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How Random Noise and a Graphical Convention Subverted Behavioral
Scientists' Explanations of Self-Assessment Data: Numeracy Underlies
Better Alternatives

Abstract
Despite nearly two decades of research, researchers have not resolved whether people generally perceive their
skills accurately or inaccurately. In this paper, we trace this lack of resolution to numeracy, specifically to the
frequently overlooked complications that arise from the noisy data produced by the paired measures that
researchers employ to determine self-assessment accuracy. To illustrate the complications and ways to resolve
them, we employ a large dataset (N = 1154) obtained from paired measures of documented reliability to study
self-assessed proficiency in science literacy. We collected demographic information that allowed both
criterion-referenced and normative-based analyses of self-assessment data. We used these analyses to propose
a quantitatively based classification scale and show how its use informs the nature of self-assessment. Much of
the current consensus about peoples' inability to self-assess accurately comes from interpreting normative data
presented in the Kruger-Dunning type graphical format or closely related (y - x) vs. (x) graphical conventions.
Our data show that peoples' self-assessments of competence, in general, reflect a genuine competence that
they can demonstrate. That finding contradicts the current consensus about the nature of self-assessment. Our
results further confirm that experts are more proficient in self-assessing their abilities than novices and that
women, in general, self-assess more accurately than men. The validity of interpretations of data depends
strongly upon how carefully the researchers consider the numeracy that underlies graphical presentations and
conclusions. Our results indicate that carefully measured self-assessments provide valid, measurable and
valuable information about proficiency.

Keywords
self-assessment, self-assessment classification scale, Dunning-Kruger Effect, knowledge surveys, graphs,
numeracy, random number simulation, noise, signal
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Introduction    

Measuring whether or not people are good judges of their abilities rests largely on 

numbers that result from simple arithmetic, namely subtraction. To quantify our 

abilities to self-assess accurately, we select a challenge, provide an estimate of our 

self-assessed ability to meet that challenge, and complete a direct measure of our 

competence in engaging the challenge. Obtaining our self-assessment accuracy 

requires nothing more than computing the difference between the two measures. 

While the computation could scarcely be simpler, the simplicity belies a 

surprisingly complex numeracy required to derive meaning from these numbers. 

Demands for numeracy arise at every step of self-assessment research. Such 

numeracy enlists number sense, reading and interpreting graphs, basic probability 

and statistics, and reasoning. These concepts are emphasized on the Quantitative 

Literacy Reasoning Assessment (Gaze et al. 2014). The steps themselves include 

recognizing the assumptions involved in the paired measurements, preparing the 

data for analyses, presenting the data graphically, interpreting the patterns that the 

data produce on graphs, and deducing what these results reveal about our 

collective abilities to self-assess. Within these steps, inattention to numeracy 

produces (a) measures of undocumented reliability, (b) paired measures from 

poorly aligned instruments, (c) data from studies of insufficient size to achieve 

reliability or reproducibility, (d) data produced from vague questions, (e) failures 

to recognize ceiling and floor effects in paired data and (f) mistaking graphical 

patterns of random noise for patterns that depict the self-assessment signal 

(Nuhfer et al. 2016a). 

This paper is our second in Numeracy that addresses the challenges of 

quantifying self-assessment. In our first paper (Nuhfer et al. 2016a), we focused 

on insights produced by considering self-assessment data as mixtures of signal 

and noise. The self-assessment signal manifests as a valid relationship between 

self-assessed ratings of competence and direct measures of competence, but the 

presence of noise interferes with detection of the sought-after signal, much as 

static interferes with clear radio reception. 

Three competing hypotheses about self-assessment follow from that first 

paper. Proponents of the first hypothesis indeed do argue that measures of self-

assessment yield meaningless nonsense. 

1. No meaningful relationship exists between self-assessed competence and demonstrable 

competence. Self-assessed competence is mostly random noise. (Porter 2012, 2013). 

This first hypothesis is arguably a null hypothesis to our second and third 

hypotheses, which are:  

2. The relationship between self-assessed competence and demonstrable competence is 

meaningful and measurable. Studies confirm that people have a strong propensity toward 

overestimating their abilities. Those least competent have the greatest overconfidence in 
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their actual abilities. Those most competent tend toward accuracy or slight 

underconfidence in estimating their actual abilities. (Representative sources are Kruger 

and Dunning 1999; Kennedy et al. 2002; Ehrlinger et al. 2008; Stinson and Xiaofeng 

2008; Bell and Volckmann 2011; Pazicni and Bauer 2013) 

3. The relationship between self-assessed competence and demonstrable competence is 

meaningful and measurable. Some people exhibit significant overconfidence or 

underconfidence, but overall, people's self-assessed competence is in accord with a 

competence that they can demonstrate. (Ackerman, Beier and Bowen 2002; Nuhfer and 

Knipp 2006; Favazzo, Willford and Watson 2014; Handel and Fritzsche 2016; Nuhfer et 

al. 2016a; this paper) 

In Nuhfer et al. (2016a), we ascertained that obtaining good measures of self-

assessment ability requires great care. Studies done without such care produce 

questionable results, and such results, when published, contribute to beliefs that 

self-assessment is a nebulous human quality. After working to attend to the 

numeracy issues outlined above, we generated a dataset from which we could 

easily distinguish the numerical character of self-assessment measures from the 

character of randomness. Our results (Nuhfer et al. 2016a) required us to reject 

the first (null) hypothesis that consigned self-assessment to random noise. 

In this paper, we determine which one of the remaining two hypotheses best 

explains human self-assessment. The prevalent consensus in the peer-reviewed 

literature supports the second of the three hypotheses. We trace the origins of this 

consensus to the seminal paper of Kruger and Dunning (1999), and we explain in 

this paper how eighteen years of replicating the procedures introduced in the 

founding paper have produced the prevalent consensus. Our study, however, 

shows merit in using alternative procedures, which, we have found, produce 

results that contradict the established consensus about the nature of human self-

assessment. 

To convey how attention to numeracy might eliminate misconceptions about 

self-assessment requires providing detailed explanations supported by examples. 

To offer a more concise report in this (“main”) paper, we provide the explanations 

with examples in Appendix A. The omission of such explanations in earlier 

papers may account for the prolonged duration of misconceptions about self-

assessment. To allow others to test our procedures and conclusions, we also share 

our dataset in a separate appendix (B). It augments the dataset shared in our first 

paper with some additional demographic information that we reserved for our 

completion of this study. 

In this study, we are not so much disputing behavioral scientists' conclusions 

about the nature of self-assessment as we are questioning the numeracy that 

underlies these conclusions. Indeed, our greatest concern in questioning the 

numeracy is that readers might see our work as intentionally detracting from the 

pioneering contribution that Kruger and Dunning (1999) made to behavioral 

science. We note, however, that Kruger and Dunning (1999, p. 1132) clearly 
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anticipated the difficulties inherent in the area of study that they opened: 

Although we feel we have done a competent job in making a strong case for this analysis, 

studying it empirically, and drawing out relevant implications, our thesis leaves us with 

one haunting worry that we cannot vanquish. That worry is that this article may contain 

faulty logic, methodological errors, or poor communication. 

Our navigating the numeracy of self-assessment measures revealed a path 

replete with unanticipated pitfalls and barriers. The trepidation that Kruger and 

Dunning expressed in 1999 remains shared by us in 2017. Yet, if our work 

confirms that earlier conclusions have less support from quantitative reasoning 

than investigators recognized, then justification exists for reevaluation of the 

consensus established from nearly two decades of self-assessment literature. 

