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Abstract 

Heart disease remains the No.1 leading cause of death in U.S. and in the world. To improve 

cardiac care services, there is an urgent need of developing early diagnosis of heart diseases and 

optimal intervention strategies. As such, it calls upon a better understanding of the pathology of 

heart diseases. 

Computer simulation and modeling have been widely applied to overcome many practical and 

ethical limitations in in-vivo, ex-vivo, and whole-animal experiments. Computer experiments 

provide physiologists and cardiologists an indispensable tool to characterize, model and analyze 

cardiac function both in healthy and in diseased heart. Most importantly, simulation modeling 

empowers the analysis of causal relationships of cardiac dysfunction from ion channels to the 

whole heart, which physical experiments alone cannot achieve. 

Growing evidences show that aberrant glycosylation have dramatic influence on cardiac and 

neuronal function. Variable but modest reduction in glycosylation among congenital disorders of 

glycosylation (CDG) subtypes has multi-system effects leading to a high infant mortality rate. In 

addition, CDG in all young patients tends to cause Atrial Fibrillation (AF), i.e., the most common 

sustained cardiac arrhythmia. The mortality rate from AF has been increasing in the past two 

decades. Due to the increasing healthcare burden of AF, studying the AF mechanisms and 

developing optimal ablation strategies are now urgently needed. 

Very little is known about how glycosylation modulates cardiac electrical signaling. It is also a 

significant challenge to experimentally connect the changes at one organizational level (e.g., 



ix 

electrical conduction among cardiac tissue) to measured changes at another organizational level 

(e.g., ion channels). In this study, we integrate the data from in vitro experiments with in-silico 

models to simulate the effects of reduced glycosylation on the gating kinetics of cardiac ion 

channel, i.e., hERG channels, Na+ channels, K+ channels, and to predict the glycosylation 

modulation dynamics in individual cardiac cells and tissues. 

The complex gating kinetics of Na+ channels is modeled with a 9-state Markov model that have 

voltage-dependent transition rates of exponential forms. The model calibration is quite a challenge 

as the Markov model is non-linear, non-convex, ill-posed, and has a large parametric space. We 

developed a new metamodel-based simulation optimization approach for calibrating the model 

with the in-vitro experimental data. This proposed algorithm is shown to be efficient in learning 

the Markov model of Na+ model. Moreover, it can be easily transformed and applied to many 

other optimization problems in computer modeling. 

In addition, the understanding of AF initiation and maintenance has remained sketchy at best. 

One salient problem is the inability to interpret intracardiac recordings, which prevents us from 

reconstructing the rhythmic mechanisms for AF, due to multiple wavelets’ circulating, clashing 

and continuously changing direction in the atria. We are designing computer experiments to 

simulate the single/multiple activations on atrial tissues and the corresponding intra-cardiac signals. 

This research will create a novel computer-aided decision support tool to optimize AF ablation 

procedures. 
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Chapter 1 Background and Literature Review 

1.1 Electrical Conduction System of Heart 

The blood-pumping events of the heart are controlled by the electrical conduction system. As 

shown in Figure 1-1, Pacemaker cells start a self-generating impulse with a rate of 60 to 100 beats 

per minute (bpm) at the sinoatrial node (SAN) that is located at the border of Superior Vena Cava 

and Right Atrium. This electrical impulse propagates through both atria to the Atrioventricular 

(AV) node located in the floor of the Right Atrium. The AV node receives the electrical impulse 

and transmits to the Bundle of His. The Bundle of His then divides into a right bundle branch and 

two left bundle branches, which terminate at a complex network of Purkinje Fibers that spreads 

throughout the ventricles. When impulse reaches the ventricles, the ventricular myocardium is 

stimulated and contraction occurs.  

The electrical impulse excites cardiac myocytes from resting states, and causes the flow of ions 

in/out of cell membranes, which leads to the contractions of cardiac myocytes. In resting state, 

sodium (Na+) ions stay outside of the cell and potassium (K+) ions stay inside of the cell. Because 

the charge of Na+ ions is stronger than the K+ ions, the cell is polarized. When the stimulation 

reaches, the Na+ ions move into the cell quickly through the ion channels. Then K+ ions flow out 

of the cell through K+ channels, and at the same time, Calcium (Ca++) ions move slowly into the 

cell through Ca++ channels. The flows of Na+, K+ and Ca++ ions depolarize the cell and start the 

contraction (Phase 0). After the depolarization of the cell, the fast sodium channels close, and K+ 

ions start to move in and the Na+ ions start to move out, which causes an early repolarization 
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(Phase 1). The slowly repolarization continues while Ca++ ions keep flowing into the cell slowly 

(Phase 2). The Ca++ channels close after phase 2, and K+ ions move out of cell rapidly, at the 

same time, K+ ions are transported to the inside of the cell, and Na+ ions are shipped outside of 

the cell by potassium-sodium pump (Phase 3). The cell goes back to polarized state (Phase 4) 

gradually and gets ready for another contraction. The action potential (AP) is a short-lasting event 

in which the difference of membrane potential between the interior and the exterior of cardiac cells 

raises and falls while the ions (i.e., Na+, K+, Ca++) flow through the cell membrane. Figure 1-2 

shows a single cycle of AP. The AP rises to a positive value quickly (phase 0), and goes back to 

resting potential (phase 4) gradually through phase 1-3. 

 

 

Figure 1-1 Cardiac conduction system. 

Sinoatrial Node 

Atrioventricular Node 

(AVN) 

Right Bundle Branch 

(RBB) 

Purkinje Fibers 

(PF) 

HIS Bundle 

Left Bundle Branch 

(LBB) 

Right Ventricle Left Ventricle 

Right Atrium 

Left Atrium 



3 

 

Figure 1-2 Five phases in the cardiac action potential. 

1.2 Glycosylation-Associated Cardiac Disease 

As mentioned above, the net change of transmembrane potential in a cardiac myocyte during a 

single contraction is produced by the orchestrated function of ion channels. A slight change in the 

ion channel activity may affect AP waveforms and electrical conduction throughout the heart, 

thereby potentially lead to severe cardiac disorder. Ion channels are heavily glycosylated with up 

to 35% of a mature protein’s mass comprised of glycan structure [1]. It was shown that Na+ and 

K+ channels can be extensively post-translationally modified by protein glycosylation through 

isoform-specific mechanisms [2-5]. Typically, glycosylation-dependent gating effects were 

imposed on ion channels primarily by the terminal residue attached to N- and O-glycan, sialic acid 

[5-7]. Montpetit et al showed that cardiac glycome (i.e., the complete set of glycan structure 

produced in the heart) varies between atria and ventricles, and changes differentially during the 

development of each cardiac chamber [4]. In addition, the regulated expression of a single 

glycosgene is shown to modulate AP waveforms and gating of less sialylated 𝑁𝑎𝑣 consistently [3]. 

1 

2 
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Growing evidence suggests that reduced glycosylation has dramatic effects on ion channels 

gating and cardiac electrical signaling. There is a set of >40 distinct forms of inherited human 

diseases of reduced glycosylation known as Congenital Disorders of Glycosylation (CDG) caused, 

typically, by a mutation or deficiency in glycogene that results in a relatively modest reduction in 

glycoprotein glycosylation [1, 8]. This variable but modest reduction in glycosylation among CDG 

subtypes causes a high infant mortality rate. CDG patients often present with severe cardiac 

deficits, but the mechanisms are not yet understood. Recently reported prevalence of cardiac 

involvement prompted experts to suggest screening for cardiac dysfunction in all CDG patients 

and for CDG in all young patients suffering from cardiomyopathy of unknown etiology. 

1.3 Atrial Fibrillation 

Atrial Fibrillation (AF) is the most common type of arrhythmia that affects more than 5 million 

Americans. During AF, the atria beat chaotically and irregularly. The blood pools in the atria aren’t 

pumped completely into the ventricles. As a result, the heart’s upper and lower chambers don’t 

work cooperatively as they should. The AF occurs because the electrical signals of the heart are 

not initiated in the SA node. Instead, they begin in the pulmonary veins or another part of atria. 

These irregular signals spread throughout the atria in a rapid and disorganized way, and cause atria 

to fibrillate. The impact of AF on healthcare systems is overwhelming, due to high risk of stroke, 

increased mortality, impaired quality of life and hospitalization.  

AF has three different stages: paroxysmal AF, persistent AF and Permanent AF. In paroxysmal 

AF, abnormal electrical activities occur occasionally, and stop on their own. Episodes can be mild 

or severe and last for seconds, minutes, hours or even days before stopping and returning back to 

normal. Persistent AF cannot be stopped until some treatment interventions. It is usually caused 

by frequent and over time rotors and wavelets. The treatments include pharmacological and 
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catheter-based interventions. However, permanent AF is a very complex situation that cannot be 

easily stopped by treatments. 

Catheter ablation is an established treatment based on placement of lesions in the left and right 

atrium with the goal of preventing abnormal activations. The location of the lesions can be 

anatomically-based such as lines circled around the pulmonary veins. During the procedure, 

physicians use the electrodes at the end of catheters to record electrical activity in the atria (i.e., 

intracardiac electrogram). Further, cardiologists pinpoint the potential AF sources and deliver 

energy through the catheter to create incision lines that block faulty electrical pathways. The key 

to a successful treatment is accurate identification and ablation of the abnormal signal and tissues. 

However, the understanding of AF initiation and maintenance has remained sketchy at best. One 

salient problem is the inability to interpret intracardiac recordings, which have thus far prevented 

us from reconstructing the rhythmic mechanisms for AF. This makes the task of locating the 

abnormal triggers very challenging. As a result, physicians often need to make ablation decisions 

using ad hoc or heuristic strategies. There is an urgent need to realize the full potentials of 

intracardiac electrograms for optimizing ablation decisions. 

1.4 Modeling of Cardiac Electrical Signaling 

Modeling and simulation provide more electrophysiological insights of cardiac electrical 

signaling. A large amount of biological data has been generated over the past decades using 

advanced technologies. These new generated data has overwhelmed our knowledge to understand 

it. In many cases, the molecular, cellular, organ and system functions are unknown. Even when we 

understand functions at genetic level, successful treatment and therapy depends on the knowledge 

of how behaves at, e.g., molecular levels, interact with the rest of the relevant cellular function. 

Without this integrative knowledge, it is difficult to identify which disease is relevant to a specific 
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enzyme or transporter, and it is certainly difficult to know and control the side effects that are 

unpredictable from molecular or cellular data alone. The interactions among different 

organizational levels cannot be inspected alone with databases generated through physical 

experiments. In order to understand the integrative properties of the system, we need to compute 

the interactions of the properties within the whole biological system [10]. This provides 

opportunities for analysis by simulation. 

In the past decades, the iterative interaction between experiments and simulations benefit the 

development of cardiac cell models greatly. Models have been built for all main type of cardiac 

myocytes, and for some type of myocytes, multiple models exist. The current cardiac modeling 

approaches can be generally categorized in to two groups as follows: The first group is 

macro/minimal models such as cellular automata model, fitzHugh-Nagumo model and Barkley 

Model. The second group is micro/maximal models, e.g., Hodgkin-Huxley model, Luo-Rudy 

model, Rasmusson model and Nygren-Lindblad model [11-12]. The macro/minimal models do not 

provide detailed ion physics, but they are easier to be incorporated into a large-scale system. The 

micro/maximal models include hundreds of equations to describe the detailed ion channel 

biophysics but increase the complexity of large-scale experiments. Alan Hodgkin and Andrew 

Huxley first described how action potential in neurons are initiated and propagate with a 

mathematical model (Hodgkin-Huxley model) in 1952. Based on Hodgkin-Huxley model, various 

types of models, e.g., Purkinje fiber model, ventricular model, atrial model, of different animals, 

e.g., mouse, pig, rabbit, were developed in the past 60 decades. Beeler and Reuter published the 

first ventricular model with four ionic currents and 8 variables in 1977. Luo and Rudy improved 

the Beeler and Reuter’s model with more experimental information, and formulated a modified 

ventricular model (Phase 1 Luo-Rudy model) in 1991. In 1994, they further improved the model 
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by reformulating and including more ion currents. Priebe and Beuckelman proposed a model of 

human ventricular cells in 1998, and a reduced version of this model was proposed by Bernus et 

al in 2002 [13]. In 2004, ten Tusscher et al formulated a new model for human ventricular cells 

based on more experimental data, and this model is efficient for large-scale spatial simulations of 

reentrant phenomena [14-15]. In addition, Iyer et al formulated a human left-ventricular epicardial 

model. In Iyer’s model, there are 67 variables, and Markov models are applied to simulate gating 

kinetics of some ion channels. Besides the human ventricular model, Rasmusson et al developed 

a mathematical model of the action potential of mouse ventricular myocytes in 2004. This model 

has been widely used to study the electrical signaling of mouse ventricular cells and the 

electrophysiology of cardiac tissue [16]. In this current study, we also applied this model to 

simulation the electrical activities of the heart across multiple physical scales such as ventricular 

cells, 1D cell cables and 2D tissues. 

 

Figure 1-3 The equivalent circuit of the Hodgkin-Huxley model. 
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The micro/maximal models of cardiac cells are built following similar principles, i.e., the 

cardiac cell is modeled as a structured electric circuit with capacitors, resistors, and batteries. As 

shown in Figure 1-3, the Hodgkin-Huxley model is constructed using the basic electric circuit 

components of voltage source, resistance and capacitance [46]. The ion permeability of the 

membrane for different ions, e.g. Na+, K+, is considered as the specific conductance per unit area. 

Based on Ohm’s law, the model conductance can be formulated as [46]: 

𝐺𝑁𝑎 =  
𝐼𝑁𝑎

𝑉−𝐸𝑁𝑎
,  𝐺𝐾 =  

𝐼𝐾

𝑉−𝐸𝐾
,  𝐺𝑁𝑎 =  

𝐼𝐿

𝑉−𝐸𝐿
 

where 𝐺𝑁𝑎, 𝐺𝐾, 𝐺𝐿 are membrane conductance per unit area for Na+, K+ and leakage current; 𝐼𝑁𝑎, 

𝐼𝐾 and 𝐼𝐿 are the corresponding ion currents; 𝑉𝑁𝑎, 𝑉𝐾 and 𝑉𝐿 are the Nernst voltage for Na+, K+ 

and other ions; V is the action potential. The transmembrane current can be formulated as [46]: 

𝐼𝑚 =  𝐶𝑚

𝑑𝑉

𝑑𝑡
+ (𝑉 − 𝐸𝑁𝑎)𝐺𝑁𝑎 + (𝑉 − 𝐸𝐾)𝐺𝐾 + (𝑉 − 𝐸𝐿)𝐺𝐿 

The conductance of Na+ ions can be calculated as: 

𝐺𝑁𝑎 = 𝐺𝑁𝑎 𝑚𝑎𝑥𝑚3ℎ 

𝑚 and ℎ can be obtained by the ordinary differential equations: 

𝑑𝑚

𝑑𝑡
= 𝛼𝑚(1 − 𝑚) − 𝛽𝑚𝑚 

𝑑ℎ

𝑑𝑡
= 𝛼ℎ(1 − ℎ) − 𝛽ℎℎ 

where 𝛼’s and 𝛽’s are functions of V. The conductance of K+ ions can be calculated following the 

similar way. Many modern neuronal and cardiac AP model were developed following similar basis 

after Hodgkin-Huxley model. However, more ion currents are taken into consideration in the 

models developed later. Figure 1-4 shows a schematic diagram of the dynamic Luo-Rudy (LRd) 

ventricular cell model. This model includes a fast inward sodium current, an outward potassium 

current, and a time-independent potassium current [47]. The Ten Tusscher et al modeled and the 

Bondarenko et al model describe the electrophysiology of cardiac cells following the same 
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schemes, but have more transmembrane currents. The relatively detailed models enable a more 

accurate interpretation of the cellular mechanisms.  

 

Figure 1-4 Schematic diagram of the dynamic Luo-Rudy (LRd) ventricular cell model. 

 

The activities of tissue are like a functional syncytium of electrically coupled cells. The tissue 

can be simulated as a resistor network, and the electrical propagation among tissue can be 

considered as an excitable medium in 1D, 2D and 3D. Among this excitable medium, i.e. cardiac 

tissues, cells are coupled diffusively through the transmembrane voltage. There are two types of 

tissue models: bidomain model and monodomain model. In bidomain model, cardiac tissue is 

simulated as a syncytium composed of intracellular and extracellular domains. It simulates the 

current flow, distribution of electrical potential and the conservation of charge and current [17, 48]: 

∇ ∙ 𝐆𝐢(∇𝑉𝑚 + ∇∅𝑒) =  𝛽𝑚(𝐶𝑚

𝜕𝑉𝑚

𝜕𝑡
+ 𝑖𝑖𝑜𝑛) 

∇ ∙ ((𝐆i + 𝐆e)∇∅𝑒) =  −∇ ∙ (𝐺𝑖∇𝑉𝑚) 

𝑰𝒃 𝑰𝒔𝒊 

𝑰𝑲 𝑰𝑲𝟏 𝑰𝑲𝒑 

𝑰𝑵𝒂 

𝑵𝒂+ 

𝑲+ 
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where 𝑉𝑚  is the membrane potential, 𝐆i  and 𝐆e  are conductivity tensors determined by the 

anisotropy of cardiac tissues. Their components depend on the conductivities and local orientation 

of cardiac tissue in the coordinate system of the model. 

The monodomain model assumes the anisotropy of the intracellular and extracellular spaces is 

the same. It describes the membrane potential (𝑉𝑚) with a partial differential equation [18, 48]: 

𝜕𝑉𝑚

𝜕𝑡
=  ∇ ∙ 𝐃∇𝑉𝑚 −

𝑖𝑖𝑜𝑛

𝐶𝑚
 

where 𝐃 is a diffusion tensor or scalar diffusion coefficient: 

𝑫 =  𝐷2𝐈 + (𝐷1 − 𝐷2)𝐟𝐟𝑻 

where 𝐷1 is the longitudinal coefficient for propagation along fibers, 𝐷2 is a transverse coefficient 

for propagation orthogonal to the fibers if the fiber direction is given by vector 𝐟. 

Monodomain and bidomain models have been demonstrated to be very close when there is no 

injection of current into the extracellular space [19, 48]. Potse et al. compared the patterns of action 

potential propagation simulated using monodomain and bidomain models. They found the patterns 

obtained from both models were almost identical when there is not external stimulation [20]. 

Similarly, Roth simulated spiral wave tip trajectories with both bidomain and monodomain models. 

The study showed similar trajectories in the two cases [21]. The monodomain model is preferred 

when there are no external stimuli because monodomain models are numerically easier to be solved. 

However, bidomain models are necessary when currents are injected into the extracellular space 

during the external stimulation and defibrillation [22]. While simulating defibrillation, it is 

important to consider the unequal anisotropy of the intracellular and extracellular spaces, because 

the virtual electrodes generated are critical for successful defibrillation [23]. The bidomain models 

can be expanded to higher domains, for example Sachse et al. applied bidomain model to 

fibroblasts by adding an additional domain [24]. 
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Modeling the functional relationship between the discrete structure and integrated functions of 

heart at microscope and macroscope are quite challenging. Different assumptions and 

simplifications are made while building models of cardiac cells and tissues. There is no general 

framework for simulating cellular electrophysiology, tissue electrical activity, and geometrical 

features. There are still many open questions to be answered. For example, there are no well 

adapted parameters for determining the patterns of APs in cardiac cells and the propagation of APs 

among tissues. More work need to be done to efficiently establish the biophysical basis for these 

parameters and to understand the sensitivity of these parameters to cell and tissue activities. In 

addition, it is essential to integrate models with experimental data to simulate and predict disease 

mechanisms and treatment effects. However, many of the models are difficult to calibrate to 

simulate the physical data, and many phenomena investigated using tissue models are difficult to 

verify experimentally. Representation of pathological function is still challenging because robust 

methods and parameters to represent the disease conditions such as arrhythmias and infarction 

have not been fully developed. This study makes efforts to address the challenges and answer all 

these open questions in the cardiac modeling area. 

1.5 Simulation Optimization 

Simulation optimization finds the optimal input variables from all potential candidates without 

explicitly evaluating each possible set of variables. In simulation optimization, the output of a 

simulation model is used by the optimization method to evaluate the performance of each search 

for the optimal solution, and provide feedback to the search thereby guiding further input to the 

simulation model. There are six major types of simulation optimization methods: Gradient Based 

Search Methods, Stochastic Optimization, Response Surface Methodology (RSM), Heuristic 

Methods, A-Teams and Statistical Methods [25]. Gradient based search methods estimate the 



12 

gradient of the response function (∇f) to learn the shape of the objective function. The optimal 

solution is searched with deterministic mathematical programming approaches. Finite differences 

[26], likelihood ratios [27] and perturbation analysis [28] are some common methods for gradient 

search optimization methods. Stochastic optimization applies stochastic approaches to estimate or 

measure the value of the objective functions that cannot be evaluated analytically. Conventionally 

it is an iterative schemes based on gradient estimation. Some stochastic optimization algorithms 

can be found in [29-33]. Heuristic methods, e.g., Genetic Algorithms [34], Evolutionary Strategies 

[35], Simulated Annealing [36, 37], Tabu Search [38, 39], Nelder and Mead’s Simplex Search and 

A-Teams [40], include a set of direct search methods for finding the optimal solutions. Statistical 

methods basically simulate the system under a number of measurements underlying some 

probability distributions, and it includes Importance Sampling and Ranking and Selection. RSM 

method generally is to obtain an approximation in terms of functions between the input variables 

and the output objective function, i.e., response. The approximation of the response on the entire 

domain of interest is conventionally called metamodel. This metamodel can be different types of 

model, for example, regression model and neural network models. Once the metamodel is 

established, the estimated optimum can be evaluated using appropriate deterministic optimization 

procedures. However, RSM is not always applied for optimization purpose. Sequential RSM is 

sometimes used to determine a search strategy, for example to find the best next point.  

In the simulation optimization community there is a long history of research on experiment 

design for applying metamodels to replace the time-consuming simulation model. Metamodels 

serve as surrogate models that approximate the input/output functions defined by computer 

experiments. It has been illustrated to be sufficient in locating the optimum solution. In simulation 

optimization polynomial regression models are applied to fit the response surface of the system of 
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interest [41]. In addition, the krigging methodology becomes increasingly popular and has been 

quite successful for investigating uncertainties of the unknown response in computer experiments 

[42]. Many previous studies focused on the application of krigging model, e.g. Gaussian Process 

(GP) model, for calibrating computer models in the engineering domain, e.g., Kennedy and 

O’Hagan [43], Qian and Wu [44], and Chang and Joseph [45]. However, little has been done in 

the cardiovascular domain. Calibrating cardiac models is not a straightforward application of 

aforementioned works, due to nonlinear/non-convex characteristics of models and different types 

of function responses. In particular, calibrating cardiac models needs to specifically consider the 

kinetics and physical properties of ion channels, cells, tissues, and the heart. This investigation 

made one of the first attempts to bridge the gaps in statistical metamodeling between engineering 

and cardiac domains. 
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Chapter 2 In-Silico Modeling of Glycosylation Modulation Dynamics in hERG Ion 

Channels and Cardiac Electrical Signals1 

Cardiac action potentials (AP) are produced by the orchestrated functions of ion channels. A 

slight change in ion channel activity may affect the AP waveform, thereby potentially increasing 

susceptibility to abnormal cardiac rhythms. Cardiac ion channels are heavily glycosylated, with up 

to 30% of a mature protein’s mass comprised of glycan structures. However, little is known about 

how reduced glycosylation impacts the gating of hERG (human ether-a-go-go related gene) 

channel, which is partially responsible for late phase 2 and phase 3 of the AP. This study integrates 

the data from in vitro experiments with in-silico models to predict the glycosylation modulation 

dynamics in hERG ion channels and cardiac electrical signals. The gating behaviors of hERG 

channels were measured under four glycosylation conditions, i.e., full glycosylation, reduced 

sialylation, mannose-rich. And N-glycanase treated. Further, we developed in-silico models to 

simulate glycosylation-channel interactions and predict the effects of reduced glycosylation on 

multi-scale cardiac processes (i.e., cardiac cells, 1-D and 2-D tissues). From the in-silico models, 

reduced glycosylation was shown to shorten the repolarization phase of cardiac APs, thereby 

influencing electrical propagation in cardiac fibers and tissues. In addition, the patterns of derived 

electrocardiogram show that reduced glycosylation of hERG channel shortens the QT interval and 

decreases the re-entry rate of spiral waves. This work suggests new pharmaceutical targets for the 

long QT syndrome and potentially other cardiac disorders. 

