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Abstract

Microscopy image processing is an emerging and quickly growing field in medical imag-

ing research area. Recent advancements in technology including higher computation power,

larger and cheaper storage modules, and more efficient and faster data acquisition devices

such as whole-slide imaging scanners contributed to the recent microscopy image processing

research advancement. Most of the methods in this research area either focus on automati-

cally process images and make it easier for pathologists to direct their focus on the important

regions in the image, or they aim to automate the whole job of experts including processing

and classifying images or tissues that leads to disease diagnosis.

This dissertation is consisted of four different frameworks to process microscopy images.

All of them include methods for segmentation either as the whole suggested framework or

the initial part of the framework for future feature extraction and classification. Specifically,

the first proposed framework is a general segmentation method that works on histology

images from different tissues and segments relatively solid nuclei in the image, and the next

three frameworks work on cervical microscopy images, segmenting cervical nuclei/cells. Two

of these frameworks focus on cervical tissue segmentation and classification using histology

images and the last framework is a comprehensive segmentation framework that segments

overlapping cervical cells in cervical cytology Pap smear images.

One of the several commonalities among these frameworks is that they all work at the

region level and use different region features to segment regions and later either expand,

split or refine the segmented regions to produce the final segmentation output. Moreover, all

proposed frameworks work relatively much faster than other methods on the same datasets.

vii



Finally, proving ground truth for datasets to be used in the training phase of microscopy

image processing algorithms is relatively time-consuming, complicated and costly. Therefore,

I designed the frameworks in such a way that they set most (if not all) of the parameters

adaptively based on each image that is being processed at the time. All of the included

frameworks either do not depend on training datasets at all (first three of the four discussed

frameworks) or need very small training datasets to learn or set a few parameters.
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Chapter 1

Introduction and Overview

1.1 Motivation

Cancer diagnosis relies on tissue and cellular analysis. Conventional analysis includes

viewing cell smears or tissues under a microscope, examining the structure and functions of

cells (cytology) or tissues (histology), scoring the expression and diagnosing or grading the

disease, most of which is done manually. Using computer-aided diagnosis (CAD) systems to

facilitate this process is desirable for several reasons, a few of which are listed below.

• Manual analysis is prone to interobserver variability and misdiagnoses: two patholo-

gists can look at the same tissue and make a different diagnosis [1]. Also, misdiagnoses

are occurring frequently at the rate of 15% to 28% according to The American Journal

of Medicine and BMJ Quality and Safety respectively [2]. These misdiagnoses can sub-

sequently lead to a patient’s emotional distress, unnecessary practices and malpractice

claims. It is estimated that medical errors cost between $17 billion and $29 billion

annually in the U.S. [3].

• The workload on pathologists can be reduced by detecting benign areas and directing

pathologists to work on more suspicious areas. For example, around 80% of all per-

formed prostate biopsies in the U.S. are benign, suggesting that prostate pathologists

are spending large portion of their time on benign tissues [4].

• Pathology quantification cannot be easily done by the human visual system. For exam-

ple, to grade breast cancer, based on the commonly used modified Bloom-Richardson
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system, tubule formation, nuclear atypia and mitotic rate need to be assessed which

are hampered by observer variability [5]. Moreover, quantifying chromatin distribu-

tion, comparing average nuclear areas, assessing some morphometric descriptions, etc.

are nearly impossible manually [1].

Increasing availability of automated and semi-automated microscope slide scanners, such

as cost and time efficient whole slide imaging (WSI) scanners, have lead to a growing amount

of image data which subsequently made CAD one of the major research subjects in medical

imaging [6, 4]. CAD systems can automate manual medical procedures, help doctors by

guiding them in medical operations and reduce their workload by localizing regions of inter-

ests. Therefore, they will facilitate medical research, decrease the costs of medical treatments

and ultimately lead to earlier disease diagnosis while reducing mortality rates and emotional

distress.

This chapter presents an introduction to the cancer diagnosis and the main approaches

in which CAD systems tackle different tasks im microscopy image processing. In Section 1.2

the burden of cancers, specifically cervical cancer and its causes and screening are discussed.

Section 1.3 compares cytology to histology and discusses tissue staining. Section 1.4 presents

and discusses different category of methods in CAD systems designed for image segmentation,

and finaly in Section 1.5 the dissertation overview is presented.

1.2 Cancers

Diseases, such as different cancers, put a huge financial and emotional burden on the

society. Only in the U.S., about 1,685,210 new cancer cases are expected to be diagnosed1

and about 595,690 Americans are expected to die of cancer, which translates to about 1,630

people per day in 2016, according to American Cancer Society [7]. The Agency for Healthcare

Research and Quality estimates that the medical costs for cancer in the U.S. were $74.8

1Excluding carcinoma in situ of any site except urinary bladder and basal cell or squamous cell skin
cancers.
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billion, in 2013 [7]. Moreover, in the U.S., the lifetime risk of developing cancer is 42% (1

in 2) in men and 38% (1 in 3) in women and it is the second most common cause of death,

exceeded only by heart disease, and accounts for nearly 1 of every 4 deaths [7]. These facts

and estimates highlight the importance of CAD systems.

1.2.1 Cervical Cancer

It is estimated that 12,900 new cases of invasive cervical cancer will be diagnosed in 2015

and it will result in 4,100 deaths in the U.S., according to American Cancer Society [7].

Although cervical cancer is not among the 10 most common cancers among women in the

U.S., it is of much higher concern in lower-resource countries: it is the most prevalent cancer

among women in 39 of the 184 countries worldwide, and is the leading cause of deaths from

cancer in women in 45 countries [8]. Currently, worldwide, cervical cancer is the fourth most

common cancer and the fourth cause of cancer death in women [8].

1.2.1.1 Causes

Virtually all cervical cancers are caused by persistent infection of high-risk Human pa-

pillomavirus (HPV) types which is the most common sexually transmitted infection in the

U.S. [9]. HPV types 16 and 18 alone account for around 70% of all cervical cancer inci-

dences. After infection with HPV, it may access the basal cells through micro-abrasions in

the cervical epithelium [10] and cause cellular changes. Although most new infections will be

suppressed by the immune system within 1 to 2 years without causing cancer, if not cleared,

they may cause precancerous lesions. Typically within 5-10 years of infection, around 10%

of new infections may persist and develop into precancerous lesions [11]. About 20% of pre-

cancerous lesions subsequently progress and develop into invasive cancer over many years,

even decades. The slow overall progression of HPV infection into invasive cervical cancer

makes its prevention more practical.
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1.2.1.2 Screening

Although cervical cancer is one of the most deadly cancers in women worldwide, it is

also one of the most preventable cancers with early screening. Cervical cancer incidence and

mortality rates have decreased by more than 50% over the past three decades, with most

of the reduction attributed to screening with the Papanicolaou (Pap) test, which can detect

both cervical cancer and precancerous lesions [9]. In the U.S., the conventional Pap test

has been replaced by an automated liquid-based Pap cytology test, in which, cervical cells

are collected with plastic devices, either a cervical broom or combined plastic spatula and

cervical brush, and are transported to a laboratory in preservative liquid [12]. There, they

are processed to produce slide preparations using one of the approved systems, SurePath or

Thin Prep, by the Food and Drug Administration (FDA).

The Bethesda System (TBS) is used to report the Pap test result. A Pap test result

will be negative if there are no epithelial cell abnormalities. For abnormalities four main

categories of results are as below.

• Atypical Squamous Cells (ASC): It can be either atypical squamous cells of undeter-

mined significance (ASC-US) or atypical squamous cells (ASC-H) which cannot exclude

a High-grade squamous intraepithelial lesion (HSIL).

• Low-grade Squamous Intraepithelial Lesions (LSILs): It shows the existence of mild

dysplasia or cervical intraepithelial neoplasia, grade 1 (CIN-1). CIN-1 is not considered

precancerous lesion and most of their cases will clear without any treatment.

• High-grade Squamous Intraepithelial Lesions (HSILs): It means that more severe ab-

normalities than LSIL exist. HSILs contain cells with moderate or severe dysplasia

and may be classified as CIN-2 or CIN-3.

• Squamous Cell Carcinoma (SCC): It is invasive cervical cancer which invades deeply

into cervix or other tissues or organs.
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Figure 1.1: Progression from HPV infection to invasive cancer (Diagram is reused from [10] and four top images are taken from
[11] – the second image from left shows an LSIL and the third image from left shows an HSIL. Permission of use can be found
in Appendix A.)



Fig. 1.1 shows different stages of an HPV infection and its progression to invasive cervical

cancer, with sample images from normal cervix, CIN-1, CIN-2/3 and invasive cancer.

If a Pap cytology test shows high risks of developing precancerous or cancer, usually a

biopsy is performed and diagnosis and treatment are done based on histology. Actually, the

clinical histology process begins when the physician determines that the treatment cannot

proceed further without histology confirmation [1].

1.3 Cytology vs Histology

Microscopic image analysis includes processing and analysis of microscopy images which

are obtained through one of the two main processes: cytology and histology. Cytology is the

microscopic examination of cells whereas histology is the microscopic inspection of plant or

animal tissue. Histology in comparison to cytology is usually more expensive, complicated,

comprehensive, invasive and reliable [13, 14]. Because of faster preparation and being less

invasive, cytology tests, such as cervical Pap smear, are more common. However, histology

is considered the gold standard in diagnosing almost all types of cancers [4, 15].

1.3.1 Staining

Tissue samples or cell smears are stained to highlight different components of tissue or

different parts of cell tissue. There are several histology stains. Some of them are used for

very specific biological tissues, while some others are used for general purposes. The most

common combination of histology stains used for general purpose staining is hematoxylin and

eosin (H&E). Hematoxylin binds to acidic structures and appears blue/purple, while eosin

is an acid aniline dye and stains basic structures and proteins and appears pink/red. Due

to the presence of nucleic acids, hematoxylin binds to nuclei and they appear blue/purple.

Cytoplasm, connective tissue, red blood cells, etc., bind with eosin and appear pink/red.
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One of the advantages of different colors obtained by hematoxylin and eosin is that stain-

ing can be separated. The color formation in images produced with brightfield microscopy

can be modeled based on the Lambert-Beer law. Ruifrok and Johnston [16] proposed a

method to separate immunohistochemical. Using their proposed method colors in H&E

stained images can be separated into hematoxylin, eosin and background channels. Using

the hematoxylin channel to detect and segment nuclei can potentially improve the perfor-

mance, because nuclei have higher contrast with surronding structures in the hematoxylin

channel image than the grayscale image. On a different note, technical or appearance vari-

ability (caused by different processes of preparation) can pose a difficulty in segmenting

nuclei. Color normalization algorithms [17, 18] have been proposed to normalize staining

in different images. It has been shown that stain normalization can improve segmentations

[18, 16].

1.4 CAD Systems

In this section the nucleus segmentation algorithms used in different CAD systems are

discussed. Based on how an algorithm approaches segmenting nuclei, most of the segmen-

tation methods can be divided into two categories: pixel-based [19, 20, 21, 22, 23] and

boundary-based [24, 25, 26, 27]. Pixel-based methods focus on classifying pixels as belong-

ing to nuclei or background and boundary-based methods segment nuclei by finding the

boundaries. Other than level set methods which find the boundaries of regions, most of the

other methods classify pixels using thresholding, morphological operations, classifiers, wa-

tershed segmentation, probabilistic models, etc. The segmentation algorithms of microscopy

images in the literature [4, 28, 5, 29, 1, 30, 31] can be broadly divided into six main categories,

based on the main component of their algorithms as follows 2.

2Many algorithms have a combination of these type of approaches in different steps and therefore, this
categorization is clearly not optimal.
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1. Intensity Based Approaches: Intensity based approaches [32, 33, 34, 35, 36, 37] use

(adaptive) thresholding, contour tracing algorithms and morphological operations as

their main tools to segment nuclei. They are usually developed for specific purposes

(single type of tissue/image), are not generalizable and are susceptible to technical

variability and staining variation. Such approaches use image information at the pixel

level and therefore, do not take advantage of object level features. Although they may

not obtain a very accurate segmentation, they are usually faster than other type of

approaches and can achieve acceptable results in almost real time.

2. Region Based Approaches: Region based approaches [20, 22, 38, 39, 40, 22, 41, 42,

43, 44, 45], e.g. watershed segmentation and region growing, work by merging or

dividing regions based on some criteria. Watershed segmentation methods usually

over-segment the image and an extra step is needed to merge some regions or refine

the region boundaries. Most of these approaches, whether they grow the region or

divide the region to construct the segmentation, need seed points and therefore, are

coupled with some nucleus detector algorithms described earlier.

3. Level Set Methods: Level set methods [24, 25, 26, 46, 27, 47, 48, 49, 50, 51, 52, 53], e.g.

active contours, are one of the most popular approaches for microscopy image segmen-

tation. They are computationally expensive, but can provide accurate segmentations.

Active contours are deformable models that try to minimize an energy function based

on image gradient and contour shape. Therefore, they are mostly segmenting regions

by fitting to regions boundaries. Active contours can fit to boundaries most accurately

if they are initialized close to the boundary. Therefore, these methods need initial

seeds too and are usually coupled with detection algorithms.

4. Probabilistic Models: Probabilistic models [54, 55, 56, 57] represent nuclei as weighted

sum of several Gaussian densities or as a mixture of Gaussian and other (e.g. Gamma)
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densities [57] or create probability maps and determine the probability of each pixel

belonging to a nucleus [55].

5. Graphical Models: Graphical models [58, 59, 60, 61, 62], e.g. graph cuts, represent

the image as a graph in which pixels are nodes and pixel adjacencies are edges. A

segmentation using these models partitions the graph into subgraphs so that the sim-

ilarity within subgraphs is high and similarities between subgraphs is low. Although

graph cuts [63, 64, 65, 66] were introduced and used in the computer vision more than

two decades ago, they were not very popular for microscopy image segmentation until

recently [59, 67, 60, 61, 62].

6. Machine Learning Approaches: Machine learning is another popular category of ap-

proaches which aim to cluster or classify pixels as different nuclei [19, 68, 69, 70, 71,

72, 73, 74, 75, 76]. Unsupervised or semi-supervised clustering algorithms or other

classifiers such as Support Vector Machine (SVM) classifiers are used to construct a

rough segmentation and usually another step is needed to refine the segmentation. A

downside for these approaches is that they need training data.

1.5 Dissertation Overview

In this dissertation I explored several CAD systems that are designed to process mi-

croscopy medical images and diagnose cancers, specifically cervical cancer. This research

focuses on cervical tissue segmentation and classification and the main aim is to design CAD

systems for cervical cancer diagnosis with algorithms that have fewer steps overall, need

less parameter tunning and are less sensitive to batch effects. Efficient and more accurate

CAD systems to diagnose cervical cancer in cervical cytology images can lead to a more

cost effective cervical screening by reducing the workload of the pathologists. Hence, it
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can potentially decrease the mortality rate from cervical cancer in women especially in less

developed countries with limited access to resources.

Chapter 2 discusses the recent methods and CAD systems. In Chapter 3, a method

to segment nuclei in histology images is proposed. In Chapter 4, an ensemble approach for

cervical tissue classification is proposed. Chapter 5 presents a framework to segment cervical

histology images and classify cervical tissues using the nucleus level texture features. In

Chapter 6, a method for segmenting overlapping cervical cells in Pap smear cervical cytology

images is presented. Finally, in Chapter 7, the dissertation is summarized, the contributions

are discussed, and future directions are presented.
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Chapter 2

Related Work

Most of the limited work on analysis of cervical histology images aims to classify the

tissues [77, 78, 79] and cervical histology image segmentation is less addressed [68]. On the

contrary, a large focus in microscopy medical image analysis is on breast cancer histology

images [22, 19, 80, 71, 26] and they mostly tackle the task of detection and segmentation of

(overlapping) nuclei. This difference of focus levels can be justified: the majority of women in

developed countries do repeated cervical screening, which is mostly done by the Pap cytology

test and only a very small percentage of those patients undergo a biopsy. So, in other

words, automation in cervical cytology is of much higher importance than cervical histology.

However, breast cancer is the most prevalent cancer in women [8] and with a reported

suspicious abnormality by mammography or ultrasound test, a biopsy is performed and

diagnosis is carried out by histology confirmation. Because most sophisticated methods on

histology image segmentation are proposed to segment images other than cervical histology

images and because of the fact that most of these methods can potentially be modified to

work on cervical histology images, I will also review the methods proposed and evaluated

for other histology images, mostly breast histology images.

Most of the focus of CAD systems in histology is on nuclei and their degrees of abnor-

mality1 while in cytology nuclei and their corresponding cytoplasms2 are of interest.

1In histology, algorithms mostly try to detect or segment (and/or classify) nuclei rather than cells.
2Cell structure and features, such as ratio of nucleus area to cytoplasm area, are the most important

factors for diagnosis in cytology.
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In the following two sections I will investigate some of the most recent advances on nucleus

detection and segmentation in histology. Then, in the third section I will review most recent

algorithms for cervical cytology segmentation.

