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ABSTRACT 

 

 Within natural populations, individuals vary in their propensity to grow, survive and 

produce offspring. Additionally, fates of individuals are often correlated and non-independent as 

a result of shared genes, rearing environment or both. Variation in demographic traits can change 

population dynamics over time. The effects of variation in individual growth rate on population 

growth rate, net reproductive rate and generation time are examined, along with quantifying the 

sources of variation in survival of a long-lived cooperatively breeding bird, the Florida Scrub-Jay 

(Aphelocoma coerulescens). I built a 2 stage population model with two growth phenotypes, fast 

and slow, and simulated all parameter values using R 3.3.1. Variation in individual maturation 

rate changes population dynamics, especially in the presence of phenotypic correlation between 

parents and offspring in growth phenotype. I used Cox Proportional Hazard models with a 

covariance structure derived from a kinship matrix using the R packages survival and kinship2. 

Survival of juvenile Florida Scrub-Jays is strongly dependent on kinship, or the degree of 

relatedness between individuals, in addition to body mass, social structure of the natal territory, 

natal territory quality and environmental conditions of the rearing period. Breeder Florida Scrub-

Jay survival is mainly structured by group size, kinship, yearly variation in environmental 

conditions and territory quality. 
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CHAPTER ONE 

Introduction 

 Variation in the rate at which individuals grow is common in nature and has been 

documented across several taxa, especially fish and vascular plants (Pfister and Stevens 2002; 

Fujiwara et al. 2004; Huss et al. 2007). For example, in natural plant populations, individuals can 

vary greatly in size and rate of growth, even among plants of the same age (Weiner 1988; Stoll et 

al. 1994). In fish populations, there can be high variability in sizes even within a cohort that grew 

up in the same time and place (Ricker 1958; Huss et al. 2007). Growth and development depend 

on genetic variation, resource availability, environmental conditions, and biotic interactions, 

resulting in plastic growth and variable growth rates among individuals (Weiner 1998; Pfister 

and Stevens 2002; Monro and Marshall 2014).  Furthermore, size is often positively correlated 

with fitness, so the rate at which individuals grow is likely to be an important life history trait 

(Pfister and Stevens 2002; Fujiwara et al. 2004; Dmitriew 2011). For example, in salmonids and 

other bony fish species, female size is positively related to egg and clutch size (Morita and 

Takashima 1998; Huss et al. 2007). Annual plants that are bigger at the end of the growing 

season produce more seeds than slower growing conspecifics (Espeland and Farrell 2010). 

Variation among individuals in growth rate can change the distribution of individual sizes or the 

size structure, within the population (Stoll et al. 1994; Pfister and Stevens 2003). Due to the 

relationship between individual size, and size-dependent traits related to fitness, population 

growth could be influenced by growth variation among individuals.  
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 Phenotypic plasticity has been long recognized as a common feature in plants. This 

plasticity may lead to differential growth among individuals within plant populations, and 

individuals of the same age can have very different sizes and may grow at very different size-

specific rates,. This variation in growth can change the size structure of the population. If 

reproduction and survival are correlated with body size, an altered size structure could change 

the population growth rate due to changes in reproduction and survival within the population 

(Zuidema et al. 2009). As one might expect, they found that the fast growers contributed more to 

the population growth rate than slow growers (Zuidema et al. 2009). This raises the question of 

how heterogeneity in ontogenetic growth rate generally affects population growth rate.   

 Age and stage-based matrix projection models are popular and useful tools, but the 

assumption of standard stage-based models is that individuals transition between stages at 

constant rates (Caswell 2001). Recently, researchers have recognized that ignoring variation in 

growth or maturation time among individuals can result in misleading conclusions about 

population growth, net reproductive rate and generation time, and sensitivities to population 

growth rates (De Valpine 2009; Acker et al. 2014; De Valpine et al. 2014; Vindenes and 

Langangen 2015). In response, frameworks for matrix and integral projection models have been 

introduced that incorporate variation in individual growth rate and development time (De 

Valpine 2009; De Valpine et al. 2014; Vindenes and Langangen 2015). The approach of De 

Valpine et al. (2014) is a general approach to incorporate stochastic development times, meaning 

individuals spend variable amounts of time in a stage, in population models. Including variable 

stage durations in population models can change the conclusions of the models, especially in the 

sensitivities and elasticities of parameters to the asymptotic growth rate (De Valpine 2009; De 

Valpine et al. 2014). Vindenes and Langangen (2015) developed a framework for matrix and 
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integral projection population models for discrete and continuous traits, respectively, that can 

account for individual variation traits related to fitness. Furthermore, these modeling frameworks 

allow a researcher to consider different mechanisms of inheritance for these traits and include 

this in population models (Vindenes and Langangen 2015). They examined the effects of 

ignoring variation in the life history among individuals in a stage-age structured model and found 

that the asymptotic population growth rate was similar for the model that included heterogeneity 

and the model without. However, the estimates of other demographic outputs including the net 

reproductive rate and the transition rates differed between models (Vindenes and Langangen 

2015). De Valpine et al. (2014) also found that including variation in maturation time in models 

resulted in the same long-term population growth rate, but different sensitivities and elasticities. 

However, under some circumstances the population growth rate can change when variation in 

development times is included in a population model. For example, De Valpine (2009) 

incorporated variable stage durations into a population model of medflies and found that 

increased heterogeneity in stage durations increased the asymptotic population growth rate. 

Thus, there evidence that heterogeneity in growth or development time can impact the 

asymptotic population growth rate and population dynamics. 

 Here, we built a simple model to examine the basic relationship between 

heterogeneity in ontogenetic growth and population growth rate. Simple, heuristic models have 

use in exploring such basic relationships and understanding the underlying structure. Here, we 

examine the consequences of heterogeneity in the rates at which individuals grow using a model 

of an iteroparous population. Specifically, we built a simple model incorporating heterogeneity 

in maturation age that allows us to ask i) How does the long-term population growth rate (λ), 

depend on the amount of growth heterogeneity?  ii) How much of this change in λ is due to 
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change in net reproductive rate R0, and how much to change in generation time T?  iii) How does 

the phenotype correlation between parents and offspring affect population dynamics when there 

is heterogeneity in growth rate? 

Methods and Results  

 We built a deterministic, density-independent matrix model to examine heterogeneity 

in growth. The model has two stages (juvenile and adult) and two phenotypes, with differing 

maturation rates for "slow" and "fast" developers; thus this is the simplest model that can 

incorporate ontogenetic growth heterogeneity. The life-cycle graph for this model is shown in 

Figure 1. Juvenile survival rate is S, and the fraction maturing to adulthood is γs or γf, 

respectively, for slow and fast individuals. Adults of both types survive at rate P, and survivors 

produce F offspring each year. The proportion of offspring entering into each phenotypic class 

depends on the parent-offspring phenotype correlation, ϕ. This correlation can be positive or 

negative because it represents the phenotypic, not genetic, correlation. Kendall et al. (2011) 

found that parent-offspring correlation in survival phenotype changed the magnitude of increase 

of the population growth rate.  

 We parameterize the model to allow a single parameter to measure heterogeneity: we 

add or subtract σ from the mean individual growth transition rate γ where: 

–s

f

  

 



 
   (1) 

to hold for all values of γ and σ. Because of the relationship in eq. (2), all values of σ are 

constrained by the value of γ, and must be interpreted in the context of γ. 
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0 < γ < 1 

0 < σ < min(γ, 1 γ)  (2) 

to hold for all values of γ and σ. Because of the relationship in eq. (2), all values of σ are 

constrained by the value of γ, and must be interpreted in the context of γ. 

Analytical Results 

 The eigenvalues and eigenvectors of this model can be written analytically, but 

because there are four classes, these expressions require solutions to quartic equations – which 

do not lend themselves to biological insight. Thus, we consider one special case of the model that 

does permit some analytical insight. This involves a special value of the parent-offspring 

correlation ϕ. When ϕ = 1, there is perfect correlation between parents and offspring in 

phenotype, so this scenario represents a monotypic population. 

 Consider the case of the simple case where we consider the individual maturation 

rate, γ, juvenile survival, s, and fertility, F.  Let α = 1 – γ where sα is the fraction of individuals 

that persist in the juvenile stage and the maturation rate for individuals is equal to γ. (Figure 1). 

Then, the asymptotic population growth rate is 

𝜆 =  
1

2
[𝜌 +  √𝜌2 + 4𝑆(𝐹(𝛾) − 𝑃𝛼)]   (3) 

Where ρ = P + sα. Examination of eq. (3) shows that   ∂λ/∂σ > 0 in cases where fertility, F, is 

non-negative. Therefore, ∂λ/∂σ > 0 must be true for the range of values that make the model 

biologically realistic. In this case where ϕ = 1, the slow individuals will disappear and only the 

population with the fast phenotype will persist.   
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   

     2

4 21

2 2 4

F P s s P s
s

P s s F P



    

 
    

        

   (4) 

 In the case of a monotypic population, increasing γ always increases λ. (Figure 2). 

Graphical representations show that net reproductive rate also increases as γ increases in this 

scenario while generation time, T, decreases with γ, although the pattern is notably different from 

λ and R0 (Figure 2). Now, if we consider this monotypic population example to be a case where 

there is a perfect parent/offspring correlation (ϕ = 1) and σ represents a standard deviation from 

the average growth rate, heterogeneity in growth causes the fast type to dominate the population. 

Conceptually, this represents two “sub-populations” of each phenotype with no cross between 

them. In this case, the fast individuals have a growth rate of γ + σ, and increasing σ always 

increases the growth rate at any value of γ (eq. (4)).  

Numerical Results 

 We wanted to understand the how individual maturation rate and σ depend on the 

parent-offspring correlation, where parents can produce each type of offspring. To consider more 

general cases than simply ϕ = 1, we calculated λ numerically using R (3.1.3, (R Core Team 

2015) for the range of possible values of γ and σ (eq. ((2)). We also considered nine values of 

juvenile survival probability from 0.1 to 0.9 in 0.1 increments. We fixed fertility, F, and adult 

survival probability, P. We considered 21 values of ϕ ranging from 1 to -1 in increments of 0.1. 

For each unique combination of values of γ, σ, and ϕ, we estimated the dominant eigenvalue and 
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used the R popbio library (Stubben and Milligan 2007) to estimate generation time (T) and net 

reproductive rate (R0). This estimate of T is derived from the approximation T1 ≈ log R0/r 

(Caswell 2001), and should be interpreted as the average age difference between parents and 

offspring. Because of this approximation, variation in λ can be due to variation in R0 or T. 

