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Abstract 

 

For this dissertation I studied phosphorus (P) sorption dynamics in the shallow groundwater of 

the southern Everglades. In particular, I examined how the ambient water type governs soluble 

reactive P (SRP) availability through adsorption/desorption reactions with the aquifer matrix. 

Chapter 2 investigated how P sorption dynamics of the mangrove root zone sediment are affected 

by high bicarbonate brackish groundwater compared to both fresh groundwater and saltwater. 

The results from chapter 2 show that the sediment exhibited exceptionally low sorption 

efficiency in the high bicarbonate brackish water, which would allow ambient water SRP 

concentration to be maintained at a higher level. Chapter 3 is a detailed analysis of how P 

sorption dynamics in two bedrock samples are affected by incremental increases in saltwater 

content in a freshwater-saltwater transition zone. The results of chapter 3 indicate that a sorption 

edge occurs at 3 mM Cl
-
 concentration. In water exceeding this Cl

-
 concentration, SRP would be 

expected to desorb from the bedrock due to a sharp decrease in sorption efficiency between the 

freshwater saltwater.  These results suggest that SRP is active in the ion exchange front of 

saltwater intrusion, with a rapid increase in SRP availability expected at the leading edge of 

saltwater intrusion.  A landward incursion of 3 mM Cl
-
 concentration water would be expected to 

raise ambient SRP concentration along the affected aquifer zone, in turn increasing SRP 

availability in the ecosystem where the transitional waters discharge to the surface. Chapter 4 

investigates the kinetics SRP release accompanying saltwater intrusion using a column of 

carbonate aquifer solids and alternating inflow between fresh groundwater and saltwater. The 
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results show an immediate and high magnitude increase in SRP concentration when saltwater 

flows into the column. The combined results of this dissertation show that, in the southern 

Everglades and possibly other carbonate coastlines as well, water type strongly controls P 

sorption behavior of the sediment and bedrock, and may have a direct influence on the local 

ecology through increased P availability.  A fundamental understanding of the abiotic exchange 

mechanisms between SRP and the aquifer solids can aid in the successful management and 

protection of this unique and important ecosystem.
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Chapter 1: 

Introduction 

 

Coastal estuaries are extraordinarily productive and are critical for maintaining global 

biodiversity. Many are phosphorus-limited, and phosphorus budgets determines productivity and 

community structure.
1
 One of the important sources of phosphorus to estuaries is the release of 

phosphorus from mineral surfaces as a result of freshwater and saltwater mixing.
2
  These two 

endmember waters mix at the mouths of tidally connected rivers, and at depth in the aquifer, 

where freshwater and saltwater meet in a mixing zone. Because of these reactions, mixing zone 

groundwater can have an order of magnitude more phosphorus than overlying coastal rivers.
3
 

Phosphorus-enriched mixing zone groundwater is then delivered to overlying ecosystems 

through groundwater discharge (Figure 1.1).
4
 Saltwater intrusion can trigger new sorption 

reactions, by mixing saltwater into portions of the aquifer that had been immersed in fresh water. 

 

 
 
 
 
 
 
 
 
 
 
Figure 1.1  Illustration of the concept of groundwater mixing zone in aquifer, and groundwater 

discharge 
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Particularly in freshwater, SRP adsorbs to sediment. The bioavailable form of phosphorus is 

inorganic dissolved ortho-phosphate, which occurs in neutral groundwater as the anion H2PO4
-
. It 

is measured as soluble reactive phosphorus (SRP). The phosphorus anion is attracted to 

positively charged sites on the mineral surface such as the positively charged edges of clay 

particles made of iron oxides (Figure 1.2 and 1.3). Adsorption is typically not a chemical bond, 

but a loose electrostatic attraction.
5
  

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Schematic illustration of adsorption 

 

The same mineral grain will behave differently with respect to water SRP depending on the 

surrounding water. Saltwater causes desorption of SRP from the mineral surface not because of 

saltwater’s high sodium chloride content, but because of its high concentration of bicarbonate 

and sulfate anions that compete for positive exchange sites.
6
 Switching from a water with high 

sorption efficiency to one with low sorption efficiency reduces the solid’s ability to “hold onto” 
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Figure 1.3  Schematic illustration of positive adsorption sites on the mineral surface 

 

the phosphorus, triggering desorption, and raising the phosphate concentration of the ambient 

water (Figure 1.4). The sediment is an SRP sink in a water that gives it high sorption efficiency 

and an SRP source in a water that diminishes its sorption efficiency.
2
When SRP enters the 

system, the sediment can scavenge if it is in a water that allows it to adsorb efficiently, reducing 

water SRP concentration. In this way sediment acts as a phosphorus buffer.
2
 When the sediment 

has weak buffering intensity the ambient water can be maintained at a higher concentration of 

phosphorus. Any phosphorus that is released at the root zone, or delivered there through 

groundwater discharge, is immediately available for root uptake. 
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Figure 1.4  Schematic illustration of desorption through anion competition in saltwater 

 

Objectives and organization 

The objectives of this dissertation is to investigate three process-based questions related to P 

sorption as a driver of SRP availability that are not addressed by existing literature. I chose to 

focus on carbonate lithologies because they have been the subject of fewer phosphorus sorption 

studies than siliclastic lithologies. They occur on many coastlines globally. Many carbonate 

coastal zones are undergoing saltwater intrusion, such as the Bahamas, Florida, Apulia Italy, and 

Majorca Spain. 
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Some estuaries have groundwater with many times more bicarbonate content than seawater, as a 

result of microbial activity.
7
 In such mixing zones there are three distinct water types: freshwater, 

saltwater, and a bicarbonate enriched water (Figure 1.5). Millero et al.
6
 found that calcite crystals 

in synthetic high bicarbonate water had lower sorption efficiency than synthetic saltwater. They 

suggested that phosphorus availability would be greater in an estuary with high bicarbonate 

water than the freshwater upstream and marine water downstream, and an influx of saltwater 

would cause adsorption. Since 2001 this hypothesis has remained untested for natural mineral 

solids and waters. Chapter 2 examines the influence of high bicarbonate brackish groundwater on 

P sorption behavior of mangrove soils, as compared to fresh groundwater and saltwater.   

 

Secondly, with saltwater intrusion, freshwater does not typically change to saltwater abruptly, 

but mixes gradually across a mixing zone that can be meters to kilometers wide (Figure 1.6). 

 

 

 

 

 

 

 

 

 

Figure 1.5 Schematic illustration of a three-water-type mixing system 
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It would be important to know: How does P sorption vary along a gradational mixing 

continuum? The answer would affect phosphorus availability in the overlying ecosystem that 

receives mixing zone groundwater discharge. In some regions mixing zone groundwater 

discharges seaward of the coastline to coral reefs or sea grass in coastal lagoons. In some regions 

mixing zone groundwater discharges landward of the coastline in wetlands such as salt marshes 

and mangrove swamps. 

 

 

Figure 1.6  Illustration of the concept of groundwater discharge varying in salinity along a 

mixing continuum 

 

One might expect the availability of SRP from desorption to increase in a linear fashion with 

increasing salinity, depicted as Curve A of Figure 1.7. Alternatively, SRP could behave like 

other highly reactive ions, and confine its changes in concentration to the ion exchange front 

(Figure 1.8).  For example, calcium and magnesium undergo cation exchange with the sodium 

from saltwater almost exclusively at the very low salinity edge of saltwater intrusion, known as 

the ion exchange front, with little change in concentration of these ions as saltwater content 

increases because the exchange sites are already saturated.   In this scenario phosphorus from  



7 
 

 

 

 

 

 

 

 

 

Figure 1.7  Schematic illustration of two alternative ways in which increased phosphorus from 

desorption may change along a mixing continuum 

 

desorption may increase sharply near the freshwater end of the mixing continuum, with little 

additional release as saltwater content increases, depicted as Curve B of Figure 1.7. My 

hypothesis was that P desorption would follow the second model. If that were the case, the next 

line of inquiry would focus on identifying the threshold of saltwater content at which desorption 

behavior reverses. Chapter 3 investigates the potential for SRP to be an active participant in the 

ion exchange front of saltwater intrusion in a carbonate aquifer.   

 

The kinetics of P sorption dynamics would determine the magnitude of SRP released, the 

rapidity, and the change in desorption over time. At the first influx of saltwater, desorption could 

increase slowly and then plateau at a quasi-equilibrium level, as depicted in Figure 1.9. 

Alternatively, P release could spike and rapidly diminish. Adsorption/desorption reactions can be 

rapid, with the bulk of change occurring within minutes to hours.
6
 Chapter 4 investigates the  
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Figure 1.8  The location of the ion exchange front, depicted in yellow, at the freshwater edge of 

a mixing zone 

 

kinetics of SRP release accompanying saltwater intrusion using a column of carbonate aquifer 

solids and alternating inflow between fresh groundwater and saltwater. 

 

The southern coastal Everglades of Florida, U.S.A., provides an excellent opportunity to 

investigate the three process-based questions. The Everglades is P-limited and so oligotrophic it 

has been called P-starved.
8
 Any input of P rapidly is rapidly removed from the water either by 

plant uptake or adsorption to sediment in fresh water marshes, and sustained changes in 

phosphorus availability, however slight, can alter productivity and community structure.
9
 The 

water in the mangrove ecotone has elevated total dissolved phosphorus compared to the 

freshwater marshes upstream and Florida Bay, causing researchers to call the ecotone a “net 

phosphorus source.”
10

 

 

Total dissolved P concentrations are high in the brackish groundwater at the mangrove root zone 

and in the mixing zone of the aquifer below.
11

 Moreover, the mangrove estuary receives  
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Figure 1.9  Schematic illustration of two contrasting kinetic reactions to an influx of saltwater  

 

groundwater discharge from saltwater intrusion, potentially providing a source of SRP to the 

mangrove root zone.
11

   

 

By applying the process-based objectives of this dissertation to the Everglades, this research 

serves the dual purpose of investigating mixing zone P sorption reactions as potential drivers of 

SRP availability in this iconic ecosystem. Most P sorption work has focused on sediment, either 

suspended or benthic.  The mangrove sediment groundwater is enriched in bicarbonate, 

providing an opportunity to investigate whether this water type increases water SRP availability 

(Chapter 2). If so, P sorption reactions provide an in situ source of SRP at the mangrove root 

zone.  

 

Given that the mangrove zone receives mixing zone groundwater with elevated total dissolved P, 

it would be helpful to know if saltwater-induced P desorption from the limestone bedrock could 

help explain the ambient water SRP concentration. If so, the pattern of P desorption with respect 

to incremental increases in saltwater content would have direct implications for the spatial 
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pattern of SRP availability within the mangrove zone (Chapter 3). Further, the region that 

receives mixing zone groundwater discharge would be affected by the magnitude and rapidity of 

P desorption from the bedrock. Understanding the kinetics of P desorption from limestone 

bedrock is a key component to understanding the temporal pattern of P availability in the face of 

incremental advances of the saltwater intrusion front (Chapter 4).  

 

For the three main process-based questions in the Everglades I also sought to determine how a 

shift in the supply of fresh and saltwater would affect P availability. The results of this 

dissertation are relevant both to restoration efforts and to water management in the face of 

climate change. 

 

This dissertation is organized around the three manuscripts with multiple coauthors (as noted at 

the beginning of each chapter) and collaborations in various stages of the journal submission 

process. Chapter 2, “Saltwater intrusion as potential driver of phosphorus release from limestone 

bedrock in a coastal aquifer,” has been accepted for publication in Estuarine, Coastal and Shelf 

Science.
12

 Chapter 3, “Saltwater intrusion as potential driver of phosphorus release from 

limestone bedrock in a coastal aquifer,” is in preparation for submission to Environmental 

Science and Technology.
13

 Chapter 4, “Rapid pulse of phosphorus desorption with saltwater 

intrusion in a carbonate aquifer” is in preparation.
14
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Chapter 2: 

Control of phosphorus concentration through adsorption and desorption in shallow 

groundwater of subtropical carbonate estuary 

 

Note to reader 

Portions of this chapter have been accepted for publication in Estuarine, Coastal, and Shelf 

Science, 2015. The author of this dissertation is the first author on the paper, and the other 

authors are: Dr. Mark Rains (contribution: guidance and funding), Dr. David Lewis 

(contribution: access to equipment and laboratory facilities for phosphorus analysis), Dr. Jia-

Zhong Zhang (contribution: guidance in regard to laboratory procedures and analysis), Dr. René 

Price (contribution: access to groundwater well and field site; analysis of cation and anion 

concentrations of the three water types). All co-authors assisted in the revision process. 

 

Abstract 

The balance of fresh and marine water sources in coastal mixing zones can affect phosphorus (P) 

availability, one of the important drivers of primary productivity. This study focuses on an 

abiotic portion of the P cycle in the mangrove ecotone of Taylor Slough, coastal Everglades, 

Florida. We investigated the P sorption properties of sediment with three distinct water sources 

in this region: 1) fresh groundwater from the inland Everglades, 2) bicarbonate enriched 

groundwater from the mangrove ecotone, and 3) surface saltwater from Florida Bay. Ecotone 

groundwater caused soluble reactive P (SRP) to exhibit markedly low sorption efficiency (Kd = 
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0.2 L g
-1

) compared to fresh groundwater and Florida Bay water (11.3 L g
-1

 and 3.4 L g
-1

, 

respectively). The low SRP buffering capacity of the sediment in ecotone groundwater would 

maintain higher ambient water SRP concentration in ecotone groundwater than in the other two 

waters, and would trigger desorption if the sediment changed from one of them to ecotone 

groundwater. The relative sorption efficiency is consistent with the measured zero equilibrium 

SRP concentration being highest in ecotone groundwater (0.094 ± 0.003 M) and lower in fresh 

groundwater and Florida Bay surface water (0.075 ± 0.005 M and 0.058 ± 0.004 M 

respectively). The temporal variability of SRP concentration in groundwater at the ecotone field 

station is greater than the range of zero equilibrium SRP concentration for all three waters, so 

very low SRP concentration in the ambient water would induce desorption from the sediment. 

Soluble reactive P would be expected to begin desorbing from the sediments at a higher ambient 

SRP concentration in ecotone groundwater than the other two water types. Our results suggest 

that ecotone groundwater would release more SRP from mangrove sediments compared to the 

upstream and downstream waters, due to both its lower P sorption efficiency and its higher zero 

equilibrium SRP concentration. 