2.1 Nucleus Detection

Most of segmentation methods, such as region growing methods and watershed algo-

rithms, depend on initial markers or seed points. Level set methods also usually need

to initialize contours close to nuclei boundaries. Therefore, nucleus detection is a criti-

cal task. Commonly, algorithms detect nuclei using adaptive thresholding [81], peaks of

Euclidean distance map and Laplacian of Gaussian (LoG) to find centers of large blobs

[82, 67], color clustering of the pixels to identify subcellular components (nuclei, cytoplasm,

neuropil, and background) [83], H-maxima/minima transform to detect maxima/minima as

seeds [20, 68, 59] and a Hough transform to detect circular-shaped regions [84]. Fuzzy c-

means clustering [48] and the expectation maximization (EM) algorithm [26] have also been

employed. These methods are generally based on the assumption that nuclei are circular-

shaped regions with relatively low and homogeneous intensity and a predetermined range of

sizes. However, these assumptions usually do not hold for severely abnormal nuclei which

can have very large sizes and heterogeneous area.

Dalle et al. [82] proposed a method that detects only a subset of critical nuclei which is

used for a segmentation algorithm to ultimately score the nuclear pleomorphism in histopatho-

logical images. The proposed nucleus detector algorithm uses thresholding and morphological

operations to detect the seeds and uses a distance transform to estimate the size of nuclei and

reject those which are larger than a threshold. Detected patches of images are later trans-

formed into a polar coordinate system and the nuclei are segmented. Then, using biquadratic

filtering they produced a gradient image from which nuclei boundaries are delineated.
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Nucleus detection can also be considered as a classification problem. Han et al. [85]

trained a Support Vector Machine (SVM) classifier with positive and negative training sub-

images centered at the nucleus centroid. They used raw pixel intensities and Laplacian of

Gaussian edge intensities as the features and detected rectangular windows inside the images.

Some nucleus detectors perform the detection in two major steps: they first over-detect

blobs and then rejects some of the blobs and keeps the other candidates. Three such methods

are described below.

• Basavanhally et al. [23] proposed a region growing method to detect lymphocyte nuclei

based on the fact that they are circular regions of low and continuous intensity. They

smoothed the image with Gaussian kernels at different scales, and selected the darkest

pixels at each scale as seeds. The seeds were expanded in a growing process: for

each seed, n, a bounding box with size 12σG × 12σG was constructed, where σG is

the standard deviation used to create the Gaussian kernel. Then at each iteration,

the darkest pixel along the eight-connected region boundary was added to the region.

The growing process continued until a pixel on the boundary of the bounding box

was added. Then the intermediate region which had the highest difference between its

inner and outer boundaries was selected. This method over-detected lymphocytes and

they used maximum a posteriori (MAP) estimation that incorporated size, luminance,

and spatial proximity information to reject some of the regions.

• Wienert et al. [33] employed a contour tracing approach [86] to detect cells in a dataset

composed of histological images from various tissues. Contour start pixels were de-

fined as the positions at which the gradient between each pair of neighboring local

minima/maxima or maxima/minima was maximal. Subsequently, the object contours

were followed clockwise using an eight-connected neighborhood and those contours

which reach their corresponding start pixel were considered valid. The importance of

contours was measured by mean gradient and gradient fit. A non-overlapping segmen-
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tation was then constructed by assigning each pixels to the most important contour

(Fig. 2.1b). The resulting contours were then optimized using a distance transfor-

mation [87] (Fig. 2.1c) and some of them were rejected based on a concavity check

(Fig. 2.1d). To classify the final contours as cell nuclei and other objects, color decon-

volution [16] was used and those contours which have a higher Hematoxylin intensity

than a threshold, computed by Otsu thresholding [88], were selected as cell contours

(Fig. 2.1e). The total number of initial contours found from image in (Fig. 2.1a) was

29,815 and after different steps 119 cell contours remained in the final segmentation

(Fig. 2.1e).

• Arteta et al. [89] employed a popular and efficient maximally stable extremal region

(MSER) detector [90] to find initial regions. The MSER detector finds extremal regions

which are maximally stable in the sense that the speed of their area variation with

respect to changing a threshold t (which is used to binarize the image) is a local

minimum and is below a separate stability threshold. By choosing a high similarity

threshold, cell regions were over-detected. To each region a score, measuring how

likely it is a cell region, was assigned using a classifier. A 92-dimensional feature

vector was computed and learning was done in a principled fashion from the dot-

annotated training data using a structured SVM classifier. The regions were organized

into trees according to the nestedness property, so that each tree corresponded to a set

of overlapping extremal regions, and a set of non-overlapping regions were selected in

a dynamic programming fashion which maximized the sum of its regions’ scores.

Other than the approach proposed by Arteta et al. [89], there exist a few other recent

nucleus detectors which perform reasonably well and are applicable to different modalities.

Hafiane et al. [48] proposed a nucleus detector by combining a fuzzy c-means with spatial

constraints, active contours and iterative voting. Their method has three steps:
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(a) (b) (c) (d) (e)

Figure 2.1: Intermediate results of the segmentation method by Wienert et al. (a) Original
image and (b–e) results of different steps of the algorithm in [33] (Images are reused from
[33]. Permission of use can be found in Appendix A).

• Fuzzy c-means clustering with spatial constraints is used to find potential regions. Tra-

ditional fuzzy c-means clustering algorithm minimizes the objective function J(U, V )

defined by the sum of similarity measured as,

J(U, V ) =
C∑
i=1

N∑
j=1

umij‖xj − vi‖2, (2.1)

whereX = {x1,x2, . . . ,xN} denote the pixel feature vector and V = {v1,v2, . . . , ...,vC}

represents the prototypes, known as the clusters centers. Also, U = [uij], uij ∈ [0, 1] is

the partition matrix which satisfies the condition:
∑C

i ui,j = 1,∀j and m is a fuzzifier

which indicate the fuzziness of membership for each point. It has been shown that

incorporating spatial information brings more robustness and efficiency to the fuzzy

c-means algorithm [91], thus, changing the objective function J(U, V ) in (2.1) to

Jm(U, V ) = J(U, V ) + α
C∑
i=1

N∑
j=1

umij exp−
∑
k∈Ω u

m
ik , (2.2)

where Ω is a set of neighbors, and α is the weight of the term containing spatial

information. Optimization of 2.2 is solved by using Lagrange multipliers.

• Multiphase vector-based active contours were used to refine the segmentation obtained

in the previous step. They used a variant of a multiphase level set framework proposed
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by Vese and Chan [92] which involves minimization of a reduced or weak Mumford-Shah

functional Fn(c, φ) [93] and is an extension to their two-phase level set segmentation

algorithm [94]. The multiphase approach enables efficient partitioning of the image

into n classes using just log(n) level sets without leaving any gaps or having overlaps

between level sets. They simplified the computation of the length term in the reduced

Mumford and Shah energy function by replacing the measure of the characteristic

functions with the sum of the length of the zero-level sets of φi. They also used an

edge stopping function obtained from Beltrami color metric tensor to define a geodesic

length measure to make the approach vector-based. Therefore, their proposed variant

also works on higher dimensional (color) images.

• Individual nucleus centers were then detected from the nuclei clusters segmented in

the previous step. They used a technique based on iterative voting using the oriented

kernels approach described in [95, 96]. The approach is immune to noise and detects

nuclei centers from incomplete boundary information through voting and perceptual

grouping by applying a series of cone-shaped kernels that vote iteratively along the

radial or tangential directions [7]. The iterative approach refined the center of mass at

each iteration until it converged to a focal response. At each iteration and location on

the contour the voting kernel was aligned along the maximum response of the voting

space and the shape of the kernel was refined. Fig. 2.2 shows the evolution of the

voting landscape V(i, j) in a synthetic and a nucleus cluster image test image.

Some of the other more recent methods which can be specifically used to detect blobs

are as follows.

• Radial basis symmetry that was proposed by Loy and Zelinsky [97] is a gradient-based

algorithm to detect regions with high radial symmetry, and has been used by several

other segmentation algorithms as a nucleus detection method [22, 41]. It determines

16



0
20

40
60

80
100

120

0

20

40

60

80

100
0

200

400

600

800

1000

1200

0
20

40
60

80
100

120

0

20

40

60

80

100
0

500

1000

1500

2000

2500

3000

0
20

40
60

80
100

120

0

20

40

60

80

100
0

200

400

600

800

1000

1200

1400

0
10

20
30

40
50

0

10

20

30

40
0

200

400

600

800

1000

1200

(a)

0
10

20
30

40
50

0

10

20

30

40
0

200

400

600

800

1000

1200

1400

(b)

0
10

20
30

40
50

0

10

20

30

40
0

50

100

150

200

250

300

350

(c) (d)

Figure 2.2: Intermediate results of the segmentation method by Hafiane et al. Evolution
of the voting landscape V (i, j) and the resulting centers for a synthetic image (top), and a
nucleus cluster image (bottom). (a) iteration 1, (b) iteration 5, (c) iteration 10, (d) nucleus
contours (red) and centers (green) superimposed on the original image (Images are reused
from [48]. Permission of use can be found in Appendix A).

the symmetrical contribution of each pixel around an arbitrary pixel and therefore,

centroids of circular regions are highlighted, which can be subsequently thresholded to

find the seeds.

• An efficient machine learning approach was proposed by Vink et al. [21]. They con-

structed a large feature set and used a modified version of Adaboost which enables in-

clusion of the computational cost of each feature to create two detectors. The outputs

of the two detectors are then merged by a globally optimal active contour algorithm

to refine the border of the detected nuclei.

• A fast nucleus center localization approach proposed by Qi et al. [25][25] that utilizes

single-path voting along the direction of the image gradient. It is used to both detect

nuclei and also separate clumped nuclei.

• Hessian-based Laplacian of Gaussian (HLoG) using scale space theory as its foundation

identifies the single optimal scale on which a pre-segmentation is conducted [98]. The
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Hessian process is also able to delineate blobs and it’s shown that it can outperform

Radial basis symmetry and LoG-based detectors.

2.2 Nucleus Segmentation

The nucleus segmentation algorithms in the literature can be divided into six main cat-

egories as briefly discussed in previous chapter:

1. Intensity based approaches,

2. Region based approaches,

3. Level set methods,

4. Probabilistic models,

5. Graphical models, and

6. Machine learning approaches.

2.2.1 Intensity Based Approaches

Gurcan et al. [32] employed a morphological top-hat by reconstruction algorithm coupled

with hysteresis thresholding [99] to both detect and segment the cell nuclei. Cell clumps were

separated using a watershed transform.

Wienert et al. [33] used a contour tracing approach to first over-detect regions and then

selected a set of non-overlapping regions from which some of the candidates were selected

based on concavity and average intensity. Cong and Parvin [34] first binarized the image

based on a threshold computed from an intensity histogram and used polygon approximation

and employed a corner detector to find the corners with inward turning angles in cell clumps

to separate nuclei. After finding the crease points, images were enhanced through a variation

of nonlinear diffusion [100] to improve localization of crease points. Then hyperquadrics [101]
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were fit to initial boundaries and crease points. Using prior knowledge about nuclei shapes,

such as area and shape, hyperquadrics were evaluated and some were accepted as the cell

regions.

2.2.2 Region Based Approaches

Kothari et al. [20] proposed a watershed segmentation to segment and count nuclei in

fluorescently stained imagery of cervical and prostate carcinomas. Using the extended H-

maxima, seeds were chosen for watershed segmentation in a way that each nucleus receives

at least one seed. This led to an initial over-segmentation, i.e. a boundary was created

where there is no strong edge. In another step, regions were merged based on the gradient

magnitude along the boundary separating neighboring objects. Also, to separate clumped

nuclei, they have used the 3–4 distance transform for 2D images [87] and the 3–4–5 distance

transform for 3D images [102] to create a distance map and performed similar watershed

segmentation and merging regions with weak boundaries steps as before, to separate nuclei

inside clumps.

Veta et al. [22] proposed an automated nuclei segmentation method that works with

H&E stained breast cancer histopathology which can be divided into four main steps: 1)

pre-processing with color unmixing (Fig. 2.3b) and morphological operators (Fig. 2.3c),

2) marker-controlled watershed segmentation at multiple scales and with different markers,

3) post-processing for rejection of false regions and 4) merging of the results from multiple

scales. They performed watershed segmentation with two sets of foreground and background

markers: after employing fast radial symmetry transform (FRST) [97] (Fig. 2.3d) to localize

nuclei, its foreground and skeleton of background (Fig. 2.3e) was used as the first set

of markers for watershed segmentation (Fig. 2.3f) and regional minima foreground and

background of the output of morphological operators (Fig. 2.3g) was used as the second set

of markers (Fig. 2.3h).
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Figure 2.3: Intermediate results of the segmentation method by Veta et al. (a) Original
image and (b–h) results of different steps of the algorithm in [22] (Images are reused from
[31]. Permission of use can be found in Appendix A).

2.2.3 Level Set Methods

Cosatto et al. [84] employed a combination of difference of Gaussians and a Hough trans-

form to detect candidate nuclei followed by active contour to perform segmentation. Li et al.

[27] proposed a nucleus segmentation algorithm that is composed of three key steps: 1)

generating a diffused gradient vector flow field [103], 2) performing a gradient flow tracking

procedure to attract points to the basin of a sink, and 3) separating the image into small re-

gions, each containing one nucleus and nearby peripheral background, and performing local

adaptive thresholding in each small region to extract the cell nucleus from the background.

Fatakdawala et al. [26] used the output from a Gaussian mixture clustering algorithm to

initialize a magnetostatic active contour (MAC) Model [104]. The MAC model implements a

bidirectional force field F generated from a hypothetical magnetostatic interaction between

the set of contours S and the object boundary and therefore, allowing the contour to grow

or shrink towards object boundaries. Each MAC model may segment touching or overlap-

ping nuclei and the algorithm separates clumped nuclei with a process in which contours

segmenting nuclei clumps were split using a size heuristic and determining high concavity

points. They finally used K-means clustering [105] of first-order statistical texture features
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derived from within the object interior to classify the segmented regions as a lymphocyte or

not.

2.2.4 Probabilistic Models

Veillard et al. [55] calculated a probability map from 180 features extracted from texture

and scaled information in addition to simple pixel color intensities. The constructed map has

a strong object-background contrast and smoothing out the irregularities within the nuclei

and background. The probability map was then used for an active contour model with a

nuclei shape prior for the actual segmentation.

Shenoy et al. [56] proposed a probabilistic approach to simultaneously classify and seg-

ment multiple cells of different classes in a multi-variate setting. Superpixels were extracted

using the Simple Linear Iterative Clustering (SLIC) algorithm [106] from the input vector-

valued image, and a 2D hidden Markov model (HMM) was set up on the superpixel graph.

Instead of predicting the class label of each superpixel from its feature vector, information

from adjacent superpixels was utilized using HMM emission probabilities to ensure high con-

fidence in local class selection. Later, optimal superpixel-level class labels inferred using the

HMM were aggregated to obtain global multiple object segmentation.

2.2.5 Graphical Models

Ta et al. [59] employed Voronoi diagrams to segment nuclei images in cytological and

histological images and Chang et al. [58] proposed multi-reference graph cut (MRGC) based

on color and Laplacian of Gaussian features and used heuristics to separate clustered nuclei,

including curvature-based reasoning.

Bamford and Lovell [24] used Laplacian of Gaussian filtering with scale selection to

detect nucleus seed points followed by local maximum clustering to form a rough initial

segmentation. The refinement step in which nuclei in clumps were separated is done by
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energy minimization using a graph cut algorithm known as α-expansions [64]. The refinement

was formulated as an iterative binary labeling problem. At each iteration, one label was set

to an integer α, and the rest of the labels were set to another value, denoted α, where α 6= α.

To make the algorithm more efficient on clumps with large numbers of nuclei (seed points)

in them, they used graph coloring to color each seed point with a color different than its two-

level adjacent neighbors. Then, at each iteration all the labels with the same color were set

to α and all other labels were set to α. This made the algorithm more efficient by expanding

several seed points concurrently.

Poulain et al. [60] used two relatively basic techniques of markers controlled, watershed

[107] (or Skeleton by Influence Zones) with two sets of seeds and Fast Marching (FM) [108] (a

curve evolution based approach) to construct a dictionary of shapes. Basically, the dictionary

can be constructed using different segmentation algorithms or from the same segmentation

algorithms with different parameters. In the next main step, the energy function defined to

select the best candidates of shapes obtained from different segmentation maps was mini-

mized using an iterative graph cut algorithm [109]. They showed that this process allows

drastic improvement in the performance of each individual segmentation.

2.2.6 Machine Learning Approaches

Su et al. [72] proposed an ROI segmentation scheme using a fast scanning deep convolu-

tional neural network (fCNN) [110] and used it for region segmentation in histopathological

breast cancer images. Santamaria-Pang et al. [73] proposed a supervised machine learning

method to enhance and improve more general segmentation methods by utilizing hierarchical

shape ranking that uses a shape distance measure. Zhou et al. [75] used raw image patches

and their corresponding annotated binary masks to jointly learn a bank of convolutional

filters and a sparse linear regressor. They are used for feature extraction and building a

likelihood map which includes the likelihood of each pixel belonging to a nuclear region or
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background. Pixels were then labeled simply by thresholding the likelihood map. Kong

et al. [69] extracted color-texture at the local neighborhood of each pixel by a local Fourier

transform (LFT) from a new color space and used it, instead of pixel color intensities, to

classify each pixel into either the cell or extra-cellular category. The used color space is called

the most discriminant color space (MDC) and was learned by maximizing the classification

performance.