 The effect of σ on λ depends strongly on the value of the parent-offspring phenotype 

correlation ϕ (Figure 3). From the analytical results, we know that when ϕ = 1, increasing γ and σ 

always increases λ (eq. ((3)&(4)), Figure 3). When ϕ = 0, there is no correlation between parent 

and offspring in growth phenotype and parents produce half of each type on average. In this case, 

increasing σ decreases λ at any value of γ (Fig. 3). Likewise, for -1 ≤ ϕ < 0, the same pattern 

holds, where increasing σ decreases λ. However, the effect of σ on λ changes from negative to 

positive when ϕ is roughly equal to 0.3 for small values of γ.  As ϕ approaches 1, σ increases λ at 

all values of γ, the average growth rate from the juvenile stage to the adult stage. The pattern of 

change in λ as a function of ϕ and σ is similar across S, the probability of juvenile survival 

(Figure X). The population growth rate becomes larger as S increases, but the general pattern 

across σ and ϕ does not differ significantly between values of S.  

 The effect of σ on net reproductive rate, R0, follows a similar pattern to that of λ 

where R0 depends on σ and the parent offspring phenotypic correlation ϕ (Figure 4). As is the 

case with λ, R0 increases with σ as ϕ becomes positive and large (Figure 4). Likewise, when ϕ is 

zero or negative, R0 decreases as σ increases. The relationship between R0 and σ changes from 

negative to positive as ϕ approaches 0.5 for all values of γ (Figure 4). As γ increases, the relative 

change of R0 across σ becomes smaller, in other words, the slope is less steep when γ ≥ 0.7 

(Figure 4). As S increases, R0 increases and similar to the results for the asymptotic growth rate, 

the pattern of change in R0 across σ and λ is similar for all values of S from 0.1 to 0.9 (Figure X).  
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 Generation time (T), defined here as the average age difference between parents and 

offspring (Caswell 2001), is much less variable across the combinations of g, σ and ϕ than λ and 

R0 (Figures 3 - 5). When the average growth rate γ is small (< 0.1) the generation time is the 

largest ranging from 10 to 6 years. The slope of the change of T across σ is steepest at γ = 0.1 

(Figure 4). The slope continues to flatten as γ increases. When γ ≥ 0.5, T is similar across the 

range of σ and ϕ (Figure 4). If γ is high enough (about 0.5), even negative parent offspring 

phenotype correlations result in a generation time roughly equal to 4 time steps, which is what T 

equals when γ and ϕ = 0.9, a high growth probability and strong positive parent offspring 

phenotype correlation. Generation time decreases as the average growth rate increases, but the 

magnitude of change across γ and σ is small when γ ≥ 0.5 (Figure 5). Similar to the results of λ 

and R0, the juvenile survival probability S does not strongly affect the results (Figure X).  

  To further investigate the pattern of generation time across our simulated values of all 

parameters, we estimated the expected age at first reproduction for each phenotype, fast and 

slow, as a function of γ and σ. This gives an estimate of the mean time to maturity for each 

phenotype. Estimating the expected age at first reproduction involves adding a new absorbing 

state to the life cycle called “reproduced-before-dying”. Next, we built a new transition matrix 

where individuals can be absorbed into this new state (see Caswell 2001 pp. 124-126 for the full 

procedure). This quantity depends on the probability of transition for individuals based on 

probabilities of survival and maturity, thus the parent-offspring phenotype correlation does not 

affect the mean age at first reproduction for either phenotype. The relationship between σ and the 

expected age at first reproduction is negative for the fast phenotype and positive for the slow 

phenotype (Figure 5). The mean age at first reproduction increases faster for the slow phenotype 

than it decreases for the fast phenotype. Here, the survival probability of juveniles, S, affects the 
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mean age at first reproduction. As S increases, the mean age at first reproduction increases, along 

with the variance and the range (Figure 6). The mean age at first reproduction is lower for the 

fast phenotype than the slow phenotype at any value of σ > 0, γ and S. On average, individuals of 

the slow phenotype are older at first reproduction than fast individuals.  

 Thus far, we have focused on the asymptotic or long-term dynamics of the population 

by estimating the asymptotic growth rate λ, or the dominant eigenvalue of the projection matrix. 

To understand transient dynamics, we estimated the damping ratio for each combination of γ, σ, 

and ϕ. The damping ratio is the ratio of the dominant eigenvalue to the second eigenvalue. This 

value tells us how long it takes for a population to reach the stable age or stage distribution. As 

with the results for the asymptotic dynamics, the damping ratio depends on σ and ϕ. The 

damping ration increases as σ increases for a monotypic population, or when there is perfect 

correlation in phenotype between parents and offspring, ϕ = 1. (Figure 7). In other words, with 

increasing variation in growth, there is an increase in the rate at which the population reaches the 

stable stage distribution. The direction of this relationship changes  as ϕ gets smaller. When ϕ = 

0.5, increasing σ decreases the damping ratio, meaning that increased variation around γ slows 

the rate at which the population converges to the stable distribution. The change in the magnitude 

of the damping ratio as σ increases is not large, however (Figure 7). S, the probability of juvenile 

survival, does not affect the results (Figure X). 

Discussion 

 Growth variation is common in natural populations but is often ignored in population 

models for ecological inference and application (de Valpine 2009). Using the simplest growth 

model possible with two stages, we have shown that the asymptotic population growth rate 

depends on the probability of growing to the adult stage and heterogeneity in this trait. 
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Interestingly, the parent-offspring phenotype correlation strongly affects the results. If there is 

perfect correlation between growth phenotype of parents and offspring (ϕ = 1), or a monotypic 

population, increasing the individual growth rate increases the population growth rate. In this 

case, the individual growth rate is always increased with added heterogeneity in growth (eq. (3)). 

However, in natural populations, there is a physiological limit to how fast individuals can grow 

where they cannot grow faster and faster each generation in perpetuity. Additionally, all 

offspring are unlikely to match their parents’ growth phenotypes exactly, the case of a perfect 

correlation between parents and offspring (ϕ = 1) 

 Beyond this scenario of perfect correlation, in cases where 1 > ϕ ≥ -1, this parent-

offspring phenotype correlation affects population growth rate and net reproductive rate through 

adults producing different frequencies of each type of offspring, where the value of ϕ determines 

those frequencies. Positive correlations mean a higher proportion of offspring with the same 

growth phenotype of the parent, whereas negative correlations produces the opposite. The 

proportion of each phenotype in the population will affect the long term growth rate because 

each phenotype matures at a different rate, thus individuals will reach the reproductive stage at 

variable times at different values of the correlation. Therefore, the distribution of growth 

phenotypes for each generation as determined by ϕ will determine the asymptotic growth rate 

and the net reproductive rate.    

 For example, in our two growth type population model, growth rate heterogeneity has 

a positive relationship with the asymptotic population growth rate when the parent-offspring 

correlation is sufficiently positive (Figure 3). In this situation, fast parents produce more fast than 

slow offspring on average. Increasing growth rate heterogeneity makes the fast juveniles faster, 

or more likely to transition to the reproductive stage, thus increasing the asymptotic growth rate. 
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While it is true that slow parents will produce more slow than fast offspring when the phenotype 

correlation is positive, the contribution to the population growth rate of the extra fast juveniles 

outweighs the negative contribution of the slow juveniles since increasing heterogeneity will 

make these individuals slower, and fewer and fewer will reach reproductive stage. 

 The relationship between growth heterogeneity and population growth rate is negative 

when there is no correlation between parents and offspring in growth phenotype (Figure 3). Any 

variation in individual growth rate will decrease the population growth rate. When there is no 

correlation between parents and offspring in growth phenotype (ϕ = 0), parents will produce 

equal frequencies of offspring of each type, on average.    

 How do positive and negative phenotypic populations come about in natural 

populations? Consider a simple example of a sedentary species where individual growth 

phenotype is largely determined by the microsite conditions. Assume microsites are evenly 

distributed across the landscape and the young disperse into available microsites with equal 

probability. Because the microsite determines the growth phenotype, offspring may or may not 

match the parents’ phenotype due to chance because of equal probability of landing in any given 

microsite. Of course, habitats are not checkerboards and dispersal is unlikely to be random in 

many real-world cases so this simple example is not realistic. However, we can more easily 

imagine scenarios where positive or negative phenotype correlations between parents and 

offspring could arise from maternal effects, dispersal patterns and distribution of microsites. 

 Generation time, however, is not strongly affected by the parent-offspring phenotype 

correlation (Fig. 5). Generation time is only large when the average probability of growth is 

small, and it quickly declines as growth probability increases. The relative homogeneity in 

generation time across the variation in growth rate (σ) could be due to very few slow juveniles 
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surviving to maturity. The mean age at first reproduction increases more rapidly for slow 

individuals than it declines for fast individuals with heterogeneity in growth (Figure 6). Thus, 

slow individuals will take a much longer time to reach maturity, and overall fewer of them will 

reach this stage than the fast individuals because due to heterogeneity. Therefore, the weighted 

mean of the generation times is dominated by the fast individuals. 

 In our model, we only considered two growth types that do not change throughout the 

life cycle for simplicity. In natural populations, there are likely to be several growth phenotypes 

and these could be transient, meaning occurring only in some time steps. Individuals could 

experience growth spurts from an influx of nutrients or a gap opening in the canopy for example, 

but it may only have temporary effects on growth. In these cases, the dynamics of the population 

could be very different or more complex. 

 The effects on growth rate heterogeneity on the population growth rate can be 

compared to the effects of heterogeneity in survival and reproduction. In the absence of a parent-

offspring correlation, heterogeneity in reproduction has no effect on the population growth rate 

(Kendall et al. 2011). However, when a parent-offspring correlation is added to the model, 

positive correlations increase the population growth rate with increased variation in reproduction 

while negative parent-offspring phenotypic correlations decrease it. Growth rate heterogeneity in 

our model has similar effects on population growth rate with both positive and negative parent-

offspring phenotypic correlations. Survival heterogeneity, however, has a different effect. It 

leads to cohort selection even with no correlation between parents and offspring which increases 

the population growth rate. When the parent offspring phenotypic correlation is added to the 

model, survival heterogeneity increases the population growth rate, even with a negative parent 

offspring correlation (Kendall et al. 2011). The results here show that increasing the variance in 
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growth rate increases population growth rate, but only under some circumstances depending on 

mean age to maturity and the parent offspring correlation.  
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Figures 

 

Figure 1.1. Life cycle diagram for a two-stage plant population with two types of individuals 

according to growth phenotype, fast and slow. Adults of each type can contribute offspring to 

both slow and fast phenotypic classes. 
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Figure 1.2. Long-term population growth rate λ as a function of γ, the mean individual 

maturation rate in a monotypic population or where ϕ = 1, over three values of juvenile survival 

probability. 
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Figure 1.3. The asymptotic population growth rate, λ, as a function of the variation in growth rate 

σ, the average growth rate γ, and the parent-offspring phenotypic correlation ϕ. S is fixed at 0.5, 

where on average, half of the juveniles will survive during each time step. The line segments for 

the five values of γ are of differing lengths due to the conditions in Eq. 2 where σ cannot exceed 

the value of γ. Each subsequent figure shares this feature.   
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Figure 1.4. Net Reproductive Rate, R0, as a function of variation in growth rate σ, the average 

growth rate γ and the parent-offspring phenotypic correlation ϕ. 
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Figure 1.5. Generation time, T, as a function of variation in growth rate σ, the average growth 

rate γ and the parent-offspring phenotypic correlation ϕ. 
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Figure 1.6. Mean age at first reproduction for each phenotype as a function of variation in growth 

rate σ, juvenile survival probability S, and γ, the average growth rate from the juvenile to adult 

stage. 
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Figure 1.7. Damping ratio, or the ratio of the first and second eigenvalues, as a function of 

variation in growth σ, the average growth rate and the parent-offspring phenotypic correlation ϕ. 
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CHAPTER TWO 

Introduction 

Survival probability of offspring during the juvenile stage can affect recruitment of 

breeders into a population, potentially affecting population growth rate (Gaillard et al. 1998; 

Ringsby, Sæther & Solberg 1998; Oli & Armitage 2004; Sergio et al. 2010; Dehnhard et al. 

