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Analysis of Bus Fires Using 
Interpretative Structural Modeling

Shumin Feng and Zhenning Li
Harbin Institute of Technology, China

Xianglong Sun
Northeast Forestry University, China

Abstract

There has been a worldwide growing public concern regarding transit bus fires, mainly 
because of their association with severe loss of human life and property. As a result, 
numerous studies have been carried out to investigate the causes, factors, and features 
of such accidents, along with research focusing on the simulation of bus fire scenarios. 
However, a detailed analysis on the causes of bus fires and the inter-relationships of risk 
factors is lacking. This study identified 17 risk factors associated with bus fires through 
an analysis of accident records from China using the Delphi approach. An integrated 
interpretative structural modeling (ISM) was adopted to explore the interactions among 
risk factors associated with bus fires, providing a useful hierarchy of risk factors whose 
individual relationships are unambiguous but whose group relationships are too complex 
to organize intuitively. This can help practitioners better understand risk dependencies 
and prioritize risk mitigation efforts. Results show that a lack of safety education and 
safety knowledge popularization and inadequate laws and regulations are the two most 
important risk factors associated with bus fires. Drivers also play an important role 
in preventing accidents. The analysis can be extended to risk analysis in other types of 
accidents, i.e., railway accidents and coach accidents. 

Keywords: Bus fires; risk factors; Delphi approach; ISM

Introduction

Transit bus fires have drawn considerable attention worldwide owing to their frequent 
occurrence. Although buses generally are considered to be a relatively safe means of 
transportation, the loss of property and human life caused by bus fires is far from 
negligible. Generally, bus drivers and passengers can quickly flee the scene during a bus 
fire, leading to fewer casualties in comparison to bus crashes. However, in most cases, it 
is very likely that the bus will completely burn within 15–20 minutes after the start of a 



Analysis of Bus Fires Using Interpretative Structural Modeling

 Journal of Public Transportation, Vol. 19, No. 3, 2016 2

fire (Meltzer and Ayres et al. 2010), causing property damage in the tens of thousands 
of dollars up to the replacement cost of the bus (estimated to be $100,000). Numerous 
reports on bus fires, particularly those with high casualties, provide unprecedented 
examples of the potential human toll of a transit bus fire. According to documents of 
the China Fire Department of Ministry of Public Security (FDMPS), approximately 3,000 
bus fires occurred in China in 2014, a number that has grown steadily since 2010, with 
no indication of an improvement in this trend. These fires caused an estimated annual 
average of 50 civilian deaths, 300 civilian injuries, and $30.2 million in direct property 
damage per year. Therefore, extensive research is needed to determine the causes of bus 
fires to reduce the frequency of bus fire accidents.   

Previous Research

Previous research on bus fires focused primarily on the following two aspects:

• Accident factors and features – Chow conducted several studies on bus fire 
accidents. He analyzed different materials that affect fire safety and their release 
rate (Chow 1999) and then used empirical equations for analyzing types of 
materials that are more easily subjected to flashover (Chow 2001). He applied 
the test results to a sandwich panel sample commonly used in the construction 
industry with a calorimeter to study the manner in which incident thermal 
radiation heat flux affects the behavior of materials subjected to fire (Chow 2003), 
then investigated the flowing and diffusing mechanism of smoke in bus fires and 
proposed a smoke control strategy (Chow 2006). Lönnermark (2005) analyzed the 
characteristics of bus fires that occurred in tunnels and determined a method for 
calculating the CO/CO2 ratio, flame length, and other indexes. Chun-ming (2006) 
analyzed several bus fire incidents in China and summarized the features and 
factors of bus fires through a systemic analysis. 

• Simulation of bus fire scenario – Some studies have used full-scale vehicles 
to simulate bus fires; for instance, Johnsson and Yang (2015) placed several 
thermocouples (TCs) in wheels, tires, wheel wells, and other locations to monitor 
the heat release rate (HRR) of each vehicle part. Other studies used small-scale 
vehicles to simulate bus fires; for example, Försth et al. (2013) used the different 
materials of different bus components such as walls, ceilings, seats, curtains, 
instrument boards, etc., to test their horizontal burning rate, vertical burning 
rate, and critical heat flux, and determine whether they could pass the ISO 
(International Organization for Standardization) 3795, ISO 6941, and ISO 5658-2 
tests. Other studies on bus fires mainly used numerical simulation software 
such as Fire Dynamics Simulator (FDS), Smokeview, and PyroSim. Based on the 
descriptions of evacuees and rescuers, as well as combustion evidence from 
the scene, Bi et al. (2010) reconstructed a bus fire scene by adopting parallel 
operation. The simulation results obtained were compared with the fire site 
reconnaissance results, demonstrating reliable prediction of the fire process and 
smoke movement calculation. Jia-lei et al. (2010) simulated two types of typical 
bus fires and confirmed that different interior materials have different impacts 
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on bus fires; they also determined that bus fires were influenced by whether the 
doors or windows were open or closed and, accordingly, developed some fire 
control strategies. 

As indicated, previous research on bus fires mainly focused on accident factors and 
features as well as the burning characteristics of different materials; however, not many 
studies have been conducted to investigate the reasons for bus fires and the inter-
relationships of risk factors. Further, past cases on bus fires also have not been used to 
conduct an analysis. Therefore, this study aimed to confirm the risk factors affecting 
bus fires by analyzing numerous bus fire accidents and to identify and summarize the 
relationships among these factors by using interpretative structural modeling (ISM) to 
classify their importance for undertaking specific measures to prevent bus fires.

Data

Only a few studies have focused on bus fires despite their frequent occurrence. This 
likely is because of the difficulty in acquiring related data. For example, departments, 
agencies, databases, etc., associated with bus fires often lack detailed statistics and 
analysis of data. On a positive note, however, there is growing concern over bus fires 
from society and the media, which makes it simpler to obtain the time, place, number 
of casualties, cause, and even details of accidents from the Internet. In the current 
research, we obtained data from reports of the Chinese media, the investigation results 
of the FDMPS, and accident particulars from the China fire services yearbook (2011–
2014). Basic information on accidents is shown in Table 1, which lists 12,633 accidents, of 
which 20 typical accidents were selected for detailed analysis (Table 2). 

TABLE 1. 
Basic Information on Bus 

Fires in China

Categories/Variables Number Percentage

Year

2011 2,984 23.62%

2012 3,172 25.11%

2013 3,083 24.40%

2014 3,394 26.87%

Primary Causes

Arson 2,984 23.62%

Electrical fault 3,172 25.11%

Vehicle fault 3,083 24.40%

Playing with fire (harmlessness) 3,394 26.87%

Smoking 618 4.89%

Spontaneous combustion 5,047 39.95%

Lighting stroke 1,891 14.97%

Static 674 5.33%

Unknown 715 5.66%
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No. Location Date Causalities
Causes

Driver Passenger Arson Vehicle Environment

1 Beijing 5/29/2014 0 ü ü ü

2 Changchun 5/6/2013 0 ü

3 Chengdu 5/6/2009 101 ü ü ü

4 Guangzhou 7/15/2014 34 ü ü

5 Guiyang 2/27/2014 37 ü ü ü

6 Hangzhou 7/21/2010 0 ü ü

7 Hangzhou 7/5/2014 32 ü ü

8 Harbin 6/13/2014 0 ü ü

9 Hefei 6/27/2014 0 ü ü ü

10 Huhehot 3/14/2015 0 ü ü

11 Jinzhou 10/14/2014 2 ü ü

12 Liuzhou 11/21/2014 18 ü

13 Qufu 3/12/2015 0 ü ü

14 Sian 3/6/2015 0 ü

15 Taizhou 8/22/2013 0 ü ü ü

16 Wuhan 4/8/2013 0 ü ü ü

17 Wuhan 6/21/2012 0 ü ü

18 Xiamen 6/7/2013 81 ü ü

19 Xiamen 1/16/2015 12 ü ü

20 Yantai 8/20/2014 20 ü ü ü

Research Method 

The aim of this research was to identify key risk factors associated with bus fires and 
explore how these risk factors interact with each other. Previous methods such as 
those involving a questionnaire survey are not adequate, as they cannot distinguish 
the relationships between risk factors. Therefore, the Delphi method was chosen 
to identify these risk factors associated with bus fires, and interpretive structural 
modeling (ISM) was adopted to explore the interactions among them.

Delphi Method

There are two stages in the Delphi method. The first involves drawing a final list of risk 
factors, and the second involves investigating the interactions of the risk factors. All 
information was collected via Delphi questionnaires. Questionnaires were sent to 15 
experts having different jobs in this area who agreed to participate in this research via 
e-mail. The profiles of the experts are presented in Table 3. 

TABLE 2. 
Characteristics of Typical 

Accidents
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Codename Working Organization Role in Organization

A Transportation authority Director

B Transportation authority Director

C Fire department Director

D University Professor

E University Professor

F University Professor

G University Professor

H University Professor

I University Professor

J University Associate Professor

K University Associate Professor

L Vehicle company Chief Engineer

M Vehicle company Engineer

N Bus operating company General Manager

O Bus operating company Bus driver

First Stage of Delphi Method

The aim of the first stage was to search for risk factors; to this end, the following steps 
are taken:

1. Experts that fit the criteria were selected. 

2. An information sheet and a list of questions were sent to all experts via e-mail. 
The information sheet contained background, current situation, and data of 
overall accidents and a detailed description of typical bus fire records. 

3. All experts were asked to identify at least 10 key risk factors that affect bus fires 
and to provide descriptions of those risk factors within 150 words.

4. The risk factors identified by the experts and the findings of the literature survey 
were included in a new information sheet. 

5. The new information sheet was provided to the experts, who then were invited to 
add or modify the list. In the end, a consensus was reached through three rounds 
of feedback sessions.

Second Stage of Delphi Method 

The second stage involved investigating the relationships between risk factors 
determined from the first stage. During this stage, the experts were asked to evaluate if 
there are interactions between each pair of risk factors associated with bus fires:

• Questionnaire (a): Please identify those risk factors that influence Si.

• Questionnaire (b): Please identify those risk factors that are influenced by Si. 

TABLE 3.
Profile of Delphi Experts
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After three rounds, a consensus was reached, and the interactive relationships between 
risk factors associated with bus fires were analyzed via an integrated ISM model.

Interpretive Structural Modeling

ISM, first proposed by Warfield in 1973 with the aim of analyzing complex 
socioeconomic systems, is an effective tool for determining the interactions between 
specific items (Singh and Kant 2008). Generally, the major steps involved in the ISM 
technique are as follows:

1. Set the reachability matrix. A reachability matrix is used to represent the extent to 
which different nodes in a directed graph can reach (i.e., indirect influence) each 
other through certain channels. The feature of transformation means that if there 
is one channel that element Si can reach Sj directly, there is also one channel that Sj 
can reach Sk. Therefore, there must be two channels that Si can reach Sk. M is used 
to present reachability matrix. Matrix A is used to achieve M. A is the adjacent 
matrix obtained from the second stage of Delphi method. The element in it, aij, 
equals to 1 when Si has influence on Sj, otherwise it equals to 0. The following 
formula presents the process of using A to achieve M. The Boolean algebra 
operation rules are selected for the matrix power operation in the formula. 

Finally, 

 

2. Partition the reachability matrix. According to the reachability matrix, the 
reachability sets and antecedent sets of every factor must be determined. The 
reachability set is composed of all the related elements that Si can reach (has 
an impact). The antecedent set is the set composed of all the elements that can 
reach Si.

3. Draw the ISM relationship diagram. In accordance with the results of partitioning 
the reachability matrix, the reachability matrix is rearranged, and then the 
structure matrix S can be obtained. With the help of S, a multilevel hierarchical 
structural diagram can be drawn.
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Identification of Risk Factors Associated with Bus Fires 

Using the Delphi method, a final list of 17 risk factors was obtained, which were mainly 
related to three entities: people, vehicle, and environment. From Tables 1 and 2, we can 
conclude that the causes can be classified under these three entities, and the risk factors 
associated with bus fires caused by these three entities were identified.

People

People play the most important and active part in bus fires; this entity can be further 
divided into drivers and passengers. 

Risk factors attributed to drivers include the following: 

• Negligence of routine safety inspection. This may lead to the risk of fire starting 
in the engine, electric devices, and other undetected interior structures in the 
bus; in addition, the loss or damage of emergency hammers and extinguishers 
also may lead to more casualties (Knipling and Hickman et al. 2003; Underwood 
and Chapman et al. 2003). Focusing on cases 9, 10, and 13 from Table 2, all the 
drivers neglected safety inspection, resulting in the bus experiencing spontaneous 
combustion on the road; fortunately, there were no casualties, and only the buses 
were burnt.

• Lack of safety awareness and knowledge. Historically, the education level of 
bus drivers in China is extremely low, lower than the average level of the whole 
society. Since driving a bus is stressful and poorly paid, fewer and fewer people 
want to be bus drivers, especially young people with a higher education level. 
Accident records also show that the drivers primarily are middle-age and have 
low safety knowledge, a serious condition that is common in China and a factors 
mentioned by all Delphi experts. 

• Risky driving behaviors. Overloading may render passenger evacuation difficult, 
and driving at high speed, under the influence of alcohol, or while fatigued may 
cause drivers to react and respond to fire hazards slowly, resulting in more severe 
accidents (Tseng 2012; Nirupama and Hafezi 2014; Mallia and Lazuras et al. 2015). 
For instance, case 18 in Table 2 was caused by arson and resulted in 48 deaths and 
33 injuries. Overloading contributed significantly to the serious casualties, since it 
was impossible for nearly 100 occupants to escape from the burning bus quickly 
(in 2 minutes or so) in panic circumstances.

Risk factors attributed to passengers include the following:

• Possession of flammable and explosive goods. Unlike stations for subways, trains, 
planes, and other modes of transport, usually there are no security inspection 
devices at bus stations, thus allowing passengers to carry anything aboard. 
According to FDMPS, this has led to hundreds of bus fires every year in China, 
especially in small cities. There is also some concurrence from the Delphi experts, 
one of whom noted that “… in my career, there are always people carrying 
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alcohol, gasoline, or other explosive goods when taking buses; especially during 
the Chinese Spring Festival, almost everyone carries all kinds of firecrackers, and 
this kind of behavior may lead to fire easily….”

• Possession of fire sources. Generally, the interiors of vehicles in China are made 
of numerous flammable materials. Some buses designed for the cold north area 
contain cotton seat cushions, and some advertisements in the bus are made of 
paper or other flammable sources. A spark to a flammable material in a bus can 
easily lead to fire accidents. For example, a person smoking in a bus caused a fire 
in Liuzhou (case 12). Some Delphi experts mentioned that although smoking and 
lighters in buses are not common in big cities, they are very common in small 
cities, especially in poor provinces. 

• Delay in reporting suspicious circumstances to drivers. There is usually a certain 
smell, smoke, and/or sound when a bus first catches fire; in addition, arsonists 
carrying combustible goods usually behave strangely. If passengers would report 
these circumstances in a timely manner, the consequences of a fire may decrease 
and perhaps could be prevented. 

• Arson and destruction. Arson and destruction are frequent occurrences, and the 
circumstances of fires caused by arson are generally the same. Most arsonists 
have fire sources and liquid flammable goods with them and set fires from blind 
areas in the bus. The beginning of a fire set by an arsonist can be is difficult to 
recognize because arsonists tend to hide the fire. As a result, the fires are more 
swift and violent than those caused by smoking or bad weather. Cases 3, 4, 5, 7, 
18, 19, and 20 were all mainly caused by arson, and the number of injuries and 
deaths was extremely high. It is worth noting that all the Delphi experts listed this 
entry on their answer sheets. Arson is a significant cause of bus fires, and from 
the yearbooks of FDMPS, the proportion of bus fires caused by arson has risen 
steadily since 2010.  

Vehicle

In many cases, the bus itself is the source of a fire, and it also plays an important part in 
accidents. Risk factors attributed to the vehicle include the following:

• Design defect. With plenty of flammable materials on buses and inappropriate 
structure design, the likelihood of bus fires has increased (Parsons 1990). There are 
still no specific standards on bus fireproofing, and China’s local vehicle companies 
are not forced to produce fireproof buses for economic reasons. There were no 
fireproof buses in China until 2009, and a so-called “fireproof” bus can spray water 
only on the command of the bus driver when a fire occurs. In addition, some buses 
are not suitable for lengthy driving in bad weather, such as hot temperatures and 
lightning. Some buses are designed for the cold north area, but some cities in the 
hot south area use buses that could result in bus fires (e.g., case 9).

• Performance aging. Service over a long period of time may cause the equipment 
to age, particularly the engine, electrical equipment, and exhaust system, which 
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can be hazardous (Ming and Tian et al. 2009). It is common in China that transit 
buses in small cities, especially in underdeveloped provinces, are obsolete buses 
that previously were used for years in bigger cities. This also was noted by all 
Delphi experts.

• Lack of maintenance. A driver usually fixes a minor problem with a bus during 
operation; however, this could cause a fire hazard (Hammarström et al. 2008). In 
addition, some maintenance agencies may not have proper qualifications for bus 
maintenance, and parts for buses may not be ordered or installed correctly. Also, 
if a bus does not undergo regular routine maintenance, the equipment inside it 
may age, increasing the probability of fire. In the opinion of the Delphi experts, 
performance aging and lack of maintenance are inter-related factors: a lack of 
routine maintenance leads to aging of a bus, and as a bus ages, drivers are less 
likely to maintain it regularly.

• Low-quality fuel. Some refueling stations may supply low-quality fuel, and 
some drivers prefer to purchase fuel in bulk instead of from refueling stations. 
According to results of the examination of gas stations in Shandong Province, fuel 
supplied at 2,083 of 6,630 gas stations were found to not meet standard quality. 
More specifically, some of the fuels had lower ignition temperatures or were very 
volatile, which can increase the possibility of fires. Some Delphi experts strongly 
encouraged the inclusion of this risk factor, noting that extended use of low-
quality fuel can easily lead to poor performance and premature wear and may 
result in engine damage. 

• Lack of fire-extinguishing and emergency escape installations. Fire extinguishers 
are either not installed or lose efficacy in some buses, resulting in a delay in 
suppressing a fire. In addition, safety hammers, relief valves, and other survival 
equipment often are lost or broken, making evacuation difficult. 

Environment 

Risk factors attributed to the environment include the following:

• Social contradictions. Intensified social conflicts increase the probability of arson, 
malicious damage, and even terrorist attack.

• Lack of safety education and safety knowledge popularization. Owing to an 
unclear understanding of safety knowledge, drivers do not know how to prevent 
fires, put out fires in a timely manner, and evacuate passengers. In addition, 
passengers are unaware of what type of goods can be carried safely and how to 
escape effectively.

• Inadequate laws and regulations. Compared with car accidents, attention to bus 
fires is limited, resulting in a lack of effective laws, regulations, and accountability; 
hence, it is difficult to warn about and prevent illegal behavior. 

• Bad roads. Road alignment, road profile, surface type, and traffic capacity impact 
bus safety differently (Kaplan and Prato 2012).
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• Bad weather. The probability of bus fires increases considerably in hot conditions 
and thunderstorms. For instance, approximately 10 bus fires occur every year in 
the U.S. because of bad weather (Ahrens 2006). 

The 17 risk factors and their relationships were determined, after agreement among by 
Delphi experts. These relationships are presented in Table 4.