To provide continuity with our earlier paper, we employ the same dataset that 

we collected for Nuhfer et al. (2016a). Because we provided the methods section 

for collecting this data in the first paper, we do not repeat it here. Each of the 

1154 participants in our study produced a measure of demonstrated competence in 

science literacy from his/her score on the Science Literacy Concept Inventory 

(SLCI, reliability R = .84) and a self-assessed competency rating to address this 

challenge through a knowledge survey of the Inventory (KSSLCI, R = .93). Both 

instruments furnish data that contain signal mixed with noise. We verified that the 

data had sufficient reliability to allow us to extract clear expressions of the signal 

from the noise (Nuhfer et al. 2016a). 

We proceed next to clarify why measuring metacognitive self-assessment is 

worth the effort; distinguish between the several kinds of metacognitive self-

assessments currently addressed by researchers; and visit considerations of what 

we are actually measuring. After that, we assess the influential Kruger-Dunning 

graphical presentation of self-assessment data and explain why we believe that 

future studies must employ alternative approaches. 

Background 

Why Measure Metacognitive Self-Assessment? 

“Metacognition refers to one's knowledge concerning one's own cognitive 

processes or anything related to them…” (Flavell 1976, p.232). A primary aim of 

higher education is to produce graduates with abilities to increase their capacity 

for effective learning and thinking throughout their lives. Developing students' 

metacognitive self-assessment skills may be key to producing such graduates.  

Self-assessment is a metacognitive skill that includes the capacity to assess 

accurately one's own ability to meet immediate cognitive and social challenges 

with present skills and knowledge. The exercise of self-assessment is more 

intuitive than analytical and occurs by accessing one's affective feeling of capacity 
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to meet the challenge. 

Summaries of the history that have led to confirming the value of 

metacognition (Dunlosky and Metcalfe 2009) and the affective domain (Damasio 

1999) reveal earlier periods during which behavioral scientists disrespected the 

two topics and regarded each as unworthy of serious study. Research eventually 

established both as important to learning. Self-assessment, however, which draws 

from metacognition and affect, remains viewed with suspicion. We concur with 

the observation of Zell and Krizan (2014) that continued disagreement still exists 

about whether people, in general, perceive their skills accurately or inaccurately. 

Kruger and Dunning (1999) presented the first serious effort to quantify the 

accuracy of peoples’ self-assessment. They concluded that relatively unskilled 

people suffer illusory superiority and mistakenly assess their abilities to be much 

higher than they are. Conversely, persons who demonstrate high ability accurately 

or modestly underestimate their competence. 

Subsequent studies replicated Kruger and Dunning's results, and in less than a 

decade, many accepted that their results applied to the general populace, as 

typified by the following statement. 

People are typically overly optimistic when evaluating the quality of their performance 

on social and intellectual tasks. In particular, poor performers grossly overestimate their 

performances because their incompetence deprives them of the skills needed to recognize 

their deficits (Ehrlinger et al. 2008, p. 98). 

A Web search for “Dunning-Kruger Effect” reveals that Kruger's and 

Dunning's discovery reached the lay populace where it engendered beliefs that 

people were mostly incapable of accurate self-assessment. At least one scholar 

went so far as to proclaim measures of self-assessed learning as meaningless noise 

(Porter, 2012; 2013). We note here that deprecating the value of self-assessment 

conflicts with the views expressed by Kruger and Dunning (1999) who 

recognized the value of self-assessment skill and documented that instruction 

could improve it. 

Other workers furnished results that emphatically assigned value to 

metacognitive self-assessment. Ertmer and Newby (1996, p. 1) studied the 

characteristics of expert learners and listed these as “strategic, self-regulated, and 

reflective.” All three characteristics have metacognitive qualities that we now 

recognize incorporate self-assessment. They further noted that expert learners use 

specific strategy “to deliberately select, control, and monitor strategies needed to 

achieve desired learning goals.” 

Isaacson and Fujita (2006, p. 39) confirmed the value of self-assessment 

when they deduced that the most successful college students possess 

metacognitive skills. Highly successful students were “more accurate at predicting 

their test results; more realistic in their goals; more likely to adjust their 

confidence in-line with their test results....” Dunlosky and Rawson (2012) offered 
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related evidence that linked students overconfidence to their underachievement. 

Current researchers (Wittmann et al. 2016) identify specific areas of the brain 

activated during self-assessment, and they credit self-assessment to originating as 

one of the important human survival skills. 

McMillan and Hearn (2008, p. 40) may be two of the strongest proponents 

for the educational value of developing students’ ability to accurately self-assess: 

In the current era of standards-based education, student self-assessment stands alone in its 

promise of improved student motivation and engagement and learning. Correctly 

implemented, student self-assessment can promote intrinsic motivation, internally 

controlled effort, a mastery goal orientation, and more meaningful learning. Its powerful 

impact on student performance—in both classroom assessments and large-scale 

accountability assessments—empowers students to guide their own learning and 

internalize the criteria for judging success. 

In summary, college instructors should measure self-assessment because the 

skill is valuable, measurable and teachable. Gaining self-assessment skill seems to 

increase the capacity for improved learning, problem-solving and decision-

making. Improvement of students' self-assessment skill could be a universal 

educational outcome that transcends all disciplines.  

Kinds of Self-Assessment 

Scholars identify several kinds of self-assessment. Kruger and Dunning's (1999) 

seminal paper addressed participants' predicted ability to meet a cognitive 

challenge before confronting it. Scholars also refer to predicted abilities as “first-

order judgments” (Dunlosky, Serra, Matvey and Rawson 2005). Kruger and 

Dunning (1999) also addressed results from a second kind of self-assessment 

subsequently termed “postdicted performance judgment” (Händel and Fritzsche 

2016). In postdicted self-assessments, each participant expresses a summative 

estimate of how successfully she/he has addressed a recently completed cognitive 

challenge. 

Kruger and Dunning, as well as later researchers, asked students to rate their 

relative performance on a test as compared to other participants’ test scores. 

These estimates demand that the participants rate, not just self-assessed 

competence, but also the relative competence of others. There are conditions 

under which the competence and performance of other participants are available 

(Wittmann et al. 2016), but such was not the case in our study. In the absence of 

substantial information about other participants, estimates of self-competence 

relative to others seem based on little substance (see Hartwig and Dunlosky 

2014). Self-assessed competence in the context of estimated comparisons with 

competence demonstrated by others might be registering each individual’s 

relative sense of self-esteem rather than self-assessed competence. 

Related research literature recognizes additional kinds of self-assessment. 

One is “meta-metacognition” or “second-order judgment.” Here, participants 
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estimate the degree with which they have successfully provided an accurate self-

evaluation of their performance to a cognitive challenge (Dunlosky, Serra, 

Matvey and Rawson 2005; Buratti and Allwood 2012). Another type of self-

assessment described in some related literature is “metacomprehension” 

(Dunlosky and Lipko 2007), a term primarily employed in studies of reading skill. 

It refers to metacognitive awareness of readers about their learning and 

understanding produced while accessing text materials. 

Self-assessment queries take global and granular forms. Global queries are 

singular statements that are broad and general. An example asks participants to 

rate their degree of competency in a broad conceptual area such as humor, critical 

thinking, writing or science in response to a query similar to “I understand… 

(humor, science, etc.).” Kruger and Dunning's original paper employed global 

queries, and so did most of the self-assessment studies such as Ehrlinger et al. 

(2008) and Pazicni and Bauer (2013) that subsequently built on Kruger and 

Dunning's work. 