Jung et al. [68] binarized the image after preprocessing steps and used a distance trans-

form to generate a topographic surface. The surface was then modeled as a mixture of

Gaussians and clusters were formed. By using a separation and compactness measure, they

defined a cluster validity index based on a hypothetical number of nuclei. The number of

regional maximas in each cluster gives an upper bound for the number of its overlapped

nuclei and therefore, it was used as the initial number of nuclei. In an iterative fashion, this

number was decreased and the number of nuclei giving the highest cluster validity index

was selected. Then, separation lines between nuclei were found with a minimum-error-rate

classification scheme based on Bayesian classification. Later, the occluded contours were

reconstructed based on the fact that nuclei generally have ellipse-like shaped contours.

Su et al. [74] proposed an interactive semi-supervised segmentation method by classifying

feature-homogeneous superpixels into specific classes, guided by human intervention. It con-

sists of four main steps: 1) superpixel generation by clustering neighboring pixels, 2) active

annotation by drawing samples that minimizes the expected prediction error, 3) superpixel

classification by propagating labels over the affinity graph and 4) active verification to fix

misclassifications. After clustering pixels into superpixels, the most informative superpixels

were selected for human annotation. An affinity graph was constructed that characterizes

the pairwise similarity between the superpixels and the superpixels were classified into spec-

ified classes by propagating the human specified-labels to the unlabeled superpixels. At each

point, if the segmentation is not reliable, the algorithm selects a batch of error-prone super-
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pixels to query for verification. The new information was systematically propagated over an

augmented affinity graph to the unlabeled superpixels. This procedure was repeated until

most superpixels were classified into a specific category with high confidence. The approach

minimizes human effort by the early use of manual annotation/verification.

2.3 Cervical Cytology

In this Section I review some of the methods in the literature [51, 52, 42, 43, 53, 36, 111,

112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125] proposed specifically for

cervical cytology image segmentation.

Complete segmentation of cervical cells in Pap (or H&E) stained cervical cytology im-

ages is a difficult task fo several reasons: 1) folded cervical cells with spurious edges, 2)

poor contrast of cytoplasm boundaries, 3) presence of bacteria, neutrofils, mucus, blood and

inflammatory cells, 4) cervical cells overlapping. Another issue is that although newer prepa-

ration techniques (ThinPrep, SurePath, etc.) make very thin slides compared to traditional

techniques, remove most of the mucus and inflammatory cells and decrease the number of

overlapping cells, they still can range upwards of 30 m from glass to coverslip [126] and

therefore it is impossible to have all cervical cells in-focus simultaneously in a single focal

plane. However, extended depth of field (EDF) algorithms are proposed [127, 128] to create

a single image from a stack of images with different focal depth in a way that all objects in

the image are in-focus at the same time.

Most of the work on cervical cytology segmentation was done in the last decade and only

during the past couple years has the overlapping cervical cell segmentation in real cervical

cytology images been addressed [51, 52, 53, 35, 36]. However, there are a few other earlier

works which segment touching cells [117, 122].

To discuss the segmentation methods for cervical cytology images in the literature I

suggest to first divide them into three categories and discuss them separately:
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1. Nucleus segmentation,

2. Free-lying cell segmentation and

3. Overlapping cell segmentation.

2.3.1 Nucleus Segmentation

Nucleus segmentation [68, 45, 42, 43, 111, 114, 116, 119, 121, 123, 124, 125] is the most

studied category of method for cervical cell segmentation. Most of these methods ignore

cytoplasm segmentation, while a few other works [42, 43, 111, 120] segment the whole cy-

toplasm area too. Although this is not as useful as segmenting cytoplasms of each nucleus

separately, which is a much more difficult task addressed mostly by the methods in the

third category, such methods can be used to segment both the nucleus and corresponding

cytoplasm in images containing free-lying cells.

Some of the nucleus detectors described in Section 2.1, like [90], are used for nucleus

segmentation in cervical cytology images [51]. Wu et al. [123] first approximated the image

with a parametric image by iteratively minimizing a defined cost function and then obtained

the segmentation by simply segmenting the parametric image at its threshold parameter.

Plissiti et al. [111] over-detected nuclei by morphological analysis and then refined them by

incorporating a priori knowledge about the circumference of each nucleus. Later, classifiers

were used to reduce the false positive rate. In a similar approach, Plissiti et al. [116] de-

tected nuclei by the morphological image reconstruction process and their boundaries were

delineated from the morphological color gradient image with the watershed transform using

the nuclei markers extracted in the detection step. Classification was later carried out to

reduce the false positive rate. Plissiti and Nikou [119] used a level set method to segment

cells in images containing two overlapping nuclei. Zhang et al. [120] proposed a graph cut

approach to segment overlapping nuclei and also cell clumps. Overlapping nuclei were then

separated by two concave points-based approaches.
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Bergmeir et al. [114] proposed a more complicated approach in which the Canny edge

detector [129] was used to extract edges from the image after noise-removal and smoothing

by mean-shift and median filtering. Edges close to the background were removed and a

randomized Hough Transform was used to find ellipses. If an ellipse was reliable enough,

an active contour was initialized around a circle centered at the ellipse center to fit to the

boundary of the region. The region segmentation was accepted if its difference from the

ellipse is above a threshold.

Gençtav et al. [42] proposed a watershed based segmentation approach to segment and

classify overlapping nuclei. The method first extracts cell clumps in the image by converting

the image to CIE Lab color space and processing the L channel. By using a hierarchical

watershed-based segmentation, cell clumps were separated into smaller regions. Based on

different segmentations at various scales and by using a classifier, regions were classified as

a nucleus or cytoplasm region and they were finally merged to obtain the final segmentation

of overlapping nuclei and cytoplasm area. They used their method to segment nuclei and

their corresponding cytoplasm in a dataset of images containing free-lying cervical cells with

different degrees of abnormality.

2.3.2 Free-lying Cell Segmentation

Free-lying cell segmentation methods [112, 113, 115, 117, 118, 122] aim to segment both

the nucleus and its cytoplasm inside images containing free-lying cells. While most of these

methods [112, 113, 115, 118] work only on free-lying cells, a few other approaches also try

to separate touching cells [117] in an extra step.

Yang-Mao et al. [113] proposed an edge enhancement nucleus and cytoplast contour

which consists of five steps: 1) noise-removal with a trim-meaning filter while preserving the

sharpness of object boundaries, 2) a bigroup approach to isolate the object contour pixels

from background, 3) gradient computing using the Sobel operator, 4) edge enhancement
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with the mean vector difference (MVD) enhancer and 5) contour extraction by thresholding

the gradient map.

Béliz-Osorio et al. [122] used a locally constrained watershed transform to segment cer-

vical cells, and Harandi et al. [117] used geometric active contours to segment cells and

proposed an automatic circular decomposition method to separate touching cells. Pai et al.

[115] used an adaptable threshold decision method [130] to delineate cytoplasm boundary.

Then, they used a new method called the maximal gray-level-gradient-difference method

which iteratively extends the cells contour inwards to maximize the difference of the average

gray-levels of cytoplasm and nucleus.

Li et al. [118] proposed and used a variant of gradient vector flow (GVF), called radiating

GVF snake, to detect nuclei and cytoplasm boundaries in which the edge map is computed

in the direction of radials originated at the intensity-weighted centroid of the nucleus of the

segmented cell.

2.3.3 Overlapping Cell Segmentation

The most difficult tasks for cervical cytology segmentation are to detect and segment

nuclei and also their corresponding cytoplasm in real Pap smear images [51, 52, 53, 35, 36].

This can ideally lead to a fully automated system, which can segment images and extract

features to diagnose cervical disease and its extent based on TBS. All works in this area

are relatively recent. One of the first main works on this topic was done by Lu et al. [52].

Subsequently, two challenges and the datasets provided in the International Symposium on

Biomedical Engineering (ISBI) 2014 and 2015, encouraged more work on this topic [53, 35,

36].

Lu et al. [51] used a level set method as the primary tool to segment overlapping cells.

Their approach consists of three main steps: 1) cell clump segmentation, 2) nucleus detection
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and segmentation, 3) overlapping cytoplasm segmentation, each of which are described briefly

in the following.

• To segment the cell clump, the image was preprocessed with the quick shift algorithm

[131] and then a map of superpixels was constructed by finding local maxima of a

density function (Fig. 2.4b). Each superpixel was assigned a value in [0, 1] as the mode

of its pixel intensities and using an edge detector, superpixel edges were found (Fig.

2.4c). The convex hull of detected edges was computed and major parts of background

separated (Fig. 2.4d). Finally, for each convex hull, by maximum likelihood estimation

(MLE) a GMM was learned and used to classify its pixels as cell clump or background

(Fig. 2.4e).

• Nuclei candidates were found by the MSER algorithm and some of them were rejected

based on their features, such as eccentricity, area, mean intensity, and the area ratio

between the blob and the cell clump to which it belongs (Fig. 2.4f).

• The main step is to segment overlapping cytoplasms. In this step, to each nucleus, a

cytoplasm area was assigned using a level set method. A shape prior [132] was built

for the level set with two types of attractors (the estimated boundaries of the clumps

and individual cells) and two types of repellents (the background and the nuclei) and

an initial segmentation was created in several steps, such as assigning boundary pixels

to the closest nucleus, etc. For each of the N nuclei detected in a cell clump, a level

set function (LSF) was initialized at the geometric center of each initial segmented cell

with the computed shape prior and the energy functional to be minimized was defined

as

ε
(
{φi}Ni=1

)
=

N∑
i=1

εu(φi) +
N∑
i=1

∑
j∈N (i)

εb(φi, φj), (2.3)

where {φi}Ni=1 is the set of LSF’s, εu(.) is the unary energy functional defined for each

LSF, εb(., .) is the binary function defined over pairs of LSF’s, and N (i) represents the
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level set functions φj such that their zero level set intersects the zero level set of φi

(Fig. 2.4g).

(a) (b) (c) (d) (e) (f) (g)

Figure 2.4: Intermediate results of the improved joint optimization algorithm by Lu et al.
(a) Original image and (b–g) results of different steps of the algorithm in [51] (Images are
reused from [51]. Permission of use can be found in Appendix A).

Ushizima et al. [35] used bilateral filtering [133], contrast limited adaptive histogram

equalization [134] and statistical region merging [135] to segment cell clumps. Inside each

of the clumps, they used a local thresholding method [136] to segment nuclei. Then the

cytoplasm area was segmented by simply calculating Voronoi diagrams. The segmentation

results in non-overlapping cytoplasm. As their next improvement, in [36], they used mor-

phological reconstruction combined with optimization methods to determine the minimum

enclosing ellipse from the stack of cervical cytology images at different focal planes, which is

able to give overlapping cytoplasm segmentations.

Nosrati and Hamarneh [53] also used a level set method which uses a star-shape prior

first introduced by Veksler [137]. To find the nuclei, similar to Ushizima et al. [35], they used

bilateral filtering [133] and a local thresholding method [136] to detect the initial candidates.

Then using histogram of oriented gradient (HOG) [138] features and a random forests (RF)

classifier candidate regions were classified as nucleus or other objects. They reported that

their algorithm achieved superior results in comparison to [52].
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Chapter 3

Hierarchical Multilevel Thresholding for Nucleus Segmentation in Histology

Images

Part of this chapter was published in the 2016 SPIE Medical Imaging Symposium on

Digital Pathology [139].

3.1 Introduction

Automatic segmentation of histological images is an important step for increasing through-

put while maintaining high accuracy, avoiding variation from subjective bias, and reducing

the costs for diagnosing human illnesses such as cancer and Alzheimer’s disease. In this chap-

ter, a novel method for unsupervised segmentation of cell nuclei in stained histology tissue is

presented. Cellular features such as nuclear size, distribution and texture play an important

role in diagnosis and grading of diseases from histology tissue. To automatically quantify

features of microscopic nuclei in images of stained tissue, nuclei locations and boundaries

must first be located. Nucleus detection and segmentation has been addressed with a variety

of algorithms, including Gaussian mixture clustering [140], gradient flow tracking [141], wa-

tershed [22] and graph cuts [67]. Color normalization and color deconvolution can be used

to take advantage of color information from different stains to enhance results of nuclear seg-

mentation [18]. However, a general approach has been elusive because nuclei can be clustered

and exhibit a range of shapes, sizes, and colors depending on staining method and tissue

type [1]. Therefore, a general algorithm for segmenting nuclei stained with hematoxylin and

eosin (H&E) is proposed and the performance is evaluated using a dataset of biopsy images
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from various tissues. The proposed method requires no parameter learning or training data

because the parameter values are set adaptively, making the approach insensitive to intensity

variations. The Matlab code of the proposed method is made available publicly to enable

further research and benchmarking 1.

3.2 Method

The dataset used to evaluate the proposed method was provided by Wienert et al. [33],

and is discussed in the following.

3.2.1 Overview of the Method

Steps of the method are divided into two main parts: preprocessing and segmentation.

The preprocessing step consists of color deconvolution and image reconstruction. Segmen-

tation is based on binarization of the image from a threshold obtained from a multilevel

thresholding algorithm. The resulting segmentation divides “large” regions into smaller re-

gions followed by morphological operations to separate close regions and smooth out the

boundaries. The flow of the approach is presented in Fig. 3.1.

3.2.2 Preprocessing

The preprocessing step includes color deconvolution [16] by modeling the image colors

based on the Beer-Lambert Law. Since hematoxylin stains nucleic acids in the cell nucleus,

the hematoxylin channel was used for nuclear segmentation. The resulting grayscale image

was then processed with opening by reconstruction to connect close background regions to

each other.

The morphological process of closing by reconstruction is a common process after opening

by reconstruction. Due to the low resolution of images, closing by reconstruction connects

1http://www.csee.usf.edu/∼hady/codes/2016SPIE histology segmentation.zip.
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(a) (b)

(c) (d)

Figure 3.1: Flow of the hierarchal multilevel thresholding approach. (a) Original image, (b)
Hematoxylin channel after color deconvolution, and Opening by reconstruction on hema-
toxylin channel, (d) Iterative binarizations followed by morphological operations, region
splitting and removing boundary regions, (f) The contours on the original image - green
dots, red dots and red contours are true positives, false negatives and false positives respec-
tively.
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some adjacent nuclei to each other and therefore segments them as a single nucleus. The

processed image was then ready for segmentation.

3.2.3 Automated Threshold Selection

The next step was to iteratively binarize the preprocessed grayscale image and form the

regions as nuclei. Selection of thresholds for this step was done using 1 through 10-level

(multilevel) thresholding based on the Otsu method [88], as described by Liao et al. [142]

Each of these multilevel thresholdings divides the pixel intensities to (level + 1) classes with

minimal combined intra-class variance and equivalently maximal inter-class variance [88]. I

retained the lowest thresholds of each multilevel thresholding, a total of up to 10 different

thresholds that specified the darkest class in the image in each corresponding multilevel

thresholding. After a descending sort on this set of thresholds, the image was binarized

from the highest threshold. The first formed regions were considered as initial regions and

each subsequent binarization produces a subset of (usually smaller) regions from a previous

binarization. This process may cause division of some regions into two or more regions;

in this case, the new (smaller) regions replaced the larger region. If a region was simply

shrunk in a new binarization, however, that region was not replaced. Each initial region

may therefore be replaced later only if it split into two or more regions.

After each binarization, an opening operation was performed to separate weakly con-

nected regions. Holes in the regions were filled to reconstruct the regions with holes mostly

obtained from cancer cells. Regions smaller than a predefined size, m, were removed to

eliminate the segmented of tissue artifacts. Finally, regions connected to the boundary of an

image were removed.

Because of the preprocessing step, segmented region boundaries were usually formed

inside the nuclei area. Therefore, the final nuclei outlines were obtained by dilating the final
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regions with a disk of radius one pixel, giving a more visually accurate approximation of the

boundaries.

3.3 Dataset

The limited number of public datasets for histopathology analysis increases the difficulty

of comparing different methods. This dataset includes a wide variety of tissues such as

breast cancer samples representing a broad morphological variety, including normal tissue

components; bone marrow with normal and pathologically altered cells; normal liver tissue;

kidney tissue; and intestinal mucosa [33]. The dataset consists of thirty-six histology images

(600x600 pixels each) with ground truth. The dataset includes a total of 7931 consistently

labeled cells by consensus agreement of three pathologists.

3.4 Results

The single parameter in the method, m, specifies the size of the smallest permitted

region. In the present study, m is set to 50 pixels as in the study by Wienert et al. [33] that

provided the images. The structuring elements for opening by reconstruction and opening

to separate weakly connected regions are set to a disk with radius three pixels based on the

image size. Choosing a disk with radius two or four pixels affects the results by about one

percent. The goal in selecting structuring elements with radius three pixels is to avoid: 1)

a too large structuring element that removes important detail in the image; and 2) a too

small structuring element that fails to connect close background parts to each other, which

could degrade the results more than a couple percent. Increasing the number of levels when

choosing the thresholds changes the computation time but does not significantly change the

results.

True positive (TP) is defined as the number of manual points in ground truth that fall

inside the segmented nuclei. False positive (FP) is the number of segmented nuclei that
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include no manual points. False negative (FN) is the number of manual labeled points that

do not fall into any segmented nucleus. The results are presented in terms of precision,

recall, F-measure and conglomerate, which are described in the following.

Precision, recall and F-measure are computed as below:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
and F-measure = 2 · Precision · Recall

Precision + Recall
.