TABLE 4. 
Relationships between  

Risk Factors Associated with  
Bus Fires

No. Risk Factors (Si) Risk Factors Influenced by Si

Driver Level

1 Negligence of routine safety inspection 8, 9, 10, 11, 12

2 Lack of safety awareness and knowledge 1, 3, 4, 5, 7, 8, 9, 10, 11, 12

3 Risky driving behaviors 4, 5

Passenger Level

4 Possession of flammable and explosive goods 7

5 Possession of fire sources 7

6 Delay in reporting suspicious circumstances to driver 7

7 Arson and destruction -

Vehicle Level

8 Design defect 9, 10, 12

9 Performance aging 10

10 Lack of maintenance 9

11 Low-quality fuel -

12 Lack of fire-extinguishing and emergency escape installations -

Environment Level

13 Social contradictions 7

14 Lack of safety education and safety knowledge popularization 1, 2, 3, 4, 5, 6, 7, 12

15 Inadequate laws and regulations 1, 2, 3, 4, 5, 7, 11, 12

16 Bad road -

17 Bad weather -

ISM Analysis

In the previous sections, the identification of risk factors associated with bus fires was 
proposed according to the Delphi approach. In this section, ISM is employed to explore 
how these risk factors interact with each other. An adjacency matrix, reachability 
matrix, and all iterations results are presented in Tables 5, 6, and 7, respectively. 
Elements 1–17 represent the 17 risk factors. In addition, a digraph of risk factors 
associated with bus fires is shown in Figure 1 and shows the levels of all the risk factors.
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Elements
(i/j) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

2 1 0 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0

3 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

14 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0

15 1 1 1 1 1 0 1 0 0 0 1 1 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TABLE 5.
Adjacency Matrix

TABLE 6. 
Reachability Matrix

Elements
(i/j) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

2 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0

3 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0

9 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

13 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

14 1 1 1 1 1 1 1 0 0 0 0 1 0 1 0 0 0

15 1 1 1 1 1 0 1 0 0 0 1 1 0 0 1 0 0

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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Element
(Si)

Reachability Set: R(Si) Antecedent Set: A(Si)
Intersection
R(Si) ∩ A(Si)

Level

1 1, 8, 9, 10, 11, 12 1, 2, 14, 15 1

2 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12 2, 14, 15 2

3 3, 4, 5, 7 2, 3, 14, 15 3

4 4, 7 2, 3, 4, 14, 15 4

5 5, 7 2, 3, 5, 14, 15 5

6 6, 7 6, 14 6

7 7 2, 3, 4, 5, 6, 7, 13, 14, 15 7 I

8 8, 9, 10, 12 1, 2, 8, 14, 15 8

9 9, 10 1, 2, 8, 9, 10, 14, 15 9, 10 I

10 9, 10 1, 2, 8, 9, 10, 14, 15 9, 10 I

11 11 1, 2, 11, 14, 15 11 I

12 12 1, 2, 8, 12, 14, 15 12 I

13 7, 13 13 13

14 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14 14 14

15 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 15 15 15

16 16 16 16 I

17 17 17 17 I

1 1, 8 1, 2, 14, 15 1

2 1, 2, 3, 4, 5, 8 2, 14, 15 2

3 3, 4, 5 2, 3, 14, 15 3

4 4 2, 3, 4, 14, 15 4 II

5 5 2, 3, 5, 14, 15 5 II

6 6 6, 14 6 II

8 8 1, 2, 8, 14, 15 8 II

13 13 13 13 II

14 1, 2, 3, 4, 5, 6, 8, 14 14 14

15 1, 2, 3, 4, 5, 8, 15 15 15

1 1 1, 2, 14, 15 1 III

2 1, 2, 3 2, 14, 15 2

3 3 2, 3, 14, 15 3 III

14 1, 2, 3, 14 14 14

15 1, 2, 3, 15 15 15

2 2 2, 14, 15 2 IV

14 2, 14 14 14

15 2, 15 15 15

14 14 14 14 V

15 15 15 15 V

TABLE 7.
All Iterations’ Results
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FIGURE 1.
Digraph of risks in  

bus fires

From Figure 1, we conclude some useful findings:

• All the risk factors associated with bus fires can be classified into five levels. The 
factors in the first level will directly affect bus fires. The factors in middle levels 
(II, III, and IV) are elements that indirectly influence bus fires and play a role in 
connecting the levels above and below. The last level (V) presents the macro-level 
factors of bus fires. In addition, factors at a higher level will be influenced by those 
at lower levels, and there are direct impacts between factors at adjacent levels. In 
other words, changes in low-level factors will emerge in middle-level factors, so 
low-level factors can “control” middle-level factors, which is why they are more 
important in the whole hierarchical structure. 

• Seven superficial factors have a direct impact on bus fires: arson and destruction 
(7), performance aging (9), lack of maintenance (10), low-quality fuel (11), lack of 
fire-extinguishing and emergency escape installations (12), bad roads (16), and 
bad weather (17). These factors cannot influence the others—that is, they are 
independent factors.

• The factors in levels II, III, and IV are influenced by the lower levels and do 
not directly influence bus fires. Level II includes possession of flammable and 
explosive goods (4), possession of fire sources (5), delay in reporting suspicious 
circumstances to the driver (6), design defects (8), and social contradictions (13). 
Level III includes negligence of routine safety inspection (1) and risky driving 
behaviors (3). Level IV includes lack of safety awareness and knowledge (2). The 
main impact of these factors on bus fires can be likened to connection links; in 
other words, they are connective factors.

• Level V factors influence others but are not influenced by others: lack of safety 
education and safety knowledge popularization (14) and inadequate laws and 
regulations (15). These factors are at the bottom of ISM structure, symbolizing 
that they have a fundamental impact on bus fires—namely, depth factors.
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• Most vehicle-level elements are present in the high levels (I and II), indicating that 
vehicles play a direct role in bus fires; of course, the vehicle is also the locality of 
a bus fire. Table 1 also shows that vehicle fault and electrical fault are the direct 
causes of more than 50% accidents, so measures on vehicle levels will directly 
influence bus fires. 

• Arson and destruction (7) are driven by possession of flammable and 
explosive goods (4), possession of fire sources (5), delay in reporting suspicious 
circumstances to the driver (6), and social contradictions (13). Arsonists are anti-
society, and it is difficult to recognize them. Obviously, arsonists need flammable, 
explosive goods and fire sources to set fires. When they bring them onto buses, 
if other passengers recognize them and report them to the driver, the fire may 
be prevented. In addition, when an arsonist sets a fire, instead of screaming or 
escaping in a disorderly manner, passengers could take measures such as using a 
fire extinguisher; in this way, the consequences of the fires may be mitigated while 
allowing for an increase in evacuation time. 

• Most passenger-related elements are connective factors, and all are driven by 
driver-related factors; in other words, drivers have influence on passengers. This 
indicates that passengers should not only be asked to control their own behaviors 
but also need drivers to keep an eye on them. As noted in some accident records, 
the reason for a fire was that a driver failed to forbid passengers from carrying 
forbidden goods, smoking, and so on.

• All driver-related elements are present in the middle levels (III and IV), and 
they are influenced by depth factors. More specifically, negligence of routine 
safety inspection (1) and risky driving behaviors (3) are driven by a lack of safety 
awareness and knowledge (2), which is driven by a lack of safety education and 
safety knowledge popularization (14) and inadequate laws and regulations (15). 
As described above, in developing countries such as China, bus drivers are usually 
middle-age persons who mostly are not very well educated. In addition, owing 
to economic situations, only a few training programs on bus safety are provided 
by operator companies and society. In addition, specific laws and regulations 
are lacking, as little attention is paid to bus fires. This could possibly be because 
cases of arson have become frequent only recently; previously, bus fires were 
mainly caused by self-ignition with only a few casualties. In summary, drivers, 
particularly those who are not very well educated, lack safety knowledge and 
safety awareness, which is the direct reason for drivers neglecting routine safety 
inspection and engaging in risky driving.

• In summary, we can determine the delivery mechanism of the influence of risk 
factors: depth factors influence driver-related factors, then are passed on to 
passenger-related factors, and finally to the outcome, bus fires. Vehicle-related 
factors and other environment factors are independent factors and are not 
influenced by depth factors.
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Summary and Conclusions

This study identified and prioritized 17 critical risk factors associated with bus fires using 
previous accident records and the Delphi approach. These risk factors involve subjective 
assessment, so they are difficult to model. Hence, it was necessary to identify the 
dominant risk factors by studying their influence-dependence. ISM was used as a tool 
for preparing the hierarchical structure of these risk factors.

Based on the results of ISM analysis, findings and recommendations include the 
following:

• Inadequate laws and regulations is one of the most important risk factors 
associated with bus fires, and establishing appropriate laws and regulations 
would be advantageous for enhancing bus fire safety. Specific measures 
include the following: 1) The government should undertake efforts to establish 
specialized laws related to bus fires. Taking other risk factors into consideration, 
laws should be established to punish arsonists and delinquent drivers, trace 
accountability to bus operator companies, and penalize passengers who do not 
prevent or report suspicious circumstances to drivers or who possess explosive 
goods or fire sources. 2) Bus administrative departments and operator companies 
should enact more stringent regulations based on laws and local conditions, 
and actions should be taken to ensure that the regulations are being effectively 
implemented. 

• Lack of safety education and safety knowledge popularization causes 
significant risk, and measures for addressing it include 1) the government 
investing in safety education, 2) social organizations and commonweal 
organizations conducting lectures and training for bus drivers and passengers, 
and 3) conducting proper fire drills.

• Drivers play an important role in bus fires because all driver-related elements 
fall into the relative low levels in the ISM. Measures that can be taken to 
counter driver-associated risk factors include the following: 1) Establish rules of 
pre-intervention in hiring bus drivers, aimed at selecting safer drivers who have 
less risky driving behaviors and who have a clearer understanding of bus safety. 
2) Increase driver pay and decrease work intensity. In China, hiring bus drivers 
have become increasingly difficult; few young people are willing to be bus drivers 
mainly because the salary is poor, resulting in an increase in the average age 
of drivers who are not very well educated. Moreover, drivers have more work 
stress, which can lead to more accidents. Therefore, economic factors may have 
favorable impact on bus fire safety. 3) Establish and improve training systems and 
ascertain scientific training and evaluation methods. In this way, regulations can 
be carried out effectively, and driving behaviors could improve. 

With regard to risk factors related to the vehicle (bus), some measures could be taken: 
1) Routine maintenance and daily checking should be conducted, and aging buses 
should be put out of service. 2) More human-friendly and safer designs should be 
employed, such as emergency buttons both inside and outside the bus for shutting 
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down all systems, a bus fire early warning system, an armored window glass bursting 
remote control system, an automatic alarm, a door opening and spraying device 
for a bus (Yu 2014), automatic fire suppression systems permanently installed in 
the engine compartments (Brandt and Modin et al. 2013), impulse fine dry powder 
fire extinguishing technology (Yang and M et al. 2006), highly-integrated data bus 
automatic fire extinguishing system (Frasure and Norris et al. 2013), and other new 
technologies and devices. 

The results of current research indicate that more studies should to be conducted 
to improve bus safety, and the following research directions are proposed: the 
development of 1) technology for pre-identifying dangerous passengers; 2) a simple 
security device for buses or stations; and 3) more effective fire recognition technology 
and extinguishing devices.
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Abstract

Public transport plays an important role in a city’s economy and its social equity. It is 
also instrumental in reducing automobile dependence and traffic congestion. Several 
factors must come together to achieve well-functioning public transport systems. One 
major factor is the level of accessibility offered by the public transport system. To better 
understand and consequentially enhance accessibility, we must be able to measure it and 
map it, which is the key aim of this paper. 

The methodology in this study, which was originally developed by the London Borough of 
Hammersmith and Fulham and later adopted by Transport for London (TfL) has been 
adapted to the case study city of Ahmedabad, India. A GIS mapping tool was used to 
generate a visual representation of public transport accessibility levels (PTAL) taking into 
account average walk speed and time, distances to public transport stops, and peak-hour 
route frequencies of different public transport modes. The paper concludes with initiation 
of a discussion on the potential uses of PTAL mapping to enhance planning practice, 
such as formulating development/master plans with land use–transport integration, 
prioritizing public transport and supporting investments, formulating parking policies, 
and developing transit-oriented zoning regulations.

Keywords: Public transport; accessibility; Ahmedabad; PTAL

Introduction

In 2011, urbanization across the world was 52%; for developing countries, it was 47%. 
Urbanization is growing at a rapid pace (United Nations 2012) and is expected to reach 
56% by 2030. In India in 2011, it was 32% (Census of India 2011) and has occurred at an 
alarming rate (just 17% in 1951); it is expected to be around 35% by 2021 (Singh 2012). 
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The Indian economy grew at 6% per annum during the 1990s and at about 8% during 
the 2000s (Bhagat 2011). Cities and towns play a vital role in promoting economic 
growth and prosperity and generate more than two-thirds of the country’s income 
and account for 90% of government revenues (Singh 2012). As per India’s Eleventh 
Five-Year Plan, the urban sector contributes about 62% of GDP (Bhagat 2011). There 
is also a growing realization that an ambitious goal of double-digit GDP growth rate 
fundamentally depends upon the vibrancy of urban areas in India (Bhagat 2011). 

Over the last two decades, bigger cities in India are experiencing higher growth. This 
has put tremendous pressure on infrastructure systems and has raised questions on 
the ability of Indian cities to absorb the rapid growth. Urban transition is considered 
a major challenge, requiring a massive expansion in urban infrastructure and services 
(Bhagat 2011). Public transport systems already are experiencing the pressure, which 
is likely to increase. Efficient, comfortable, safe, fast, and affordable urban transport 
systems are necessary to enhance the advantage offered by cities in economic growth. 
In addition, the benefits of effective public transport systems also permeate to improve 
the quality of life and make cities more livable and sustainable (Planning Commission of 
India 2011). 

Currently, public transport systems in India are ineffective at many levels. The rapid 
growth of India’s urban population has put enormous strains on all transport systems 
(Pucher et al. 2004); they are congested and unreliable, lack spatial network coverage, 
and have not been able to cope with the rising demand. The availability of transport 
infrastructure is not only inadequate but also used sub-optimally in Indian cities. The 
area occupied by roads and streets in Class I cities (population more than 100,000) in 
India is only 16% of the total developed area, whereas the corresponding figure for the 
U.S. is 28% (Singh 2012). Most bus and train services are overcrowded, undependable, 
slow, inconvenient, uncoordinated, and dangerous. Moreover, public ownership and 
operation of most public transport services has greatly reduced productivity and 
inflated costs. India’s cities desperately need improved and expanded public transport 
service (Pucher et al. 2004).

Accessibility to the public transport system is the key to improving the level of service in 
line with rising demand. To improve accessibility, it is important to be able to measure 
it as accurately as possible. Better understanding of accessibility levels of the public 
transport systems will not only be necessary to improve the level of service but also to 
plan and budget for resources (capital costs, operations & maintenance costs, etc.). 

Literature Review

Various disciplines define accessibility in different ways. One meaning of accessibility is 
the ease by which physically-challenged people can access the various elements of the 
built environment (including transport infrastructure); this study is not concerned with 
this type of accessibility. The other definition comes from geography and transport 
disciplines. Geographers define accessibility as the relative ease of reaching a particular 
location or area in the city. Hansen (1959) defines accessibility as the potential of 
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opportunities for interaction with emphasis on the intensity of the possibility of 
interaction rather than just ease of interaction (Hansen 1959). Murray et al. (1998) 
distinguish between the terms “access” and “accessibility” and suggest that “access” 
is the opportunity for use based on proximity to the service and its cost, whereas 
“accessibility” is the suitability of the network to get individuals from their system entry 
point to their system exit location in a reasonable amount of time (Murray et al. 1998). 

This study focuses on accessibility to public transport, which, in turn, provides 
accessibility to various destinations in the city. When considering definitions particular 
to public transport accessibility, the idea is emphasized in Hillman and Pool (1997), as 
cited in Joyce and Dunn (2010), who make a distinction between “local” and “network” 
public transport accessibility. Local accessibility is the accessibility of a particular 
location to a public transport system; network accessibility is the accessibility of 
locations in a city by the public transport system. The public transport accessibility 
levels (PTAL) concept essentially addresses local accessibility, but indirectly also 
incorporates network accessibility by using route and frequency data. A study by 
Litman (2008), as cited in Joyce and Dunn (2010), attempts to incorporate both aspects 
by defining public transport accessibly as the quality and ease of transit service at a 
particular location.

The key objectives of this study were to measure PTAL (excluding paratransit modes), 
map it, and initiate a discussion of its importance in application to enhancing planning 
practice. Several studies have made considerable progress on developing service indices 
to measure transit accessibility. 

Different measures have been designed to reflect differing points of view. Some 
measures of public transport accessibility focus on local accessibility and consider both 
spatial and temporal coverage. The Time-of-Day tool developed by Polzin et al. (2002), 
as cited in Mamun and Lownes (2010), is a measure that considers both spatial and 
temporal coverage at trip ends. In addition to the inclusion of supply-side temporal 
coverage, this tool overtly recognizes and considers the demand side of temporal 
coverage by incorporating the travel demand time-of-day distribution on an hourly 
basis. This integration makes the tool distinctive to public transport planners. The 
Transit Capacity and Quality of Service Manual (TRB 2003), as cited in Mamun and 
Lownes (2010), provides a systematic approach to assessing transit quality of service 
from both the spatial and temporal dimensions. The transit level-of-service (TLOS) 
indicator developed by Ryus et al. (2000), as cited in Mamun and Lownes (2010), 
provides an accessibility measure that uniquely considers the existence and eminence 
of pedestrian routes connected to stops. It also combines population and job density 
with different spatial and temporal features to measure transit accessibility. This tool 
emphasizes various aspects (walking distance and access to stops, wait time at stops, 
availability of service at user’s required time) in the consideration of accessible public 
transport service by a person. 

The Land Use and Public Transport Accessibility Index (LUPTAI) seeks to measure 
how easy it is to access common destinations (e.g., health, education, retail, banking, 
employment) by walking and/or public transport. This is in contrast to the traditional 
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method of measuring accessibility by road distance and is the first of its kind to 
consider public transport as a means of access rather than a facility to be accessed 
(Pitot et al. 2005). A new travel time-based method to visualize and analyze transit 
service coverage—a computer application called the Time-Based Transit Service Area 
Tool (TTSAT)—was developed as a new approach to mapping transit accessibility 
by incorporating total trip travel time into the transit service area maps it generates. 
To make these travel-time estimates realistic, TTSAT integrates all segments of a 
complete, door-to-door transit trip into the trip time calculations. TTSAT’s mapping 
and analysis capabilities offer numerous potential applications for planners, developers, 
and members of the public working to create transit-accessible communities. TTSAT 
users can customize the time-based transit service area (TTSA) maps they generate 
by specifying details of passengers’ expected travel behavior, such as walking speed or 
the maximum time they are willing to spend going to and from public transport stops 
(Cheng and Agrawal 2010).

This study uses the PTAL calculation method developed by the London Borough of 
Hammersmith and Fulham in 1992, which was later adopted by Transport for London 
(TfL), as the standard method for calculation of public transport accessibility in London 
(Transport for London 2010). In addition to the UK, public transport accessibility ratings 
are used in a number of countries such as the U.S., the Netherlands, Australia, and 
New Zealand (Joyce and Dunn 2010). The methodology in this paper was appropriately 
adapted from London (Transport for London 2010) to fit Ahmedabad data.