2014). Even in long-lived organisms that produce large numbers of offspring, such as forest 

trees, there is evidence of recruitment limitation (Clark et al. 1999). Additionally, this trait is 

recognized as an important fitness component that can shape life-history (Stearns 1979; Reid et 

al. 2003; Reid et al. 2010). Juvenile survival probability as a function of early life conditions has 

been shown to have short and long-term fitness benefits or costs in several taxa, including long-

lived herbivorous mammals and birds (Gaillard et al. 2000; Reid et al. 2010; Mumme et al. 2015; 

Plard et al. 2015). For example, juvenile survival of Audouin’s gulls is strongly affected by early 

life conditions, including density and weather conditions (Payo-Payo et al. 2016). These benefits 

and costs can subsequently affect survival and reproductive output, changing population-level 

processes over time (Lindström 1999; Gaillard et al. 2003). Therefore, quantifying juvenile 

survival and examining the mechanisms underlying variation in this trait could improve our 

understanding of the contribution of juvenile survival to population growth rate over space and 

time.  

Several processes are known to affect offspring survival, although the relative importance 

of each mechanism varies can vary among habitats, life history strategy and taxa. Genotype, 

density-dependence, resource availability, environmental conditions, maternal effects, parental 

quality, birth order within a clutch and behavior (e.g. Clutton-Brock et al. 1987; Gaillard et al. 
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1998; Gaillard, Festa-Bianchet & Yoccoz 1998; Coulson et al. 2001; Gaillard et al. 2003; 

Crespin et al. 2006) all affect survival of young both within and among birth cohorts. 

Environmental conditions and resource availability often vary over time and individuals born in 

different years are likely to experience different environments. Cohort effects result when there 

is variation in demographic traits among individuals born in different years, as a result of the 

conditions experienced during the birth year (Gaillard et al. 2003).  

Beyond cohort effects, closely related individuals such as siblings can have similar 

phenotypes and demographic fates due to shared genes, maternal effects and litter/brood effects, 

collectively known as “family effects” (Gaillard et al. 1998). For example, Roe deer fawn 

siblings have similar growth rates and over-winter survival compared to unrelated fawns 

(Gaillard et al. 1998). Likewise, first-year survival of cheetah cubs is more similar among 

siblings than unrelated cubs, primarily due to “litter effects” (Pettoreli and Durant 2007). Growth 

rate and survival of blue mussel larvae were found to be affected by family lineage in laboratory 

conditions, with families responding differently to growing conditions (Yund and McCartney 

2016). Family effects are one mechanism that can generate variation in demographic traits 

among individuals within age and stage classes, called demographic heterogeneity, which can 

change population growth rate through changing the demographic variance (Kendall et al. 2011).  

The structure of kinship, or the degree of genetic relatedness, over space and time has 

been shown to affect demographic rates in both social and solitary species (Lamben & Yoccoz 

1998; Pope 2000; Støen et al. 2005; Newman et al. 2016). For example, the role of kin structure 

on microtine vole population dynamics has been well documented (Lamben & Krebbs 1993; 

Lambin & Yoccoz 1998). Survival of juvenile voles and recruitment rate are affected by spatial 

kinship structure where juvenile survival is higher when mothers are in kin clusters (Lamben & 



 

24 
 

Yoccoz 1998). Due to the effects of kinship on demography, family effects are considered to be 

an important component to population dynamics.  

Here, we take advantage of a 34 year data set on a marked population of Florida Scrub-

Jays (Aphelocoma coerulescens) to decompose some of the contributions to variation in juvenile 

survival, most importantly the variation due to kinship or lineage. Florida Scrub-Jays are 

cooperative breeders restricted to scrub-dominated habitats with periodic fire in peninsular 

Florida (Woolfenden & Fitzpatrick 1984). Family groups consist of a monogamous breeding 

pair, juveniles and 0-6 non-breeding adult helpers that raise young on year-round territories. 

Florida Scrub-Jay offspring delay dispersal until ages 2 or 3, on average. Helpers have been 

shown to increase fitness of juveniles by provisioning young and providing additional watchers 

for predators, the main source of mortality of young jays (Woolfenden and Fitzpatrick 1984, 

Mumme 1992). Snakes and Accipiter hawks are the primary predators of Florida Scrub-Jays, 

with the former a larger threat to jays in the nestling and fledgling stages. Scrub-jays have a 

sentinel system where group members trade watching for threats and foraging. Larger groups 

provide more watchers and increase the probability of detecting a predator (Woolfenden & 

Fitzpatrick 1984; Fitzpatrick and Woolfenden 1988; Mumme 1992). Pairs residing in territories 

with low to medium height scrub oaks (Quercus sp.) with sandy openings produce more 

fledglings than pairs on lower quality territories, on average (Breininger & Oddy 2004).  

Juveniles are sedentary during the first year of life and do not disperse until after one year 

of age. Thus, young scrub-jays can be relatively easily tracked throughout the first year of life, 

providing a good source of data for estimating survival with little or no heterogeneity in re-

sighting probability. Furthermore, fledglings hatched on the study site are of known parentage as 

immigrants that become breeders are trapped and banded (Woolfenden & Fitzpatrick 1984). By 
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the mid-eighties, over half of the breeders in the population were of known parentage. Offspring 

can easily be assigned parentage because Florida Scrub-Jays are behaviorally and genetically 

monogamous, as demonstrated by genetic analyses of three Florida Scrub-Jay populations 

(Quinn et al. 1999; Townsend et al. 2011). 

In a previous study of the same marked population of Florida Scrub-Jays, Fox et al. 

(2006) found that parent and territory identity were good predictors of survival of breeding 

Florida Scrub-Jays, indicating that some aspect of familial relationships are important in 

structuring survival in this species. A kinship matrix can be estimated from this population’s 

pedigree and use it to estimate variance components in survival due to kinship, or the degree of 

relatedness with other individuals in the population (Pankratz, de Andrade & Therneau 2005; 

Anderson et al. 2007).  We can take advantage of this extensive pedigree of a wild vertebrate 

population to estimate variance in survival due to kin structure or relatedness, which gives us an 

ability to gain insight that is difficult to do in many populations due to lack of required data. 

Unlike many previous studies considering kinship structure in demography, we make use of a 

modeling approach that estimates the variance in survival time due to genetic correlations among 

individuals. This approach considers an individual’s degree of relatedness to all other 

individuals, instead of just parent or family identity.  

  We examined how the physical and social conditions of the natal territory and kinship 

affect mortality risk in hatch-year Florida Scrub-Jays. We considered brood size, nestling mass, 

fledgling number, the presence of helpers, and territory quality represented by total size, the area 

of oak scrub and total area in the 2-9 year fire return interval as possible predictors. We 

addressed four main questions regarding the pattern of juvenile survival of Florida Scrub-Jays. 

How variable is survival probability of Florida Scrub-Jays from fledging to one year old among 
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years? What is the relationship between the social and physical conditions of the natal territory 

and probability of survival to the pre-breeding stage? Does parental quality as measured by age 

and experience change the probability of juvenile survival? How much variance in expected 

survival probability is due to family or lineage?  

Methods 

Study Area and Population  

 The data come from a banded population of Florida Scrub-Jays under continuous study 

since 1969 at Archbold Biological Station (hereafter, “Archbold”) located in Highlands County, 

Florida (27.100 N, 81.210 W).  The area is characterized by oak-dominated scrub in well-drained 

soils with periodic fire. The methods of data collection are described in detail elsewhere 

(Woolfenden & Fitzpatrick 1984; Mumme et al. 2015). In short, each spring all territory 

boundaries are mapped and every nest is monitored until failure or fledge. All nestlings are 

banded and weighed at 11 days post hatch then recaptured and weighed as juveniles at 

approximately 90 days old. Each territory with at least one fledgling is visited weekly during the 

breeding season from fledge date until all juveniles are recaptured.  Additionally, there are 

monthly censuses of all scrub-jays in each territory throughout the entire year.  

Territory boundaries are mapped each breeding season during April and May using aerial 

photography as outlined by Woolfenden & Fitzpatrick (1984). The maps are digitized using 

ArcGIS (ESRI, Redlands, California, USA). The study area is composed of 5 m2 cells in a grid. 

Controlled burns take place throughout the study tract within burn units of various fire return 

intervals. As a result, Florida Scrub-Jay territories can encompass multiple burn units. Since the 

start of the study, the monitored area has increased as Archbold has acquired adjacent properties. 

Thus, there are some territories where the scrub-jays were banded and censused, but the territory 
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lacks data on composition. For analyses examining the effect of territory quality in terms of size 

and structural composition, we used a smaller data set including fledglings where there is data 

available that describe quality at the natal territory (N = 1583).   

Statistical Analyses 

We defined the juvenile survival period as commencing when individuals fledge, 

typically 15-20 days post-hatch, to 365 days post-fledge, when individuals transition to the pre-

breeder stage at one year old. We first estimated cumulative survival during all years and for 

each year using the standard non-parametric Kaplan-Meier method (N = 2492). For all 

subsequent analyses, we used semi-parametric Cox proportional hazard and Cox mixed effects 

models. These models are semi-parametric because the baseline hazard does not have to be 

specified. These models focus on the hazard function, or the risk of mortality, instead of the 

survival function. The hazard function describes the instantaneous probability of an occurrence 

of an event, which in this case is death. However, we can obtain the probability of survival from 

the hazard function (Therneau & Grambsch 2000; Rodriguez 2007).  