Lastly, conglomerate is defined as

Conglomerate =
N – FP

TP
,

where N is the number of segmented regions.

For comparison, I include the results of the proposed method along with four other sets

of results. The first two sets of results are from a method [67] proposed by Al Kofahi et

al., with two versions of “automatic” and “optimized”, which uses nine parameters. The

other two sets of results are from methods proposed by Wienert et al. [33], which use five

parameters and Veta et al. [22], which uses a fixed set of structuring elements and three

parameters which need to be trained and are mainly used to select the best candidates for

the final contours. A summary of the results is presented in Table 3.12.

Table 3.1: Results summary - superior results are shown with bold font.

Precision Recall F-measure Conglomerate

Al Kofahi (automatic) [67] 0.717 0.908 0.801 0.964

Al Kofahi (optimized) 0.823 0.908 0.863 0.966

Wienert [33] 0.908 0.859 0.883 0.958

Veta [22] 0.904 0.833 0.867 0.989

Proposed Method 0.929 0.886 0.907 0.952

2The results of the method proposed by Al Kofahi et al. are taken from Ref. 33. Also, the F-measure
values are computed based on the corresponding precision and recall.
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Figure 3.2: Segmentation results of four images in dataset. Green dots, red dots and red
contours are true positives, false negatives and false positives respectively.

3.5 Discussion

The proposed method achieves the highest precision measure and its recall measure is very

near the highest value among all methods. Hence, the proposed approach has the highest

F-measure. The conglomerate measure is the lowest but comparable to first three methods.
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Thus, the proposed method tends to segment overlapped (or touching) nuclei to a greater

extent than the other methods. This result is expected since the regions are segmented by

multilevel thresholding and, in this process, miss a low intensity difference between two close

nuclei. The under-segmentation of the overlapped nuclei can be potentially handled by an

additional post-processing step. For example, because a region that is segmenting overlapped

nuclei usually has a low solidity (ratio of the region’s area to the area of its convex hull), to

improve the conglomerate score in post-processing all segmented regions with solidity less

than 0.8 can be simply removed. With this step, the approach achieves a precision, recall,

F-measure and conglomerate of 0.930, 0.860, 0.894 and 0.959, respectively. However, to

achieve a high conglomerate measure as with the method proposed by Veta et al., and at

the same time keep a good value of precision and recall, a more advanced post-processing

step is required.

The algorithm is insensitive to minor parameter changes as evidenced by only a few per-

cent changes in the results by modifications such as performing closing by reconstruction

after opening by reconstruction in preprocessing; imposing a largest region’s area limit dur-

ing binarization; increasing the minimum permitted region’s area; and using morphological

features such as solidity and boundary saliency to reject some regions.

In terms of speed, the whole process, including color deconvolution, preprocessing, seg-

mentation and computing different measures takes on average about one second (1.02 s) for

each image on a PC with a 2.4 GHz CPU.

Four examples of segmentation results of different tissues are presented in Fig. 3.2.

3.6 Summary

An algorithm is proposed to segment nuclei in histology images stained with H&E, a

general stain in pathology for evaluating a wide range of normal and diseased tissue. Using

color deconvolution, image reconstructions, iterative multilevel thresholding and morpho-
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logical operations, the approach segments nuclei in a wide variety of histology images from

various tissue types. The algorithm requires a single parameter for specifying the smallest

permitted region area during the process of removing regions. The results show high preci-

sion and recall on a dataset including normal and cancerous tissues of different types, and

superior performance in terms of F-measure (with precision 0.929 and recall 0.886) as com-

pared to other reported results on the same dataset. For future work, post-processing steps

can be designed to separate clumped nuclei and refine the boundaries. Since many missed

manual points lie very close to the boundaries of segmented regions and clumped nuclei,

these can be effectively found by checking features such as solidity of the segmented regions.

These additional steps can potentially increase the conglomerate measure while improving

precision and recall measures.
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Chapter 4

Cervical Tissue Segmentation and Classification Using an Ensemble Approach

Parts of this chapter were published in the proceedings of 2013 International Conference

on Image Analysis and Processing [143] and 2014 IEEE International Conference on Systems,

Man, and Cybernetics [144]. Permissions of use are included in Appendix A.

4.1 Introduction

Current manual approaches for cancer detection rely on experts. This approach suffers

from expert’s fatigue and poor inter-rater reliability. Hence, it increases the importance of

having a highly accurate automated classification method.

Usually, to classify cells within a tissue sample from a patient into normal and cancer

classes one first needs to segment tissue images. There has been a fair amount of work on

segmentation of cervical cytology images [51, 43, 36, 111, 113, 117, 120, 125], but segmen-

tation of cervical histology images, done here, is less studied. Fig. 4.1 shows how cytology

images can be different from histology images. One the other hand, one of the important ex-

tractable features that discriminates between normal and cervical cancer cells is their Mean

Nuclear Volume (MNV) [145, 146]. Normal tissues have only normal cells in their biopsy

images but cancer tissues can contain both normal and cancer cells. This causes the MNV

extracted from biopsy images of a normal tissue sample to be less than that extracted from

biopsy images of a cancer tissue sample. In this work, I assumed that normal and cancer

tissues can be separated linearly using their corresponding MNV, and instead of using a

single segmentation algorithm, I used an ensemble approach. Such approaches have recently
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(a) (b) (c) (d)

Figure 4.1: Samples of cervical cytology and histology images. (a) A sample cytology image
and (b-d) samples of histology images.

been used widely for segmentation [147, 148, 149, 150]. Ensemble approaches use many dif-

ferent models to obtain higher performance than any individual. Some ensemble approaches

use several weak classifiers to form a new classifier which performs better than each of the

original classifiers. In these approaches the original classifiers use some fixed parameters

which are set by the user. Examples of such approaches can be seen in [143, 151, 152, 153].

However, there exist some other ensemble approaches that aim to find the best suitable set of

parameters for each particular case [154, 155]. The method that is proposed in this chapter

uses a case based approach. The proposed method uses 72 classifiers which makes it a large

ensemble approach in comparison to most of the other ensemble approaches in the field of

image processing that mostly use only a few classifiers [152, 154, 147]. However, data mining

ensemble approaches usually use larger numbers of classifiers [156, 157].

One of the advantages of this approach to the one previously published by the authors

[143] is that it does not include the manual screening step in which the images of each case

were visually examined and the case was discarded if the majority of the images had poor

acquisition quality, a large number of overlapped cells, high variation in background inten-

sity, etc. In [143] an ensemble approach was used in a way that a single segmentation was

formed from three other segmentations (out of four segmentations). However, here, a new

ensemble approach is proposed that uses a large number of individual segmentors. By using

different combinations of parameter values, I generated several sets of four segmentations as

discussed in Section 4.2 and instead of making a new final ensemble segmentation, I kept one
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segmentation out of each set of four segmentations. The median of the extracted features

from the final segmentations was then used for classification. During the segmentation and

before feature extraction, cases which were labeled as bad cases by criteria discussed in 4.2.4

were automatically removed. It enabled using this method without any manual screening.

Finally, it will be shown that the final feature acquired by this method can effectively distin-

guish between the two normal and cancer cases. An overview of the algorithm can be seen

in Fig. 4.2.

Figure 4.2: Overview of the algorithm.
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(a) Original image (b) Otsu on (a) (c) Open operation on (b)

(d) Fill hole operation on (c) (e) Edge detection operation on
(d)

(f) Removing small blobs of (e)

Figure 4.3: Results of Segmentor 3. Apply Segmentor 3 with parameters 4000 and 40000, as
MinBlobSize and MaxBlobSize respectively, on a gray-scale image step by step and removing
small blobs in the end.

4.2 Methods

The images were first converted to grayscale images using the Karhunen-Loeve transform

[158].

4.2.1 Basic Segmentors

If the average intensity of the gray-scale image is higher than a threshold (250 in this

study) the whole image was removed. For all other images, four segmentations were produced

by each of the following segmentors.

• Segmentor 1: This segmentor starts with a three class Otsu [88]. The class with

the highest intensity mainly represents the pixel values in region(s) of cell nuclei and

therefore was kept. Then morphological operations, opening, and filling hole were

applied.
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• Segmentor 2: It starts with a three class Otsu. At the first step, the pixels with inten-

sities in the class containing the lowest intensity were removed. After that, Segmentor

1 was applied to the new image (three class Otsu followed by morphological opera-

tions). This segmentor is expected to do better on cancer cells that commonly have

some part of the cell nuclei segmented as background in a previous segmentor. This

segmentor gives those parts of the cell nuclei another chance to be correctly segmented

as foreground.

• Segmentor 3: Euchromatin in cancer cells makes the middle of the cells less dark. This

is not the case for normal cells where heterochromatin causes a rather uniform intensity

throughout the nucleus. As a workaround to this issue Segmentor 3, performs an edge

detection operation on the segmentation obtained from Segmentor 1 which does a three

class Otsu followed by morphological operations, open and fill hole. The added edge

pixels cause the boundary to be closed at some very near points or even two separated

parts of a specific nucleus to be merged and form a single nucleus.

• Segmentor 4: This segmentor starts with a three class Otsu which takes the darkest

class as the region of interest and and unlike Segmentor 3 (which performed the edge

detection morphological operation as the final operation), it performs the edge detec-

tion morphological operation on the result of the three class Otsu and follows it with

morphological operations, edge detection, dilation and fill hole.

After creating the different segmentations, new segmentations were generated based on

the size of blobs within the segmentation. Also, blobs which smaller than a predetermined

threshold, MinBlobSize, were removed. These small blobs can be noise or very small nuclei

in the segmentation. Also, if a blob within a specific segmentation was larger than a thresh-

old, MaxBlobSize, the whole set of (four) segmentations was rejected. By these two checks
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(a) (b)

Figure 4.4: Sample results of final segmentation. (a) Two samples of segmentations including
segmented clustered nuclei and (b) nuclei with nonuniform intensity.

the chance of noise and clustered nuclei being considered as a nucleus is reduced. Finally

segmentations which contain no blobs are removed.

Fig. 4.3 shows an example of Segmentor 3 with parameters 4000 and 40000, respectively

as MinBlobSize and MaxBlobSize, and the removal of small blobs done on a gray-scale image.

4.2.2 Non-Convex Blobs

There are several reasons that a nucleus might be segmented incorrectly. One of the

reasons is the presence of clustered nuclei. These nuclei were usually segmented with each

other. If the original nuclei were small, then the clustered nuclei could pass the maximum

size check and therefore, it was increasing the estimated nuclear volume of normal cases.

Also, some nuclei may not have uniformly high intensity on the boundary. This problem

often occurs for cancer cells. It makes the nucleus segmentation difficult with the segmented

blob missing parts of the nucleus. However, both of these (clustered nuclei and nuclei with

non-uniform boundary) usually lead to a non-convex segmented blob (Fig. 4.4).

Because of the fact that nuclei have convex shapes with round boundaries in most cases,

each blob was compared to its convex hull and if the absolute difference between the size of

a nucleus and its convex hull was more than half of the original size, that blob was removed.

This process removed several blobs from the segmentation in Fig. 4.4 that had non-convex

shapes.
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4.2.3 Parameter Space

In [143], it was shown that instead of using an individual segmentation, a generated

ensemble segmentation from the four segmentors described above (with parameters (4000,

40000) and SimilarityThreshold of 55) could increase the separability between the two classes.

Here, instead of creating a single segmentation from four segmentations, by changing the pa-

rameters, MinBlobSize and MaxBlobSize, several sets of four segmentations were generated.

Generally, if m different values for MinBlobSize and n different values for MaxBlobSize are

generated, there will be mn different pairs of parameters and 4mn segmentations will be gen-

erated. In this study, segmentations with m = 3 and n = 6 different values of MinBlobSize

and MaxBlobSize, respectively, were generated as below.

Set

MinBlobSize ∈ {4000, 5000, 6000},

and

MaxBlobSize ∈ {25000, 31000, 37000, 43000, 49000, 55000}.

This gave us 18 different pairs of (MinBlobSize, MaxBlobSize). For each pair of parame-

ters, four segmentations of each image were obtained and therefore, 4 × 18 = 72 different

segmentations of each image were generated.

After obtaining the segmentation of all images of a case, the MNV (PSI-Vv) of cell nuclei

within the segmentations of all images of each case was estimated. In fact, by decreasing

MinBlobSize more small blobs are allowed to be in the segmentation and thus the final

estimated MNV will be decreased. Similarly, when MaxBlobSize is decreased, more large

nuclei will be removed, which in turn deceases the final estimated value. The process of

nuclear volume estimation is discussed in Subsection 4.2.5. The classification was done

based on the assumption that the MNV of cancer cells is larger than the MNV of normal

cells.
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4.2.4 Case Removal

During segmentation, some of the case images were rejected (such as when they had high

average intensity or when their segmentation contained blobs that were beyond the threshold

of MaxBlobSize). Rejecting a high percentage of images of a case during segmentation shows

that the segmentation is failing for that specific case (the acquisition is bad, the segmentors

are often segmenting clustered nuclei as a single nucleus, etc.). Also, a quite low number

of accepted segmentations from a case can lead to an unreliable final estimation of volume

(PSI-Vv).

Based on these observations, the whole case was removed and was not processed further

if the number of accepted segmentations was less than MinNumImage or the ratio of ac-

cepted segmentations to original images was less than MinRatio. The number of accepted

segmentations was set to the average number of accepted segmentations by each of those 72

segmentors.

4.2.5 Volume Estimation

To estimate the MNV which was the final feature for classification, stereological methods

were used. This estimator uses a point-sampled intercept to sample segmented nuclei to

estimate the MNV, which is termed volume-weighted MNV (PSI-Vv) [159]. The three main

steps are placement of a point-grid for point sampled intercept (PSI) sampling, collection of

line lengths across sampled nuclei (l), and finally the computation of estimated PSI-Vv as

V v =
π
∑N

i=1 l
3
i

3N
,

where N is total number of nuclei sampled by PSI in the region of interest [143].
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4.2.6 Final Estimated Volumes

After performing all the steps above, 72 estimated (nuclear) volumes per tissue were

computed. However, the number of estimated volumes was reduced to 18 as follows.

Intuitively, because the intersection of different blobs is at most as large as the smallest

blob, the intersection of different segmentations will have a smaller MNV than all other

segmentations. Minimizing the MNV meaningfully increases the separation. Hence, among

each of the four segmentations with the same pair of parameters, (MinBlobSize, MaxBlob-

Size), the minimum estimated volume was chosen as the final estimation for that specific

pair of parameters. Among the 18 remaining values for each case, the median value was

taken as the final estimated MNV.

In several experiments it was observed that if after creating the 18 values for each case

the maximum, median or mean of the four values (instead of the minimum estimated MNV)

were extracted from four segmentations with the same pair of parameters, the final accuracy

was always lower.

In a different experiment, the final MNV was computed from 72 estimated values as

follows. After performing the convex check and removing non-convex blobs, the ratio of the

remaining convex blobs to all original blobs was computed. For each case, 18 segmentors with

the highest such ratios were selected and their corresponding 18 estimated MNV’s were kept.

Finally, the median of these 18 final values was selected as the final estimated nuclear volume.

This process may select several segmentors with the same pair of parameters, (MinBlobSize,

MaxBlobSize), while choosing none from some other pairs.

4.3 Dataset

The dataset used for experimenting had 30 normal cases and 32 cancer cases. On average,

each normal case has 387 images and each cancer case has 534 images. The reason for the
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difference in the average number of images in normal and cancer cases was that the chosen

ROI’s in cancer cases were larger on average.

The images sizes were 1138x759 and in all cases tissues were stained with H&E, which

enhances the signal to noise ratio (SNR) of cell nuclei prior to image acquisition.

4.3.1 Image Acquisition

Archived cervical tissue from a cone biopsy or surgery sectioned at 6 um and stained

with H&E at the Moffitt Cancer Center were used and their images were acquired using an

integrated hardware-software-microscope system (Stereologer, Stereology Resource Center,

Inc. Tampa - St. Petersburg, Fl.). Images were acquired by placing the tissue sample/

biopsy slide with normal or cancer (squamous cell carcinoma) tissue under the microscope.

The automatic XYZ stepping motor and Stereologer software were used to manually outline

an ROI at low magnification. Within each ROI around 200-1000 2-D images were captured

over a single focal plane at 40x magnification.

4.4 Results and Discussion

In this section, the results, in terms of the Area Under the Receiver Operating Char-

acteristic (ROC) Curve (AUC) and the accuracy (estimated by performing 10-fold cross-

validation, 10 times and averaging over all values) are presented. The method Ensemble 2 in

[143] is denoted by Image Ensemble and the current proposed method is denoted by Large

Ensemble. Moreover, the variant of the proposed method (which chooses segmentors based

on their ratio of convex to non-convex blobs) is denoted by Ratio Ensemble. For the Image

Ensemble no case was removed, as it does not have an automatic rejection step. However,

for Large Ensemble and Ratio Ensemble, cases were removed automatically. This removal

was done where there was a low ratio of accepted segmentations or low number of accepted

segmentations (below the specified thresholds). The results (AUC and accuracy) for the
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Large Ensemble and Ratio Ensemble are presented for four different pairs of parameters of

MinRatio and MinNumImage of (10%, 50), (33%, 50), (10%, 75) and (33%, 75). Using these

pairs of parameters respectively removed two, four, six and eight cases (out of 62 cases). The

eight cases that were removed by the pair of parameters, (33%, 75), are listed below.