Ahmedabad and Its Public Transport

The city of Ahmedabad, India, was founded in AD 1411 and is the largest city in Gujarat 
and the seventh largest in India, with a population of 6.35 million in 2011 (Census of 
India 2011). Ahmedabad has two major public transport systems: the Ahmedabad 
Municipal Transport Service (AMTS), a bus service running in mixed traffic, and the 
BRTS, operated by Ahmedabad Janmarg Ltd (AJL), which runs on dedicated corridors 
(except junctions and a few other links). Both AMTS and BRTS are wholly-owned 
subsidiaries of the Ahmedabad Municipal Corporation (AMC). A metro rail system 
called the Metrolink Express Gandhinagar Ahmedabad (MEGA) has been proposed and 
is in the advanced stages of planning. Figure 1 shows the public transport network in 
Ahmedabad.

http://www.gujaratmetrorail.com/
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Note: Routes shown are those used in the calculation of PTAL per the existing routes of 
AMTS and BRTS in 2013 and the proposed routes of MEGA in the same year. However, 
some alignment changes and new routes have been proposed thereafter.

Ahmedabad has a high percentage of population living in slums. According to the 
Ahmedabad Urban Development Plan 2011 (AUDA 2002), in 1998, 32% of the city’s 
population lived in slums, with 60% of these households falling below the poverty line. 
According to the Global Report on Understanding Slums (2003), the percentage of 
Ahmedabad housing categorized as slums increased from 17% in 1961 to 23% in 1971 
to 26% in 2011. One study suggested that 40% of Ahmedabad’s population lives in 
slums (informal settlements) and chawls (tenements) (Somani 2011). The modal share 
in Ahmedabad is 17% public transport (all buses) and 54% non-motorized transport 
(NMT) (walking and cycling) (LGBC 2001). This suggests that a very high percentage of 
the urban poor population cannot afford public transport for commuting. Mapping 
public transport accessibility levels can be a useful tool in achieving the goal of 
improving the level and quality of service of public transport system (including the 
upcoming metro rail system).

FIGURE 1.
AMTS, BRTS and Metro routes
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Overview of London PTAL Methodology

PTAL is a detailed and accurate measure of the accessibility of a specific point to the 
public transport network, taking into account walk access time and service availability. 
It measures the accessibility level for a specific point (origin) considering the accessibility 
index (AI) for all available modes of transport from that point. The inclusion of total 
access time to measure the level of accessibility is an important feature of this method 
(Mamun and Lownes 2010). The methodology is briefly described below, broken down 
into key steps for calculation. For a more detailed explanation, please refer Transport for 
London (2010).

Step 1: Define points of interest (POI) and service access points (SAP) – POI is defined as a 
point for which the accessibility level is to be measured with reference to an SAP, which 
is a public transport stop (such as bus stop, metro station, etc.).

Step 2: Calculate walk access time from POI to SAP – The actual road network distance 
from POI to SAP is measured and, assuming a walk speed of 4.8 km/h, walk time (WT) 
is calculated. The maximum walk times for bus and metro rail are 8 and 12 minutes, 
respectively. Any SAPs beyond these distances are not taken into account to calculate 
PTAL for that particular POI. 

Step 3: Identify valid routes at each SAP and calculate average waiting time (AWT) – 
The valid routes are bus and metro routes for the peak hour (8:15–9:15 am),1 and the 
frequency of services on all these routes during this hour is used in the calculation of 
AWT.

AWT is the defined as the period from when a passenger arrives at an SAP to the arrival 
of the desired service. In the calculation, the hourly frequency (f) is halved because 
the scheduled waiting time (SWT) is estimated as half the headway. For example, a 
10-minute service frequency (6 buses per hour) would give an SWT of 5 minutes. In 
addition, to make the calculations more realistic, a “reliability factor” (K) is added to the 
SWT depending on the transport mode, which is assumed to be 2 minutes for buses 
and 0.75 minutes for rail services (see Equation 1):

 (1)

Step 4: Calculate minimum total access time (TAT) for each valid route at each SAP – 
This is done as shown in Equation 2 by adding times obtained in steps 2 and 3.

TAT = WT + AWT (2)

1 This assumption leads to a PTAL map for the peak period only, which is also followed for this study.
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Step 5: Convert TAT into equivalent doorstep frequency (EDF) – This is obtained as 30 
divided by TAT (see Equation 3)2. The principle is to treat access time as a notional 
average waiting time as though the route was available at the doorstep of the selected 
POI.

EDF = 30/TAT (3)

Step 6: Obtain the accessibility index (AI) for each POI – In this step, the most dominant 
route, i.e., the route with the highest frequency, is assigned the weighting factor of 1.0; 
for all other routes, a weighting factor of 0.5 is assigned. Thus, for a transport mode (m), 
the AIm is calculated as shown in Equation 4: 

 (4)

Then, the accessibility index for a POI (AIPOI) is calculated, as shown in Equation 5:

 (5)

Step 7: Map PTAL – The AIs obtained for each POI are allocated to eight bands of PTAL, 
as shown in Figure 2 (where Range of Index means AI of the POI). A POI with a value of 
0 indicates no access to the public transport network within the parameters given and 
is not colored on the map.

2 The reason for dividing 30 (minutes) by TAT is that it re-applies the half-the-headway rule. This is applied 
twice because the values have different meanings. In the Step 3, frequency is converted into AWT, and 
in the Step 5, TAT is converted back into a frequency (EDF). The first step calculates TAT, i.e., the time it 
takes to leave home/point of origin and get on a service. This is made up of three elements: walk time + 
AWT (assumed to be half the headway) + reliability factor. TAT is now converted into a number that is 
comparable to service frequency but that takes into account the additional walk time taken to reach the 
stop along with reliability. Thus, the half the headway rule is applied again to TAT in Step 5 to give the 
doorstep frequency.

FIGURE 2.
London PTALs

Source: Transport for London (2010), Table 3, p. 6

The calculation steps in the methodology are the same as the London PTAL 
methodology. However, for mapping of PTALs in Ahmedabad, the parameters and 
assumptions considered in the London PTAL methodology were altered to suit the 
conditions of Ahmedabad. 
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Data Collection

To adapt the London PTAL methodology to Ahmedabad, data listed in Table 1 were 
needed. However, in some cases, the data were not available and, therefore, were 
collected by field observation and map measurements in GIS software.

TABLE 1.
Data Types and Sources

Sr. No. Data Type Source

1 Ahmedabad city base map (satellite image) Google Earth

2 AMC boundary limit (GIS shape file)
Prepared by authors from information 
available on AMC website

3 AMTS bus stop locations (GIS shape file) CEPT University study

4 AMTS bus routes (GIS shape file)
Prepared by authors from route information 
on AMTS website

5 AMTS peak hour bus frequency 
Available from this report (AUDA, 
Government of Gujarat 2011)

6 BRTS bus stops locations (GIS shape file) Prepared by authors from Google Earth

7 BRTS bus routes (GIS shape file) 
Prepared by authors from the route 
information on BRTS website 

8 BRTS peak hour bus frequency 
Available from this report (AUDA, 
Government of Gujarat 2011)

9 MEGA metro station locations (GIS shape file) MEGA office (available in .kml file format)

10 MEGA metro routes (GIS shape file)
Prepared by authors from route information 
on MEGA website

11 MEGA peak hour metro frequency MEGA office

AMTS – Ahmedabad Municipal Transport Service, BRTS – Bus Rapid Transit System,  
MEGA – Metro-link Express for Gandhinagar and Ahmedabad.

Data collection in developing countries is always a challenge. This study was met with 
several obstacles, such as refusal to part with data, requiring tremendous persuasion 
and personal references. Creating the GIS base map and relevant layers (as shape files) 
also consumed significant initial research time. The authors wish to appeal urban local 
bodies involved in planning to create public data bases (which could also be a nominal 
paid service) that are accessible to academicians and practitioners. As a sign of good 
faith, the authors agreed to share the database and maps created in this study on a 
website.

Methodology for Calculation of Accessibility Index in Ahmedabad 

Given that the Ahmedabad urban agglomeration area is about 1866 km2, it was 
necessary to limit the geographical extent of the study area. Since the public transport 
services in the urban agglomeration region outside the AMC boundary (465 km2) are 
minimal, the AMC area was selected as the boundary for the study area. 

http://www.egovamc.com/
http://www.amts.co.in/
http://www.ahmedabadbrts.org/
http://www.gujaratmetrorail.com/
http://tiny.cc/ptal
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Within the study area are about 1,300 AMTS bus stops and 175 AMTS bus routes. The 
BRTS has 104 bus stops within the AMC boundary (as of February 2013). In addition, of 
the 62 proposed metro rail stations, 36 (as of February 2013) fall in the AMC boundary, 
which have been considered for the PTAL calculations.

In the London methodology, POIs were considered by built development (e.g., 
plotwise). However, given the time constraints and data resource limitations—i.e., 
lack of availability of a building footprint for the study area—this study deviates from 
the London methodology by dividing the study area into 1 km2 grid cells, resulting 
in 675 grid cells. The centroid of each cell represented the POI for the measurement 
of the PTAL score of that particular cell. In addition to the data resource constraints, 
the grid-cell approach made the analysis much faster. The authors believe that the 
difference in accuracy of input data does not translate into a huge variation in PTAL 
mapping; since the application of PTAL was sought at a macro-scale (i.e., development/ 
master plan level), the current output based on the grid cell method is adequate. If 
needed, the application can be easily developed at the local area planning level should 
building footprint data be available. Also, the fare structure can be considered in the 
PTAL calculation to further enhance PTAL mapping. However for Ahmedabad, AMTS 
and BRTS fares are nearly the same and the metro rail is not yet built. If in the future 
there are different fare structures among these public transport modes for competing 
services, then the fare structure could be considered in the PTAL calculations.

The next step was reconsidering London PTAL assumptions regarding walk speed, 
reliability, and peak-hour factors.  The majority of the roads in Ahmedabad do not have 
footpaths and, if any, are usually encroached by street vendors and parking. People are 
forced to walk on the road (the black-top surface), which creates unsafe and potentially 
hazardous situations, such that walking is avoided as much as possible, even for short 
trips. Therefore, walk speed was decreased to account for this discomfort. To arrive 
at a quantitative estimate, a small convenience-based sample was obtained in various 
neighborhoods of Ahmedabad. The walk speeds ranged from 3.4−3.8 km/h, with a 
mean of 3.6 km/h. However, the model can be easily updated following a more detailed 
sample survey. It is clear that the first and last mile connectivity to public transport 
is predominantly by walk/cycling (i.e., non-motorized transport [NMT]). Tyler (2002) 
indicates that if the accessibility chain (see Figure 3) is breached (in this case, links 1 and 
7 of Figure 3), then a journey cannot be performed. Therefore, improved pedestrian 
facilities to better facilitate first/last mile connectivity are imperative in public transport 
accessibility. Should more reliable surveys—by different neighborhoods of Ahmedabad, 
by age groups, etc.—be conducted in the future, the model can be easily updated.
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Source: Redrawn from Tyler (2002)

Bus reliability factors are also increased to account for traffic delays caused due to 
unpredictable traffic conditions and disobedience of traffic rules. Considering the usual 
office hours of 10:00 am–6:00 pm, the peak hour was changed to begin half an hour 
earlier. The parameter values for Ahmedabad are shown in Table 2.

FIGURE 3.

Accessibility Chain

TABLE 2.
Parameter Comparison for 

Accessibility Index Calculation

Parameters Units London Values Ahmedabad Values

Peak hour - 08:15–09:15 am 09:30–10:30 am

Walk speed km/h 4.8 3.6

Walk speed m/min 80 60

Bus - London Bus AMTS Bus BRTS Bus

Reliability (K) min 2 2.5 1

Max. walk time min 8 Not applicable (calculated for each 
POI using actual road network)Max. walk distance m 640

Rail -
Underground, Tram, DLR, 

Overhead rail
MEGA metro rail

Reliability (K) min 0.75 0.75

Max. walk time min 12 Not applicable (calculated for each 
POI using actual road network)Max. walk distance m 960

POI to SAP distances were measured from Google Earth using the distance 
measurement tool. Then, using the above parameters, calculations of AI for each of the 
675 grid cells were carried out, per the steps outlined previously. Table 3 shows a sample 
format for calculating AI for a POI. The next step was to assign PTAL bands to AIs.
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TABLE 3.  Sample Format for Accessibility Index Calculation

POI ID Mode SAP Name Route 
No.

Distance 
(m)

Frequency 
(per hr) Weight Walk Time 

(min)
SWT 
(min)

TAT 
(min) EDF AI

307

AMTS

Vijay Cross Roads
40/3 338 1 0.5 5.63 32.5 38.13 0.78 0.39

nth route ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞

Memnagar Tube 
well stop

200 427 5 1 7.11 8.5 15.61 1.92 1.92

nth route ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞

nth SAP ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞

BRTS Valinath Chowk 1 824 24 1 13.73 2.25 15.98 1.87 1.87

MEGA Vijay Cross Roads 1 300 20 1 5 2.25 7.25 4.13 4.13

Total (AI for a POI 307) 56.41

PTAL Mapping

After calculating the AIs for all the POIs, the next important step is to graphically 
represent the values in a format that is easily interpreted by policymakers. The AIs for 
each POI ranged from 0.78 to 205. An important consideration to further this objective 
was to make classes/bands of AIs that can be represented by a color code. GIS software 
with thematic mapping capability was used, which provided four alternatives for 
classifying the values: 1) equal breaks, 2) natural breaks (Jenks), 3) standard deviation, 
and 4) quantile breaks. For all methods, the higher the PTAL value, the higher the 
accessibility. Keeping the number of classes same, the frequency distribution of AIs by 
the four methods is shown in Figure 4.

As can be seen from Figure 4, the equal breaks method and the natural breaks method 
produced a skewed or lopsided distribution, with the majority of the lower values 
concentrated over a few classes. Comparatively, the standard deviation method produced 
a better distribution of values. However, the quantile breaks method distributed values 
such that all classes had a nearly equal number of values. The PTAL map of equal breaks, as 
shown in Figure 5, displayed heavily the color code of level 1 (blue), and very few spaces in 
the map show the higher level accessibility color code (red). This map seems misleading in 
terms of accessibility to public transport in Ahmedabad. 
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FIGURE 4.  Comparison of frequency distribution

Considering the other two options of the maps shown in Figure 5 (standard deviation 
method and natural breaks method), these displayed comparatively better visual output, 
in which the gradation of accessibility was more visible compared to the map of the 
equal breaks method, with the map using the quantile breaks method producing the 
best visualization of gradation of accessibility. The quantile breaks method map had 
approximately equal distribution of PTAL values among all the defined levels (from level 
1 to level 10). This allows areas with high, medium, and low accessibility to be easily 
identified on a map. Therefore, this method produces the best visual representation of 
PTAL. In other words, the first three methods under-represented the areas that are known 
to have a higher public transport accessibility index. 
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FIGURE 5.
Comparison of Ahmedabad 

PTAL maps

The final PTAL map adopted in this study was generated by the quantile breaks 
methods. This map was the best match with our intuitive understanding (repeated in 
Figure 6 at a bigger scale). For example, the city center area (east of the river) has the 
densest public transport routes, which in the first two maps are depicted as the areas 
with PTALs ranging predominantly from level 6 to level 8, with slightly more levels 8, 
9, and 10 in the third map. Although, technically, this is correct given the method of 
calculation, it seems to override our intuitive understanding. Given a choice of the four 
methods in GIS software, we propose quantile breaks as the best candidate that visually 
depicts PTAL that aligns our intuitive understanding.
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Observations from Ahmedabad PTAL Map

From the final Ahmedabad PTAL (Figure 6), it was found that the accessibility to public 
transport services is excellent in the core city area, as expected, and gradually becomes 
poorer moving away from the city center. Also, there are few scattered, leap-frogged 
areas with excellent PTAL surrounded by medium PTAL; these areas represent newer 
commercial development with a high level of road connectivity (which is also used 
by public transport). This pattern connects well with the radial pattern growth of 
the city. Urban sprawl in the city is occurring in radial form. The accessibility levels in 
the outskirts of Ahmedabad are poor along Sardar Patel Ring Road, which is on the 
periphery of the city limits of Ahmedabad. These areas of low accessibility to public 
transport are the areas dominated by higher-income households. In such areas, the 
dominant mode of transport is private vehicles; there is less dependency on public 
transport modes and, hence, the accessibility levels to public transport are poor. 
However, the BRTS system, which is currently in an expansion phase, is extending the 
connectivity to these areas which will, in turn, improve the accessibility index in such 
areas. Moreover, the completion of construction of metro rail routes (MEGA) also will 
improve the accessibility index of these areas once the trains are operational. 

FIGURE 6.
Final Ahmedabad PTAL map
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Conclusions and Recommendations

Providing public transport service and the supporting infrastructure will not fulfill 
public transport’s full potential. The system must offer high accessibility geographically 
and to all sections of society. Commuters and other tripmakers will consider public 
transit as an option for tripmaking when the system is properly accessible to and 
from their trip origins/ destinations (spatial coverage) and when service is available at 
preferred travel times (temporal coverage). 

Accessibility refers to people’s ability to reach goods, services, and activities, which is 
the ultimate goal of most transport activity. Many factors affect accessibility, including 
mobility (physical movement), the quality and affordability of transport options, 
transport system connectivity, mobility substitutes, and land use patterns. Conventional 
planning tends to overlook and undervalue some of these factors and perspectives. 
More comprehensive analysis of accessibility in planning expands the scope of 
potential solutions to transport problems. Therefore, PTAL maps are an easy and smart 
representative tool for accessibility. 

PTAL maps such as those generated in this study can be of a value for urban and 
transport planning authorities:

1. PTAL maps can be used by development/master planning authorities to integrate 
land use zoning with public transport accessibility—a very important aspect 
usually ignored by Indian planners (Balachandran et al. 2005). A more detailed 
critique of the urban planning process in Ahmedabad can be found in Adhvaryu 
(2011). By allowing future transport improvements to be incorporated into PTAL 
calculations, a future PTAL map becomes an important tool in supporting land 
use and zoning decisions for local authorities. It can also be useful in testing “what 
if” scenarios using land use and transport integration model (e.g., see Adhvaryu 
2010).

2. PTAL maps can be used to improve the existing public transport system by 
recognizing areas with poor accessibility, thereby enabling decisionmakers to 
prioritize investments in public transport systems and support NMT facilities. 

3. Parking policies can be formulated using PTAL maps. For example, park-and-ride 
facilities can be provided to supplement areas with low and medium PTAL, and 
parking may be restricted or charged at a higher rate in areas with high PTAL. 

4. PTAL mapping can help cities that are planning to introduce transit-oriented 
development (TOD), as PTALs already incorporate walkability criteria from POIs, 
an important D (distance to transit) in the 6Ds of TOD (Cervero and Ewing 2010). 

5. Several sections of society can use PTAL maps. Households can use them to 
inform their residential location choices, especially low-income households that 
are captive public transport users. Real estate developers (who supply housing 
and commercial spaces) can use PTAL maps (both existing and future) for locating 
potential sites, especially low-income housing. Government agencies can use PTAL 
maps to locate housing for economically weaker sections.
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Given the ease of building and updating the PTAL model, as and when new public 
transport and NMT facilities are built, the methodology overall has significant potential 
to become a useful tool as a decision support tool for urban and transport planning. 
The authors are in the process of initiating a dialogue with local planning agencies to 
discuss application of this study as a planning support decision tool.
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Abstract

Studies on public transit have emphasized the role of passenger satisfaction with 
service quality in travel choice decisions and indicated that satisfaction depends on 
various service attributes. Few studies have, however, systematically examined the 
underlying relationships among service attributes to assess their influence on passenger 
overall satisfaction. Therefore, to contribute to this rapidly-emerging literature, this 
paper applies Bayesian networks to quantify the influence of each service aspect on 
passenger overall satisfaction with regular bus service quality. This analysis involved 
609 passengers who participated in a 2013 regular bus service survey in Nanjing, China. 
The derived Bayesian network shows the relationships among service attributes and 
passenger overall satisfaction graphically. In particular, service aspects such as running on 
schedule, acceptable waiting time, available seats, clean onboard environment, pleasant 
environment at stations, convenient design for transfers, and air-conditioning were the 
key determinants of overall satisfaction with bus service.