                                                 

1 This chapter was published in IEEE Journal of Biomedical and Health Informatics [32]. Permission is included in Appendix A. 
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2.1 Introduction 

Glycosylation is a common enzymatic process in cardiac cells. It was shown that nearly 30% 

of a mature protein’s mass is comprised of glycan structures [1]. It is established that voltage-gated 

Na+ channels (𝑁𝑎𝑣) and K+ channels (𝐾𝑣) are also known to be modulated by posttranslational 

glycosylation through isoform-specific mechanisms [2-5]. Many previous studies showed that 

glycosylation-dependent gating effects were imposed on ion channels primarily by the terminal 

residue attached to N- and O-glycans, sialic acid [5-7]. The addition and removal of glycans from 

proteins and lipids are completed by the activity of >200 glycosidases, glycosyltransferases, and 

transport proteins (glycogenes). Recently, Montpetit et al. showed that the cardiac glycome (i.e., 

the complete set of glycan structures produced in the heart) varies between atria and ventricles, 

and changes differentially during development of each cardiac chamber [4]. Regulated expression 

of a single glycogene was sufficient to modulate action potential (AP) waveforms and gating of 

less sialylated 𝑁𝑎𝑣 consistently [3]. 

In addition to the evidence that a correctly regulated glycome is vital to normal cell function, 

aberrant glycosylation has dramatic effects on the cardiac function. There is a set of >40 distinct 

forms of inherited human diseases of reduced glycosylation known as Congenital Disorders of 

Glycosylation (CDG) caused, typically, by a mutation or deficiency in a glycogene which results 

in a relatively modest reduction in glycoprotein glycosylation [8, 9]. This variable but modest 

reduction in glycosylation among CDG subtypes causes a high infant mortality rate. Recently 

reported prevalence of cardiac involvement prompted experts to suggest screening for cardiac 

dysfunction in all CDG patients and for CDG in all young patients suffering from cardiomyopathy 

of unknown etiology. Together, the literature suggests that regulated and aberrant changes in 

glycosylation impact cardiac function. 
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However, little is known about how altered glycosylation will impact cardiac function at 

different organization levels, i.e., from ion channels to cells to tissues to the whole heart. 

Corroborating data that connects the changes in multi-scale cardiac systems is difficult without 

performing computer simulations. There is an urgent need to couple the wealth of data obtained 

from in-vitro and in-vivo experiments with in-silico models. Computer model overcomes practical 

and ethical limitations in the in-vivo experiments. In addition, it enables the prediction of causal 

relationships between normal or abnormal functions (e.g., glycosylation modulation dynamics) 

that in-vivo experiments alone cannot easily achieve. 

Our objective is to investigate how changes in glycosylation influence the hERG (i.e., human 

ether-a-go-go related gene) ion channels and cardiac electrical signaling from cells to cables, and 

to tissues. In this present study, we developed in-silico models of cardiac cells and tissues to study 

the role of glycosylation in cardiac function. The hERG channel mediates the rapid delayed 

rectifying potassium current (𝐼𝐾𝑟), which is partially responsible for late phase 2 and phase 3 of 

the AP, i.e., the repolarization of cardiac myocytes [10]. The "gain" or “loss” in the hERG channel 

function can potentially lead to the Short or Long QT syndromes [11]. Our contribution is to 

integrate the data from in-vitro experiments with in-silico models for predicting the effects of 

reduced glycosylation on cardiac function. The purpose of this article is to model the glycosylation 

effects on ion channels, and further predict its impacts at larger scales, i.e., from cells to tissues. 

2.2 Multi-Scale Cardiac Modeling 

Computer models facilitate the quantitative simulation, elucidation and understanding of 

cardiac function in health and disease. The need to integrate models and data across multiple 

biological scales has been widely recognized by biomedical and clinical researchers [12, 13]. This 

present investigation integrates glycosylation-channel interactions, obtained from the whole-cell 
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patch clamp experiments, with in-silico models to predict glycosylation modulation dynamics in 

hERG channels and cardiac electrical signals including ionic currents, action potentials, spiral 

waves, and ECG signals. The development of multi-scale cardiac models, i.e., hERG channel, cell, 

and tissues, is described as follows. 

2.2.1 Model of hERG Channel 

The hERG channel is widely modeled in two forms. One is the Hodgkin-Huxley (HH) type 

model, and the other is Markov state model. The HH type formulation typically describes the 

gating of hERG channel with two independent activation and inactivation variables, as shown in 

the following equations:  

𝐼𝐾𝑟 =  𝐺𝐾𝑟√
𝐾𝑜

5.4
𝑋𝑟1𝑋𝑟2(𝑉 − 𝐸𝐾) 

𝑋𝑟1∞ =  
1

1 + 𝑒
− 

(𝑉−𝑉𝑎)
𝐾𝑎

 𝑋𝑟2∞ =  
1

1 + 𝑒
(𝑉−𝑉𝑖)

𝐾𝑖

 

where 𝑉 is the trans-membrane action potential, 𝐾𝑜=5.4mM is the extracellular K+ concentration, 

𝐸𝐾 is the reversal potential, 𝐺𝐾𝑟 is the conductance (nS/pF), 𝑋𝑟1∞ is the steady-state activation, 

𝑋𝑟2∞ is the steady-state inactivation, 𝑉𝑎 is the voltage of half-activation, 𝑉𝑖 is the voltage of half-

inactivation, 𝐾𝑎 and 𝐾𝑖 are slope factors. 

Despite the popularity of HH-type descriptions, Markov models have become increasingly 

important in recent years.  There are a number of Markov models developed with different states 

and structures, e.g., Wang et al. [14], Clancy and Rudy [15], Mazhari et al. [16], and Oehmen et 

al. [17]. In 2011, Bett et al. compared the HH type formulation with the aforementioned four 

Markov models. The conclusion is that hERG is best represented by a linear Markov model with 

3 closed states, one open and one inactivated state [18]. Hence, we adopted the 5-state Markov 

formulations to model the gating of hERG channel. As shown in Figure 2-1, the Markov model 
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includes 3 closed states (C1, C2, C3), 1 inactivation (I) and 1 open (O) state. The transition rates 

(𝛼’𝑠 and 𝛽’𝑠) are voltage-dependent, i.e., 𝛼 = 𝑎𝑖 × 𝑒𝑏𝑖∙𝑉 and 𝛽 = 𝑐𝑖 × 𝑒𝑑𝑖∙𝑉, wherer 𝑖 is the index 

of transition rate parameters. The constants, Kf and Kb, describe the voltage insensitive transition 

in the gating of hERG channel. ᴪ is defined as a function of other transition rates to ensure the 

microscopic reversibility [16, 18]. The hERG channel stays in the fully closed state (C1) during 

resting, and transfers to other states when excited. The initial value of C1 = 1, and others are 0.  

 

Figure 2-1 Structure of 5-state Markov model of hERG channel. 

 

2.2.2 Model of Cardiac Myocyte 

When a cardiac myocyte is stimulated, the states of ion channels (e.g., close, activation, 

inactivation) control the ability of the ions (e.g., 𝑁𝑎+, 𝐶𝑎++, and 𝐾+) to cross the membrane. The 

influx and efflux of ions generate electrical currents through the ion channels, and vary trans-

membrane potentials. The cardiac cell is modeled as a structured electric circuit with capacitors, 

resistors and batteries. Specific to human ventricular cells, a number of models have been 

developed in the literature, e.g., Priebe and Beuckelmann model [19], ten Tusscher-Panfilov 2004 

model [20] and the updated 2006 model [21], Iyer et al. model [22], Grandi et al. model[23], and 

O’Hara et al. model [24].  

In this present investigation, we utilized ten Tusscher-Panfilov 2006 model to describe the 

electrophysiological behaviors of human ventricular myocytes [21]. The justification is that the 

results of ten Tusscher-Panfilov 2006 model best match our wild-type data (i.e., full glycosylation) 
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from in-vivo experiments. The major updates from the ten Tusscher-Panfilov 2004 model to the 

2006 version are the inclusion of more detailed description of intracellular Ca++ dynamics and 

subspace Ca++ dynamics, as well as the revisions of fast and slow voltage inactivation gate in 𝐼𝐶𝑎𝐿.  

The endocardial-cell version of ten Tusscher-Panfilov 2006 model is used to simulate the AP 

(𝑉) with the following ordinal differential equation: 

−𝐶𝑚

𝑑𝑉

𝑑𝑡
= 𝐼𝑡𝑜 + 𝐼𝐾𝑠 + 𝐼𝐾𝑟 + 𝐼𝐾1 + 𝐼𝑁𝑎𝐶𝑎 + 𝐼𝑁𝑎𝐾 + 𝐼𝑝𝐾 + 𝐼𝑝𝐶𝑎 + 𝐼𝑏𝐶𝑎 

+𝐼𝑏𝑁𝑎 + 𝐼𝑁𝑎 + 𝐼𝐶𝑎𝐿 + 𝐼𝑠𝑡𝑖𝑚  

where 𝑡 is time, 𝐶𝑚  is the cell capacitance per unit surface area, 𝐼𝑠𝑡𝑖𝑚  is the external stimulus 

current which activates the cell from the resting state. The transmembrane currents include 

transient outward current (𝐼𝑡𝑜), slow delayed rectifier 𝐾+ current (𝐼𝐾𝑠), rapid delayed rectifier 𝐾+ 

current (𝐼𝐾𝑟), inward rectifier current (𝐼𝐾1), 𝑁𝑎+/𝐶𝑎++exchange current (𝐼𝑁𝑎𝐶𝑎), pump current 

(𝐼𝑁𝑎𝐾), plateau currents (𝐼𝑝𝐾, 𝐼𝑝𝐶𝑎), background currents (𝐼𝑏𝐶𝑎, 𝐼𝑏𝑁𝑎), fast Na+ current (𝐼𝑁𝑎) and L-

type 𝐶𝑎++ current (𝐼𝐶𝑎𝐿). Most of these voltage-gated ionic currents are modeled in the form of 

cell conductance, membrane potential gradients and channel gate dynamics. The details of all ion-

channel kinetics can be found in references [20, 21]. All parameters and initial values are the same 

as given in the ten Tusscher-Panfilov 2006 model. Note that we replaced the HH type model of 

𝐼𝐾𝑟 with the 5-state Markov model. The 𝐺𝐾𝑟 is the same as the original value in ten Tusscher-

Panfilov model. We optimally calibrated the 5-state Markov model to fit the in-vivo data of four 

glycosylation conditions from our in-vivo experiments.  

2.2.3 Model of Cardiac Tissue 

The cardiac cell is not an independent unit. Each depolarized cell can stimulate neighboring 

cells and trigger cell-to-cell conductions. In the rapid depolarization phase, the overshoot of 𝑁𝑎+ 

ions causes a resting-to-depolarizing 𝑁𝑎+  gradient and drives the flow of 𝑁𝑎+  through gap 
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junctions that stimulates adjacent cells. The influx of 𝑁𝑎+  causes neighboring cells to reach 

threshold potential and initiates the depolarization phase of the AP. As the depolarization and 

repolarization propagate among cells, electrical waves are generated. This cell-to-cell conduction 

is analogous to a circuit system with resistances and capacitors. As shown in Figure 2-2, the 

consecutive cell connections are modeled as linear fiber (cable) and tissue (cell array). The 1D 

linear cable is composed of 600 cells, and a stimulus is given at cell 1. The linear strand of cells 

(i.e., cable) is modeled using the following mono-domain reaction-diffusion equation: 

𝜕𝑉

𝜕𝑡
= −

1

𝐶𝑚

(𝐼𝑖𝑜𝑛 + 𝐼𝑠𝑡𝑖𝑚) +
1

𝜌𝑆𝐶𝑚
 
𝜕2𝑉

𝜕𝑥2
 

and in 2D tissue, the equation is: 

𝜕𝑉

𝜕𝑡
= −

1

𝐶𝑚

(𝐼𝑖𝑜𝑛 + 𝐼𝑠𝑡𝑖𝑚) +
1

𝜌𝑆𝐶𝑚
 (

𝜕2𝑉

𝜕𝑥2
+  

𝜕2𝑉

𝜕𝑦2
) 

where 𝐼𝑖𝑜𝑛 is the sum of trans-membrane ion currents, 𝜌 = 180Ω𝑐𝑚 is the cellular resistivity, 𝑆 =

0.2 𝑢𝑚−1 is the surface-to-volume ratio, and 𝐶𝑚 = 2 𝑢𝐹/𝑐𝑚2 is the cell capacitance. 

To simulate the propagation of cardiac electrical waves along 1D fiber, reaction-diffusion 

equations are numerically solved with the finite-difference scheme. The action potential can be 

calculated as: 

𝑉𝑖
𝑡+𝑑𝑡 = −

𝑑𝑡

𝐶𝑚

(𝐼𝑖𝑜𝑛 + 𝐼𝑠𝑡𝑖𝑚) − (
2𝑞

𝐶𝑚
− 1) 𝑉𝑖

𝑡 +
𝑞

𝐶𝑚
 (𝑉𝑖−1

𝑡 + 𝑉𝑖+1
𝑡 ) 

where 𝑞 =  
𝑑𝑡

𝜌𝑆𝑑𝑥2
 is the same for all cells. Neuman boundary condition was assumed in the 

simulation of 1D cardiac cable, i.e. 𝑉101
𝑡 = 𝑉99

𝑡  and 𝑉0
𝑡 = 𝑉2

𝑡  at the boundaries. The numerical 

finite-difference scheme for 2D tissue is formulated as: 

𝑉𝑖,𝑗
𝑡+𝑑𝑡 =  −

𝑑𝑡

𝐶𝑚

(𝐼𝑖𝑜𝑛 + 𝐼𝑠𝑡𝑖𝑚) − (
4𝑞

𝐶𝑚
− 1) 𝑉𝑖,𝑗

𝑡 +
𝑞

𝐶𝑚
(𝑉𝑖−1,𝑗

𝑡 + 𝑉𝑖+1,𝑗
𝑡 + 𝑉𝑖,𝑗−1

𝑡 + 𝑉𝑖,𝑗+1
𝑡 ) 

where no flux boundary condition is assumed to ensure there are no current leakages on the borders. 
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Figure 2-2 Structures of 1D fiber and 2D tissues. 

 

2.2.4 ECG Derivation 

The ECG signal provides a system-level view of cardiac electrical activity, which is an 

important clinical diagnostic tool. The standard lead I, II and III (i.e., Einthoven's triangle) measure 

difference in potentials between electrodes placed on left arm, right arm and left leg [25]. In this 

study, 3-lead ECG signals are measured using 3 virtual electrodes in an equilateral triangle on 2D 

tissues. The ECG will be used to evaluate and quantify whether and how altered glycosylation 

affects cardiac electrical conduction. In this investigation, the electrodes were placed at a distance 

of 6 cm above 2D tissues with no-flux boundary conditions. The potential at each electrode is 

calculated using the following equation: 

∅ = ∬
𝐼𝑖𝑜𝑛

𝑟

 

𝑆

 𝑑𝑥𝑑𝑦  

where 𝑆 is the area over cardiac tissue, 𝑖𝑖𝑜𝑛 is the transmembrane currents, 𝑥 and 𝑦 represent the 

coordinates of cells on 2D tissue, and 𝑟 is given as: 

𝑟 =  √(𝑥 − 𝑥𝐸)2 + (𝑦 − 𝑦𝐸)2 + 𝑧𝐸
2 

Array: 
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where 𝐸 =  (𝑥𝐸 , 𝑦𝐸 , 𝑧𝐸)  is the location of the electrode. The 𝐼𝑖𝑜𝑛  current is obtained with the 

following equation: 

𝐼𝑖𝑜𝑛 =
1

𝜌𝑆𝐶𝑚
 (

𝜕2𝑉

𝜕𝑥2
+  

𝜕2𝑉

𝜕𝑦2
) 

Lead I, II, III ECG signals are the potential differences between two electrodes as: 

𝐸𝐶𝐺(𝐸1, 𝐸2) =  ∅(𝑥𝐸1, 𝑦𝐸1, 𝑧𝐸1) − ∅(𝑥𝐸2, 𝑦𝐸2, 𝑧𝐸2) 

It may be noted that 60o orientation is considered between each two leads. 

2.3 Materials and Experimental Design 

2.3.1 Physical Experiments 

We recently reported the effects of differential glycosylation on the gating of hERG ion 

channels, showing that N-glycosylation effectively limits the hERG activity [26, 27]. The in-vitro 

experimental data were collected from hERG-expressing CHO cells under 4 glycosylation 

conditions, i.e., full glycosylation (n = 11), reduced sialylation (n = 11), mannose-rich 

glycosylation (n = 6) and N-Glycanase treated (n = 6). Steady-state gating parameters were 

examined with the use of standard pulse protocols and solutions described by the Bennett lab [26].  

Steady State Activation (SSA) protocol is described as follows. Cells were held at -80 mV, 

stepped to more depolarized potentials (-80 mV to +40 mV in 10 mV increments) for 4 seconds, 

then stepped back to -50 mV for another 4 seconds, and returned to the holding potential. Steady-

state conductance values (𝐺) were calculated using ohm’s law 𝐺 = 𝐼/(𝑉𝑝 − 𝐸𝐾), where 𝐼 is the 

peak of tail currents elicited at each test potential (𝑉𝑝). The maximum conductance generated by 

each cell was used to normalize the data for each cell to its maximum conductance by fitting the 

data to a single Boltzmann distribution as:  

Fraction of maximal conductance = [1+exp(-(V-Va)/Ka]]
-1 
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where V is the membrane potentials, Va is the half-activation potential, Ka is the slope factor. The 

normalized data were averaged with those from the other cells to calculate the resulting average 

G-V curves.  

Steady state inactivation (SSI) is measured following a conventional protocol. Cells were held 

at -80 mV before stepping to +20 mV for 3 seconds. Then we stepped to -120 mV to +60 mV (in 

10 mV increments) for 30ms before stepping back to +20 mV for 1 second and then returned to 

the resting potential. The maximum current generated by each cell was used to normalize the data 

for each cell to its maximum current by fitting the data to a single Boltzmann distribution, from 

which the mean Vi ± SEM and Ki ± SEM values were determined. 

Fraction of maximal current = [1+exp ((V-Vi)/Ki)]
-1 

where V is the membrane potential, Vi is the voltage of half-inactivation, Ki is the slope factor. 

Table 2-1 shows the mean ± SEM SSA and SSI parameters measured under four glycosylation 

conditions, as reported by us previously [26] . These changes in hERG channel gating were used 

to calibrate in-silico models, which further predict glycosylation effects on cardiac electrical 

signaling of cells and tissues. 

Table 2-1 hERG channel activation and inactivation parameters [26]. 

hERG Channel n Va(mV) Ka(mV) Vi(mV) Ki(mV) 

Full Glycosylation 11 -22.0±1.3 8.4±0.3 -74.4±4.9 -19.0±0.8 

Reduced Sialylation 11 -13.7±2.4 8.6±0.4 -56.2±5.3 -17.2±1.3 

Mannose-Rich 6 -12.6±2.4 8.9±0.4 -51.48±3.6 -16.4±0.9 

N-Glycanase treated 6 -12.1±2.2 8.9±0.9 -58.5±5.9 -20.3±1.2 

 

2.3.2 Computer Experiments 

Recall that we modeled the hERG channel with a 5-state Markov formulation, as opposed to 

the traditional HH type formulation. First, the Markov model was calibrated and fitted to 
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glycosylation data from in-vivo experiments (see Table 2-1). The sensitivity analysis is performed 

to establish model parameters that maximally influence the output for each protocol. Furthermore, 

the algorithm of nonlinear constrained optimization is used to find the parameter values 

minimizing the sum of the least-square errors between model predictions and experimental data in 

glycosylation. Pulse protocols used in in-silico models are the same as in in-vivo experiments. 

Second, we simulated and compared the variations of 𝐼𝐾𝑟 currents and APs for four glycosylation 

conditions. The glycosylation-induced variations in hERG channels were modeled to predict the 

changes of 𝐼𝐾𝑟  magnitudes and action potential durations (APDs). Third, cardiac cells were 

connected by gap junctions in a linear fiber, i.e., cable, to predict the glycosylation effects on AP 

propagation, assuming that altered glycosylation impacts hERG channel gating only. The 

inhomogeneous cable contains 600 cells, in which 300 cells are fully glycosylated and the other 

300 cells are under one of three conditions of reduced glycosylation (i.e., reduced sialylation, 

mannose-rich, or N-Glycanase treated)., Further, we measured the APD restitution curves for 4 

glycosylation conditions in the 1D cable of cardiac cells. Finally, we construct the model of 2D 

tissues by arranging cardiac cells in an array (see Figure 2-2). Glycosylation effects on the 

rectilinear and spiral waves were predicted using in-silico simulation models. In addition, ECG 

signals were derived to characterize the variations of cardiac electrical conduction between full 

glycosylation and reduced glycosylation. 

In the single cell, we used a 2-ms 38 pA/pF stimulus current (𝐼𝑠𝑡𝑖𝑚) applied at a frequency of 

0.5~2 Hz to trigger simulated APs. The 𝐼𝐾𝑟 currents and AP were obtained after at least 100 cycles 

when the cell reached steady states. The variable temporal resolution is used in the single-cell 

simulation. In the linear cable, the 𝐼𝑠𝑡𝑖𝑚 amplitude of 52 pA/pF and spatial resolution ∆x=0.25mm 

were used to generate the electrical waves. In addition, APD restitution curve is quantified with 
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the S1-S2 protocol. The left of the cable is paced at a basic cycle length of 1000ms with the S1 

stimulus until steady-state is reached and is then perturbed by a stimulus (S2) after waiting a 

variable-length interval. (3) In the 2D tissues, the 𝐼𝑠𝑡𝑖𝑚 amplitude is twice the diastolic threshold, 

i.e., 52pA/pF. The spatial resolution ∆x is 0.04cm, and the temporal resolution ∆t is 0.02ms. The 

spiral wave was initiated by applying a first stimulus (S1=2ms) along one side of the tissue to 

generate a rectilinear wave propagating toward the other side. When the refractory tail of electrical 

waves reaches the middle, a second stimulus (S2=5ms) will be given in the middle of the tissue, 

paralleling to the first rectilinear wave covering only 3/4 of the length of the tissue [21].  

Table 2-2 Numerical accuracy of APD and CV at different ∆x and ∆t. 

 ∆t = 0.01 ms ∆t = 0.02 ms 

∆x(cm) APD (ms) CV (cm/s) 
APD 

(ms) 
CV (cm/s) 

0.02 323.00 71.38 322.98 69.89 

0.025 322.96 69.44 322.94 68.10 

0.03 322.94 67.43 322.92 66.26 

0.035 322.94 65.31 322.92 64.31 

0.04 322.94 63.06 322.92 62.23 

 

We measured the CVs at different spatial and time resolutions for four glycosylation conditions 

on a cable of 600 cells. Note that Table 2-2 does not include the CVs and APDs for different 

glycosylation conditions. This is because 𝐼𝑁𝑎 is the main contributor to excite a cardiac cell and 

trigger electrical conduction. In this investigation, we assumed that only hERG channels have 

altered glycosylation and all other channels (including 𝑁𝑎+channel) remain unchanged. In the 1D 

cable, the CVs are primarily controlled by the front of the waves (i.e., 𝐼𝑁𝑎 current). Hence, in-

silico experiments show that CVs are approximately the same for different glycosylation 

conditions at the same ∆x and ∆t. However, when electrical waves propagate in the tissues, not 



29 

only the front of the waves, but also the back of the waves (i.e., refractory period) could affect the 

conduction. This will be shown later in the section of results of spiral waves. 

