposure, uptake and con-

sumption risk. Although humans are often not

considered a logical endpoint in an ecological risk

assessment, in many cases arguably, they are the most

appropriate. When considering the landscape structure

of industrial sites such as the SRS (especially those

that allow hunting) that are surrounded by rural areas,

hunters are one of the main components influencing

the population of many wildlife species and subse-
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quently the structure of the ecosystem’s foodweb. If

hunters were not able to take game from these sites

due to high consumption risks, it could have an

impact on the population structure of the wildlife in

those ecosystems and possibly contribute to new risks

due to redistribution and movement of contaminants.

For example, the raccoon model shows that there is a

high probability of use in the area where the 137Cs risk

model was performed (Fig. 2), which is located on the

border of the SRS. This habitat structure continues off

the SRS, thus providing a potential corridor for

contaminated raccoons to move to hunting grounds

that border the site.

Predicting 137Cs burdens in raccoon muscle has

been presented in a simple form, although the

relationship between 137Cs bioavailability and phys-

iological uptake is not. The physical half-life of 137Cs

is approximately 30 years. The biological turnover

rates within a given organism are influenced by

metabolism, and therefore should change based on

biotic and abiotic parameters such as age, overall

health, seasonality and food availability. Biological

turnover rate is also dependent upon the sources and

bioavailability of the contaminants within the animal’s

home range. The distribution model presented here

can help estimate and minimize at least some of this

variability by predicting the probability of an animal

inhabiting that area as a function of proportional use.

However, the bioavailability of contaminants is much

more complex. When radioactive isotopes are released

into an ecosystem such as Steel Creek, the isotopes

will theoretically also have an ecological half-life.

This is the amount of time required for the level of an

isotope (in this case, 137Cs), once established and at

equilibrium within a given ecosystem compartment, to

decrease by 50%. This is a result of the isotope either

becoming ecologically unavailable or being physi-

cally removed from a system (Brisbin, 1991). The

concept of ecological half-life is further constrained

by the fact that most ecosystem compartments are

extremely dynamic and rarely come to equilibrium.

As the time required to achieve effective equilibrium

increases, it becomes less likely that these conditions

will remain constant (Peters and Brisbin, 1996).

Remobilisation of contaminants can easily occur from

wildlife redistributing contaminants through digging

and rooting behaviours as well as from abiotic events

such as drought and flooding which may influence

microbial action. It is extremely difficult to model

such a process for an organism such as the raccoon

that will move extended distances and utilize many

different compartments of an ecosystem. However,

the model presented here, along with new under-

standings of how to quantify resource use (Gaines et

al., 2002), can provide a means to better predict

exposure and uptake risk in these contaminated

environments. Future refinements of this modelling

effort should focus on the assimilation and depuration

rates of this contaminant in raccoons and how the

effects of differential use of contaminated habitats

influence this process.

7. Human and ecological risk

The 137Cs dynamics of the SRS is a typical example

of how a coupled human-natural system drives eco-

logical risk. Ecosystem dynamics control the ecolog-

ical half-life of 137Cs, while hunting in and around the

SRS influences receptor species population dynamics

and thus the bioavailability of 137Cs to humans, other

consumers, as well as contaminant transport. Three

years of data were used to determine the body burden

of raccoons over time harvested in the Steel Creek

region and to estimate the associated additional life-

time cancer risk. Raccoon body burden did decrease

over the 3-year period most probably because con-

taminant burdens of the new raccoons, which moved

in to reside in that system after removal, had not yet

achieved equilibrium. Although physiologically rac-

coons could reach equilibrium within 6 months

(Boring, 2001; Gaines et al., 2000), due to the

dynamics of such a productive ecosystem, 137Cs is

not consistently bioavailable through each trophic

compartment. That is, its ecological half-life is

dynamic within the entire Steel Creek system. Utilis-

ing the raccoon distribution model to estimate expo-

sure yielded estimates 31% lower than assuming

utilization of the Steel Creek contaminated area was

constant. This information is extremely important in

understanding how contaminants flow into upper

trophic levels within an ecosystem, and subsequently

determine how system is impacted or bat riskQ. Further,
using the distribution model, the number of meals of

raccoon meat that could be consumed at 350 g/meal

would be 32, 65 and 141 per year, respectively, based

K.F. Gaines et al. / Science of the Total Environment 341 (2005) 15–31 27



on the 3 years of harvest data without exceeding the

U.S. Food and Drug Administration and U.S. Environ-

mental Protection Agency’s most conservative action

level of a 1�10�6 excess lifetime cancer risk

(Rodricks, 1992). Considerably, less raccoon meat

(22, 44 and 97 meals per year, respectively) could be

consumed if 100% use of all habitats were assumed.

However, raccoon hunting is not allowed on the SRS

property near Steel Creek. Raccoons are hunted on the

Steel Creek SRS border, an area for which the model

predicts high raccoon use (probabilities N0.90). There-

fore, more conservative recommendations such as

those that assume 100% use, should be implemented

for that region. Moreover, since raccoons from the

Steel Creek region are no longer being harvested, the

year 1 harvest data would be the most appropriate for

risk assessment calculations in the future. Finally,

these data suggest that continuous hunting or trap-and-

removal in these areas could substantially lower the

risk to human consumers as well as contaminant

transport (and thus ecological risk) after the first few

years of hunting.

8. Conclusions

In this study, raccoons were used as a focal

receptor species to investigate how 137Cs moves

into the food chain by taking a landscape approach

that incorporates the potential movements of this

species in its environment. The linear uptake model

used to predict 137Cs burdens was a conservative

estimate based on a long-term understanding of the

dynamics of the contaminated system as well as

through monitoring raccoon populations. This

approach can also be used to improve estimates

of doses not only to humans but also to wildlife for

research focused on the protection of the environ-

ment from potential toxicants. Besides uptake

models, exposure models can also be constructed

using these same techniques (see Gaines et al., in

press). To be successful, however, models need to

be developed using data applicable to that facility.

That is, the raccoon distribution model should only

be used for other facilities that are in close

proximity and share the same ecotypes of the

SRS. Constructing such predictive models for

wildlife species provides a stand-alone tool consist-

ing of algorithms that are applied within a GIS and

therefore dynamic enough to respond to stochastic

events such as natural and anthropogenic habitat

disturbances and/or long-term changes such as

natural succession which is essential to understand

how system dynamics affect wildlife populations.

This modelling effort serves as a template for DOE

managed lands and other large government facilities

to establish a framework for site-specific ecological

impact assessments that use wildlife species as

endpoints. Specifically, predictive distribution mod-

els such as this one can: (1) assist in estimating

wildlife toxicant exposure and uptake, (2) identify

possible contaminant vectors, (3) construct human-

based risk assessments from consuming wild game,

and (4) examine trophic transfer at multiple scales.

However, these models can only estimate the

probability that an animal will utilize a habitat

and do not predict what it may use that habitat for

(e.g. feeding vs. sleeping). In this study, we used

the raccoon as a receptor species because it is a

habitat generalist and an opportunistic omnivore.

Therefore, the assumption that the animal foraged

in areas that it inhabited the most is probably valid,

which lends to this species being an ideal receptor

species for contaminant modelling.
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Appendix A

Metric definitions of class landscape fractals

calculated in FRAGSTATs ver 2.0 (McGarigal and
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Marks, 1995) that were used as potential explanatory

variables in each logistic regression.
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