Keywords: Passenger satisfaction; public transit; bus service quality; Bayesian networks

Introduction 

Nowadays, an increasing reliance on private cars for daily trips poses serious problems 
for cities, such as congestion, air pollution, road accidents, and excessive fuel 
consumption (Richardson 2004). To control this continuing trend, authorities across 
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the world have implemented restrictive policies on private car usage. On balance, 
these policies have not been very successful, as private cars still have some advantages 
over public transit due to their door-to-door service (Cheng and Liu 2012). Even after 
implementing strategies that promote public transit, the service quality of public 
transit remains questionable in many cases, which causes many travelers to forgo transit 
options. The limited success of these strategies can be attributed largely to the fact 
that current strategy formulations are focused on the interests of the operators, while 
passengers—the sole judges of transit service—are ignored. Accordingly, the definition 
of transit service attributes should be refined from the passenger perspective. In 
turn, this means that operators should have a good understanding of the relationship 
between manageable attributes of transit services and customer satisfaction (Das and 
Pandit 2013; Yilmaz and Celik 2008; Fu and Xin 2007). Therefore, an investigation of 
key influential service factors is of great significance to optimize transit service from 
a customer perspective, resulting in policies that could be formulated to influence 
traveler behavior and attract more transit users.

Several studies have been conducted to investigate the relevant service attributes 
that characterize transit services and analyze their impacts on passenger satisfaction. 
Reliability and punctuality were found to be important aspects of service quality in 
the studies of Beirao and Cabral (2007) and Eboli and Mazzula (2010). Dowling et al. 
(2002) and Litman (2008) found that the time spent walking to a bus stop and waiting 
time at a bus stop also were major factors influencing trip satisfaction, and Eboli et al. 
(2008) and Tyrinopoulos et al. (2008) found that service frequency has a major impact 
on overall transit service quality measures. Other studies highlighted the importance 
of available information, personnel attitudes, and safety (Eboli and Mazzula 2012a; 
Fellesson and Friman 2008). Comfort, fare, safety, and information during the journey 
also are elements that transit passengers care about during their trips (Nathanail 2008; 
Iseki and Taylor 2008). 

Methodologically, a variety of measurement approaches and methods of analysis 
have been used to quantify the impacts of these service aspects on passenger overall 
satisfaction. Following a strong tradition in marketing research, some researchers 
have applied the ServQual method (Hu and Jen 2006), and some have used discrete 
choice models to investigate the influences of service attributes from the passenger 
perspective (Nurul-Habib et al. 2009; Hensher 2014). Others have estimated structural 
equation models to provide a causal representation of the relationships between service 
aspects and overall satisfaction (De Oña et al. 2013; Eboli and Mazzulla 2007; Eboli and 
Mazzulla 2012b). 

Although these approaches have demonstrated their power, they share the limitation 
that they require their own assumptions about the distribution of the data and, 
usually, they assume predefined underlying relationships between the dependent and 
independent variables. However, these assumptions may not always hold true, and 
once basic assumptions are violated, erroneous estimations and incorrect inferences 
could be produced. However, if the aim of a study is to explore the relationship 
between service quality attributes and passenger satisfaction, the application of a more 
flexible approach would be preferable. Transit service aspects involve intangible and 
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tangible elements, most of which are not independent but are highly interrelated, and 
considerable relationships among service aspects and overall satisfaction are inherently 
uncertain. Once an improvement occurs in one service aspect, it not only will pose 
an effect on overall satisfaction but also will propagate the influence to its associated 
aspects. Therefore, models assessing transit service should be capable of incorporating 
complicated uncertainties and reflect the unknown relationships between service 
aspects. 

De Oña et al. (2012) and Garrido (2014) proposed using data mining techniques such as 
decision trees and neutral networks to identify the significant factors by capturing the 
underlying relationships among service attributes. In this study, we applied a Bayesian 
network (BN), which is applied in transportation fields for its multiple advantages, 
including the skilled handling of uncertainty and complexity and the capability 
of modifying the available knowledge into the model and easily updating causal 
relationships (Janssens et al. 2006). Based on the dependency relationships between 
travel behaviors and city structure, Takamiya et al. (2010) successfully applied BN to 
represent the relationships and forecasted travel behaviors in Nagoya, Japan. Scuderi 
and Clifton (2005) used BN to explore the relationship between land use and travel 
behavior in the Baltimore, Maryland, metropolitan region. Ma (2015) applied BNs in the 
analysis of multimodal mode choice behavior and showed a competitive performance 
compared with classical discrete choice models. Kemperman and Timmermans (2014) 
measured the relationship between the built environment and active travel behavior of 
children by BN. Karimnezhad and Moradi (2016) and De Oña et al. (2011) used BN for 
the diagnosis of road traffic accidents. All these have confirmed that BNs have favorable 
features in the data analysis, especially in the prediction of relationships among 
variables. 

BNs are such a promising tool that some authors proposed BN applications in transit 
service analysis. Perucca and Salini (2014) pioneered the use of BN in the analysis of 
customer surveys of railway systems and found support that in the modeling of the 
relationships between individual characteristics and satisfaction, BN has a higher 
predictive capability than the “mainstream” ordered logistic regression. Wu et al. (2014) 
applied the approach in the assessment of public transit service and presented causal 
relationships among service aspects. Both proved the advantages of BN in the analysis of 
transit service, but neither conducted comprehensive modeling validation or evidence 
sensitivity analysis for influential quantifications.

The primary objective of this study was to use the BN approach to identify which 
service aspects are the most influential factors on passenger satisfaction, accounting for 
the correlations among these attributes. The study is based on a survey conducted in 
Nanjing, China. 
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Data

Description of Nanjing Bus System

Nanjing, the capital of Jiangsu province, is a large city located in southeast China. As 
shown in Figure 1, its urban area includes eight regions: Xuanwu, Gulou, Jianye, Qinhuai, 
Yuhuatai, Qixia, Jiangning, and Pukou. The Pukou region is separated from the other by 
the Yangtze River, and the Nanjing Yangtze River Bridge connects it with other parts. 
The population of Nanjing has been growing at a very fast rate in the last few years, 
from 3.72 million in 2001 to more than 5.52 million in 2011.  

FIGURE 1.
Urban area of Nanjing

The city’s rapid economic growth has brought a great increase in private vehicle 
ownership, with the number of private cars increasing by 22.8%, from 695,000 in 2010 
to 853,000 in 2011, as shown in Figure 2. The bus system in the urban area involves 6,573 
buses in operation that serve 510 routes with a served length of 7,959 km. In 2011, the 
average number of bus trips per day was 2.76 million. The ratio of regular bus in the 
overall modal splits in the city is 18.3%, a share that has been decreasing over the last 
decade (Yang and Qian 2012). 
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FIGURE 2.
Travel modal split in 
Nanjing (2001–2011)

Survey Method

A questionnaire survey of regular bus passengers in Nanjing was conducted to 
collect data for this study. Based on related studies, the questionnaire was designed 
and adjusted according to feedback from a pilot survey and was divided into three 
main sections. The first section included questions about personal and household 
characteristics of passengers (gender, age, personal income, residential location) and 
general information on the trip (weekly bus riding frequency, trip purpose). The second 
section contained 19 questions concerning passenger assessments of various aspects of 
bus service. Respondents were asked to rate five main transit service attributes (safety, 
comfort, convenience, reliability, and fare) on a four-point Likert scale ranging from 1—
strongly disagree to 4—strongly agree. The items were formulated such that they could 
be directly interpreted in terms of service quality. The third section measured passenger 
overall satisfaction with the bus trip in dichotomous categories of 0—unsatisfied 
or 1—satisfied. Compared to prior research, both satisfaction with service attributes 
and overall satisfaction were measured in rather crude categories to focus on strong, 
dominant patterns and, therefore, subtle differences in satisfaction were ignored. 
An advantage of a more robust approach is capturing measurement of mood and 
personality that may otherwise affect satisfaction ratings (Gao et al. 2015).

The survey was conducted at various stops and stations in Nanjing on weekends from 
March to May 2013. A stratified sampling was employed in all regions except Pukou 
(because of the frequently-jammed traffic on the Nanjing Yangtze River Bridge that was 
the only connection facility between Pukou and other regions in 2013). To guarantee the 
response rate, surveyors started with the question about passenger willingness to take 
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part in the survey and then guided respondents when completing the questionnaires. 
A total of 745 questionnaires were randomly distributed, and after deleting those with 
incomplete responses, 609 usable questionnaires were obtained for this study. 

Data Description

Of the sample, 51.2% of respondents were male and 48.8% were female. Nearly 
half of the respondents (45.1%) were ages 20–29, and 36.7% were ages 30–39. Most 
respondents (66.4%) were highly-educated and held a university degree, and more than 
80% of travelers had a regular job. A total of 39% had a monthly income of 2000–4000 
yuan, followed by 28.9% with an income of 4000–6000 yuan. Low to medium income 
earners were the dominant users of public transit, which is in line with the current 
situation in China (since public transit fares are relatively low, those who cannot afford 
car payments are the majority users). This group makes up a relatively high proportion 
of transit users, so many policies are developed for their benefit.

Bus users from households in the central area accounted for 51.4% of the sample. 
The accessibility of bus service in the central area is quite different from that of the 
surrounding areas; people living in the central area usually enjoy a more comprehensive 
and mature bus service. 

All persons in the sample were asked to report how many days they rode the bus in 
a week and their primary trip purpose. Table 1 shows that 40.5% of the respondents 
took the bus 1–2 days per week, 31.2% took the bus 3–5 days per week, and 17.6% took 
the bus 6–7 days per week. Nearly half took the bus for commuting (travel to work or 
school), and the remainder took the bus for leisure or shopping. 

TABLE 1.
Survey Descriptive Statistics 

(n=609)

Characteristics Statistics

Gender Male (51.2%), female (48.8%)

Age Ages 15–19 (1.2%), 20–29 (45.1%), 30–49 (46.3%), 50 and older (7.3%)

Education Senior high school (21.1%), university (66.4%), master’s degree or higher (12.5%)

Income
Less than 2000 yuan (10.5%), 2000–4000yuan (39%), 4000–6000yuan (28.9%), 
more than 6000 yuan (21.4%), unknown (0.2%)

Job With a job (83.5%), no job (16.5%)

Household location Central area (51.4%), surrounding area (48.4%), unknown (0.2%)

Frequency
Less than 1 day per week (10.6%), 1–2 days per week (40.5%), 3–5 days per week 
(31.2%), 6–7 days per week (17.6%), unknown (0.1%)

Purpose Commuting (49.7%), non-commuting trip (50.3%)

 
To get a rough evaluation of bus service quality, a calculation of the average satisfaction 
score and a score ranking for each service aspect from low to high were made, as shown 
in Table 2. The average scores ranged from 1.95–3.33, suggesting that satisfaction 
with the service attributes was modest. Respondents overall were satisfied with the 
aspects of safety as well as route and schedule information, which were the highest-
ranked attributes. In contrast, most aspects of comfort and reliability were rated 
poorly. As Table 2 shows, four of the most unsatisfactory service attributes were “not 
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overcrowded,” “riding smoothly without severe braking and acceleration,” “acceptable 
waiting time for bus at stops,” and “seats are available when riding.” The overall service 
satisfaction was 0.425, implying that only 42.5% of respondents were satisfied with the 
bus services. Figure 3 shows the global view of specific service grading.

TABLE 2.
Average Score and Rank of 

Service Attributes

Items Category Code Average Rank

Equipped with safety facilities

Safety

S1 3.33 19

Safe for boarding on and off bus S2 2.90 17

Handling emergency situation properly S3 2.84 15

Good overall safety S4 2.89 16

Not overcrowded

Comfort

CF1 1.95 1

Seats are available when riding CF2 2.21 4

Equipped with air-conditioning CF3 2.25 6

Good broadcasting system on board CF4 2.71 14

Ride smoothly, no severe acceleration and braking CF5 2.10 2

Clean environment onboard CF6 2.36 10

Pleasant environment at stations or stops CF7 2.26 7

Walking distance to stops is reasonable

Convenience

CN1 2.65 13

Provided with schedule and route information CN2 2.92 18

Reasonable bus service frequency CN3 2.36 9

Convenient design for connections and transfers CN4 2.58 12

Run on schedule

Reliability

R1 2.34 8

Acceptable waiting time for bus at stops R2 2.14 3

Arrival information provided is reliable R3 2.24 5

Reasonable fare Fare CO 2.55 11

Overall satisfaction with bus service Overall AS 0.425

 

FIGURE 3.
Global view of service 

attributes score

(1 strongly disagree, 2 disagree, 3 agree, 4 strongly agree)
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Methodology

Developing the Bayesian Networks

In this study, a BN approach was used to explore the relations between bus service 
aspects and overall satisfaction, which was dichotomized in this study. A BN is a 
technique for inductive knowledge discovery and has been widely used in the combined 
field of artificial intelligence and machine learning (Pearl 1991). Normally, a BN is made 
up of two components: a directed acyclic graph (DAG) and a conditional probability 
table (CPT). A DAG is the structure component that includes a set of nodes depicting 
random variables and some directed links representing probabilistic relationships 
between the nodes. The parameter component (CPT) provides the statistical 
interpretation of the probabilistic dependencies depicted by the structure. For example, 
a link from node X to node Y indicates that X is a parent of Y and Y is a child of X. The 
link indicates that X and Y are statistically correlated. For each child node, a CPT is 
attached to quantify its dependency relations with its parent nodes.

Table 2 shows an overview of the variables included in the model estimation. It is 
challenging to incorporate so many variables in a model and capture the complex 
interactions. Because these service aspects are highly-correlated and the structure of 
service relationships is not that clear, defining an appropriate structure for them can be 
difficult. A BN approach can overcome such difficulties, in that it can simultaneously 
derive the direct and indirect relationships between the set of service aspects. In this 
study, all these service variables were included in the estimation with the utilization of 
specific network-learning algorithms. The network learning involved two main tasks: 
learning the network structure and then estimating the CPTs for the structure (Pearl 
1991). For the first task, a network-learning algorithm named TPDA (Three-Phase 
Dependency Analysis) was used to identify correlations between bus service aspects, 
based on the three-phase dependency method developed by Cheng, Bell, and Liu 
(Cheng et al. 2002). The algorithm includes three phases: (1) drafting the network, (2) 
thickening the network, and (3) thinning the network. (For an extensive explanation of 
the algorithm, readers may refer to Arentze and Timmermans [2009]). In the first phase, 
a draft graph is created on the basis of the mutual information of each pair of variables 
and the mutual information is defined as follows: 

 (1)

where p(x, y) is the joint probability of X and Y, and p(x) and p(y) are unconditional 
probabilities of X=x and Y=y. The mutual information between X and Y, a measure of 
closeness, indicates the expected information gained about Y when the value of X is 
given. The second phase is about thickening the network by adding connections based 
on the conditional independence test between pairs of variables. In this phase, all pairs 
of variables that have mutual information greater than the entropy but not directly 
connected are examined. A connection is not added only when the two variables are 
independent, and in this phase some wrong connections are possible to be added. In 
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the third phase, each connection of the network is reexamined and removed if the 
corresponding variables are conditionally independent after the structure adjustment.

For the second task, the parameters (CPTs behind the nodes) are estimated based on 
the dataset by the most commonly used EM (Expectation Maximization) algorithm 
(Lauritzen 1995). The algorithm finds the CPTs for each node through a sequence of 
stepwise iterations and iterates between the expectation (E) step and the maximization 
(M) based on both estimated data and observed data. The process is repeated until the 
difference between the log-likelihoods of two successive iterations falls below a tolerance 
threshold. Both tasks could be done using the free software PowerConstructor (Cheng 
et al. 2002), where the two algorithms are embedded and well tested. The composed 
network was visualized and tested in Netica (Norsys Software 2006). 

Modeling Results

Figure 4 shows the constructed BN. The probability distribution of each variable is 
shown, and the predicted distribution of AS (43.3% for overall satisfied rate) is quite 
close to the observed percentage in the survey data (42.5% satisfied). The link represents 
the relationships between the two variables, and the structure shows the existence of 
direct and indirect relationships between the service attributes and overall satisfaction. 

FIGURE 4.
Network of public 

transit service 
assessment
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As in the structure, AS plays a central role among other variables, which is less surprising, 
since AS is the important variable in this study. It is directly related to other 11 service 
aspects nodes (CF1, CF2, CF3, CF5, CF6, CF7, CO, CN4, R1, R2, and R3). The remaining 
variables have indirect influences on AS. Among them, R1–Run on Schedule has a direct 
influence on AS–Overall Satisfaction, and unreliable service would result in additional 
waiting time for passengers, leading to a decline in passenger satisfaction over R2–
Acceptable Waiting Time for Bus, confirming the analysis by Strathman et al. (2003). 
CN3–Service Frequency also impacts passenger satisfaction on R2–Acceptable Waiting 
Time for Bus, indicating that the more frequent the service, the shorter the waiting time, 
which is consistent with the Transportation Research Board report (2003). Most variables 
of the same attribute are directly linked, such as S1, S2, S3, and S4, but some variables of 
different attributes also seem to affect each other, such as R2–Acceptable Waiting Time 
for Bus, CN3–Service Frequency, CO–Reasonable Fare, and CN4–Convenient Design 
for Transfers. This is not especially surprising since waiting time should depend on bus 
service frequency arrangement. Actually, the crossing relationships are plausible. Service 
reliability is always closely related to service convenience. An efficient transfer could 
improve the whole punctuality of transit performance. 

Before the analysis, appropriate validation methods on the modeling performance 
should be made to prove the confidence in the outputs of the model. A recommended 
method is to derive a confusion matrix that compares the observed values with 
the predicted ones (Fawcett 2006). Table 3 shows the overall BN estimation result 
performed in Netica (2006). As can been seen in the confusion matrix, the overall 
estimation error rate of this BN is 13.96%. Compared to the model accuracies between 
59.72% and 62.16% in the study by De Oña et al. (2012), the estimation result obtained is 
quite acceptable. 

TABLE 3.
Test Results of Model

Confusion Predicted Actual

For AS

State0 State1

300 50 State0

35 224 State1

Error rate 13.96%
 

Figure 5 presents alternative performance measurement quantifying model estimation 
accuracy for the datasets. The receiver operating characteristic (ROC) curve was 
employed, as the target variable AS is binary. By contrasting false positive with true 
positive rates, the ROC curve depicts estimation performance, and the area under the 
curve (AUC), which specifies overall accuracy, takes values between 0 and 1, with better 
performance being indicated by values closer to 1 (Marcot et al. 2006). As shown in Figure 
5, the resulting ROC curve is quite close to the upper limit, and the achieved AUC value is 
0.93, which indicates a high predictive quality of the BN, revealing that the BN approach 
performs well and its structure is capable of providing evidence sensitivity analysis based 
on the CPTs for each node. With the entering new evidence, the probabilities of the other 
nodes will be updated in the network by Bayes’ Rule. The probabilistic changes of the 
target variable reflect the impact of the changing variable on it.
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Analysis Result

An evidence sensitivity analysis and a mutual information analysis as described above 
were conducted to further examine the main service aspects that affect passenger 
overall satisfaction towards bus service in the network. 