Here, the APD and CV decrease slightly when ∆x increase from 0.02cm to 0.04cm at both time 

steps. When ∆t increases from 0.01ms to 0.02ms, there is a slight decrease in both APD and CV. 

These small variations are mainly due to the approximation errors in the numerical analysis. The 

models of cardiac cell and tissue are solved with the use of Ode15s solver and explicit finite 

difference methods. Computer models were implemented using Matlab R2010a and Simulink v7.5 

software from MathWorks (Natick, MA, USA) in a Windows 7 (Microsoft, Redmond, WA, USA) 

64-bit machine. 

2.4 Results and Discussions 

2.4.1 Glycosylation Modulation of hERG Channel 

Table 2-3 Markov state transition rates under four glycosylation conditions. 

 Full glycosylation Reduced Sialylation Mannose-rich N-Glycanase 

𝛼0 0.0312·exp(0.0165V) 0.018633·exp(0.0234V) 0.0199·exp(0.0254V) 0.0173·exp(0.022V) 

𝛽0 0.0993·exp(-0.0269V) 0.0413·exp(-0.03533V) 0.0469·exp(-0.0385V) 0.0364·exp(-0.0318V) 

𝛼1 0.0036·exp(0.0221V) 0.0024·exp(0.0210V) 0.0025·exp(0.0225V) 0.0023·exp(0.0195V) 

𝛽1 0.0003·exp(-0.0088V) 1.55E-4·exp(-0.0195V) 1.55E-4·exp(-0.0209V) 1.48E-4·exp(-0.0181V) 

𝛼𝑖 0.0127·exp(-0.0343V) 0.0274·exp(-0.0357V) 0.0293·exp(-0.0393V) 0.0250·exp(-0.0320V) 

𝛽𝑖 0.4916·exp(0.0065V) 0.4660·exp(0.0048V) 0.5771·exp(0.0063V) 0.3458·exp(0.0032V) 

𝛼𝑖3 8.04E-5·exp(3.86E-7V) 1.53E-6·exp(6.34E-7V) 1.54E-6·exp(6.47E-7V) 1.53E-6·exp(6.2E-7V) 

𝐾𝑓 0.0262 0.0296 0.0321 0.0272 

𝐾𝑏 0.1478 0.2136 0.2297 0.1972 

 

Markov model of hERG channels is optimally calibrated to reproduce the in-vitro data from the 

whole-cell voltage clamp experiments. Note that the SSA and SSI curves were obtained using the 

same pulse protocol from simulated currents as well as from in-vitro experiments (see Figure 2-3). 

First, we performed the sensitivity analysis on the Markov model to identify transition rates that 
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maximally impact the in-silico data for each pulse protocol. Second, a constrained nonlinear 

optimization algorithm, i.e., trust-region-reflective [28], is employed to identify the parameters of 

transition rates. The objective function is to find optimal parameter values that minimize the sum 

of the least-square errors between in-silico and in-vivo data. Note that the parameter values from 

Mazhari et al. [16] were used as initial guesses in the minimization procedure. A full list of the 

parameters of transition rates under 4 glycosylation conditions is reported in Table 2-3. 

Figure 2-3 shows the fitted SSA and SSI relationships of hERG under four glycosylation 

conditions. Note that the SSA and SSI curves are shifted rightward (5~15mv) to more 

hyperpolarized potentials. In other words, N-glycans limits hERG voltage-dependent activation 

and inactivation by shifting the half-activation voltage of hERG to more depolarized potentials 

(see Table 2-3 for parameter values). Thus, changes in glycosylation modulate the voltage-

dependent gating behaviors of hERG ion channels. 

 

 

Figure 2-3 The hERG channel gating and kinetics under four glycosylation conditions. (a) Steady-

state activation (b) Steady-state inactivation. (In-vitro data as reported by us previously [26]: ■ 

Full Glycosylation ●Reduced Sialylation▲Mannose Rich▼N-Glycanase, In-silico data from the 

Markov model: straight and dashed lines). 
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2.4.2 Reduced Glycosylation Modifies 𝐼𝐾𝑟 and Shortens APD  

The measured shifts in SSA and SSI with changes in glycosyaltion would likely modulate 𝐼𝐾𝑟 

during the repolarization phases of the AP. Further, we integrate glycosylation-channel 

interactions (see Figure 2-3 from the whole-cell patch clamp experiments) with the in-silico model 

of cardiac cell to predict whether and how reduced glycosylation will impact the 𝐼𝐾𝑟 currents and 

action potentials. As shown in Figure 2-4, the 𝐼𝐾𝑟 current is shifted leftward along the time axis 

with earlier and higher current densities under 3 reduced glycosylation conditions (i.e., reduced 

sialylation, mannose-rich, and N-Glycanase). When hERG channels recover from the inactivation 

to the activated state, the repolarized cell will decrease the AP from the peak value to resting 

potential. As shown in Figure 2-4, the N-Glycanase treated cell has a early peak in the 𝐼𝐾𝑟 current 

along the time axis. This indicates the efflux of potassium current occurs earlier (i.e., repolarization) 

in Phases 2 and 3 of AP. It may also be noted that mannose-rich and reduced sialylation treated 

cells have similar 𝐼𝐾𝑟 spike shapes except the former has a higher peak in Figure 2-4. The larger 

rightward shift in SSI curve measured for the mannose-rich conditions (See Figure 2-3 b) are likely 

responsible for this higher peak. In other words, hERG channels under mannose-rich conditions 

would recover from inactivation at more depolarized potentials during the AP, therefore the hERG 

channel would be more active during the AP, causing an increased 𝐾+ efflux.  

Figure 2-5 shows that reduced glycosylation shortens the action potential duration (APD), and 

the N-Glycanse treated cell yields the shortest APD. When 𝐾+  efflux increases, the 

transmembrane potential decreases quickly and the cell repolarizes to the resting potential more 

quickly. Reduced glycosylation promotes an earlier/higher 𝐼𝐾𝑟 peak, thereby leading to a faster 

repolarization and a shortened APD. (see Figure 2-5). In addition, we validated the results from 

in-silico models by measuring hERG current in CHO cells treated with N-Glycanase and under 
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conditions of full glycosylation. As shown in Figure 2-6, in-vitro 𝐼𝐾𝑟  currents [26] match the 

simulated 𝐼𝐾𝑟 curves in major characteristics (e.g., leftward shifted and higher amplitude in the N-

Glycanase treated conditions), but with more random variations in the in-vitro data. 

 

Figure 2-4 Predicted rapid delayed rectifier K+ current (𝐼𝐾𝑟). 

 

Figure 2-5 Human ventricular action potential under four glycosylation conditions. 
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Figure 2-6 Comparison between in-vitro and simulated 𝐼𝐾𝑟 currents. 
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Figure 2-7 a and b shows the APD90 restitution curves APDn+1 = f(DIn) at the BCL of 1000ms 
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reduced sialylation, mannose rich and N-Glycanase. The minimal DI is calculated when the slope 

of APD90 restitution curve reaches 1 (i.e., 𝑑𝑓/𝑑(𝐷𝐼) = 1). Note that the minimal DI interval in 

the condition of full glycosylation is the largest. Similar results were obtained for the BCL of 

2000ms. The minimal DI interval is slightly smaller, i.e., 71.89ms, 64.29ms, 68.23ms and 64.74ms 

respectively for full glycosylation, reduced sialylation, mannose rich and N-Glycanase. 

 

Figure 2-7 Single-cell action potential duration (APD) restitution curves. The cell is stimulated 

with the pacing rates of 1Hz (a) and 0.5Hz (b). 

 

 

Figure 2-8 Protocol and CV restitution of 1D cable. (a) The experimental protocol, (b) CV 

restituion of 1D cable at Full Glycosylation, Reduced Sialylation, Mannose Rich and N-Glycanase. 
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2.4.4 Conduction Velocity 

We measured the conduction velocity (CV) restitutions on 1D cables composing of 1400 cells. 

The S1-S2 protocol used is similar to the one in the APD restitution of 1D cable. As shown in 

Figure 2-8, we varied the pacing period between S1 and S2 stimulus to investigate the impact on 

the CVs. Note that the CVs increase when the pacing period increase, and tend to be the same for 

four glycosylation conditions when the pacing period is > 650ms. However, when the pacing 

period <650ms, the CVs for full glycosylation are smaller than others. This is because the 

refractory period is larger for fully glycosylation condition. Also, when the pacing period is < 

370ms, the CVs of reduced sialylation and mannose rich are smaller than the N-Glycanase. The 

minimal pacing period (i.e., if smaller than this interval, electrical waves cannot be stimulated) is 

350ms, 340ms, 342ms and 338ms respectively for full glycosylation, reduced sialylation, mannose 

rich and N-Glycanase. 

2.4.5 Reduced Glycosylation Affects 𝐼𝐾𝑟 Magnitudes, APDs at Different Pacing Rates, and APD 

Restitution in A Cardiac Cable 

Figure 2-9 shows the variations of 𝐼𝐾𝑟 currents (peak currents) of four glycosylation conditions 

at different pacing rates in a linear cable of cardiac cells. In our experiments, 600 cardiac cells are 

connected to form a cell cable. The first cell in the cable is stimulated. The 𝐼𝐾𝑟 for the 200th cell 

are collected in the steady state. In order to make sure the stability, computer experimental results 

are collected after the first cell is stimulated for at least 20 times. As shown in Figure 2-9, the 𝐼𝐾𝑟 

magnitude decreases 30.98%, 26.08%, 17.37% and 32.73% when the pacing period increases from 

400ms to 2000ms for full glycosylation, reduced sialylation, mannose rich and N-Glycanase, 

respectively. However, the differences of 𝐼𝐾𝑟 magnitudes are bigger between four glycosylation 

conditions for the larger pacing period, i.e., 1000ms-2000ms (see Figure 2-9).  
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Figure 2-9 The variations of 𝐼𝐾𝑟 magnitudes in 1D cable. The peaks of 𝐼𝐾𝑟 currents are measured 

with respect to different pacing periods under the conditions of Full Glycosylation, Reduced 

Sialylation, Mannose Rich and N-Glycanase. 
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Figure 2-10 The variations of APDs in 1D cable. APDs are measured at different pacing periods 

under the conditions of Full Glycosylation, Reduced Sialylation, Mannose Rich and N-Glycanase. 
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99.44ms, 99.58ms and 99.40ms for full glycosylation, reduced sialylation, mannose rich and N-

Glycanase, respectively. Note that the minimal DI in tissues is often larger than a single cell 

because of the effects of cell coupling and electrical conduction. 

 

Figure 2-11 The APD restitution curve of 1D cable. 

 

2.4.6 Reduced Glycosylation Affects the AP Propagation in the Inhomogeneous Cable 

Repolarization heterogeneity can potentially cause inhomegeneous electrical wavelength in 

cardiac fibers. As depicted in Figure 2-12 a-c, we connected 600 inhomogeneous ventricular cells 

with gap junctions in a linear cable. The first 300 cells are fully glycosylated and the next 300 cells 

are under one of the following conditions: reduced sialylation (a), mannose-rich (b), or N-

Glycanase (c). The stimulus is initiated in the first cell, then adjacent cells are consecutively 

excited until electrical waves are conducted to the end of the tissue. The abruptions in electrical 

waves indicate the heterogeneity of APD between fully glycosylated cells and less glycosylated 

cells. Such a repolarization heterogeneity may potentially increase the risks of cardiac arrythmia. 
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The comparisons under those conditions are presented in Figure 2-12 d-f, which represent the 

differences between the inhomogenous cables (see Figure 2-12 a-c) and a homogenous cable, i.e., 

fully glycosylated. The N-Glycanase treated cable is shown to have the most significant abruptions 

in electrical wave conductions. Experimental results are consistent with predicted effects on 

cardiac electrical signaling based on multi-scale modeling of hERG ion channel, cardiac cells and 

tissues (i.e., cable). Reduced glycosylation modulates the gating of hERG channels, shortens the 

APD of cardiac cell, and affects the AP repolarization in cardiac cable. If periodic stimuli are 

applied, reduced glycosylation can also potentially vary electrical propagation in a linear cable of 

cells. 

 

Figure 2-12 AP propagation along a 1D inhomogeneous cable with 600 cells.The first 300 cells 

are fully glycosylated and the second 300 cells are under the reduced glycosylation conditions: (a) 

Reduced Sialylation, (b) Mannose Rich, and (c) N-Glycanase. The comparison plots (d-f) represent 

the differences between (a-c) vs. a Fully Glycosylated cable. 
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2.4.7 Reduced Glycosylation Affects Electrical Conduction in 2D Cardiac Tissues 

Little is known about how reduced glycosylation affects electrical conduction in 2D cardiac 

tissues [29]. Most previous work focused on glycosylation modulation effects at the levels of ion 

channels (e.g., sodium and potassium channels) and cells. Note that electrical conduction may 

produce either non-spiral or spiral waves in 2D tissues.  

Non-spiral waves often represent normal cardiac electrical conductions. The stimulus (i.e., 52 

pA/pF) is applied along the entire left edge of the tissue, and electrical waves propagate toward 

the right side (see Figure 2-13a). Because there are no potential gradients in the perpendicular 

direction, this type of electrical propagation in 2D tissues is similar to the 1D cable.  

However, spiral waves are modeling reentrant cardiac arrhythmias. The reentry on 2D tissue 

was generated using the pulse protocols that are introduced in Section 2.3 – Computer Experiments. 

As shown in Figure 2-13, three virtual electrodes were placed at the locations as follows: 

E1(60, 60,60),  E2(60, 600,60) , E3(600, 330,60) . The 3-lead ECG signals were derived to 

quantify the effects of reduced glycosylation on electrical conductions.  

 

Figure 2-13 The propagation of rectilinear waves and spiral waves in 2D cardiac tissues. Three 

virtual electrodes are placed at 𝐸1, 𝐸2 and 𝐸3. The 3-lead ECGs are derived based on the potential 

differences between two electrodes. 
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First, we simulated the propagation of normal electrical waves (i.e., rectilinear waves in Figure 

2-13a) in fully glycosylated and N-Glycanase treated ventricular tissues, assuming that only hERG 

channel gating is impacted by changes in glycosylation. As shown in Figure 2-14a, lead I, II, III 

ECG signals capture electrical conduction along 3 different directions in 2D tissues. It may be 

noted that the wavelength of ECG signals of N-Glycanase treated tissues is shorter than fully 

glycosylated tissue. Because ECG signals are derived from a piece of ventricular tissue instead of 

a 3D heart, it is difficult to obtain T wave. However, 3-lead ECG signals indicate that reduced 

glycosylation influences the electrical propagation on the 2D tissue. Further, the waveforms of 

ECG signals demonstrate that reduced glycosylation will shorten the wavelength in ECG signals. 

The in-silico prediction results show that reduced glycosylation can potentially be used to shorten 

the QT interval, thereby controlling the LQTS. 

Second, spiral waves were simulated in the fully glycosylated and N-Glycanase treated 

ventricular tissues to investigate how reduced glycoslyation will impact the progression of 

reentrant cardiac arrhythmias. Note that spiral wave simulations roughly correlate with 

monomorphic ventricular tachycardia. Two spiral waves were rotating for at least 8s to reach the 

steady state. As shown in Figure 2-15, there are distinct differences in the wave lengths between 

full glycosylation and N-Glycanase treated. The measurements show that N-Glycanase treated 

tissue yields a smaller width of wave (L2 = 5.64 cm) than the fully glycosylated one (L1 = 6 cm). 

This indicates that the vulnerability to arrhythmia is different for reduced hERG channel 

glycosylation, because the wave length impacts not only the propagation of electrical waves in 

space but also the rotating cycle of the vortex. 

Furthermore, we derived the 3-lead ECG to characterize how N-Glycanase treatment of hERG 

channels impacts the propagation of spiral waves. Figure 2-13b depicts the locations of 3 
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electrodes for deriving the ECG. As shown in Figure 2-14b, the waveforms of ECG signals are 

distinctly different from the ones in rectilinear waves, because spiral waves represent and model 

cardiac arrhythmias. In addition, N-Glycanase treated tissue is predicted to yield a shorter RR 

interval than fully glycosylated tissue. In other words, N-Glycanase treated tissue takes less time 

to fulfill a single cardiac cycle than full glycosylation, when stimulated with the same protocol, 

assuming only hERG channel gating is impacted by N-Glycanase treatment. Figure 2-14b shows 

that N-Glycanase yields the ECG cycle of 0.207s, which is shorter than 0.22s in full glycosylation. 

Because of the prolonged T wave in LQTS, depolarization often occurs during the late 

repolarization phase of the previous ECG cycle (R on T phenomenon) [11]. Therefore, N-

Glycanase can potentially prevent a premature depolarization by shortening the ECG cycle. This 

can potentially reduce the risk of LQTS and spiral wave breakups (i.e., Ventricular Tachycardia is 

less likely transfer into Ventricular Fibrillation) [30]. 

 

Figure 2-14 Derived Lead I, II, III ECG signals from the propagation of rectilinear waves and 

spiral waves in 2D cardiac tissues. (Solid black line: Fully Glycosylation. Red dash line: N-

Glycanase treated.) 
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Figure 2-15 Spiral waves in fully glycosylated & N-Glycanase treated cardiac tissues. 

 

2.4.8 State Occupancy of hERG Channels 

Figure 2-16 shows how reduced glycosylation impacts the state occupancy in the Markov model 

of hERG channels. Note that fully glycosylated channel transfer out of C1 to O and I faster than 

reduce glycosylated channels. At the early stage of AP (phase 0-2), hERG channel mostly stays in 

I and C, and switches to O in the rapid repolarization phase (Figure 2-16 c-d). Figure 20 d shows 

the state occupancies at 287ms. Noted that fully glycosylated channels are out of C and stay in I, 

while reduce glycosylated channels has already began to enter the O state. At 300ms (Figure 2-16 

e), fully glycosylated channels transfer from I to O, but reduce glycosylated channels enter more 

and more into the O state and begin to go back to C. The state occupancy diagram in different 

glycosylation conditions shows the glycosylation-modulated variations of 𝐼𝐾𝑟 and AP. 
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and difficult to comprehensively conduct physical experiments across biological scales, e.g., from 

ion channels to cells to tissues. In-silico models allow one to overcome these limitations, discover 

gaps in the in-vivo data, derive new hypotheses and/or suggest new experimental designs.  

 

 

Figure 2-16 Markov state occupancy under the conditions of full glycosylation, reduced sialylation, 

mannose-rich and N-Glycanase. 

 

Although computer models have long been intertwined with physical experiments in cardiac 

research, no approach to date has integrated the understanding of cardiac function in variable levels 

of glycosylation across the physical scales of increasing complexity, from molecules to cells to 

tissues. Note that cardiac ion channels are heavily glycosylated, and slight changes in the glycan 

structure can possibly impact the gating behaviors of ion channels. This study made one of the first 
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attempts to integrate glycosylation-channel data from in-vitro experiments with in-silico models 

to investigate how aberrant glycosylation modulates hERG ion channels and, as a result, cardiac 

electrical signaling across different organization levels, from molecule to cell to tissues.  

Currently, little data is available about how reduced glycosylation will impact the gating of 

hERG channels [26]. In this present investigation, it is shown that reduced glycosylation, i.e., 

reduced sialylation, mannose-rich and N-Glycanase, shifts the steady-state activation and 

inactivation of hERG channels towards more positive potentials. These measured changes were 

integrated with in-silico models to predict glycosylation modulation dynamics on cardiac cells and 

tissues. The results of computer experiments show that reduced glycosylation increases the 𝐼𝐾𝑟 

magnitudes and shortens the APD. These glycosylation-induced changes are consistent over a 

range of pacing rates from 0.5 Hz to 2Hz, but they are less pronounced for faster rates. Also, the 

APD restitution indicates that reduced glycosylation does not increase the probability of spiral 

wave breakups. Further, the abruptions in inhomogeneous cable experiments show that reduced 

glycosylation affects the AP repolarization and shortens the wavelength in 1D cable. It may be 

noted that N-Glycanase has the most significant effect on cardiac repolarization and electrical 

propagations. Moreover, 3-lead ECGs derived from rectilinear waves and spiral waves in 2D 

tissues demonstrate that reduced hERG channel glycosylation narrows the width of waves, 

shortens the QT interval, and speeds up the reentry.  

Because QT intervals are closely related to ventricular repolarization and hERG ion channel 

gating, a better understanding of glycosylation modulation dynamics in hERG ion channels can 

suggest a possible new mechanism to control QT intervals in ECG signals. As a result, new 

"rescue" therapies can be developed by imposing a glycan-dependent change in channel function 

that counterbalances the dysfunction due to diseases such as long QT syndrome. Our future studies 
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will be dedicated to a continued understanding of how regulated and aberrant glycosylation 

impacts cardiac function using in-vitro and in-vivo experiments as well as in-silico simulations as 

tools to test this novel mechanism for the control of cardiac electrical signaling. 
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Chapter 3 Statistical Metamodeling and Sequential Design of Computer Experiments to 

Model Glyco-altered Gating of Sodium Channels in Cardiac Myocytes 

Glycan structures account for up to 35% of the mass of cardiac sodium (𝑁𝑎𝑣) channels. To 

question whether and how reduced sialylation affects 𝑁𝑎𝑣 activity and cardiac electrical signaling, 

we conducted a series of in-vitro experiments. Although aberrant electrical signaling is observed 

in reduced sialylation, realizing a better understanding of mechanistic details of pathological 

variations in 𝐼𝑁𝑎  and AP is difficult without performing in-silico studies. However, computer 

model of 𝑁𝑎𝑣channels and cardiac myocytes involves greater levels of complexity, e.g., high-

dimensional parameter space, nonlinear and non-convex equations. Traditional linear and 

nonlinear optimization methods have encountered many difficulties for model calibration. This 

study presents a new statistical metamodeling approach for efficient computer experiments and 

optimization of 𝑁𝑎𝑣 models. First, we utilize a fractional factorial design to identify control 

variables from the large set of model parameters, thereby reducing the dimensionality of 

parametric space. Further, we develop the Gaussian Process (GP) model as a surrogate of 

expensive and time-consuming computer models and then identify the next best design point that 

yields the maximal probability of improvement. This process iterates until convergence, and the 

performance is evaluated and validated with real-world experimental data. Experimental results 

show the proposed algorithm achieves superior performance in modeling glycosylated and 

controlled kinetics of 𝑁𝑎𝑣channels. As a result, in-silico models provide a better understanding of 

glycol-altered mechanistic details in state transitions and distributions of 𝑁𝑎𝑣channels. Notably, 
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ST3Gal4-/- myocytes are shown to have higher probabilities accumulated in intermediate 

inactivation during the repolarization and yield a shorter refractory period than WTs. The proposed 

approach of statistical design of computer experiments is generally extensible to many other 

disciplines that involve large-scale and computationally expensive models. 

3.1 Introduction 

Action potential (AP), the net change of transmembrane potential in a cardiac myocyte during 

a contraction cycle, is produced by the orchestrated function of ion channels. A slight change in 

ion channel activity may affect the AP waveform and electrical conduction, thereby potentially 

leading to severe cardiac disorders. Voltage-gated sodium (Nav) channel activity is responsible for 

the excitation of cells and contributes to electrical conduction in tissues [1, 2]. It was shown that 

Nav channels can be extensively post-translationally modified by protein glycosylation through 

isoform-specific mechanisms [3-8]. Typically, glycosylation-dependent gating effects were 

imposed on ion channels primarily by the terminal residue attached to N- and O-glycans, sialic 

acid [3-8]. Montpetit et al. showed that cardiac glycome (i.e., the complete set of glycan structures 

produced in the heart) varies between atria and ventricles, and changes differentially during 

development of each cardiac chamber. In addition, regulated expression of a single glycogene was 

shown to modulate AP waveforms and gating of less sialylated Nav consistently [9]. 

Growing evidence suggests that reduced glycosylation has dramatic effects on ion channels and 

cardiac electrical signaling. There is a set of >40 distinct forms of inherited human diseases of 

reduced glycosylation known as Congenital Disorders of Glycosylation (CDG) caused, typically, 

by a mutation or deficiency in a glycogene that results in a relatively modest reduction in 

glycoprotein glycosylation [1-14]. While the mechanism(s) is not yet understood, recently reported 

prevalence of cardiac involvement prompted experts to suggest screening for cardiac dysfunction 
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in all CDG patients and for CDG in all young patients suffering from cardiomyopathy of unknown 

etiology [15]. 