Granular self-assessment instruments employ a battery of specific items, all 

of which map to a broad conceptual area. Knowledge surveys (Nuhfer and Knipp 

2003; Bell and Volckmann 2011; Favazzo et al. 2014; Nuhfer et al. 2016a), which 

ask respondents to estimate their ability to address many specific cognitive or skill 

challenges, constitute granular assessments. For example, the composite rating 

derived from all 25 items of the knowledge survey (KSSLCI) provides a granular 

self-assessment of the degree to which a participant understands science’s way of 

knowing (Nuhfer 2015). As another example, about 200 items on a course-based 

knowledge survey might map to the general understanding of psychology or 

geology as provided by an introductory college course (Nuhfer et al. 2010). 

Some workers treat self-assessments derived from global and granular 

queries as equivalent (Bell and Volckmann 2011). Our study participants 

furnished a total of four separate self-assessment ratings as registered by three 

global questions and the granular KSSLCI. When we compared global and 

granular self-assessments that addressed the same cognitive construct, our study 

revealed that some global queries could yield a different kind of self-assessment 

from that provided by granular instruments (Nuhfer et al. 2016a, Table 1; this 

paper, Appendix A, Fig. A1-6). 

In this paper, we address predicted self-assessment and touch briefly on 

postdicted self-assessment. We do not address second-order-type judgments, 

metacomprehension, or any self-assessments that request that participants 

estimate their ability to address a challenge relative to others' abilities. 

What Are We Measuring? 

Since 1999, studies of self-assessment accuracy have typically employed two 

measures expressed as percentages or percentiles bounded by 0 and 100. One 
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quantifies cognitive competence as expressed by a test score. The other manifests 

in responding to “I can… (do the specified challenge)… now, with my present 

knowledge and skills.” Such responses express affective feelings. Such feelings 

can range from well informed to completely uninformed by cognitive knowledge 

and relevant experiences (Caputo and Dunning 2005). 

By an informally accepted convention, researchers quantify self-assessment 

accuracy by subtracting the demonstrated competency score from the self-

assessed competency rating. We follow that convention. By expressing both 

measures as percentages, the differences between paired measures register in 

percentage points (ppts). In our studies, we used the knowledge survey (KSSLCI) 

matched to the Concept Inventory (SLCI) to calculate accuracy: 

𝑆𝑒𝑙𝑓– 𝑎𝑠𝑠𝑒𝑠𝑠𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝐾𝑆𝑆𝐿𝐶𝐼 𝑟𝑎𝑡𝑖𝑛𝑔 −  𝑆𝐿𝐶𝐼 𝑠𝑐𝑜𝑟𝑒. 

By this procedure, perfect self-assessed accuracy is 0. Increasingly positive values 

denote increasing overconfidence. Increasingly negative values denote increasing 

underconfidence. 

The act of computing self-assessment accuracy by subtraction assumes that 

we are calculating the difference between two measures with like qualities. Such 

subtractions begin to question the nature of distinctions often made between the 

cognitive and affective domains of thought and learning. We could view self-

assessment accuracy as subtracting a direct score on a test of cognitive 

understanding from a quantified rating of affective feelings. We initially 

questioned what the remainder generated by subtracting a measure of competence 

from a measure of confidence expressed and whether the computation was 

justifiable. 

Given the nature of our study, we opted to consider the calculation as 

justified by considering both measures as addressing the same competence in a 

well-defined area, one as a measurement and the other as an estimate. Our self-

assessment instrument (KSSLCI) furnishes the estimate. It addresses the same 

construct as the cognitive competency measure (SLCI) because the 25 challenges 

employed in both are identical. The two instruments generate similar numerical 

results in percentage points for each of these challenges (Nuhfer et al. 2016a, Fig. 

10; Nuhfer 2015, Fig. 1). Of course, one could argue the nature of such estimates 

as cognitive, affective or a combination of both. 

Support for considering these as both comes from recognizing affective 

confidence and cognitive competence as two properties produced by multiple 

regions of the brain, which contribute cognitive and affective components to a 

common thought (Phan et al. 2004). If true, then it seems impractical to 

distinguish two properties of the same thought with separate units, such as we 

might do for the distinctly different physical properties of a physical object. Still, 

to invoke this justification for the subtraction requires two well-aligned 
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instruments. Studies that employ non-identical challenges or different constructs 

for queries of the confidence and competence measures risk computing self-

assessment accuracy from subtracting two nonequivalent measures. Doing so 

offers an unsound basis for further interpretations or conclusions. 

If separate units were viable, we might be able to quantify self-assessment 

through ratios of confidence-to-competence instead of through difference. In our 

early research, we experimented with trying to use ratios. However, measures of 

both expressed as percentages rendered the use of ratios impractical. 

We turn next to examining how researchers' embracing of a common 

graphical convention may have produced the current consensus about the nature 

of self-assessment. 

Influence of the Kruger-Dunning Graphical Convention 

The numeracy associated with the Kruger-Dunning graphical convention (Fig. 1) 

is fundamental to understanding the prevalent consensus views about the nature of 

self-assessment. This convention constitutes the most influential graphic in the 

self-assessment literature, and many researchers from Kruger and Dunning (1999) 

through present (e.g., Miller and Geraci 2011; Handel and Fritzsche 2016) have 

employed it to portray their results and substantiate their conclusions.  

 
Figure 1. Self-assessment data rendered in the Kruger-Dunning graphical convention. 

The figure shows self-assessed competence compared with measured competence from 

two studies with two of the largest databases currently registered in the self-assessment 

literature. A, which is redrawn from Pazicni and Bauer (2013, Fig. 1), displays 

performance on a mid-term chemistry test and perceived performance obtained from a 

single global postdicted self-assessed rating of performance on the test. B displays 

actual competence as measured by performance on the 25-item Science Literacy 

Concept Inventory (SLCI) and anticipated performance computed as the average of 

self-assessment ratings from the 25-item knowledge survey of the Inventory 

(KSSLCI). The datasets employed for A and B both contain a strong self-assessment 

signal as shown by the steeply inclined perceived performance and KSSLCI rating 

lines (see Appendix A Fig. A1-6 and Nuhfer et al. 2016a, Fig. 5). 
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The published graphics consistently display the X-shaped patterns that show 

unskilled people as self-assessing their abilities to be much higher than they are. 

(See bottom quartiles in Fig. 1A and B.) This replication across many studies 

certainly provided confidence in the prevalent view that affirms a tendency for 

people who lack skill to overestimate their abilities. 

The patterns usually show members of the top quartile as more accurately 

assessing their actual abilities, and tending toward underestimating their actual 

performance. Certainly, it is logical to expect that those with expertise in an area 

are in a much better position to accurately self-assess their abilities in that area 

than are those with little or no expertise. However, we raise two questions. 

(1) Do the data depicted through the Kruger-Dunning convention offer 

sufficient quantitative evidence for confirming the expectation? 

Our answer to this first question is “no.” Our study caused us to realize that 

the Kruger-Dunning graph offers insufficient information needed for 

characterizing human self-assessment. Since 1999, assumptions based on 

interpretations made from that graph’s characteristic patterns exemplified in 

Figure 1 have led to the current consensus view. We justify this “no” answer in 

detail in Appendix A, Part 1, where we address the following six overlooked 

aspects of numeracy on which such interpretations rest. 

1. Random noise can generate X-shaped patterns in Kruger-Dunning-type graphs, and 

researchers can easily misinterpret these patterns as meaningful measures of self-

assessment. 

2. The Kruger-Dunning type graphs present patterns that appear meaningful from 

datasets too small to offer reliability. 