Evidence Sensitivity Analysis

The evidence sensitivity analysis, based on the compiled BN, permitted us to change 
the posterior distribution of each variable and observe its corresponding effect on the 
target variable. Once the evidence was entered into one state of one parent node, such 
as state 1 of CF (CF=1) in the network, the probability distribution of CF=1 changed 
to 100%. Meanwhile, with the application of Bayes’ theorem and the CPTs of the 
compiled BN, its corresponding changes were calculated and reflected in the probability 
distributions for the states at its child variables. BN allows information to flow in 
opposite directions, which means a change in a given node can update the distribution 
probabilities of its neighboring nodes through the network (Jensen 1996). 

The evidence was changed in every state, one by one, and then the corresponding 
newly-updated probability distribution of target variable AS was taken down. Figure 
6 shows the minimum and maximum probability p(AS=1) due to variations in the 
probability distributions of all service aspects. The bars indicate changes relative to the 
initial probability p(AS=1). Observing the length of bars in this figure, it was found that 
comfort, convenience, reliability, and costs exert a strong influence on satisfaction in 
both positive and negative ways. Their relatively large influence can be partly attributed 
to their immediate adjacency to AS. 

All aspects of safety influenced satisfaction within the range of 39–48%, with the 
exception of overall safety, whose influence range was 31–52%. These three negligible 
effects reflect that in most passenger perceptions, the regular bus is a safe system, 

FIGURE 5.
ROC curve of BN Model
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providing a satisfactory level of service in which vehicles are well-equipped with security 
facilities and drivers are skillful in handling accidents. With respect to the latter, an 
unsatisfied overall safety (S4=1) poses a significant negative influence, at 12.3%. In 
addition, in the BN structure, these four nodes are indirectly linked to AS. Therefore, 
compared to the other variables, safety aspects have somewhat lower effects on overall 
satisfaction.

FIGURE 6.
Evidence sensitivity 
analysis results for 

each attribute

With regard to comfort, six highly-important variables were observed: CF6–Clean 
Environment Onboard, CF7–Pleasant Environment at Stations, CF3– Air-Conditioning 
Onboard, and CF2–Seats Available, which were set to state 4 and are especially evident 
for the maximum probability p(AS=1), which increase dramatically, from 43.3% to more 
than 72%, compared to a decrease from 43.3% to appropriately 15% for the minimum 
probability p(AS=1). These service aspects are more tangible and relate to infrastructure 
facilities. Compared to private vehicles, public transit has apparent deficiencies in these 
fields. For example, CF2–Seats Available is one of defining components of public transit 
compared to private cars; available seats on transit is necessary among passengers who 
commute from work to their home. CF3 and CF7 are mainly associated with the local 
climate in Nanjing; due to the hot summers, air-conditioning onboard and shelters 
at bus stops are highly valued and needed and, thus, are of primary service aspects 
to be improved in competition with private vehicles. CF5–Ride Smoothly and CF1–
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Overcrowded Inner Space, about which passengers often complain, are two service 
items that vary under dynamic traffic conditions and changing passenger flow volumes 
during the day. For instance, in rush hour, overcrowded inner space is a common 
feature of high-capacity transportation, especially in developing countries. Both have a 
medium influence range of roughly 22–69%. CF4–Broadcasting System Onboard is the 
least influential variable, indicating that basic service delivery is more important than 
modern technology.

The variables Walking Distance to Stops and Schedule/Route Information Provided at 
Bus Stops have little influence on overall satisfaction. This can be due to the fact that 
frequent riders are satisfied with the current distance to stops and know the schedule 
and routes. CN3–Reasonable Bus Service Frequency, which has a close relationship with 
R2–Acceptable Waiting Time at Bus Stops, exerts a more significant influence on overall 
satisfaction, with an influence range of 26–64.4%. At the same time, CN4–Convenient 
Design for Connections and Transfers at Stops exhibits the greatest influence, 22.4–
70.6%. This result indicates that reasonable service frequency and convenient transfer 
service would largely improve the efficiency of bus rides.

R2–Acceptable Waiting Time is a highly important aspect for overall service, and its 
negative influence is particularly high for the minimum probability of AS=1, which 
decreases largely from 43.3% to 11.9%; the perceived waiting time tends to cause 
a negative impact on overall transit service satisfaction, and the intangibility and 
subjectivity of waiting time makes it difficult to measure. When the waiting time is 
beyond passenger tolerance, they would be annoyed and tag “long time waiting” as the 
primary service attribute. R1–Run on Schedule is another noteworthy service aspect, 
with a negative impact range of 16.72–43.31%. The ratio of AS is increased by 23.14% 
due to increased punctuality. R3 symbolizes the reliability of the electronic information 
about the distance of the incoming bus on the stations or stops and has a relatively 
small influence range, 23.4–63.2%.

The directly-related variable CO–Reasonable Fare has a 23% negative effect and a 29% 
positive effect on passenger satisfaction with overall transit service quality. Compared 
with the impacts of other aspects, fare is not the most influential factor in overall 
satisfaction. This finding may be attributed to the case that riding the bus is much 
cheaper than driving a car; the cost is not generally perceived as important, which 
concurs with the study by Beirao and Cabral (2007). However, the impact range still 
reflects that the low travel cost of public transit is still an attractive element over private 
car, and policy interventions could apply price regulations to traveling by private car and 
adopt favorable ticket price policies for public transit to attract more potential riders. 

The results indicate that R2–Acceptable Waiting Time, CF2–Seats Available, CF6–Clean 
Environment Onboard, CN4–Convenient Design for Transfers, CF3–Air-Conditioning 
Onboard, R1–Run on Schedule, and CF7–Pleasant Environment at Stations are sensitive 
attributes that affect overall satisfaction. Moreover, effects propagate change in linked 
variables. For instance, by entering evidence for state 4 of node R2, overall satisfaction 
is increased by 23.8%; along with the change of node R2, the other three nodes linked 



Exploring Passenger Assessments of Bus Service Quality Using Bayesian Networks

 Journal of Public Transportation, Vol. 19, No. 3, 2016 49

also experience an increase of varying degree in the fourth state of each. In particular, a 
significant increase that adds up to 40% occurs in the fourth state of R3.

Mutual Information Analysis

Figure 7 shows the calculated reduction of entropy in the probability distribution of AS 
for each variable, and the top seven variables are the same as the variables posing the 
negative effects in the evidence analysis. Thus, the variables that contribute most to the 
reduction of entropy were, in order of importance, R2–Acceptable Waiting Time (0.135), 
CF6–Clean Environment Onboard (0.124), CF2–Seats Available (0.124), R1–Run on 
Schedule (0.120), CF7–Pleasant Environment at Stations (0.112), CF3–Air-Conditioning 
Onboard (0.108), and CN4–Convenient Design for Transfers (0.102). Mutual information 
less than 0.01 indicates that a least influence on the overall satisfaction is produced, 
and there are five least contributing variables (the four safety attributes and the 
broadcasting system onboard), and the result is consistent with the result of the 
evidence sensitivity analysis. 

 FIGURE 7.
Mutual information values 
among all network nodes  

and AS

 
Conclusion and Recommendations

This study applied a Bayesian network to estimate passenger assessments of bus service 
quality and identify the key influential factors of bus service quality. The data for the 
analysis were obtained from a 2013 regular bus service survey in Nanjing, China. An 
evidence sensitivity analysis and a mutual information analysis were used to derive the 
degrees of influence of each service aspect on overall satisfaction. 

The results of this study showed that the BN approach was useful in identifying the 
key influential factors of bus service. According to the detailed sensitivity analysis, 
several findings can be drawn to help understand how service attributes influence 
passengers satisfaction with public transit. First, current safety attributes are already 
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satisfactory and exert little influence on perceived overall satisfaction with public 
transit services. Second, comfort, convenience, and reliability are significant influences 
on passenger satisfaction. Third, seven service aspects stand out as the attributes 
passengers care most about: running on schedule, acceptable waiting time, available 
seats, clean environment onboard, pleasant environment at stations, convenient 
design for transfers, and air-conditioning onboard. Therefore, quality improvement and 
management of these aspects are prerequisites to obtaining passenger satisfaction.

Achieving and sustaining a high level of customer satisfaction is a key part of a transit 
agency’s efforts to increase public transit ridership, especially regular bus. Therefore, the 
policies and strategies that promote transit usage should be formulated accordingly 
to meet the needs of current and potential bus riders. Since passengers strongly prefer 
travel comfort, maintaining the vehicles in good condition, cleaning them regularly, 
and providing air-conditioning and an agreeable temperature inside the bus could be 
effective ways to keep the bus environments enjoyable. Passengers prefer convenient 
and efficient delivery services, which indicates that transit operators should place more 
emphasis in their policy planning on the connectivity of bus facilities and the design of 
exclusive lanes for public transit as well as the provision of reasonable time schedules 
such that buses are less impacted by traffic congestion and there is an improved level of 
reliability of existing bus service. These strategies could encourage current passengers to 
use the bus more often and attract new users. 

Although city cultures and backgrounds of bus service differ, the BN approach 
presented in this study has relatively high transferability in the application and can be 
applied by local agencies or communities for identifying the most influential factors that 
needs improving, and corresponding policies can be proposed accordingly to improve 
passenger satisfaction. Since the current study focused on aggregate relationships, 
future research could examine heterogeneity in passenger satisfaction with service 
quality and test the needs for different kinds of passengers, allowing service providers to 
target different segments of the market. 
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Abstract

The primary objective of this study was to develop a quantitative approach to estimate 
bus dwell time and time lost serving stop, which included acceleration and deceleration 
time, dead time, and time for serving boarding and alighting passengers. A polynomial 
model incorporating kinematics of a particle was derived for estimating bus acceleration 
and deceleration time. In addition, descriptive statistics methods were used to analyze 
dead time. A case study was conducted to show the applicability of the proposed model 
with data collected from the seven most common types of bus stops in China. R-square 
and Mean Absolute Percentage Error (MAPE) were calculated to be 0.8840 and 13.20% for 
non-peak and 0.8387 and 13.46% for peak, indicating the method was well-validated and 
could be practically used in China. Further research can be conducted to investigate the 
effects of different weather conditions and locations on the performance of the proposed 
method.

Keywords: Bus dwell time, dead time, time lost serving stop, transit

Introduction

Studies have shown that bus service procedure at bus stops is of great importance 
to estimate capacity of a bus stop (Bian et al. 2015), and it is also a major component 
of bus travel time (Hawas 2013; Furth and Muller 2007; Hadas and Ceder 2010; 
Balasubramanian and Rao 2015). Bus service procedure plays a vital role in transit 
network design (Szeto et al. 2011; Wu et al. 2015; Yan et al. 2013) and transit assignment 
analysis (Hamdouch et al. 2011; Leurent et al. 2014). Thus, bus service time estimation is 
essential for bus operators and public transport planners (Ceder 2007; Li et al. 2006).

There is considerable research in the literature on the service procedure of buses at 
bus stops. Previous research defined the time spent serving a bus stop as the time the 
bus is stationary or has its doors open at the bus stop, i.e., bus dwell time. However, 
most research studies fail to adequately consider the time lost by the bus decelerating 
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to a bus stop and then accelerating back to running speed to serve the stop (Robinson 
2013). The acceleration and deceleration time is often much longer than the time lost 
when the doors are open at the bus stop. In addition, it has also been noted that the 
characteristics of a bus stop visit are not well considered. The passage of a bus through 
a stopping zone can be called a bus stop visit (Robinson 2013). In light of this, bus dwell 
time and time lost serving stop is introduced to describe the bus service procedure in 
this study, which is defined as the time required for serving passengers, acceleration 
time, and deceleration time, with the addition of dead time. According to relevant 
references (Robinson 2013; Cundill and Watts 1973), dead time is the time the bus is 
stationary at a stop but no passengers are boarding and alighting. The contributing 
factors for dead time are categorized as major factors (including the average delay for 
re-entering the car stream (Yang et al. 2009), and other additional delay (Tirachini 2013) 
such as boarding lost time, bus stop failure time, and traffic signal delay, and adjustment 
factors (including traffic volume/capacity).

In addition, there is a variety of bus stop designs that may influence bus dwell time and 
time lost serving stop. Based on the right-of-way, bus lanes can be divided into exclusive 
bus lanes (grade-separated busways and at-grade busways) and mixed traffic lanes (KFH 
Group 2013; Jacques and Levinson 1997). According to TCRP Report 19 (Fitzpatrick et al. 
1996), bus dwell time and time lost serving stop will be affected by the layout of the bus 
stop. In general, the more exclusive the stop (the less interaction that a transit vehicle 
has with other traffic), the fewer impacts on bus dwell time and time lost serving the 
stop can be achieved. In terms of form, bus stops can be classified into two categories: 
on-line and off-line (KFH Group 2013). Compared to an on-line bus stop, there is 
additional time required for buses at an off-line stop to find an acceptable time gap 
between consecutive vehicles. It can be concluded that the form of a bus stop has an 
impact on bus dwell time and time lost serving stop. Moreover, based on the location 
of the cross-section, bus stops can be divided into two categories: median and curbside. 
According to the above classifications, seven types of bus stop designs are commonly 
observed in China (Ye et al. 2016), as illustrated in Figure 1:

Type 1: At-grade busways separated from motor vehicle lanes by traffic markings; 
bus stops are on-line and set on the curbside.

Type 2:  No exclusive bus lane; bus stops are on-line and set on the curbside.

Type 3: At-grade busways separated from motor vehicle lanes by traffic markings; 
bus stops are off-line (bay-style) and set on the curbside.

Type 4:  No exclusive bus lane; bus stops are off-line (bay-style) and set on the 
curbside.

Type 5: Grade-separated busways separated from motor vehicle lanes by separation 
strips; bus stops are on-line and set in the median of the cross-section.

Type 6: At-grade busways separated from motor vehicle lanes by traffic markings; 
bus stops are on-line and set in the median of the cross-section.

Type 7: No exclusive bus lane; bus stops are on-line and set on the curbside, and 
buses pull over to the curbside and occupy bicycle lanes to dwell.
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FIGURE 1.
Schematic diagram 

of seven most 
common bus stops

In light of these considerations, the primary objective of this study was to develop 
a quantitative approach to estimate bus dwell time and time lost serving stop for 
different types of bus stops. The method proposed in this paper can be used by transit 
agencies to measure the actual travel time of buses, removing the component of time 
lost serving the stop. The method can also be used to identify bus stops that may need 
redesign to reduce the time lost in arriving and departing. In addition, this study was 
inspired by several current bus speed improvement projects in China. Requirements 
gathered from the departments show that bus service time is ambiguous. Some 
business users wanted data about time spent with doors open, and others wanted the 
time lost serving stop. This study can meet both requirements.
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Literature Review

There are two processes going on during bus service at stops (Fernandez 2010). One 
is the time spent for serving boarding and alighting passengers, known as bus dwell 
time. The earliest research on dwell time at a bus stop was given by Levinson (1983), 
who formulated the bus dwell time as a function of two primary contributing factors, 
number of alighting and boarding passengers, by using the linear regression approach. 
Since then, more research approaches were introduced to take into account several 
secondary factors that might affect the effectiveness of bus dwell time estimation. For 
example, Guenthner and Hamat (1988) associated bus dwell time with fare collection 
system. In Lin and Wilson’s study (1992), a functional form that combined with the 
crowding effect was developed. In addition, several studies found that the dwell time 
also relied on vehicle occupancy and bus floor types (Levine and Torng 1994; Fernandez 
et al. 1995).

The other part of the service procedure is the time taken for buses to enter and leave 
the service area, known as time lost serving stop. The literature shows that little 
research has been done on that component of time lost decelerating and accelerating to 
a bus stop and other bus delay at a stop. Research by Jaiswal et al. (2010) suggested that 
the bus stop design could affect time spent at a stop. According to Robinson (2013), the 
time lost arriving at (i.e., decelerating) and departing from (i.e., accelerating) a bus stop 
was typically 11.6s in London.

Previous studies on dwell time and time lost serving stop had used limited manually-
collected data sets to relate dwell time and time lost serving stop to several factors, with 
separate equations estimated for different operating characteristics likely to have an 
impact on dwell time and time lost serving stop (Dueker et al. 2004). However, the cost 
of collecting data manually limited the number of observations in these data sets to a 
handful of operators, stops, and so on (Milkovits 2008).

In recent years, advanced technologies such as automatic transit information systems 
provide real-time information that can assist transit agencies and researchers in 
collecting data of better quality and monitoring the operation of a transit system (Li 
et al. 2006). For instance, with the widespread application of automatic data collecting 
systems including automatic passenger counting (APC) and automatic vehicle location 
(AVL) systems, transit agencies and researchers are able to analyze a plethora of data 
by using an archived database (Tirachini 2013; Dueker et al. 2004). In addition, several 
computer simulation models have been applied in bus operation analysis at stops. 
The TRAF-NETSIM program, i.e., CORSIM, deals with time spent at a stop by simply 
depending on mean values specified by users and embedded statistical distributions 
rather than loading and unloading demand (FHWA 2003). VISSIM is another prevalent 
simulation model to analyze bus dwell time and time lost serving stop, which is 
estimated by two methods including dwell time distributions and advanced passenger 
models (PTV Group 2005).

However, an automatic data collection system cannot provide all of the required data 
for calculating bus dwell time and time lost serving stop. Thus, this study involved the 
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following factors based on automatically- and manually-collected data. The features 
of a bus stop visit can be measured by automatic data collecting systems, such as the 
number of passengers boarding and alighting, stop entry/exit, and zero speed start/
end. As for the additional delay for buses and layout of bus stops (Gu et al. 2011; Meng 
and Qu 2013), however, they cannot be clearly measured by APC and AVL systems. For 
instance, a passenger who is far away from the alighting and boarding area may take 
longer to board a bus than a passenger near the area. This process can be observed by 
manually collecting data instead of automatically collecting data, because the latter 
merely records the bus delay and does not help us learn what happened in the process.

Methodology

Contributing Factors to Bus Dwell Time and Time Lost Serving Stop

Many factors can affect bus dwell time and time lost serving stop; among them the 
number of boarding or/and alighting passengers is the most significant contributing 
factor (Tirachini 2013; Milkovits 2008). A field investigation was conducted to collect 
bus dwell time and time lost serving stop and the number of boarding and alighting 
passengers associated with buses at the seven most common bus stop designs in China 
(Figure 2). Data were collected from 885 stopped buses. It should be noted that the bus 
stops in this study were selected randomly, and all pilot studies have been conducted 
with the findings, on the assumption that these seven bus stops can well represent the 
results for their relevant bus stop categories.

FIGURE 2.
Dwell time and time lost 
serving stop vs. number 

of boarding and alighting 
passengers

According to the types of bus stop design, these 885 samples enabled us to establish a 
respective linear relationship between the bus dwell time and time lost serving stop and 
the number of alighting and boarding passengers by the linear regression approach that 
had been widely used in existing studies (Meng and Qu 2013). Unfortunately, the linear 
relationship did not hold due to the relevant low R-square value (R2=0.3912, on average). 
Figure 2 presents the linear regression results at one of the bus stops selected for this 
study—Public Transport Corporation bus stop. Interestingly, as can be seen in Figure 2, 
these data scattered on a 2-dimensional plane, in which the abscissa axis denoted the 
number of boarding and alighting passengers and the ordinate axis denoted the bus 
dwell time and time lost serving stop, apparently indicating bus dwell time and time 
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lost serving stop differed greatly among the same number of passengers (i.e., the dotted 
line circles in Figure 2). For instance, bus dwell time and time lost serving stop ranged 
from 21s to 53s when the number of passengers was equal to 4. As analyzed above, it 
is problematic to estimate bus dwell time and time lost serving stop merely by relying 
on the number of boarding and alighting passengers, and it is necessary to take into 
account other factors such as dead time and acceleration and deceleration time.