In order to question whether and how reduced glycosylation affects 𝑁𝑎𝑣 activity and cardiac 

electrical signaling, we conducted a series of electrophysiological experiments to measure and 

characterize sodium currents (𝐼𝑁𝑎 ) and action potentials (AP). The experiments showed that 

ventricular 𝑁𝑎𝑣 from the sialyltransferase beta-galactoside alpha-2,3-sialyltransferase 4 (ST3Gal4) 

deficient mice (ST3Gal4-/-) inactivated more slowly and recovered from fast inactivation more 

rapidly than wild type (WT) controls, and ST3Gal4-/- cell showed a shortened myocytes refractory 

period. Although we observed aberrant electrical signaling in ST3Gal4-/- ventricular myocytes and 

across the ST3Gal4-/- ventricle, understanding mechanistic details of pathological variations in INa 

and AP is very difficult without performing in-silico studies. Experiments can measure ionic 

currents 𝐼𝑁𝑎 and AP with voltage and current clamp protocols, but preclude us from determining 

directly the change in transitions among molecular states (e.g., open, close, intermediate inactivated, 

and fast inactivated states) and their systematic contributions to AP variations. There is an urgent 

need to integrate computer models with experimental data to model the variations of state transitions 

under conditions of reduced sialylation, and the resulting changes in ionic currents and AP.  

In this present study, we propose to couple in-silico studies with the wealth of data from our 

electrophysiological experiments to model, mechanistically, how reduced sialylation that occurs 

in the ST3Gal4−/− heart affects 𝑁𝑎𝑣 channel activity and electrical signaling in the adult mouse 

ventricle. Indeed, computer models not only overcome practical and ethical limitations in physical 

experiments but also provide predictive insights into the underlying mechanisms.  

Computer models of Nav  channels involve greater levels of complexity, e.g., the high 

dimensionality of parameter space, nonlinear and non-convex characteristics. Hodgkin and Huxley 
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formulated the first model of myocyte AP in 1952 using a set of nonlinear and ordinary differential 

equations, including the submodels of potassium, sodium and leak channels. However, Hodgkin-

Huxley model is not adequate to capture detailed gating mechanisms of 𝑁𝑎𝑣 channels. Further, 

Clancy and Rudy developed a 9-state Markov model for INa with three closed states (C1, C2, C3), 

one fast inactivation (IF), one open state (O), two intermediate inactivated states (I1, I2) and two 

closed-inactivation states (IC2, IC3) [18]. The dynamic transitions among Markov states involve 

a large set of interacting nonlinear differential equations, and thus lead to highly nonlinear and 

non-convex characteristics in the model.  

In order to model glyco-altered 𝐼𝑁𝑎, there are a total of 25 calibration parameters that need to 

be estimated (also see Table 3-1). This gives rise to the issue of “curse of dimensionality” for 

model calibration because we would need 225 (approximately 33.5 million) design points to run 

full-factorial experiments that fill up the corner points of a 25-dimensional hypercube. In addition, 

we will need to follow standard pulse protocols used in electrophysiological experiments (i.e., 

steady state activation, steady state inactivation and recovery from fast inactivation) to design 

computer experiments for the minimization of model discrepancy from real-world experimental 

data. In other words, this is a multi-objective optimization problem instead of a single objective 

function. As such, the process of model calibration is very computationally expensive, due to the 

running of complex Markov model in the high-dimensional design space. It should be noted that 

traditional linear and nonlinear optimization methods (e.g., interior point algorithm, trust-region 

reflective algorithm, Levenberg-Marquardt algorithm and genetic algorithm) have encountered 

many difficulties, even infeasible, for 𝐼𝑁𝑎 model calibration and computer experiments. 

This study presents a new statistical metamodeling approach for efficient computer experiments 

and optimization of 𝑁𝑎𝑣 channel models, so as to describe glyco-altered 𝑁𝑎𝑣 gating kinetics using 
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a model for reduced Nav channel sialylation as an experimental model system in the ST3Gal4−/− 

heart. The organization of this study is as follows: Section 3.2 presents the research methodology, 

including screening design, space-filling design, statistical metamodel and the maximal probability 

of improvement; section 3.3 introduces the materials and experimental protocols; Section 3.4 

presents experimental results; Section 3.5 includes the conclusions arising out of this investigation. 

3.2 Research Methodology 

It is well known that cardiac models involve a large set of nonlinear differential equations with 

a high-dimensional space of model parameters. As a result, nonlinear and non-convex 

characteristics pose significant challenges for traditional optimization methods to achieve optimal 

solutions. In addition, solving nonlinear differential equations are often heavily computationally-

expensive when a large number of experimental runs are needed. It is impractical to seek an 

optimal solution through the exhaustive search (or full-factorial experiments) in the high-

dimensional design space. Hence, there is an urgent need to minimize the number of runs (i.e., 

reduce the computational cost and time) while calibrating computer models. However, few, if any, 

previous studies have focused on the statistical design of experiments for model calibration in the 

field of cardiac simulation and modeling. The present investigation is the first of its kind to 

integrate statistical metamodeling with sequential design of experiments for efficient and effective 

calibration of cardiac models. 

As shown in Figure 3-1, this present investigation is embodied by three core components 

focusing on the development of statistical metamodels for efficient and effective calibration of 

cardiac models. (1) The first component is aimed at the screening of model parameters so as to 

identify control variables that are sensitive to response functions. Notably, this present 

investigation includes three different response functions in the computer model of Nav channels 
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(i.e., steady state activation, steady state inactivation and recovery from fast inactivation). As such, 

we designed the fractional factorial experiments to identify control variables that are sensitive to 

one response function but not others. This first component will screen important variables and 

reduce the dimension of design space, thereby improving the effectiveness and efficiency of 

statistical metamodeling. (2) The second component will develop statistical metamodels to predict 

the response functions in the control variable space based on a small sample of computed responses 

from computer models. The statistical metamodels will serve as the surrogates of expensive and 

time-consuming computer models. (3) The third component aims to develop an expected 

improvement algorithm, extended from Jones et al [19], to calculate the responses of statistical 

metamodels based on a space-filling design and then select the next best point according to the 

criterion of maximal probability of improvement for running an additional experiment on 

computer models. Further, this process will continue selecting the next best point and updating the 

statistical metamodel until the convergence criterion is satisfied. All three components are 

eventually integrated together in the framework of sequential design of computer experiments to 

make the calibration of computer models of complex cardiac systems more effective and efficient. 

The details of this new method are described below. 

3.2.1 Screening Design 

In order to avoid the “curse-of-dimensionality”, it is critical to study the effects of model 

parameters for identifying control variables that are sensitive to model discrepancy instead of other 

noise. In this investigation, the computer model includes output variables ỹ and the P-dimensional 

parameters 𝒙 (i.e., the large set of covariates with potential effects on outputs) as follows: 

Computer model: ỹ = 𝑓(𝑡, 𝒙, 𝑉) 

Model parameters: 𝒙|𝑃 = (𝑥1, 𝑥2, … , 𝑥𝑃) 
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Control variables: 𝒙|𝑝 = (𝑥1, 𝑥2, … , 𝑥𝑝) 

Real experimental data: y 

Model discrepancy: 𝛿 = |𝑦 − �̃�| 

The screening design is aimed at identifying a low-dimensional set of important control 

variables (𝒙|𝑝, 𝑝 << 𝑃) from the high-dimensional set of potential model parameters (𝒙|𝑃) so as 

to facilitate the process of statistical metamodeling. It is not uncommon that the “one-factor-at-a-

time (OFAT)” approach is used to investigate each parameter by itself, ignoring the other 

parameters. The recommendation is made only based on how the change of a single parameter ∆𝑥 

impacts the model discrepancy 𝛿. Although this is computationally efficient, this OFAT approach 

cannot estimate the joint effects of parameters and can also miss important factors [20]. 

 

 

Figure 3-1 Flow chart of the proposed research methodology. 
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Hence, we adopted the fractional factorial design for the sensitivity analysis of parametric 

effects on response functions. In this study, there is a set of 25 parameters that have potential 

effects on the model discrepancy 𝛿 of 𝑁𝑎+ ion channels. If each parameter varies at two levels (+1 

and -1), a full factorial design will require 225 = 33554432 runs, which is computationally 

expensive and time consuming. Because some higher-order interactions are likely to be negligible 

based on the effect hierarchy principle, we used a 1024-run 2𝑉
25−15 fractional factorial design. It 

should be noted that the resolution 𝑉 ensures that the main effects are strongly clear and the two-

factor interactions are clear. If we denote the 25 parameters by letters ‘a’-‘y’, the design generators 

derived from the Franklin-Bailey algorithm [21] are: 

𝑘 = 𝑎𝑏𝑐𝑑𝑒𝑓𝑔ℎ𝑖𝑗;  𝑙 = 𝑑𝑒𝑓𝑔ℎ𝑖𝑗; 𝑚 = 𝑏𝑐𝑓𝑔ℎ𝑖𝑗; 

𝑛 = 𝑎𝑐𝑒𝑔ℎ𝑖𝑗; 𝑜 = 𝑏𝑑𝑔ℎ𝑖𝑗; 𝑝 = 𝑐𝑒𝑓ℎ𝑖𝑗; 𝑞 = 𝑎𝑑𝑓ℎ𝑖𝑗; 

𝑟 = 𝑎𝑏𝑒ℎ𝑖𝑗; 𝑠 = 𝑎𝑏𝑐𝑑ℎ𝑖𝑗; 𝑡 = 𝑎𝑏𝑒𝑓𝑔𝑖𝑗; 𝑢 = 𝑎𝑐𝑓𝑔𝑖𝑗; 

𝑣 = 𝑐𝑑𝑒𝑔𝑖𝑗; 𝑤 = 𝑏𝑐𝑑𝑒𝑓𝑖𝑗; 𝑥 = 𝑏𝑒𝑓𝑔ℎ𝑗; 𝑦 = 𝑎𝑓𝑔ℎ𝑗 

After obtaining computed responses from the 1024-run experiments on computer models, 

factorial effects of parameters are estimated by the linear model as: 

𝛿 =  𝛽0 +  ∑ 𝛽𝑖𝑥𝑖

𝑃

𝑖=1

+  휀 

where 𝑖 =  1, … , 𝑃 is the number of considered parameters. Notably, the least squares estimate β̂i 

is half of the factorial effect 𝑥𝑖, i.e. 

�̂�𝑖 =
1

1 − (−1)
(�̅�(𝑥𝑖 = 1) − �̅�(𝑥𝑖 =  −1)) 

=  
1

2
(�̅�(𝑥𝑖 = 1) − �̅�(𝑥𝑖 =  −1)) 

As such, factorial effects are obtained by doubling the regression coefficients β̂i′𝑠. Further, we 
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used a graphical method, namely half-normal probability plot, to test the significance of factorial 

effects. The fundamental idea is to use the normal curve as the reference distribution against which 

the significance of effects is tested [22]. Under the null hypothesis of no significant effect, factorial 

effects are approximately normally-distributed random noises, i.e., �̂�𝑖~𝑁(0, 𝜎2). As a result, any 

effect whose point falls off the straight line in the half-normal probability plot is declared 

significant. The half-normal probability plot is composed of points, i.e., 

[𝛷−1 (0.5 +
0.5[𝑖 − 0.5]

𝑃
) , |�̂�(𝑖)| ] , 𝑖 = 1,2, ⋯ 𝑃 

where 𝛷 is the cumulative distribution function (CDF) of a standard normal random variable. The 

absolute values of factorial effects are ordered as |β̂(1)| ≤ ⋯ ≤ |β̂(P)|, and then plotted against the 

coordinates based on the half-normal distribution. In the half-normal probability plot, all the 

significant effects will fall above the straight line of small factorial effects and appear in the upper 

right corner of the plot. To this end, the initial step of variable screening identifies a reduced set 

of control variables (𝒙|𝑝, 𝑝 << 𝑃) that will be used to construct statistical metamodels in the 

following section 3.2.2 and 3.2.3. 

3.2.2 Space-Filling Design 

The next step is to select inputs 𝑿 = (𝒙1, … , 𝒙𝑛), 𝑛 × 𝑝 dimension, at which to calculate the 

responses of computer models. Space-filling design is commonly used in computer experiments 

when prediction accuracy is a primary interest. In this present investigation, we proposed the 

maximin distance design of Latin Hypercube (LH) Sampling to evenly spread the values of the 

inputs in the experimental region.  

In order to obtain a 𝑛 × 𝑝 LH sample 𝑿 = (𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏) in the 𝑝 dimensional experimental 

regions [0,1]𝑝 , each dimension [0,1] is first divided into 𝑛  equally spaced intervals [0,1/
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𝑛), … , [(𝑛 − 1)/𝑛, 1]. All p-dimensional Cartesian products of these intervals provide the 𝑛𝑝 cells 

of equal size. Then, an 𝑛 × 𝑝  matrix 𝚷 = (Π𝑖𝑗 ) is generated so that its columns are random 

permutations of {1,2, … , 𝑛} . The LH sample 𝑥𝑖𝑗 , 𝑖 = 1, … , 𝑛; 𝑗 = 1, … , 𝑝  is obtained from the 

matrix 𝚷 as follows: 

𝑥𝑖𝑗 =
Π𝑖𝑗 − 0.5

𝑛
, 𝑖 = 1, … , 𝑛; 𝑗 = 1, … , 𝑝 

The LH sampling evenly distributes the design points when projecting onto the domain of each 

input variable in the experimental region. Further, we used the maximin distance criterion to 

measure the spread of design points in the experimental region. In other words, any pair of design 

points should not be “too” close together. In this present investigation, the distance measure 

between two design points 𝒙𝑖 and 𝒙𝑗 is defined as  

𝑑𝑖𝑗 = ‖𝒙𝑖 − 𝒙𝑗‖ 

where ‖∙‖  denotes the Euclidean norm. The maximin distance design aims to maximize the 

minimal distance between any two points in the design space, and thereby guarantee that design 

points are spread over the experimental region [23]: 

max𝐗∈[0,1]𝑑 min𝑖≠𝑗𝑑𝑖𝑗 

Figure 3-2 shows an illustration of maximin distance design in the 2-dimensional design space 

[0,1]2. Notably, the design in Figure 3-2 (a) has a smaller minimal distance between two design 

points than Figure 3-2 (b). As such, design points in Figure 3-2 (b) are distributed more evenly. In 

this present study, the domain of each control variable has a different range, and therefore design 

points in the 𝑝  dimensional experimental regions [0,1]𝑝  are rescaled to their corresponding 

domains. In addition, the LH sampling is repeated several times and then we select the one 

maximizing the minimal distance between points.  
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Figure 3-2 Maxmin Latin hypercube design. 

3.2.3 Statistical Metamodeling 

In this section, we will approximate the discrepancy between computer model and 

electrophysiological data using the easy-to-evaluate statistical metamodels. This is done in two 

steps. First, we will run the computer model to compute the responses at some settings of control 

variables using the maximin Latin Hypercube Design (LHD). Then, we will fit statistical models 

to capture the relationships between control variables and model discrepancy, which can be used 

as an approximation model to minimize the discrepancy between computer model and 

electrophysiological data. Notably, the prediction accuracy depends on the general tendency as 

well as the uncertainty of statistical metamodels in modeling the response surface. Although the 

metamodeling approach has been widely used in engineering [23, 24], we have not seen its 

applications in the cardiovascular domain. In addition, functional responses, pulse protocols and 

cardiac constraints call for the new development of statistical metamodeling methods that are well-

suited for cardiovascular studies. 

In this present study, we adopted the Gaussian Process (GP) modeling approach to develop the 

statistical metamodels. It is worth mentioning that GP model provides both mean and variance for 

the estimations of complex response surfaces, which facilitates the subsequent prediction and 

(a) (b) 
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uncertainty analysis of complex systems. Most of previous studies focused on the use of GP model 

for calibrating computer models in the engineering domain, e.g., Kennedy and O’Hagan [25], Qian 

and Wu [26], and Chang and Joseph [27]. However, calibrating cardiac models is not a 

straightforward application of aforementioned works, due to nonlinear/non-convex characteristics 

of models and different types of function responses (e.g., ion-channel currents and action 

potentials). Cardiac models need to be calibrated with specific considerations of the kinetics and 

physical properties of ion channels, cells, tissues, and the heart. This present investigation made 

an attempt to bridge the gaps in statistical metamodeling between engineering and cardiac domains. 

As aforementioned in Section 3.2.2, let ỹ be the model output and 𝑓(𝑡, 𝒙, 𝑉) be the computer 

model, where 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑝) is a 𝑝-dimensional vector of control variables (or calibration 

parameters). Let (𝒙𝟏, 𝑦1), … , (𝒙𝒏, 𝑦𝑛)  be the real data obtained from electrophysiological 

experiments. The output of such data usually contains some errors due to the variations in the 

unobserved variables and measurement error. Therefore, we can write down the statistical model 

as:  

𝑧𝑖 = |𝑦𝑖 − 𝑓(𝑡, 𝒙𝒊, 𝑉)| = 𝛿(𝒙𝒊) + 𝜖𝑖, for 𝑖 = 1, … , 𝑛 

where 𝜖𝑖~
𝑖𝑖𝑑𝑁(0, 𝜎𝑛

2), and the bias term 𝛿(𝑥) is modeled as a Gaussian process [28-31] specified 

by the mean function  𝑚(𝒙) and covariance function 𝑘(𝒙, 𝒙′), i.e.,  

𝛿(𝒙)~𝐺𝑃(𝑚(𝒙), 𝑘(𝒙, 𝒙′)) 

𝑚(𝒙) = 𝔼[𝛿(𝒙)] 

𝑘(𝒙, 𝒙′) = 𝔼[(𝛿(𝒙) − 𝑚(𝒙))(𝛿(𝒙′) − 𝑚(𝒙′))] 

The GP is defined as a collection of random variables, any finite set of which follows a joint 

Gaussian distribution. The GP is treated as a functional prior on the bias function [28-30]. Here, 

the covariance function specifies the covariance between pairs of random variables: 
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𝑘(𝒙, 𝒙′) = 𝜎𝑓
2 exp (−

1

2
(𝒙 − 𝒙′)𝑇𝑴(𝒙 − 𝒙′)) 

where 𝜎𝑓
2 is the signal variance and 𝑴 = diag(𝑙)−2 with the length-scale vector 𝑙. Note that the 

𝛿(𝒙) and 𝛿(𝒙′) should be similar if 𝒙 and 𝒙′ are sufficiently close in the design space, therefore, 

the length scale 𝑙 defines the separation between different dimensions of input variables. For a new 

design point 𝒙∗, the computed bias 𝒁 from 𝑿 = (𝒙1, … , 𝒙𝑛), and the predicted 𝛿(𝒙∗) have a joint 

prior distribution with zero mean: 

[
𝒁
𝛿∗

] ~𝑁(0, [
𝐾(𝑿, 𝑿) + 𝜎𝑛

2𝑰 𝐾(𝑿, 𝒙∗)
𝐾(𝒙∗, 𝑿) 𝐾(𝒙∗, 𝒙∗)

] 

In order to obtain the posterior distribution, this joint prior distribution is restricted to include only 

those functions that agree with the computed observations from the space-filling design. Hence, 

the posterior distribution of 𝛿∗ is: 

𝑝(𝛿∗|𝑿, 𝒁, 𝒙∗)~𝒩(𝛿∗̅, cov(𝛿∗)) 

𝛿∗̅ =  𝔼(𝛿∗|𝑿, 𝒁, 𝒙∗) = 𝐾(𝒙∗, 𝑿)[𝐾(𝑿, 𝑿) + 𝜎𝑛
2𝑰]−1𝒁  

cov(𝛿∗) =  𝐾(𝒙∗, 𝒙∗) − 𝐾(𝒙∗, 𝑿)[𝐾(𝑿, 𝑿) + 𝜎𝑛
2𝑰]−1𝐾(𝑿, 𝒙∗) 

However, the hyper-parameters 𝜽 = {𝑴, 𝜎𝑓, 𝜎𝑛} need to be optimally chosen in order to yield 

the best GP model for predicting the point with the maximal probability of improvement to reduce 

the model discrepancy. These hyper-parameters can be learned by maximizing the log marginal 

likelihood, i.e., 

𝜽𝐨𝐩𝐭𝐢𝐦𝐚𝐥 = argmax𝜽{log 𝑝(𝒁|𝑿, 𝜽)} 

log 𝑝(𝒁|𝑿, 𝜽) =  −
1

2
log|𝐾 + 𝜎𝑛

2𝑰| −  
1

2
𝒁𝑇[𝐾 + 𝜎𝑛

2𝑰]−1𝒁 −
𝑛

2
log2𝜋 

As such, the GP is optimally trained with the real experimental data and computed responses 

from the computer model based on the space-filling design. Figure 3-3 shows an example of GP 
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model for one-dimensional curve fitting, where blue dots are observed data, and black line shows 

the predictions from the GP model. The dash line indicates the prediction variances. 

 

Figure 3-3 An illustration of Gaussian Process fitting of one-dimensional data. 

 

3.2.4 Maximizing the Probability of Improvement 

The statistical metamodel provides an approximate model of the functional relationship 

between model discrepancy 𝑧 = |𝑦 − 𝑓(𝑡, 𝒙, 𝑉)| and control variables 𝒙. At any specific point 𝒙∗ 

in the experimental region, the GP model predicts our uncertainty about the model discrepancy as 

the realization of a random variable 𝛿∗ with mean 𝛿∗̅(𝒙∗) and standard error 𝑠(𝛿∗|𝒙∗) (see Figure 

3-4).  However, this approximation is based on the initial set of design points 𝑿 = (𝒙1, … , 𝒙𝑛) 

from the space-filling design. Hence, we introduced an auxiliary function of the probability of 

improvement, extended from Jones et al [19], to identify an additional design point where the 

probability to minimize model discrepancy beyond the target 𝑇 is the highest (see Figure 3-4):  

ProbI =  Φ (
𝑇 − 𝛿∗̅(𝒙∗)

𝑠(𝛿∗|𝒙∗)
) 
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where Φ(∙) is the Normal CDF function. The target value is defined as 𝑇 = 𝛿min − 0.25|𝛿min| so 

as to yield an improvement of at least 25%. Therefore, the objective to minimize the model 

discrepancy is analogous to iteratively search the next best point 𝒙∗ that maximizes the probability 

of improvement. In each iteration, we will compute the response and discrepancy of computer 

model at this additional best design point 𝒙∗, and then update the statistical metamodel to search 

for the next best one. 

 

Figure 3-4 An illustration to estimate the probability at a given point to minimize model 

discrepancy beyond the target T. 

 

It is worth mentioning that if we sample densely around the current best point, the uncertainty 

(i.e., standard error 𝑠(𝛿∗)) in this region becomes small. As such, the quantity (𝑇 − 𝛿∗̅) 𝑠(𝛿∗)⁄  is 

highly negative because 𝑇 is often less than 𝛿∗̅. This leads to small probability of improvement 

around the current best point, thereby driving the algorithm to move to some points where the 

uncertainty is higher. Therefore, the point that has maximal probability could improve the 

metamodel most. This process will iterate until the convergence criterion is satisfied. 
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Figure 3-5 The algorithm for statistical metamodeling and sequential design of computer 

experiments. 