Cox models are appropriate for time-to-event data, such as time to death, and can 

accommodate censored data (Therneau & Grambsch 2000, Fox 2001; Fox et al. 2006). We are 

interested in the distribution of event times within a follow-up period. If an event is not observed 

during follow-up, either from not experiencing the event or individuals dropping out of a study, 

all we know is that the event time is greater than the follow-up time (Fox 2001). The only 

censored individuals in these data were still alive as of April 2016.  As juveniles, Florida Scrub-

Jays stay within in their natal territories and individuals do not disperse before turning one year 

old. Thus, there is very little heterogeneity in re-sighting probability, so Cox regression models 

are appropriate for these data. 
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An extension of the Cox model is the addition of random effects, which can account for 

correlation among individuals (Therneau et al. 2003; Therneau 2015). In this case, the random 

effects are shared frailties. Frailty refers to excess risk in survival time, where some individuals 

are more frail than others, and will experience an event sooner than more robust individuals 

(Therneau & Grambsch 2000; Wienke 2010; Govindarajulu et al. 2011). Frailty terms modify the 

hazard function for individuals within groups that share some characteristic, such as families or 

birth cohorts. Model forms are shown in Appendix 1 of the Supplemental Information.  

Before 1999, birds were sexed behaviorally; thus, the known-sex birds are individuals 

that survived to maturity when males and females begin to exhibit sex-specific behaviors 

(Woolfenden & Fitzpatrick 1984; Mumme et al. 2015). Many of the individuals that died before 

one year old prior to 1999 are of unknown sex. Since then, the sex of nestlings has been 

determined via blood samples taken during the nestling stage. To determine if survival during the 

first year is different between the sexes, we estimated survival probability using the standard 

non-parametric Kaplan-Meier method using data on fledglings from 1999 to 2015 (N = 1562). 

We also fit a Cox proportional hazard model and a parametric accelerated failure time (AFT) 

model with a Weibull error distribution using sex as a covariate. AFT models using a Weibull 

error distribution are have  proportional hazards; they are more powerful than Cox proportional 

hazard models and so using them in this way permits us to find smaller survival differences 

between sexes than the Cox models. Unfortunately the theory for modeling random effects in 

AFT models is more poorly developed than for Cox models, so we do not use them for other 

purposes.  

We considered cohort or birth year, population density, brood size, number of fledglings 

within the natal brood, nestling mass (g), helpers, and parental age and experience as predictors 
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of mortality hazard of hatch-year Florida Scrub-Jays (N = 2492). Cohort year was considered 

first as a factor with 34 levels, then as a random term in mixed effects models. We used total 

number of jays divided by the number of breeding territories at each April’s census as an 

estimate of population density. Helpers were modeled in two ways: presence/absence and as the 

number of helpers present ranging from 0 to 6. We also considered an interaction between year 

as a factor and the presence/absence of helpers. Some breeders are of unknown age so the sample 

size for models with these terms is smaller (N = 2164). Age of breeders is their known age in 

years or an estimated minimum age. Breeder experience is measured as the number of years 

previously bred, starting with zero for the first year bred. We added quadratic terms and an 

interaction for age and experience for both mothers and fathers to test for non-linearity.  

We considered territory size, area of oak scrub and area of the territory in the 2 – 9 year 

fire return interval as indictors of territory quality with a smaller data set (N = 1583) that 

excludes fledglings reared in territories without this information. As expected, all three are 

highly correlated; thus, we performed a principal component analysis. All three variables were 

scaled and centered before performing the PCA. The first principal component accounted for 

72% of the variance and reflects the linear combination of all three territory variables. There is a 

strong positive relationship between all three territory variables (Figure S1), so we used territory 

size as the predictor for territory quality for easier biological interpretation. We transformed 

territory size by standardizing whereby the values are in terms of standard deviations.  

We tested the proportional hazard assumptions for each model by plotting the scaled 

Schonfeld residuals and a chi square test (Therneau and Grambsch 2000). We ranked model fit 

using Akaike’s information criterion (AIC) where models within 2 AIC units were considered to 
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have similar support. We retained the predictors from the best fitting Cox proportional hazard 

models as fixed effects in the Cox mixed effects models. 

We considered cohort or birth year and pedigree/kinship as random effects or frailty 

terms for the Cox mixed effects models. The frailty terms are estimated from a Gaussian 

distribution with a mean of 0 and a variance-covariance matrix Σ that describes the structure of 

correlations between individuals (Therneau, Grambsch, & Pankratz 2003; Pankratz, de Andrade 

& Therneau 2005). Here, we used a kinship matrix of marked birds in the population as the 

variance-covariance structure among individuals. Using a covariance structure in models of 

survival from the kinship matrix is preferable to the shared frailty approach of Fox et al. (2006), 

because members of a family are not treated uniformly but instead the shared frailties are 

estimated from the degree of genetic relatedness. We constructed a pedigree object in R from the 

complete pedigree based on parental data using the package kinship2 1.6.4 (Therneau & 

Sinnwell 2015). We then used this pedigree to estimate the kinship matrix for individuals in the 

population. All analyses were performed in R 3.3.2 (R Development Core Team, 2016).  

Results  

From 1981 – 2015, the average proportion of survivors one year post-fledge is 0.38 ± 

0.11 (standard deviation) with a median of 0.4 (Figure 1). The Kaplan-Meier survival estimates 

for hatch year males and females overlap at the very beginning of the period and begin to 

separate over time (Figure 1). However, the difference between the curves is slight. The 95% 

confidence intervals for the Kaplan Meier survival estimate overlap for males and females 

(Figure 1). The estimated coefficient for sex (male) in the Cox model indicates that males have a 

lower hazard relative to females, however the coefficient is not distinguishable from 1. Not 

surprisingly, then, the reduction in deviance from the null model (baseline hazard only) is one 
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unit and not significant with a chi-square distribution test (χ2 = 2.04, p = 0.15). However, the 

estimated coefficient for sex is significant in the parametric accelerated failure-time model. The 

model with sex as a predictor is a better fit given the data than the null model. The reduction in 

log likelihood is significant according to a chi-square test (deviance = 5.5, p = 0.02).  

The hazards are approximately proportional for all covariates. The best fitting 

proportional hazards models include year modeled as a factor, nestling mass (g) and helpers 

(Table 1). Mother breeding experience, population density and brood size are also included in the 

best supported models (Table 1). The coefficients for each birth year are a mix of positive and 

negative where some cohorts have an increased risk relative to others and vice versa. Likewise, 

the year by helper interaction terms are a mix of positive and negative estimated coefficients. 

However, the AIC for this model is several units larger than the best fitting model (Table 1). 

 All best supported proportional hazard models include birth year as a predictor (Table 1). 

Mixed effects models with year as the only random effect have similar support to the 

proportional hazards models with year as a factor based on the reduction in deviance (Table S1). 

However, mixed effects models with two random terms, kinship and year, have more support 

than models with one random effect (Table S1). The estimated variance component for kinship is 

very large; juvenile scrub-jays have a 77-90% greater or lesser relative risk of dying than the 

average risk whereas birth year accounts for a 25-30% change in risk relative to individuals 

hatched in an average year (Table 2).   

In addition to kinship and birth year, the models with the most support include nestling 

mass (g), helpers, and mother experience as fixed effects (Table 3). Models with brood size and 

population density as additional fixed effects have similar support according to AIC (Tables 1 & 

3). Nestling mass significantly affects mortality risk of hatch year Florida Scrub-Jays where a 
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one gram change in mass from the mean nestling mass (45.19 g) reduces or increases the relative 

mortality risk by about 3% (Figure 2).  One or more helpers present changes the relative risk of 

juveniles by approximately 15% relative to individuals without any helpers present while each 

helper decreases the relative risk by 6% (Figure 3). Experience and age of the mother, but not 

that of the father, affects mortality risk of hatch-year scrub-jays (Figure 4). We found no support 

for a quadratic term representing mother experience. Increasing territory size decreases relative 

risk for hatch year birds. Density and relative risk have a positive relationship, where increasing 

the total number of jays per total territory number increases risk relative to the mean density 

(Figure 5). Territory size and relative risk are negatively correlated. A change in territory size by 

one standard deviation from the mean territory size changes the relative risk by 15% (Figure 6).  

Discussion 

First-year survival of Florida Scrub-Jays (Aphelocoma coerulescens) is strongly 

structured by family lineage, or kinship.  There is a large spread of mortality risk among 

individuals due to kinship, where some individuals will experience an 77 - 90% reduction or 

increase in risk relative to the mean (Table 2). Thus, there is a strong familial effect on mortality 

risk during the first year of life. Due to the nature of the study, these data are observational so we 

cannot estimate heritability of juvenile survival. The effect of kinship includes both genetic and 

non-genetic components, including maternal effects, parent behavior, social structure and 

territory quality.  Maternal effects can manifest in several ways, from egg development, 

provisioning of young and overall conditions on the natal territory (Blount et al. 2001; Van De 

Pol et al. 2006).  

Hatch year Florida Scrub-Jays generally have high morality during the first year, where 

on average, 40% of fledglings survive the first year (Figure 1). However, the proportion of jays 
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surviving throughout the first year is highly variable over the period from 1981 – 2015 (Figure 

S1). The number of fledglings produced each year, the input, is itself highly variable with the 

mean fledglings per pair ranging from 0.34 to 1.82 per year (Figure S3). Precipitation, disease 

prevalence, fluctuations in predator numbers, and abundance of arthropods during the breeding 

season, the main source of food for nestlings and fledglings, can change from year to year, with 

some years deviating substantially from the average. Food availability, predator density and the 

ability of adults to detect predators could directly and indirectly affect post-fledgling survival 

(Naef-Daenzer et al. 2001; Eggers et al 2005; Eggers et al. 2006).  

According to the Cox model and the Kaplan-Meier estimate, there are no substantial 

differences in male and female survival (Figure 1), although the parametric accelerated failure 

time model suggests that there are differences in male and female survival. The reduction in 

deviance from the null model is significant according to a chi-square test (deviance = 5.5, p = 

0.02). It’s possible that differences begin to emerge as young jays reach independence due to 

their social hierarchy where males dominate females (Woolfenden & Fitzpatrick 1977). Sex-

based differences in survival probability are expected to manifest during the pre-breeder stage, 

where female survival is expected to be lower than males due to the dispersal behavior of Florida 

Scrub-Jays. On average, females disperse sooner and farther than males (Woolfenden & 

Fitzpatrick 1984). This behavior may make females more likely to encounter unfamiliar territory, 

which could increase their mortality risk. Juveniles are much more sedentary, although they do 

move around to neighboring territories as they reach nutritional independence and approach the 

pre-breeder stage (personal observation). Females may go on farther forays than males near the 

end of the juvenile period as individuals transition to adults, perhaps leading to slight differences 
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in mortality risk in the Kaplan-Meier estimates at one year post-fledge (Figure 1) and the results 

of the AFT model.  