Figure 4.5: ROC curve for Image Ensemble and variants of Large Ensemble.

1. The ratio of accepted segmentations to all images was less than 33%.

This test removed four cases, one normal case, NL-38 with 0.125 ratio, and three cancer

cases, CA-11, CA-1234 and CA-35 respectively with ratios of 0.281, 0.037 and 0.2557.

2. The number of accepted segmentations was less than 75.

This check removed six cases two of which were the same as cases which were recom-

mended for removal in (1). The new cases for removal were two normal cases, NL-39
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Table 4.1: AUC and accuracy of the methods

AUC Accuracy

Image Ensemble 0.8760 77.4%

Large Ens. (10%,50) 0.9010 80.5%

Large Ens. (33%,50) 0.8942 81.2%

Large Ens. (10%,75) 0.9170 82.5%

Large Ens. (33%,75) 0.9108 84.3%

Ratio Ens. (10%,50) 0.8598 73.2%

Ratio Ens. (33%,50) 0.8537 72.2%

Ratio Ens. (10%,75) 0.8851 76.4%

Ratio Ens. (33%,75) 0.8793 75.6%

and NL-65 respectively with 66 and 70 accepted segmentations and two cancer cases,

CA-69 and CA-70 respectively with 63 and 66 accepted segmentations.

The ROC curves of both the Image Ensemble and Large Ensemble with the four different

pairs of parameters are shown in Fig. 4.5 (for simplicity the ROC curves of the Ratio

Ensemble are not presented). As ROC curves show, almost always, all variants of the Large

Ensemble method had a better TP rate than the Image Ensemble with the same FP rate.

The AUC and the accuracy of these methods are summarized in Table 4.1. The AUC

of all variants of the Large Ensemble are higher than Image Ensemble’s (and also Ratio

Ensemble’s). The accuracy obtained from the Ratio Ensemble is always 5 to 10 percent

lower than that of Large Ensemble with the same set of parameters. For the Large Ensemble,

although the AUC was not monotonically increasing as the rejection criteria were relaxed,

the accuracy was increasing as more cases were being rejected. However, it has been seen

that by rejecting more than 15 cases (parameter pair of (33%, 100) rejects 14 cases and has

accuracy 84.6%), the accuracy started to decrease.
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4.5 Summary

A new large ensemble algorithm was proposed to distinguish between normal and can-

cer cases using a single feature, the estimated cell nuclei volume (PSI-Vv). Four different

segmentors, which use several applications of Otsu thresholding along with morphological

operations were used to segment microscopy images from normal and cancerous cervical tis-

sues. During segmentation several checks (such as average image intensity, minimum and

maximum blob size, etc.) were used to improve segmentation. Also, a concavity check

ensured that a segmentation containing nuclei and blobs which do not pass the check are

removed. This method also removed some cases automatically, if the number of accepted

segmentations do not meet certain criteria. This means that in contrast to the approaches

proposed in [143], a manual screening step is not required. The four main segmentors were

used with several different pairs of parameters and the MNV of each cases was estimated

from the results of each of those segmentors. In the end, 75% of all estimated values are

discarded and the median of the remaining values were used for classification. The downside

is the greater computation time. In the previous method, which is denoted by Image Ensem-

ble here, a single pair of parameters, checked blob sizes, was used and four segmentations

and an ensemble segmentation from them were computed. The process of creating the four

segmentations took more than 80% of the computation time, but small blob removal and

checking the size of the largest blobs took less than 5% (the rest was spent generating the

ensemble segmentation and accessing and saving the data). In the proposed method, the

four segmentations were generated 18 times using different sets of parameters. This increased

the computation time to around three times that of the previous method. The results of

the proposed method were compared to the Image Ensemble’s. Results show that the new

method has improved AUC plus accuracy of the Image Ensemble method. By setting the

parameters such that two cases were removed, the accuracy was increased by 3% and by

rejecting more cases accuracies as high as around 85% were achieved. One of the best results
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was achieved with a large ensemble approach that rejected 8 cases (out of 62 cases) with an

accuracy of 84.3% and AUC of 0.911.
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Chapter 5

Cervical Tissue Segmentation and Classification Using Adaptive Shape

Modeling

Part of this chapter was published in the 2016 IEEE International Conference on Image

Processing [160].

5.1 Introduction

The manual diagnosis of diseases from histology or cytology images is costly and time

consuming. Potential misdiagnoses may arise from fatigue or knowledge of the expert [161],

leading to over-treatment and missed disease. Diagnostic classification of malignant and

benign tissue from pathology images provides information to the pathologist for precise

cancer staging assessment, accelerating patient-specific medical care. However, phenotypic

niche areas including nucleus, fuzzy cell borders, and cytoplasm pose a significant barrier for

evaluating slice-based malignancy.

Prior studies mostly focused the whole-slide level evaluation [162, 163] that do not con-

sider nucleus-level features. The nucleus-level analysis from pathology images currently

uses the human visual system without quantitative measurement [1]. Furthermore, current

human assessment is largely restrained to semantic descriptions of size, thickness, or pleo-

morphism that could not substantially quantify various nucleus characteristics. In view of

these challenges, the following specific questions can be asked: 1) How can a computational

framework that is capable of capturing quantitative information from the nucleus – instead

of whole-slide pathology images – be designed that is advantageous in providing useful clin-
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ical interpretation for patients? 2) If the goal is to classify tissues, is it necessary to have

the most accurate segmentation or may a simpler segmentation method be as effective for

classification?

In this work, the problem of cervical cancer diagnostic classification based on pathol-

ogy images is studied. To capture the nucleus-level dynamics a Adaptive Nucleus Shape

Modeling algorithm is proposed to capture nucleus-level information from pathology images,

including an adaptive nucleus segmentation and nucleus shape appropriation. The nucleus-

level texture feature representation is then applied to classify the whole tissue malignancy.

By comparing classification accuracy using features extracted by the proposed segmentation

method to the results obtained by one of the state-of-the-art segmentation methods [89],

it will be shown that features extracted from a subset of segmented nuclei using a simpler

segmentation method can be more effective for classification. More generally, the proposed

approach can be readily extended to classify different subregions of a whole slide cervical

tissue image.

In what follows, an algorithmic framework of nucleus-level analysis to classify cervical

tissues beyond conventional whole-slide analysis is introduced, and the methodological con-

tribution is three-fold:

• Adaptive Nucleus Shape Modeling (ANSM) is proposed to capture the nucleus shape in

pathology images, including adaptive nucleus segmentation using a multilevel thresh-

olding scheme and nucleus shape approximation by ellipse shape fitting.

• The limitation of missed nuclei labeling information is overcome by proposing two in-

termediate steps to potentially remove poorly segmented nuclei and reduce the number

of mislabeled training instances to boost classifier performance.

• It has been shown that nucleus-level texture features obtained from segmented nuclei

are effective in classifying the whole cervical tissue malignancy, providing evidence that

nucleus-level analysis is valuable in understanding cervical tissue characteristics.
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Computer-aided diagnosis systems for histology analysis were proposed to classify tissue

images [162] or subregions within the whole slide [164]. This is normally performed in

two main steps: feature extraction and classification. Segmentation can also be used to

create masks formed from patches aligned to nuclear centers [165]. Without using a proper

segmentation, composite hashing and bag of features can be used to extract features [162,

166]. Popular methods to classify natural scenes [167, 168] may also be used for histology

classification [165]. However, most of these systems are designed for tissue classification

including lung [162, 163], breast [81, 169], prostate [164] and kidney [170] tissues and limited

effort has been put on cervical tissue quantification and classification.

In [162], lung microscopic tissue images are classified as adenocarcinoma or squamous car-

cinoma using a Composite Anchor Graph Hashing algorithm with average accuracy 87.5%.

In [81], breast histology images are separated into three regions based on blob density and

classification. In [164], subregions in prostate tissue images are classified into stroma, nor-

mal or prostatic carcinoma using morphological characteristics and texture features with a

classification accuracy of 79.3%. Biologically interpretable shape-based features and a series

of SVM classifiers are used for classification of histological renal tumor images into three

types of renal cell carcinoma and one benign tumor with an average accuracy of 77% [170].

Finally, in [144], mean nuclear volume of segmented nuclei within cervical histology images

was used to classify cervical tissues with an average accuracy of 84.3% and a rejection rate

of 13%.

5.2 Methods

Given a cervical tissue histology image, the goal is to approximate the nucleus location

and shape boundary for effective nucleus-level analysis. In this work, multilevel thresholding

is used to accomplish nucleus segmentation, and an ellipse shape fitting model has been used

to maximally capture the nucleus information (Fig. 5.1). Details are given in the following.
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Figure 5.1: Overview of the proposed Adaptive Nucleus Shape Modeling (ANSM).

5.2.1 Adaptive Image Segmentation

An adaptive multilevel thresholding nucleus segmentation method was developed to iden-

tify the nuclei area from a raw pathology image. Due to the various nuclei morphology, it is

challenging to use a single thresholding scheme for precisely delineating a nucleus shape from

pathology images. To maximally preserve the nucleus geometrical shape information, while

minimizing potential shape outliers, a framework to capture nuclei using a segmentation

algorithm described in Algorithm 1 is proposed and used.

The segmentation algorithm can be understood as an iterative process: at each round, the

darkest region R was obtained from a multilevel thresholding [142]. Morphological operations

are incorporated to retain the primary blobs as Si and by comparing the total nucleus area of
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Si, denoted as Ai, the goodness of Si is measured. Algorithm takes the smallest and largest

permitted nucleus size as input, which are denoted by m and M , respectively.

Algorithm 1: Adaptive Image Segmentation (m, M)

1 Set n = 0, A0 = ε while An > 0 do
2 Set n = n+ 1
3 Perform n−level thresholding and let R denote the darkest region
4 Perform morphological operations filling and opening on R
5 Remove blobs larger / smaller than M / m in R
6 Denote the new region by Sn
7 foreach segmented blob b do
8 Segment b using two-level thresholding
9 Remove b if it contains more than one region larger than m

10 Set An as the area of Sn

11 Return Sk as the final segmentation where k = arg maxiAi

5.2.2 Nucleus Shape Approximation by Ellipse Fitting

The blobs in the final segmentation were mostly a rough approximation of their exact

nuclei area. Because a nucleus normally has an elliptic shape, each nucleus area was approx-

imated with the ellipse with the same normalized second central moment as the segmented

nucleus area. For each nucleus region, the coordinates of the centroid of the region, with

pixel coordinates (xi, yi) for i ∈ {1, 2, · · · , N}, are

x =

∑N
i=1 xi
N

and y =

∑N
i=1 yi
N

. (5.1)

The central moments of order p+ q of a continuous bivariate probability distribution f(x, y)

about the mean µ = (µX , µY ) was defined as

µp,q =

∫ ∞
−∞

∫ ∞
−∞

(x− µX)p(y − µY )qf(x, y) dx dy. (5.2)
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Therefore, for the discrete case of binary region pixels, by considering each pixel as a square

with unit length, f(xi, yi) = 1 and the central moments are

µp,q =
N∑
i=1

(∫ yi+
1
2

yi− 1
2

∫ xi+
1
2

xi− 1
2

(x− x)p(y − y)q dx dy

)
. (5.3)

Specifically, the second central moments, µ2,0, µ1,1 and µ0,2 are respectively computed as

N∑
i=1

[
(xi − x)2

]
+
N

12
,

N∑
i=1

[(xi − x) + (yi − y)] ,
N∑
i=1

[
(yi − y)2

]
+
N

12
, (5.4)

and finally the normalized second central moments, µ′p,q, are defined as the second central

moments divided by the number of pixels, N . Subsequently, the major axis, minor axis

and orientation of the ellipse, and then coordinates of the rectangle inscribed in the ellipse

were computed from the normalized central moments. This approximation using the best fit

ellipse was designed to improve the area estimation for the cells with nonuniform intensity.

Feature extraction then proceeded from the maximum rectangle inscribed in the defined

ellipse.

5.2.3 Feature Extraction and Classification

The maximum rectangle inscribed in the obtained ellipse was rotated and then resized

to a square with a fixed size (32x32 in this study). The shape normalization allowed for

extracting the same dimension of Histogram of Oriented Gradients (HOG) or Local Binary

Patterns (LBP) features from nuclei with different sizes. Instead of original HOG features

[138], the UoCTTI variant [171] was used that compresses the 36 features into 31 features.

The cell-size was set to 16, which decomposes the nucleus into 4 subregions, and a total

number of 124 features were extracted. All the segmented nuclei in each training tissue

were labeled as the label of their corresponding tissue. Segmented nuclei in testing tissues

were classified by a Support Vector Machine (SVM) classifier with a Radial Basis Function
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(RBF) kernel and k-Nearest Neighbor (kNN) classifier in separate experiments and tissue

classification was done based on the majority class of its labeled nuclei.

5.3 Dataset

The dataset included 20 normal and 19 cancer sample tissues (cases). The tissues were

stained with Hematoxylin and Eosin. Sample regions with normal or cancer cells were

indicated on the glass slide by a pathologist and from the marked regions for each case, 10

images with size 1200x800 were acquired using a 40x objective.

(a) Normal Tissue (c) Nucleus Shape Fitting

(d) Cancer Tissue (f) Nucleus Shape Fitting

(b) Adaptive Multilevel 
Thresholding

(e) Adaptive Multilevel 
Thresholding

Figure 5.2: Steps of the segmentation algorithm. Segmentation of a normal (a) and a
cancer tissue (d); darkest class after multilevel thresholding and performing morphological
operations (b, e); cells shown with rectangular areas are kept and the others are rejected (c,
f).

5.4 Results and Discussion

Due to the focus on nuclei-level analysis, nuclei segmentation can directly affect the

classification performance. The observations indicated that, when segmentation inaccuracies
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occur, images of normal tissues were typically under-segmented and the images from cancer

tissues were typically over-segmented. The reason was apparent on inspection: normal nuclei

appear solid with uniform staining intensities. If they were isolated from other nuclei, their

areas were segmented accurately. If they overlapped with other nuclei, however, they were

segmented together with those nuclei, leading to under-segmentation of the nucleus areas. In

contrast, cancer nuclei have non-uniform staining intensities and exhibit more heterogeneous

clumping within the nuclei, that in many cases cause the segmented nucleus to be separated

and treated as two or more nuclei (Fig. 5.2). To address this issue, in a second version

of the proposed model, denoted by ANSM2 (the first version is denoted by ANSM1), only

features from half of the segmented nuclei were extracted and used: Segmented nuclei with

corresponding inscribed rectangle size in the second and third quartile are kept and others

are rejected.

Fig. 5.2 shows examples of images from normal and cancer tissues, their segmentations,

nucleus approximation and rejected segmented nuclei.

5.4.1 Parameter Selection and Results

The only parameters used in the proposed segmentation method, m and M , were set

to 250 and 5000, according to image size. To choose the parameters of the SVM kernel, C

and γ, a grid search was performed and the best set of parameters were chosen based on

the accuracy obtained from a 10-fold cross validation on the whole dataset. Similarly, the

parameter k for kNN was set. The parameters were then fixed and the accuracy of a set of

parameters were estimated again by the average of ten, 10-fold cross validations. Because

the parameters were chosen based on a 10-fold cross validation on the whole dataset the final

results can be slightly optimistic. The reported results in Fig. 5.3 were obtained by setting

C = 128 and γ = 0.25 for SVM and k = 5 for kNN. The highest accuracy was obtained

by ANSM2 using HOG features and SVM. For these settings, an accuracy of 93.33% was
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obtained, all misclassified tissues were normal tissues and therefore, the false negative rate

was zero. The false positive rate was 13%, average precision through all cross validations

was 87.96% and average recall was 100%.

For comparison purposes, the performance of one of the state-of-the-art segmentation

methods [89] (denoted by LTDC) was evaluated. LTDC needs training data to build its

model. Therefore, one image from each of the cases was manually annotated and the model

was trained using the 39 annotated images. The rest of the images in each case were used

for testing. Also common parameters, such as m and M , which are also used by LTDC are

set as in the proposed method. The results of this method and both versions of ANSM are

presented in Fig. 5.3.

Interestingly, ANSM1 behaves very different than ANSM2 while ANSM2 behaves very

similar to LTDC. For example, kNN and LBP features performed better than SVM and

HOG features in ANSM1 although it was exactly the other way for both ANSM2 and LTDC.

In fact, when removing half of the training and test instances, which contained most of the

misclassified labels and instances, ANSM2 could slightly outperform LTDC and behaved

very similar to it. It suggests that, for the task of classification, choosing a subset of well-

segmented regions by a simpler segmentation method can be as useful as using a more

advanced segmentation method.

5.4.2 Discussion

Most of the misclassified tissues (29 out of 33) among all cross validations are related to

only three normal tissues. Visual examination shows that images from these tissues have

an atypical appearance from other normal tissues. Fig. 5.4 shows examples of these cases.

Unlike other normal tissues, two of these cases have several clumps of adjacent cells and

one of them has images with high contrast background and high intensity variance. A more

accurate segmentation can provide better training instances and therefore allows for higher
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Figure 5.3: Tissue classification accuracy.

accuracy. One approach for improving the segmentation will be to reduce the variation of

staining intensities in images from different tissues from the same class (normal or cancer).