 

Introduction 

Mangrove swamps are ubiquitous along sheltered coasts between latitudes 25°N and 30°S, 

covering an estimated 20 million hectares worldwide.
1
 Mangrove forests provide important 

ecosystem services, including the maintenance of water quality, stabilization of shorelines and 

coastal community protection, and carbon sequestration.
2, 3

 Mangroves provide nursery and 

spawning grounds for many coastal crustaceans and fish, thereby supporting local fisheries and 

ocean biodiversity.
4
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A detailed assessment of the controls on bioavailability of the essential nutrients is critical to 

understanding coastal estuaries.
5
 Phosphorus (P) is commonly a limiting nutrient in mangrove 

swamps.
6, 7

 The bioavailable form of P is dissolved inorganic P,
8
 which is dominated by the 

orthophosphate species H2PO4
- 
at pH less than 7.2, and HPO4

2-
 above that. Dissolved organic P 

and particulate P (both organic and inorganic) are immobile until mineralized to dissolved 

inorganic P, which typically requires microbial activity.
9
 We refer to dissolved inorganic P as 

soluble reactive P (SRP), defined as the fraction of P in a water sample that passes through a 0.45 

m filter and responds to colorimetric tests without having been subjected to a pretreatment of 

hydrolysis or oxidative digestion.
10

 The SRP concentration is considered to be roughly 

equivalent to dissolved inorganic P concentration, but the distinction is made because there is 

potential for organic or colloidal P to pass through <0.45 m and to react to colorimetric 

reagents.
11

 

 

The cycle through which P shifts between SRP and immobilized forms involves a great number 

of complex processes, and both biotic and abiotic portions of the cycle must be considered when 

evaluating P availability in wetlands.
12

 Abiotic processes in the P cycle include leaching of P 

from leaf litter; sedimentation; exchange of P between sediment and the overlying water column; 

processes with inorganic P phases such as apatite, eg., precipitation, dissolution, and weathering; 

and P sorption reactions.
12, 13

 Phosphorus sorption is an important process in wetlands whereby P 

is exchanged between SRP in the ambient water and solid phase P.
5
 The process has two steps. 

The first step has fast kinetics (minutes to hours) and involves the accumulation (adsorption) of 

SRP from ambient water at sediment particle surfaces. This step is rapidly reversible; as 
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conditions change, desorption can release the adsorbed SRP back to the ambient water. The 

second adsorption step is much slower (days to weeks), and involves solid-state diffusion of 

adsorbed SRP from the mineral surface into the interior of mineral grains.
5
 

 

In this study we discuss P sorption in terms of the rapid, reversible first step. 

Adsorption/desorption reactions can act as SRP
 
buffers, analogous to pH buffers, maintaining 

water SRP
 
at a constant concentration. The water SRP concentration at which zero net SRP 

adsorption or desorption occurs for a given system is termed the zero equilibrium SRP 

concentration (EPCo). When ambient water SRP
 
concentration is close to the EPCo, the sediment 

displays the maximum capacity for buffering SRP.
5
 Slight rises or falls in ambient SRP

 

concentration from this equilibrium may result in rapid adsorption or desorption, respectively, 

returning the system to a new equilibrium.
5
 A sediment is described as having high adsorption 

efficiency when SRP adsorption increases intensely as water SRP concentration increases. 

Efficient P sorption results in high SRP buffer intensity, maintaining low water SRP
 

concentration as long as the sediment does not become saturated.
12

 

 

Highly variable water chemistry in coastal mixing zones causes variability in SRP
 
availability 

through shifting P sorption behavior. Sorption reactions are influenced by physiochemical 

properties of the given sediments and their ambient water, including the composition and particle 

size distribution of the solid particles, temperature, pH, ionic strength, redox status, organic 

matter content, and ions in the ambient water.
12, 14-16

 The sensitivity of P sorption reactions to 

water chemistry and sediment characteristics means that the direction and strength of sorption 
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reactions are hard to predict without direct experimentation with the natural sediment and water 

in question.
17

 

 

Some coastal estuaries have ambient water SRP concentration that is higher than would be 

predicted based on conservative mixing of the fresh river water and seawater. Typically 

freshwater causes SRP
 
to adsorb more effectively to the substrate, so an influx of seawater 

induces desorption of loosely adsorbed SRP from suspended or benthic sediments.
5, 14

 Suspended 

sediments in coastal rivers may release SRP as they enter the seawater mixing zone.
18

 Similarly, 

an incursion of seawater due to tidal influx or seawater intrusion can lead to rapid desorption 

from suspended and benthic sediment particles, accompanied by increases in measured SRP
 

concentrations.
17, 19, 20

 

 

Microbial activity enriches groundwater HCO3
-
 concentration above saltwater levels in some 

coastal wetlands. Millero, et al. 
21

 predicted that along coastlines where saltwater mixes with a 

water that has high HCO3
- 
concentration, the typical pattern of seawater-induced desorption 

could be reversed, such that an influx of seawater into sediment that had been equilibrated to the 

water with HCO3
-
 concentration could cause the sediment to release HCO3

- 
ions and adsorb SRP. 

Experiments by Millero, et al.,
15

 on synthetic calcite determined that especially at low salinity 

the apparent effect of salinity is driven by the higher concentrations of HCO3
-
 and SO4

2-
 in 

saltwater. When HCO3
-
 concentration was held constant (2 mM) adsorption was nearly 

independent of salinity. The slight positive charge of the calcium atom on calcium carbonate 

surfaces attract SRP anions, forming surface complexation reactions. An influx of HCO3
- 
ions 

can induce anion exchange at the positive sorption sites.  
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Many mangrove estuaries are found in carbonate lithologies, including Belize, the West Indies, 

Bermuda, Mexico, Western Australia, Brazil and East Africa.
6, 22-26

 To understand the drivers of 

coastal wetland productivity in carbonate-based regions it is essential to determine the behavior 

of P sorption in carbonate sediments with respect to high bicarbonate water, fresh water and 

saltwater. This study examines the potential for SRP concentration of the shallow groundwater in 

a mangrove swamp to be affected by in situ adsorption and desorption reactions in response to 

mixing of these three water types. In so doing, this study provides insight into the fast-acting 

abiotic portion of the biogeochemical P cycle in a coastal mixing zone, which has implications 

for other estuaries with carbonate lithology and a water enriched in HCO3
-
.  

 

Methods 

Study area.  The southern terminus of the Florida peninsula is fringed by a wide mangrove 

swamp, dividing the upstream freshwater marsh from Florida Bay (Figure 2.1). The Everglades 

wetland complex of southern Florida, USA has two main drainage basins: Shark River Slough, 

which angles to the southwest and drains into the Gulf of Mexico, and the smaller Taylor Slough, 

which flows southward into the northeast corner of Florida Bay. The Everglades mangrove 

region is within 1 m of mean sea level. Tides along the western portion of Florida Bay are mixed 

diurnal and semidiurnal with a mean amplitude of about 0.3 m.
27

 As waters from the Gulf of 

Mexico move into Florida Bay, the tidal effects are dampened by the shallow mud banks such 

that the Eastern bay is micro tidal, with tidal amplitudes of only about 1-5 cm.
27

 On a few 

occasions per year, bay saltwater flows upstream into the upper mangrove fringe wetlands of  
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Figure 2.1  Collection locations for samples: fresh GW (red triangle), ecotone GW and sediment 

(green circle), and bay SW (blue square) 

 

Taylor Slough, particularly in the dry season during times of low freshwater hydraulic head and 

sustained southerly winds.
28-31

 The sediment layer consists of a relatively thin layer (up to 1.5 m 

deep) of calcareous marl and peat
32

 with mangrove roots penetrating the shallow sediments down 

to the underlying limestone bedrock.
33

 The limestone aquifer underlying Taylor Slough is the 

unconfined highly transmissive Biscayne Aquifer 
34

. Saltwater intrudes into the Biscayne 

Aquifer between 6-10 km inland in Taylor Slough.
35, 36

 

 

The Taylor Slough mangrove ecotone (hereafter referred to as the “ecotone”) is oligotrophic and 

highly P-limited.
37

 The groundwater in the shallow sediments of the ecotone has much higher 

HCO3
- 
concentration than either the upstream freshwater or the downstream Florida Bay 

saltwater, and the three waters mix with a high degree of temporal and spatial variability.
21, 36, 38
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Water samples.  Three water types were collected representing fresh groundwater (“fresh 

GW”), high bicarbonate groundwater (“ecotone GW”), and surface saltwater from Florida Bay 

(“bay SW”) (Figure 2.1). Our fresh GW was collected from a shallow monitoring well (TSB-15) 

within the bedrock underlying the freshwater sawgrass marsh region of Taylor Slough. The well 

is lined with a 5.5 cm diameter PVC pipe screened at 4 m depth. The well was first purged of at 

least five well volumes using a peristaltic pump. The high bicarbonate water was taken from well 

C3 in the Taylor Slough mangrove ecotone about 4 km inland at monitoring station TS/Ph 6b 

operated by the Florida Coastal Everglades Long Term Ecological Research Program.
30

 The well 

penetrates to a depth of 142 cm within the sediment layer.
30, 39

 Florida Bay surface water was 

taken from a dock at Key Largo to represent saltwater.  

 

Immediately after sampling, temperature, pH, and electrical conductivity were measured with a 

YSI 556 MPS (YSI, Yellow Springs OH). Water samples placed in HDPE Nalgene bottles and 

maintained at 4˚C (± 2˚C) prior to analysis. Total alkalinity was determined within 24 hours by 

potentiometric acid titration. Given the high total alkalinity of our ecotone GW and the pH 

measurements, we refer to these measurements as HCO3
-
 concentration, while recognizing that 

small amounts of the other bases may be included in the measured quantity. Major cations and 

anions were determined at FIU with ion chromatography. The SRP concentration of the field 

samples were analyzed as discussed in a subsequent section. Selected water characteristics are 

presented in Table 2.1 and Figure 2.2. The water that was to be refrigerated in 9 L HDPE 

Nalgene carboys for later experimentation  was first filtered through 0.1 m PTFE filters using a 

vacuum filter flask to exclude microorganisms that could uptake or release P during water 

storage. 
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Table 2.1   Selected characteristics of the three field waters  

Water 

Type 

pH Salinity 

psu 

Ca2+ 

mM  

Mg2+  

mM 

Na+ 

mM  

K+ 

mM 

Cl-  

mM 

SO4
2 

mM - 

Total 

alkalinity 

as HCO3
– 

mM 

 SRP 

M 

Si(OH)4
 

M 

Fresh 

GW 

7.3 

0.1 

1.8 0.1 0.7 0.01 0.8 * 4.0 0.050 80.4 

Ecotone 

GW 

6.7 16.0 6.7 29.6 217.9 4.16 264.1 11.2 17.5 0.177 83.6 

Bay SW 8.2 31.4 9.1 50.0 425.9 9.29 512.4 28.4 2.9 0.076 9.2 

* Below detection 

 

Sediment samples.  Sediment composition was held constant by running all experiments using a 

representative sample from a homogenized 1-5 cm depth increment extracted from a single 

sampling date and location (same location as ecotone GW). This depth increment was chosen so 

as to have a sufficiently large sample with little variation by depth. The top 1 cm of cores taken 

at this location were not used because they were darker in color than the sediment immediately 

below, and because exceptionally high total sedimentary P was found in the top 1 cm sediment in 

a pond further downstream.
40

 Calcareous marl sediment was extracted using a Russian peat corer 

at FCE field station TS/Ph6b (Figure 2.1). The sediment was placed in ziplock bags, and was 

kept on ice for transport to the lab, where it was air dried, passed through stainless steel sieves 

(<125 m), and kept refrigerated prior to use. 

 

Loosely adsorbed or readily exchangeable P (Pexch) was defined as the SRP released from 

sediment by MgCl2 solution at pH 8.0.
41

 A 0.5 g of dry sieved sediment was combined with 1 M 
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Figure 2.2  Selected water composition for fresh GW (red triangle), ecotone GW (green circle), 

and bay SW (blue square) with SRP concentration in filled shapes, and HCO3
-
 concentration in 

open shapes 
 

MgCl2 solution, and pH was adjusted with dilute NaOH solution. Sediment and solution were 

placed in 60 mL high density polypropylene digestion tubes and agitated for 2 hours on a 

platform shaker at 200 rotations per minute at room temperature, with a total of 5 replicates. 

Slurries were filtered with 0.45 m nylon syringe filters and divided into two 10 mL subsamples. 

The first subsample was analyzed for SRP (section 2.5) so as to determine MgCl2-exchangeable 

inorganic P (Pexch), with the resulting concentration normalized to moles per grams of sediment. 

We also measured MgCl2-exchangeable organic P for the purpose of characterizing the sediment, 

but its dynamics are beyond the scope of this paper because it is considered less bioavailable and 

behaves differently from inorganic P.
42

 The organic MgCl2-exchangeable P fraction is 

determined by measuring total dissolved P concentration in the subsample that had been set 

aside, and subtracting from that the SRP concentration measured previously in the undigested 

subsample; the difference is assumed to be the dissolved organic fraction liberated by MgCl2.
43, 44

 

To measure total dissolved P, 10 mL of filtrate is first digested with 1 mL of neutral potassium 
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persulfate solution (5%, w/v, pH approximately 6.5) at 90˚C for 16 hours
45

 and analyzed for SRP 

(section 2.5) after returning to room temperature.  

 

A portion of the sediment was acid digested (preparation method EPA 3050) and total 

sedimentary P was determined inductively coupled plasma-atomic emission spectrometry 

(analytical method EPA 6010). Selected sediment characteristics are presented in Table 2.2. 

 

Table 2.2   Selected phosphorus analysis of the sediment, in mol g
-1

 

MgCl2 inorganic P (Pexch) 0.022 ± 0.002 

MgCl2 organic P 0.025 ± 0.002 

Total Sedimentary P 1.3 

 

Sorption isotherm experiments.  Phosphorus sorption parameters of the sediment in contact 

with the three water types were determined by batch incubation experiments based on the 

method of Froelich.
5
 Subsamples of each water type received variable portions of stock SRP 

solution to establish batches with SRP concentrations of 0 (no added SRP), 4, 8, 16, 24, 32, and 

48 M. To inhibit biological activity from microbes in the sediment, 10 L 0.1% chloroform was 

added to each tube.
46

 The initial SRP concentration, [SRP]i, for each batch of field water-SRP 

solution was analyzed directly for SRP before the incubation began. 

 

For the batch with no added SRP, so as to permit the detection of P desorption from sediment 

with such low P content, the solution was concentrated by using 5 mL of a given field water and 

1.5 g sediment, and with 20 replicates for each water type. For the other batches, 10 mL of field 
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water-SRP solution was combined with a 200 mg subsample of ecotone sediment in a 15 mL 

plastic conical centrifuge tube (10 replicates per water type per batch, 30 samples total in a 

batch). At 48 M SRP the fresh GW sorption curve was still relatively steep, thus not providing 

sufficient of the sorption isotherm curve for calculating Pmax (described in a subsequent section). 

So as to better characterize Pmax, five additional SRP concentrations ranging from 60-320 M 

SRP were used for fresh GW (with three replicates for each increment of added P). In all batch 

incubation experiments, each suspension was agitated at 200 rpm on a platform shaker for 24 

hours at room temperature (23±0.5˚C). Next, each suspension was filtered with a 0.45 m nylon 

syringe filter, and immediately analyzed for final SRP concentration, [SRP]f (described in the 

next section). A total of 255 P sorption experiments were conducted. 