3. In (𝑦 −  𝑥) vs. (x) graphs, Sets of (x) and (y), both bounded by 0 and 100, generate 

strong ceiling and floor effects that researchers easily misinterpret as meaningful 

measures of self-assessment (addressed in Nuhfer et al. 2016a, Figures 7, 8 and 9). 

4. Sorting data pairs by one member of the pair invariably produces the “X-shaped” 

pattern of Kruger-Dunning graphs and, sorting data by percentile rank renders all 

expressions of performance as norm-referenced rather than criterion-based. 

5. Kruger-Dunning graphs cannot show the distributions of varied self-assessment skills 

in a populace. 

6. Kruger-Dunning graphs fail to reveal the degree of correlation that exists between 

self-assessed competence and demonstrated competence on a participant-by-

participant basis. 

Artifact patterns generated by noise are particularly troublesome because they 

mimic those that researchers might reasonably expect as patterns produced from 

the self-assessment signal. This similarity of patterns generated by artifacts and 

expectations invites attributing the graphical patterns that random noise produces 

as patterns that describe the character of human self-assessment. 
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(2) Do the data in total from all studies best support the second or the third of 

the three hypotheses that we listed above? 

Scholars established the prevalent view, which supports the second 

hypothesis, by interpreting patterns depicted by the Kruger-Dunning-type graph. 

If our data represented in Figure 1B followed the same conventional 

interpretation, then our study would also support the second hypothesis. However, 

we proceed next to explain why we portray and interpret our data differently. We 

will show how an analysis based on careful considerations of numeracy better 

supports the third hypothesis. 

Results 

Results from Categorical Data: Comparing Experts with 
Novices 

The consensus that favors the second hypothesis rests upon the process of sorting 

participants’ data by demonstrated competency scores in ascending order and 

constructing interpretations from a Kruger-Dunning-type graph like Figure 1. This 

approach is analogous to the norm-referenced practice of “grading on a curve,” 

wherein participants gain access into the top quartile by being relatively more 

proficient than members of the lower quartiles. 

This section describes a different approach. Here, we present a criterion-

referenced study based on categories defined by qualifications of expertise to 

meet a cognitive challenge. The value of such an approach lies in avoiding 

reliance on numerically sorted data and gaining a way to study the degree to 

which the self-assessment characteristics of members of the top and bottom 

quartiles defined by norm-referenced scoring reflect the criterion-referenced 

characteristics that typify experts and novices. 

Our categories consist of qualified novices (lower-division undergraduates), 

developing experts (upper-division undergraduates and graduate students) and 

experts with significant qualifications (professors). The SLCI measures cognitive 

competence in the ability to recognize and understand science as an evidence-

based way of knowing, and knowing factual content did not advantage 

participants in this particular challenge (Nuhfer et al. 2016b). Our experts in this 

study became qualified as such through achieving advanced degrees that required 

demonstrable evidence-based reasoning. The mean competence values (SLCI 

score averages) calculated for each category of academic rank confirm highly 

significant differences in demonstrated competence between novices and experts 

(Appendix Part 2, Fig. A1-7). 

The graphical convention employed in this section to display the categorical 

data (Fig. 2) offers more information than a Kruger-Dunning graph like Figure 
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1B. Figure 2 shows the confidence intervals of the means of each category, the 

significance of differences between these means, and the spread or range of 

variance of participants within each category. The different results that come from 

graphing unsorted categorical data (Fig. 2) and sorted data (Fig. 1B) account for 

the two graphical conventions offering a basis for two contradictory 

interpretations. Opting to present the data as percentiles (Fig. 2) or as raw scores 

in percentages (Fig. 3) further complicates the interpretations. Researchers 

employ Kruger-Dunning-type graphs that present data as either percentages or 

percentiles to render interpretations (see Ehrlinger et al. 2008 for examples), but 

the use of percentiles is prevalent. 

The figures that display categorical data (Figs. 2, 3 and 5) have dimensionless 

abscissas that simply plot the (𝑦 − 𝑥) scores by categories. This yields a graph of 

the form (𝑦 − 𝑥) vs. categories. The norm-referenced data aggregated by quartiles 

appears in Figures A1-2, A1-3, and A1-5 in the Appendix. These latter figures 

have scaled abscissas that display increasing SLCI scores, which places these 

graphs in the category of (𝑦 − 𝑥) vs. (x) formats that we noted (Nuhfer et al. 2016a) 

as particularly troublesome because they generate severe ceiling effects. 

The prevalent consensus in the self-assessment literature asserts that the 

people who are most lacking in competence are those who most severely 

overestimate their abilities, whereas people who possess the greatest competence 

are more accurate in their estimates and usually tend to underestimate their 

competence by modest amounts. Researchers (typified by Burson, Larrick and 

Klayman 2006; Ehrlinger et al. 2008; Bell and Volckmann 2011; Pazicni and 

Bauer 2013) corroborate that assertion through displaying their data in the 

Kruger-Dunning type graphs. 

From the patterns presented in Kruger-Dunning-type graphs (Fig. 1) and the 

prevalent consensus derived from such graphs, we expected that the average self-

assessments of confirmed novices would exhibit a pronounced overestimation of 

abilities and be less accurate as a whole than the average self-assessment of 

confirmed experts. However, the mean self-assessment accuracies (as registered 

by 𝐾𝑆𝑆𝐿𝐶𝐼 𝑟𝑎𝑡𝑖𝑛𝑔 − 𝑆𝐿𝐶𝐼 𝑠𝑐𝑜𝑟𝑒) differ little across the categories of academic 

rank (Figs. 2 and 3). Figure 2 shows the mean estimates of all academic ranks as 

plotting close to the perfect self-assessment value of 𝐾𝑆𝑆𝐿𝐶𝐼 𝑟𝑎𝑡𝑖𝑛𝑔 −
𝑆𝐿𝐶𝐼 𝑠𝑐𝑜𝑟𝑒 = 0. In this graphical presentation, experts even appeared less 

accurate in their collective self-assessments than did novices (Fig. 2), although 

this appearance could be a product of some floor and ceiling effects, as discussed 

further below. 
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Figure 2. Categorical self-assessment accuracies plotted as percentiles. The abscissa is 

dimensionless and simply displays self-assessment accuracies by academic rank. Black dots 

show the respondents' distributions of accuracy expressed in percentile-rank differences in each 

academic rank. The height of the green diamonds reflects the bounds of the 99% confidence 

level of the mean; width of diamonds reflects the numbers in each rank category. Box to the 

right depicts the significant differences between ranks as expressed by t-testing. Diameters of 

the circles are the bounds of the 99% confidence interval. Separation of circles shows that the 

means of professors and the means of graduate students differ significantly from those of 

undergraduates. Overlapping of circles reflects a lack of significant differences between 

undergraduate ranks. Graph produced by SAS Institute's JMP 11.2 software. 

In Figures 2 and 3, the data points plotted for each category reveal that 

members of each academic rank tend to overestimate and underestimate with 

similar frequency. This accounts for the category means of (𝐾𝑆𝑆𝐿𝐶𝐼 𝑟𝑎𝑡𝑖𝑛𝑔 −
𝑆𝐿𝐶𝐼 𝑠𝑐𝑜𝑟𝑒) all being close to zero. In Figure 1, the members of each quartile 

also overestimate and underestimate with about the same frequency (see 

Appendix Fig. A1-2 for supporting evidence), but the clustering of all of the 

lowest scores in the bottom quartile dictates that the probability for larger 

magnitudes of over-assessment are greater for members of the bottom quartile. 