Nestling body mass is directly influenced by food availability and parents’ ability to 

deliver food. The number of brood mates can determine food intake and affect body mass. 

Models with brood size as a predictor have similar support to models without it according to AIC 

(Tables 1, 3 & 4), but the predictor itself is not significant (z = 0.04, P = 0.90). Predator 

abundance may indirectly affect body mass through the effects on the foraging behavior of 

adults, which could affect how much food is delivered to offspring. Post-fledging survival of 

great and coal tits is dependent on body mass and timing of breeding, where predator abundance 

sharply increases as the breeding season progresses (Naef-Daenzer, Widmer & Nuber 2001).  

Body mass is an important trait in determining post-fledgling survival in several avian 

species, where juvenile mass is positively correlated with survival (Ringsby, Sæther & Solberg 

1988; Naef-Daenzer et al. 2001; Perlut & Strong 2016). The positive relationship between mass 

and juvenile survival is not limited to birds or even animals. Plard et al. (2015) found that 

juvenile survival of Roe deer is strongly affected by early growth which is directly and indirectly 

influenced by birth date and precipitation, both reflections of resource availability. For numerous 

plants species there is a well-known relationship between size and survival, where growth rate 

can be highly plastic to growing conditions (Horvitz & Schemske 2002; Callaway, Pennings & 

Richards 2003).  

Mumme et al. (2015) estimated survival probability during the fledgling and juvenile 

stages and found survival probability in the first days post-fledge to day 30 is affected by brood 

size, nestling mass, group size and territory quality. After day 30, survival is affected most 

strongly by nestling mass then juvenile mass, which are positively correlated (Mumme et al. 
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2015). None of the other covariates that affected survival from day 15 to day 30 or nestling mass 

were significant in models of survival after day 30, nor predicted acquisition of a breeding 

territory. Juvenile mass, however, was positively associated with the probability of becoming a 

breeder (Mumme et al. 2015). Similarly, we found that nestling mass strongly affects mortality 

risk in juvenile Florida Scrub-Jays, with larger birds having a lower mortality risk compared to 

lighter birds (Figure 2). All best supported models include nestling mass (Tables 1, 3 & 4). 

Unlike Mumme et al. (2015), we found an effect of helpers and natal territory quality on survival 

from fledge to one year old (Figs. 2 & 4). We did not consider juvenile mass in our analyses 

because fledglings have to survive to 90 days post-hatch to have a measurement of juvenile 

mass.  

Presence of one or more helpers can decrease mortality risk by 15% relative to 

individuals with no helpers at the natal territory, while each additional helper reduces risk by 

about 5% (Figure 3). Helpers can increase juvenile survival indirectly by providing food to 

nestlings and directly through predator detection and mobbing behavior. Because helpers are 

usually offspring from previous years, successful pairs will have larger group sizes and can 

further increase annual reproductive success. Furthermore, additional group members aid in 

territory defense and could help expand territory size.  Group living can confer advantages in 

predator detection and some cooperatively breeding species, including Florida Scrub-Jays, have 

developed sentinel systems for maximizing foraging efficiency while lower predation risk 

(Woolfenden & Fitzpatrick 1984; Clutton-Brock et al. 2001). However, there can be complex 

interactions between social and physical conditions of territories whereby non-breeder helpers 

and juveniles can compete for resources and confer a fitness cost if territories are small with a 

low oak composition (Mumme et al. 2015). Our results suggest that there is an interaction 
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between helpers and year, where presence of helpers decreases mortality risk in some years, but 

increases mortality risk in other years (Table S1). There are likely complex interactions between 

climatic conditions, resource availability and the effects of helpers on survival from fledge to one 

year old. Helpers may increase survival of young in years when resources are abundant, but 

become competitors to offspring in years with resource stress.  

Previous breeding experience of mothers, but not fathers, influences first-year survival of 

Florida Scrub-Jays (Figure 3). Within each experience level, juvenile mortality risk increases 

with age, but offspring of more experienced mothers at any given age have lower relative risks 

(Figure 3). Offspring of mothers that are young and experienced are expected to have a lower 

mortality risk, all else being equal.  For example, a 4 year old mother with 2 years of previous 

breeding experience is better than a 4 year old mother with 1 year of previous breeding 

experience, from the perspective of the offspring (Figure 3). Experienced mothers may be better 

at provisioning young, detecting predators or both. Fathers with previous breeding experience 

could be better parents than first-time fathers in terms of behavior, although we did not find an 

effect of father age or experience on first-year survival of juveniles. Within experience levels, 

fledglings of older females have higher morality risks than those of younger females (Figure 3). 

Perhaps we found an effect of mothers due to reproductive senescence of females or some other 

aspect of a mother’s phenotype that changes with age and translates to higher mortality of 

offspring.  Wilcoxen et al. (2013) found that young and old female Florida Scrub-Jays produce 

fewer fledglings than middle-age females, but they did not find evidence for age-related changes 

in the amount of reproductive hormones in females. In contrast, they did not detect an effect of 

male age on fledgling production, but there was an age effect on hormones (Wilcoxen et al. 
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2013). Males and females may different costs to reproduction, and this could partially explain 

our results.  

Population density has a negative effect on survival of fledglings and juveniles, 

potentially due to more competition for resources or disease risk (Figure 5). Florida Scrub-Jays 

are susceptible to vector-borne diseases and bacterial infections (Wilcoxen, Boughton, & 

Schoech 2010), and with a higher density, disease may spread more easily. We used a simple 

measure of density, the total number of jays divided by the number of territories. The results 

indicate that some measure of abundance is important for juvenile survival. A more biologically 

meaningful measure of density could be the number of individuals in adjacent or neighboring 

territories. Some processes may take place over a large scale that affects the whole study site 

while others may operate at a smaller scale, at the level of territories or a cluster of territories.  

Territory size negatively affects hazard where a larger territory decreases mortality risk 

(Figure 6). Individuals residing in territories one standard deviation larger than the average can 

experience a 15% reduction in mortality risk (Figure 6). Larger territories are more likely to have 

a greater area of oak scrub and a mosaic of burn patches than smaller territories. Optimal 

territories for Florida Scrub-Jays consist of scrub oaks of low to medium height oaks (1- 3 m) 

and sandy patches for caching and foraging interspersed throughout the territory (cite). Scrub 

oaks (Quercus sp.) provide several important functions in the Florida Scrub-jay life cycle 

including nesting sites, cover from predators and acorns, which are an important autumn food 

resource (Woolfenden & Fitzpatrick 1984). The extent of oak cover and height is directly 

influenced by fire. The optimal habitat for Florida Scrub-Jays in terms of reproductive success 

occurs between 2 and 9 years post fire, where pairs produce more fledglings than in overgrown 

or very recently burned habitats (Breininger & Oddy 2004).   
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For birds, the post-fledgling period is considered to be an important stage in the life cycle 

because survival during this period can affect the size of the future breeding population and 

subsequently affect population growth rate (Ringsby, Sæther & Solberg 1998; Cox et al. 2014; 

Dehnhard et al. 2014). In passerines, survival rates of juveniles varies across species and habitats 

(Naef-Daenzer, Widmer & Nuber 2001; Cox et al. 2014, Dehnhard et al. 2014). Age, habitat 

quality, cohort effects, food availability, population density, sex and parent age were the main 

mechanisms examined in a review across several studies of post-fledgling survival in mainly 

forest passerine species (Cox et al. 2014). Here, in addition to kinship and group size, we found 

that Florida Scrub-Jay juvenile survival is influenced by many of these mechanisms, most 

importantly body size, parent experience and population density (Tables 1 – 3; Figures 2 – 6).  

  A common method for estimating survival is to use capture-mark-recapture in the 

Cormack-Jolly-Seber framework using the program MARK. While this is a widely-used and 

sound method for estimating re-sighting probability and apparent survival probability, the Cox 

regression model framework allows us to easily model risk of mortality as a function of several 

covariates with the additional advantage of including shared frailty terms. The CMR method is 

especially useful for species with long-distance dispersal and/or low philopatry due to its ability 

to use heterogeneity in recapture probability in estimates of survival probability. Due to the 

sedentary behavior of Florida Scrub-Jays, we can skip the step of estimating heterogeneity in 

capture/re-sighting probability of incorporating it into models of mortality risk. Furthermore, we 

can use the kinship matrix for the population as the correlation structure among individuals to 

estimate variance components among families, easily implemented in R 3.3.3 (R project).  

We have demonstrated that first-year survival of Florida Scrub-Jays has a family 

component consisting of both genetic and non-genetic components. Kinship structure has a 
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strong effect on mortality risk, where individual risk can be up to 90% greater or smaller than the 

average risk due to the degree of relatedness to other individuals. Additionally, there is 

substantial year to year variation in first-year survival of Florida Scrub-Jays, and future research 

may consider if there is variation among families or lineages in performance of different year 

types. For example, some families could do better in wetter years while others produce more 

offspring or have greater offspring survival in drier years.  

This study highlights the importance of family effects, specifically kinship, on 

demographic parameters. Models of the Cox family are widely used in medicine and 

epidemiology, but rarer in ecological studies. As far as we know, this is the first study to show 

that juvenile survival is structured by kinship or lineage in this species, and the first to use mixed 

effects Cox models with kinship as the correlation structure to estimate demographic rates in a 

natural, non-human population. The consequences of kinship in reproductive success and 

population growth rate could be profound due to its effect juvenile survival which can limit 

recruitment. Given our results, future demographic research should consider family effects, 

particularly kinship where the data are available, and focus data collection efforts on pedigrees or 

parental information.  
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Tables 

Table 2.1. Results of model selection analysis for Cox Proportional Hazard models of first-year 

survival of Florida Scrub-Jays (Aphelocoma coerulescens) as a function of biological and social 

conditions of the natal territory for 34 consecutive birth cohorts from 1981 - 2015 (N = 2492). 

Mass refers to nestling mass (g), helpers refers to the presence or absence of 1 or more helpers. 

Population density is estimated as the total number of scrub-jays per the total number of breeding 

territories each April. Birth year is modeled as a factor with 34 levels.  

Model K AIC ΔAIC 

Mass + Helper + Birth Year 37 22323.54 0.00 

Mass + Helper + Brood Size + Birth Year 38 22325.46 1.92 

Mass + Helper + Density + Birth Year 38 22325.54 2.00 

Mass + Helper + Density + Brood Size + Birth Year 39 22327.46 3.92 

Mass + Birth Year 36 22335.50 11.96 

Mass + Helper + Year + Helper X Birth Year 72 22355.34 31.80 
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Table 2.2. Estimated relative risk for the frailty terms, kinship and birth year, from the best-

fitting Cox mixed effects models of Florida Scrub-Jay (Aphelocoma coerulescens) mortality risk 

from fledge to one year old. The random effects or frailties are modeled as a Gaussian 

distribution with a mean of 0 and a variance matrix Σ that represents the correlation structure 

among individuals. The relative risk can be estimated by exp(√𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒). The models shown 

here are fit from different data sets. The data for the first model excludes territory size (N = 

2164), while the second model includes territory size, which is not available for all territories (N 

= 1583).  