 

Soluble reactive phosphorus analysis.  Soluble reactive P concentrations were determined the 

day of each experiment by first filtering samples through a 0.45 m nylon syringe filter and then 

using the microscale malachite green method,
47

 measuring absorbance at 630 nm in 96-well 

microplates on a BioTek EPOCH microplate spectrophotometer. 

 

Sorption isotherm parameters.  The amount of SRP
 
adsorbed or desorbed from the sediment, 

Psed, was calculated as: 

Psed = [SRP]i - [SRP]f .      [1] 

Psed was normalized to the mass of sediment and volume of solution (mol g
-1

). A plot of Psed 

vs. [SRP]f was used to describe a sediment’s adsorption behavior when in contact with each of 

the three water types.  
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Various sorption models exist for providing empirically-fit parameters that summarize the 

resulting isotherm. At the very low range of SRP, where the number of available adsorption sites 

is much higher than the concentration of SRP
 
available in solution, sorption increases in direct 

proportion to added SRP and a linear model provides the best fit (Figure 2.3a). 

 

The linear isotherm equation is: 

Psed =Kd [SRP]f - NAP ,     [2] 

where Kd (L g
-1

) is the slope, and NAP (mol g
-1

) is native adsorbed SRP (the y-intercept), a 

constant representing the amount of pre-existing loosely adsorbed inorganic P on the sediment 

(Figure 2.3a). Negative Psed indicates desorption from the sediment and positive Psed indicates 

adsorption onto the sediment. The EPCo (mol g
-1

) is obtained from x-intercept, the measured 

equilibrium SRP concentration at which neither desorption nor adsorption occurs. The linear 

equation can be rearranged to solve for EPCo. 

 ,      when Psed = 0 .   [3] 

The sorption coefficient Kd is a measure of the buffer intensity (also described as sorption 

efficiency), and is formally defined as the number of moles of SRP required to be added to or 

subtracted from the system to change [SRP]f by 1 M near the EPCo.
5
 A steep slope (high Kd) 

near the EPCo indicates a system with high sorption efficiency. 

 

The purpose of experimentally increasing SRP concentration beyond what is realistic for field 

conditions is to characterize certain characteristics of the sorption behavior of a given sediment- 

water combination that can only be calculated as the sediment responds to artificially high SRP 
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Figure 2.3 a) Schematic of P sorption isotherm; b) Schematic of the y-intercept and Pmax 
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concentrations, such as saturation concentration and the possibility of two adsorption sites with 

different affinities for SRP. As the final SRP concentration increases in solution, the adsorption 

of SRP to sediment decreases, resulting in the sorption curve bending from linear to an 

increasingly low angle curve (Figure 2.3a). The Langmuir sorption model assumes the sediment 

surface has a finite number of available adsorption sites, with sorption reaching saturation at a 

maximum monolayer sorption capacity, Pmax. Such behavior can be modeled as: 

    .    [4] 

The constant Keq (M
-1

) is different from Kd and is related to the binding energy of the 

adsorption sites (also described as the affinity of SRP
 
for the binding to the sediment surface in 

the given water). When sorption data are evaluated by using the reciprocal plot of the Langmuir 

adsorption equation: 

   =      ,    [5] 

a linear line segment is formed, in which Pmax is the reciprocal of the slope, and Keq is the inverse 

product of Pmax and the y-intercept, as depicted in Figure 2.3b. 

 

If the solid particle has two adsorption sites with different affinities for SRP, its reciprocal 

Langmuir plot will exhibit two line segments with different slope. The Langmuir two-surface 

sorption isotherm generates two pairs of Pmax and Keq constants:
48

 

   ,   [6] 
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where the subscripts “1” and “2” indicate the adsorption sites with higher and lower bonding 

energies, respectively. Model parameters for equation 6 were estimated by minimizing log 

weighted error. 

 

Results  

In spite of only one sediment being used in our sorption experiments, we observed very different 

P sorption behavior based on water type. Sorption efficiency followed the order: fresh GW > bay 

SW > ecotone GW. A sorption plot of Psed as a function of [SRP]f is given in Figure 2.4a, and 

the parameters derived from the isotherm models are listed in Table 2.3. Soluble reactive P 

adsorbed to sediments most efficiently in fresh GW, as it has the steepest slope (Kd = 11 L g
-1

). 

Psed in fresh GW was 20-40% higher than ecotone GW and bay SW across all SRP 

concentrations. Bay SW adsorbed efficiently at low SRP concentrations (Kd=3.4 L g
-1

), and 

ecotone GW exhibits low sorption efficiency across all SRP concentrations; its Kd (0.21 L g
-1

) is 

63 and 17 times lower than fresh GW and bay SW, respectively. 

 

Sorption curves typically begin linear and then the slope begins to decrease at the onset of 

saturation. The bay SW isotherm curve inflects at a low Psed and a low concentration of [SRP]f. 

When [SRP]f /Psed is plotted as a function of [SRP]f the data for each water type form two 

distinct straight-line components (Figure 2.4b and c). Soils commonly exhibit distinct line 

segments in reciprocal plots, indicating two types of adsorption sites may have different  

 

kinetics.
49, 50
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a)       b) 

 

c) 

 

Figure 2.4 Fresh GW (red triangles), ecotone GW (green circles), and bay SW (blue squares), 

accompanied by dashes representing the Langmuir Two-Surface Sorption isotherms; a) in 

standard plot; b) in reciprocal plot from which Langmuir two surface isotherm parameters were 

determined; and c) the extended two-surface isotherm for fresh GW 

 

Accordingly, the two-surface Langmuir isotherm equation is applied so as to derive separate  

sorption parameters for the high and low energy adsorption sites 
48

. The P saturation, Pmax, is 

calculated as the reciprocal of the slope, and in Figure 2.4b fresh GW and ecotone GW have 
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visibly similar slopes for both line segments (high and low energy adsorption sites), resulting in 

similar values as each other for both Pmax1 (1.1 mol g
-1

 and 1.4 mole g
-1

, respectively) and 

Pmax2 (4.7 mol g
-1

and 4.1 mol g
-1

, respectively) compared to the much lower values for bay 

SW (Pmax1: 0.4 mol g
-1

 and Pmax2: 2.0 mol g
-1

).  

 

Table 2.3   Phosphorus sorption parameters of the ecotone sediment  

 

Field Water  Kd,
a 

L g
-1

 

Desorbed 

SRP
 b 

mol g
-1 

NAP
 c 

mol g
-1

 

EPCo
 d

 

M 

Pmax1
 e 

mol g
-

1
 

K eq 1
 f

 

M
-1

 

Pmax1
 g 

mol g
-

1
 

K eq 2
 h

 

M
-1

 

Fresh GW 11 0.0034  

± 0.0002 

0.85 0.075 1.1 3.5 4.7 0.04 

Ecotone 

GW 

0.21 0.0028  

± 0.0002 

0.02 0.094 1.2 0.2 4.1 0.02 

Bay SW 

 

3.40 0.0024  

± 0.0002 

0.20 0.058 0.4 12.6 2.0 0.06 

a
 Linear adsorption coefficient 

b
 Desorbed SRP from natural water (no added P) 

c
 Native adsorbed P 

d
 Equilibrium SRP concentration 

e
 Adsorption maximum for first surface 

f
 Adsorption energy for first surface 

g
 Adorption maximum for second surface 

h
 Adsorption energy for second surface 

 

Although fresh GW and ecotone GW reach saturation at similar thresholds, the low sorption 

efficiency of ecotone GW means that it takes a much higher [SRP]f concentration to reach the 

same saturation point. Conversely, although bay SW has high sorption efficiency initially, it 
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reaches saturation at a very lower SRP concentration compared to the other two waters. The 

EPCo’s for the three water types follow a different order: ecotone GW > fresh GW > bay  

SW (0.094 ± 0.003 M, 0.075 ± 0.005 M, and 0.058 ± 0.004 M, respectively). 

 

Discussion 

Our results support the hypothesis of Millero, et al.,
15

 that high bicarbonate water causes 

sediment to have lower sorption efficiency than it does in either fresh water or saltwater. Our 

sediment acted as a high SRP sink in fresh GW, as reflected in the high P sorption efficiency 

(Kd) and high saturation concentration (Pmax). In Florida Bay seawater the sediment exhibits 

intermediate sorption efficiency. The sediment in ecotone GW exhibits very low SRP buffering 

capacity (low Kd), which would maintain higher ambient water SRP concentration.  

 

Risk of eutrophication from outside sources is also higher in a sediment with low buffering 

capacity. Portions of the freshwater Everglades that have received water with elevated SRP from 

canals have exhibited high buffering capacity, sequestering some of the excess P, as measured in 

high sedimentary total P.
51, 52

 The P retention capacity of the sediments in both freshwater 

marshes and bays protect the overlying water column from rapid P release,
53

 although where P-

loading is intense, such as the Everglades Agricultural Area even freshwater can induce 

significant desorption from the sediment.
54

 The results of this study suggest that carbonate 

sediment in water with high HCO3
-
 concentration would have severely limited ability to remove 

excess SRP from the water and would readily desorb P from sediments. 
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Given that the mangrove ecotone is an active mixing zone, it is important to recognize that if the 

sediment were equilibrated to ecotone GW, an influx of either bay SW or fresh GW would be 

expected to lead to adsorption of P to the sediment.  Conversely, the same sediment immersed in 

either bay SW or fresh GW would undergo desorption upon a change to ecotone GW. Many 

coastal wetlands are subject to influxes of fresh and tidal seawater, such as during storm and tide 

events, and also on diurnal, seasonal, and long term time scales, which could result in frequent 

rapid reversals in P sorption. Conversely encroachment of mangroves into a former freshwater 

wetland may be accompanied by increase in concentration of both HCO3
-
 and SRP. The 

mangrove site for this study was a freshwater marsh in 1950, before mangroves encroached from 

Florida Bay.
55

 Sea level rise is expected to exacerbate saltwater intrusion in many areas.
56

 Long-

term increases in freshwater flow could recharge the aquifer and potentially cause a mangrove 

zone to retreat seaward, shifting P sorption dynamics as it goes. The Comprehensive Everglades 

Restoration Plan is a multibillion dollar project launched in 2000, one of the largest restoration 

projects ever undertaken. A key goal of this restoration plan is to increase freshwater flows so as 

to mitigate or delay the effects of seal level rise.  

 

 The EPCo’s of this study are at the low end of the 0.03-6.20 M range found in P sorption 

studies in the freshwater Everglades under aerobic conditions.
57

 Zhou and Li
58

 investigated two 

soils from a freshwater marsh in the Everglades, of which one had an EPCo (0.065 M) similar 

to the values for our sediment in bay SW (0.058 M) and fresh GW (0.075 M), and the other 

had a much higher EPCo (0.323 M). By contrast, P-polluted canal sediments in the Everglades 

Agricultural Area were found to have EPCo’s ranging from 1.9 to 3.9 M.
54

 This is consistent 
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with a finding in the Northern Everglades and agricultural areas in southeastern Florida, where 

soil EPCo has been found to increase with increasing P enrichment.
58, 59

  

 

Nonetheless, all three EPCo’s determined for this study are intermediate to the range of ambient 

water SRP concentration seen in monthly monitoring efforts at the ecotone field location (range 

0.02-0.27 M SRP; Price, René, unpublished data). On the occasions when the ambient water 

SRP concentration is at a low point, the ecotone sediment may desorb SRP on the order of 0.003 

mol g
-1

 (Table 2.3). When magnified by the high in situ sediment:water ratio, desorption of this 

magnitude could provide a critical SRP subsidy when most needed. Any release of SRP by the 

sediment would be immediately ecologically relevant given that mangrove roots permeate the 

sediment layer here.
33

 The higher EPCo for ecotone GW compared to fresh GW and bay SW 

indicates that SRP
 
desorbs from the sediment at a higher ambient water SRP concentration and 

over a wider range of water SRP concentrations. The times when the ambient water exceeds the 

EPCo for ecotone GW is unlikely to produce much adsorption due to the low sorption efficiency 

of the sediment in this water. 

 

The low P content of our sediment may explain its high sorption efficiency in fresh and 

saltwater, and low EPCo’s in all three of our water types. In a study of soils from a range of 

freshwater, estuary, and saltwater sites in the Southern Everglades, mangrove ecotone sediment 

at the same monitoring station as ours had the least Pexch of the 17 Everglades sediments 

investigated.
60

 Zhang and Huang
61

 determined that low Pexch was associated with lower EPCo and 

higher sorption efficiency in Florida Bay sediments. They measured Pexch for sediments at 40 

stations. Their lowest Pexch was 0.023 mol g
-1

 was measured in a sediment from their sampling 
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station nearest to our study area, and it was comparable to our sediment’s Pexch (0.022 ± 0.002 

mol g
-1

). Our mangrove swamp sediments may be a landward extension of the pattern of low 

Pexch in the northeast portion of Florida Bay. Consistent with its low Pexch, that bay sediment 

exhibited a higher Kd values (0.579 L g
-1

) which was intermediate to our sediment in ecotone 

GW and bay SW), and lower EPCo’s (0.503 M) which was approximately an order of 

magnitude higher than ours.  

 

The NAP for ecotone GW (0.02 mol g
-1

) is consistent with the measured Pexch of 0.022 ± 0.002 

mol g
-1

 for the sediment (Tables 2.2 and 2.3), an agreement that could be causally related to the 

fact that it had been equilibrated to ecotone GW at the time of collection. Our NAP estimates 

followed fresh GW > bay SW > ecotone GW (0.85 mol g
-1

, 0.20 mole g
-1

, and 0.02 mol g
-1

, 

respectively). Since NAP is the negative of the y-intercept on the sorption plot, a steep sorption 

slope (high Kd), as seen in the fresh GW and bay SW, forces a more negative y-intercept and 

higher NAP. In this way, the experimental determination of higher NAP in fresh GW and bay 

SW suggests that if the sediment had been immersed in one of these waters at the time of 

collection, it may have exhibited a higher Pexch. The two-surface Langmuir isotherm (Figure 

2.4b) also suggests that SRP
 
encountered distinct site density and energetics for the same 

sediment depending on which water it was in. It is plausible that SRP attaches to similar 

adsorption sites in fresh GW and ecotone GW, as reflected in the similar kinetics of the two 

waters, and that these adsorption sites are not available (or are less favorable) when the sediment 

is in contact with bay SW. This difference in behavior in bay SW can also be seen in the Keq of 

the sediment in bay SW (12.6 M
-1

), which is 3.6 times higher than in fresh SW (3.5 M
-1

) and 
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62.5 times higher than in ecotone GW (0.2 M
-1

).  The high Keq of the sediment in bay SW 

indicates sorption initially occurs at sites with high affinity for SRP in bay SW. 