For those in the top quartile, the probability for larger magnitudes of under-

assessment is greater. Thus, the calculated mean self-assessment inaccuracies are 

highest in the bottom quartile and lowest in the top quartile, but that’s because of 

the probability situation and not because of a quality inherent to human self-

assessment. This situation produces the ceiling and floor effects mentioned above 

(described in more detail in Nuhfer et al. 2016a) and in the Appendix of this 
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paper. These findings show that the means of the quartiles are not useful for 

distinguishing human self-assessment abilities. 

 
Figure 3. Degrees of self-assessment accuracy plotted as percentage points. The 

abscissa is dimensionless and simply displays self-assessment accuracies by academic 

rank. The black dots show the distributions of responses in ppts in each rank. The 

height of the green diamonds reflects the bounds of the 99% confidence level of the 

mean; width of diamonds reflects the numbers in each rank category. Panel to the 

right depicts the significant differences between ranks as expressed by t-testing. 

Diameters of the circles in the right-hand panel are the bounds of the 99% confidence 

interval. Overlapping of these circles reflects a lack of significant differences between 

means. Graph produced by SAS Institute's JMP 11.2 software.  

The means of the different categories likewise seem unsuitable for 

distinguishing differences in self-assessment skills between categories (Fig. 3). 

On average, novices (N = 448) overestimated their competence on the SLCI by 

2.1 ppts, and experts (N = 69) underestimated theirs by 2.4 ppts. The influence of 

ceiling and floor effects could contribute to these small differences. Although the 

presence of such effects does not completely rule out the possibility of tendencies 

for novices to overestimate and experts to underestimate, our particular dataset 

indicates that such tendencies, if they exist, are weak. 

The compositions of the bottom and top quartiles in Figure1B do reflect a 

systematic distribution of novices and experts. In Figure 1B, the bottom quartile 

contains 61.3% novices, 38.7% developing experts, and 0% experts. In contrast, 

the top quartile contains 17.4% novices, 64.8% developing experts, and 17.8% 

experts. Of those in the expert category (professors), 74% of them ended up in the 

top quartile, whereas only 11% of novices reached the top quartile. 

Whereas Figure 1B indicates clear differences in mean self-assessment 

accuracies between low competence and high-competence quartiles, Figure 2 
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indicates lesser, marginally significant differences in mean self-assessment 

accuracies between novices and experts. With the data expressed simply as raw 

percentage points (Fig. 3), these differences become smaller still and lose 

significance. 

Both Figures 2 and 3 are technically (𝑦 − 𝑥) vs. (categories) type instead of 

the (𝑦 − 𝑥) vs. (x) type graphs that we (Nuhfer et al. 2016a) showed as significant 

generators of ceiling effects. However, Figures 2 and 3 may carry some ceiling 

and floor effects (although less so than those shown in (𝑦 − 𝑥) vs. (x) type graphs) 

because the high scores achieved by participants in the expert category 

(professors in Figs. 2 and 3) leave a limited potential for overestimation. 

Figure 3 allows us to begin to see a difference between experts and novices in 

the vertical spreads (variances) of the data points furnished by the populations 

within each category. The spreads are less evident in Figure 2 because converting 

raw scores into percentiles orders the data, and this ordering redistributes any 

skewed distributions of scores toward normal distributions (Fig. 4). 

Figure 4 provides detailed comparisons of the spreads by rank when 

expressing the data either as percentiles (Fig. 2) or as percentage points (Fig. 3). 

The graphing as percentage points discloses that experts exhibit smaller spreads in 

their scores than do novices, and experts' self-assessment accuracies cluster more 

tightly around perfect self-assessment (Fig. 4). 

In our first paper, we showed the importance of recognizing the patterns of 

randomness in various graphical formats (Nuhfer et al. 2016a). Here, Figure 5 

displays the pattern of randomness across the categories as rendered by the 

graphical convention that produced Figures 2 and 3 from actual measurements. 

The number of participants in each rank in Figure 3 determined the size of the 

random number array that we employed to simulate each rank in Figure 5. 

Figure 5, like its real data counterpart (Fig. 3), displays all ranks as having 

mean self-assessment accuracies close to that of the perfect self-assessment score 

of 0, with no significant differences in means between ranks. In our actual data 

(Figs. 2 and 3) and simulated data (Fig. 5), members of all categories tend to 

overestimate and underestimate to about the same degree. This tendency produces 

mean self-assessed competencies across all academic ranks at close to the perfect 

self-assessment value of zero. 

Whereas the categories' mean accuracies are all close to zero in Figure 5, the 

sorting of random number data by competence scores and aggregating it into 

quartiles produces quartiles whose mean (KSSLCI rating - SLCI score) values 

differ greatly and systematically from one another. The comparisons of Figures 5 

and Appendix Figure A1-5 show the power of random noise to influence the 

graphical patterns produced by sorted data. The convention employed in Figures 

A1-2, A1-3 and A1-5 and the Kruger-Dunning-type convention both yield 

patterns that are particularly prone to the influences of noise and sorting. 
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Figure 4. Distributions of participants within each academic rank as expressed in 

percentiles from Figure 2 and as percentage points from Figure 3. Left column details 

the spreads in Figure 2; right column details the spreads in Figures 3. Raw data in 

percentage points shows a general tightening of spreads from novice to experts, 

whereas data normalized when expressed as percentiles obscure this trend. The 

category of graduate students contains too few participants to yield a good 

representation and contains a much higher percentage of non-science majors than do 

the other categories. Appendix A Part 3 further details how good data does reveal 

ways to distinguish differences between experts and novices in self-assessment skills.  
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Figure 5. Random number simulation of self-assessment accuracy and the distributions 

of responses by academic rank. The height of the green diamonds reflects the bounds of 

the 99% confidence level; width of the diamonds reflects the numbers in each rank 

category. Diameters of the circles in the right panel are the bounds of the 99% confidence 

interval. Overlapping of circles reflects no significant differences between means by t-

testing. This pattern produced by the aggregation of data by categories differs greatly 

from the pattern yielded by a similar simulation of sorted data aggregated by quartiles 

(see Appendix Fig. A1-5). Graph generated using SAS Institute's JMP 11.2 software. 

As we noted in Nuhfer et al. (2016a), the graphical convention that seems 

least troublesome for a straightforward presentation of self-assessment data is the 

(𝑦) vs. (𝑥) scatter plot with a line fit. We show our comparisons between experts 

and novices through this convention in Figure 6. 

Taken alone, correlation coefficients of self-assessed competence versus 

demonstrated competence revealed little difference between experts and novices 

(Fig. 6). Both r-values are highly significant at p <.0001 but not much different 

from each other or from the correlation established from the entire population 

studied (r = .60; N = 1154; Nuhfer et al. 2016a). This substantiates the assertion 

of Ackerman and Wolman (2007, p. 58): 

Thus, although the mean correlations between self-estimates of ability and objective 

ability measures are modest in magnitude, it appears that substantial gains in 

correspondence can be obtained when specific measurement conditions are met. 

The significant positive correlations indicate that people as a whole, whether 

experts or novices, tend to self-assess their competence to the degree that is 

generally correct. We stress that the ability to perceive this relationship rests in 
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collecting a critical mass of reliable data from instruments that are well aligned 

(Nuhfer 2015; Nuhfer et al. 2016a). 

 
Figure 6. Comparisons of correlations between experts (A) and novices (B) in our study 

populace. Correlation coefficients are surprisingly similar. 

In summary, our results show that a few novices tend to score as highly as 

experts on tests of competence (SLCI). Those who do will end up in the top 

quartile together with most of the experts in a norm-referenced study. However, 

experts’ self-assessments show less variation than those of novices and are more 

consistently closer to perfect accuracy than are those of novices. Because novices 

do differ from experts in both competency and self-assessment accuracy, the top 

quartile in a norm-referenced study is not synonymous with the expert category in 

a criterion-referenced study. The categorical criterion-referenced study detailed 

here appeared to provide better information about the characteristics of self-

assessment than did the norm-referenced study detailed in the Appendix. 