 

3.2.5 Algorithmic Summary for Statistical Metamodeling and Sequential Design of Computer 

Experiments  

As shown in Figure 3-1 and Figure 3-5, the algorithm starts with parameters screening for 

identifying control variables 𝒙 = (𝑥1, … , 𝑥𝑝)𝑇  that are sensitive to the variations of model 

discrepancy. Then, a set of design points 𝑿=(𝒙1; … ; 𝒙𝑛) is sampled in the 𝑝-dimensional space of 

control variables using the maximin Latin Hypercube Design. Based on the outputs �̃� at each 

design point 𝒙𝑖, 𝑖=1,…,𝑛 calculated from computer model, the discrepancy from real experimental 

data is computed as: 

𝑧 = |𝑦 − �̃�| = |𝑦 − 𝑓(𝑡, 𝒙, 𝑉)| 

Once this dataset is obtained, a GP-based metamodel is built to model the functional relationship 

argmin𝒙|𝑦 − 𝑓(𝑡, 𝒙, 𝑉)| 

Initialization: 

Screen parameters to identify control variables 𝒙 =(𝑥1, … , 𝑥𝑝)𝑇 

Sample 𝑛 design points 𝑿=(𝒙1; … ; 𝒙𝑛) using the maximin LHD 

Evaluate the model output �̃�𝑖 at each design point 𝑿𝒊, 𝑖=1,…,𝑛 

Calculate the model discrepancy from experimental data 𝑦,   

𝑧𝑖 = |𝑦𝑖 − 𝑓(𝑡, 𝒙𝒊, 𝑉)|, for 𝑖 = 1,…, 𝑛 

Construct a GP model to estimate the response surface 

While discrepancy>MinTol 

Sample 𝑚 new design points 𝑿∗=(𝒙∗1, … , 𝒙∗𝑚) with the maximin LHD 

Predict the model discrepancy 𝜹(𝑿∗)of 𝑿∗ using the GP model 

Calculate the probability of improvement (ProbI) for 𝑿∗ 

Evaluate the model output at the next design with the maximal ProbI, 

𝒙𝑁 = 𝑿∗(max(ProbI)), 𝑧𝑁 = 𝜹∗(max(ProbI)) 

Update the dataset: (𝑿, 𝒁) = ([
𝑿

𝒙𝑁
] , [

𝒁
𝑧𝑁

]) 

Update the GP model 

End 
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between model discrepancy and control variables as: 

𝑧 = 𝛿(𝒙) + 𝜖 

𝛿(𝒙)~𝐺𝑃(𝑚(𝒙), 𝑘(𝒙, 𝒙′)) 

However, the GP model may not be accurate enough to capture the true response surface due 

to the scarcity of design points. Therefore, the GP model is iteratively updated by adding a new 

design point where the probability to minimize model discrepancy is the highest. This process 

iterates until the model discrepancy is lower than a minimal tolerance value (MinTol). 

3.3 Cardiac Models and Experimental Protocols 

We recently modeled the transition of molecular states in glyco-altered gating of hERG (𝐼𝐾𝑟) 

channels, showing that N-glycosylation effectively limits hERG channel activity. From the in-

silico models, reduced glycosylation was shown to shorten the repolarization phase of cardiac APs 

and impact the electrical conduction in cardiac fibers and tissues [16, 17]. In this present study, we 

previously conducted electrophysiological experiments to measure Nav channel activity and APs 

of mouse ventricular myocytes using voltage- and current-clamp methods [15]. These experiments 

provide two full sets of data; one under “control” (physiological, wild-type - WT) conditions, and 

the other under conditions of reduced sialylation (pathology, ST3Gal4−/−). In this section, we will 

detail computer models and briefly describe experimental pulse protocols (for details, see Ednie et 

al, 15) together which are used to describe mechanistic details of pathological variations in the 

𝑁𝑎𝑣 channels and myocyte AP. 

3.3.1 Computer Model of Ventricular Myocytes 

This present investigation used the computer model of action potential of mouse ventricular 

myocytes from Bondarenko and Rasmusson et al [31], which is only for the mouse ventricular 

myocytes under “control” (physiological, wild-type - WT) conditions, but is not adequate to model 
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the mechanistic details of pathological variations (e.g., ST3Gal4-/-) in the Na+ ion channels and 

myocyte AP. The cellular AP is described by the ordinal differential equation: 

−𝐶𝑚

𝑑𝑉

𝑑𝑡
= 𝐼𝐶𝑎𝐿 + 𝐼𝑝(𝐶𝑎) + 𝐼𝑁𝑎𝐶𝑎 + 𝐼𝐶𝑎𝑏 + 𝐼𝑁𝑎 + 𝐼𝑁𝑎𝑏 + 𝐼𝑁𝑎𝐾 + 

𝐼𝐾𝑡𝑜,𝑓 + 𝐼𝐾𝑡𝑜,𝑠 + 𝐼𝐾1 + 𝐼𝐾𝑠 + 𝐼𝐾𝑢𝑟 + 𝐼𝐾𝑠𝑠 + 𝐼𝐾𝑟 + 𝐼𝐶𝑙,𝐶𝑎 + 𝐼𝑠𝑡𝑖𝑚 

where 𝑡 is time, 𝐶𝑚 is the cell capacitance, 𝐼𝑠𝑡𝑖𝑚 is the external stimulus current which activates 

the cell from the resting state. The transmembrane currents include the fast 𝑁𝑎+ current (𝐼𝑁𝑎), the 

L-type 𝐶𝑎2+  current (𝐼𝐶𝑎𝐿) , the rapidly recovering transient outward 𝐾+  current (𝐼𝐾𝑡𝑜,𝑓 ), the 

slowly recovering transient outward 𝐾+  current (𝐼𝐾𝑡𝑜,𝑠), the rapid delayed rectifier 𝐾+  current 

(𝐼𝐾𝑟), the ultrarapidly activating delayed rectifier 𝐾+ current (𝐼𝐾𝑢𝑟), the noninactivating steady-

state voltage-activated 𝐾+  current (𝐼𝐾𝑠𝑠 ), the time-independent inwardly rectifying 𝐾+  current 

(𝐼𝐾1), the slow delayed rectifier 𝐾+ current (𝐼𝐾𝑠), the 𝑁𝑎+/𝐶𝑎++exchange current (𝐼𝑁𝑎𝐶𝑎), the 

𝑁𝑎+/𝐾+ pump current (𝐼𝑁𝑎𝐾),  the 𝐶𝑎2+pump current (𝐼𝑝(𝐶𝑎)), the 𝐶𝑎2+-activated 𝐶𝑙− current, 

ant the background 𝐶𝑎2+  and 𝑁𝑎+  currents. Most ionic currents are modeled using Hodgkin-

Huxley or Markov-based formulations, including the cell conductance, the gradients of membrane 

potential and gating dynamics. For details on all the ion-channel kinetics, see [31].  

Our objective is to calibrate the model to describe mechanistic details of pathological variations 

(i.e., reduced sialylation) in the Na+ ion channels and myocyte AP.  Notably, this is not a trivial 

task, due to the nonlinear and non-convex characteristics in the complex kinetics of Na+  ion 

channels, which will be detailed in the next section.  

3.3.2 Computer Model of 𝑁𝑎𝑣 Channels 

As shown in Figure 3-6, the Markov model of 𝑁𝑎𝑣 channels includes three close states (C1, C2, 

C3), one fast inactivation (IF), one open state (O), two intermediate inactivated states (I1, I2) and 
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two closed-inactivation states (IC2, IC3). The transition rates are dependent on the membrane 

potential in a non-linear fashion. The state probability denotes the fraction of Na+ channels in that 

state. Let P be the vector of state probability: 

𝐏 = [𝑃𝐼𝐶3, 𝑃𝐼𝐶2, 𝑃𝐼𝐹 , 𝑃𝐼1, 𝑃𝐼2, 𝑃𝐶3, 𝑃𝐶2, 𝑃𝐶1, 𝑃𝑂]T 

The temporal dynamics of 𝑷 are modeled with the following differential equations: 

d𝐏(𝑡)

d𝑡
= 𝐀(𝑉) × 𝐏(𝑡) 

where 𝐀 is the 9 × 9 transition rate matrix (see the supplement). The diagonal elements in 𝐀 are 

the sum of transition rates that transfer out of the current state, e.g. 𝐴1,1 =  −(𝛼31 + 𝛼111). The off-

diagonal elements contain the transition rates that transfer into the current state from other states, 

e.g., 𝐴1,2 =  𝛽111  and 𝐴1,6 =  𝛽31. Note that 𝐴1,2 determines the transition rate from IC2 to IC3 (see 

Figure 3-6). All non-zero elements in the transition rate matrix 𝐀 are dependent on the membrane 

potential (V), thereby making the gating of 𝑁𝑎+ ion channels voltage-dependent. The fast 𝑁𝑎+ 

current, 𝐼𝑁𝑎, is modeled as: 

𝐼𝑁𝑎 = 𝐺𝑁𝑎𝑃𝑂(𝑡)(𝑉 − 𝐸𝑁𝑎) 

where 𝑃𝑂(𝑡) is the probability of the 𝑁𝑎+ channels in the open state at time 𝑡, 𝐸𝑁𝑎 is the reverse 

potential and 𝐺𝑁𝑎 is the maximum 𝑁𝑎+ conductance. 

 

 

Figure 3-6 The Markov model of Na+ channels. 
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3.3.3 Experimental Protocols 

In the electrophysiological experiments, we used standard pulse protocols to measure whole-

cell current-voltage (I-V), steady state activation (SSA), steady state inactivation (SSI) and 

recovery from fast inactivation (REC) of 𝑁𝑎+ channels (see protocol details in the next section). 

However, there are slight differences in cell preparation and solutions used between Rasmusson’s 

and our electrophysiological experiments. Notably, the reverse potential 𝐸𝑁𝑎 in our experiments 

is 20.5mV, instead of 39 mV.  

As such, we adjusted the extracellular 𝑁𝑎+  concentration [𝑁𝑎+]𝑜  from 140,000 𝜇𝑀  to 

66,000 𝜇𝑀 in the computer model to match our experimental setting. All other parameters stay the 

same as given in the Bondarenko and Rasmusson et al [31]. The original values of transition rates 

in the matrix 𝐀 are used as initial guesses in the process of model calibration. During computer 

experiments, we followed the same pulse protocols to identify 2 sets of optimal values of transition 

rates in the matrix 𝐀 that minimize the discrepancy between the responses from the simulation 

model (i.e., the 9-state Markov model) and 2 sets of experimental data (i.e., control vs. reduced 

sialylation conditions).  

Experimental data were collected from the left ventricular apex of adult (12-14 weeks old) male 

mice homozygous for the normal ST3Gal4 gene (WT, n=11) and for the ST3Gal4 null-transgene 

(ST3Gal4-/-, n=13) as described by us previously [15]. ST3Gal4 is a uniformly expressed beta-

galactoside alpha-2,3-sialyltransferase 4 (ST3Gal4) that is responsible for adding terminal sialic 

acids in the 2-3 configuration to N- and O-glycans. The pulse protocols used in both physical 

and computer experiments are illustrated in Figure 3-7 and described in the online supplement and 

as described in Ednie et al. [15].  The data points in Figure 3-10 ~ Figure 3-12 were as reported in 

our previous report [15]. 
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Figure 3-7 Standard pulse protocols of SSA, SSI and REC. 

Current Density-Voltage Relationships and Steady-State Activation (SSA) are measured using 

the protocols described as following. Cells were held at -100mV, stepped to a series of voltage 

(from -85mV to +30m in 5 increments) for 120ms, and then stepped back to -100mV (see Figure 

3-7). Each voltage step was separated by 1.5 seconds. The 𝑁𝑎+ conductance (G) is determined as 

𝐺 =  𝐼𝑝𝑒𝑎𝑘/(𝑉𝑐 − 𝐸𝑁𝑎), where 𝐼𝑝𝑒𝑎𝑘 is the peak of 𝑁𝑎+ currents elicited at each clamp voltage 𝑉𝑐. 

The current 𝐼𝑁𝑎 elicited from each test pulse is divided by the cell capacitance to report current 

density as A/F. The current density-voltage relationship is obtained by plotting the current density 

with respect to the clamp voltage. The maximum conductance 𝐺𝑚𝑎𝑥 generated by each cell was 

used to normalize the data. Conductance-voltage relationships were fit with a Boltzmann equation 

and the fraction of maximal conductance is: 

𝐺/𝐺𝑚𝑎𝑥 =
1

1 + exp (−(𝑉 − 𝑉𝑎)/𝐾𝑎)
 

where 𝑉 is the membrane potentials, 𝑉𝑎 is the half-activation potential, 𝐾𝑎 is the slope factor. The 

normalized data were averaged with those from the other cells to calculate the resulting average G–

V curves. 

Steady-state inactivation (SSI) is collected following the below protocol. Cells were held at -

100 mV and then pre-pulsed to conditioning voltages ranging from -140 mV to -65 mV in 5 mV 
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increments for 500 ms. Following the conditioning pulses, the cells were depolarized to -20 mV 

for 10 ms (see Figure 3-7). The maximum current generated by each cell was used to normalize 

the data, and then fit to a single Boltzmann distribution, from which the mean Vi ± SEM and Ki ± 

SEM values were determined. The fraction of maximal currents is: 

𝐼/𝐼𝑚𝑎𝑥 =
1

1 + exp ((𝑉 − 𝑉𝑖)/𝐾𝑖)
 

where 𝐼/𝐼𝑚𝑎𝑥 is the ratio of each current to the maximum current, 𝑉 is the membrane potential, Vi 

is the voltage of half-inactivation, Ki is the slope factor. 

Recovery from Fast Inactivation (REC) is measured by the protocol describe here. As shown 

in Figure 3-7, cells were held at a voltage of -90mV for a duration of 10ms and then followed by 

the first depolarization to -20mV for 50ms (the first pulse). The membrane potential then returned 

to -90mV for a variable duration from 10ms to 300ms with 10ms increments followed by a second 

depolarization to -20mV for 50ms (the second pulse). The peak currents elicited from the second 

pulse to -20 mV was normalized to the current from the initial pulse to -20 mV for measuring the 

recovery from fact inactivation of  Na+ channels [15]. 

Cellular Refractory Period is modeled using the same protocol in physical experiments. Cells 

were first injected with a 1.4ms 80 pA/pF stimulus current to excite the first AP. The first 

stimulation is followed by a second pulse 5ms later and then each additional pulse at an incremental 

time interval of 5ms until the emergence of the second similar AP [15]. The time interval between 

2 similar APs is used to estimate the refractory period.  

Computer models were implemented using the MATLAB R2012a software from MathWorks 

(Natick, MA, USA) in a Windows 7 (Microsoft, Redmond, WA, USA) 64-bit machine. Computer 

experiments follow the same pulse protocols as in-vitro experiments to compute the model 
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responses and to calibrate in-silico models. The models of cardiac cells and 𝑁𝑎+ ion channels are 

solved with the use of Ode15s solver at a maximal step size of 1ms. 

Table 3-1 Transition rates of the Markov Model. 

Transition Rates (𝑚𝑠−1) 

𝛼11=3.802(0.1027exp(-(V+𝑥1)/17.0) +0.20exp(-(V+ 𝑥1)/150.0))-1 

𝛽11= 0.1917exp(-(V+𝑥2)/20.3) 

𝛼12=3.802(0.1027exp(-(V+ 𝑥3)/15.0) + 0.23exp(-(V+ 𝑥3)/150.0))-1 

𝛽12= 0.20exp(-(V+𝑥4)/20.3) 

𝛼13=3.802(0.1027exp(-(V+ 𝑥5)/12.0) + 0.25exp(-(V+ 𝑥5)/150.0))-1 

𝛽13= 0.22exp(-(V+𝑥6)/20.3) 

𝛼111=3.802(0.1027exp(-(V+𝑥7)/17.0) + 0.20exp(-(V+ +𝑥7)/150.0))-1 

𝛼112=3.802(0.1027exp(-(V+ 𝑥8)/15.0) + 0.23exp(-(V+𝑥8)/150.0))-1 

𝛽111= 0.1917exp(-(V+𝑥9)/20.3) 

𝛽112= 0.20exp(-(V+𝑥10)/20.3) 

𝛼31= 7.0e-7exp(-(V+𝑥11)/(7.7+𝑥23)) 

𝛽31 = 0.0084 +𝑥12+ 2e-5(V+7.0) 

𝛼32= 7.0e-7exp(-(V+𝑥13)/ (7.7+𝑥24)) 

𝛽32 = 0.0084 +𝑥14+ 2e-5(V+7.0) 

𝛼33= 7.0e-7exp(-(V+𝑥15)/(7.7+𝑥25)) 

𝛽33 = 0.0084 + 𝑥16+2e-5(V+7.0) 

𝛼2= 0.188495exp(-(V+𝑥17)/(16.6+𝑥22) + 0.393956) 

𝛽2 = 𝛼13 𝛼2 𝛼33/( 𝛽13 𝛽33) 

𝛼4= 𝑥18 𝛼21e-3 

𝛽4 = 𝑥19𝛼33 

𝛼5= 𝑥20𝛼2/95000 

𝛽5 = 𝑥21𝛼33/50 

 

3.4 Results  

3.4.1 Parameter Screening 

As shown in Section 3.2, the 9-state Markov model of Nav channels involves 22 transition rates, 

each of which is voltage-sensitive. Table 3-2 shows the detailed model of 22 transition rates. We 

performed a preliminary sensitivity analysis to screen parameters that have potential impacts on 
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the model responses from three pulse protocols, i.e., SSA, SSI and REC.  As shown in Table 3-1, 

we empirically identify a set of 25 potential parameters for further screening (i.e., 𝑥𝑖, 𝑖 = 1, ⋯ ,25). 

The screening design is aimed at identifying a low-dimensional set of important control variables 

(i.e., sensitive to the model responses to pulse protocols) from the high-dimensional set of potential 

model parameters so as to facilitate the process of statistical metamodeling. 

Table 3-2 Experimental parameters and levels in transition rates. 

 
0 +1 -1 

 
0 +1 -1 

𝑥1 2.5 7.5 -2.5 𝑥14 0 0.001 -0.001 

𝑥2 2.5 7.5 -2.5 𝑥15 7 12 2 

𝑥3 2.5 7.5 -2.5 𝑥16 0 0.001 -0.001 

𝑥4 -2.5 2.5 -7.5 𝑥17 7 12 2 

𝑥5 2.5 7.5 -2.5 𝑥18 1 10 1 

𝑥6 -7.5 -2.5 -12.5 𝑥19 1 10 1 

𝑥7 2.5 5 0 𝑥20 1 10 1 

𝑥8 2.5 7.5 -2.5 𝑥21 1 10 1 

𝑥9 2.5 5 0 𝑥22 0 1.66 -1.66 

𝑥10 -2.5 2.5 -7.5 𝑥23 0 1 -1 

𝑥11 7 12 2 𝑥24 0 1 -1 

𝑥12 0 0.001 -0.001 𝑥25 0 1 -1 

𝑥13 7 12 2     

 

In order to reduce the computational cost, we adopted a 1024-run 2V
25−15 fractional factorial 

design for the sensitivity analysis of parametric effects on response functions. The resolution 

ensures that the main effects are strongly clear and the two-factor interactions are clear. Each 

parameter is varied at two levels of high (+1) and low (-1). Table 3-2 shows the values of each 

parameter at +1 and -1 levels, which are empirically determined based on the original values (0) 

in the Bondarenko and Rasmusson et al. [31]. 

Notably, the computational speed for each run in the SSA, SSI and REC experiments is about 

1.90s, 4.20s and 8.06s, respectively. A full factorial design (FD) will require 225 runs to screen 
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the effect of all possible combinations of +1’s and -1’s, which is computationally expensive and 

time consuming. As such, the full factorial design is not efficient, even infeasible, for a high-

dimensional space of parameters. As shown in Table 3-3, the time durations of full FD are 1.77e4 

hrs, 3.91e4 hrs and 7.51e4 hrs for SSA, SSI and REC experiments, respectively. However, the 

fractional FD is more efficient, and only need 32.42mins, 71.68mins and 137.56mins. 

Table 3-3 Comparison of computational time for screening designs. 

 Runs SSA  SSI REC 

Unit time/ run 1 1.90s 4.20s 8.06s 

Full FD 225 1.77e4 hrs 3.91e4 hrs 7.51e4 hrs 

Fractional FD 210 32.42 mins 71.68 mins 137.56 mins 

∗ s: second; hrs: hours; mins: minutes 

After obtaining computed responses from the 1024-run experiments on computer models, we 

estimated the factorial effects of parameters using the linear model. Figure 3-8 shows the half-

normal probability plots for factorial effects of 25 parameters in SSA, SSI and REC protocols, 

respectively. Note that half-normal probability plot is a graphical method to test the significance 

of factorial effects. The significant effects will fall above the straight line of small factorial effects 

and appear in the upper right corner of the plot. As shown in Figure 3-8, the set of parameters 

{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥17, 𝑥22}  has significant effects for steady-state activation. Similarly, 

{𝑥11, 𝑥12, 𝑥23}  and potentially {𝑥13, 𝑥14, 𝑥24}  are significant on the responses of steady-state 

inactivation. In addition, the set of parameters {𝑥11, 𝑥12, 𝑥15, 𝑥18, 𝑥19, 𝑥23, 𝑥25}  has significant 

impacts on the recovery from fast inactivation. 

In addition to half-normal plots, we used the Lenth’s method [32] to quantitatively test effect 

significance in the experiments. The pseudo standard error (PSE) of factorial effects β̂i′𝑠  is 

calculated as: 

PSE = 1.5×median {|β̂i|<2.5s0} |β̂i| 
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Figure 3-8 Half-normal probability plots for factorial effects of 25 model parameters in SSA, SSI 

and REC protocols. 

 

where s0 = 1.5 × median|β̂i|. Note that PSE is an estimator of the standard deviation of β̂i′𝑠. 

After dividing the β̂i′𝑠 by the PSE, we obtain the t-like statistics: 

tPSE,i =  
β̂i

PSE
 

Under the null hypothesis 𝐻0 that all β̂i′𝑠 are not significant, we have the critical region: 

prob(|tPSE,i| > 𝜇𝛼|𝐻0) = α 

where μα is the critical value at the significant level of α. An effect β̂i is declared to be significant 

if |tPSE,i| is greater than the critical value μα. The critical value of Lenth’s method (𝜇𝛼 = 4.82) at 
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a significant level (𝛼 = 0.001) is available in most statistical software, e.g. SAS, Minitab. 

The quantitative test confirms the results obtained from the graphical method and identifies 

three sets of control variables: 

𝒙𝑆𝑆𝐴 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥17, 𝑥22} 

𝒙𝑆𝑆𝐼 = {𝑥11, 𝑥12, 𝑥13, 𝑥14, 𝑥23, 𝑥24} 

𝒙𝑅𝐸𝐶 = {𝑥11, 𝑥12, 𝑥15, 𝑥18, 𝑥19, 𝑥23, 𝑥25} 

Figure 3-9 shows the sensitivity plot of transition rates in SSA, SSI and REC protocols. The 

results of screening experiments show that 𝛼11 , 𝛽11 ,  𝛼12 , 𝛽12 , 𝛼13 , 𝛽13 , and 𝛼2  have greater 

impacts on SSA, but are less sensitive to SSI and REC. It is also shown that 𝛼31, 𝛽31, 𝛼32 and 𝛽32 

are more sensitive to the SSI than other transition rates, and have similar impacts on REC. In 

addition, we found that 𝛼33, 𝛼2, 𝛼4 and 𝛽4 are sensitive to the REC protocols. 

 
Figure 3-9 Sensitivity of transition rates in SSA, SSI and REC protocols. 
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Based on the results of screening experiments, we categorized the control variables into two 

groups. The first group includes those variables sensitive to SSA (i.e., 𝒙𝑆𝑆𝐴 =

{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥17, 𝑥22}), and the second group includes those variables sensitive to both 

SSI and REC, i.e., 

𝒙𝑆𝑆𝐼+𝑅𝐸𝐶 = {𝑥11, 𝑥12, 𝑥13, 𝑥14, 𝑥15, 𝑥18, 𝑥19, 𝑥23, 𝑥24, 𝑥25} 

Therefore, the high-dimensional space of parameters is reduced to two sets of low-dimensional 

control variables. In addition, the problem of multi-objective optimization is decomposed into 

modular optimization formulations with a low-dimensional space of control variables. 