Model Term Relative Risk 

Mass + Helper + Density + Mother Experience + 

Kinship + Birth Year 

Kinship 0.90 

Birth Year 0.29 

Mass + Helper + Density + Territory Size + Kinship + 

Birth Year 

 

Kinship 0.75 

Birth Year 0.32 
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Table 2.3. Results of model selection analysis for Cox mixed effects models of first-year survival 

of Florida Scrub-Jays (Aphelocoma coerulescens) as a function of biological and social 

conditions (N = 2164). Mass refers to nestling mass (g) while helpers refers to the presence or 

absence of helpers. Experience is a count representing the number of years previously bred. Both 

kinship and birth year are random effects drawn from a Gaussian distribution with a mean of 

zero and variance Σ. The variance-covariance matrix for kinship is derived from the kinship 

matrix, or degree of relatedness to all individuals in the population.  

Model K AIC ΔAIC 

Mass + Helper + Density + Mother Experience + 

Kinship + Birth Year 

6 19084.41 0.00 

Mass + Helper + Density + Kinship + Birth Year 5 19085.77 1.36 

Mass + Helper + Density + Mother Experience + 

Brood Size + Kinship + Birth Year 

7 19086.31 1.90 

Mass + Helper + Mother Experience + Kinship + Birth 

Year 

5 19088.82 4.42 

Mass + Helper + Kinship + Birth Year 4 19090.49 6.08 

Mass + Helper + Mother Experience + Brood Size + 

Kinship + Birth Year 

6 19090.77 6.36 

Mass + Helper + Brood Size + Kinship + Birth Year 5 19092.49 8.08 
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Table 2.4. Results of model selection analysis for Cox mixed effects models of first-year survival 

of Florida Scrub-Jays (Aphelocoma coerulescens) as a function of territory size and social 

conditions (N = 1583). Helper was modeled as a binary variable to represent presence/absence of 

1 or more helpers. Territory size was standardized.  

Model K AIC ΔAIC 

Mass + Helper + Density + Territory Size + Kinship + 

Birth Year 

6 13277.08 0.00 

Mass + Helper + Density + Kinship + Birth Year 5 13277.78 0.70 

Mass + Helper + Territory Size + Kinship + Birth Year 5 13278.80 1.71 

Mass + Helper + Kinship + Birth Year 4 13279.33 2.24 

Mass + Helper + Brood Size + Kinship + Birth Year 5 13281.25 4.17 

Mass + Kinship + Birth Year 3 13282.68 5.59 
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Figures  

 

Figure 2.1. Left: Kaplan-Meier estimate of survival probability of Florida Scrub-Jays 

(Aphelcoma coerulescens) from fledge date to one year old across all cohorts from 1981 – 2015 

(N = 2492). Right: Kaplan-Meier estimates of survival probability for male and female fledglings 

from 1981 – 2015 (N = 1562). Dashed lines are the upper and lower 95% confidence intervals.  
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Figure 2.2. Predicted relative risk of mortality from fledge (15 – 20 days post-hatch) to one year 

old as a function of nestling mass (g) in juvenile Florida Scrub-Jays. The dark gray ribbons 

represent the upper and lower 95% confidence intervals.  
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Figure 2.3. Predicted relative risk of mortality of Florida Scrub-Jays during the first year of life 

as a function of the number of helpers present at the natal territory (N = 2492). The dark gray 

ribbons represent the upper and lower 95% confidence intervals.  
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Figure 2.4. Predicted relative mortality hazard of Florida Scrub-Jays during the first year as a 

function of mother age and experience for all years from 1981 – 2015.  Each vertical panel 

represents the number of previous years bred, or years of breeding experience. The distribution 

of mothers’ ages is on the x axis within each panel.  
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Figure 2.5. Predicted relative risk as a function of population density measured as the total 

number of birds divided by the total number of territories in April each year.  
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Figure 2.6. Predicted relative risk of mortality as a function of territory size in terms of standard 

deviations (N = 1583).  
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CHAPTER THREE 

Introduction 

It has been long recognized that individuals within a population differ in demographic 

traits, although generally these differences are attributed to sex, age or stage class. Thus, classic 

population models allow for different demographic rates among these groupings. For example, 

survival probabilities of juveniles is often lower than mature individuals (Reid et al. 2010; Plard 

et al. 2015). An assumption widely used in estimating demographic rates is that all individuals 

within an age or stage class are expected to be homogeneous in this trait. However, over the past 

few decades, there has been much interest in understanding how phenotypic variation among 

individuals within these categories can affect estimates of population level parameters, in which 

rely on growth and transition probabilities (Cam et al. 2012; Plard et al 2015; Vindenes and 

Langangen 2015). 

A substantial body of theoretical research has shown that within-cohort variability in 

survival can lower the extinction risk in populations (Conner and White 1998; Kendall and Fox 

2003) and, if it is persistent throughout the lives of individuals, increase the population growth 

rate (Kendall et al. 2011). Covariance among individuals in phenotypic traits that affect survival 

probability reduces the effect of demographic stochasticity, increasing population viability 

(Kendall and Fox 2002). Variation in traits that affect demographic performance - henceforth 

"demographic traits" - results from genetic variation, environmental conditions, and their 

interactions. Phenotypic covariance can be a result of shared environment through cohort and 
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family or maternal effects. Fates of siblings can be correlated, for example (Gaillard et al. 1998; 

Pettorelli and Durant 2007) thus, individuals within shared environments are not independent, 

and we can potentially predict demographic rates as a function of measured traits and unobserved 

differences among individuals (Kendall and Fox 2002). Phenotypic traits related to fitness are 

considered to be unobserved or latent and modeling approaches have been developed to 

incorporate these individual differences in models of fitness components (Cam et al. 2016).  

Related individuals, such as siblings or parents and offspring, are correlated through 

shared genes in addition to maternal or sibling effects. Kinship is a specific type of family effect 

in the sense that it describes the degree of genetic relatedness among individuals. Kin structure 

has been shown to influence demographic traits with consequences at the population-level 

(Lambin et al. 1998; MacColl et al. 2000; Pope 2000). The relationship between kinship and 

fitness has been well-studied in social species of several taxa (Armitage 1987; Clutton-Brock et 

al. 2001; Clutton-Brock 2002; Griffin and West 2003). Kin structure across space can also arise 

in solitary species, often as a result of dispersal behavior and kin recognition, and it can influence 

survival and reproductive success (Lambinand Yoccoz 1998; Støen et al. 2005). For example, 

recruitment of red grouse males is dependent on spatial kin structure where family groups 

occupy territory clusters (MacColl et al. 2000). Thus, kinship is likely to be important in 

structuring demography in several species, both social and solitary species, and is worth 

consideration in the estimation of survival and reproductive success. 

In this study, we take advantage of 35 year data set of a marked population of Florida 

Scrub-Jays (Aphelocoma coerulescens) to examine the effects of kinship on breeder survival. In 

a previous study of this population, Fox et al. (2006) found that parent and territory identity were 

good predictors of breeder survival and provided better fits given the data than models without 
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those predictors. These results suggest that some aspect of family is important in determining 

survival of breeding Florida Scrub-Jays (Fox et al. 2006). This species is cooperatively breeding 

where offspring delay dispersal and help raise young, usually their siblings or half-siblings 

(Woolfenden and Fitzpatrick 1984). Family groups consist of a breeding pair, juveniles and 0-6 

adult helpers that are generally offspring of one or both breeders residing in year-round 

territories defended from other families (Woolfenden and Fitzpatrick 1984). Florida Scrub-Jays 

are habitat specialists restricted to oak (Quercus sp.) scrub habitats with sandy soils and periodic 

fire. Their territories provide all their life history needs including food and nesting sites 

(Woolfenden and Fitzpatrick 1984). Helpers generally disperse by age three; natal dispersal is 

local although females typically disperse farther and earlier than males (Woolfenden and 

Fitzpatrick 1984).   

The sedentary behavior of Florida Scrub-Jays facilitates re-sighting of individuals over 

time and offspring can easily be assigned parentage. Florida Scrub-Jays are socially and 

genetically monogamous, offspring resulting from extra pair copulations is extremely rare 

(Quinn et al. 1999; Townsend et al. 2011; Chen et al. 2016). Thus, there is an extensive pedigree 

of this population where over half the breeders were of known-parentage by the mid-1980s. Due 

to the cooperative behavior and the presence of helpers that can increase fitness of breeders, this 

data set offers us a rare opportunity to examine the consequences of kinship on demographic 

traits.  

Unlike many previous studies considering kinship structure in demography, we make use 

of a modeling approach that estimates the variance in survival time due to genetic correlations 

among individuals (Pankratz et al. 2005). This approach considers an individual’s degree of 

relatedness to all other individuals, instead of just parent or family identity. In the modeling 
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approach of Fox et al. (2006), frailty terms were used to describe the intra-group correlation in 

hazard, or the instantaneous risk of dying. The hazard of each group is adjusted based on 

properties of that group. The shared frailty approach used in Fox et al. (2006) treats each member 

of a group equally in terms of hazard, so that all members of a family are modeled as having the 

same hazard. Because of this limitation, Fox et al. (2006) restricted their analyses to groups of 

individuals with very similar relatedness, such as maternal families. Since then, methods have 

been developed that permit incorporation of an entire pedigree in the shared frailty model: a 

kinship matrix is used to describe the correlation structure among individuals in the population 

(Pankratz et al. 2005; Therneau 2015). This is biologically more realistic and permits improved 

estimates of hazards and of their components.  

Due to social structure and cooperative breeding system, using these approaches can give 

us insight into some of the consequences of cooperative breeding. The presence of related 

individuals such as helpers can increase survival of breeders by offsetting costs of reproduction 

(Clutton-Brock 1988; Paquet et al. 2015). For example, female breeder survival of sociable 

weavers is positively correlated with the presence of helpers that feed offspring (Paquet et al. 

2015). Here, we expand upon the research of Fox et al. (2006) using data from the same marked 

population of Florida Scrub-Jays but additional 3 years of data and extensive pedigree data for 

the population. In our analyses, we model dependence among individuals with data from a 

pedigree of all marked birds in the population beginning in 1978 until the completion of the 

breeding season in 2016.   