Results from Demographic Data 

In our study, we looked at other demographic data beyond class rank. We 

conclude this section by summarizing our findings in the groups of students with 

respect to 1) English as a first language; 2) status as a first generation student; 3) 

status as a science major or expressed interest to major in science and 4) gender. 

Nuhfer et al. (2016b) reported the results of the demonstrated competency (SLCI 

scores) from over 17,000 undergraduate students across these same four 

categories. The study verified significant differences in mean competence at the 

99.9% confidence levels within the first three categories and no significant 

difference between men and women. 

Here, we focus solely on the self-assessment characteristics of our 

undergraduate participants, which consist of 664 women and 371 men distributed 

as 213 freshmen, 235 sophomores, 267 juniors and 326 seniors. This population 

had the demographic distributions of 432 (41.5%) first-generation students, 712 
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(68.4%) students majoring in or considering majoring in science, and 162 (15.6%) 

students whose native language was not English.  

Table 1. 

Four Mean Self-Assessed Competency Rating Measures and One Demonstrated 

Competency Score Measure by Demographic Category* 

 

PRE-

KSSLCI 

GLOBAL 

Rating 

(%)  

KSSLCI 

Rating 

(%) 

 POST- 

KSSLCI 

GLOBAL 

Rating 

(%) 

SLCI 

Score 

(%) 

**GLOBAL 

POST-SLCI 

Rating (%) 

MEAN 

(KSSLCI-

SLCI) 

(ppts) 

First Generation 

Student? 
      

No (n = 603) 77.1% 77.7% 76.7% 75.2% 78.9% 2.5 

Yes (n = 432) 72.0% 68.6% 67.1% 68.0% 70.1% 0.6 

Science major 

Commitment? 
      

No (n = 329) 71.0% 63.9% 65.8% 63.9% 64.7% 0.0 

Yes (n = 712) 76.8% 78.6% 76.0% 76.1% 77.0% 2.5 

English as First 

Language? 
      

No (n = 160) 70.1% 61.7% 61.9% 63.5% 66.4% -1.8 

Yes (n = 879) 75.9% 76.1% 74.7% 73.8% 76.5% 2.3 

Gender       

 Women (n = 664) 72.9% 70.3% 69.4% 70.6% 71.6% -0.3 

Men (n = 371) 78.9% 80.3% 78.6% 75.4% 80.3% 5.0 

* Mean ratings and scores (in percent) from different self-assessment measures employed in the self-assessment 

studies reported by demographic categories. The differences within every category are significant at or above the 

95% confidence level. We express self-assessment accuracy as the difference (𝐾𝑆𝑆𝐿𝐶𝐼 − 𝑆𝐿𝐶𝐼) calculated as the 

means of all students in each category. Perfect accuracy is expressed by 𝐾𝑆𝑆𝐿𝐶𝐼 − 𝑆𝐿𝐶𝐼 =  0.  

**Our adding the Post-SLCI Global self-assessment query later in the study caused us to collect fewer responses. 
 

 
 

Table 1 displays the results of measures across the different demographic 

categories in the order in which the participants responded to the four self-

assessed competency ratings that follow. 

1. Pre-KSSLCI Global Rating: “A multiple choice test has been designed to measure how 

well citizens understand the thinking process that scientists employ to understand the 

physical world. The test is not timed and can be done online in any setting. The test does 

not depend upon factual recall of knowledge. Any factual information needed or meanings 

of any technical terms used are provided within the test itself. Based on your feelings of 

self-assessment at this time, what is the score in percent (Write as % an estimate between 

0% and 100%) that you believe that you would obtain if you took such a test?" 

2. KSSLCI Knowledge Survey: This granular self-assessment value derives from the 

cumulative rating in % derived from all 25 items in the KSSLCI. 
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3. Post-KSSLCI Global: “Based only on your gut feelings established after taking this 

knowledge survey, what score in percent (between 0% and 100%) do you think you would 

obtain if you actually had to answer the twenty-five questions?” 

4. Post-SLCI Global “Now that you have completed taking the Inventory, what score in 

percent (between 0% and 100%) do you think you actually obtained?” 

The first is a predicted self-assessment; the knowledge survey is a granular self-

assessment, and the third and fourth items are postdicted global self-assessments. 

See Appendix Figure A1-6 and its discussion for more details on the relationships 

between these self-assessed competency ratings and the demonstrated competency 

score relative to the Kruger-Dunning graphic. 

Table 1 reveals a slight “reverse Dunning-Kruger Effect.” The groups who 

are advantaged by having a major interest in science, a college-educated parent 

and English as a native language do have higher mean competency scores (see 

also Nuhfer et al. 2016b), but these advantaged subgroups tend toward being 

slightly less accurate in self-assessment than their disadvantaged counterparts. 

The differences between first-generation students and those who were not first-

generation proved significant at only the 95% confidence level. The differences 

exhibited in mean confidence ratings within all other demographic categories 

were significant at the 99% confidence level. 

One aberration in Table 1 was the finding of significant differences in the 

SLCI scores between men and women in this dataset at the 99% level of 

confidence. The larger 17,000-participant dataset that validated the SLCI (Nuhfer 

et al. 2016b) confirmed that the SLCI is a gender-neutral instrument. That study 

revealed that when the difference between men’s and women’s SLCI scores 

proves significant in a population, the difference was not produced by an inherent 

gender characteristic. Instead, the differences arose because of the unequal 

distribution between genders of the socioeconomic factors that diminish the mean 

scores on the SLCI. Socioeconomic factors that reduce mean SLCI scores of a 

populace are (a) status as a first-generation student, (b) a low interest in majoring 

in science, and (c) having English as a non-native language (see Nuhfer et al. 

2016b). 

In the dataset used for Table 1, the percentages of undergraduate women (N = 

664) who are first-generation/nonscience-commitment/English-as-non-native-

language are 45.2%/35.5%/17.6%. By comparison, undergraduate men (N = 371) 

in this dataset have only 35.0%/24.3%/11.3% membership in these respective 

categories. These socioeconomic differences in the composition of each gender 

populace substantially elevate the men’s mean score above the women’s mean 

score in our studied population of undergraduates. 

Although men and women do not significantly differ in their science literacy 

competence as measured by the SLCI (Nuhfer et al. 2016b), men and women do 

seem to differ significantly in mean self-assessment accuracy. In this study, the 
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group mean of undergraduate women underestimated their performance by only 

0.3 ppts. The group of undergraduate men overestimated their actual performance 

by a mean of about 5 ppts (Table 1). This difference in means is highly significant 

at the 99.9% level of confidence. 

Kruger and Dunning (1999, p. 1123) considered gender differences in self-

assessment skill and reported: “Gender failed to qualify any results in this or any 

of the studies reported in this article….” However, subsequent studies (Hargittai 

and Shafer 2006; Pazicni and Bauer 2013; Bolívar-Cruz, Verano-Tacoronte and 

González-Betancor 2015) report gender differences in self-assessment abilities 

that are consistent with ours. Our data showed that, on average, women self-

assess their competence more accurately than do men. We consider the other 

demographic differences listed in Table 1 as too small and tentative to try to 

interpret, but the gender difference in self-assessment ability appears substantial. 