 

The behavior of our sediment in high bicarbonate groundwater is consistent with local field 

measurements that show ecotone surface water and sediment groundwater often have higher total 

dissolved P than freshwater or coastal waters.
36, 62

 The Everglades mangrove zone has been 

called a “net source”
62

 of total dissolved P and that some form of “nutrient regeneration or 

retention” must be occurring.
63

 Our results suggest that P sorption dynamics could drive the 

observed elevated total dissolved P in this region due to their extremely low buffering capacity in 

ecotone groundwater as well as direct desorption from the sediment when the ambient water 

concentration drops below the EPCo, or the sediment is subjected to high bicarbonate 

groundwater after a period of immersion in fresh water or saltwater. Our study demonstrates how 

abiotic P exchange mechanisms may contribute to greater P availability in coastal estuaries, 

relative to waters with low salinity upstream and high salinity downstream. It has also been 

determined that Taylor Slough ecotone groundwater is a net source of total dissolved P to the 

overlying water column,
64

 so P sorption dynamics in the groundwater may be an important 

source of P for the surface water as well. Other contributing biotic and abiotic factors include 

transport of dissolved or particulate P from Florida Bay when Taylor River flow is reversed, 

mangrove leaf litter collecting and releasing SRP, coastal groundwater discharge, and hurricanes 

bringing P-rich particles from Florida Bay.
13, 28, 29, 36, 62

 

 

Our work merits further investigations as to prevalence and effects of water with high HCO3
- 

concentration in other settings. Few studies of estuary pore water include total alkalinity, and 
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those undertaken do not include P sorption. Attribution as to the cause of high HCO3
- 

concentration in ambient water varies. In carbonate lithology it has been attributed to dissolution 

of carbonate sediments at low pH: 

CaCO3 + H
+
 ⇌ Ca 

2+
 + HCO3

-
 

Carbonic acid reacts with calcium carbonate to produce two HCO3
-
 equivalents: 

CaCO3 + H2CO3
-
 ⇌ Ca 

2+
 + 2HCO3

-
 

Mangroves may enhance dissolution of calcium carbonate by enhancing the production of acids 

in several ways. If acids are produced in sufficient quantity, the saturation state for calcium 

carbonate may lower sufficiently to cause dissolution of carbonate sediment adjacent to roots. 

Millero, et al.,
21

 postulated that mangroves acidify their soils as a result of the high volume of 

leaf litter associated with them, causing an unusual degree of photochemical and bacterial 

oxidation of organic material. Pore waters in a mangrove forest in East Africa also exhibited high 

HCO3
-
 concentration, which Middleburg, et al.,

65
 also attribute to mangrove-facilitated carbonate 

dissolution, due to three biological activities through which mangroves produce acid soils at their 

roots. First, mangrove roots translocate oxygen from their leaves to their roots and leak it to the 

soil, as inferred from Eh levels and microelectrode measurements.
66, 67

 The subsequent 

bacterially mediated oxidation reactions produce a range of possible acids: 

Organic matter  CH20 + O2 ⇌  H2CO3
-
 

Ammonia   NH3 + 2 O2 ⇌ HNO3 + H2O 

Sulfide   H2S + 2 O2 ⇌ H2SO4- 

 Iron sulfide  FeS2 + 3.75 O2 + 2.5 H2O ⇌  FeOOH + 2 H2SO4 

 

Secondly, mangrove roots uptake ammonium leading the release of H
+
 ions. And thirdly, 

mangrove roots respire carbon dioxide, which also lowers soil pH.
67, 68
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Pore water with high HCO3
-
 concentration in a salt marsh at Great Sippewissett Marsh, 

Massachusetts was attributed to intense sulfate reduction of organic material.
69

 Sulfate reduction 

generates two moles of bicarbonate for every mole of sulfate reduced: 

Sulfate reduction  2(CH2O) + SO4
2-

 ⇌ H2S + 2HCO3
-
 

High HCO3
- 
pore water in a mangrove creek in Sepetiba Bay of southeast Brazil was attributed to 

intense sulfate reduction that produces ammonium.
70

 For that study, researchers examined a 

coastal transect which included: upland mangroves that are rarely flooded, tidally flooded 

mangroves, and a mudflat. Pore water in the tidally flooded mangrove zone was enriched in both 

HCO3
- 
and SRP compared to the upslope mangroves and the mudflat, and these pore waters 

supplied SRP to the tidal creek at low tide. Although the researchers attribute the non-

conservative SRP concentrations in the tidally flooded mangroves to groundwater discharge 

from below, it is plausible that in situ HCO3
-
related P sorption dynamics play a role. 

 

If exceptionally low P sorption efficiency driven by HCO3
-
 concentration are demonstrated to be 

a general process for estuary sediments, the dynamics may have implications for coastal SRP 

availability globally. Tidal wetlands are found on sheltered marine coastlines, with salt marshes 

extending from the arctic to sub-tropical latitudes, and mangrove dominating in the sub-tropics 

and tropics.
71

 Further studies are needed to evaluate the prevalence of this water type is, what 

conditions are required to produce it, and how this water type affects sediment P sorption 

dynamics in other regions. As we have outlined, there appear to be complex feedbacks between 

abiotic P sorption reactions and biological factors such as productivity, microbially mediated 

oxidation/reduction reactions, and also a suite of mangrove activities that affect the chemistry in 
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their root zone. It would be helpful to better understand the range of conditions that are 

associated with high HCO3
-
 concentration in terms of productivity, vegetation type, sediment 

type and texture, redox state, salinity, tidal range and elevation. The exceptional rates of 

productivity by salt marshes and mangrove swamps rival that of productive agricultural lands.
72

 

River water HCO3
- 
concentration in carbonate regions is higher than in any other lithology,

73
 and 

suspended sediment could potentially reverse P sorption behavior upon encountering coastal 

seawater.
21

 

 

The only water composition gradient among the three water types (see Table 2.1) that can 

explain the exceptionally low sorption efficiency of ecotone GW is its high HCO3
-
concentration, 

which may lead to competition at adsorption sites between SRP
 
and HCO3

-
. Sulfate ions can also 

compete with SRP for adsorption sites,
74

 however SO4
2- 

concentration in the ecotone GW is 

intermediate to the fresh GW and bay SW (Figure 2.2).  If SO4
2-

 were the primary driver of the 

relative sorption efficiency of the three water types, bay SW (with double the SO4
2-

 

concentration of ecotone GW) would exhibit lower sorption efficiency than ecotone GW. The 

high Ca
2+

 and Mg
2+

 concentration in saltwater may provide bridges for surface complexation 

reactions with SRP,
75

 which would favor greater adsorption in bay SW. A decreasing trend of P 

adsorption as pH increases from 6 to 9 has been observed in natural lake sediments
46

 and 

goethite.
76

 The trend in pH of our waters is ecotone GW (6.7) < fresh GW (7.3) < bay SW (8.2), 

which would favor more efficient adsorption in ecotone GW compared to bay SW. Future 

geochemical modeling is planned that uses the empirically derived parameters from this study as 

input to help elucidate the geochemical mechanisms for the observed P sorption behavior. 
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Phosphorus sorption behavior can be influenced by factors held constant in our experiments, 

such as changing temperature or redox condition. Increased temperature has been found to 

increase adsorption in Florida Bay sediments.
14

 In the Indian River Lagoon, Florida, SRP
 
was 

found to adsorb more efficiently in oxic vs. anoxic conditions, P binding to iron oxide in 

oxidizing conditions, and desorbing from the sediment when the iron is reduced.
16

 The iron 

content of sediments at our ecotone field station 
60

 is similar to the Indian River Lagoon 

sediments,
16

 so the potential importance of redox condition in the topmost layer of Taylor Slough 

ecotone sediment cannot be dismissed. Under reducing conditions it can be expected that the 

sediment of the present study would have diminished adsorption efficiency in all three water 

types. Future work examining temperature and redox effects would be useful in understanding P 

sorption behavior in the Taylor Slough ecotone. 

 

Coastal wetlands are highly vulnerable to anthropological impacts such as rising sea levels, 

saltwater intrusion, reductions in freshwater availability and eutrophication.
77

 Better 

understanding of sediment-groundwater interactions in the mangrove zone provides useful 

guidance to restoration efforts and improves our understanding of mangrove productivity in the 

face of climate change. Our results may have implications for a broad range of settings where 

high HCO3
-
 water exists, including non-carbonate sediment, salt marshes, and suspended and 

benthic sediment of coastal rivers. 

 

Conclusion  

This is the first information on P sorption dynamics in a sub-tropical carbonate mangrove 

wetland and provides a basis for understanding the geochemical contribution to SRP availability 
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in these important biomes. We have evaluated the adsorption/desorption reactions between 

calcareous sediments and three ambient coastal waters and determined P sorption parameters for 

both linear and two-surface Langmuir isotherm models. This study finds that ecotone 

groundwater, by interacting with mangrove sediment, can provide more available SRP than fresh 

groundwater and Florida Bay seawater. Distinct P sorption behavior for these three water types 

with the mangrove ecotone sediment has important implications for both sea level rise and 

increased freshwater flows, namely that both hydrologic changes would be expected to decrease 

SRP availability in the mangrove ecotone. Our experiments support the hypothesis that 

adsorption/desorption reactions between the sediment and ambient waters could be a significant 

abiotic control of SRP availability in the shallow groundwater of the Taylor Slough ecotone. 
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Chapter 3: 

Saltwater intrusion as potential driver of phosphorus release from limestone bedrock 

in a coastal aquifer 

 

Note to reader 

Portions of this chapter are in preparation for submission for publication. The author of this 

dissertation is the first author on the paper, and the other authors are: Dr. Mark Rains 

(contribution: guidance and funding), Dr. David Lewis (contribution: access to equipment and 

laboratory facilities for phosphorus analysis), Dr. Jia-Zhong Zhang (contribution: guidance in 

regard to laboratory procedures and analysis), Dr. René Price (contribution: access to 

groundwater well and field site; analysis of cation and anion concentrations of the three water 

types). All co-authors assisted in the revision process. 

 

Abstract  

One of the important but often overlooked consequences of saltwater intrusion is the potential 

increase of phosphorus (P) concentrations accompanying salinization. Many coastal regions have 

carbonate lithology; accordingly two limestone bedrock samples with different composition were 

collected, along with ambient fresh groundwater and surface saltwater from the same region. 

Loss of sorption efficiency implies desorption of P from the mineral surface. Accordingly, the 

relative sorption efficiency was investigated for both rocks over a wide range of mixing ratios 

between freshwater and saltwater solutions. Both rock samples were found to contain low P but 
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one had double the iron content and adsorbed twice as efficiently as the other. Both rocks 

adsorbed more SRP more efficiently in fresh groundwater than in saltwater. A marked loss of 

sorption efficiency occurred in mixtures containing more than 2.6-3.4 mM Cl
-
 concentration (98-

119 mg Cl
- 
/L). From that threshold, P sorption efficiency decreased logarithmically as a function 

of increasing saltwater. Sorption efficiency ceased declining when added saltwater content 

reached a second threshold of 49 or 218 mM Cl
-
 concentration (1,700 or 7,700 mg Cl

- 
/L), 

depending on the rock composition, particularly iron content. To evaluate P sorption parameters, 

batch isotherm experiments for both rocks were conducted in three water types: fresh 

groundwater, saltwater, and a mixture containing 10% saltwater. Sorption isotherms showed that 

limestone in a 10% saltwater mixture exhibit Kd and Keq values three times smaller than in fresh 

water. We conclude that due to loss of sorption efficiency, loosely bound P would be released 

from carbonate aquifer surfaces beginning in response to as little as a Cl
-
 concentration of 3 mM 

(100 mg Cl
- 
/L; about 0.5% saltwater).  Increased P availability from saltwater-induced 

desorption may therefore occur within a portion of the mixing zone that would be designated as 

freshwater. This is important for P-limited estuaries that receive groundwater discharge. 

 

Introduction 

Geochemical studies of coastal aquifers worldwide have established that intensive ion exchange 

at the freshwater-saltwater interface is a globally important aspect of saltwater intrusion.
1
 The 

leading edge of saltwater intrusion, where a freshwater portion of the aquifer first encounters 

saltwater, has been described as the ion exchange front, because that is where the majority of 

seawater-induced geochemical reactions occur.
2
 Due to its high ionic strength, seawater has the 

potential to induce ion exchange reactions even in extremely low salinity groundwater mixtures. 
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Exchange sites on mineral surfaces may rapidly fill, resulting in little or no ion exchange 

occurring seaward of the ion exchange front. 

 

Carbonate aquifers are extensive in coastal settings, and many have undergone saltwater 

intrusion. Examples include Florida, USA,
3
 Mallorca, Spain,

4
 and Apulia, Italy.

5
 Saltwater 

intrusion occurs as a consequence of coastal aquifers being in direct contact with the ocean in 

regions where freshwater head has diminished due to human activities such as groundwater 

extraction.
6
 Where fresh water and saltwater meet in the aquifer, the denser saltwater typically 

forms a wedge beneath the less dense fresh water, with a flat base at an impermeable layer. The 

contact between the two waters can be sharp but typically the two water types undergo advective 

and diffusive mixing in a “transition zone” meters (m) to kilometers (km) wide, which can be 

depicted with sets of contours marking equal Cl
-
 concentration (isochlors) (Figure 3.1). Due to 

the hydraulic gradient between the freshwater and marine waters, freshwater and transition zone 

water from the aquifer flow seaward and upward along the saltwater wedge to discharge near the 

coastline in a process known as submarine groundwater discharge.  

 

The coastal hydraulic gradient determines where submarine groundwater discharge occurs 

relative to the coastline, with greater freshwater hydraulic head tending to cause discharge farther 

offshore, and very low hydraulic head potentially causing discharge to coastal wetlands such as 

salt marshes
7
 and mangrove forests.

8
 The width and location of the freshwater-saltwater interface 

can be influenced by aquifer properties such as permeability, and can be dynamic as hydrologic  

conditions change.
9
 Factors that decrease the hydraulic gradient, such as drought, drainage 

canals, groundwater pumping, or sea level rise can cause the freshwater/saltwater interface to 
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Figure 3.1 Schematic cross-section of saltwater intrusion with a broad transition zone, loosely 

based on Kohout
10

  
 
 
move landward.

11
 Conversely the interface can recede seaward in response to factors that 

increase freshwater head relative to sea level. In a highly permeable carbonate aquifer such as the 

Biscayne Aquifer seaward movement of the interface can respond rapidly to increased recharge 

due to an intense storm or prolonged rainfall in a wet season.
10

 

 

The mixing of freshwater and saltwater can release adsorbed P from aquifer solids, causing 

coastal groundwater to be many orders of magnitude higher in dissolved P than the overlying 

surface waters in many regions.
12, 13

 The bioavailable form of P is dissolved inorganic P 

(dominantly the anion H2PO4
-
), the same P that participates in adsorption/desorption reactions 

and is measured as soluble reactive P (SRP).  Productivity in many coastal estuaries is P-limited. 