3.4.2 Steady State Activation 

Furthermore, we approximated the SSA discrepancy between computer model and 

electrophysiological data using the easy-to-evaluate statistical metamodels. First, we used the 

maximin Latin Hypercube Design (also see Section 3.2.2) to generate 20 design points of SSA 

control variables 𝒙𝑆𝑆𝐴 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥17, 𝑥22} , and then run the computer model to 

compute the responses. We fit the Gaussian Process metamodel to the data, then the metamodel is 

iteratively updated by adding a new design point where the probability to minimize model 

discrepancy is the highest. This process iterates until the SSA discrepancy is lower than a minimal 

tolerance value (i.e., MinTol=0.004 in this present study). 

Figure 3-10 show steady state activation and inactivation under WT (i.e., control) and ST3Gal4-

/- in ventricular myocytes. It may be noted that the SSA in ST3Gal4-/- myocytes is shifted toward 

a more depolarized potential than the WT. The experimental results show the shift of ~5mV. As 

shown in Figure 3-10, the SSA relationships from computer model match the trend of experimental 

data. It is remarkable that metamodel-based optimization converges to the minimum of the 

response surface very quickly (~100 iterations).  
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Figure 3-10 Steady state activation and inactivation for wild-type and ST3Gal4-/- conditions. 

3.4.3 Steady State Inactivation and Recovery from Fast Inactivation 

As mentioned in Section 3.4.1, we found that there are some common parameters sensitive to 

both SSI and REC. 

𝒙𝑆𝑆𝐼 = {𝑥11, 𝑥12, 𝑥13, 𝑥14, 𝑥23, 𝑥24} 

𝒙𝑅𝐸𝐶 = {𝑥11, 𝑥12, 𝑥15, 𝑥18, 𝑥19, 𝑥23, 𝑥25} 

Therefore, we will minimize the model discrepancy for both SSI and REC protocols in the second 

stage of the optimization process. The combined set of control variables is: 

𝒙𝑆𝑆𝐼+𝑅𝐸𝐶 = {𝑥11, 𝑥12, 𝑥13, 𝑥14, 𝑥15, 𝑥18, 𝑥19, 𝑥23, 𝑥24, 𝑥25} 

Statistical metamodels are constructed to approximate the relationship between 𝒙𝑆𝑆𝐼+𝑅𝐸𝐶 and model 

discrepancy (i.e., between experimental data and model responses under both SSI and REC 

protocols). Similarly, we used the statistical model as a surrogate to iteratively search a new design 

point where the probability to minimize model discrepancy is the highest. The original values of 

control variables 𝒙𝑆𝑆𝐼+𝑅𝐸𝐶, given in the Bondarenko and Rasmusson et al [31], are used as initial 

guesses in the process of model calibration. The minimal tolerance of SSI+REC discrepancy is set 
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to be 0.04. Note that SSI+REC experiments take more iterations (~1000 iterations) than SSA in the 

process to identify the optimal values of control variables because of the higher dimension of design 

space as well as two joint constraints of SSI+REC protocols.  

However, statistical metamodeling and sequential design significantly improve the speed of 

convergence. As mentioned, if we treat the computer model as a blackbox, traditional linear and 

nonlinear optimization methods become very difficult or even infeasible, for calibrating the model 

in the high-dimensional design space. It is worth mentioning that the time cost to evaluate 1000 

design points is only 0.040 seconds for the statistical GP model, but 2.75 hours for the computer 

model. Hence, it is a significant advantage to adopt the statistical metamodeling and sequential 

design strategy of computer experiments, especially for large-scale simulation models that are 

computationally expensive and time consuming. 

 
Figure 3-11 Recovery from fast inactivation of WT and ST3Gal4-/- cells. 
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indicates that ST3Gal4 gene deletion leads to the requirement of a greater depolarization for the 

inactivation of the Nav channels. In addition, Figure 3-11 shows that the recovery from fast 

inactivation from the computer model fits the experimental data. However, there are slight misfits 

in some portions of REC data due to the random effects in real-world electrophysiological 

experiments. 

Table 3-4 Optimal values of control variables for WT and ST3GAL4-/- cells. 

 WT ST3Gal4-/-  WT ST3Gal4-/- 

𝒙𝟏 16.3036 38.9756 𝒙𝟏𝟒 0.0055 0.0041 

𝒙𝟐 23.6605 27.6129 𝒙𝟏𝟓 28.6912 29.3783 

𝒙𝟑 8.0636 8.2235 𝒙𝟏𝟕 12.3515 16.9279 

𝒙𝟒 14.8590 10.7454 𝒙𝟏𝟖 3.3553e2 8.4621e2 

𝒙𝟓 31.0464 25.6248 𝒙𝟏𝟗 4.3636e3 7.4270e3 

𝒙𝟔 -0.2266 -6.6274 𝒙𝟐𝟐 -3.3326 -3.1787 

𝒙𝟏𝟏 19.6572 17.0064 𝒙𝟐𝟑 -0.4042 -0.5177 

𝒙𝟏𝟐 0.0052 0.0046 𝒙𝟐𝟒 -0.4496 -0.5496 

𝒙𝟏𝟑 28.3559 31.8518 𝒙𝟐𝟓 -0.1292 -1.2045 

 

Table 3-4 shows optimal values of control variables, 𝒙𝑆𝑆𝐴, 𝒙𝑆𝑆𝐼, and 𝒙𝑅𝐸𝐶 for the calibrated 

models of 𝑁𝑎𝑣  channels isolated from WT and ST3Gal4-/- myocytes. Note that there are 

significant differences between these two sets of optimal values for control variables. However, 

calibrated models best fits the WT and ST3Gal4-/- experimental data with standard pulse protocols 

(i.e., SSA, SSI, and REC). 

3.4.4 Model Validation  

These two set of parameters, shown in Table 3-4, yield best fit of WT and ST3Gal4-/- 

experimental data obtained from SSA, SSI and REC protocols. As such, we have two initial 

versions of calibrated models for WT and ST3Gal4-/- myocytes. In order to validate calibrated 

models, we further measured model responses of current-voltage relationships and cellular 
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refractory period, and made a comparison with real experimental data, which are detailed as 

follows. 

Current density-voltage relationship is modeled in this study using conventional protocols. 

Following the pulse protocols in Section 3.3.3, we computed the response of 𝐼𝑁𝑎 from calibrated 

models (both ST3Gal4-/- and WT myocytes) for each test pulse. The current density-voltage 

relationship is obtained by plotting the current density with respect to the clamp voltage. 

As shown in Figure 3-12, 𝐼𝑁𝑎  current densities from the model of ST3Gal4-/- myocytes are 

bigger than in WT myocytes at relatively small depolarization, i.e., when cells are held at -100mv 

and then stepped to the voltages between -70mv and -30mv. However, there are no significant 

effects at greater depolarization. Note that the discrepancy of current density-voltage relationships 

between computer models and experimental data is minimized for both ST3Gal4-/- and WT 

myocytes. These results showed that computer models are well-calibrated and suggested that the 

gating dynamics of 𝑁𝑎𝑣 channels differently with ST3Gal4 expression. 

 
Figure 3-12 Current density-voltage relationships. 
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and how ST3Gal4 gene deletion influences the electrical activity of cardiac cells. It should be 

noted that the 𝑁𝑎+ channels are responsible for the excitation of cells and also contributes to 

electrical conduction in tissues. 𝑁𝑎𝑣  recovery from fast inactivation is closely pertinent to the 

cellular refractory period. 

Figure 3-13 shows the responses of ventricular cell models using the refractory-period protocol 

(also see Section 3.3.3). Notably, there are significant differences in the cellular refractory periods 

from computer models of ST3Gal4-/- and WT myocytes. However, resting membrane potentials 

and AP durations do not show significant differences between computer models of ST3Gal4-/- and 

WT myocytes. In addition, our experimental results demonstrated that the model of ST3Gal4-/- 

myocytes yields a 28.5ms shorter refractory period than WTs. In contrast, our electrophysiological 

experiments also show that the refractory periods are approximately 110.2 ± 10.0 ms (n=13) for 

ST3Gal4-/- cells, and 139.8 ± 8.6 ms for WTs (n=11), i.e., 29.6ms shorter refractory period in  

ST3Gal4-/- cells [15]. These results show the validity of computer models to capture the 

mechanistic details of 𝑁𝑎+  electrical signaling, as well as the effectiveness of the proposed 

algorithms for calibrating computer models. 

 

Figure 3-13 Cellular refractory periods from computer models of ST3Gal4-/- and WT myocytes. 

(WT: 138.0ms, ST3Gal4-/-: 109.5ms) 
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3.4.5 State Transitions in 𝑁𝑎𝑣 Channels 

Although electrophysiological experiments can observe aberrant electrical signaling in reduced 

sialylation with the use of standard pulse protocols, understanding mechanistic details of ST3Gal4-

/- pathological variations in 𝐼𝑁𝑎 and AP is difficult without performing in-silico studies. In-vitro 

experiments can measure ionic currents 𝐼𝑁𝑎 and AP with voltage and current clamp protocols, but 

preclude us from determining directly the change in transitions among molecular states (e.g., open, 

close, intermediate inactivated, and fast inactivated states) and their systematic contributions to AP 

variations. In this section, we will use the calibrated in-silico models to predict the variations of 

mechanistic details in the state transitions and distributions of 𝑁𝑎+ Channels for both ST3Gal4-/- 

and WT myocytes.  

As shown in Figure 3-14, there are significant variations in the state transitions of 𝑁𝑎+ 

Channels under ST3Gal4-/- and WT conditions. During the AP upstroke (Figure 3-14a), ST3Gal4-

/- channels open slightly faster and wider than WT (i.e., 20% vs. 15%). This also leads to a shorter 

time-to-peak value for ST3Gal4-/- channels. It may also be noted that WT channels have a higher 

probability in the fast inactivation (IF), 38% vs. 27%, but a slower transition to the intermediate 

inactivation (I1) than ST3Gal4-/- channels, i.e., 2% vs. 4%. 

At the peaks of APs (Figure 3-14b), ST3Gal4-/- channels show a more significant probability to 

stay in the intermediate inactivation (I1) than WTs (i.e., 67% vs. 40%), whereas most of WT 

channels are still in the state of Fast Inactivation (IF). This indicates that ST3Gal4-/- channels have 

a faster transition from the IF to the I1 state, and thereby a smaller probability of remaining in the 

IF state than WT channels (i.e., 27% vs. 55%). Also, it may be noted that both channels have a 

small probability (see Figure 3-14 b) in the open state (6% in ST3Gal4-/- channels and 4% in WT 

channels).  
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Figure 3-14 State transitions of sodium channels during the course of action potential under WT 

and ST3Gal4-/- conditions. 

 

In the late repolarization phase (Figure 3-14c), all the ST3Gal4-/- channels exited the state of 
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importantly, ST3Gal4-/- channels have a higher probability in the closed-inactivation state (IC3) 

than WTs (i.e., 87% vs. 77%). This suggests that ST3Gal4-/- channels have a faster transition from 

I1 state to IC3 state. 
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After 50ms (Figure 3-14d), both ST3Gal4-/- and WT APs are at the end of the repolarization 

phase and reach the level of resting potential. In addition, both ST3Gal4-/- and WT channels have 

completely exited the open, fast inactivation and intermediate inactivation states. Figure 3-14c 

shows that ST3Gal4-/- channels have a smaller probability of remaining in the closed-inactivation 

state (IC3) than WTs (i.e., 85% vs. 91%). Further, it is shown that ST3Gal4-/- channels enters the 

close state earlier than WTs (ST3Gal4-/-: C3=8% and C2=5%; WT: C3=6% and C2=1%). 

This trend continues for ST3Gal4-/- and WT channels after 100ms (Figure 3-14e), and more and 

more ST3Gal4-/- channels enters the close state earlier than WTs. This indicates that ST3Gal4-/- 

channels get ready for the second stimulation earlier than WTs. Hence, in-silico models provide 

the underlying mechanistic details that explain why ST3Gal4-/- cells have shorter refractory periods.  

3.5 Conclusions 

This study presents a new statistical metamodeling approach for efficient computer experiments 

and optimization of 𝑁𝑎𝑣 models to describe glyco-altered Nav gating kinetics in the ST3Gal4−/− 

heart. Note that voltage-gated sodium (𝑁𝑎𝑣) channel activity is responsible for the excitation of 

cells and also contributes to electrical conduction in tissues. In addition, 𝑁𝑎𝑣 ion channels are 

heavily glycosylated, with up to 35% of a mature protein’s mass comprised of glycan structures. 

There is a set of >40 distinct forms of inherited human diseases of reduced glycosylation known 

as Congenital Disorders of Glycosylation, which often leads to severe cardiac deficits, but the 

mechanisms are not yet understood. 

We have conducted a series of electrophysiological experiments to investigate whether and how 

reduced glycosylation affects Nav  activity and cardiac electrical signaling. Our experiments 

provide two full sets of data; one under “control” (physiological, wild-type - WT) condition, and 

the other under the condition of reduced sialylation (pathology, ST3Gal4-/-). Although we observed 
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aberrant electrical signaling in reduced sialylation, understanding mechanistic details of 

pathological variations in INa and AP is very difficult without performing in-silico studies. 

This study presents our efforts to couple in-silico studies with the wealth of experimental data 

to model, mechanistically, how reduced glycosylation that occurs in the ST3Gal4−/− heart affects 

Nav  activity and cardiac electrical signaling. Note that computer model of Nav  channels and 

cardiac myocytes poses significant challenges for computer experiments and model calibration, 

including (1) the high dimensionality of design space, (2) nonlinear and non-convex model 

characteristics, (3) a variety of cardiac functional responses from pulse protocols, and (4) specific 

kinetics and physical constraints in cardiac ion channels and cells. If the computer model is treated 

as the black-box, traditional linear and nonlinear optimization methods have encountered many 

difficulties, even infeasible, for calibrating the model in the high-dimensional design space. 

Hence, this present investigation employs the statistical metamodel as a surrogate for efficient 

and effective calibration of cardiac models. First, we designed the fractional factorial experiments 

to identify control variables that are sensitive to the model response functions, and thereby 

identifying a low-dimensional set of important control variables from the high-dimensional set of 

potential model parameters so as to facilitate the process of statistical metamodeling. Second, we 

develop the Gaussian Process models as the surrogates of expensive and time-consuming computer 

models and then identify the next best design point that yields the maximal probability of 

improvement. The improvement is defined as the discrepancy between real data and model outputs 

under standard pulse protocols. This process is iterated until convergence.  

Experimental results demonstrated the efficiency and effectiveness of the proposed algorithms 

for calibrating computer models, especially for large-scale simulation models that are 

computationally expensive and time consuming. The process of model calibration quickly 
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converges (<1000 iterations) to the best fits of experimental data of SSA, SSI and REC 

relationships for both WT and ST3Gal4-/- conditions. In addition, we evaluated and validated the 

calibrated models with the use of current density-voltage relationships and cellular refractory 

period. These results show computer models effectively capture the mechanistic details of 𝑁𝑎+ 

gating dynamics and cellular electrical signaling. Further, we used the calibrated in-silico models 

to predict the variations of mechanistic details in the state transitions and distributions of 𝑁𝑎+ 

Channels for both ST3Gal4-/- and WT myocytes. In-silico models provide the underlying 

mechanistic details that explain why ST3Gal4-/- cells have shorter refractory periods than WTs, as 

well as why ST3Gal4-/- channels get ready for the second stimulation earlier than WTs.  

This study made an attempt to bridge the gaps in statistical metamodeling between engineering 

and cardiac domains. As opposed to traditional linear and nonlinear optimization methods, this 

study presents a new sequential design of computer experiments for calibrating complex models 

of cardiac systems (e.g., Na+ ion channels). The proposed methodology is generally extensible to 

many other disciplines that involve the simulation experiments on large-scale and expensive 

computer models.  
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Chapter 4 In-Silico Modeling of Glycosylation Modulation Dynamics in K+ Ion Channels 

and Cardiac Signaling 

Cardiac action potentials (AP) are produced by the orchestrated functions of ion channels. A 

slight change in ion channel activity may affect the AP waveform, thereby potentially increasing 

susceptibility to abnormal cardiac rhythms. Cardiac ion channels are heavily glycosylated, with up 

to 30% of a mature protein’s mass comprised of glycan structures. However, little is known about 

how reduced glycosylation impacts the gating of K+ channels. Moreover, decomposing 

experimentally the joint K+ current is quite difficult because K+ channels activate at similar range 

of voltage, and share overlapping kinetics. The proposed decomposition method takes advantage 

of computer models of K+ channels, and describes the fine-grained details of specific currents. As 

such, it enables the interpretation of glycosylation modulation dynamics in the gating of each 

individual K+ channel. This work suggests new pharmaceutical targets for the glycan-altered 

cardiac diseases and potentially other cardiac disorders. 

4.1 Introduction 

Action potential (AP), the net change of transmembrane potential in a cardiac myocyte during 

a contraction cycle, is produced by the orchestrated function of ion channels. A slight change in 

ion channel activity may affect the AP waveform and electrical conduction, thereby potentially 

lead to severe cardiac disorders. Voltage-gated potassium (𝐾𝑣) channels play significant role in 

forming the AP. The shape and the duration of the AP are determined by the activities of each 

individual 𝐾𝑣  channels, and the diverse distribution of 𝐾𝑣  channels has essential physiological 
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functions. In large mammals, there are different types of 𝐾𝑣  isoforms that are responsible for 

different phases of the cardiac electrical activity. Figure 4-1 shows the AP waveforms of human 

(A) and mouse (B) ventricular myocytes and the currents that contribute to different phases of the 

APs. The two main 𝐾𝑣  isoforms: 𝐾𝑣 11.1 and 𝐾𝑣  7.1 affect the ventricular repolarization by 

contributing to 𝐼𝐾𝑟 and 𝐼𝐾𝑠 currents during phase 2 through 3 of the AP [1, 2, 6]. The activities of 

these 2 isoforms enable long sustained 𝐾+ currents that allow cardiac cells to stay at depolarization 

phase for a relatively long time. The 4 isoforms: 𝐾𝑣4.2/𝐾𝑣4.3, 𝐾𝑣1.5 and 𝐾𝑣2.1 contribute to a 

rapid repolarization in mouse ventricles [3, 6]. 𝐾𝑣4.3 is also found in human ventricular mycytes, 

and is responsible for a smaller portion of repolarization [2, 4, 6]. In mouse ventricle, the phase 2 

and 3 of the AP are controlled by the rapidly inactivating 𝐾+current 𝐼𝑡𝑜, which is contributed by 

the isoform of 𝐾𝑣4.2/4.3, and the slowly inactivating currents:𝐼𝐾𝑠𝑙𝑜𝑤1, and 𝐼𝐾𝑠𝑙𝑜𝑤2 which are likely 

conducted through 𝐾𝑣1.5 and 𝐾𝑣2.1 respectively [3, 6]. 

 
Figure 4-1 Modeled APs in human and mouse ventricular myocytes. Human AP is calculated with 

ten Tusscher et al. model [29], Mouse AP is calculated with Bondarenko et al. model [30]. 
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Studies have shown that sialic acids have similar effect on 𝐾𝑣 activities. As we mentioned in 

Chapter 2, 𝑁𝑎𝑣 channels can be extensively post-translationally modified by protein glycosylation 

through isoform-specific mechanisms [7-12]. The sialic acids have similar functional effects on 

𝐾𝑣 isoforms. In 1996 Thornhill et al., found that the 𝐾𝑣1.1 isoform in rat cardiac cells could be 

functionally affected by sialylation [13-15, 6]. Later, similar effects were observed at the single 

channel level [16]. The role of sialylation in 𝐾𝑣1.2 function was investigated through a novel 

approach, i.e. mutants were created where glycosylation sites were added to the channel compared 

with the function of healthy cells. This study found that N-linked deficient mutant led to a 

depolarizing shift in 𝑉𝑎, a broadening of the slope of the G-V curve and decreased channel kinetics 

[6,17]. Recently, Schwetz et al. investigated the effect of sialylation on the heterologously 

expressed 𝐾𝑣 isoforms 𝐾𝑣2.1, 𝐾𝑣4.2 and 𝐾𝑣 4.3 [18]. 

In order to answer whether and how reduced glycosylation affects 𝐾𝑣  activity and cardiac 

electrical signaling, in-vitro experiments were conducted to measure and characterize potassium 

currents. Although we observed aberrant electrical signaling in ST3Gal4-/- ventricular myocytes 

and across the ST3Gal4-/- ventricle, understanding mechanistic details of pathological variations 

in 𝐾+  currents and AP is very challenging without performing in-silico studies. There are 6 

different type of 𝐾+ currents in mouse ventricular myocytes, i.e., a rapid transient outward 𝐾+ 

current (𝐼𝑡𝑜), a rapid delayed rectifier 𝐾+ current (𝐼𝐾𝑟), an ultra-rapidly activating delayed rectifier 

𝐾+  current (𝐼𝐾𝑢𝑟 ), a non-inactivating steady-state 𝐾+  current (𝐼𝑠𝑠), a very small slow delayed 

rectifier current (𝐼𝐾𝑠 ), and a time-independent 𝐾+  current (𝐼𝐾1 ) [19]. Decomposing the joint 

𝐾+current, 𝐼𝐾,𝑠𝑢𝑚, experimentally is quite difficult because 𝐾𝑣 channels activate at similar range 

of voltage, and share overlapping kinetics [20-22]. Experiments can measure the joint 𝐾+ ionic 

currents and AP with voltage and current clamp protocols, but preclude us from determining 
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directly the systematic contributions of each individual 𝐾+ current to AP variations. There is an 

urgent need to integrate computer models with experimental data to model the variations of state 

transitions under conditions of reduced sialylation, and the resulting changes in ionic currents and 

AP.  

In this present study, we propose to couple in-silico studies with the wealth of data from our 

electrophysiological experiments to model, mechanistically, how reduced sialylation that occurs 

in the ST3Gal4−/− heart affects 𝐾𝑣  channel activity and electrical signaling in the adult mouse 

ventricle. Indeed, computer models not only overcome practical and ethical limitations in physical 

experiments but also provide predictive insights into the underlying mechanisms.  

4.2 Mouse Ventricular Models 

In Chapter 3, we modeled the transition of molecular states in ST3Gal4-/- 𝑁𝑎𝑣 channels and 

myocytes, showing that glyco-gene defect affects 𝑁𝑎𝑣  channel activity and leads to shortened 

refractory periods. In-silico study showed the detailed state transitions under both ST3Gal4-/- and 

WT conditions. In addition, computer experiments predict how the changes at molecular level, i.e., 

𝑁𝑎𝑣 channel level, affect the electrical activity at cellular level, i.e., altered channel activities cause 

shortened refractory periods in mouse ventricular myocytes. In this chapter, electrophysiological 

experiments have been conducted to measure how glyco-gene defect affects the 𝐾𝑣  channel 

activity and APs of mouse ventricular myocytes. These experiments produced two sets of data; 

one under “control” (physiological, wild-type - WT) conditions, and the other under conditions of 

reduced sialylation (pathology, ST3Gal4-/-). In this section, we will detail computer models that 

are used to describe mechanistic details of pathological variations in 𝐾𝑣 channels and the AP of 

ventricular myocyte. With the computer model, changes in ion channels are modeled, and effect 

on cardiac function at cellular level is predicted. 
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4.2.1 Computer Model of Ventricular Myocyte 

In this present investigation we applied the computer model of action potential of mouse 

ventricular myocytes from Bondarenko and Rasmusson et al [23]. The cellular AP is described by 

the ordinal differential equation: 

−𝐶𝑚

𝑑𝑉

𝑑𝑡
= 𝐼𝐶𝑎𝐿 + 𝐼𝑝(𝐶𝑎) + 𝐼𝑁𝑎𝐶𝑎 + 𝐼𝐶𝑎𝑏 + 𝐼𝑁𝑎 + 𝐼𝑁𝑎𝑏 + 𝐼𝑁𝑎𝐾 + 

𝐼𝐾𝑡𝑜,𝑓 + 𝐼𝐾𝑡𝑜,𝑠 + 𝐼𝐾1 + 𝐼𝐾𝑠 + 𝐼𝐾𝑢𝑟 + 𝐼𝐾𝑠𝑠 + 𝐼𝐾𝑟 + 𝐼𝐶𝑙,𝐶𝑎 + 𝐼𝑠𝑡𝑖𝑚 

where 𝑡 is time, 𝐶𝑚 is the cell capacitance, 𝐼𝑠𝑡𝑖𝑚 is the external stimulus current which activates 

the cell from the resting state. The transmembrane currents include the fast 𝑁𝑎+ current (𝐼𝑁𝑎), the 

L-type 𝐶𝑎2+  current (𝐼𝐶𝑎𝐿) , the rapidly recovering transient outward 𝐾+  current (𝐼𝐾𝑡𝑜,𝑓 ), the 

slowly recovering transient outward 𝐾+  current (𝐼𝐾𝑡𝑜,𝑠), the rapid delayed rectifier 𝐾+  current 

(𝐼𝐾𝑟), the ultrarapidly activating delayed rectifier 𝐾+ current (𝐼𝐾𝑢𝑟), the non-inactivating steady-

state voltage-activated 𝐾+  current (𝐼𝐾𝑠𝑠 ), the time-independent inwardly rectifying 𝐾+  current 

(𝐼𝐾1), the slow delayed rectifier 𝐾+ current (𝐼𝐾𝑠), the 𝑁𝑎+/𝐶𝑎++exchange current (𝐼𝑁𝑎𝐶𝑎), the 

𝑁𝑎+/𝐾+ pump current (𝐼𝑁𝑎𝐾),  the 𝐶𝑎2+pump current (𝐼𝑝(𝐶𝑎)), the 𝐶𝑎2+-activated 𝐶𝑙− current, 

ant the background 𝐶𝑎2+  and 𝑁𝑎+  currents. Most ionic currents are modeled using Hodgkin-

Huxley or Markov-based formulations, including the cell conductance, the gradients of membrane 

potential and gating dynamics. For details on all the ion-channel kinetics, see Bondarenko and 

Rasmusson et al [23].  