(a) (b) (c) (d)

Figure 5.4: Images from normal tissues. (a-c) images from three normal tissue samples that
contribute most of misclassified testing instances; (d) an example image from one of the
other normal tissues.

5.5 Summary

A novel algorithmic framework to tackle the challenging problem of nucleus-level patho-

logical image analysis for cervical tissue classification is proposed. Cell regions are approx-

imated using the ellipse with the same normalized second central moments as the region
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and the rectangular area inscribed in the ellipse. These areas are resized to a square with

a selected size, followed by extraction of HOG features from each quadrant of the squared

sub-image. The SVM classifier with a RBF kernel classifies each cell and different tissues are

classified according to the majority of their cell classes. It has been shown that the texture

features extracted from segmented nuclei are able to capture class-specific tissue charac-

teristics, which opens the space for exploring nucleus-level analysis in pathological image

evaluation. Experimental results showed that the proposed method achieved classification

accuracy of 93.33% with false negative rate of zero and area under the ROC curve of 0.9997.

The accuracy was estimated with the average accuracy of ten, 10-fold cross validations. By

comparing classification accuracy obtained using the proposed segmentation method it has

been shown that by using a proper shape modeling a simpler segmentation method can be

as effective as a more advanced segmentation method, for the task of classification. Also,

the proposed segmentation method is much faster than LTDC and does not need any extra

detection ground truth dataset1, which makes it more applicable in real life situations.

1In other words, the proposed method does not need an extra training dataset with manually marked
cells to learn the model/parameters unlike the LTDC method.
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Chapter 6

Overlapping Cervical Cell Segmentation in Cervical Cytology Images

Part of this chapter was published in 2016 IEEE 13th International Symposium on

Biomedical Imaging (ISBI) [172] and is under review for publication in the Journal of Com-

puterized Medical Imaging and Graphics [173].

6.1 Introduction

The Pap test is one of the main screening tests used to diagnose cervical cancer in its early

or precancerous stages. Conventionally, the slides containing the Pap smear are examined

under a microscope by a cytologist or pathologist and the slide is graded based on a system

such as The Bethesda System [174]. However, this manual process is time consuming and

is prone to errors and intraobserver variability. False negative rates are as high as 20 to

30% [175]. These errors can occur because of clumping of cells, blood, bacteria or yeast

contamination [175]. To reduce such errors and workloads on pathologists and produce more

consistent results computer systems are proposed to automate the slide analysis. Although

newer preparation techniques (such as ThinPrep, SurePath, etc.) remove most of the mucus

and inflammatory cells and decrease the number of overlapping cells, automating analysis

of slides is still a very challenging task due to 1) folded cervical cells with spurious edges,

2) poor contrast of the cytoplasm area, 3) presence of bacteria, neutrophils, mucus and

inflammatory cells and 4) overlapping cells. Also, the prepared monolayer slides can still

range upwards of 30µm from glass to coverslip [126]. Therefore, it is impossible to have

all cervical cells in-focus simultaneously in a single focal plane. One solution is to capture
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images at different focal planes in a way that each cell is in focus in at least one of them.

This can be done by approximating the thickness of the slide by finding the top and bottom

focal planes with cells and capturing images at intervals in between [176]. All the images in

such stacks need to be checked for abnormal cells. However, with Extended Depth of Field

(EDF) algorithms [127, 128], a single image can be created from the whole stack of images to

have all cells in focus. These EDF images can subsequently be used by automated systems

to be segmented and searched for abnormal cells.

Most of the current automated systems mainly aim to segment (overlapping) nuclei and

cell clumps (cellular masses) [68, 42, 111, 120, 114, 119]. These methods focus on nucleus

segmentation and/or cell clumps and do not address the individual cytoplasm segmentation.

Some methods address the segmentation of free lying or partially overlapping cells cytoplasm

[113, 117, 122]. These methods assume that either the cells are not overlapping or the

overlapping degree is very low. However, this is not realistic as cells usually have higher

overlapping degree in real cervical cytology images. Cell clumps have a median of three

nuclei and they contain more than four nuclei on average [176].

Recently, there was an increase in the number of methods proposed for complete segmen-

tation of overlapping cervical cells. This increase is mostly due to the first and second over-

lapping cervical cell segmentation challenges held in International Symposium on Biomedical

Imaging (ISBI) 2014 and 2015 [177, 51]. The datasets in both challenges are publicly avail-

able and contain training (with ground truth) and test sets. This made the evaluation and

comparison of different methods possible. Therefore, recent methods are mostly addressing

the more challenging task of overlapping cytoplasm segmentation [51, 177, 178, 179, 172].

Lu et al. [51] segmented cell clumps by applying the Quick Shift method [180] that

results in a map of super pixels, applying an edge detector and learning an unsupervised

binary classifier. They detected and segmented nuclei by finding the Maximally Stable

Extremal Regions (MSER) [90] and segmented overlapping cytoplasms by joint optimization
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of multiple level set functions, where each function (representing a cell) has both unary (intra-

cell) and pairwise (inter-cell) constraints. Ushizima et al. [181] created a map of super pixels

by merging regions based on pixel adjacency and intensity similarity using a graph-based

linear-time algorithm [135] and followed it by a global search cut-off algorithm [182] to

segment cell clumps. To segment nuclei inside cell clumps they used a local thresholding

method [136] and segmented overlapping cytoplasm by partitioning the image into convex

polygons through Voronoi diagrams. Lee et al. [179] also generated superpixels to segment

cell clumps: the SLIC superpixel method [106] was used to generate a superpixel map and

the map was thresholded using adaptive thresholding algorithm [182] to obtain the final

cell clump regions. To segment nuclei they performed a local thresholding and removed

outliers based on features such as mean intensity, circularity and size. They finally segmented

overlapping cytoplasm by superpixel partitioning and assigning each superpixel region to the

nearest nucleus. Then, the boundaries were refined by a cell-wise contour refinement with

graph cuts [66] for each cell separately.

Most of these methods rely on superpixel and/or level set methods. Superpixel methods

usually do not give accurate segmentations and level set methods are computationally ex-

pensive and are sensitive to parameter initializations. Therefore, I propose a method that

sets most of its parameters adaptively and is substantially faster than other recent methods.

In the previous version of the algorithm [172] I segmented nuclei by iterative thresholding.

Regions were grown naturally by subsequent thresholdings and were filtered based on their

features such as mean intensity, solidity, standard deviation, circularity and size. Cell clump

segmentation was done by thresholding based on a learned GMM followed by morphological

operations. To segment overlapping cells I defined a focus measure for subimages in the

images and assigned subimages to nuclei based on their location and focus similarity. The

contours were then refined in two coarse (subimage level) and fine steps (pixel level). Current

work is an improved version of the previous work [172]. The nucleus segmentation process
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has been replaced by an algorithm that considers solidity of regions as their main feature.

This simplified the algorithm, made it more resistant to brightness changes in images and

also increased the method’s nucleus detection accuracy in the experiments. The cell clump

segmentation step is also improved by adding a filtering step. The main modification was

done to the cytoplasm segmentation step, replacing the previous refinement step. For the

refinement, I defined a weight vector and used it in the process of finding the new boundary

points candidates. A smoothing filter was applied to the candidate points and the outliers

were found based on the distance of each candidate point to its corresponding new location.

After removing outliers, I applied the smoothing filter again and obtained the new estimated

boundary. The whole process was repeated until the boundaries converged.

The major contribution of this work is the proposed novel method for the boundary

approximation of overlapping cells that utilizes the information in the image stacks efficiently

to approximate the boundary for the subsequent refinements (the method is discussed in

6.2.3.1). Two other contributions are: 1) the proposed nucleus detection and segmentation

method that achieves superior results compared to other state-of-the-art methods in terms

of F-measure (the method is discussed in Section 6.2.1 and the results are presented in

Subsection 6.4.3.1), and 2) the fine refinement step (discussed in Subsection 6.2.3.3) with

the defined weight vector (Eq. 6.7) that can refine the boundaries effectively if only a small

ratio of useful edge pixels exist (note the refined boundaries in Fig. 6.1d).

Other than the contributions mentioned above the methods run very fast (as discussed at

the end of Subsection 6.4.3) and achieves substantially better results compared to other state-

of-the-art algorithms in terms of the rate of missed cells. Moreover, it has fewer parameters

to tune (two parameters, as discussed in Section 6.4) than other state-of-the-art algorithms.

Finally, I propose to report a new metric (in Subsection 6.4.1), False Discovery Rate at

object level, that helps capturing the cell detection accuracy effectively.
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6.2 Methods

Each cell contains a nucleus and segmenting nuclei is generally easier than segmenting

individual cytoplasms. I start the segmentation process by segmenting nuclei and then

segment corresponding cytoplasm for each nucleus. The framework contains three main

steps: 1) nucleus detection and segmentation (Section 6.2.1), 2) cell clump segmentation

(Section 6.2.2) and 3) overlapping cytoplasm segmentation (Section 6.2.3). The first two

steps use the EDF image and the last step uses a stack of images to segment cytoplasm (in

the case of the ISBI 2014 dataset that does not contain stack images, the algorithm was

modified to only use the location of subimages as discussed in 6.4.3.2). Fig. 6.1 shows the

steps on a real cervical cytology EDF image.

6.2.1 Nucleus Detection and Segmentation

The goal of this step is to detect and segment nuclei.

Nuclei are commonly represented by small uniform relatively dark and convex regions.

Therefore, the three most visually distinctive and important features of nuclei are size, av-

erage intensity and solidity. I used these three features to design an iterative algorithm to

detect and segment nuclei. Because each segmented nucleus is an indication of a cell the

result of this step directly affects the outcome of the final cytoplasm segmentation. How-

ever, because of the way the cytoplasm segmentation method works, minor segmentation

inaccuracies in this step will not affect the final results much. Therefore, generally, a de-

tection inaccuracy has a more adverse affect on the final segmentation outcome and hence,

the algorithm was mainly designed to have high sensitivity to nuclei rather than an accurate

segmentation. The algorithm that I propose to do this task is a novel iterative approach to

detect (and segment) nuclei and works as follows.

The image is first blurred using a 2-D adaptive noise-removal filter [183]. Then, the

algorithm iteratively binarizes the image starting with a low threshold to find seed points
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(a) Nucleus segmentation (b) Cell clump segmentation

(c) Boundary approximation (d) Boundary refinement

Figure 6.1: The results of the framework steps on a real cervical cytology EDF image.

from different nuclei. Too small or too concave regions are removed after each binarization

and remaining regions are added to a nucleus mask. The nucleus mask keeps the nuclei

regions segmented at each execution phase of the algorithm. A region replaces previous

regions only if it has a larger solidity than all the previous region(s) overlapping it. This

ensures that a newly appearing region does not replace any other more convex region(s).

The thresholding range is decided based on the minimum and maximum average intensity of

a typical nucleus in images. Also, the image is iterated in steps of 10 for faster computation.

In two post-processing steps, regions are dilated and some of them are filtered. Those regions
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whose difference between their outer boundary average intensity and region average intensity

is smaller than a threshold are removed. Also, most of the artifacts are ignored because of

their size (if they are isolated) or because of their solidity (if they are overlapping). As

discussed in 6.4.3.1, although the algorithm is simple and very fast, it is also very accurate

on both synthetic and real image datasets and outperforms other state-of-the-art algorithms.

A detailed description of the algorithm is presented in Algorithm 2.

Algorithm 2: Nucleus Segmentation Algorithm

Input : EDF image I, min nucleus size m, min solidity s, low threshold t1, high
threshold t2 and min area and outer boundary average intensity
difference d

Output: Binary mask of nucleus segmentation N

1 N ← ∅
2 I ← Wiener (I)
3 for t ← t1 to t2 step 10 do
4 B ← I ≤ i
5 foreach region r in B do
6 if size of r < m or solidity of r < s then
7 remove r
8 else if binary mask of r ∩ N = ∅ then
9 N ← N ∪ r

10 else
/* r overlaps with regions r1, r2, . . . , rn in N */

11 if solidity of r ≥ solidities of all regions r1, r2, . . . , rn then
12 N ← N ∪ r
13 else
14 remove r

15 foreach region r in N do
16 dilate r
17 if average intesity of r − average intensity of outer boundary < d then
18 remove r

Filtering regions based on a maximum size can also be considered in line 6 of Algorithm 2.

Visually, it seems that including this filter may increase the segmentation accuracy. However,
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including it does not change the results for the nucleus detection accuracy on the datasets

used in the experiments.

6.2.2 Clump Segmentation

In this step, the cell clumps (cellular masses that contain cervical cells) are segmented

from the background. Generally, the background in each EDF image is uniformly bright and

the pixels of the foreground are darker but have more variation. It causes the brightness of

the darkest background pixel to be essentially (and not always) higher than the brightest

foreground pixel. Therefore, a simple thresholding and some morphological operations can

potentially segment the background from foreground. Using this observation, a Gaussian

Mixture Model (GMM) is learned with two components on the pixel intensities using the

Expectation Maximization (EM) algorithm. One Gaussian estimates the distribution of

foreground (cell clumps) pixel intensities and the other one estimates the background pixel

intensities. Using the background Gaussian distribution the threshold T is set to Q(q), where

Q(.) is the quantile function of the normal distribution, which is defined as

Q(q) = inf

{
x ∈ R, q ≤ 1√

2πσb
e
− (x−µb)

2

2σ2
b

}

= µb +
√

2σb erf−1(2q − 1),

(6.1)

where µb and σb are the mean and standard deviation of the background normal distribution

and erf(.) is the error function. Fig. 6.2 shows the histogram of pixel intensities of a real

EDF image in the training set of the ISBI 2015 dataset, its corresponding estimated GMM

and the selected threshold. After the image is binarized using the threshold T , a connected

component analysis was performed. Those connected components that did not contain any

nucleus or had small area or average intensity larger than Q(q′) are removed. Alternatively,

those nuclei that do not overlap with any segmented cell clump are discarded.
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Figure 6.2: Histogram of pixel intensities of an EDF cervical cytology image in the training
dataset, the estimated Gaussian Mixture Model and the selected threshold.

6.2.3 Cytoplasm Segmentation

This describes the main step of the framework segmenting the overlapping cytoplasm.

Because of the squamous shape of cervical cells, usually the best focal plane to have a specific

cell in focus is when the nucleus is in focus. Therefore, it can be safely assumed that when a

nucleus is in focus its cytoplasm is also (at least relatively) in focus and vice versa. Based on

this assumption, a cytoplasm boundary of a nucleus can be approximated by assigning the

parts of the image that have a focus measure similar to the nucleus and are relatively close.

These two criteria (being relatively close to the nucleus and having a similar focus measure

to that of the nucleus) are the main criteria with which the cytoplasm boundaries using the

image stack are approximated. After approximating the boundaries, they are refined in two

more steps using the EDF image.

6.2.3.1 Boundary Approximation

To approximate the cytoplasm boundaries, a square grid with width W is first overlaid

on each image in the stack. Instead of assigning pixels of the image to different nuclei, the

boundaries are approximated by assigning grid squares (or subimages). This will increase

the computational speed and also allows us to define a focus measure to estimate the focus
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of the area enclosed in a grid square. Based on the assumption above, if two subimages near

in distance to each other come into focus and go out of focus similarly in different images

in the image stack then it is likely that they belong to the same cell. This will give us an

approximation of cytoplasm boundaries.

Consider the (i, j)-th grid square (that is in row i and column j). For image k in the

stack, the focus measure of Iki,j ((i, j)-th grid square in the k-th image in the stack), F k
i,j,

is defined as the standard deviation of pixel intensities in the grid square. A focus vector

of the (i, j)-th grid square is defined as the vector containing focus measures of all images

in the stack, (F 1
i,j, F

2
i,j, . . . , F

20
i,j ) (there are 20 images in each stack in the dataset). The

focus vector is then normalized to have values within the range [0, 1] and is denoted by

(F 1
i,j, F

2
i,j, . . . , F

20
i,j ). Then the focus distance of the (i, j) and (i′, j′)-th grid squares, Si

′,j′

i,j , is

defined by the Euclidean distance of their corresponding normalized focus vectors,

Si
′,j′

i,j =

√√√√ 20∑
k=1

(
F k
i,j − F k

i′,j′

)2
. (6.2)

Also, to measure the closeness of (i, j) and (i′, j′)-th grid squares I set

Ci′,j′

i,j =
√

(i− i′)2 + (j − j′)2. (6.3)

Finally, the likelihood of the (i, j) and (i′, j′)-th grid squares belonging to the same cell

is estimated by

Li
′,j′

i,j = exp

−Ci′,j′

i,j

2
+ Si

′,j′

i,j

2

2α2

 . (6.4)

Using the likelihood measure, L, defined above on two subimages belonging to the same

cell, the likelihood of a subimage belonging to the cytoplasm of a particular cell can be

estimated using the fact that its nucleus is certainly a part of it. Therefore, to find out

which subimages are a part of a particular cell I searched for subimages that have a high
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likelihood of belonging to the same cell with the subimages overlapping with the nucleus.