Some scholars suggest that women's underconfidence in science (relative to 

men's) may be discouraging women to major in science (Beyer, Rynes and Haller 

2004; Cech, Rubineau, Silbey and Seron 2011), and they recommend taking 

action to boost women's confidence to that of men's. However, those studies did 

not consider self-assessment accuracy, and self-assessment accuracy probably has 

more value than overconfidence. Men appear to be in greater need of training in 

metacognitive self-assessment than women. 

Summary of Results 

Categorical data enables criterion-referenced examination of the nature of human 

self-assessment in ways that normative-based analyses cannot. The means of 

demonstrated competence (Appendix A Fig. A1-7) clearly do reflect the immense 

differences between experts and novices. However, the means of self-assessment 

accuracies clearly do not distinguish the self-assessment skills of novices from 

experts (Figs. 2, 3 and 5). Correlations between self-assessed competence and 

actual competence do not serve as a key to distinguish experts from novices (Fig. 

6), but they indicate that people, in general, are more often correct than not in 

estimating their competencies. 

Kruger-Dunning-type graphs (Fig. 1) rely on sorted data for calculating the 

means of self-assessed competence and demonstrated competence for each of the 

competency quartiles. Researchers then use differences between the paired 

measures displayed on graphical patterns to make conclusions about the self-

assessment abilities of low-competence performers and high-competence 

performers. These conclusions support the second hypothesis. Random noise 

present in all self-assessment data, combined with ceiling and floor effects, also 

offer graphical patterns anticipated by the second hypothesis. These latter patterns 

have no origins in human behavior, but they seduce researchers into interpreting 

them as such. 
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The clearest distinction between the self-assessment skills of experts and 

novices seems to lie in their different distributions of self-assessment accuracy 

(Fig. 4), but the self-assessment literature rarely employs graphical conventions 

that can display distributions. We next move to discuss ways in which researchers 

might use the paired measures of self-assessed competence to illuminate the 

nature of human self-assessment. 

Discussion 

Improving the Discourse about Self-Assessment Skill 

Since 1999, showing the patterns from Kruger-Dunning-type graphics and related 

(𝑦 − 𝑥) vs. (x) type graphs (Nuhfer et al. 2016a) remained the default for 

communicating the nature of self-assessment. While the information this graphic 

provides is both limited and probably distorted, such graphics remain a 

cornerstone for statements such as “People are typically overly optimistic …,” and 

“In particular, poor performers grossly overestimate…” (Ehrlinger et al. 2008, p. 

98). 

The grand mean SLCI score of our 1154 participants is 73.6%, and the grand 

mean KSSLCI rating is 74.8%. Given the imperfect reliability of both 

instruments, the apparent overconfidence of 1.2 ppts is too small to invoke as 

support for any hypothesis that asserts that people have a marked propensity to 

overestimate their abilities. Handel and Fritzsche (2016, p. 233) also found only a 

slight overall inaccuracy in their studied populace but as a small underestimate 

rather than an overestimate. 

As established above in our discussion of Kruger-Dunning-type graphs, the 

numeracy traditionally employed to support claims of gross overestimation seems 

insufficient. Such graphs (Fig. 1 A and B) are incapable of imparting meaning to 

discussions that employ descriptions such as “overly optimistic” or “grossly” 

because such descriptors lack quantitative meaning. The self-assessment 

literature’s neglect to furnish the language needed for better discourse furnishes a 

barrier to the most basic discussions—even about “good” or “poor” self-

assessment accuracy. 

Supplying the minimal language needed to advance discourse requires 

answering two essential, quantitative questions. The first question speaks to the 

value of measuring self-assessment. 

1. What magnitude of self-assessment error is permissible for a person who is “skilled” in 

self-assessment? 

To address this first question, we can look to the magnitudes of self-assessment 

error that typify a population of experts. The second question directly addresses 
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whether data obtained from a general populace better supports the second or the 

third hypothesis. 

2. What is the frequency of occurrence of varied degrees of self-assessment errors 

(expressed as a percentage) across a large population? 

For education, answering both questions enables discussion about acceptable 

levels of self-assessment skill and achieving some consensus on when a level of 

skill is so deficient as to merit efforts for remediation. To furnish the required 

language, we employ the same data that produced Figure 1B to generate a 

classification scale (Fig. 7A) that enables characterizing our study populace (Fig. 

7B) with categories defined by quantitative bounds. Using our data in this way 

addresses both questions. 

 
Figure 7. A classification scale (A) and its application to our study populace (B). Magnitudes 

of self-assessment inaccuracy (𝐾𝑆𝑆𝐿𝐶𝐼 𝑟𝑎𝑡𝑖𝑛𝑔 − 𝑆𝐿𝐶𝐼 𝑠𝑐𝑜𝑟𝑒) expressed in percentage 

points (ppts) define the classification categories (A) The frequencies of the occurrences of 

these categories in our study population appear in B. The panels depict results by both tables 

and graphics. The blue shaded area with dots in B expresses our recognizing (Nuhfer et al. 

2016a) that random guessing by all participants could contribute up to about 18% within the 

“good” range of ±10 ppts. The chances of guessing influencing the “Extreme” category are 

very small. 
 

As detailed in Nuhfer et al. (2016a) the limit imposed by the instrument that 

yields the least reliable measures in paired data (in this case the SLCI's R of .84) 

limits the strength of correlation possible between the measures. It also limits the 

precision with which we can expect to define boundaries between the different 

skill categories in Figure 7A. While the boundaries are set at convenient intervals 

of 10 ppts, 20 ppts, etc., they are not arbitrary. The criterion-referenced 

performance of known groups of experts and novices in our study populace 

served to set these boundaries (see Appendix A, Part 3). 
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We earlier defined “good self-assessment skill” as demonstrating self-

assessed competency within ±10 percentage points (ppts) of demonstrated 

proficiency, based on our discerning that over three-quarters of known experts 

could self-assess at this level of proficiency (Nuhfer et al. 2016a, p 19). Of our 

1154 participants who range from novices to experts, 615 or 48.5% of those 

participants met the criteria for having good self-assessment skill (Fig. 7B). About 

80% of experts self-assess within the bounds of ±15 ppts defined as “adequate 

self-assessment skill.” This zone (Fig. 7A) accounts for 66.2% of our participants 

who demonstrated adequate or better self-assessment skills (Fig. 7B). 

The distinction between adequate and inadequate self-assessment is an 

important one because scores that cross the boundary into “inadequate” can 

trigger investments in remediation efforts. Given this initial effort at a proposed 

classification scale and the realization that our instruments are reliable but 

imperfect, we sought not to set a dogmatic boundary between the two. Instead, we 

designated a ±5 ppt band between skilled and unskilled (between ±15 and ±20 

ppts) self-assessments as “Marginal” (Fig. 7A). This choice allows users 

flexibility to make an informed evaluation of the state of the self-assessment skills 

of their own students. 

Based on our work to date, we inform students that self-assessments in which 

error exceeds ± 20 ppts can indicate a need for efforts at developing better self-

assessment skill. Participants with marginal self-assessment skills constituted 

10.5% of our study populace. Errors of overconfidence or underconfidence that 

exceeded “marginal” (± 20 ppts) occurred in 23.3% of our participants. Of these 

(Fig. 7A), 13% overestimated and 10.3% underestimated (Fig. 7B). 

The extreme categories (defined by inaccuracy exceeding 30 ppts) constituted 

only 10.8 % of our studied population (Fig. 7B). Less than half of them (5.3%) 

were extremely overconfident and constituted a group that could merit the label 

coined by Kruger and Dunning (1999), “unskilled and unaware of it.” Figure 8 

details the distributions of our populace across the defined categories and adds 

clarity to information conveyed by Figure 1B. 