The objective is to calibrate the model to describe the detailed mechanism of 𝐾𝑣 channels and 

APs under both ST3Gal4-/- and WT conditions. Notably, there are six different types of K+ currents 

that activate at similar range of voltage, and share overlapping kinetics [20-22]. The challenges of 

this investigation are posed by multiple K+ currents and the complex kinetics of 𝐾𝑣 channels. 
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4.2.2 Computer Model of 𝐾𝑣 Channels 

In the mouse ventricular cell, there are several different types of K+ currents, i.e., Rapidly 

inactivating transient outward K+ current (𝐼𝐾𝑡𝑜,𝑓), Slow-inactivating transient outward K+ current 

(𝐼𝐾𝑡𝑜,𝑠), Rapid delayed rectifier K+ current (𝐼𝐾𝑟), ultra-rapidly activating delayed rectifier K+ 

current (𝐼𝐾𝑢𝑟), non-inactivating steady-state K+ current (𝐼𝐾𝑠𝑠), slow delayed-rectifier K+ current 

(𝐼𝐾𝑠), and time-independent K+ current (𝐼𝐾1 ) [23]. The 𝐼𝐾𝑡𝑜,𝑠 only exists in the septal cells of 

mouse ventricle. In this present study, we are investigating the effects of reduced glycosylation on 

the 𝐾𝑣 channels in apical cells, so 𝐼𝐾𝑡𝑜,𝑠 is equal to zero, and we will use 𝐼𝐾𝑡𝑜 to denote the 𝐼𝐾𝑡𝑜,𝑓. 

The K+ currents are described by the following equations: 

Rapidly inactivating transient outward K+ current (𝐼𝐾𝑡𝑜) contributes to the depolarization of 

APs. It characterizes the isoforms of the 𝐾𝑣4.2/𝐾𝑣4.2, and the model formulation is: 

𝐼𝐾𝑡𝑜 = 𝐺𝐾𝑡𝑜𝑎3
𝑡𝑜𝑖𝑡𝑜(𝑉 − 𝐸𝐾)  

𝑑𝑎𝑡𝑜

𝑑𝑡
= 𝛼𝑎(1 − 𝑎𝑡𝑜) − 𝛽𝑎𝑎𝑡𝑜 

𝑑𝑖𝑡𝑜

𝑑𝑡
= 𝛼𝑖(1 − 𝑖𝑡𝑜) − 𝛽𝑖𝑖𝑡𝑜 

𝛼𝑎 = 0.18064𝑒0.03577(𝑉+30.0) 

𝛽𝑎 =0.3956𝑒0.06237(𝑉+30.0) 

𝛼𝑖 =
0.000152𝑒−(𝑉+13.5)/7.0

0.067083𝑒−(𝑉+33.5)/7.0 + 1
 

𝛽𝑖 =
0.00095𝑒(𝑉+33.5)/7.0

0.051335𝑒(𝑉+33.5)/7.0 + 1
 

where 𝐺𝐾𝑡𝑜 is the maximum whole cell conductance (mS/uF), 𝐸𝐾 is the K+ reversal potential, and 

𝑎𝑡𝑜 and 𝑖𝑡𝑜 are the activation and inactivation gating variables. 
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Rapid delayed rectifier K+ current (𝐼𝐾𝑟) is modeled with a Markov model (see Figure 4-2). The 

𝐼𝐾𝑟 is presumably encoded by mERG channels with more complex kinetics. The Markov model 

includes five states, i.e., CK0, CK1, CK2, OK and IK. The state transitions are regulated by nonlinear 

transitions, e.g. 𝛼𝑎0, 𝛽𝑎0. Each of these transition rate is function of some exponential equations 

[23-24]. 

 

Figure 4-2 Markov model of mERG channel. 

𝐼𝐾𝑟 is guided by the following equations: 

𝐼𝐾𝑟 = 𝐺𝐾𝑟𝑂𝐾[𝑉 −
𝑅T

𝐹
ln (

0.98[K+]0 + 0.98[Na+]0

0.98[K+]𝑖 + 0.98[Na+]𝑖
)] 

where 𝐺𝐾𝑟 is the conductance (mS/uF), 𝑂𝐾 is the probability of the channel staying in the open 

state, 𝑅  is the ideal gas constand, 𝐹  is the Faraday constant, and [K+]0  and [K+]𝑖  are the 𝐾+ 

concentrations outside and inside the cell [23]. The formulation for calculating [K+]0, [K+]𝑖 and 

transition rates can be found in [23]. 

In addition, the 𝐼𝐾𝑢𝑟 is described by the following differential equations [23]: 

𝐼𝐾𝑢𝑟 = 𝐺𝐾𝑢𝑟𝑎𝑢𝑟𝑖𝑢𝑟(𝑉 − 𝐸𝐾) 

d𝑎𝑢𝑟

d𝑡
=

𝑎𝑠𝑠 − 𝑎𝑢𝑟

𝜏𝑎𝑢𝑟
 

d𝑖𝑢𝑟
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=

𝑖𝑠𝑠 − 𝑖𝑢𝑟

𝜏𝑖𝑢𝑟
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where 𝐺𝐾𝑢𝑟and is the maximum whole cell conductance (mS/uF), 𝑎𝑢𝑟 and 𝑖𝑢𝑟 are activation and 

inactivation gates. 

The Non-inactivating steady-state K+ current (𝐼𝐾𝑠𝑠) is voltage independent ion current, which 

is described by the following equations [23]: 

𝐼𝐾𝑠𝑠 = 𝐺𝐾𝑠𝑠𝑎𝑠𝑠𝑖𝑠𝑠(𝑉 − 𝐸𝐾) 

d𝑎𝐾𝑠𝑠

d𝑡
=  

𝑎𝑠𝑠 − 𝑎𝐾𝑠𝑠

𝜏𝐾𝑠𝑠
 

d𝑖𝐾𝑠𝑠

d𝑡
= 0 

𝜏𝐾𝑠𝑠= 39.3𝑒−0.0862𝑉 + 13.17 

where 𝐺𝐾𝑢𝑟 and is the maximum whole cell conductance (mS/uF), 𝑎𝑠𝑠 and 𝑖𝑠𝑠 are activation and 

inactivation gates. 

Lastly, the Slow delayed-rectifier K+ current (𝐼𝐾𝑠) and Time-independent K+ current (𝐼𝐾1) are 

determined by the following equations: 

𝐼𝐾𝑠 = 𝐺𝐾𝑠𝑛𝐾𝑠
2 (𝑉 − 𝐸𝐾) 

𝐼𝐾1 = 0.2938(
[K+]0

[K+]0 + 210.0
)(

𝑉 − 𝐸𝐾

1 + 𝑒0.0896(𝑉−𝐸𝐾)
) 

4.3 Materials and Experimental Design 

4.3.1 Experimental Protocols and Methods 

The cells were held at the resting potential, -70mV, then depolarized by a series of voltage steps 

ranging from -50mV to 50mV for 4.5 seconds in 10mV increments. At each clamp voltage the 

joint K+ current was collected [6]. 

The repolarization in adult mouse ventricular myocytes occurs primarily through the action of 

all the six K+ ion currents. In in-vitro experiments, the joint K+ current, i.e., the sum of all the six 

currents was measured following some pulse protocols. However, as we mentioned before, these 
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K+ currents share similar gating kinetics, and it is quite challenging to decompose experimentally 

the joint K+ currents. In fact, some of these currents, i.e., 𝐼𝐾1 , 𝐼𝐾𝑠 and 𝐼𝐾𝑟, are significantly small 

and have limited contribution to the joint current. As shown in Figure 4-3, at the clamp voltage of 

50mV, the three currents, 𝐼𝐾𝑡𝑜, 𝐼𝐾𝑢𝑟 and 𝐼𝐾𝑠𝑠, play significant roles in forming the joint K+ ion 

current (𝐼𝐾,𝑠𝑢𝑚). It is also shown that the 𝐼𝐾𝑠𝑠 does not exhibit any appreciable voltage-dependence. 

In addition, the 𝐼𝐾𝑡𝑜  contributes greatly to the peak of the 𝐼𝐾,𝑠𝑢𝑚 . This gives advantages of 

separating the kinetics components mathematically by fitting the decaying portion of the joint K+ 

current with a bi-exponential function [3,25-28]: 

𝑓(𝑡) = 𝐼𝐾𝑢𝑟𝑒−𝑡/𝑡𝑎𝑢1 + 𝐼𝐾𝑡𝑜𝑒−𝑡/𝑡𝑎𝑢2 + 𝐼𝑆𝑆 

where 𝐼𝐾𝑢𝑟 is the amplitude of the ultra-rapidly activating delayed rectifier K+ current of each 

current trace, 𝐼𝐾𝑡𝑜 is the amplitude of the rapidly inactivating transient outward K+ current, t is the 

time in ms, and 𝑡𝑎𝑢1 and 𝑡𝑎𝑢2 are time constants. 

 

Figure 4-3 K+ currents at clamp voltage of 50mV. 
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To obtain the Steady-State Activation (SSA), the amplitudes of each component for each 

current trace, calculated from the bi-exponential function, were divided by the cell capacitance to 

generate current density (A/F). The conductance (G) can be obtained through dividing the current 

by the reverse potential using the following equation: 

𝐺 = 𝐼/(𝑉 − 𝐸𝐾) 

where 𝐼 is the current at each clamp voltage, 𝑉 is the clamp voltage, 𝐸𝐾 is the reverse potential 

that is equal to 83.4mV in our in-vitro experiments. Conductance-voltage relationships were fit 

with a Boltzmann equation of the form: 

𝐺/𝐺𝑚𝑎𝑥 =
1

1 + exp (−(𝑉 − 𝑉𝑎)/𝐾𝑎)
 

where 𝑉 is the membrane potentials, 𝑉𝑎 is the half-activation potential, 𝐾𝑎 is the slope factor. The 

normalized data were averaged with those from the other cells to calculate the resulted average G–

V curves. 

In the experiments of Steady-State Inactivation, cells were held at -70 mV and then pre-pulsed 

to conditioning voltages ranging from -110 mV to 0 mV in 10 mV increments for 10 seconds. 

Following the conditioning pulses, the cells were depolarized to 30 mV for 4.5 seconds. The 

magnitude of 𝐼𝐾𝑡𝑜 , 𝐼𝐾𝑢𝑟  and 𝐼𝐾𝑠𝑠  generated by each current trace were normalized to their 

corresponding peak currents from the pre-pulse, i.e., the first step to 30mV. The data was fit to a 

single Boltzmann distribution, from which the mean Vi ± SEM and Ki ± SEM values were 

determined. The fraction of maximal currents is: 

𝐼/𝐼𝑚𝑎𝑥 =
1

1 + exp ((𝑉 − 𝑉𝑖)/𝐾𝑖)
 

where 𝐼/𝐼𝑚𝑎𝑥 is the ratio of each current to the maximum current, 𝑉 is the membrane potential, Vi 

is the voltage of half-inactivation, Ki is the slope factor. 



100 

4.3.2 Physical Experiments 

Ednie et al. recently reported the effects of ST3Gal4-/- on 𝐾𝑣 channels, showing that ST3Gal4-

/- lead to a significant smaller peak density at the clamp voltage of -20mV to 50mV (Figure 4.4a). 

This peak current was separated using the method mentioned in Section 4.3.1. The decomposed 

𝐼𝐾𝑡𝑜 and 𝐼𝐾𝑢𝑟 were shown in Figure 4-4 b and c. Physical data is provided by Ednie [6] 

 

 

Figure 4-4 ST3Gal4-/- alters K+ currents.  

 

4.3.3 Computer Experiments 

The computer experiments are aimed at modeling the effects of ST3Gal4-/- on each individual 

K+ currents and further predicting the effects on cardiac electrical signaling of ventricular cells. 
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First, we modified the 𝐾𝑣 channel gating equations in the detailed ventricular cell models based 

on the experimental data shown in the Section 4.2.2. The current density, steady-state activation 

and inactivation were optimized to fit the experimental results under both ST3Gal4-/- and WT 

conditions. Second, we simulated and compared the variations of each K+ current and cellular APs 

with respect to the two conditions. Third, the effects of ST3Gal4-/- on both 𝑁𝑎𝑣 and 𝐾𝑣 channels 

are integrated to predict the joint effects on the electrical signaling at the cellular level. 

Computer models were implemented using the MATLAB R2014a software from MathWorks 

(Natick, MA, USA) in a Windows 7 (Microsoft, Redmond, WA, USA) 64-bit machine. Computer 

experiments follow the same pulse protocols as in-vitro experiments to compute the model 

responses and to calibrate in-silico models. The models of cardiac cells and 𝐾𝑣 channels are solved 

with the use of Ode15s solver at a maximal step size of 1ms. 

4.4 Results 

4.4.1 ST3Gal4-/- Affects 𝐾𝑣 Channel Activities 

The biophysical characterization of 𝐾𝑣  channel gating indicated that the Steady-State 

Activation (SSA) of 𝐼𝐾𝑢𝑟 channel was shifted to more depolarized potentials along the voltage axis 

under the ST3Gal4-/- condition [6]. The Steady-State Inactivation (SSI) of 𝐼𝐾𝑢𝑟  channel shows 

higher inactivation probability when the clamp voltages are greater than 40mV. Figure 4-5 shows 

the modeled SSA and SSI. The modeling results are consistent with the in-vitro data, i.e., ST3Gal4-

/- shifts the SSA linearly in the depolarized direction, and leads to a delayed de-inactivation at 

higher potentials (>40mV). 

To further validate the modeling results, the current density of 𝐼𝐾𝑢𝑟 is presented in Figure 4-6. 

The in-silico study shows that ST3Gal4-/- contributes to decreased 𝐼𝐾𝑢𝑟 density at smaller, non-

saturating membrane potentials.  
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Figure 4-5 The 𝐼𝐾𝑢𝑟 gating under ST3Gal4-/- and WT conditions. (a) Steady-state activation (b) 

Steady-state inactivation. (In-vitro data as reported by Ednie [6]: ■WT ● ST3Gal4-/-, In-silico 

data from the 𝐼𝐾𝑢𝑟 model: straight and dashed lines). 

 

 

 

Figure 4-6 Current density of 𝐼𝐾𝑢𝑟 under ST3Gal4-/- and WT conditions. (In-vitro data as reported 

by Ednie [6]: ■WT ● ST3Gal4-/-, In-silico data from the 𝐼𝐾𝑢𝑟 model: straight and dashed lines). 
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In addition to 𝐼𝐾𝑢𝑟 channel, we also modeled the gating kinetics of 𝐼𝐾𝑡𝑜 channel under both 

ST3Gal4-/- and WT conditions. Figure 4-7 shows the in-vitro and in-silico SSA and SSI of 𝐼𝐾𝑡𝑜 

channels. ST3Gal4-/- causes a rightward shift in SSA, which indicates that the channel opens at 

higher membrane potentials. However, the SSI curve shows no significant difference under the 

two conditions. Out modeled outputs replicate the physical data well.  

 

Figure 4-7 The 𝐼𝐾𝑡𝑜 gating under ST3Gal4-/- and WT conditions. (a) Steady-state activation (b) 

Steady-state inactivation. (In-vitro data as reported by Ednie [6]: ■WT ● ST3Gal4-/-, In-silico 

data from the 𝐼𝐾𝑡𝑜 model: straight and dashed lines). 

 

The current density of 𝐼𝐾𝑡𝑜 was also plotted to test the model accuracy. As shown in Figure 4-

8, ST3Gal4-/- leads to a reduced density in 𝐼𝐾𝑡𝑜 current at more depolarized membrane potentials 

(>10mV). However, the densities are similar at smaller membrane potentials (-50mV~-10mV) 

Note that the discrepancy of current density-voltage relationships between computer models and 

experimental data is minimized for both ST3Gal4-/- and WT myocytes. The computer models are 

well-calibrated and the result shows that the gating dynamics of 𝐼𝐾𝑡𝑜 channels is different with 

ST3Gal4 expression. 
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Figure 4-8 Current density of 𝐼𝐾𝑡𝑜 under ST3Gal4-/- and WT conditions. (In-vitro data as reported 

by Ednie [6]: ■WT ● ST3Gal4-/-, In-silico data from the 𝐼𝐾𝑡𝑜 model: straight and dashed lines). 

 

4.4.2 ST3Gal4-/- Affects Cellular Activities 

We have also integrated the calibrated models of 𝐾𝑣 channels into the ventricular cell model to 

predict whether and how ST3Gal4 gene deletion influence the electrical activity of cardiac cells. 

It should be noted that the 𝐾𝑣 channels are responsible for multiple phases of the AP. Slightly 

change in each of these 𝐾𝑣  channels may affect the depolarization and repolarization of the 

ventricular cell, and contribute to cellular excitation.  

Figure 4-9 shows the three K+ currents: 𝐼𝐾𝑢𝑟, 𝐼𝐾𝑡𝑜 and 𝐼𝐾𝑠𝑠 during a single cardiac cycle and 

the AP of ventricular cells. Figure 4-9A indicates that ST3Gal4-/- leads to slower decay in the 𝐼𝐾𝑢𝑟 

current. This contributes to slower depolarization among AP (Figure 4-9C). In addition, ST3Gal4-

/- promotes an early rise of 𝐼𝐾𝑡𝑜. Furthermore, The AF of ventricular cells is shown in Figure 4-9C, 

where the repolarization of AP is prolonged and leads to a larger AP duration. 
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Figure 4-9 Simulated APs and underlying K+ currents of mouse ventricular myocytes under both 

ST3Gal4-/- and WT conditions. A: 𝐼𝐾𝑢𝑟. B: 𝐼𝐾𝑡𝑜. C: AP. Black line: WT condition. Red dash line: 

ST3Gal4-/- condition. 

 

4.5 Conclusions 

Mathematical modeling of cardiac myocytes allows one to investigate the detailed disease 

mechanisms at molecular levels, i.e. channel level, and predict the effects at other physical scales. 

We coupled in-silico studies with the wealth of experimental data to model, mechanistically, how 

reduced glycosylation occurring in the ST3Gal4-/- heart affects 𝐾𝑣 activities and cardiac electrical 

signaling. The computer experiments showed that ST3Gal4-/- caused decreased current densities 

among K+ currents, and delays the repolarization of the AP in ventricular myocytes. This enriches 
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the fundamental knowledge of how ST3Gal4 defect leads to cardiac dysfunction and further causes 

cardiac arrhythmias. Once mechanistic details on how ST3Gal4 gene deletion contributes to 

aberrant electrical signaling in the heart are better understood, potential therapies can be explored 

to offset glyco-altered gating in ion channels. Further, new designs of therapies could be suggested 

to correct aberrant glycosylation, i.e., potential corrective gene, environmental, and/or metabolic 

therapies that could restore the altered cardiac glycome and resume normal cardiac electrical 

signaling. 
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Chapter 5 Computer Modeling and Experiments of Electrical Dynamics in Atrial 

Fibrillation 

Atrial Fibrillation (AF) is a common cardiac arrhythmia that affects more than 5 million 

Americans. The impact of AF on healthcare systems is overwhelming, due to high risk of stroke, 

increased mortality, impaired quality of life and hospitalization. Catheter ablation is an established 

treatment for AF. During the procedure, physicians use the electrodes at the end of catheters to 

record electrical activity in the atria (i.e., intracardiac electrogram). Further, cardiologists pinpoint 

the potential AF sources and deliver energy through the catheter to create incision lines that block 

faulty electrical pathways. However, the understanding of AF initiation and maintenance has 

remained sketchy at best. One salient problem is the inability to interpret intracardiac recordings, 

which have thus far been unable to reconstruct the rhythmic mechanisms for AF. As a result, 

physicians often need to make ablation decisions using ad hoc or heuristic strategies. There is an 

urgent need to realize the full potentials of intracardiac electrograms for optimizing ablation 

decisions. The objective of this chapter is to develop and calibrate multi-scale computer models of 

human atria to simulate fibrillatory conductions that replicate the patterns in clinical recordings. 

Specifically, the multi-scale model of atrial cell, tissue and organ are built to investigate AF 

behaviors under different scenarios, and the corresponding intracardiac signals are derived. This 

research will accelerate the knowledge discovery in the initiation and perpetuation of AF. The 

research outcomes will positively impact cardiovascular patients, the largest population at risk of 

death in the world. 
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5.1 Introduction 

Cardiac electrical signaling is an integrative multi-scale system that reflects the orchestrated 

functions of ion channels, cell, tissues, and organs. The regular heart activity is initiated at the 

sinoatrial (SA) node. Electrical impulse is generated from the SA node and conducted into bother 

atria, and then relayed through the antriventricular (AV) node to further propagate through bundle 

of His and Purkinje fibers toward ventricular depolarization and repolarization [1]. The recursive 

heartbeat is generated by the repeated stimulation originated from at the SA node. Any electrical 

impulse initiated at other locations instead of the SA node would disorder the regular heartbeat, 

and eventually causes life-threatening heart events [2-3]. 

Atrial Fibrillation (AF) is the most common type of cardiac arrhythmia and leads to significant 

morbidity and mortality. AF is caused by irregular signals that are initiated at another part of atria 

other than the SA node or in the nearby pulmonary veins. The abnormal electrical signals spread 

throughout both atria in a rapid and disorganized way, which disturbs the normal electrical 

conduction and makes the atria to fibrillate. There are two types of mechanisms that have been 

identified in triggering and maintaining AF: enhanced automaticity in one or more depolarization, 

and reentry involving one or more aberrant circuits [4]. Generally, AF includes three stages: 

paroxysmal AF which usually occurs and lasts for seconds, minutes or even hours and stops by 

itself; persistent AF which can only be stopped by pharmacological and catheter-based surgical 

interventions; permanent AF which cannot be easily stopped by treatments.  

Catheter ablation is a common invasive procedure that is frequently used to stop either 

paroxysmal or persistent AF. Pulmonary vein isolation (PVI) is one common strategy for rhythm 

control in patients with AF. PVI has been proved to be efficient for most paroxysmal AF, but less 

efficient for persistent AF. Persistent AF happens because some reentrant spiral waves occur and 
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constantly rotate in atria. The reentrant rotor(s) persistently disorders the regular electrical 

conduction in the atria. To stop persistent AF, lesions are placed in the left and sometimes right 

atrium in addition to the lesions circled around pulmonary vein. However, identifying the location 

of lesion is quite challenging because the strategies should be patient-specific and anatomically-

based. It is very critical to correctly target the rotor(s) and avoid the ablation of healthy tissue. In 

reality, locating the rotors is very difficult due to the complex and convoluted relationships 

between intracardiac electrogram, i.e., the sensor signals collected during AF surgery for 

identifying the rotors, and persistence of different patterns, e.g. single rotor, multiple wavelets. 