Hence, to compute the likelihood of the (i, j)-th subimage belonging to the cytoplasm of a

cell with a nucleus that overlaps with (i1, j1), (i2, j2), . . . , (im′ , jm′)-th subimages, I set

Lmi,j =
1

m′

(
m′∑
s=1

Lis,jsi,j

)
, (6.5)

where m is the index of the detected nucleus in a cell clump. Lastly, if there are N nuclei

detected in a cell clump, namely nucleus 1 through N , (i, j)-th subimage is assigned to

nucleus m if

βLmi,j −
N∑
n=1
n6=m

Lni,j > 0. (6.6)

In other words, a subimage is assigned as the cytoplasm of a cell if the weighted likelihood

of it belonging to that cell is larger than the sum of the likelihoods of it belonging to other

cells in the clump. By setting β the permitted degree of overlap between cells in a clump

can be adjusted: by higher values of β the cells in a cell clump are allowed to overlap more

with each other and vice versa.

In the next two processes I refined (revised, smoothed, etc.) the approximated bound-

aries.

6.2.3.2 Coarse Refinement

This step does coarse refinement as it only refines the boundary at the subimage level

compared to the next refinement that is done at the pixel level. Unlike nuclei, which are

almost always convex, the shape of cytoplasm can be concave. Therefore, enforcing convexity

on cytoplasm boundaries is not realistic. However, only a limited level of concavity in

cytoplasm boundaries is allowed. To do that, I defined reachability notation and removed

those grid squares that are not reachable from the nucleus centroid. Suppose that the

nucleus centroid falls in the (i, j)-th grid square. The (i′, j′)-th grid square is said to be
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not reachable from the (i, j)-th grid square if there exists at least one grid square on the

discretized line segment from (i, j) to (i′, j′) that is not assigned to the cell. Discretization

can be implemented using the fast and simple Bresenham’s algorithm [184]. Removing a

grid square may make previously reachable grid squares not-reachable. The not-reachable

grid squares are removed as long as such grid squares exist. Fig. 6.3 shows an example of

two removed unreachable grid squares for a cell and its final shape.

x

Figure 6.3: Coarse refinement: the subimages not reachable by centroid subimage are re-
moved.

6.2.3.3 Fine Refinement

In this step the boundary is refined at the pixel level in an iterative process. I first

removed the effect of nuclei on the boundary evolution by replacing each nucleus region’s

pixels intensity by the mean intensity of its outer boundary. This smooths the segmented

nuclei regions significantly and edge pixels caused by nuclei will not attract the boundaries.

While moving from a pixel outside the cell towards the centroid of its nucleus, a transition

from a (relatively) bright to a darker pixel occurs at the time of entrance to the area of the

cell (at the cytoplasm boundary). In the first phase of each iteration such locations are

found. However, finding the correct locations is usually not an easy task because 1) these

edge pixels are not always easily detectable because of low contrast and signal to noise

ratio and also 2) the presence of artifacts and non-cervical cells create spurious edges. To
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address the first issue, a smoothing filter is used that refines the transition locations using

the calculated transition locations before and after them. This will ensure that if enough

edge pixels are detected correctly a missing/incorrectly detected edge pixel will be recovered.

To minimize the adverse affect of the spurious edges in the first phase of each iteration a

more rough smoothing filter is used to smooth the values and those values that are further

from their smoothed values than a threshold are considered outliers and are removed. The

filter is applied again to the remaining values and the new estimated values are used to refine

the boundary. Also, a weight vector is defined to give higher preference to edge pixels in the

vicinity of the refined boundary at the previous iteration (or approximated boundary from

previous coarse refinement step). The details are as follows.

Suppose that the boundary contains pixels of coordinates (cx + rθ cos θ, cy + rθ sin θ), for

θ = 0, 1, . . . , 359, where (cx, cy) are the coordinates of the nucleus centroid. In the first

iteration, for each θ ∈ {0, 1, . . . , 359}, the weight vector is defined as

Wθ =

 1

1 + exp
(
−a
(

1
2
− |rθ−s|

rθ

))
2rθ

s=0

, (6.7)

that contains the values of the composite of a sigmoid function with the normalized distance

of points on the radial from the boundary point. A pixel corresponded to radius θ and stride

s, psθ, has the coordinates (cx + s cos θ, cy + s cos θ). The gradient at psθ, G(psθ), is defined as

I
(
ps+1
θ

)
− I

(
ps−1θ

)
, (6.8)

where I(p) is the intensity of pixel p. For strides larger than 2rθ and for strides smaller than

0 the intensity is respectively set to maximum or minimum. For each θ ∈ {0, 1, . . . , 359}, piθθ
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is selected as the edge pixel where

iθ = arg max
s∈{0,1,...2θ}

Wθ(s)G(pθ,s). (6.9)

After choosing the sequence of points, (piθθ )359θ=0, on the boundary the x-coordinates (and simi-

larly y-coordinates independently) are smoothed by the Savitzky–Golay filter [185]. To filter

out the spurious edge pixels after the first smoothing, those pixels that have a distance larger

than a threshold from their smoothed estimation are discarded. The filter is applied again

to the remaining points and the new smoothed boundary replaces the previous estimated

boundary. This will minimize the effect of the spurious or inaccurately selected pixels on

the boundary evolution. Fig. 6.4 shows how newly selected boundary points and smoothing

affects the previous boundary of a cell in a synthetic image.

Figure 6.4: Fine refinement: the approximated boundary (red line) and the result (dashed
red line) of selecting highest weighted gradient points on radials followed by Savitzky–Golay
filter.

The only difference between the first iteration and the following iterations is that in the

following iterations the strides in Eq. 6.7 are only considered from 0 through rθ. Therefore, in

the first iteration the area may grow but after that it only can shrink. Inflation in iterations

other than the first iteration is restricted because, if there are no strong edge pixels due

to very poor contrast the boundaries usually expand until they reach to the cell clump
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boundary. The iterations are continued until the ratio of the size of non-overlapping area

(between the new and previous areas) to the size of previous area is negligible (less than

0.01).

6.3 Datasets

The datasets that the framework is trained and tested on were provided in two ISBI

challenges, the first and the second Overlapping Cervical Cytology Image Segmentation

Challenge (2014 and 2015) [51, 177]. To the best of my knowledge, these are the only

publicly available cervical cytology datasets that contain overlapping cells and their ground

truth segmentation.

The first dataset (from the first challenge, ISBI 2014) contained 135 synthetic and 8

real cervical cytology EDF images in the training set and 810 synthetic and 8 real cervical

cytology EDF images in the test set. The second dataset (from the second challenge, ISBI

2015) contained 8 real cervical cytology EDF images along with their volume images in the

training set and 9 real cervical cytology EDF images along with their volume images in the

test set. The main difference between the two datasets is the volume images that are included

with the 2015 dataset. The synthetic images in the 2014 dataset were created by mirror

transformations of background, and random rigid geometric and random linear brightness

transforms of different annotated isolate cells in real EDF images [51]. The synthetic images

have size 512x512 and each of them contains 2 to 10 different cells with varying overlapping

ratios in different ranges: [0, 0.1], [0.1, 0.2], [0.2, 0.3], [0.3, 0.4], [0.4, 0.5] [51], while real EDF

images and the images in stacks have size 1024x1024.

Images in both datasets are accompanied by nucleus and cytoplasm annotation. Table

6.1 summarizes the number of annotated cells (nuclei and their corresponding cytoplasms) in

each training and test sets of the two datasets. Note that because the annotation of individual

cytoplasms of cells in the EDF images in ISBI 2014 dataset have not been released I did
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not include them in Table 6.1 and they could not be used for the evaluation of cytoplasm

segmentation.

Table 6.1: Number of annotated cells in training and test set of the datasets.

ISBI 2014 dataset ISBI 2015 dataset

Training set 810 320

Test set 4860 449

6.4 Results

Except for two parameters, the parameters in the framework were set either adaptively

or empirically based on the image resolution and average brightness of a few typical images.

For example, almost all nuclei have sizes larger than 115 and solidity larger than 0.91.

Based on these observations, the parameters in the nucleus segmentation algorithm, such

as minimum size, solidity, threshold ranges and minimum average intensity difference are

set to 110, 0.9, [60, 150] and 15 in all experiments, respectively. Moreover, because in the

third step (Section 6.2.3), a pixel is assigned to a cytoplasm only if it is contained in a

segmented cell clump, I chose the values q (Eq. 6.1) and q′ in a way that the foreground is

not over-segmented. These values were set empirically to 0.06 and 0.0001. Different values

of q ∈ [0.01, 0.1] and different values of q′ ∈ [0.00001, 0.001] produce very similar results.

Moreover, because the image sizes are powers of two I set W (introduced in Subsection

6.2.3.1) to 23 = 8 as W = 2 or 4 worsened results and increased the computation time. Also,

higher values (such as 16) of W make the boundary approximation inaccurate.

The only parameters that are searched and set based on the whole training set (separately

for ISBI 2014 and ISBI 2015 datasets) are α and β in Eq. 6.4 and Eq. 6.6, respectively.

Changing values for α or β separately can change the results significantly as they manage

the overlapping degree of cytoplasms and the way subimages are assigned to different cells
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cytoplasm. However, generally, if α is increased and β is decreased simultaneously (and

vice versa) the produced result does not change significantly as it can been seen in Section

6.4.2. The process of setting the values of these two parameters is explained in detail in the

following section.

I first discuss the evaluation parameters (Section 6.4.1) and then report the results of the

framework on the ISBI 2015 dataset (Section 6.4.2) as the framework was originally proposed

to work with the volume images that were not provided in the ISBI 2014 dataset. Finally,

by a modification in the framework I also trained and tested it on ISBI 2014 dataset and the

detailed results and discussion are presented in Section 6.4.3.

6.4.1 Evaluation Metrics

The Dice Similarity Coefficient (DSC) of two regions A and B is defined as

DSCA,B =
2|A ∩B|
|A|+ |B|

. (6.10)

During evaluation a segmented cell in the ground truth is considered to be missed if there is

no region in the segmentation result that has a DSC greater than 0.7 with it. The original

evaluation metrics proposed in both challenges were DSC, False Negative Rate at object

level (FNRo), True Positive Rate at pixel level (TPRp) and False Positive Rate at pixel

level (FPRp). FNRo is the rate of cells missed in the ground truth as defined earlier and

TPRp and FPRp are the average of true positive and false positive rates at the pixel level of

those regions that are not missed. A typical cell is relatively small compared to the image

size. Therefore, all previously reported results of different methods show a very small FPRp

[51, 177, 178, 179, 172], typically less than 0.01. Hence, this measure does not effectively

distinguish between the performance of different methods. Instead, I propose to report

the False Discovery Rate at object level (FDRo). FDRo together with FNRo can give an

assessment of the detection performance of different methods effectively. DSC is in fact the
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F-measure at the pixel level:

DSCA,B =
2|A ∩B|
|A|+ |B|

=

2|A∩B|2
|A||B|

|A∩B|(|A|+|B|)
|A||B|

=
2 |A∩B||A|

|A∩B|
|B|

|A∩B||A|
|A||B| + |A∩B||B|

|A||B|

=
2 |A∩B||A|

|A∩B|
|B|

|A∩B|
|B| + |A∩B|

|A|

=
2RP

P +R

= F1,

(6.11)

where P and R are precision and recall considering A to be the ground truth region and

B to be the segmented region. Therefore, the F -measure is commonly used for evaluating

segmentation accuracy and therefore, the combination of DSC and TPRp can effectively

evaluate the segmentation accuracy of different methods.

In experiments a segmentation is considered a good segmentation if it matches a region in

ground truth with a DSC higher than 0.7 [51]. Otherwise, it is counted as a bad segmentation

and therefore, a false discovery.

On a different note, unfortunately, because of an error in the original provided evaluation

code in challenges I could not compare the method’s results with most of the other proposed

methods [177, 178, 179] fairly. It was observed that the original evaluation code may miss

some good segmentations and therefore, the reported measures are not accurate. To deal

with this issue, I implemented a new evaluation code computing the set of metrics described

above and have made it publicly available for future evaluations on these or other datasets

with ground truth1. Because I had access to the source codes of the methods by Lu et al. [51]

1http://www.csee.usf.edu/∼hady/codes/2016 segmentation evaluation.zip.
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and Ushizima et al. [181] I could test their algorithms on both datasets and reevaluate their

performance with the new evaluation code and metrics. I report their results in Section 6.4.3

for comparison (along with the previous version of the framework [172]). Note that both of

their methods were originally proposed on the ISBI 2014 dataset whereas this approach was

originally proposed on the ISBI 2015 dataset. All the results in Section 6.4.3 are obtained

by setting the parameters based on the ISBI 2014 training set and testing them on the test

sets of ISBI 2014 and ISBI 2015.

During experiments, it was observed that sometimes a marginally higher average DSC

measure can be achieved with a relatively higher FNRo. As explained above, DSC and

TPRp are measures of cell segmentation accuracy and FNRo and FDRo are measures of

cell detection accuracy. Therefore, if only DSC is considered as a measure of performance,

ignoring FNRo, only the segmentation accuracy is assessed and the detection accuracy of

methods are ignored completely. Hence, I suggest using the Geometric Mean of DSC and

True Positive Rate at the object level (TPRo), GM =
√

DSC(1− FNRo), as the final

assessment measure. The GM measure actually combines one measure of segmentation

accuracy with one measure of detection accuracy.

In the next section I report the framework’s result on the ISBI 2015 dataset and compare

it to the previous version of the method (in [172]). In Section 6.4.3 I throughly analyze the

framework results on both datasets and compare it to the method by Lu et al. [51] and

Ushizima et al. [181].

6.4.2 Results on ISBI 2015 Dataset

The results presented in this section were produced by setting α and β using the training

set from the ISBI 2015 dataset. I searched for the set of values for α and β that produced

the highest GM in the training set. Ten different values for α ({1, 1.25, . . . , 3.25}) and 20

different values for β ({6, 7, . . . , 25}) were checked and the highest GM was obtained with
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Figure 6.5: Visualization of results produced by different values of α and β.

α = 2.25 and β = 16. Four sets of values producing the two highest GM, highest DSC and

lowest FNRo and their corresponding results on the training set are summarized in Table

6.2 2. As can be seen marginally a higher DSC may be obtained for the cost of higher FNRo,

and the GM measure is a good choice to optimize the algorithm parameters for both at the

same time.

To show the importance of FDRo, it should be noted that usually reporting more regions

in segmentation results in a higher DSC. To show this, I simply removed the solidity check in

the nucleus segmentation algorithm. This will result in over-detecting nuclei in each image

on average and hence, more regions will be reported in the final segmentation result. I

set the α and β for this version separately and included its results in Table 6.3 that also

compares the new results to those in [172] using the new evaluation code and metrics. It

2In each of the following tables superior results are shown with bold text.
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Table 6.2: Four sets of values producing the two highest GM measures, highest DSC and
lowest FNRo on training set of ISBI 2015 dataset.

α, β DSC FNRo TPRp FDRo GM

2.25, 16 0.882 0.184 0.908 0.250 0.848

2, 25 0.884 0.188 0.907 0.253 0.847

3.25, 6 0.886 0.212 0.912 0.276 0.835

2, 9 0.876 0.181 0.875 0.247 0.847

shows that smaller FNRo and almost the same DSC can be achieved by reporting more

regions (and leading to higher FDRo). However, this is not realistic as this version clearly

segments significantly more nuclei than the number of nuclei in the ground truth. Therefore,

it was concluded that one should strive for higher GM while keeping FDRo close to FNRo.

Table 6.3: Comparison between current version with previous version of the method [172]
on test set of ISBI 2015 dataset.

α, β DSC FNRo TPRp FDRo GM

Previous Version [172] 2.25, 23 0.855 0.243 0.882 0.289 0.804

Improved version (nucleus over-detection) 2.75, 9 0.871 0.183 0.893 0.390 0.844

Improved version 2.25, 16 0.873 0.232 0.900 0.281 0.819

6.4.3 Comprehensive Results on Both Datasets

In this section I first report the results of the nucleus detection algorithm on the test

set of the ISBI 2014 and compare it to other methods. In Subsection 6.4.3.2 I compare the

framework’s results with those presented in [51] and [181].
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Table 6.4: Detailed results of the framework on 810 synthetic images in the test set of the ISBI 2014 dataset. The results are
presented in the format DSC, FNRo, TPRp, FDRo. O. is the overlap ratio.