In histograms like Figure 8, random guessing has about one hundred times 

the influence near the center of the histogram, where (𝐾𝑆𝑆𝐿𝐶𝐼 𝑟𝑎𝑡𝑖𝑛𝑔 −
𝑆𝐿𝐶𝐼 𝑠𝑐𝑜𝑟𝑒) is zero, than it has on the sides where self-assessments are 

“Extreme” (see Nuhfer et al. 2016a, Fig. 13 for detailed explanation). If all 1154 

participants were randomly guessing, that would have placed over 200 scores in 

the “good” (blue) zone of Figure 8. Fortunately, the study of over 17,000 students 

who took the SLCI (Nuhfer et al. 2016b, Fig. 1) shows that the numbers of 

participants who engage in random guessing on the SLCI contributes much less 

than 18% of “Good” ratings in Figure 8, and almost nothing in the “Extreme” 

zones. While some guessing doubtless occurs in our dataset, its influence on our 

Figures 7B and 8 appears minor. 
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Figure 8. Distributions of the categories of self-assessment accuracy based on the differences in 

percentage points (ppts) between scores received from 1154 participants who took the 25-item 

Science Literacy Concept Inventory (SLCI) and their self-assessed ratings of competence in 

understanding science as a way of knowing as registered by the 25-item knowledge survey of the 

Inventory (KSSLCI). Standard deviation (sigma) = 18.4 ppts. Color codings of categories are the 

same as in Figure 7 with "Extreme" inaccuracies covering the entire gray area. 

In Appendix A, we explain our process for setting the boundaries in Figures 7 

and 8 by using the standard deviations of self-assessment inaccuracies (KSSLCI 

rating - SLCI score) deduced from the distributions produced by the population of 

experts. The use of standard deviations alone rather than inaccuracy in ppts 

provides a basis for an alternate classification scale. We chose to feature a scale 

based on percentage points here because doing so offers immediate use to readers 

who measure self-assessment accuracies of their students as percentages and have 

neither a large enough dataset from which to create their own scale nor a 

population of known experts with which to calibrate their measures. 

To our knowledge, Figure 7 represents the first effort to construct a criterion-

referenced self-assessment scale. We recognize that our self-assessment results 

and categories defined in this first effort could be contextual to the topic that we 

investigated, the instruments that we used, and the populace that we examined. 

Future studies may alter the boundary cut-offs, but conversations about where the 

boundaries might be better set cannot occur without establishing the language 

needed to enable such discourse. In addition, our study allows others to use our 

instruments as a convenient way to calibrate their populations' self-assessment 

characteristics and to compare self-assessed abilities in their study populace as 

measured by their instruments with ours. 
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Implications for Teaching, Learning and Assessment 

Self-assessment appears to be a teachable metacognitive skill (Kruger and 

Dunning 1999) that is meaningful and measurable. It may be one of the most 

beneficial skills of all for students to develop (Rivers 2001; Pintrich 2002). 

The obvious way to promote skill in metacognitive self-assessment is to 

design lessons that require students to practice it. Informal ways of doing so 

include adding requirements that students self-assess the scores that they believe 

they are going to obtain on each submitted assignment. Each quiz or test that 

starts with a predicted assessment of an estimated score on the coming evaluation 

and ends with a postdicted assessment of the score anticipated after completing 

each test or quiz offers an opportunity for practice. 

This research employed a knowledge survey (KSSLCI). Instructors often 

credit knowledge surveys as sources of information for promoting effective 

learning and for improved course design (Nuhfer 1996; Nuhfer and Knipp 2003; 

Nicolaysen and Ritterbush 2005; Wirth and Perkins 2005; Wirth, Perkins and 

Nuhfer 2005; Clauss and Geedey 2010; Goodson, Slater and Zubovic 2015). 

Knowledge surveys promote good class planning (Nuhfer and Knipp 2003), 

particularly through aiding employment of tight instructional alignment (Cohen 

1987). 

In assessments, most scholars report that data obtained from knowledge 

surveys prove useful for “closing the loop” and informing future class 

modifications to support student learning (Nuhfer et al. 2010; Bell and 

Volckmann 2011; Favazzo, Willford and Watson 2014). Others used numerical 

arguments to reject knowledge surveys as a useful measure of assessment 

(Bowers, Brandon and Hill 2005; Ebert-May and Weber 2006) and offered views 

that differed little from those that consigned self-assessed learning measures to 

random noise (Porter 2012, 2013). 

To employ numerical analyses to resolve the disagreement about whether 

knowledge surveys offer valid assessments for measures of student learning 

required a study that furnished a critical mass of data obtained from closely 

aligned instruments of documented reliability. The database employed in this 

paper, which is that used in Nuhfer et al. 2016a and Nuhfer 2015, meets that 

requirement. 

Pre-course knowledge surveys provide a record of predicted self-assessments 

about content that participants do not yet fully understand. Post-course knowledge 

surveys provide a record of postdicted self-assessed competence about content on 

which participants are now better informed. The results shown in this paper 

indicate that collective self-assessments offer a valid measure that is significantly 

related to the true competencies of the populace as a whole. When people 

understand the challenge to which they self-assess their competence, these self-
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assessments are usually valid estimates of performance that they can demonstrate. 

Designing course materials that improve learners’ metacognitive abilities may be 

one of the most productive ways to use the content of any discipline to promote 

adult intellectual development. 

Conclusions 

We tested three competing hypotheses regarding self-assessment by analyzing a 

large dataset (N = 1154) that registered reliable paired self-assessed competence 

ratings and demonstrated competence proficiency scores. The first hypothesis, 

which proposes self-assessed estimates of proficiency to be random noise, proved 

untenable. 

Our results contradicted the generally accepted second hypothesis, which 

proposes: (a) peoples’ self-assessed competence ratings show a pronounced bias 

toward overestimations of their actual abilities and (b) low-proficiency performers 

are those most prone to egregious overestimations. The prevalent acceptance of 

this second hypothesis rests largely on the interpretation of patterns yielded by the 

Kruger-Dunning-type graphical format. Our analyses revealed that these patterns 

invite misinterpretations of data traceable to overlooked aspects of numeracy. By 

studying categorical data from known experts and novices, we confirmed that 

qualified experts are indeed more skillful in self-assessment than are novices. 

However, our study refuted two tenets of the second hypothesis by showing that 

(a) no strong propensity exists toward overconfidence in self-assessment ratings 

and (b) few people (about 5%) merit their being characterized as “unskilled and 

unaware of it.” 

Our study permitted creating a quantitative classification scale for self-

assessment skills and making a detailed characterization of the skills of a 

population sampled from higher education. Our results supported the third 

hypotheses by confirming that (a) peoples’ self-assessed competence generally 

accords with their demonstrated proficiency and (b) peoples’ frequencies of self-

assessed underestimation of their competence are similar to their frequencies of 

overestimation. Both qualities held true for novices and experts, and our data from 

undergraduate college students indicated that, on average, women seem 

significantly better at self-assessment than do men.  

Metacognitive self-assessment is a quality that is measurable and meaningful. 

However, deprecating self-assessment by deeming it as noise or meaningless 

nonsense is partly responsible for why teaching self-assessment and tracking 

gains acquired by practice remains widely neglected in higher education. 

In much of the peer-reviewed self-assessment literature, we believe we have 

found key weaknesses in the numeracy employed during nearly two decades of 

collecting, presenting, and interpreting self-assessment data. Because of 
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insufficient attention to numeracy, current prevalent explanations of the nature of 

human self-assessment seem to rest on a tenuous foundation.  
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