Hence, there is an urgent need to realize the full potentials of intracardiac electrograms for 

optimizing ablation decisions. The objective of this chapter is to develop and calibrate computer 

models of human atria to simulate fibrillatory conductions that replicate the patterns in clinical 

recordings. Specifically, we modeled the AF behavior under different scenarios such as enhanced 

automaticity and reentry, and derived the corresponding intracardiac signals of each scenarios. The 

research outcomes will accelerate the knowledge discovery in the initiation and perpetuation of 

AF, which will positively impact cardiovascular patients, the largest population at risk of death in 

the world. 

In this chapter, we simulated AF in 2D tissue and surface of 3D atria to linking the potential 

mechanisms of AF to the intracardiac signals observed during AF. Section 5.2 presents the multi-

scale models for simulating different type of AF; Section 5.3 illustrates the design of experiments 

and is followed by some experimental results in Section 5.4. Section 5.5 concludes this chapter 

5.2 Human Atrial Models 

Computer models facilitate the quantitative simulation, elucidation, and understanding of 

cardiac function in AF. Simulation studies overcome the practical limitations in clinical practices, 
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and enable the investigation of detailed disease mechanisms. This present study builds multi-scale 

models of human atrial cell and tissue to examine different AF behavior and the corresponding 

intracardiac signals. The development of multi-scale atrial model is described as follows. 

5.2.1 Model of Human Atrial Myocyte 

The cellular excitation is controlled by the orchestrated function of ion channels. When a 

cardiac myocyte is stimulated, The close, activation, inactivation of ion channels allow the ions 

(e.g., 𝑁𝑎+, 𝐶𝑎++, and 𝐾+) to cross the membrane. The influx and efflux of ions form some ionic 

currents that further vary trans-membrane potentials. Specific to human atrial cells, a number of 

models have been developed in the literature, e.g., the CRN model [5], the Nygren and Fiset model 

[6] and the Simitev-Biktashev model [7].  

In this present investigation, we utilized CRN model to describe the electrophysiological 

behaviors of human atrial myocytes [5]. The justification is that the AP duration (APD) generated 

by this model matches clinical observations well. At the same time, the AP waveforms changes 

adaptively when cells are excited within the average atrial effective refractory period. Refractory 

period is the time that a cell consumes to get ready for the second excitation after the first excitation. 

In AF, cells are stimulated frequently by abnormal triggers and rotors, and produce inadequate AP 

with shorter AD durations (APD) and smaller magnitudes. Capturing the inadequate AP 

waveforms during the AF is essential for modeling different disease behaviors. 

The atrial cell of the CRN model includes 12 different types of ion currents, and the membrane 

potential 𝑉 is calculated with the following ordinal differential equation [5]: 

−𝐶𝑚

𝑑𝑉

𝑑𝑡
= 𝐼𝑁𝑎 + 𝐼𝐾1 + 𝐼𝑡𝑜 + 𝐼𝐾𝑢𝑟 + 𝐼𝐾𝑟 + 𝐼𝐾𝑠 + 𝐼𝐶𝑎,𝐿 + 𝐼𝑝,𝐶𝑎 + 𝐼𝑁𝑎𝐾 

+𝐼𝑁𝑎𝐶𝑎 + 𝐼𝑏,𝑁𝑎 + 𝐼𝑏,𝐶𝑎 + 𝐼𝑠𝑡𝑖𝑚  
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where 𝑡 is time, 𝐶𝑚  is the cell capacitance per unit surface area, 𝐼𝑠𝑡𝑖𝑚  is the external stimulus 

current which activates the cell from the resting state. The transmembrane currents include 

transient outward current (𝐼𝑡𝑜), slow delayed rectifier 𝐾+ current (𝐼𝐾𝑠), rapid delayed rectifier 𝐾+ 

current (𝐼𝐾𝑟), inward rectifier current (𝐼𝐾1), 𝑁𝑎+/𝐶𝑎++exchange current (𝐼𝑁𝑎𝐶𝑎), pump current 

(𝐼𝑁𝑎𝐾, 𝐼𝑁𝑎𝐶𝑎), plateau currents (𝐼𝑝𝐶𝑎), background currents (𝐼𝑏𝐶𝑎, 𝐼𝑏𝑁𝑎), fast Na+ current (𝐼𝑁𝑎) and 

L-type 𝐶𝑎++ current (𝐼𝐶𝑎𝐿). Most of these voltage-gated ionic currents are modeled in the form of 

cell conductance, membrane potential gradients and channel gate dynamics. The details of all ion-

channel kinetics can be found in references [5]. All parameters and initial values are the same as 

was given in the CRN model. 

5.2.2 Model of Human Atrial Tissue 

Cardiac tissue behaves as a functional syncytium, and electrical waves of depolarization and 

repolarization continuously propagate among the tissues. At the cellular scale, each depolarized 

cell can stimulate neighboring cells and trigger cell-to-cell conductions. The depolarization of 

cardiac myocytes is delayed by gap junctions. When modeling the tissue activity, we make the 

assumption that the electrical propagation can be consider as a continuous process, hence we could 

simulate the tissue with mathematical descriptions.  

In this study, we simulate the electrical propagation in a 1D cable using the following mono-

domain reaction-diffusion equation: 

𝜕𝑉

𝜕𝑡
= −

1

𝐶𝑚

(𝐼𝑖𝑜𝑛 + 𝐼𝑠𝑡𝑖𝑚) + 𝑔𝑔𝑎𝑝  
𝜕2𝑉

𝜕𝑥2
 

and in 2D tissue, the equation is: 

𝜕𝑉

𝜕𝑡
= −

1

𝐶𝑚

(𝐼𝑖𝑜𝑛 + 𝐼𝑠𝑡𝑖𝑚) + 𝑔𝑔𝑎𝑝  (
𝜕2𝑉

𝜕𝑥2
+  

𝜕2𝑉

𝜕𝑦2
) 
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where 𝐼𝑖𝑜𝑛 is the sum of trans-membrane ion currents, 𝑔𝑔𝑎𝑝 is the gap junction between cells. To 

simulate the propagation of cardiac electrical waves along 1D fiber, reaction-diffusion equations 

are numerically solved with the finite-difference scheme, and no flux boundary condition is 

assumed to ensure there are no current leakages on the borders. On the 1D and 2D tissues, the 

numerical finite-difference scheme is formulated as: 

𝑉𝑖
𝑡+1 − 𝑉𝑖

𝑡

𝑑𝑡
= −

1

𝐶𝑚

(𝐼𝑖𝑜𝑛 + 𝐼𝑠𝑡𝑖𝑚) − 𝑔𝑔𝑎𝑝

2𝑉𝑖
𝑡 − 𝑉𝑖−1

𝑡 − 𝑉𝑖+1
𝑡  

𝑑𝑥
 

𝑉𝑖,𝑗
𝑡+1 − 𝑉𝑖,𝑗

𝑡

𝑑𝑡
= −

1

𝐶𝑚

(𝐼𝑖𝑜𝑛 + 𝐼𝑠𝑡𝑖𝑚) − 𝑔𝑔𝑎𝑝(
2𝑉𝑖,𝑗

𝑡 − 𝑉𝑖−1,𝑗
𝑡 − 𝑉𝑖+1,𝑗

𝑡  

𝑑𝑥
+

2𝑉𝑖,𝑗
𝑡 − 𝑉𝑖,𝑗−1

𝑡 − 𝑉𝑖,𝑗−1
𝑡  

𝑑𝑦
) 

For simplicity, we consider the gap junctions along different directions are identical. 

In the 3D surface of the atria, a finite triangular mesh is used to describe the topological surface 

of both atria. The heart surface, however, is irregular and cannot be approximated by the same way 

as was described above for 2D tissue. Popular treatment for irregular shapes in various engineering 

discipline is Finite Element Method (FEM) and similar methods. Unfortunately, typical FEM 

technique relies on precise formulation of the problem under Cartesian coordinate systems, often 

assuming the independency of net flux along each axis. The problem of interest here is action 

potential diffusion along the heart surface, but not homogeneously along the three independent 

axes of the Cartesian system that the surface is in. For this reason, FEM does not provide a feasible 

approach in this case. To approximate the diffusion process guided by the Laplace Operator over 

the surface, one has to start with the fundamental property of the operator to derive the suitable 

formula. 

By the divergence theorem, Laplace Operator of AP integrated over a surface area 𝐴 is equal to 

the line integration of net flux around the close boundary 𝑆 of the surface area 𝐴: 

  FdSdAV  

http://en.wikipedia.org/wiki/Divergence_theorem
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where 𝑉 is the action potential, 𝐹 is the first order derivative of 𝑉, 𝐴 is the surface area, and the 

integration is circled around this surface area along its boundary. 

For sufficiently small area, and sufficiently smooth action potential 𝑉 over the surface, we can 

approximate the Laplace Operator at a point as the average of Laplace Operator around its vicinity: 

 FdS
A

V
p

p

1
 

where pV  denotes the approximated Laplace Operator at a point 𝑃, and pA  is the surface area 

around P. 

To formulate a FDM-like approximation, we further partition the right-hand-side into n pieces 

first, with 𝑛 independent, discrete action potential differential: 





ni

piip ASFFdSV
,1

/  

where iF  is the action potential differential and iS  is the length of the boundary covered by i’s 

sub area (See Figure 5-1 a). Also, 





ni

ip AA
,1

 

where iA  is i’s sub area. By evaluating this formulation, we are allowed to calculate the circular 

integration discretely  

Apparently, when we are doing the actual approximation, the selection of the pieces 

surrounding the interested point is arbitrary. However, in order to maintain accuracy, one needs to 

choose a reasonable set of sub areas. A good choice for triangular mesh is to divide the surface 

area around point P into fan shaped sectors (see Figure 5-1 b). Each sector has radius equal to half 

length of the edge it was attached to, and spans half of the angle between the two edges besides P.  
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Figure 5-1 Illustration of partial integration in one triangle. 

The calculation is based on a few assumptions: (1) We approximate iF  as the difference of 

action potential between two adjacent vertexes divided by the length of the edge linking them. 

Because the best estimate of the location where F is equal to this approximation is just half way 

along the edge, the sector radius is naturally half of the edge’s length. (2) We assume the other two 

points other than P have equivalent weighting when calculating net flux, thus the two sectors have 

the same angle. (3) We assume iF  is always orthogonal toward the arc of the sector. This 

eliminates the necessity to calculate the integral along the border between the two sectors. 

5.2.3 Intracardiac Electrograms 

The intracardiac signals are the most fundamental features for understanding different AF 

behaviors and locating rotors and wavelets. In surgery, a catheter is placed on the surface of atrial 

wall, and the potentials at each electrodes of the catheter vary while electrical waves pass through. 

In this study, catheters are simulated according to the real size and structure in clinical surgery. 

The potential at each electrode is calculated using the following equation: 

∅ = ∬
𝐼𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒

𝑟

 

𝑆

 𝑑𝑥𝑑𝑦 

where 𝑆 is the area over cardiac tissue, 𝑖𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 is the transmembrane currents which can be 

calculated as: 

𝐹2 
𝐹1 

𝐹3 

𝐹2 

𝐹1 

𝑃 

𝑆2 

𝑆1 

(a) (b) 
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𝐼𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 =  𝐼𝑖𝑜𝑛 + 𝐶𝑚

𝜕𝑉

𝜕𝑡
 

and 𝑟 is given as: 

𝑟 =  √(𝑥 − 𝑥𝑒)2 + (𝑦 − 𝑦𝑒)2 + 𝑧𝑒
2 

where 𝒆 =  (𝑥𝑒 , 𝑦𝑒 , 𝑧𝑒) is the location of the electrode, 𝑥 and 𝑦 represent the coordinates of cells 

on 2D tissue. The 𝐼𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 current is obtained with the following equation: 

𝐼𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 = 𝑔𝑔𝑎𝑝  (
𝜕2𝑉

𝜕𝑥2
+  

𝜕2𝑉

𝜕𝑦2
) 

∅ gives the signals collected from a single electrode, which is a unipolar signal. In reality, all 

recorded signals in the EP laboratory are bipolar. In bipolar catheter, potential differences between 

2 electrodes are measured. The potential differences between two electrodes as: 

𝐶𝑆12 =  ∅(𝑥𝑒1, 𝑦𝑒1, 𝑧𝑒1) − ∅(𝑥𝑒2, 𝑦𝑒2, 𝑧𝑒2) 

It may be noted that 2-3mm distance is considered between each two electrodes. 

5.3 Design of Experiments 

5.3.1 Experimental Protocols 

In this present investigation, we modeled the electrical propagation in AF among atria at 

different scales of 1D fiber, 2D tissue and 3D topological atrial surface. The conductance is chosen 

to be 1/4000 in the experiments of 1D and 2D cases.  

As we mentioned before, stimulation within the effective refractory period could generate 

inadequate AP waveforms, which will further lead to insufficient depolarization and repolarization 

among atria. The AF could occur because of the propagations of abnormal and disorganized AP 

waveforms. In 1D cable experiments, we tested the APD of atrial cells on 1D cable composed of 

600 atrial cells at different pacing rate (PR) of 200ms, 300ms, 400ms and 500ms. The temporal 

step is 0.01ms, and the spatial distance between every two neighbor cells is 0.1mm. A 2ms 
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stimulation (2000pA/pF) is given at the beginning the cable (cell 1-cell 5). Euler method is used 

to calculate the electrical propagation among the 1D cable. 

In 2D tissue, we construct the model by arranging cardiac cells in an array composed of 600 by 

600 cardiac cells. Different stimulation strategies are applied: 1) a 4ms stimulation (2000pA/pF) 

with pacing rate of 500ms is given to the upper left corner of the cell array, which triggers a 

sequence of electrical waves propagating towards the lower right corner of the tissue. 2) A same 

stimulation is given at the middle of upper boundary of the cell array (cell (1,300)), which produces 

electrical waves propagating down to the other side of the tissue. 3) The spiral wave was initiated 

by applying a first stimulus (S1 = 2 ms) along one side of the tissue to generate a rectilinear wave 

propagating toward the other side. When the refractory tail of electrical waves reaches the middle, 

a second stimulus (S2 = 2 ms) will be given in the middle of the tissue, paralleling to the first 

rectilinear wave and covering only 3/4 of the length of the tissue [9]. The temporal and spatial 

steps used in 2D experiments are 0.01ms and 0.1mm accordingly. 

In the 3D topological surface of atria, we simulate the electrical propagation on a finite 

triangular mesh (Figure 5-2). Stimulation (2ms, 2000pA/pF) with 500ms pacing rate is give at the 

Sinoatrial node. The conductance is 1/60 in this current simulation. 

 

Figure 5-2 Finite element mesh of atria. 
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All the experiments are implemented on a workstation with an Intel dual core i3-2100 CPU 

@3.10GHz and 16G of DDR3 memory. The models of 1D and 2D tissue are solved with the use 

explicit finite-difference methods. Computer models were implemented using MATLAB R2012a 

software from MathWorks (Natick, MA, USA) in a Windows 7 (Microsoft, Redmond, WA, USA) 

64-bit machine. 

5.3.2 Catheter Placement 

Different types of catheters are used in EP lab, for example ablation catheter, PentaRay catheter. 

The structures of catheters vary in sizes and number of electrodes. Figure 5-3 shows the design of 

an ablation catheter, where three electrodes and one ablation electrode are embedded on the 

flexible polymer body. During the test, catheters will be place against the atrial wall, and each 

electrodes could measure one lead of electrical signals, i.e., intracardiac signals. In reality, all 

signals collected in the EP lab are bipolar, i.e., the signals constitute a potential difference between 

2 electrodes with the distance of 2-3mm. In this study, we simulate the electrode following the 

design in reality, and place 4 electrodes with the distance of 2mm-20mm-2mm on the surface of 

the 2D tissue. The potential signals were calculated using the equations mentioned in Section 5.2.3. 

 

Figure 5-3 Structure of the ablation catheter. (Image on the left is from [10], in public domain.) 

Ablation Catheter Simulated Catheter 
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Flexible Polymer Body 
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5.4 Results 

5.4.1 APs at Different Pacing Rates on A 1D Cable 

We tested the response of atrial cells in the CRN model to different PR of 500ms, 400ms, 300ms 

and 200ms and 100ms on a 1D cable. Figure 5-4 shows the APs of the 300th cell in the middle of 

the atrial cable. As shown in Figure 5-4, when stimulation is given every 500ms to the first cell of 

the cable, the 300th cell generates slightly smaller AP waveforms with shorter plateau phase 

(Figure 5-4 b). When the PR is 400ms or 200ms (Figure 5-4 c and e), cells produced alternant AP 

waveforms, i.e., one normal AP followed by one AP with shortened APD lacking plateau phase. 

It may be noted that if the PR is equal to 300ms, cells show regular and normal AP waveforms 

(Figure 5-4 d). This is because every other stimulation falls into the absolute refractory period, 

during which a second stimulus (no matter how strong) will not excite the cell. In this case, the 

electrical waves are triggered in every 600ms, and propagate smoothly on the cable. This indicates 

the PR and the abnormality of electrical propagation do not follow linear relationship, i.e., smaller 

PR is not necessary to be the reason of abnormal electrical propagation among atrial tissue. 

However, when PR is equal to 100ms, cells cannot get fully excited all the time (Figure 5-4 e). 

The discussion on how PR affects the electrical propagation among atria is important because 

abnormal AF waveforms can results in different types of reentry, which further lead to cardiac 

tachycardia. The vortices of reentry can be a mechanism of life-threatening cardiac arrhythmias. 

5.4.2 Modeling of Atrial Fibrillation on 2D Tissue 

AF remains a challenging task because the connection between the intracardiac signals and the 

mechanism of AF is missing. Many efforts have been made to study the intracardiac signals either 

analytically or statistically, but the progress is limited. This is partially due to scarcity of 

information about the ground truth, i.e., the exact mechanism of the AF presented in each patient. 
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In most cases, the information regarding the disease behavior is mainly based on empirical 

guessing. The limitation mentioned above makes the validation of the developed analytical 

methods quite challenging. In this section, we investigated the relationships between the 

intracardiac signals and different types of electrical waves with simulation models. 

 

Figure 5-4 AP waveforms of 1D cable at different pacing rates. 
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We first simulated the regular electrical conduction on a 6cm by 6cm atrial tissue, and placed 

the modeled electrodes on the surface of the tissue to measure the potential signals. The stimulation 

protocol is described in Section 5.3.1, i.e., an electrical wave is triggered every 500ms at the upper 

left corner of the tissue, and the four electrodes are placed horizontally. When the wave passes 

through the four electrodes, sequence of potential signals are collected (Figure 5-5 c). The 

difference of the electric potentials collected from electrode 1 and 2, and the difference of the 

signals collected from electrode 3 and 4 are calculated to obtain the bipolar data (Figure 5-5 b). 

Figure 5 (a) shows the zoom in of the signals, where the electrical wave takes less time while 

passing through electrode 1-2 comparing with electrode 3-4, i.e., the time interval between 

minimal and maximal value of a single waveform is 4.00ms in the signal collected from electrode 

1-2, and is 7.73ms in the signal collected from electrode 34. The intracardiac signals show regular 

and recursive patterns (Figure 5-5 b) since the normal electrical waves were generated by pulse 

with higher pacing rate. 

The patterns of the potential signals highly depend on the locations of the sensors, the angels 

between the wave font and the sensor direction, as well as the conduction velocities. Furthermore, 

we placed the four electrodes horizontally, and stimulated electrical wave in the middle of the 

upper boundary of the tissue (Figure 5-6 c). This generates two leads of intracardiac signals that 

are symmetrically identical to each other (Figure 5-6 a). 

We also simulated the intracardiac signals measured from spiral wave propagation. Following 

the protocols given in Section 5.3.1, spiral waves were generated on the 2D tissue. The electrodes 

were placed horizontally on the tissue. Figure 5-7 shows the two leads signals measured by the 

sensors. Since the wave frequently passes the electrodes, the potential signals present higher 

frequency (~116ms between each two spike). 
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Figure 5-5 Simulated intracardiac signals - asymmetric layout of sensors. 

 

Figure 5-6 Simulated intracardiac signals - symmetric layout of sensors. 
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Figure 5-7 Simulated intracardiac signals of spiral wave propagation. 
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1000ms, 1300ms and 1700ms. Two cells, i.e., below the SA node and on the posterior wall, are 

selected, and the APs are plotted on the right column. Stimulation is given in every 500ms at the 

SA node to generate electrical conductions. Since 500ms is smaller than the effective refractory 

period, the atrial cells present alternant AP waveforms. 

 

Figure 5-8 Electrical propagation on atria. 
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5.5 Conclusions 

AF is a very common cardiac disorder that is associated with high morbidity and mortality. AF 

is generally caused by electrical impulses generated from abnormal atrial cells other than the 

natural activations. The most common strategy for treating AF is catheter ablation, i.e., lesions are 

placed in atria to stop abnormal trigger initiating the fibrillation. However, correctly targeting the 

location of the lesions remains challenging because there is lacking of theory that links the 

mechanism of AF with the complex intracardiac signals. The challenges are pose by (1) limited 

knowledge regarding the real disease behaviors since it is almost impossible to visualize and 

observe the electrical propagation among human atrial muscles, and (2) the high complexity of the 

intracardiac signals produced by multiple waves propagating in various directions and rotating at 

different spots.  

Modeling and simulation provide unique opportunity for studying AF mechanisms and 

developing efficient approaches of diagnosis. In-silico models can simulate different AF behaviors 

and generate the corresponding intracardiac signals. In this chapter, we built multiscale model of 

atria and modeled the regular and spiral waves propagating on 1D and 2D tissue. We first test the 

APs of 1D cable at different pacing cycles, the results showed the irregular pacing rates can lead 

to alternant AP waveform and inadequate AFs, which will potentially cause cardiac tachycardia 

and atrial fibrillation. We also derived the intracardiac signals generated by different electrical 

propagations. In addition, electrical propagation among 3D atrial surface is simulated, and this 

provides a framework for investigating AF mechanisms and developing robust rotor identification 

methodologies. 
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Chapter 6 Conclusions 

Physical experiments are expensive and difficult to conduct, and often encounter many practical 

and ethical limitations. These limitations have posed significant challenges for knowledge 

discovery and scientific research. Computer experiments and simulation optimization provide an 

unprecedented opportunity for addressing those challenges. This research developed innovative 

methodologies for modeling and optimizing complex systems, and creates enabling technologies 

for improving cardiac healthcare. Specifically, this study integrates physics-based models with 

statistical methodologies to improve the understanding of pathological changes in the heart. It 

enables and assists in (i) developing a system-level mechanistic understanding of multi-scale 

cardiac systems from ions to cells to tissues to the whole heart; (ii) improving the understanding 

of disease pathologies and creating better diagnostic/prognostic tools; and (iii) optimizing 

pharmaceutical designs and medical treatment planning. 

This study integrates in-silico models with the wealth of data from in-vitro experiments to 

model and predict glycosylation modulation dynamics of multi-scale cardiac electrical signaling. 

This research provides new pharmaceutical targets for the long QT syndrome and potentially other 

cardiac disorders.  

It is well known that computer models of cardiovascular systems involve greater levels of 

complexity such as high-dimensional parameter space, nonlinear and non-convex equations. 

Traditional linear and nonlinear optimization methods have encountered many difficulties for 
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model calibration. This research develops a new statistical metamodeling approach for efficient 

computer experiments and optimization of large-scale cardiac models.  

The results and experience gained from my previous projects lay a solid foundation for my 

continued research and innovation. As a next vertical step, my future research will be focusing on 

design of experiments and simulation optimization with application in healthcare and systems 

engineering. Specifically, the following topics will be interested: Multi-scale physical-statistical 

modeling of complex systems with focus on uncertainty analysis; Optimizing cardiac surgical 

treatment and planning; Design and analysis of physical and computer experiments for leveraging 

in-silico and in-vitro experiments. 
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