All overlaps O. ∈ [0, 0.1] O. ∈ [0.1, 0.2] O. ∈ [0.2, 0.3] O. ∈ [0.3, 0.4] Overlap ∈ [0.4, 0.5]

All cells .90, .07, .91, .04 .96, .02, .96, .01 .92, .03, .92, .02 .89, .04, .90, .03 .87, .11, .87, .07 .86, .16, .86, .09

2 cells .93, .02, .94, .01 .96, .00, .97, .00 .93, .00, .95, .00 .92, .00, .92, .00 .91, .03, .92, .00 .91, .08, .92, .03

3 cells .91, .06, .92, .03 .96, .02, .97, .00 .92, .02, .93, .00 .90, .00, .92, .00 .88, .13, .90, .08 .87, .11, .88, .06

4 cells .91, .05, .92, .03 .96, .01, .96, .00 .94, .04, .94, .03 .90, .01, .91, .00 .89, .03, .89, .03 .85, .15, .87, .09

5 cells .91, .07, .92, .04 .96, .02, .97, .00 .93, .01, .93, .00 .91, .04, .92, .01 .87, .13, .88, .10 .86, .14, .89, .07

6 cells .90, .06, .90, .04 .96, .01, .95, .00 .91, .02, .91, .01 .90, .05, .91, .03 .87, .08, .86, .07 .85, .16, .86, .07

7 cells .90, .07, .90, .04 .96, .02, .96, .00 .90, .03, .91, .02 .89, .06, .89, .03 .86, .11, .86, .05 .87, .10, .87, .07

8 cells .90, .07, .90, .05 .96, .03, .96, .02 .92, .04, .93, .05 .89, .03, .88, .03 .87, .10, .87, .07 .84, .15, .83, .09

9 cells .90, .08, .90, .05 .96, .01, .96, .01 .92, .03, .93, .03 .89, .02, .90, .01 .86, .10, .86, .08 .85, .23, .86, .13

10 cells .90, .09, .90, .05 .96, .02, .96, .00 .92, .02, .93, .01 .89, .08, .89, .05 .86, .16, .87, .10 .85, .18, .85, .10



6.4.3.1 Nucleus Detection

A nucleus, represented by region A in ground truth, is considered to be detected, by

region B in a segmentation result, if

|A ∩B|
max{|A|, |B|}

> 0.6. (6.12)

[0,0.1] [0.1,0.2] [0.2,0.3] [0.3,0.4] [0.4,0.5]
Overlap ratio between pairs of cells

2 

3 

4 

5 

6 

7 

8 

9 

10

N
um

be
r 

of
 c

el
ls

0.85

0.9

0.95

(a) DSC

[0,0.1] [0.1,0.2] [0.2,0.3] [0.3,0.4] [0.4,0.5]
Overlap ratio between pairs of cells

2 

3 

4 

5 

6 

7 

8 

9 

10

N
um

be
r 

of
 c

el
ls

0

0.05

0.1

0.15

0.2

(b) FNRo

[0,0.1] [0.1,0.2] [0.2,0.3] [0.3,0.4] [0.4,0.5]
Overlap ratio between pairs of cells

2 

3 

4 

5 

6 

7 

8 

9 

10

N
um

be
r 

of
 c

el
ls

0.7

0.75

0.8

0.85

0.9

0.95

(c) GM
(√

DSC(1− FNRo)
)

Figure 6.6: Visualization of results in Table 6.4.

Table 6.5 presents the nucleus detection algorithm results in terms of Precision, Recall

and F-measure and compares it to the results presented in [177]. I also evaluated the nucleus

detection algorithm presented in [172] on the test set of the ISBI 2014 dataset after setting

its parameters using the training set of ISBI 2014 dataset. The nucleus detection algorithm

achieves the highest Recall and F-measure while the method proposed by Lu et al. outper-

forms the proposed method in terms of Precision. Fig. 6.8 shows the nucleus segmentation

result on some real EDF and synthetic images.
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Table 6.5: Nucleus detection methods results on 810 synthetic images in the test set of ISBI
2014 dataset.

Precision Recall F-measure

Ushizima et al. [181] 0.959 0.895 0.926

Nosrati et al. [177] 0.903 0.893 0.898

Lu et al. [177] 0.977 0.883 0.928

Phoulady et al. [172] 0.874 0.930 0.901

New Results 0.961 0.933 0.947

6.4.3.2 Cell Detection and Segmentation

The framework was originally proposed for the ISBI 2015 challenge and works with

the image stacks along with the EDF images. However, only the third step (described

in Subsection 6.2.3.1) to segment overlapping cytoplasms works with the volume images.

Therefore, it can be modified to work only with the EDF images by excluding the focus

distance (Eq. 6.2) effect on the boundary approximation process (Eq. 6.4). By doing so I

could train the framework on the ISBI 2014 dataset that did not contain the image stacks

and test it on the test set of both datasets.

Similar to the previous section, Table 6.6 presents the results of four sets of values for α

and β.

Table 6.6: Four sets of values producing the two highest GM measures, highest DSC and
lowest FNRo on the training set of ISBI 2014 dataset.

α, β DSC FNRo TPRp FDRo GM

1.75, 20 0.904 0.035 0.892 0.037 0.934

2, 12 0.904 0.036 0.893 0.038 0.934

2, 20 0.907 0.049 0.906 0.052 0.928

1.75, 20 0.904 0.035 0.892 0.037 0.934
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Fig. 6.5 presents a visualization of how the measures change by changing α and β. It

seems that α and β correlate with each other somewhat linearly. This means that potentially

the number of parameters that need to be set in the framework can be reduced to only

one. TPRp and Positive Predictive Value at the pixel level (PPVp) seems to be correlated

negatively, and DSC, which is the harmonic mean of the two, attains its largest values in the

middle band. Finally, there is a large set of parameters that produce similar superior results

(the middle band in Fig. 6.5f).

Using the parameters set by the training set from the ISBI 2014 dataset (α = 1.75 and

β = 20) I tested the framework on both testing sets and compared to the method by Lu

et al. [51] in Table 6.7. The proposed method outperforms the method in [51] by having

significantly lower FNRo and FDRo and marginally better DSC. However, it has marginally

worse TPRp. Moreover, the proposed method achieves marginally better results using the

parameters set by ISBI 2014 training set compared to the results achieved by the parameters

set by ISBI 2015 training set.

Table 6.7: Results of the framework and comparison with the other state-of-the-art methods.

DSC FNRo TPRp FDRo GM

Lu et al. [51] 0.887 0.229 0.907 0.146 0.827

Ushizima et al. [181] 0.868 0.209 0.842 0.152 0.829

Phoulady et al. [172] 0.883 0.087 0.902 0.142 0.898

New Results 0.901 0.070 0.906 0.041 0.915

(a) Results on 810 synthetic images in the test set of ISBI 2014 dataset

DSC FNRo TPRp FDRo GM

Lu et al. [51] 0.856 0.392 0.892 0.371 0.721

Ushizima et al. [181] 0.841 0.499 0.828 0.473 0.649

Phoulady et al. [172] 0.856 0.236 0.878 0.342 0.809

New Results 0.869 0.209 0.876 0.260 0.829

(b) Results on 9 real EDF images the test set of ISBI 2015 dataset

88



The test set of ISBI 2014 dataset is also accompanied by the number of cells and their

overlap ratio in each image. This enables us to produce detailed results on this dataset as

presented in Table 6.4. The results contain the detection and segmentation accuracy for

different subsets of the whole test set as the number of cells and overlap ratio vary.

Figure 6.7: Five images with very low contrast nuclei (red and green lines are ground truth
and segmentation region boundaries, respectively).

6.5 Discussions

Table 6.4 shows that when there are only 2 cells in an image the method misses only

around 2 percents of cells and it does not miss any cells if the overlap ratio is less than 0.3.

Also, when the overlap is low (in [0, 0.1] range) only 2% of cells are missed on average in

all images containing up to 10 cells. The highest miss ratio is for 9 cells with the highest

overlap ratio ([0.4, 0.5]). The method misses less than 5% of all cells, if the pairwise overlap

ratio is less than 0.3. But it quickly increases to around 10% when the overlap ratio is in

the interval [0.3, 0.4]. Finally, when the overlap is highest, [0.4, 0.5], the method misses 16%
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Figure 6.8: The ground truth (top row) and the nucleus and overlapping cells segmentation
results of two real EDF and four synthetic images with nucleus.

of cells on average. Fig. 6.6 shows a visualization of results in Table 6.4. It shows that

the mean DSC changes more uniformly than FNRo. Upon investigation I noticed that some

of the cells are missed because of missed nuclei. In some synthetic images some nuclei do

not have high contrast or even look brighter than their adjacent regions. Fig. 6.7 shows

three such images. However, the number of such nuclei in images seem to be relatively low.

Also, even if the nuclei are detected and segmented correctly, the boundaries may not be

found effectively if the overlapping degree is very high and/or there are very little useful

image information for the boundaries (one such example can be seen in the first EDF image

in Fig. 6.8). On the other hand, around 70% of cell clumps in real images contain three

or fewer cells [176]. Therefore, this issue does not happen frequently in real situations and

the EDF images seem to be a good representation of the real environment. Moreover, on
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both datasets, the boundary refinement steps improved the FNRo by around 5-10% based on

different parameters (compared to when only the boundary approximation is used without

any refinement). Fig. 6.8 shows some final segmentation results on real and synthetic images.

The Matlab code was run on a PC with 3.60 GHz i7-4790 processor and 16 GB of RAM.

The processing on a real EDF image takes around 10 seconds on average: it takes around

2.5 seconds for the algorithm to detect and segment nuclei and cell clumps and around 7.5

seconds to segment the overlapping cell cytoplasm. A synthetic image, on the other hand,

takes around 0.5 seconds on average. This indicates that the framework is at least 10 times

faster than the fastest method evaluated in [177] on synthetic images. Processing an EDF

image takes almost 20 times longer than a synthetic image as an EDF image is 4 times larger

than a synthetic image and has around 8 times more cells on average.

6.6 Summary

A framework was proposed to segment the overlapping cytoplasm in cervical cytology

images. In all three main steps (nucleus detection and segmentation, cell clump segmentation

and overlapping cytoplasm segmentation) of the framework novel approaches were proposed.

The nucleus detection and segmentation method proposed in this work is substantially

different from that proposed in [172]. It uses solidity as the main feature of nuclei regions

and is more resistant to brightness changes in images and produces more consistent results.

However, it tends to over-segment nuclei regions. Quantitative (Table 6.5) and qualitative

(Fig. 6.8) results show that it can find nuclei regions in both synthetic and real images with

high accuracy and it outperforms other existing methods on the same dataset. Cell clump

segmentation is done accurately by learning a GMM over pixel intensities using the EM

algorithm. Qualitative results of the segmentations in this step show that it only misses very

small areas that have very low contrast. The cytoplasm segmentation for each detected nu-

cleus was done by boundary approximation on the subimage followed by two refinement steps
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at the subimage and pixel level. The proposed outliers removal procedure could effectively

reduce the effect of outliers on boundary evolution.

The final results show that on synthetic images the framework misses only 7% of 4860

cells in 810 images that each contained 2-10 cells, and on real EDF images it misses around

20% of all cells. The detailed results in Table 6.4 show that the framework missed less than

5% of cells when the pairwise overlapping was not higher than 0.3 (in [0, 0.3] range) and it

missed around 20% of cells when there are 9-10 cells in images and the pairwise overlapping

is very high (in [0.4, 0.5] range). The method outperforms the other methods proposed on

the same dataset [51] by a large margin (Table 6.7) in terms of False Negative Rate at object

level while achieving higher Dice Similarity Coefficient. This shows a promising breakthrough

in the challenging task of overlapping cytoplasm segmentation of cervical cells in cytology

images.
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Chapter 7

Conclusions

7.1 Summary

In Chapter 1, I discussed the motivation and background on CAD systems and the major

approaches of CAD systems that process bright-field microscopy images.

In Chapter 2 the recent advances in microscopy image processing were investigated and

some of the most recent and/or popular algorithms for nucleus detection and segmenta-

tion and cervical cell segmentation were reviewed. Most of the work in microscopy image

processing is done on histology, specifically breast histology images. On the other hand,

most of the researches on cytology are on cervical cytology segmentation. Cervical cytology

segmentation, compared to breast histology segmentation, is a relatively less studied topic.

However, more work has focused on it during the past few years. I divided the reviewed

methods for nucleus segmentation into five main categories. Some methods, such as level set

methods, mostly give more accurate segmentations but they are computationally intensive

and are parameter sensitive. Some other methods, e.g. intensity based approaches, are faster

but may give less accurate segmentations. Generally speaking, there is no known optimal

type of method for medical image segmentation and to design and propose an algorithm

one needs to take tissue type, slide preparation process and final goal1 into considerations.

Finally, although earlier methods of cervical cell segmentation focused primarily on segment-

ing free lying cells, more recent algorithms tackle the most challenging task of segmenting

overlapping cells.

1E.g., Is the final goal achieving a good segmentation or detecting specific regions in whole slides? Do we
want to do classification? etc.
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In Chapters 3, 4, 5 and 6, the methods that were published and were proposed for different

tasks of segmentation and classification were presented. In Chapter 3, a segmentation method

was presented that was proposed to segment nuclei in histology images of various tissues.

In Chapters 4 and 5, two novel methods for cervical tissue classification using histology

images were presented. These methods used the MNV and texture features, respectively, to

classify tissues and could achieve high classification accuracies (84% and 93%). In Chapter

6, a robust framework was presented to segment overlapping cervical cells in cervical volume

images and their corresponding EDF image.

7.2 Contributions

In Chapter 3, a general segmentation methods for segmenting nuclei in histology images

was presented. While the algorithm achieved higher accuracy measures, it does not need

any training data to learn or tune the parameters as they are adaptively set based on the

data. It was shown that competitive results can be obtained by the proposed framework

that adaptively sets the method parameters. This makes the algorithm more practical in

real situations and makes it more expandable to other datasets.

In Chapter 4, an ensemble approach was proposed to classify cervical tissues using histol-

ogy images. Four basic segmentors with different parameters settings were used to produce

different segmentation of the same images. In an ensemble approach these segmentation

results were combined to give the final value for the Mean Nuclear Volume (MNV) of each

tissue. An extra step was also designed to identify and reject those cases that were not re-

liably processed. The results showed that the single feature of MNV can be used to classify

tissues with high accuracy (over 84%). The work was one of the few works that investigated

the effectiveness of an automatically computed MNV feature for the task of cervical tissue

classification.
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In Chapter 5, a framework (Adaptive Nucleus Shape Modeling) that was used to do the

similar task of classifying cervical tissues (as Chapter 4) was presented. In that work, instead

of using MNV as the feature, nucleus level texture features were extracted and used for

classification. The images were first segmented using a new segmentation algorithm and the

segmentation results were enhanced using ellipse fitting. This method further increased the

accuracy of cervical tissue classification (from 84% to 93%) that was obtained by previous

method. Furthermore, it does not reject any cases from processing and it overcame the

limitation of missed nuclei labeling information by removing poorly segmented nuclei and

reducing the number of mislabeled training instances. It also outperformed the results

obtained by employing one of the state-of-the-art segmentation algorithms. It was shown

that for the task of classification, a more simple segmentation algorithm can potentially

produce marginally better results.

In Chapter 6, a framework was proposed to segment overlapping cervical cells in Pap

smear cervical cytology images. Segmentation of overlapping cervical cells is a challenging

task due to artifacts and overlapping cytoplasm. The main three steps of the algorithm were

nucleus segmentation, cell clump segmentation and overlapping cytoplasm segmentation.

Moreover, the proposed nucleus segmentation method was a novel iterative thresholding

algorithm that outperformed other state-of-the-art nucleus segmentation methods in terms

of detection accuracy. The cell clump segmentation was done efficiently and accurately by

using a learned GMM to choose the thresholding parameter. Cervical volume stack images

were used to approximate the cytoplasm boundary by using a novel focus vector. As the final

step to refine the cytoplasm boundary a weight vector along radial pixels was proposed that

could be used efficiently to find the correct edge pixels to fit the previously approximated

boundary to real cell boundary. It was the first method that used the information in cervical

volume images efficiently to increase the segmentation accuracy. It could improve the results

of previous state-of-the-art algorithms substantially: the best results obtained by a method
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on ISBI 2015 dataset showed around 40% missed cells while the proposed method missed

only around 20% cells, which is a huge improvement. It also runs very fast and experiments

showed that it can process images more than 10 times faster than other methods.

7.3 Future Directions

Several algorithms were proposed to segment nuclei and classify tissues using microscopy

bright-field images. These methods can potentially be improved as discussed below.

1. The results obtained by the hierarchical multilevel thresholding algorithm (Chapter 3)

can be potentially improved by an extra post-processing step to separate overlapping

nuclei which is the main source of the error in the final segmentation result. Algorithms

that aim to separate segmented overlapping regions can be employed for this purpose.

2. The classification accuracy of the framework proposed in Chapter 4 can be potentially

increased by replacing the segmentors by more advanced segmentation algorithms.

The computation of MNV is strictly dependent on the segmented regions. Therefore,

segmented overlapping regions and under-segmented regions can adversely affect the

final computed feature. A new extra step can be developed to eliminate such incor-

rectly segmented regions and potentially improve the accuracy of final computed MNV

feature.

3. The method proposed in Chapter 5 can be potentially improved by extracting other

image features other than texture features. A subset of the set of new features can

be chosen by employing a feature selection approach to remove the less discriminatory

features.

4. The segmentation method presented in Chapter 6 can be potentially improved by a

few modifications: 1) although the nucleus segmentation algorithm outperforms other

methods in terms of detection accuracy, it is still one of the major sources of error in the

96



final results. Because when a nucleus is missed, the framework does not have the chance

of segmenting the cell as they are the seed points for different cells. The algorithm

can be potentially improved by first over-detecting nuclei and then classifying them as

nucleus or non-nucleus. Also, an ensemble algorithm can be used to potentially reduce

the miss rate; 2) most of the inaccuracies in the final segmentation results happen when

the overlapping degree is very high (greater than 40%). These areas can be detected

(by checking the density of detected nuclei in different regions) and can be processed

in a different way or with different method parameters.
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Appendix A Permissions for Use

Permissions to use images in Fig. 1.1 and Fig. 2.2 are acquired through RightsLink R©.

Fair use of images in Fig. 2.1 is permitted (Creative Commons License 1).

Images in Fig. 2.3 are taken from [91] which are taken from open-access article [22] and

is permitted to be used in this work.

No permission is required to use images in Fig. 2.4, which are taken from an IEEE pub-

lication, in this work.

1http://creativecommons.org/licenses/by-nc-sa/3.0/
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