We built Cox proportional hazard models and shared frailty models to address the 

following research methods. What is the expected survival for a breeder, and how much variation 

is there from year to year? How does survival probability change with age, experience, group 
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size and territory quality? How much variance is there among families and cohorts? Does 

fledgling production change breeder survival probability? If so, is there a negative or positive 

effect of fledgling production on annual survival probability?  

Methods 

Study Area and Population  

 All data are derived from a marked population of Florida Scrub-Jays residing at Archbold 

Biological Station (hereafter, “Archbold”), Highlands County, Florida (27.10○N, 81.21○W). This 

population has been under continuous study since 1969. Detailed methods are described 

elsewhere (Woolfenden and Fitzpatrick 1984; Mumme et al. 2015). Briefly, all nestlings hatched 

on the study tract are banded and weighed at 11 days old then recaptured and weighed as 

juveniles around 90 days post-hatch. All immigrants that disperse into the study area from 

nearby scrub are captured and banded. The data consist of known and unknown-age breeder 

Florida Scrub-Jays from 1981 to 2016 (N = 994).  The first breeding cohort considered here is 

from 1981, meaning all individuals in the data set were classified as breeders for the first time in 

1981 or later. The population was supplementally fed prior to this time, so we do not consider 

data prior to 1981. The pedigree includes individuals back to 1978 to include the parents the 

breeding cohorts of the 1980’s. Unknown age birds are individuals that have dispersed into the 

study tract from nearby scrub habitats. There are a greater number of unknown age females (N = 

187) than males (N = 123), which is consistent with dispersal patterns in this species.  

Territory boundaries are mapped each breeding season during April and May using aerial 

photography as outlined by Woolfenden & Fitzpatrick (1984). The maps are digitized using 

ArcGIS (ESRI, Redlands, California, USA). The study area is composed of 5 m2 cells in a grid. 

Controlled burns take place throughout the study area in different return intervals ranging from 2 
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to 60+ years. Thus, Florida Scrub-Jay territories can encompass multiple burn units. Since the 

start of the study, the monitored area has increased as Archbold has acquired adjacent properties 

so there are some territories where the scrub-jays were banded and censused, but the territory 

lacks data on composition. For analyses examining the effect of territory quality in terms of size 

and structural composition, we used a smaller data set including breeders where there is data 

available that describe quality at the breeding territory (N = 480).   

Statistical Analyses  

We initially estimated median survival using the non-parametric Kaplan-Meier method 

(cite) across all breeding cohorts from 1981 to 2016. We also estimated survival for each 

breeding cohort and for males and females separately. Breeding cohort refers to individuals that 

bred for the first time in the same year. For the remainder of the analyses, we used the Cox 

family of regression models to analyze mortality risk throughout the breeding lifespan. Cox 

models are appropriate for time to event data and can accommodate censored data (Therneau and 

Grambasch 2000). Right censored data result when the event of interest does not occur during 

the observation period, or the individual exits the study or observation period before an event 

occurs. In this case, all we know is that the event time exceeds the observation time (Fox 2001).  

The breeding lifespan begins when birds are classified as a breeder (t = 0) to death or 

right censorship. Individuals still alive as of the monthly census in April 2016 were right-

censored (i.e., their death dates are unknown but greater than the April 2016 census). Individual 

scrub-jays transition to the breeding stage once they lay or sire an egg and they remain in that 

stage till death, regardless of breeding success. Individuals enter this stage at different ages, but 

typically Florida Scrub-Jay adults become breeders at age 2 or 3 (Figure 1). Immigrants that 

dispersed into the study area are of unknown age but they are at least one year old. Breeders are 
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faithful to their established territories and it is very unlikely for breeders to disperse off the study 

tract (Woolfenden and Fitzpatrick 1984). Breeders do not disperse; if they move, it is to a nearby 

territory (McDonald et al. 1996) Thus, when a breeder disappears from the monthly censuses, it 

is overwhelmingly likely that it is dead: no breeder has ever disappeared for longer than one 

census and been resighted, and no breeder has ever been found breeding elsewhere in the region 

(Woolfenden and Fitzpatrick 1984; McDonald et al. 1996; Mumme 2000). 

We first fit standard Cox proportional hazard models (Therneau and Grambasch 2000) to 

estimate survival probability with sex, breeding cohort, and age at first breeding as covariates. 

Breeding cohort year was modeled as a factor in the proportional hazard models. Cox models can 

be extended to cases where hazards are not proportional over time or where covariate values are 

updated during the entire follow-up time (Therneau and Grambsch 2000; Thomas and Reyes 

2014). The follow-up time is split into intervals where the value of covariates is recorded at the 

beginning of the interval and stays the same until the start of the next interval, when the covariate 

value is updated. Individuals enter each interval until censorship or death. These models require 

that the time intervals are specified, although they do not need to be equally spaced (Thomas and 

Reyes 2014).  

For the time-varying Cox models, we use an interval of one year, or until death. Territory 

size, group size, age and fledgling number change at the beginning of each time interval. Group 

size was measured as the number of adults present at the breeding territory at each April census. 

We considered territory quality with a smaller data set (N = 480) excluding breeders residing in 

territories without this information. Territory size, amount of oak scrub and amount of territory 

in the 2 – 9 year fire return interval all reflect territory quality. All three are positively correlated 

so we performed a principal component analysis. The first principal component represented all 
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three variables and accounted for 72% of the variance so we used territory size for easier 

biological interpretation. We transformed territory size by standardizing whereby the values are 

in terms of standard deviations. 

Finally, we fit Cox models with mixed effects, which are equivalent to shared frailty 

models (Therneau and Grambasch 2000; another). Frailty refers to excess risk in survival time, 

where some individuals are more frail than others, and will experience an event sooner than more 

robust individuals (Therneau & Grambsch 2000; Wienke 2010; Govindarajulu et al. 2011). 

Frailty terms modify the hazard function for individuals within groups that share some 

characteristic, such as families or birth cohorts. The frailty terms in Cox models are estimated 

from a Gaussian distribution with a mean of 0 and a variance-covariance matrix Σ that describes 

the structure of correlations between individuals (Therneau, Grambsch, & Pankratz 2003; 

Pankratz, de Andrade & Therneau 2005). Nest year or current year was included as a random 

term instead of a fixed effect or factor as described above.  

An additional advantage of using mixed effects or frailty models is incorporation of a 

kinship matrix constructed from a pedigree. Using a covariance structure in models of survival 

from the kinship matrix is preferable to the shared frailty approach of Fox et al. (2006), because 

members of a family are not treated uniformly but instead the shared frailties are estimated from 

the degree of genetic relatedness. We constructed a pedigree object in R from the complete 

pedigree based on parental data using the package kinship2 1.6.4 (Therneau & Sinnwell 2015). 

We then used this pedigree to estimate the kinship matrix for individuals in the population. All 

analyses were performed in R 3.3.2 (R Development Core Team, 2016). 
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Results  

 The breeding lifespan is highly variable among cohorts for Florida Scrub-Jay breeders 

with similar means and variances for both sexes (Figure 1). The standard deviation in breeding 

life span is nearly as large as the mean for males and females (3.35 ± 3.08 & 3.32 ± 2.85, 

respectively). The pooled estimate of cumulative survival from the Kaplan-Meier survival 

estimates show, on average, half of a breeder cohort has died after 2 years of breeding (Figure 2). 

Breeder survival does not differ between the sexes until later ages, and then only slightly (Figure 

3). The coefficient for sex (male) in the Cox model is negative but not significant (exp(β) = 0.92, 

z = -1.10, p = 0.27).  

 Hazards are approximately proportional for males and females until near the maximum 

breeding lifespan, where female survival is lower than males (Figure 3). Age at first breeding is 

positively correlated with mortality risk during the breeding lifespan where the older the 

individual at time of first breeding, the higher the mortality risk relative to jays breeding for the 

first time at younger ages (Figure 4). The best fitting proportional hazard models include age at 

first breeding and sex (Table 1). The best fitting time-varying model was a mixed effect model 

with age at 1st breeding and group size as fixed effects and nest year as a random effect (Table 

2). Models with sex and current age as an additional fixed effects and kinship have similar 

support (Table 2). Fledge number is not a significant predictor of mortality hazard (exp(β) = 

1.02, z = 0.81, p = 0.42) and it is not included in the best fitting models, as determined by AIC 

(Table 2). Group size and mortality risk are negatively correlated, where each additional group 

member decreases risk by 7% (Figure 5). Territory size and mortality risk are negatively 

correlated, where a one standard deviation increase in territory size leads to a 10% decrease in 

risk. There is support for the interaction term between group size and territory size with a 
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positive relationship between the interaction and hazard (exp(β) = 1.17, z = 1.96, p = 0.050, 

Table 3). 

The best fitting model of the set with territory size includes nest year only with no fixed 

effects (Table 3). Territory size and group size are included as fixed effects in models within two 

AIC units of the best-fitting (Table 3). Kinship is included as an additional random effect in the 

top fitting models (Table 3). The estimated variance component for kinship varies drastically 

between models without territory size (N = 812) and models with territory size as a predictor (N 

= 480) (Table 4). The estimate for nest year is different for each set of models, but difference is 

not nearly as large as the difference in estimates for kinship (Table 4). Kinship changes risk from 

2 to 31% relative to the average mortality risk, depending on the model set (Table 4). Breeders 

have a 20-29% increase or reduction in risk due to current nest year, relative to the risk of 

individuals in an average year.  

Discussion 

 We found that kinship affects mortality risk where the spread of risk is up to 31%, 

meaning that risk can be up to 31% larger or smaller relative to the mean risk (Table 4). 

However, in models including territory size, the estimated variance for kinship is low (Table 4). 

The estimated relative risk is only 2%. This might appear to be a large discrepancy between 

estimates, but it merely reflects the fact that in this observational study kinship is not separable 

from territory. Due to the nature of the study and observational data, the effects of kinship 

include both genetic and non-genetic components. We found a distinct effect of kinship from 

territory size in the fledgling and juvenile stages; the estimates for the kinship variance 

components were much higher, even when territory size was included. The relative risk estimate 

was 77% from models with territory size, and 90% in models without (Feichtinger et al.). Fox et 
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al. (2006) found that territory identity reduced model deviance more than a homogenous survival 

model, as did maternal and paternal identity. The dispersal behavior and territory acquisition 

strategies of this species could result in a kin structure across space. Males can inherit their natal 

territory or they can bud a breeding space from the natal territory (Woolfenden and Fitzpatrick 

1984). These two strategies can result in related individuals in adjacent territories. Studies of 

different taxa have shown that dispersal patterns result in kin clusters, and this spatial 

arrangement of kin can influence reproductive success and survival, as demonstrated for 

microtine voles (Lambin and Yoccoz 1998), howler monkeys (Pope 2000), red grouse (MacColl 

et al. 2000), and brown bears (Støen et al. 2005). Group size also impacts mortality risk in 

precisely the way one might expect for a cooperative breeder: larger groups have lower hazard 

(Figure 5). Helpers can potentially increase survival of breeders by lowering the cost of 

reproduction for breeders by bringing reducing provisioning effort of the parents (Hatchwell 

2009). Paquet et al. (2015) found that helpers increase survival of breeder female sociable 

weavers, but decrease the survival of males, although this effect diminishes with age. Non-

breeding adult Florida Scrub-Jays participate in territory defense and anti-predator behavior in 

addition to feeding nestlings. Florida Scrub-Jays have a sentinel system whereby group members 

trade foraging with watching the territory for intruders and predators (Woolfenden and 

Fitzpatrick 1984). From our analyses we cannot tease apart the effects of reducing provisioning 

effort and predator detection on breeder survival, but it’s likely that both mechanisms are 

important.   