Groundwater discharge has been increasingly recognized as an important component to estuary P 
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budgets, in some regions exceeding the input from rivers and atmospheric deposition.
12

 

Submarine groundwater discharge has been recognized as having ecological significance not 

only to marine environments such as seagrass beds near Perth, Australia,
14

 and coral reefs 

worldwide,
15

 but also to coastal wetlands such as salt marshes in North Carolina, USA,
7
 and the 

mangrove swamps of the Everglades, in Florida, USA.
8
 

 

Phosphorus adsorption/desorption reactions are known to be a major control of coastal water 

SRP concentration.
16

 Sorption reactions involve loose bonds between SRP and charged sites on 

solid surfaces, such as calcium carbonate and iron oxide. Soluble reactive P can be displaced by 

competing anions such sulfate and bicarbonate from saltwater.
17

 When the ambient water 

changes from high sorption efficiency (such as most fresh water) to low sorption efficiency (such 

as saltwater), the mineral surface desorbs SRP, increasing the ambient water SRP 

concentration.
18

  

 

In an estuary that receives groundwater discharge from a broad gradational mixing zone, the 

pattern of P availability from desorption will depend on how sorption efficiency varies along the 

mixing continuum in the bedrock. Few studies investigate P sorption dynamics a range of 

salinities in sediment or aquifer solids. A recent column study using carbonate aquifer solids 

from the Biscayne Aquifer at the L-31 N levee, and alternating flow between freshwater and 

saltwater, found a significant increase in SRP accompanying the first influx of saltwater.
18

 These 

results suggest a threshold for P desorption very close to the freshwater end of the mixing 

continuum. In sorption isotherm experiments with Florida Bay carbonate sediments, Zhang and  
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Figure 3.2 Schematic comparison of three hypothetical patterns of P sorption response to 

gradational increases in saltwater content, where the two mixing water types have low SRP 

concentration: (A) conservative mixing; (B) SRP availability from desorption increasing in direct 

proportion to saltwater content; (C) non-linear response, here depicted as a logarithmic increase 

in SRP from desorption at the freshwater end of the mixing continuum. 

 

Huang
19

 found that adsorption increases as the salinity decreases with the greatest change (29%) 

between 0 and 5 practical salinity units (psu). In a sandy beach of Tokyo Bay, Japan, 

anomalously high SRP concentrations (as high as 100 M) were measured very close to the 

freshwater end of the freshwater-seawater transect (Cl
-
 = 2‰).

20
 

 

As yet no studies investigate mixing driven sorption behavior at high enough resolution to 

identify a threshold of saltwater content at which sorption behavior changes. Whether desorption 

changes in a linear or non-linear fashion with incremental increases in saltwater content, will in 

turn affect how SRP availability varies in the overlying estuary receiving groundwater discharge 

(Figure 3.2). Our hypothesis is that SRP is active in the ion exchange front, with sorption 

efficiency reversing and triggering desorption at a very low threshold of saltwater content.  In 
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this scenario, SRP availability from desorption would increase sharply at the freshwater edge of 

the mixing zone, and remain at a similar level as saltwater content increases further.  

 

With many carbonate coastlines under threat of increased saltwater intrusion, and many coastal 

estuaries subject to mixing zone groundwater discharge, it is important to predict how SRP 

concentrations change as a function of incremental increases in saltwater content. The objective 

of this study is to quantify the influence of gradational changes in saltwater content on P sorption 

dynamics using natural mineral solids and water samples from a carbonate aquifer that is 

undergoing saltwater intrusion and that discharges mixing zone groundwater to an overlying 

ecosystem. The purpose of this work is to provide a basis for water managers and those engaged 

in restoration efforts to anticipate the water quality consequences of a landward or seaward shift 

in a saltwater intrusion front. 

 

Methods 

Study area.  The southern coastal Everglades is a flat coastline with surface water flowing 

southward through two main flow-ways (Figure 3.3). The larger drainage basin, Shark River 

Slough, flows to the southwest and drains to the Gulf of Mexico. The smaller drainage to the east 

is Taylor Slough, where surface water flows south into Florida Bay. This flow-way is largely 

disconnected from tidal influence due to an embankment running along the coastline. 

 

The southeastern Everglades is underlain by an unconfined karstic limestone aquifer known as 

the Biscayne Aquifer.
21

 This aquifer is thickest (> 35 m) along the eastern coastline in Miami- 

Dade County, thinning westward in a wedge shape.
22

 Fish and Stewart
21

 define the Biscayne 
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Figure 3.3 Map of southern Everglades, showing the two major flow-ways, Shark River Slough 

and Taylor Slough; sampling sites for rock samples Canepatch (CP; square) and RB (triangle); 

and sampling location for fresh groundwater (solid star), and saltwater from Florida Bay (open 

star). The saltwater intrusion front corresponds to the 5 m depth horizon within the aquifer and is 

based on interpreted resistivity measurements by Fitterman and Deszcz-Pan 
23

 

 

aquifer as being limestone and sand with hydraulic conductivities commonly exceeding 3 km per 

day. Water levels respond rapidly to stresses on the ground-water system, including drainage and 

recharge from canals, recharge from rainfall, evapotranspiration, and pumpage from supply 

wells. 

 

Saltwater has intruded into approximately 1,200 km
2
 of this aquifer.

2
 The saltwater intrusion 

zone extends several km inland along the Miami-Dade coastline, and in the Everglades it extends 

6-28 km inland.
8
 In Taylor Slough the freshwater-saltwater interface parallels a historical road 

which is no longer used, the Old Ingraham Highway. A borrow canal created for the construction 
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of this road was open to the sea and it brought saltwater inland, resulting in a sharp freshwater-

saltwater interface.
23

 The freshwater-saltwater transition extends up to 28 km inland from the 

coastline and is highly gradational in Shark River Slough, due to tidally connected river 

channels.
8
  

 

The inland extent of the overlying mangrove forest coincides with the saltwater intrusion front.
24

 

Mangroves have encroached 1.5 km inland from Florida Bay between 1950 and 2000.
25

 In the 

southern Everglades, groundwater total dissolved P concentrations range from 0.1 to 2.3 M, and 

are typically higher than the freshwater and seawater both at the surface and within the aquifer.
8
 

Price et al.,
8
 established that this total dissolved P pattern cannot be explained from conservative 

mixing between the fresh and saltwater, and an additional source is needed. Based on the further 

observation that groundwater total dissolved P exhibited a direct relationship with salinity (R
2
 = 

0.67) they suggested water-rock interactions, such as dissolution of the aquifer matrix, could 

provide the additional source of dissolved P. Several hydrodynamic and geochemical indicators 

suggest the existence of spatially and temporally variable brackish groundwater discharge in the 

mangrove swamp of Taylor Slough.
26

 The mangrove zone is P-limited;
27

 the extreme oligotrophy 

of the greater Everglades has led it to be described as P-starved.
28

  

 

Water samples.  Two water types were collected as representatives of freshwater and saltwater 

(sampling locations provided in Figure 3.3). Fresh groundwater (hereafter referred to as 

“freshwater”) was collected from shallow monitoring well (TSB-15) within the bedrock 

underlying the freshwater sawgrass marsh.
29

 Our saltwater representative (“saltwater”) is from 

Florida Bay surface water taken from a dock in Key Largo. We chose Florida Bay saltwater 
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rather than the Gulf of Mexico because a significant portion of saltwater intrusion in the area is 

from the south. Sulfate concentration was 28.4 mM in our saltwater, and below detection limit in 

our fresh water. Bicarbonate alkalinity was 4.0 and 2.9 mM for our saltwater and freshwater 

respectively. Procedures for determining water properties and results are described in detail 

elsewhere.
30

 All SRP concentrations for this study were determined the day of the completion of 

each experiment using the microscale malachite green method,
31

 measuring absorbance at 630 

nanometers (nm) in 96-well microplates on a BioTek EPOCH microplate spectrophotometer. 

 

Rock samples.  The aquifer solids used for this study were taken from limestone bedrock from 

well cores extracted at two locations in Shark River Slough, Canepatch and RB,
8
 within the 

western edge of the Biscayne Aquifer as delineated by Klein and Hull (Figure 3.3).
22

 Based on a 

map of interpreted resistivity measurements by Fitterman and Deszcz-Pan,
23

 Canepatch is on the 

seaward side of the freshwater-saltwater interface, and RB is on the landward side. In 2003, 

samples of surface water at both of these locations was found to be fresh (0 psu).
8
 From the same 

sampling effort, groundwater in the RB well (screened at of 6.7 m depth) was found to have 6.7 

psu salinity and 0.37 M total dissolved P. Groundwater in the Canepatch well (screened at 15.5 

m depth) was found to have a salinity of 15.5 psu and 15.2 M total dissolved P. Groundwater 

from both wells had a pH of 7. For our experiments, the top 30 cm of RB and Canepatch rock 

cores were crushed and passed through a brass sieve (<125 m). 

 

Inorganic MgCl2-P, also known as loosely adsorbed or readily exchangeable P (Pexch),
32

 is 

defined as the inorganic P released from rock powder by 1 M MgCl2 solution at pH 8.0, 

following the protocol established by Ruttenberg.
33

 Organic MgCl2-P was also determined using 
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Ruttenberg
33

 with the exception that total dissolved P was measured using the sub-boiling 

temperature protocol of Huang and Zhang.
34

 

 

Total sedimentary P were determined by high temperature combustion.
32

 The sediment samples 

were placed in 100-mL Pyrex beakers and wetted with a few drops of 1 M Mg(NO3)2 solution 

and then ashed in a combustion furnace at 550
o
C for 2 hours. After the samples were cooled to 

room temperature, a 50 mL of 1 M HCl solution was added to each sample. The samples were 

then agitated at 25
o
C for 24 hours to extract P. Samples were filtered to remove any particulate 

residuals and the filtrates analyzed for dissolved phosphate. Total Fe in sediments was 

determined by dissolution of solid phase Fe in 1 N HCl solution. The total dissolved iron (Fe
3+

 + 

Fe
2+

) in the solution was reduced with ascorbic acid to Fe
2+

. The Fe
2+

 was then 

spectrophotometrically determined with a ferrozine reagent in a pH 5.5 buffer solution at a 

maximum absorption wavelength of 562 nm.
35

  

 

Mixing continuum sorption experiments.  Relative magnitude of P adsorption of the rock 

powders was investigated in solutions ranging from freshwater (0.8 mM Cl
-
 concentration) to 

saltwater (512 mM Cl
-
 concentration) with proportions designated according to the increase in 

Cl
-
concentration resulting from additions of saltwater. A preliminary study with evenly spaced 

mixing ratios exhibited a drop in P adsorption between freshwater and the mixture with the least 

saltwater (26 mM added Cl- concentration, or 5% saltwater). Subsequently the decision was 

made to examine the freshwater end of the mixing continuum in high resolution. A stock P 

solution (KH2PO4) was added to give both the freshwater and saltwater solutions an 8 M initial 

SRP concentration ([SRP]i). The two water types were then mixed in fourteen different 
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proportions with saltwater content increasing from full strength fresh water along a log-scale (ie., 

0.03, 0.04, 0.08, 0.15, 0.36, 0.85, 2, 5, 11, 26, 51, 256 mM added Cl
-
 concentration from 

saltwater). A 100 mg of Canepatch or RB rock powder was mixed with 30 mL of one of the 

mixed solutions in a test tube. To inhibit microbial activity 20 L of a solution of 0.1% 

chloroform in de-ionized water was added to each test tube,
36

 and the test tubes were incubated 

for 24 hours on a platform shaker at 200 rotations per minute (rpm) at room temperature (23 ± 

0.5˚C). The slurry was filtered with 0.45 m nylon syringe filters and analyzed for final SRP 

([SRP]f), as described previously. The percent P adsorbed by the rock powder in a given mixture 

was calculated as: [([SRP]i -[SRP]f) / [SRP]i ] x 100. 

 

Sorption isotherm experiments.  Based on the batch incubation method of Froelich (1988), P-

sorption parameters were determined for the two rock powders (RB and Canepatch) and three 

water types: freshwater, saltwater, and a mixture of freshwater with 10% saltwater (51 mM Cl- 

concentration added by saltwater). Into a given test tube was placed 100 mg of one of the two 

rock types, 30 mL of one of the three water types, 20 L 0.1% chloroform, and a measure of 

SRP stock solution to yield one of 11 different [SRP]i between 0.6 and 8.1 M. After incubation 

at 200 rpm for 24 hours, filtrate was analyzed for [SRP]f, as described previously. 

 

Sorption isotherm parameters.  The amount of SRP
 
adsorbed by the rock powder, P, was 

calculated as: 

P = [SRP]i - [SRP]f ,     [1] 
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and was normalized to Psed in units mol g
-1

. A plot of Psed vs. [SRP]f from each experiment 

was used to represent a given rock’s adsorption isotherm for a given water type. A modified 

Freundlich equation was used to parameterize the adsorption isotherm data:  

P + NAP = Kf [SRP]f
n
      [2]  

where NAP (mol g
-1

) is the native adsorbed inorganic P, n is the exponent factor, and Kf is the 

Freundlich coefficient, which indicates the relative adsorption capacity of the mineral surface. 

The value of [SRP]f at P = 0 is known as the zero equilibrium concentration, EPCo, the SRP 

concentration at which there is no net change in adsorbed P. The distribution coefficient, Kd (L g
-

1
) is a measure of the buffer intensity and can be calculated from the Freundlich equation

19
 by 

taking the derivative of equation [2] with respect to the EPCo: 

Kd = n Kf [EPCo]
n-1

 .      [3] 

The bend of an isotherm curve toward a lower angle is an indication of incipient saturation of 

monolayer sorption sites on the mineral surface. The Langmuir sorption model provides an 

indication of the point at which the system reaches saturation, the maximum monolayer sorption 

capacity, Pmax. Such behavior can be modeled as: 

    .    [4] 

Constant Keq (M
-1

) is related to the heat of adsorption and the affinity of the adsorption sites. 

This sentence is just to see if anyone is reading this. When sorption data are evaluated by using 

the reciprocal plot of the Langmuir adsorption equation: 

   =    ,    [5] 

a linear line segment is formed, in which Pmax is the reciprocal of the slope, and Keq is the inverse 

product of Pmax and the y-intercept of the reciprocal Langmuir plot. 
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Results  

Both rocks were found to contain low P, with RB having lower total sedimentary P (1.2 vs. 1.7 

mol g
-1

 for RB and Canepatch respectively) but double the Pexch compared to Canepatch (0.02 

vs. 0.01 mol g
-1

 for RB and Canepatch respectively) (Table 3.1). RB rock has more than twice 

the iron content (36.33 vs. 14.09 mol g
-1

 for RB and Canepatch respectively). For organic 

MgCl2-P, RB has 0.031 ± 0.004 mol g
-1

 and Canepatch had 0.024 ± 0.004 mol g
-1

.  