Bus Acceleration and Deceleration Time

As shown in Figure 3, a bus stop includes three areas: bus entry area, alighting and 
boarding areas for passengers, and bus exit area. These entry and exit areas allow a bus 
to safely enter the bus stop from the shoulder lane and leave the bus stop to merge into 
traffic on the shoulder lane. According to the Transit Capacity and Quality of Service 
Manual (TCQSM) (KFH Group 2013), it takes time for a bus to slow from its running 
speed to serve a bus stop, and additional time to accelerate back to its running speed 
after serving the stop at a comfortable deceleration rate of 1.2m/s2 and acceleration rate 
of 1.0m/s2, compared to proceeding past the bus stop without stopping.

FIGURE 3.
Structure of bus stop

Acceleration and deceleration distances and time, together with the initial and final 
speeds during acceleration and deceleration processes, are the key information for 
modeling acceleration and deceleration of vehicles. A polynomial model incorporating 
kinematics of a particle is derived for estimating the bus acceleration process in the exit 
area and deceleration process in the entry area.

Acceleration Process in Exit Area

When a bus begins to accelerate away from a stop immediately after it last closes its 
doors, the acceleration distance to accelerate back to its running speed at a constant 
acceleration is:

 (1)

where S1 is the acceleration distance, aac represents the acceleration rate (1.0m/s2), and v 
is the bus running speed. If the length of the exit area is too long, so that the bus is still 
in this area when it accelerates back to the running speed, the remaining distance in the 

exit area acS∆  can be expressed as:

 (2)

where Sac is length of the exit area. Thus, the acceleration time of a bus tac is as follows:
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 (3)

Deceleration Process in Entry Area

Similar to the acceleration process in the exit area, the deceleration distance of a bus, 
which slows from its running speed to serve a bus stop at a constant deceleration, is:

 (4)

where S2 is the deceleration distance and ade represents the deceleration rate (1.2m/s2). 

If the length of the entry area is too long, the remaining distance in the entry area deS∆  
can be expressed as:

 (5)

where Sde is length of the entry area. Thus, the deceleration time of a bus tde is as follows:

 (6)

The acceleration and deceleration time of a bus tac-de in the exit and entry areas can be 
summarized as follows:

 (7)

Serving Boarding and Alighting Passengers

Bus dwell time and time lost serving stop may be affected by boarding demand (e.g., 
in the PM peak period when relatively empty buses arrive at a heavily-used stop), 
by alighting demand (e.g., in the AM peak period at the same location), or by total 
interchanging passenger demand (e.g., at a major transfer point). In all cases, the time for 
serving boarding and alighting passengers is proportional to the boarding and/or alighting 
volumes and the amount of time required to serve each passenger (KFH Group 2013).

Several main factors influence the time for serving passengers. The number of people 
passing through the highest-volume door is a key factor in how long it will take for all 
passengers to be served. The proportion of alighting to boarding passengers through 
the busiest door also affects how long it takes all passenger movements to occur. The 
average time to pay a fare is a major influence on the time required to serve each 
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boarding passenger. Some types of fare payment procedures allow passengers to 
board through more than one door at busy stops, thus allowing all to be served more 
quickly. Having to ascend or descend steps while getting on and off the bus increases 
the amount of time required to serve each passenger. In addition, when standees are 
present on a bus, it takes more time for boarding passengers to clear the farebox area, as 
other passengers must move to the back of the bus (KFH Group 2013).

In this study, the time for serving boarding and alighting passengers ts is the time 
required to serve passengers at the busiest door plus the time required to open and 
close the doors. A value of 2–5s for door opening and closing is reasonable for normal 
operations (Levinson 1983; Meng and Qu 2013).

 (8)

where Pup is number of boarding passengers, Pdown denotes number of alighting 
passengers, Nup is number of doors for boarding, Ndown denotes number of doors for 
alighting, and toc is door opening and closing time. According to TCQSM (KFH Group 
2013), the service time for each passenger tup and tdown is defined in Table 1. Table 1 
can be used to estimate the time for typical situations where only one direction of 
passengers uses a door at a time and all passengers board through a single door. When 
passengers may board through multiple doors, Table 2 can be used instead to estimate 
the time. According to the field investigations described above, these data from TCQSM 
can be reflective of Chinese conditions.

TABLE 1.
Passenger Service Time with 

Single-channel  
Passenger Movement

Situation Service Time (sec per passenger)

Boarding

Pre-payment 2.5

Single ticket or token 3.5

Exact change 4.0

Swipe or dip card 4.2

Smart card 3.5

Alighting
Front door 3.3

Rear door 2.1

Source: Transit Capacity and Quality of Service Manual (KFH Group 2013)

TABLE 2.
Passenger Service Time with 

Multiple-channel  
Passenger Movement

Number 
of Doors

Service Time (sec per passenger)

Boarding Time Front Door Alighting Time Rear Door Alighting Time

1 2.5 3.3 2.1

2 1.5 1.8 1.2

3 1.1 1.5 0.9

4 0.9 1.1 0.7

6 0.6 0.7 0.5

Source: Transit Capacity and Quality of Service Manual (KFH Group 2013)
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It is noted that when there are passengers standing in the bus, the boarding time will 
increase by 20%. For low-floor buses, the boarding time is reduced by 20%, the front 
door alighting time decreases by 15%, and the rear door alighting time is shortened by 
25% (KFH Group 2013).

Bus Dead Time at Bus Stop

Bus dead time at a bus stop consists of average delay for re-entering the traffic stream 
and other additional delay such as boarding lost time, bus stop failure time, and traffic 
signal delay. Average delay for re-entering the traffic stream is a function of the capacity 
and the degree of saturation in the vicinity of a bus stop (Yang et al. 2009; HCM 2000). 
It is important to note that, for grade-separated busways (Type 5) and at-grade busways 
(Types 1, 3 and 6), average delay for re-entering the traffic stream is equal to 0. That is 
because the buses in grade-separated and at-grade busways cannot be disturbed by 
other non-bus vehicles. The analytical model used to estimate average delay assumes 
that the demand is less than capacity for the period of analysis. According to the 
Highway Capacity Manual (2000), if the degree of saturation is greater than about 0.9, 
average delay for re-entering the traffic stream is significantly affected by the length of 
the analysis period. In most cases, the recommended analysis period is 15 minutes.

 (9)

where tad is average delay for re-entering the car stream, and T represents the analysis 
time period, T=0.25 for a 15-minute period.

In addition to average delay for re-entering the traffic stream, there are several sources 
of delay that influence bus dead time at bus stops:

• Boarding lost time tb – This is the time spent waiting for passengers to walk to 
the bus door(s) from their waiting position at the stop. When passengers wait 
at bus stops with multiple loading areas, such as high-volume stations served by 
multiple routes, they do not know in advance at which loading area the bus will 
stop when it arrives. According to a relevant reference (Jaiswal 2010) and our 
observations, passengers tend to concentrate within half a loading area length of 
the front of the second loading area-the point where the door of the second bus 
would be located. Once this optimal area becomes too crowded, passengers first 
spill toward the front loading area and later toward the rear loading area. When a 
bus arrives, there is typically a delay from when the bus doors open and when the 
first passenger arrives to board the bus. It depends on where the passengers were 
waiting relative to where the bus stopped, how quickly they could determine 
where the bus would stop, and how crowded the platform area was.

• Bus stop failure time tf – A bus arrives at a stop to find all loading areas occupied, 
forcing it to wait until other buses leave the stop. In addition, when a bus is ready 
to depart from a stop, it also has to wait if it is blocked by other buses at the stop. 
These are examples of bus stop failure. In this case, the bus will have a delay (i.e., 
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bus stop failure time) waiting for all of the buses at the stop to finish serving their 
passengers.

• Traffic signal delay tsd – This is the time spent waiting for a green light after 
passenger flow has been completed. A traffic signal located in the vicinity of a bus 
stop and its loading areas will serve to meter the number of buses that can enter 
or exit the stop. For instance, at a far-side stop of a signalized intersection, buses 
can enter the stop only during the portion of the hour when the signal is green 
for the street on which the stop is located. The shorter the green time provided 
to the street, the lower the capacity and the longer a bus is likely to wait if it has 
to wait for the traffic signal to turn green again.

Bus Stop Dwell Time and Time Lost Serving Stop

The bus stop dwell time and time lost serving stop Tdl is based on the bus acceleration 
and deceleration time, time for serving boarding and alighting passengers, and bus dead 
time at bus stop. The final model is given in the following equation:

 (10)

To intuitively describe the model, the equation for bus dwell time and time lost serving 
stop is represented by an expression tree in Figure 4. As shown in Figure 4, the nodes 
consist of variables, constants, and arithmetic symbols, such as +, -, ×, and ÷.

FIGURE 4.  Expression tree for bus dwell time and time lost serving stop
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Data Collection and Analysis

In this study, data were collected at seven different types of bus stops in the cities of 
Nanjing, Changzhou, and Guangzhou, China. The data were collected under good 
weather conditions between May 19 and June 15, 2014, to exclude potential influence of 
adverse weather. In addition, there was no curb parking around the stops.

Three video cameras were used at each stop to record traffic data, with one set up on 
a high location and one each set up in front of and behind the bus stop. The recorded 
videos were reviewed by several trained graduate students to obtain traffic volume and 
bus average speed near the bus stop. The site and traffic flow characteristics of the bus 
stops are shown in Table 3.

TABLE 3.
Site and Traffic Flow 

Characteristics of Bus Stops

No. Bus Stop Type BSLa TCb SSc Vd Ce BSf

1
Gulou North Type 1 47.5

Peak 67 2677 4500 21.4

2 Non-peak 47 1723 4500 24.4

3
Beiji Huitang Type 2 20.0

Peak 113 3017 3900 18.9

4 Non-peak 108 2155 3900 22.5

5 Public Transport 
Corporation Type 3 72.3

Peak 96 3378 4500 23.7

6 Non-peak 101 2286 4500 26.0

7
Xuanwuhu Park Type 4 78.6

Peak 40 3850 4500 22.6

8 Non-peak 56 3054 4500 25.7

9
Renmin Park Type 5 38.1

Peak 34 2398 4000 19.6

10 Non-peak 40 1755 4000 22.9

11
Gangding Type 6 33.5

Peak 51 2848 4500 21.9

12 Non-peak 52 2205 4500 26.8

13
Danfeng Street Type 7 17.4

Peak 39 2078 3000 15.9

14 Non-peak 41 1386 3000 20.2

a: Length of bus stop area (m)
b: Traffic condition (peak period or non-peak period)
c: Sample size of buses (veh)
d: Traffic flow rate (veh/h)
e: Capacity (veh/h)
f: Bus average speed near the bus stop (km/h)

In Table 3, BSL represents the length of the bus stop area, which consists of the bus 
entry area, alighting and boarding areas of passengers, and the bus exit area. The 
length of the bus stop area can be measured by tapeline in the field investigations. SS 
represents the sample size of buses. The duration of data collection for each bus stop 
was two hours for peak and two hours for non-peak. BS represents the bus average 
speed near the stop, which is the running speed before and after the bus stop. In 
general, a stopped bus will slow from its running speed about 50m before the bus stop 
and will accelerate back to its running speed about 30m after the stop. In this study, 
bus average speed near the stop was calculated by measuring the elapsed time to travel 
a specific distance (typically about 4.5 m) in the video. The VideoStudio application 
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was used to process the video files in a frame-by-frame way so the observer could view 
videos at 25 frames per second.

• Boarding lost time tb – According to the field investigations described above, 
the amount of boarding lost time was found to vary by different types of bus 
stop designs, with median values ranging from 2.9–4.1s and interquartile range 
values ranging from 0.4–0.9s. The distributions of boarding lost time at the seven 
common bus stops are shown in Figure 5. From Figure 5, a fairly concentrated 
distribution can be observed for each type of bus stop, with a range of 0.7s on 
average between upper quartile and lower quartile. Thus, we use median values as 
boarding lost time for each bus stop.

FIGURE 5.
Distributions of boarding  

lost time at seven common 
bus stops

• Bus stop failure time tf – According to the field investigations, the amount of 
bus stop failure time was also found to vary by different types of bus stops, with 
median values ranging from 4.9–6.4s and interquartile range values ranging from 
0.5–0.9s. The distributions of bus stop failure time at the seven common bus 
stops are shown in Figure 6. Similar to Figure 5, it also has a fairly concentrated 
distribution for each type of bus stop, with a range of 0.7s on average between 
upper quartile and lower quartile. Thus, the median values can be used as bus 
stop failure time.

FIGURE 6.
Distributions of bus stop 

failure time at seven common 
bus stops
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• Traffic signal delay tsd – According to the field investigations, the amount of traffic 
signal delay was found only at bus stops where a traffic signal is nearby, with 
median values ranging from 14.5–21.1s and interquartile range values ranging 
from 12.1–12.8s. When traffic signal delays at bus stops are frequent enough, they 
should be added into the bus dwell time and time lost serving stop. However, in 
this study, traffic signal delay was rare. According to TCQSM (KFH Group 2013), 
in this case, the impact of traffic signal delay was accounted for by dwell time 
variability instead of added into the bus dwell time and time lost serving stop.

Model Validation

Comparison of Results

Frequency histograms and cumulative distribution curves for bus dwell time and time 
lost serving stop during peak and non-peak periods at the seven types of bus stops are 
presented in Figure 7. From Figures 7(a) and 7(b), cumulative curves for calculated bus 
dwell time and time lost serving stop at Type 2 and Type 7 bus stops were invariably to 
the left of the curves for other types of bus stops during peak and non-peak periods. 
This indicated that dwell time and time lost serving stop at Type 2 and Type 7 were 
shorter than at other types, owing to the short distance of bus stop areas. By contrast, 
the cumulative curve for Type 4 was invariably to the right of the curves for other types 
of bus stops during peak and non-peak periods. For other types of bus stops, it could 
be observed that peak and non-peak periods had obvious influences on calculated bus 
dwell time and time lost serving stop. On the other hand, from Figures 7(a) and 7(c) 
and Figures 7(b) and 7(d), it could be shown that frequency histograms and cumulative 
distribution curves for calculated values closely followed those observed values during 
both peak and non-peak periods.

FIGURE 7.
Comparison of calculated  

and observed bus dwell time 
and time lost serving stop 

between peak and  
non-peak periods
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FIGURE 7. (cont’d)
Comparison of calculated  

and observed bus dwell time 
and time lost serving stop 

between peak and  
non-peak periods
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In addition, we distinguished between passengers by age: adults (including children) and 
older adults (age 65+), which allowed us to estimate the different boarding and alighting 
times of each passenger group. Among all passengers, the percentages of adults and 
older adults are 82% and 18%, respectively. The boarding time for adults and older 
adults had, on average, a difference of 1.01 seconds per passenger, indicating that older 
people are slower to board buses. The difference due to age also is observed in alighting: 
whereas each adult takes, on average, 1.52 seconds to alight, each older adults takes 
2.68 seconds. Thus, older adult passengers are slower to board and alight than younger 
travelers.

The Mean Absolute Percentage Error (MAPE) was used to measure the differences 
between the observed and calculated bus dwell time and time lost serving stop. MAPE 
has no requirement for sample size and shows an obvious advantage in evaluating 
discrete data. The value of MAPE in this study can be calculated using the following 
equation:

(11)

where N denotes the sample size, and 
i

dwellT  and 
i
dwellt  are calculated and

observed bus dwell time and time lost serving stop, respectively.

Table 4 presents several measures of effectiveness, including MAPE and R-square values 
for estimating bus dwell time and time lost serving stop at different bus stops. 
According to the results of R-square and MAPE, the bus stops having exclusive bus lanes 
(Types 1, 3, 5, and 6) had better performance than those having mixed traffic lanes 
(Types 2, 4, and 7). The buses in mixed traffic lanes may be disturbed by other motor 
vehicles and non-motor vehicles, causing variability for estimating bus dwell time and 
time lost serving stop. Thus, the right-of-way in the vicinity of a bus stop had obvious 
influences on the performance of the results. The peak/non-peak period, however, 

FIGURE 7. (cont’d)
Comparison of calculated  

and observed bus dwell time 
and time lost serving stop 

between peak and  
non-peak periods
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was not a key factor to determine the performance of bus dwell time and time lost 
estimation. For instance, at the Public Transport Corporation bus stop (Type 3), the 
value of R-square (0.8331) and MAPE (13.23%) in the non-peak period were better than 
those (0.8294 and 14.39%, respectively) in the peak period. However, at Beiji Huitang bus 
stop (Type 2), the results were contrary to those at the Public Transport Corporation 
stop.

 TABLE 4.
Summary Statistics of Bus 
Dwell Time and Time Lost  
Serving Stop at Different 

Types of Bus Stops

No. Bus Stop Type State Sample 
Size

R-square
Value MAPE

1 Gulou 
North Type 1

Peak 67 0.8412 12.53%

2 Non-peak 47 0.8341 12.01%

3 Beiji 
Huitang Type 2

Peak 113 0.8038 13.42%

4 Non-peak 108 0.7982 14.03%

5 Public 
Transport 
Corporation

Type 3
Peak 96 0.8294 14.39%

6 Non-peak 101 0.8331 13.23%

7 Xuanwuhu 
Park Type 4

Peak 40 0.8142 13.99%

8 Non-peak 56 0.8066 13.15%

9 Renmin 
Park Type 5

Peak 34 0.8744 10.02%

10 Non-peak 40 0.8873 9.54%

11
Gangding Type 6

Peak 51 0.8534 12.09%

12 Non-peak 52 0.8691 13.05%

13 Danfeng 
Street Type 7

Peak 39 0.7829 17.14%

14 Non-peak 41 0.7614 16.14%

To fully evaluate the performance of the proposed method, the values of MAPE and 
linear regression analysis between calculated and observed bus dwell time and time 
lost serving stop were graphed, as shown in Figure 8. Scattered data points of peak and 
non-peak periods were balanced on both sides of the lines of identity, which indicated 
that the proposed model was not overvalued or undervalued. R-square and MAPE 
were calculated to be 0.8840 and 13.20% for non-peak and 0.8387 and 13.46% for peak, 
indicating that the proposed method could estimate bus dwell time and time lost 
serving stop relatively accurately.
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(a) Peak period

(b) Non-peak period

Sensitivity Analysis

Bus stop locations could significantly impact the delay of a bus at a bus stop. In light of 
this, a sensitivity analysis was conducted to investigate the effects of bus stop locations 
on bus dwell time and time lost serving stop. As shown in Figure 9, bus stop locations 
are of three types: near-side, far-side, and mid-block. In this study, Type 3 (Public 
Transport Corporation) and Type 6 (Gangding) were near-side stops; Type 1 (Gulou 
North), Type 5 (Renmin Park), and Type 7 (Danfeng Street) were far-side stops; and Type 
2 (Beiji Huitang) and Type 4 (Xuanwuhu Park) were mid-block stops.

FIGURE 8.
Fitted relationships of bus 

dwell time and time lost  
serving stop between 

calculated and observed data
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Analytical results of bus dwell time and time lost serving stop including maximum value, 
minimum value, mean value, median value, and standard variation are summarized in 
Table 5. Bus dwell time and time lost serving stop were analyzed based on different bus 
stop locations (near-side, far-side, and mid-block) and time periods (peak and non-peak). 
As can be seen, the mean and median values at near-side stops were higher than those 
at far-side and mid-block stops, indicating that near-side stops had a significant impact 
on bus dwell time and time lost serving stop. A near-side bus stop is located immediately 
prior to an intersection and may be influenced by other vehicles in the intersection. 
Compared with far-side and mid-block bus stops, a near-side bus stop has longer average 
delay for re-entering the traffic stream, bus stop failure time, and traffic signal delay. For 
instance, at a near-side bus stop, a bus must wait at the stop until all of the buses have 
finished serving their passengers and have a green signal enabling them to proceed down 
the street. Thus, a near-side bus stop creates longer bus dwell time and time lost serving 
stop. In addition, the mean and median values of near-side, far-side and mid-block stops 
during the peak period were more than those during the non-peak period.