Pre-breeders are generally offspring of one or both breeders, so larger groups are a result 

of past reproductive success. These families may be able to hold on to larger, high quality 

territories whereby survival of nestlings is a function of kinship, brood size, group size, and 
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territory size mediated through nestling and juvenile body mass (Mumme et al. 2015, Feichtinger 

et al.). Increasing territory size by one standard deviation above the average decreases mortality 

risk by 10%. Large territories likely have more resources, including food, nesting sites and open 

areas from fire that provide places to forage.  

Cooperatively breeding species are of special interest in studies of kinship and 

demography because of the relationship between helping behavior and fitness. In these systems, 

there are mature individuals called helpers that help raise offspring of related or non-related 

individuals (Paquet et al. 2015). There is a large body of literature on kin selection, indirect and 

direct fitness benefits of helping and the evolution of cooperation (e.g. Clutton-Brock 2002; 

Hatchwell 2009; Griffin and West 2003). Hamilton (1969) proposed that helpers accrue indirect 

fitness benefits by increasing survival and reproductive success of related individuals. Recently, 

there is interest in the direct benefits of helping (Clutton-Brock 2002; Griffin and West 2002).  

Age at first breeding, year, and kinship structure survival during the breeder stage of 

Florida Scrub-Jays. Individuals generally start breeding at ages 2 or 3, with very few breeding at 

1 year and few waiting for longer than 3 years post-fledge (Figure 1). Entering the breeder stage 

at an older age increases hazard, although it is not clear if being an older breeder is inherently 

riskier, or if the mortality risk is higher simply because older first time breeders are closer to the 

expected lifespan. Males and females have similar mortality risk until around 8 years breeding, 

or approximately 10 or 11 years old. (Figure 2). Females may senesce faster than males at old 

ages and, there is some evidence of  female reproductive senescence in the species (Wilcoxen et 

al. 2013), but the sample size is small since so few jays survive for more than 10 years. This is 

the first use of a pedigree for estimating survival in a wild population. 
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Fledgling number does not have much impact on breeder survival (Table 2), but we used 

an interval of one year in our analyses. It’s possible that there is a cost of reproduction on 

survival, especially for females, but this cost diminishes throughout the year. For future analyses, 

we could split the year into smaller time intervals, such as months, to further explore this 

hypothesis.  

 We found that variation in survival of breeders is mainly driven by year to year 

variability in environmental conditions, and family identity, with an effect of group size, age at 

first breeding and territory size. Disease prevalence, abundance of predators, and climatic 

conditions such as precipitation are some of the environmental conditions that can vary year to 

year and influence survival of breeders. Drought may result in food stress, lowering survival, 

whereas precipitation may increase arthropod abundance, an important food resource, and 

increase survival. However, increased rainfall may also increase the abundance of disease 

vectors. Florida Scrub-Jays are susceptible to viral and bacterial infections, with periodic 

epidemics of vector-borne diseases such as avian malaria or encephalitis occurring on the study 

tract (Wilcoxen et al. 2010). Thus, there is likely a non-linear relationship between precipitation 

and survival. Future analyses could consider precipitation during different parts of the year 

(winter and summer, for example) as a predictor to further explain variation in breeder survival.  

Individual heterogeneity can be especially pronounced in small populations with a 

noticeable effect on population growth rate, net reproductive rate and generation time (Conner 

and White 1998). Florida Scrub-Jays are a federally Threatened species that has experienced a 

sharp decline in numbers due to development and habitat degradation, particularly fire 

suppression. These birds are habitat specialists with short-distance dispersal. Habitat connectivity 

has been lost and it has been estimated their numbers have declined by 90% since the beginning 
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of the twentieth century (Root 1998). Thus, ignoring unobserved variation could bias population 

level estimates of this species.  Future research can investigate the effects of variation in breeder 

survival due to kinship on estimates of population dynamics and viability.  

We have demonstrated that Florida Scrub-Jay breeder survival is a function of yearly 

environmental variation, kinship, age, group size and territory size. When territory quality is not 

considered, kinship has a strong effect on breeder survival, where mortality risk can increase or 

decrease by 31% from the degree of relatedness to other individuals in the population. However, 

this effect is diminished when territory size is included. This may indicate a kinship structure 

over space closely tied to territory, where related individuals occupy adjacent territories. Yearly 

variation strongly affects survival of breeders, and future research may consider variation among 

families or lineages in performance of different year types. This study highlights the potential 

importance of kinship in determining demographic rates of a cooperatively breeding species. 

Future research should focus on disentangling the effect of territory and kinship on survival of 

breeding Florida Scrub-Jays.  
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Tables 

Table 3.1. Model selection of Cox proportional hazard models for mortality risk of male and 

female Florida Scrub-Jay (Aphelocoma coerulescens) breeders from 1981 – 2016 (N = 994). Age 

refers to the minimum age at first breeding. Individuals hatched on the study tract are of known 

age, but most immigrants to the population are assigned a minimum age, usually 2 years old. 

Cohort refers to breeding cohort, or the first year bred.   

Model K AIC ΔAIC 

Age at 1st breeding 1 9912.89 0.00 

Age at 1st breeding + Sex 2 9913.79 0.90 

Age at 1st breeding + Sex + Breeding Cohort + Sex X 

Age 

38 9931.20 18.31 

Age at 1st breeding + Breeding Cohort 36 9933.01 20.12 

Age + Sex + Breeding Cohort 37 9934.12 21.23 
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Table 3.2. Model selection for time-varying Cox models with random effects (N = 812). Group 

size is a count of individuals present at the territory at the April census each year. Age refers to 

current age, as opposed to age when breeding for the first time. Nest year is the current breeding 

year. Kinship and nest year are random terms derived from a Gaussian distribution with a mean 

= 0 and a covariance matrix Σ.  

Model 

 

K AIC ΔAIC 

Age at 1st breeding + Group Size + Nest Year 

  

3 9391.36 0.00 

Age at 1st breeding + Group Size + Sex + Nest Year 

 

4 9391.84 0.48 

Age at 1st breeding + Group Size + Age + Nest Year 

 

4 9392.51 1.15 

Age at 1st breeding + Group Size + Nest Year + 

Kinship 

 

4 9392.73 1.37 

Age at 1st breeding + Group Size + Sex + Nest Year + 

Kinship 

 

5 9393.62 2.26 

Age at 1st breeding + Group Size + Age + Nest Year + 

Kinship 

 

5 9393.97 2.61 

Age at 1st breeding + Group Size + Fledge Number + 

Nest Year + Kinship 

 

5 9394.17 2.81 
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Table 3.3. Model selection for mixed effects Cox models with time-varying covariates of 

mortality risk of breeder Florida Scrub-Jays in territories where there is information on territory 

composition (N = 480). Kinship and nest year are random effects derived from a Gaussian 

distribution with a mean = 0 and a covariance matrix Σ. The kinship matrix derived from the 

population’s pedigree is used as the covariance structure. Nest year is the current year.  

Model 

 

K AIC ΔAIC 

Nest Year 

 

1 5087.87 0.00 

Age 1st breeding + Territory Size + Nest Year 

 

3 5089.55 1.69 

Age 1st breeding + Group Size X Territory Size + Nest Year 

 

5 5089.65 1.79 

Age 1st breeding + Group Size + Nest Year 

 

3 5089.78 1.91 

Nest Year + Kinship 

 

2 5089.87 2.00 

Age 1st breeding + Territory Size + Kinship + Nest Year 

 

4 5091.55 3.69 

Age 1st breeding + Group Size X Territory Size + Nest Year + 

Kinship 

 

6 5091.78 3.91 
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Table 3.4. Relative risk estimates for the random effects or shared frailty terms for the best 

supported model with kinship as a random term with a territory quality variable (N = 480) and 

without (N = 812). Age at 1st breeding, group size and territory size are fixed effects. Relative 

risk can be estimated from exponentiation of the standard deviation of the variance component 

exp (√𝑉𝑎𝑟).  

Model Term Relative Risk 

 

Age at 1st breeding + Group Size + Kinship + Year 

Kinship 0.31 

Nest Year 0.29 

 

Age at 1st breeding + Territory Size + Kinship + Nest 

Year 

Kinship 0.02 

Nest Year 0.20 
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Figures  

 

Figure 3.1. Distribution of ages at first breeding for male and female Florida Scrub-Jays from 

1981 to 2015 (N = 958) at Archbold Biological Station. Some breeders in the population have 

dispersed into the study tract and therefore the exact age is unknown. 
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Figure 3.2. Kaplan-Meier survival estimate for Florida Scrub-Jay breeders in a marked 

population residing at Archbold Biological Station for all breeder cohorts from 1981 – 2016 (N = 

994). The interval starts the day individuals lay or sire an egg for the first time and ends at death 

or right censorship, which are individuals still alive as of April 2016. Thus, the time scale 

represents the breeding time-span, not age in years.  
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Figure 3.3. Kaplan-Meier survival estimate for male and female Florida Scrub-Jay breeders (N = 

480, 478, respectively) across all years from 1981 – 2016.  
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Figure 3.4. Predicted relative risk from a Cox proportional hazard model for age at first breeding 

for Florida Scrub-Jays. Individuals hatched on the study area are of known age, while 

immigrants are assigned a minimum age, which is usually age 2. Individual hazard is relative to 

the reference group, here it is age at first breeding and represented by the dashed line. The 

shaded region represents the upper and lower 95% confidence intervals. 
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Figure 3.5. Relative risk as a function of group size across individual Florida Scrub-Jay breeding 

lifespans. Hazard is estimated for the mean group size where the hazard ratio is 1.0. The mean 

group size is where the predicted hazard line crosses the dashed line. The shaded region 

represents the upper and lower 95% confidence intervals.  


	University of South Florida
	Scholar Commons
	July 2017

	Beyond Age and Stage: Consequences of Individual Variation in Demographic Traits
	Erin Elizabeth Feichtinger
	Scholar Commons Citation


	tmp.1507291223.pdf.ad72d