 

Table 3.1   Selected composition of the rocks, mol g
-1

 

Sample 

name 

Inorganic MgCl2-P 

(Pexch) 

Organic MgCl2-P Total 

Sedimentary P 

Total Iron 

RB 0.019 ± 0.003 0.031 ± 0.004 1.208 36.33 

Canepatch 0.011 ± 0.001 0.024 ± 0.004 1.732 14.09 

 

Both rocks adsorbed SRP almost twice as efficiently in freshwater compared to saltwater. In our 

mixing continuum experiments (Figure 3.4) freshwater caused RB to adsorb 77% ± 2% of the 

added SRP and Canepatch to adsorb 48% ± 4.0%, and immersion in saltwater caused sorption 

efficiency to diminish by about half (in saltwater RB adsorbed 41% ± 1% and Canepatch 

adsorbed 25% ± 1%). Lithology also made a large difference in sorption efficiency. RB adsorbed 

approximately 50% more than Canepatch in all mixtures.  The sorption efficiency low of 41% 

for RB in saltwater is similar to the sorption efficiency high of 48% for Canepatch in freshwater. 

 

The transition between high adsorption efficiency in freshwater and low adsorption efficiency in 

saltwater occurred between two sharply delineated thresholds. The threshold at the freshwater 

end occurred at approximately 2-2.6 mM added Cl
-
 concentration (for RB rock at 2.0 mM added 

Cl
-
 concentration with a 95% confidence interval ranging from 1.6-2.6 mM; and for Canepatch 

rock at 2.6 mM added Cl
-
 concentration with a 95 % confidence interval spanning 1.6-4.2 mM). 
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Taking into account that the freshwater in our experiments has 0.8 mM Cl
-
 concentration, the 

total Cl
-
 concentration at the low salinity threshold is 2.8 mM for RB rock and 3.4 mM for 

Canepatch rock, corresponding to a mixture with only 0.4% and 0.5% saltwater for RB rock and 

Canepatch rock, respectively. 

 

The transition between the thresholds of high and low adsorption efficiency occurred 

logarithmically with respect to added Cl
-
 concentration in the mixtures, with R

2
 of 0.9972 for RB 

rock and 0.9697 for Canepatch rock. The threshold at which sorption loss reached a plateau on 

the seawater side of the continuum occurred at 218 mM added Cl
-
 concentration (the 95% 

confidence interval ranges from 188-252 mM) for RB rock, and 49 mM added Cl
-
 concentration 

(the 95% confidence interval ranges from 44-53 mM) for Canepatch rock. These mixtures 

contain 42% and 9% saltwater for RB rock and Canepatch rock, respectively. 

 

The sorption isotherm curves (Figure 3.5) and derived parameters (Table 3.2) also indicate a 

non-linear loss in sorption efficiency with increasing saltwater content is also visible in the 

sorption isotherms: the 10% saltwater isotherm is more similar to full strength saltwater despite 

its compositional proximity to full strength freshwater. Both sorption efficiency (Kd) and binding 

energy (Keq) decrease by two thirds between freshwater and the 10% saltwater mixture for both 

rocks.  

 

The greater sorption efficiency of RB rock compared to Canepatch rock can be seen in the fact 

that its lowest sorption isotherm (ie., in saltwater) is close to the highest sorption isotherm for  
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Figure 3.4 Percent adsorption of added SRP in mixtures of freshwater with varying amounts of 

saltwater, indicated by added chloride concentration, by RB rock (red triangles) and Canepatch 

rock (blue squares). The logarithmic function equations are provided.  

 

 

Canepatch’s (ie., in freshwater). The distribution coefficient (Kd) of RB rock is twice that of 

Canepatch in freshwater (6.3 L g
-1

 vs. 2.7 L g
-1

 for RB rock and Canepatch, respectively). The 

Freundlich coefficient of RB rock in freshwater is five times higher (Kf is 5.2 L g
-1 

vs 0.7 L g
-1

 

for RB rock and Canepatch, respectively). An exception to this trend is Keq, for which RB is 

almost four times lower (Keq is 2.4 M
-1 

vs 9.0 M
-1 

for RB rock and Canepatch, respectively). 

Calculating the saturation point as Pmax, RB exhibits a Pmax gradient of freshwater > 10% 

saltwater > saltwater (1.8-, 1.3-, and 0.6 mol g
-1 

for freshwater, 10% saltwater, and saltwater 

respectively). Canepatch yields its lowest Pmax in freshwater (0.1 mol g
-1

, compared to 0.6 mol 

g
-1  

for 10% saltwater, and 0.4 mol g
-1  

for saltwater. 
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Table 3.2   Phosphorus sorption characteristics for RB rock and Canepatch rock  

 

  Freundlich Model Langmuir Model 
Rock name Water type Kf

a
 

L g
-1

  

n
b
 NAP

 c
 

mol 

g
-1 

 

Kd
d 

L g
-1

 

EPCo
 e
 

M 

R
2 f

 Pmax
 g 

mol g
-1

 

K eq 
h

 

M
-1

 

R
2 i

 

 RB                   Freshwater 5.2 0.09 4.0 6.3 0.059 0.97 1.8 2.4 0.95 

  10% 

Saltwater 4.9 0.06 4.3 2.1 0.116 0.97 1.3 0.7 0.96 

  Saltwater  0.4 0.44 0.1 1.8 0.015 0.91 0.6 1.2 0.63 

Canepatch     Freshwater 0.7 0.33 0.2 2.7 0.023 0.97 0.1 9.0 0.96 

  10% 

Saltwater 1.7 0.07 1.5 0.8 0.143 0.87 0.6 0.6 0.88 

  Saltwater  0.2 0.43 ---- ---- ----  0.69 0.4 0.8 0.63 
a
 Freundlich adsorption coefficient 

b
 Freundlich exponent, dimensionless 

c
 Native adsorbed P 

d
 Linear adsorption coefficient 

e
 Equilibrium zero P concentration 

f
 R

2
 for Freundlich adsorption parameters  

g
 Adsorption maximum  

h
 Adsorption energy  

i
 R

2
 for Langmuir adsorption parameters (Pmax and Keq) 

---- parameter could not adequately derived from available data  

 

Discussion 

Our results support the hypothesis that loosely adsorbed SRP is released at the ion exchange 

front within carbonate aquifer mixing zones (similar to curve C in Figure 3.2). The two 

limestones stand in agreement on two points. First, sorption efficiency began to diminish at 

approximately 3 mM Cl
-
 concentration, implying the onset of desorption of SRP from the 

mineral surface.
18

 Second, the loss of sorption was logarithmic with increases in saltwater from 

this threshold (Figure 3.4). In an aquifer that discharges mixing zone groundwater to an 

overlying ecosystem, the spatial pattern of SRP availability from desorption be expected to 

increase sharply where groundwater discharge reaches this low concentration of Cl
-
. 

 



62 
 

The close agreement between the two limestones in regard to logarithmic loss of sorption 

efficiency at this low threshold of salinity is particularly noteworthy given wide disparity in other 

sorption behaviors exhibited by the two rocks. Compared to Canepatch, RB adsorbed 

approximately 50% more of the added SRP in the mixing continuum experiments. The two 

isotherm plots show that the lowest sorption isotherm for RB (ie., in saltwater) is close to the 

highest sorption isotherm for Canepatch (ie., in freshwater). The mineral surface of RB rock 

exhibited five times the adsorption capacity (Kf) and twice the buffer intensity (Kd) of Canepatch 

rock. The trend of high sorption efficiency in RB rock appears to be at odds with RB having a 

Langmuir constant Keq that is four times lower than that of Canepatch; this constant represents 

the affinity of SRP for binding sites.  

 

Our results indicate that saltwater-induced desorption, and subsequently increased SRP 

concentration of the ambient water, would be expected to occur landward of where saltwater 

intrusion is likely to be detected. Water with a Cl
-
 concentration of 3 mM is considered fresh and 

meets secondary drinking water standards for chloride set by the U.S. Environmental Protection 

Agency.
37

 Saltwater intrusion is typically considered to be indicated by groundwater Cl
-
 

concentration in excess of 7.1-28 mM (250 – 1000 mg Cl
-
 /L),

11
 as determined by well logs or 

helicopter electromagnetic surveys.
3, 38

 In some studies saltwater intrusion is delineated at the 

point at which salinity exceeds background concentration, generally considered to be 2.8 mM Cl
-
 

concentration (100 mg Cl
-
 /L).

39
  

 

Increased saltwater content ceases to cause further desorption once Cl
-
 concentration reaches 7- 

or 49 mM added Cl
-
 concentration depending on the rock (values are for Canepatch and RB, 
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a) 
 
 
 
 
 
 
 
 
 
 
 
 

b) 
  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Freundlich sorption isotherms for a) RB rock and b) CP rock, with freshwater (solid 

marker with solid line), 10% saltwater mixture (solid marker with dashed line) and saltwater 

(open marker with solid line) 

 

respectively). In an aquifer composed of limestone like Canepatch, all saltwater-induced 

desorption would occur on the freshwater side of the 7.1 (250 mg Cl
-
 /L) isochlor. Groundwater 

in the portion of aquifer seaward of the second threshold would be expected to exhibit a stable 

concentration of desorption-induced SRP, commensurate with the completion of saltwater-

induced desorption. If total dissolved P continues to increase with increasing salinity, as appears 

to be the case in the Florida coastal Everglades,
8
 an additional source would be required. 
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Relatively high SRP availability be facilitated indirectly by the lower relative adsorption capacity 

(Kf), P buffer intensity (Kd) and saturation (Pmax) exhibited by the mineral surfaces in a 

freshwater-saltwater mixture. 

 

The results of this study support the hypothesis of Price et al.
8
 that water rock interaction within 

the aquifer mixing zone of the Everglades may help explain the higher dissolved P 

concentrations in the brackish groundwater.  In turn, SRP that has entered the groundwater as a 

result of desorption may be an important source to the overlying mangrove swamp where the 

groundwater discharges.  

 

The magnitude of increased SRP availability in an aquifer resulting from seawater-induced 

desorption would vary depending on several variables, including magnitude, rate, and duration of 

desorption, characteristics of the aquifer solids such as total iron content and Pexch and specific 

surface area, hydrogeologic factors such as permeability and thickness of the affected portion of 

the aquifer. In turn, the ecological significance would be determined by the location, timing, rate 

and extent of subsequent groundwater discharge to the overlying estuary. Given the extreme P-

limitation in the Everglades. It is likely that saltwater intrusion into an aquifer matrix like RB 

and Canepatch could contribute an ecologically relevant amount of SRP.  

 

The fact the RB continued to be affected by increases in saltwater content up to 49 mM added Cl
-
 

concentration highlights the importance of lithologic factors in governing sorption behavior. 

Rock RB adsorbed much more efficiently than Canepatch in both the mixing continuum sorption 

experiments (Figure 3.4) and the sorption isotherm experiments (Figure 3.5). Rock RB may have 
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a higher density of exchange sites, permitting SRP to adsorb more efficiently and extensively, 

and to require more competing sulfate and bicarbonate anions from saltwater to replace SRP at 

the exchange sites. The calculation of P saturation concentration, Pmax, provides further 

indication of exchange site density, and it is more than double in RB compared to Canepatch in 

freshwater and 10% saltwater. Variable buffering capacity of limestone lithologies arise from 

differences in Pexch, permeability, composition (eg. clay content, particularly iron and aluminum 

oxides), specific surface area, and other factors.  

 

Our results are consistent with iron being a driver of sorption intensity in carbonate solids with 

very low P content. In a study of carbonate sediments in nearby Florida Bay, Pexch dominated 

over iron content as a driver of P sorption behavior in most sediments, but iron dominated in 

sediments with Pexch < 0.12 mol g
-1

.
40

 The relatively large difference in total iron content 

between our two limestones (36.33 vs. 14.09 mol g
-1

 for RB and Canepatch respectively) may 

be the source of the contrasting sorption efficiency for RB and Canepatch, rather than the 

differences in Pexch (0.02 vs. 0.01 mol g
-1

 for RB and Canepatch respectively) and total 

sedimentary P. Soluble reactive P ions that are loosely adsorbed to iron oxides under oxic 

conditions are likely to desorb as the iron becomes reduced in sub-oxic or anoxic conditions.
41

 

As such, a rock like RB may exhibit a sorption efficiency similar to Canepatch under such 

conditions. 

 

Temporal and spatial changes in the location of the low-salinity edge of saltwater intrusion 

would be expected to trigger P desorption and increased SRP concentration in ambient 

groundwater.
18

 Low-lying surficial coastal aquifers with a porous matrix are particularly 
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susceptible to movement of the freshwater-saltwater interface, due to low hydraulic head and 

high transmissivity.
42, 43

 Monitoring wells in Miami-Dade county record oscillations in salinity 

from fresh to saline as a result of changes in local hydrology such as groundwater pumping, large 

storm events and extended droughts.
2, 10

 Karstic environments with springs and conduits 

connected to seawater commonly undergo rapid reversals of salinity due to tidal pumping and 

seasonal changes in freshwater head, such as Andros Islands in the Bahamas,
44

 the Bay of 

Kastela, Yugoslavia, and Waikoropupu springs, New Zealand.
45

 Discharge rates can exceed 

several km per year.
46

 

 

Sea level rise is expected to exacerbate saltwater intrusion in many areas.
11, 47-50

 The Everglades 

is of particular concern.
51

 One study predicted the 7.1 mM (250 mg Cl
-
 /L) isochlor would move 

inland in the Everglades by 40-1800 m by 2100 depending on the sea level rise rate.
52

 Climate 

change may bring more extreme storms and heightened storm surges, which may further 

exacerbate saltwater intrusion, particularly in regions with tidally connected rivers.
50

 In addition, 

regions which undergo extended droughts, higher temperatures, and evaporation, may suffer 

diminished aquifer recharge, further raising the risk of saltwater-intrusion, according to the fifth 

report of the International Panel on Climate Change.
53

 One of the major goals of the multi-billion 

dollar Everglades restoration project, the Comprehensive Ecological Restoration Program, is to 

abate or mitigate saltwater intrusion by increasing groundwater recharge and the quantity of 

freshwater delivery to coastal areas.
51, 54

  

 

The P desorption dynamics of this study, if applied to an aquifer that has historical P loading, 

such as sewage injection sites in the limestone bedrock of the Florida Keys, could potentially 
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raise ambient water SRP concentration to eutrophic conditions. High desorption potential has 

been found in P-polluted soil and sediment, for instance in agricultural areas,
55

 and from 

experimentally P-loaded limestone.
56

 However, the intensity of seawater-induced desorption is 

dampened to some degree in carbonate solids with high Pexch.
17

 In addition, particularly intense 

P-loading can cause precipitation,
57

 such as the formation of a cryptocrystalline precursor of 

calcium phosphate, within as little as two days.
58

 Solid fractions of P tend to be more stable, and 

it is unknown to what degree seawater would trigger desorption.  