FIGURE 9.
Schematic drawing of bus 

stop locations

TABLE 5.
Bus Dwell Time and Time Lost 
Serving Stop at Different Stop 

Locations

Bus Stop 
Location State Sample 

Size Max (s) Min (s) Mean (s) Median (s) SD (s)

Near-side stop
Peak 147 69.00 19.00 33.74 32.00 9.16

Non-peak 153 59.00 12.00 30.43 29.00 8.44

Far-side stop
Peak 140 73.00 13.00 28.22 27.00 9.19

Non-peak 128 60.00 10.00 28.06 26.00 8.06

Mid-block stop
Peak 153 73.00 10.00 27.52 25.00 11.21

Non-peak 164 75.00 9.00 27.01 22.00 13.68

Frequency histogram and cumulative distribution curves for bus dwell time and time 
lost serving stop at different bus stop locations are presented in Figure 10. For the peak 
period, cumulative curves for dwell time and time lost serving stop at near-side stops 
were below the curves for far-side and mid-block stops, indicating bus stop location 
could have an influence on dwell time and time lost serving stop.

T-tests were further conducted to compare bus dwell time and time lost serving stop 
at near-side, far-side, and mid-block stops. Results showed that the differences in bus 
dwell time and time lost serving stop taken at near-side and far-side stops and near-side 
and mid-block stops during peak and non-peak periods were all statistically significant. 
However, the differences taken at far-side and mid-block stops were not statistically 
significant. The findings further indicated that near-side stops could result in longer 
dwell time and time lost serving stop than the other two types of bus stops.
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Conclusions

This study proposed a method to estimate bus dwell time and time lost serving stop, 
which consists of deceleration time, time for serving boarding and alighting passengers, 
dead time, and acceleration time at the bus stop. A polynomial model incorporating 
kinematics of a particle was derived for estimating bus acceleration and deceleration 
times. In addition, descriptive statistics were used to analyze dead time, which involved 
average delay for re-entering the traffic stream, boarding lost time, bus stop failure time, 
and traffic signal delay.

A case study was conducted to show the applicability of the proposed model with 
data collected from the seven common types of bus stops in the cities of Nanjing, 
Changzhou, and Guangzhou, China. To validate the proposed method, a linear 
regression analysis was performed to find the correlation between calculated and 
observed bus dwell time and time lost serving stop. The results of R-square and 
MAPE (0.8840 and 13.20% for non-peak, 0.8387 and 13.46% for peak) indicated that 
the proposed method was well validated and could be practically used in China for 
the analysis and estimation of bus dwell time and time lost serving stop. In addition, 
sensitivity analyses were conducted to investigate the effects of bus stop locations on 
bus dwell time and time lost serving stop. The results showed that the differences taken 
at near-side and far-side stops and near-side and mid-block stops during peak and non-
peak periods were all statistically significant. However, the differences taken at far-side 
and mid-block stops were not statistically significant. The findings further indicated 
that near-side stops could result in longer dwell time and time lost serving stop than the 
other two types of bus stops.

This study explored the bus dwell time and time lost serving stop in urban locations for 
general weather conditions. Different weather conditions (such as inclement weather 
conditions) and different locations (such as suburban locations) may have impacts 
on the performance of the proposed method. Further research can be conducted to 
investigate their impacts.

In addition, the proposed method can be applied in other locations; however, in 
different countries, especially in other developing countries, the service time for each 
passenger and bus dead time at a stop may be different. Thus, to apply the proposed 
method in other countries, the transit agency will need to collect traffic data to obtain 
the corresponding characteristics, such as the service time for each passenger.
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FIGURE 10.  Comparison between bus dwell time and time lost serving stop at near-side, far-side and mid-block stops
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Public Transport Crowding Valuation: 
Evidence from College Students  

in Guangzhou

Jianrong Liu and Huiying Wen
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Abstract

Overcrowding has grown to be an increasingly important issue for public transit in 
Guangzhou, China. To capture traveler benefits of reduced crowding from improved public 
transport, it is necessary to identify the relevant importance of crowding to travelers. This 
paper analyzes the disutility of crowding in metro car and bus transit with discrete choice 
models. Based on the stated preference survey data from college students in Guangzhou, 
the results show that there is non-negligible impact of crowding on passenger travel. The 
relationship between the disutility of crowding and standee density is not linear; that is, 
the disutility increases at a modest rate as the standee density increases when it is easy 
to move around in cars and increases rapidly when it is difficult to move around in cars. 
Also, there is only a slight difference between the effects of crowding on metro and bus 
transit.

Keywords: Crowding; discrete choice; public transit; stated preference

Introduction

Traditionally, researchers have considered travel time and cost as main attributes 
that influencing peoples’ travel choice behaviors. However, as Tirachini et al. (2013) 
and Hensher et al. (2013) point out, with the improvement of the understanding of 
the modal choice problem, there is solid evidence that travelers not only take into 
account of quantitative attributes such as travel time and cost, but also qualitative 
aspects that may influence the experience of traveling, such as crowding, reliability, 
etc. Because of the high density of passengers in carriages of public transit, there may 
be many effects on passenger well-being, such as anxiety, stress, feelings of exhaustion, 
reduction of perceived security, and so on.
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Because there are so many effects of crowding on traveler well-being, it is necessary to 
determine how much travelers are willing to pay to reduce the crowding in carriages of 
public transit. Therefore, this paper attempts to determine the influences of crowding 
in carriages of public transit and if there is difference between passenger viewpoints on 
crowding in metro cars and buses.

As pointed by Zhan (2016), in Chinese high-education regions, the university campus is 
a special community in which the high student density generates a large and significant 
trip demand. Therefore, exploring and understanding college students’ evaluation of 
the impact of public transit are the basic supports for transportation development 
strategies policies and planning.

Literature Review

Crowding on public transit reduces the probability that passengers will find a seat in 
carriages and prevents individuals from using travel time for other activities effectively 
(reading, rest, etc.). Congestion in public transit also may induce security fears, increase 
noise levels, and reduce hygiene. All of these effect increase personal stress and 
dissatisfaction (O’Regan and Buckley 2003; Evans and Wener 2007; Mahudin et al. 2011; 
Mahudin et al. 2012; Li and Hensher 2013). Theyf also may affect traveler path choice of 
public transportation (Kim et al. 2016).

Noting widespread dissatisfaction with crowding in bus or metro cars, a considerable 
number of studies have been carried out to determine the effects of crowding. Most 
analyzed the valuation of crowding in public transportation with discrete choice 
models. Generally, there are two discrete choice models, the constant value per trip 
model and the multiplier value model. The constant value per trip model assumes that 
the crowding effect is irrespective of the duration of travel; the travel time multiplier 
value model assumes that the crowding effect is proportional to travel time. In addition 
to discrete choice models, there are other methods used to analyze the value of 
crowding.

Constant Value per Trip Model

Cantwell et al. (2009) divided the crowding conditions on trains and buses into five 
segments—very crowded, somewhat crowded, neither crowded nor uncrowded, 
somewhat uncrowded, and very uncrowded. It was found that the ratio between the 
valuation of train crowding and bus crowding was 1.4, which indicates that users would 
derive a greater benefit from a reduction in crowding. Basu and Hunt (2012) defined five 
levels of in-vehicle crowding in a qualitative manner and found the in-vehicle valuations 
(in Indian Rupees) to be 0.32 for light, 0.46 for moderate, 0.54 for heavy, and 0.59 for 
very heavy, adopting very light crowding as the benchmark.
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Multiplier Value Model

Accent (2006) provided multi-level qualitative descriptions to crudely specify in-vehicle 
crowding, that is, seat flip uncrowded, seat flip crowded, seat perch uncrowded, seat 
perch crowded, stand uncrowded, stand lean, and stand crowded. The multipliers of 
these conditions varied from 1.0–2.14. Douglas and Karpouzis (2006) estimated the 
passenger cost of on-train crowding with Stated Preference (SP) data, in which eight 
levels of crowding were provided (uncrowded seat, crowded seat, stand up to 10 
minutes, stand 15 minutes, stand 20 minutes or longer, crush stand up to 10 minutes, 
crush stand 15 minutes, crush stand 20 minutes or longer). The relative valuation 
compared to uncrowded seating varied from 1.17–2.52. Furthermore, gender was found 
to be an influence; females had a higher cost associated with standing in crushing 
conditions than males.

The written descriptions of in-vehicle crowding in Mott (2007) were plenty of seats, 
a few seats available, no seats available and a few standees, and no seats and densely-
packed. Also, the paper divided travelers into seven groups—traders only, commuters, 
non-commuters, car available, non-car available, up to 40 minutes, and over 40 minutes. 
The multipliers varied from 1.00–3.01 for commuters, and the others were similar.

MVA Consultancy (2008) specified in-vehicle crowding with standee density (standees 
per square meter) and analyzed seating multipliers and standing multipliers. The seating 
multipliers and standing multipliers for business travelers varied from 1.00–1.81 and 
1.91–2.16, respectively, when the standee density increased from 0 to 6 passengers per 
square meter (m2). Non-business travelers tended to have somewhat low multipliers.

Lu et al. (2008) conducted an SP experiment in Greater Manchester in 2005 in which 
crowding was shown with combinations of probability of standing and length of time 
(for example, 2 out of 5 times standing for an entire journey). Within the multinomial 
logit (MNL) model, the value of crowding was estimated at 12.05 pence per person 
minute, which is more than twice the value of in-vehicle time. Whelan and Crockett 
(2009) estimated of the value of overcrowding in trains with an SP survey. To describe 
and present all attributes in an objective and quantifiable way with a minimal scope 
for differences in interpretation, they developed a combination of verbal and graphical 
stimulus material for use in the SP study. The results showed that there is a linear 
relationship between time multipliers and standee density and found that journey 
purpose, distance, and income had a significant impacts on time multipliers.

Hensher et al. (2011) described crowding attribute levels by mode with seats occupied 
and number of standees and showed that with the rise in the number of standees, the 
crowding utility increases with a quadratic function and the crowding valuation of 
metro is slightly higher than that of bus. Wang and Legaspi (2012) described in-vehicle 
crowding with a load factor, in which the multipliers were functions of load factor and 
standing time. For example, the cost of in-vehicle crowding per minute for standing 
10–20 minutes was smaller than that for standing 20 minutes or more.

Haywood and Koning (2013, 2015) specified in-vehicle crowding with passenger density, 
which is different from standee density. The multipliers ranged from 1.00–1.57, and 
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standee density ranged from 0–6 pass/m2. Kroes et al. (2013) presented in-vehicle 
crowding levels by mode with load factor, which ranged from 25–250%. Tirachini et 
al. (2013) studied the relationship between multipliers and load factor and between 
multipliers and standee density. It was found that there was a linear relationship 
between multipliers and standee density, and the multipliers reached approximately 3 
when the standee density was 4 standees/m2.

Vovsha et al. (2014) quantified in-vehicle crowding with seven categories associated 
with the probability of having a seat and the inability to board when crowding reaches 
an extreme level. Data in that paper shows that trip purpose, age, travel mode, income, 
and trip length had influence on multipliers, although all these effects were not striking. 
Batarce et al. (2015) evaluated time multipliers with SP data and RP data; results shows 
that the time multipliers at 5–6 standees/m2 is 2.1 times the multipliers at 1–2 standees/
m2.

Other Methods 

Cantwell et al. (2009) analyzed the relationship between crowding in public transport 
and commute satisfaction with a linear regression analysis. Haywood and Koning 
(2011) investigated the impact of travel comfort on the utility of subway users with 
an ordered logit model and found that metro passengers were prepared to travel, on 
average, eight minutes longer per trip to reduce the high peak-hour level of crowding 
to the substantially lower level of crowding experienced outside the peaks. This is 
roughly equivalent to a value of about 1.5 euros per trip, which is clearly non-negligible. 
Also, it was found that certain individual characteristics (age, socioeconomic status, 
etc.) significantly influence willingness to pay. Prud’homme et al. (2012) estimated the 
disutility of crowding with the ordered logit model.

Two papers review the literature about crowding on public transit. Li and Hensher 
(2011) reviewed public transport crowding valuation research using studies conducted 
in the UK, the U.S., Australia, and Israel and identified three measures to value 
crowding—a travel time multiplier, a monetary value per time unit, and a monetary 
value per trip—but they did not provide a comparison between their performances. 
They also described associated ways to represent crowding in SP experiments and 
implied that SP research is the preferred way of conducting valuation research for 
crowding. Despite the highly-different characteristics of the studies reviewed, they 
noted that all reported that crowding would increase the value of travel time savings, 
which, according to them, “can be viewed as an additional component of generalized 
time.”

Wardman and Whelan (2011) reviewed evidence from British experience of the 
valuation of rail crowding obtained over 20 years from 17 studies in a meta-analysis 
project and found that the seating multiplier averages 1.19 and the standing multiplier 
averages 2.32, which implies that the disutility of travel in a very crowded situation 
for standees is more than twice as much as compared with a situation when seats are 
available.
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Although many studies on crowding have been conducted, most have been in 
developed countries or areas. There is still little research on crowding in China, especially 
based on passenger perception. Li and Hensher (2013) argued that the benchmarks 
that define the unacceptable crowding levels vary across different countries or regions. 
For example, four standees per m² is the benchmark for Australia (Diec et al. 2010), a 
number that increases to five standees per m² for the U.S. (Furth et al. 2006).

Furthermore, as Das and Pandit (2013) pointed out, “Since the service delivery 
environment differs between developed and developing nations, the user perception of 
service quality varies between these economic regions”; as a result, research results from 
developed countries or areas not suitable for China. 

Experiment Design and Data Collection

In this study, we analyzed the valuation of in-vehicle crowding with multinomial logit 
model.

Although Turner et al. (2004), Cox et al. (2006), and Li and Hensher. (2013) argued that 
there is a disconnection or gap between objective and subjective measures of crowding, 
there are still many debates on the subjective measures of crowding. The objective 
measures, such as the number of standing passengers per square meter, are still an 
appropriate representation of passenger subjective measure of crowding.

To estimate the economic value passengers place on crowding in a metro car or bus, 
this study conducted an SP choice experiment in which a sample of passengers was 
offered a series of choices between two (or more) hypothetical alternative public 
transport services. These services differed in some key characteristics.

To ensure that the interviewees could easily understand the scenarios presented 
to them and to ensure that the key attributes of the scenarios were presented in a 
quantifiable manner, the experiment was designed with a two-stage process—a pilot 
survey and a formal survey. In the pilot survey stage, several choice attributes were 
considered for inclusion within the SP exercises: (1) level of crowding in metro car, (2) 
waiting time on subway platform, (3) fare, (4) journey time in metro car, (5) walking 
time from origination to subway platform and from platform to destination, and (6) 
interchange.

As mentioned, there are many ways to represent in-vehicle crowding, such as load 
factor, standee density, combinations of probability of standing and length of standing 
time, and so on. Because the average commuting time in Guangzhou exceeds 45 
minutes during rush hour, public transportation can be so overcrowded that the door 
is blocked by passengers, sometimes making boarding and alighting difficult; thus, it 
is entirely possible for passengers to stand at the same level of overcrowding for the 
entire trip. Therefore, in this study, we did not represent in-vehicle crowding with the 
probability of standing. Since the same load factor may have different levels of crowding 
across different types of trains with varying amounts of seating and standing space, this 
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study describes crowding with the objective standard measure of number of standing 
passengers per square meter.

It is difficult for respondents to identify in-vehicle crowdedness when presented only 
with standee density, e.g., 6 standees/m2. Therefore, to enable respondents to have a 
clear and consistent understanding of the levels of crowding, in-vehicle crowding (or 
standee density) was described using the linguistic notion method. Based on related 
research achievements by Jiang et al. (2012) and Qin and Jia (2012, 2014), crowding levels 
were described as shown in Table 1.

TABLE 1.
Standee Density and 

Crowding Description in 
Metro Cars and Bus Carriages

Crowding Conditions Standee Density Crowding Description

Crowding1 0 person/m2 No person standing inside car

Crowding2 1 person/m2 No seat, but can circulate freely

Crowding3 4 persons/m2 Some restrictions in movement, high 
probability of physical contact

Crowding4 7 persons/m2 Impossible movement, difficult to get 
on/off car

An example of the layout of the SP question is shown in Figure 1. A focus group of 
4 people was asked to evaluate the interpretability of the question. All noted that 
there were too many attributes and that it was easy to get confused. Therefore, after 
discussion, the number of attributes was decreased. The attributes and level of each 
attribute are shown in Table 2.

Since the average commuting time in Guangzhou is around 50 minutes, four levels were 
set for this attribute—30 minutes, 40 minutes, 45 minutes, and 60 minutes. For standee 
density, four levels were used based on reality, three levels for fare, and three levels for 
waiting time on platform.

FIGURE 1.
Example SP question of  

pilot survey

TABLE 2.
Levels of Attributes in  
Formal Investigation

Attribute Level of Attribute

Journey time in metro car i) 30 min, ii) 40 min, iii) 45 min, iv) 60min

Standee density i) 0 person/m2, ii) 1 person/m2, iii) 4 persons/m2, iv) 7 persons/m2

Fare i) ¥3, ii) ¥4, iii) ¥5

Waiting time on platform i) 5 min, ii) 10 min, iii) 15 min
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With attributes and levels mentioned in Table 2, a total of 144 (4 × 4 × 3 × 3) profiles 
(or a virtual transit system) could be formed, but it was unrealistic and unnecessary to 
ask the respondents to evaluate all the profiles, and orthogonal design was not used 
because it would produce too many profiles, especially when the goal is to induce 
interactions between crowding and travel time. 

To gain the separate effects and interactions of attributes, the DOE platform in 
the software JMP was used to create a choice design. To create an effective design, 
information about all the attributes and their levels was needed. Therefore, a sample 
survey was created for a pilot study, and prior information was obtained with JMP. 
The core of the survey was a set of SP questions in which respondents were asked to 
sort three hypothetical journeys that differed in terms of on-train travel time, waiting 
time, on-train crowding, and ticket fare according to their preferences. Respondents 
were asked to make their choice in the context of the trip they were making. Each 
respondent undertook one comparison. A total of 16 choice sets similar to Appendix 
II were developed. Times and crowding were varied systematically so that the effect of 
travel time and crowding could be established statistically. The choice sets were used for 
metro and bus.

College students were selected as the focus of the study. Because the demographic 
characteristics of college students is somewhat different from working people, 
except for the SP choice investigation, some demographic characteristics were also 
investigated, as shown in Figure 2.

FIGURE 2.
College student characteristic 

survey

Data Analysis

Sample Size and Descriptive Analysis

The surveys were undertaken between April and May 2015 for metro and between July 
and August 2015 for bus on the main campus of South China University of Technology 
in downtown Guangzhou. Each respondent was asked to evaluate only one choice 
set in Appendix II, and each choice set was evaluated 23 times for metro and 13 times 
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for bus, resulting in 368 valid surveys for metro and 208 for bus. Table 3 shows the 
socioeconomic characteristics of the college students from the data obtained in the SP 
survey.