 

Conclusion 

This study provides essential parameters for predicting the effect of incremental landward 

incursion of saltwater within a carbonate aquifer on the potential P availability in overlying 

wetlands. The results indicate that a very small amount of saltwater mixing with fresh 

groundwater has the potential to cause the mineral surface to lose sorption efficiency and desorb 

P. Phosphorus appears to be active in the ion exchange front of saltwater intrusion. Landward 

movement of the 3 mM (100 mg Cl
-
 /L) isochlor may be associated with increased SRP 

concentration in groundwater, and would therefore be important to monitor where possible in P-

limited ecosystems. The characteristics of a given carbonate aquifer, in terms of Pexch and iron 

content, may play an important role in how the sorption dynamics in turn affect ambient water 

SRP concentrations. Further study is required to understand the P dynamics of limestone 

bedrocks over a range of P, iron contents, and redox conditions, so as to understand these 

processes along coastlines globally. 
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Chapter 4: 

Rapid and sustained phosphorus desorption with saltwater intrusion in a carbonate aquifer 

 

Note to reader 

Portions of this chapter are in preparation for submission for publication. The author of this 

dissertation is the first author on the paper, and the other authors are: Dr. Mark Rains 

(contribution: guidance and funding), Dr. David Lewis (contribution: access to equipment and 

laboratory facilities for phosphorus analysis), and Dr. Jia-Zhong Zhang (contribution: guidance 

in regard to laboratory procedures and analysis). 

 

Abstract  

It is important to understand how phosphorus (P) sorption dynamics of carbonate aquifers are 

affected by the incursion of seawater, because many coastal aquifers are carbonate-based and 

subject to increasing saltwater intrusion with sea level rise. In this study a well core through the 

Biscayne aquifer was sampled at 11 depth intervals from 3-30 m depth, spanning three geologic 

formations.  Portions of each sample were ground to <125 m and tested for readily 

exchangeable P, total sedimentary P, and iron content.  The rock core had low P content at all 

depth intervals, with highest exchangeable P occurring at the 30 m depth interval, and highest 

iron at 6 m and 22 m depth intervals. Samples of ground rock powder from seven of the depth 

intervals were investigated using batch isotherm sorption experiments with fresh groundwater 

and saltwater, for a total of 14 sorption isotherms.  Water type was found to control the sorption 
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efficiency for all rock samples. Unconsolidated sediment from the deepest depth interval, 30 m, 

was placed in a glass column and fresh groundwater was pumped upwards through the column, 

alternating with saltwater. Samples of leachate were taken at intervals, from which conductivity 

and SRP were measured. With the first influx of saltwater SRP concentration rose dramatically 

and gradually tapered. The second influx of saltwater resulted in an immediate but lower 

magnitude peak in SRP.  Our results indicate an immediate and intense pulse of P desorption 

from oligotrophic carbonate solids in response to an influx of seawater. 

 

Introduction 

Many carbonate aquifers along coastlines have undergone saltwater intrusion, such as Florida, 

USA,
1
 Mallorca, Spain,

2
 and Apulia, Italy.

3
 Where fresh water and saltwater meet in the aquifer, 

the denser saltwater typically forms a wedge beneath the less dense fresh water.  The two 

endmember waters mix and flow to the surface in a process known as submarine groundwater 

discharge. Factors that change the hydraulic gradient, such as drought, drainage canals, 

groundwater pumping, changes in precipitation, and sea level rise, can cause the 

freshwater/saltwater interface to move landward or seaward accordingly.
4
 Coastal groundwater 

can be orders of magnitude higher in SRP concentration than overlying surface water in some 

regions
5
 as a result of saltwater-induced desorption of SRP from aquifer mineral surfaces at 

depth.
6
  The discharge of P-enriched groundwater to coastal estuaries is ecologically significant, 

particularly in P-limited ecosystems.
6
  

 

Existing literature provides clues that a slight incursion of saltwater may result in significant 

desorption of loosely adsorbed P from aquifer solids. A recent study examining the pattern of 
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desorption with respect to the freshwater-saltwater mixing continuum found that limestone 

sorption dynamics favor desorption when ambient freshwater 3 mM Cl- concentration (100 mg 

Cl- /L).
7
 Existing kinetic studies on saltwater-induced desorption from carbonate solids involve a 

preliminary step of bathing the solids in SRP-enriched water. Batch study of P-loaded calcium 

carbonate solids (calcite, aragonite, and calcareous sediment from Florida Bay, USA) released 

significant amounts of SRP in the first minutes of immersion in seawater, and up to 80% of 

adsorbed P was released over one day.
8
 In another study a large block of limestone from Key 

Largo, Florida, USA, that had been loaded with SRP was found to desorb more SRP in plain 

seawater than de-ionized water. 

 

From the existing studies it is difficult to predict the magnitude, rate, and duration of desorption 

from pristine carbonate solids that would be induced by natural waters. In regions unaffected by 

human activities such as sewage injection, carbonate bedrock can have very low P content.
7, 9

 

The objective of this study is to investigate at high resolution the desorption kinetics of pristine 

carbonate solids as the ambient water alternates between natural freshwater and saltwater. Our 

goal is to better understand how groundwater SRP concentration in a carbonate coastal aquifer 

may be affected as the saltwater intrusion front moves landward or seaward. The results of this 

study will provide critical information for water management and restoration efforts in carbonate 

coastal regions. 

 

Methods 

Study area.  Southern coastal Florida is home to one of the most highly transmissive aquifers in 

the world, the surficial carbonate Biscayne Aquifer. This aquifer underlies Miami-Dade County 
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and extends through the eastern portion of the Everglades National Park. At the eastern edge of 

the Biscayne aquifer saltwater intrusion has caused the abandonment of many wells.
10

 To the 

south in the Everglades National Park, saltwater has intruded between 6-28 km inland along the 

base of the aquifer.
11

 The Everglades has been called “phosphorus starved” due to its highly 

oligotrophic nature and its sensitivity to even small increases of P.
12

 For this reason, a detailed 

understanding of the storage and transport of P in the Everglades has been described as urgently 

needed in order to effectively and comprehensively address water quality concerns.
13

  

 

Rock samples.  Rock samples were selected from a 33 m well core that fully penetrates the 

Biscayne aquifer (Figure 4.1). Well core G-3784 was taken along Levee 31N adjacent to the L-

31N canal on the western side of urban development, as part of a seepage study by USGS in 

2003 (latitude: 25°42'07.36"N; longitude: 080°29'46.26"W).
14, 15

 The well core is 4 inches in 

diameter. In this well core, the Biscayne aquifer includes three geologic formations, the Miami 

Formation (Fm), the Fort Thompson Fm, and the Tamiami Fm (which is considered semi-

permeable in some areas).
14

 We sampled well core G-3784 at eleven depth intervals; lithologic 

descriptions are in Table 4.1.  

 

Rock samples were crushed and sieved. Inorganic MgCl2-P, also known as loosely adsorbed or 

readily exchangeable P (Pexch),
16

 is defined as the inorganic P released from rock powder by 1 M 

MgCl2 solution at pH 8.0, following the protocol established by Ruttenberg.
17

 Organic MgCl2-P 

was also determined using Ruttenberg
17

 with the exception that total dissolved P was measured 

using the sub-boiling temperature protocol of Huang and Zhang.
18
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Total sedimentary P were determined by high temperature combustion.
16

 The sediment samples 

were placed in 100-mL Pyrex beakers and wetted with a few drops of 1 M Mg(NO3)2 solution 

and then ashed in a combustion furnace at 550
o
C for 2 hours. After the samples were cooled to 

room temperature, a 50 mL of 1 M HCl solution was added to each sample. The samples were 

then agitated at 25
o
C for 24 hours to extract P. Samples were filtered to remove any particulate 

residuals and the filtrates analyzed for dissolved phosphate. Total Fe in sediments was 

determined by dissolution of solid phase Fe in 1 N HCl solution. The total dissolved iron (Fe
3+

 + 

Fe
2+

) in the solution was reduced with ascorbic acid to Fe
2+

. The Fe
2+

 was then 

spectrophotometrically determined with a ferrozine reagent in a pH 5.5 buffer solution at a 

maximum absorption wavelength of 562 nm.
19

  

 

Water samples.  Two water types were collected as representatives of freshwater and saltwater 

(sampling locations provided in Figure 4.1). Fresh groundwater (hereafter referred to as 

“freshwater”) was collected from shallow monitoring well (TSB-15) within the bedrock 

underlying the freshwater sawgrass marsh.
20

 Our saltwater representative (“saltwater”) is from 

Florida Bay surface water taken from a dock in Key Largo. Sulfate concentration was 28.4 mM 

in our saltwater, and below detection limit in our fresh water. Bicarbonate alkalinity was 4.0 and 

2.9 mM for our saltwater and freshwater respectively. Procedures for determining water 

properties and results are described in detail elsewhere.
7
 All SRP concentrations for this study 

were determined the day of the completion of each experiment using the microscale malachite 

green method,
21

 measuring absorbance at 630 nanometers (nm) in 96-well microplates on a 

BioTek EPOCH microplate spectrophotometer. 
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Figure 4.1 Location map showing well G-3784 (star), fresh groundwater well TSB15 (triangle), 

and saltwater sampling from Florida Bay (square) 

 

Column experiments.  The column apparatus is depicted in Figure 4.2, and is based on the 

methods of Suzumura, et al.
22

 Silicone tubing led from a beaker of either fresh or saltwater, 

through a Cole Parmer low flow peristaltic pump at a rate of 1 mL/min.  A Kimble Chase Flex-

Column (inner diameter of 1.5 cm, length 20 cm) was filled with 47 g of coarse grained aquifer 

solids. Upward flow minimized the formation of channels and preferential flow paths. Leachate 

exited the top of the flex-column, passed through a 0.45 m nylon syringe filter (replaced after 

every 30 mL), and out through a tube to a sample vial.  Each leachate sample was immediately 

measured for conductivity using a Horiba Laqua Twin conductivity meter, and for pH using a 

Horiba Laqua Twin conductivity meter, and then stored for SRP analysis.  At the conclusion of 

the experiment, SRP concentration were determined using the microscale malachite green  
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Figure 4.2  Schematic diagram of column apparatus  

 

method,
21

 measuring absorbance at 630 nm in 96-well microplates on a BioTek EPOCH 

microplate spectrophotometer. 

 

Aquifer solids from the 14 m and 30 m depth intervals were chosen for column study because 

they had the highest Pexch (Figure 4.3), giving the best chance of measurable P desorption. The 

aquifer solids from the 30 m depth interval were unconsolidated shells and sand, requiring no 

crushing. Three column experiments were run with variations in sediment grain size and leaching 

water sample size.  The first column experiment used the aquifer solids without sieving, so as to 

most closely approximate the natural aquifer conditions. The inflow water alternated as follows: 

60 mL of fresh groundwater, 70 mL of saltwater, 70 mL of freshwater, 70 mL of saltwater, and 

60 mL of fresh water.  The first four leachate samples were 10 mL each, and all subsequent 

samples were 2 mL each (154 samples total). The second column experiment was conducted in 

an identical fashion with the exception that only the sediment size fraction between 1.0-1.4 mm 
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was used, so as to further reduce the potential for preferential flow paths that may develop based 

on grain size.  The third column experiment was designed to increase the resolution; the design 

different from the second column experiment in two ways: (1) a single freshwater-saltwater-

freshwater sequence (only one influx of saltwater); (2) samples were 1 mL instead of 2 mL (162 

samples total). 

 

Table 4.1   Lithologic descriptions of the rock samples  

 

Depth 

below 

ground 

surface, m 

Lithology
14

 Formation 

3 Peloidal grainstone-packstone Miami Fm 

5 Peloidal grainstone and packstone  

6 Wackestone-mudstone Ft Thomspon Fm 

8 Molluscan foraminiferal floatstone  

9 Touching-vug pelicipod floatstone-mudstone with mollusks 

visible 

 

11 Skeletal wackestone-packstone  

12   

14 Mudstone-wackestone  

15 Quartz-rich pelecypodal floatstone mudstone  

18  Tamiami Fm 

22 Shelley quartz sand with abundant mollusk shells 

(unconsolidated) 

 

30 Shelley quartz sand with abundant mollusk shells 

(unconsolidated) 

 

 

Column experiments four and five were conducted with crushed and sieved rock grains (1.0-1.4 

mm) from the rock at the 14 m depth interval. Column experiment four consisted of a single 

freshwater-saltwater-freshwater sequence, and column experiment five consisted simply of 60 

mL of freshwater followed by a sustained flow of saltwater for 200 mL. 
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Sorption isotherm experiments.  Sorption isotherm batch experiments
23

 were conducted on 

seven of the eleven depth intervals, chosen for their range of Pexch, total sedimentary P, and Fe 

content, using our sediment analysis results as a guide (Figure 4.3). For each experiment, a 60 

mL high density plastic test tube was filled with 100 mg of one of the seven rock types (sieved 

<125 m), 30 mL of either fresh water or saltwater, 20 L 0.1% chloroform, and a given 

measure of 3 mM SRP stock solution to yield one of 10 different initial SRP concentrations, 

[SRP]i: 0.0, 0.6, 1.0, 1.3, 1.6, 1.9, 3.3, 4.8, 5.6, 6.5, and 8.1 M. After 24 hours of shaking at 200 

rpm on a platform shaker, each suspension was passed through a 0.45 m nylon syringe filter, 

and immediately analyzed for final SRP concentration, [SRP]f, as previously described.  

 

Sorption isotherm parameters.  The amount of SRP
 
adsorbed by the rock powder, P, was 

calculated as: 

P = [SRP]i - [SRP]f ,      [1] 

and was normalized to Psed in units mol g
-1

. A plot of Psed vs. [SRP]f from each experiment 

was used to represent a given rock’s adsorption isotherm for a given water type. A modified 

Freundlich equation was used to parameterize the adsorption isotherm data:  

P + NAP = Kf [SRP]f
n
      [2]  

where NAP (mol g
-1

) is the native adsorbed inorganic P. The exponent factor n indicates the 

strength of the bond between the adsorbate and the adsorbent; the smaller n is the more favorable 

adsorption is.
24

 The Freundlich coefficient, Kf, indicates the relative adsorption capacity of the 

mineral surface. A high Kf indicates a high rate of SRP removal.
24

 The value of [SRP]f at P = 0 

is known as the zero equilibrium concentration, EPCo, the SRP concentration at which there is no 



81 
 

net change in adsorbed P. By taking the derivative of the Freundlich equation [2] with respect to 

the EPCo, it is possible to calculate the distribution coefficient, Kd (L g
-1

):
25

  

Kd = n Kf [EPCo]
n-1

 ,      [3] 

which is a measure of the buffer intensity. The bend of an isotherm curve toward a lower angle is 

an indication of incipient saturation of monolayer sorption sites on the mineral surface. The 

Langmuir sorption model provides a means of calculating the point at which the system reaches 

saturation, the maximum monolayer sorption capacity, Pmax. Such behavior can be modeled as: 

    ,    [4] 

where the constant Keq (M
-1

) is related to the heat of adsorption, also described as the affinity of 

SRP for the adsorption sites.  

 

Results  

Rock composition results are shown in Figure 4.3. Iron content was low (less than 25 mol g
-1

) 

for all samples except the 6 m depth interval (40 mol g
-1

) and the 22 m depth interval (118 

mol g
-1

).  The Miami Fm samples exhibited the lowest iron content (5 mol g
-1

). Total 

sedimentary P was low for all samples, and increased four-fold from 2 mol g
-1

 to 8 mol g
-1 

with depth. In the Miami Fm samples total sedimentary P was 2 mol g
-1

, gradually rising to 6 

mol g
-1

 at the base of Ft Thompson Fm (15 m), and increasing further to 8 mol g
-1

 in the 

samples at the greatest depth (22 m and 30 m, in the Tamiami Fm). Readily exchangeable P 

(Pexch) is low for all rock samples tested, but does exhibit some variation based on geologic 

formation  
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Figure 4.3 Selected rock composition along the vertical section of well core with geologic 

formations demarcated; organic MgCl2-P (red diamonds); inorganic MgCl2-P (Pexch) (open 

diamonds); total sedimentary P (green triangles), total iron (blue circles); saltwater Kd (open 

squares); freshwater Kd (solid black squares) 

 

and depth. The highest Pexch was found in samples from 14 m and 30 m depth intervals (with 

0.105 mol g
-1

 and 0.096 mol g
-1

 respectively), and the lowest was in depth intervals 3 m and 5 

m in the Miami Fm.  Both the Ft Thomspon Fm and Tamiami Fm exhibit a general trend of 

increasing Pexch with depth. Organic P released from MgCl2 is lowest in the Ft Thompson Fm 

and highest in the Tamiami Fm. 

 

Sorption isotherm parameters are provided in Table 4.2. Water type dominated over rock 

composition as a driver of sorption behavior. Freshwater Kf, Kd (Figure 4.3), and Keq values were 

an order of magnitude higher than saltwater values for almost all samples. Coefficients Kf and Kd 

exhibited a relatively wide range of values based on rock type in freshwater than in saltwater, but 

without exhibiting any clear relationship to lithology. In most samples NAP was high in fresh 

water, and was zero or near zero in saltwater, which is consistent with other work on bedrock 

and carbonate sediment that compared fresh water and saltwater sorption behavior.
7, 26

 The 
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rocks’ exponent n was double in saltwater compared to fresh water. Only one parameter, Pmax, 

varied more by rock than water type. 

 

The first three column experiments were conducted with sediment grains from the 30 m depth 

interval (Tamiami Fm). At the first detection of saltwater in the leachate, SRP concentration 

increased by 250%, 400%, and 280% for column experiments one, two, and three, respectively 

(Figure 4.4). After approximately 10 mL of saltwater flow (10 minutes) SRP concentration 

began a steady decline.  The passage of an additional 44 mL of saltwater through the columns 

resulted in SRP concentration decreases of 26%, 35%, and 25% for column experiments one, 

two, and three, respectively. Because the inflow water was changed to fresh water at that point, it 

is not known whether SRP concentration would have leveled off or declined to freshwater levels 

with a prolonged flow of saltwater. A second change to saltwater resulted in a dampened SRP 

peak (27% and 16% less than the first peak, for columns 1 and 2 respectively).  

 

Before an increase in conductivity could be detected, leachate exhibited large excursions of SRP 

concentration in two of the three columns experiments.  These isolated spikes in SRP 

concentration interrupted the steady decline which had begun in saltwater and continued until 

leachate was fully fresh.   

 

Column experiments four and five were conducted with crushed rock grains from the rock at the 

14 m depth interval. In the fourth column experiment there was only one change to saltwater, 

unlike column experiments one and two. The leachate SRP declined initially but then appeared 

to stabilize until conductivity began to decline at the return of freshwater (Figure 4.5 a).  To  
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Table 4.2  Sorption isotherm parameters  

 

Freundlich Model Langmuir Model 

Water 
Type 

Depth 
below  
ground 
surface Kf n NAP Kd Pmax Keq 

 
m L/g 

 

mol g
-1

 L/g mol g
-1

 M
-1

 

Freshwater        
 5 15.5 0.0 14.0 5.7 2.6 1.43 

 6 4.2 0.3 1.4 4.3 5.1 1.12 

 9 3.9 0.2 2.3 17.1 2.7 1.56 

 14 11.6 0.1 9.5 29.1 3.0 1.96 

 15 3.2 0.2 1.6 5.5 2.6 2.15 

 22 1.1 0.3 0.1 1.3 1.5 2.69 

 30 1.8 0.5 0.0 4.0 3.4 1.46 

Saltwater  
  

    

 5 0.4 0.6 0.0 0.6 2.6 0.13 

 6 0.6 0.7 0.0 1.4 4.2 0.15 

 9 0.4 0.6 0.0 0.8 2.6 0.13 

 14 0.4 0.7 0.0 0.7 3.5 0.11 

 15 0.3 0.7 0.0 0.4 3.1 0.09 

 22 0.3 0.6 0.1 0.2 2.1 0.09 

 30 0.6 0.7 0.1 0.1 5.0 0.10 
 

further investigate this pattern, column experiment five was the same as column 4 except 

saltwater flow continued for 200 mL, with no return of fresh water. After sustained saltwater 

flow the leachate appeared to stabilize at a concentration of 0.51 ± 0.06 M, intermediate 

between the freshwater SRP and the peak in SRP accompanying the first saltwater leachate 

(Figure 4.5 b). During the portion of this experiment in which leachate SRP concentration, a 

desorption rate of 0.031 ± 0.004 mole/hour was calculated.  
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Figure 4.4  Column experiments with rock from the 30 m depth interval showing three column 

experiments: one (open green squares); two (solid yellow squares); and three (blue crosses) 
 

Discussion 

The three geologic formations exhibit different compositions, with the Miami Fm being lowest in 

total sedimentary P, iron, and both organic and inorganic MgCl2-P. The Miami Fb is also the 

only formation in which organic MgCl2-P exceeds inorganic MgCl2-P (Pexch). The Ft Thompson 

Fm is intermediate to the other two formations in total sedimentary P and total iron content, 

lower in organic Pexch, and similar in range as the Tamiami Fm for Pexch. The Ft Thompson Fm 

has two extremes: high iron at 6 m and high Pexch at 14 m. The Tamiam Fm is higher than the 

other two in total sedimentary P and organic Pexch, and within a similar range for iron and Pexch. 

Like the Ft Thompson Fm, the Tamiami Fm has a high iron sample (at 22 m depth), and high a 

Pexch sample (30 m). Loosely adsorbed inorganic P (Pexch) is commonly found to be 10% of total 

sedimentary P, and our results are consistent with this general proportion.
16, 27
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a) 

  

 

 

 

 

 

 

 

 

b) 

 

 

 

 

 

 

 

 

Figure 4.5  Column experiments with depth interval 14 m; a) column experiment four, with the 

sequence: freshwater-saltwater-freshwater; and b) column experiment five, with a single influx 

of freshwater followed by a sustained flow of saltwater 

 

Despite a relatively wide range of composition, sorption behavior in our rocks was chiefly 

governed by water type, with no clear relationship between sorption behavior and composition 
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(Figure 4.3).  This result stands in contrast to a recent sorption study comparing two limestone 

bedrock samples from a southwestern portion of the Biscayne Aquifer, as well as a study of  

calcareous sediments from Florida Bay, both of which found iron content was an important 

driver of sorption behavior in samples with low P content.
26

 It would be necessary to investigate 

the sorption behavior of more than seven samples to adequately characterize the relationship 

between sorption behavior and composition in this vertical section of the aquifer. Our results 

underscore the relationship between loss of sorption efficiency and desorption by examining the 

same rocks for sorption isotherm parameters and kinetic behavior. The coefficients Kf, Kd, and 

Keq of our rocks were typically an order magnitude higher in freshwater than in saltwater, and an 

influx of saltwater into our columns resulted in increased leachate SRP concentration.  

Our isotherm parameters are similar to those found for two samples of bedrock from a 

southwestern portion of the Biscayne Aquifer, with the exception that our Pmax values are 

higher.
26

 Our freshwater Kf values are similar to those determined for sediments from the 

freshwater wetland and pinelands in the Everglades, and our saltwater Kf values are within the 

range of values estimated for Florida Bay sediments.
28

  

 

In our column studies we were able to observe the rapidity and magnitude of desorption 

reactions related to saltwater intrusion. An immediate pulse of P-desorption occurred at the 

switch from freshwater to saltwater in all of our column studies. Even in the high resolution 

column experiment (column experiment three), the first 1 mL leachate sample that exhibited 

increased conductivity also exhibited increased SRP concentration. The magnitude of increased 

SRP concentration in our saltwater leachate was higher than we had expected given the low Pexch 
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of our rocks. An SRP concentration of 0.51 ± 0.06 M was sustained in our saltwater leachate 

for more than two hours in our fifth column experiment.  

 

The SRP concentrations observed in the saltwater leachate of our column experiments exceeded 

the 0.3 M (10 ppb) total P (TP) criterion for the Everglades Protection Area.
29

 Measurements of 

TP encompass SRP, dissolved organic P and particulate P (both organic and inorganic), thus it 

would take considerably less than 0.3 M SRP to cause most natural water to exceed the 

regulatory TP limit. Groundwater discharging from a portion of the aquifer that has undergone 

saltwater-induced desorption may well constitute an ecologically relevant source of SRP. The 

desorption would not need to be recent, because the low buffer intensity (Kd,) exhibited by our 

rocks in brackish water would maintain ambient groundwater at an elevated level.  

 

Although vertical flow is impeded by semi-permeable layers in portions of the Biscayne Aquifer, 

such as our well core location G-3784,
14, 15

 in other portions brackish groundwater is known to 

discharge to the overlying mangrove swamp.
11, 30, 31

 Karstic environments with springs and 

conduits connected to seawater commonly undergo rapid reversals of salinity due to tidal 

pumping and seasonal changes in freshwater head, such as Andros Islands in the Bahamas,
32

 the 

Bay of Kastela, Yugoslavia, and Waikoropupu springs, New Zealand.
33

 Discharge rates can 

exceed several km per year.
34

 

 

In addition to magnitude and rapidity, the duration of desorption could be observed in our 

column studies as well. Column experiments one, two, and three (using the aquifer solids from 

the 30 m depth interval) all exhibited a steady decline before the re-introduction of freshwater 
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(Figure 4.4).  In contrast, the column experiments using samples from the 14 m depth interval 

(column experiments four and five; Figure 4.5) sustained a quasi-equilibrium SRP until the 

experiment was terminated after three hours and 20 minutes of saltwater flow (Figure 4.5). 

Putting together the calculated desorption rate of 0.031 ± 0.004 mole/hour with the Pexch 

measured in the same rock (at grain size <125 m), yields a duration of over six days. In 

practical terms, a longterm desorption study would be necessary to determine the duration of 

desorption beyond a period of hours, as the rate is likely to decline and cease before exhausting 

the full reserve of Pexch. In studies that evaluate leachate SRP concentrations over a period of 

weeks, the cumulative desorbed SRP tends to change as a power function of cumulative pore 

volumes.
35

 

 

New incursion of saltwater into portions of the aquifer that has been immersed in fresh 

groundwater would be expected to release more SRP from the bedrock. Sea level rise is expected 

to exacerbate saltwater intrusion in many areas.
4, 36-39

 The Everglades is of particular concern.
13

 

Climate change may bring more extreme storms and heightened storm surges, which may further 

exacerbate saltwater intrusion, particularly in regions with tidally connected rivers.
39

 In addition, 

regions which undergo extended droughts, higher temperatures, and evaporation, may suffer 

diminished aquifer recharge, further raising the risk of saltwater-intrusion, according to the fifth 

report of the International Panel on Climate Change.
40

 

 

The return of fresh water into our columns resulted in an immediate reduction of SRP 

concentration, although the decline in SRP concentration was slightly less steep than the change 

caused by an influx of saltwater. In portion of a carbonate aquifer that undergoes freshening, or 
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oscillations in the location of the freshwater-saltwater interface, our results suggest that 

desorption dynamics would cause ambient SRP concentration to rapidly change in response. One 

of the major goals of the multi-billion dollar Everglades restoration project, the Comprehensive 

Ecological Restoration Program, is to abate or mitigate saltwater intrusion by increasing 

groundwater recharge and the quantity of freshwater delivery to coastal areas.
13, 41

 

For two of the column experiments (the first and second), the largest elevation of SRP 

concentration accompanied the initial introduction of freshwater following immersion in 

saltwater, in the exact same sample numbers for both columns.  These isolated spikes in SRP 

concentration interrupted, and were followed by, a steady decline in leachate SRP concentration.  

This hints at the possibility that an even more intense and more ephemeral release of SRP may 

accompany a shift from saltwater to freshwater. Further experimentation would be necessary to 

determine if this effect can be consistently reproduced, and if so, to investigate its geochemical 

cause. Similar observations were made in a study of aquifer materials in Cape Cod.
42

 

 

Conclusion 

Our results indicate that saltwater influx into carbonate aquifer solids causes rapid desorption 

that can continue to produce high levels of SRP concentration after a period of hours, even in 

rocks with low P content. This study offers insight into possible nutrient ramifications of 

saltwater intrusion into a coastal carbonate aquifer that had been immersed in fresh groundwater.   
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Chapter 5: 

Conclusions 

 

Phosphorus sorption dynamics within carbonate aquifer solids plays a critical role in the P-

availability in coastal mixing zones. In the sediment at the mangrove root zone of Taylor Slough 

in the Florida coastal Everglades we determined that soluble reactive phosphorus (SRP) can be 

released from the sediment when its ambient water changes from fresh water or saltwater to the 

high bicarbonate brackish water that is most commonly found there. Further, high bicarbonate 

brackish would be expected to maintain ambient SRP concentrations at a higher level due to the 

poor buffering capacity of the sediment in this water (Chapter 2). These results merit phosphorus 

sorption studies in other coastal regions with high bicarbonate brackish groundwater.  

 

Below the sediment layer, carbonate bedrock in regions subject to saltwater intrusion may be 

exposed to gradual increases in salinity as the freshwater zone transitions into seawater. In 

Chapter 3 we determined that an amount of saltwater content very close to the limits of detection 

(3 mM Cl
-
 concentration or 100 mg Cl

-
 /L) causes a sharp reduction of sorption efficiency. Loss 

of sorption efficiency triggers the release of loosely adsorbed SRP from aquifer solids, raising 

ambient water SRP concentrations. Our results are consistent with SRP being an active 

participant along with other reactive ions in the ion exchange front of saltwater intrusion. In 

Chapter 4 we explored the kinetics of saltwater-induced desorption with a column study, and 

found a nearly instantaneous, intense, and sustained release of SRP at the onset of saltwater 
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contact with the aquifer solids.  In a carbonate mixing zone that discharges to an overlying 

wetland, the pulse of SRP release may result in an ecologically significant subsidy of SRP. We 

conclude that phosphorus sorption dynamics in coastal carbonate regions affect groundwater 

SRP concentrations within the sediment and bedrock. 


	University of South Florida
	Scholar Commons
	11-8-2015

	Phosphorus Sorption Dynamics in Shallow Groundwater, Coastal Everglades, Florida, USA
	Hilary Flower
	Scholar Commons Citation


	tmp.1457625606.pdf.kE61o