TABLE 3.
Distribution of Sample into 

Different Socio-Economic 
Groups

Category Sub-category
Percentages (%)

Metro Bus

Gender
Woman 48.90% 40.10%

Man 51.10% 59.90%

Do you have a car?
Yes 0.00% 0.00%

No 100.00% 100.00%

Average monthly 
consumption

≤ ¥1000 18.80% 22.77%

¥1000–¥1500 32.60% 38.12%

¥1500–¥2000 39.10% 33.66%

≥ ¥2000 9.50% 5.45%

Frequency of travel 
by metro

Very often (≥ 3 times/week) 51.60% 43.56%

Often (1–4 times/week) 36.70% 48.02%

Occasional (1–3 times/month) 11.70% 8.42%

Circumstantial 0.00% 0.00%

In total, 48.90% of metro respondents and 40.10% of bus respondents were women. A 
total of 88.30% traveled by metro more than once a week, and 91.58% traveled by bus 
more than once a week. All respondents were familiar with metro and bus.

Modeling and Discussion of Results

The collected SP data were analyzed with the multinomial logit model in which 
decision-makers are assumed to make choices based on the concept of utility 
maximization. 

Model 1 – Single Constant Value Model

The analysis began with the estimation of the single constant value per trip model, as 
specified in Equation 1:

 (1)

Where Ui is the utility of alternative I, Fare is the journey ticket price, IVT is the journey 
time in car (minutes), Wait is the waiting time on the platform, Di is a vector of four 
dummy variables representing the four different levels of crowding shown in Table 1, 
and εi is the unobserved part of utility. α0, α1, α2, β1, β2, β3, β4 are the coefficients to be 
estimated. 

The choice probability that alternative i over alternative j can be expressed with 
Pr ( , )i i jP ob U U j i= >   ∀ ≠ . Since the choice probability that alternative i is selected 
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depends only on the difference in utility, but not its absolute level, we normalized β1 to 
zero, and β2, β3, β4 can be interpreted as being to β1.

The results of the single constant value per trip model runs are shown in Table 4.

TABLE 4.
Results of Single Constant 

Value per Trip Model

Parameters β2 β3 β4 α0 α1 α2

Metro

Coefficient -1.53515* -1.89828* -3.99241* -0.09653* -0.23946* -0.11975*

Standard Error 0.16314 0.18559 0.27845 0.00982 0.06581 0.01715

z -9.41 -10.23 -14.34 -9.83 -3.64 -6.98

Prob. |z|>Z*** 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000

Bus

Coefficient -1.34293* -1.64462* -3.12547* -.07165* -.17247** -.05972*

Standard Error 0.20071 0.21929 0.29068 0.01114 0.08094 0.01943

z -6.69 -7.50 -10.75 -6.43 -2.13 -3.07

Prob. |z|>Z*** 0.0000 0.0000 0.0000 .0000 0.0331 0.0021

*Significant at 10% level 
** Significant at 5% level    
***Significant at 1% level
Fit statistics for bus: R2 = 0.3208, F = 268.3921
Fit statistics for metro: R2 = 0.3417, F = 419.4775

As shown in Table 4, all the coefficients were significant at the 95% confidence level 
(Prob.|z|>Z* << 0.05). The estimated coefficients in Table 4 provide information on the 
value of crowding levels.

Dividing the coefficients in Table 4 except for α1 by α1, we obtained the coefficients’ 
value expressed by ticket price (RMB Yuan), as shown in Figure 3, which indicates that 
the values of crowding in bus are slightly larger than those in metro.

FIGURE 3.
Monetary values of different 

levels of crowding (RMB Yuan)

Crowding’s value in metroincreases to ¥6.41 if passengers have to stand, even though 
the standee is free to circulate. But the value increases slowly as the standee density 
increases when it is less than 4 persons/m2 (no high probability of physical contact). 
The disutility of crowding increases rapidly as the standee density increases when it 
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is more than 4 persons/m2—that is, the slope of the line between 4 persons/m2 and 7 
persons/m2 (7.13) is much larger than that between 1 person/m2 and 4 persons/m2 (0.97). 
Crowding’s value for bus is almost the same as that for metro.

Dividing the coefficients in Table 4 except for α0 by α0, we obtained the coefficients’ 
value expressed by journey time (in minutes), as shown in Figure 4.

FIGURE 4.
Values of different levels of 
crowding expressed by IVT 

(min)

Also as shown in Figure 4, the characteristic of crowding’s value (expressed by journey 
time) in a bus is almost the same as that in a metro, except that crowding’s values in a 
bus are slightly larger than that in a metro. Crowding’s value in a metro car increases to 
15.90 minutes if passengers have to stand and to 41.36 minutes when standee density 
increases to 7 standees/m2. Crowding’s value in a bus increases to 18.74 minutes if 
passengers have to stand and to 43.62 minutes when standee density increases to 7 
standees/m2.

Therefore, we can conclude that passengers dislike crowding strongly, especially when 
there is a high probability of physical contact.

Model 2. Travel Time Multiplier Model

The single constant value model assumes that the crowding effect is irrespective of 
the duration of travel. Kroes et al. (2013) argued that the longer the journey, the more 
important it is to travel comfortably, so the travel time multiplier value model, which 
assumes that the crowding effect is proportional to the travel time, seems intuitively 
more appealing. Therefore, we analyzed the effect of crowding in a metro car with the 
travel time multiplier model. The equation can be expressed as:

 (2)

Where the meanings of the parameters (Ui, Fare, Wait, IVT, Di, εi) are the same as in 
Equation 1. α1, α2, γ1, γ2, γ3, γ4 are the coefficients to be estimated. The results of the 
travel time multiplier value model runs are shown in Table 5.
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Parameters γ1 γ2 γ3 γ4 α1 α2

Metro

Coefficient -0.05682A* -0.08501* -0.09200* -0.14836* -0.20441* -0.10619*

Standard Error 0.00812 0.00923 0.00997 0.01220 0.06483 0.01620

z -7.00 -9.21 -9.23 -12.16 -3.15 -6.56

Prob. |z|>Z*** 0.0000 0.0000 0.0000 0.0000 0.0016 0.0000

Bus

Coefficient -0.03823* -0.06344* -0.07051* -0.10925* -0.14882*** -0.05493*

Standard Error 0.00970 0.01081 0.01163 0.01303 0.08080 0.01880

z -3.94 -5.87 -6.06 -8.38 -1.84 -2.92

Prob. |z|>Z*** 0.0001 0.0000 0.0000 0.0000 0.0655 0.0035

*Significant at 10% level 
***Significant at 1% level
Fit statistics for bus: R2 = 0.3192, F = 270.0541
Fit statistics for metro: R2 = 0.2913, F = 428.0019

As shown in Table 5, all the coefficients are significant at the 95% confidence level 
(Prob.|z|>Z* << 0.05), except α1 of bus, which is significant at the 90% confidence level. 
Dividing the coefficients in Table 5 except for α1 by α1, we obtained the coefficients’ 
value expressed by monetary value (RMB Yuan), as shown in Figure 5.

TABLE 5.
Results of Travel Time 
Multiplier Value Model

FIGURE 5.
Relationship between value 

of time multiplier and standee 
density in metro car

 
It can be easily determined from Figure 5 that the difference between the bus multiplier 
and the metro multiplier is extremely small.

To evaluate the effect of crowding more clearly, it was necessary to use relative 
multipliers. Therefore, we chose a multiplier of bus when the standee density was 0 
standees/m2 as the reference value and divided all multipliers of bus by the reference 
value to obtain the relative multipliers of bus, and did the same for multipliers of metro. 
The relative multipliers are shown in Figure 6.
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The relative multipliers value increases slowly as the standee density increases when it 
is less than 4 persons/m2 (no high probability of physical contact) and increases rapidly 
when the standee density is larger than 4 persons/m2. The relative multiplier of metro 
when the standee density is 7 persons/m2 is 2.858 times that when the standee density 
is 0 persons/m2 and is 2.611 for bus.

Conclusions

Using data from a survey of college students in Guangzhou, we proposed individual 
trade-offs among travel time, cost, waiting time, and passenger density and found that 
crowding is a non-negligible factor that affecting a traveler’s utility and mode choice. For 
example, crowding’s value in a metro car increases to 15.90 minutes if passengers have 
to stand and to 41.36 minutes when standee density increases to 7 persons/m2. Since 
the average one-way commuting time in Guangzhou is about 45 minutes, crowding’s 
value is obviously non-ignorable. Furthermore, there is non-linear relationship between 
the disutility of crowding and standee density. This disutility increases at a modest rate 
as the standee density increases when it is no more than 4 persons/m2 and increases 
rapidly when standee density is more than 4 persons/m2. Therefore, 4 persons/m2 
(where there is a high probability of physical contact) is a critical point of disutility. 
Furthermore, there is only small difference between values of crowding in bus carriages 
and metro cars. 

This conclusion is different from that of other published papers. The ratio that 
compares the train crowding coefficient with the bus crowding coefficient equals 
to 1.4 in Cantwell et al. (2009, and the ratios are larger than 1 in Vovsha et al. (2014). 
However, the ratio in this study fluctuated around 1. In fact, the ratios vary from 1.09 to 
1.21 for the single constant value model and 0.92 to 1.05 for the travel time multiplier 
model. Since the travel time multiplier model seems intuitively more appealing, we 
can conclude from the data in this study that there is a negligible difference between 
crowding’s valuation in metro and bus in the same crowded situations.

MVA Consultancy (2008), Tirachini et al. (2013), and Whelan and Crockett (2009) 
concluded that there is a linear relationship between the cost of crowding in a carriage 

FIGURE 6.
Relative multipliers compared 

with reference values



Public Transport Crowding Valuation: Evidence from College Students in Guangzhou

 Journal of Public Transportation, Vol. 19, No. 3, 2016 90

and standee density. However, the results in this study show a high cost for standing 
relative to sitting (time is valued 1.5–1.65 times higher) but little extra cost for standing 
in moderately-crowded conditions. Crush standing, however, nearly doubles the time 
multiplier. The results in this study are quite different from previous studies. When 
the carriage is not extremely crowded (standee density less than 4 standees/m2), there 
is little difference among the multipliers in this study and the multipliers in previous 
studies, but there are great differences among the multipliers in this study and the 
multipliers in previous studies. For example, the time multiplier for metro is 2.858 in 
a crush standing condition, and the time multipliers in MVA Consultancy (2008) and 
Whelan and Crockett (2009) are only around 2. 

Traditional planning practices usually focus on quantitative factors (travel time, cost, 
etc.). Although some planners in China have recognized the existence of crowding 
in cars of public transit, they have overlooked and undervalued its impact. The 
conclusion in this study is particularly important for transit planning because metro’s 
service quality varies greatly and because nearly all transit service quality decisions are 
made in a formal planning process. Our results can be used during the planning and 
appraisal stages of public transport projects. For example, in the design of a bus or 
metro network, planners should focus not only on traditional factors such as traveling 
time, walking time, ticket price, etc., but also on the impact of crowding in cars. In the 
analysis of network equilibrium, researchers should also take into account the impact of 
crowding in public transit.

In this study, survey data were obtained only from college students, and results perhaps 
can be generalized to others, such as commuters and older adults. However, since 
demographic characteristics may affect the evaluation of crowding in public transit, 
it is necessary to obtain more survey data from other groups to analyze the impact of 
crowding in carriages and determine the differences between the cost of crowding in 
bus and metro cars.
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APPENDIX I:  Summary of Reviewed Crowding Valuation Studies

Author Methods Mode Way of Representing 
Crowding Measurement Value Classification

Accent (2006) Discrete choice 
model

Rail Qualitative 
description

Multiplier When crowding varied from “seat 
uncrowded” to “stand crowded,” 
multipliers increased from 1 to 
2.14.

None

Basu and 
Hunt (2012)

Discrete choice 
model

Train Qualitative 
description

Constant value Valuations of in-vehicle 
were 0.32, 0.46, 0.46, 0.54, 
0.59 Indian Rupees for light 
crowding, moderate crowding, 
heavy crowding, and very 
heavy crowding, respectively, 
adopting very light crowding as 
benchmark.

None

Batarce et al. 
(2015)

Discrete choice 
model

Bus, 
train

Qualitative 
description

Multiplier Value of in-vehicle travel time 
varied from $4.60 to $10.40 when 
standee density varied from 1–2 
standees/m2 to 5–6 standees/m2.

None

Cantwell et al. 
(2009)

Discrete choice 
model, linear 
regression

Train, 
bus

Qualitative 
description

Constant value Ratio between valuation of train 
crowding and bus crowding is 1.4.

Train, Bus

Douglas and 
Karpouzis 
(2006)

Discrete choice 
model

train Combinations of 
seating time, standing 
time, degree of 
crowdedness on train 

Multiplier When crowding on train varied 
from “crowded seat” to “crush 
stand 20 minutes or longer,” time 
multiplier varied from 1.17 to 
2.52.

Gender, Age, 
Trip Purpose

Faber and 
MacDonald 
(2007)

Discrete choice 
model

Rail Qualitative 
description

Multiplier When in-vehicle crowding 
varied from “plenty of seats” to 
“standees packed,” multipliers 
increased from 1 to 3.01 for 
commuters, 2.73 for commuters.

Commuter 
or Not, Car 
Availability, 
Over 40 Min or 
Not

Haywood and 
Koning (2011)

Ordered logit 
Model

Subway Additional minutes 
Willingness to wait 
for more comfortable 
subway

Constant value Travelers in Paris willing to 
increase trip durations by 5.7–8.1 
minutes to enjoy off-peaks 
comfort conditions during rush 
hours.

Age, 
Socioeconomic 
Status

Haywood and 
Koning (2013)

Discrete choice 
model

Metro Standee density Multiplier Multiplier ranged from 1.00 to 
1.57 when standee density ranged 
from 0 to 6 pass/m2.

None

Hensher et al. 
(2011)

Discrete choice 
model

Metro, 
bus 

Seats occupied, 
number of standees

Multiplier With rise of number of standees, 
crowding utility increased with a 
quadratic function.

None

Kroes et al. 
(2013)

Discrete choice 
model

Metro, 
bus, 
train

Load factor Multiplier When load factor were 25–250%, 
multipliers were 1–1.363 
for seated train passengers, 
1.261–1.553 for standing train 
passengers, 1–1.511 for seated 
bus passengers, 1.342–1.718 for 
standing passengers.

None
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Author Methods Mode Way of Representing 
Crowding Measurement Value Classification

Lu et al. (2008) Discrete choice 
model

Rolling 
stock

Combinations 
of probability of 
standing and length 
of time

Multiplier Value of crowding estimated at 
12.05 pence per person minute, 
more than twice value of in-
vehicle time.

Complex 
Design, Cheap 
Talk

MVA 
Consultancy 
(2008)

Discrete choice 
model

Rail Standee density Multiplier When standees density varied 
from 0–6 pass/m2, 1–1.81 
(business, seating), 1.91–2.16 
(business, standing), 1–1.62 
(non-business, seating), 1–2.06 
(non-business, standing).

Business, Non-
Business, Sit, 
Stand, Regional, 
Interurban

Prud’homme 
et al. (2012)

Linear regression Subway Standee density Constant WTP (€/trip) equals to standee 
density × 0.68.

None

Tirachini et al. 
(2013)

Discrete choice 
model

Metro Load factor, standee 
density

Multiplier Linear relationship between 
multipliers and standee density.

None

Vovsha et al. 
(2014)

Discrete choice 
model

Bus, 
LRT, 
rail

Qualitative 
descriptions

Multiplier Non-linear relationship between 
multipliers and standees density.

Trip Purpose, 
Age, Travel 
Mode, Income, 
Trip Length

Wang and 
Legaspi (2012)

Discrete choice 
model

Train Load factor Multiplier Multiplier was function of load 
factor and standing time.

None

Whelan and 
Crockett 
(2009)

Discrete choice 
model

Train Load factor, standee 
density

Multiplier When standee densities increases 
from 0 to 6 pass/m2, time 
multipliers of seated passengers 
and standees increase from 1 to 
1.63 and 1.53 to 2.04, respectively.

Trip Purpose, 
Trip Length, 
Income

APPENDIX I (cont’d):  Summary of Reviewed Crowding Valuation Studies
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APPENDIX II.  Survey for Bus and Metro

Choice 
Set

Choice 
ID

Journey 
Time In-vehicle Crowding Fare Waiting 

Time

1

1 40 min Some restrictions in movement, high probability of physical contact ¥5 10 min

2 60 min No seat, but can circulate freely ¥3 5 min

3 45 min No person standing inside car ¥4 15 min

2

1 40 min No person standing inside car ¥4 15 min

2 30 min No seat, but can circulate freely ¥3 10 min

3 45 min Impossible movement, difficult to get on/off metro car ¥5 5 min

3

1 40 min Impossible movement, difficult to get on/off metro car ¥4 10 min

2 45 min No person standing inside car ¥5 15 min

3 30 min Some restrictions in movement, high probability of physical contact ¥3 5 min

4

1 45 min Some restrictions in movement, high probability of physical contact ¥4 5 min

2 40 min No seat, but can circulate freely ¥5 15 min

3 30 min Impossible movement, difficult to get on/off metro car ¥3 10 min

5

1 45 min Impossible movement, difficult to get on/off metro car ¥4 10 min

2 60 min No person standing inside car ¥5 5 min

3 40 min Some restrictions in movement, high probability of physical contact ¥3 15 min

6

1 45 min Some restrictions in movement, high probability of physical contact ¥5 10 min

2 60 min No person standing inside car ¥3 5 min

3 60 min No seat, but can circulate freely ¥4 5 min

7

1 30 min Some restrictions in movement, high probability of physical contact ¥4 15 min

2 45 min No seat, but can circulate freely ¥3 10 min

3 60 min Impossible movement, difficult to get on/off metro car ¥5 10 min

8

1 30 min No seat, but can circulate freely ¥4 5 min

2 40 min No person standing inside car ¥3 10 min

3 45 min Some restrictions in movement, high probability of physical contact ¥5 15 min

9

1 60 min Impossible movement, difficult to get on/off metro car ¥3 5 min

2 30 min No seat, but can circulate freely ¥5 15 min

3 40 min Some restrictions in movement, high probability of physical contact ¥4 10 min

10

1 45 min Some restrictions in movement, high probability of physical contact ¥5 5 min

2 40 min No seat, but can circulate freely ¥3 10 min

3 30 min Impossible movement, difficult to get on/off metro car ¥4 15 min

11

1 45 min No seat, but can circulate freely ¥4 15 min

2 40 min No person standing inside car ¥5 5 min

3 30 min Some restrictions in movement, high probability of physical contact ¥3 10 min

12

1 45 min No person standing inside car ¥3 10 min

2 40 min No seat, but can circulate freely ¥4 5 min

3 30 min Impossible movement, difficult to get on/off metro car ¥5 15 min
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Choice 
Set

Choice 
ID

Journey 
Time In-vehicle Crowding Fare Waiting 

Time

13

1 45 min No seat, but can circulate freely ¥3 15 min

2 60 min Some restrictions in movement, high probability of physical contact ¥4 5 min

3 60 min No person standing inside car ¥5 10 min

14

1 45 min Some restrictions in movement, high probability of physical contact ¥3 15 min

2 40 min No seat, but can circulate freely ¥5 10 min

3 60 min No person standing inside car ¥4 10 min

15

1 30 min No person standing inside car ¥4 10 min

2 40 min Impossible movement, difficult to get on/off metro car ¥3 15 min

3 45 min Some restrictions in movement, high probability of physical contact ¥3 5 min

16

1 45 min No seat, but can circulate freely ¥4 10 min

2 30 min Some restrictions in movement, high probability of physical contact ¥5 10 min

3 40 min Impossible movement, difficult to get on/off metro car ¥3 5 min

APPENDIX II (cont’d).  Survey for Bus and Metro
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Abstract

Transit choice research focuses predominantly on mode choice and route choice, whereas 
very few studies on stop choice are conducted. To fill this gap, this research aimed to 
study transit stop choice behavior with a focus on how people strategize when making 
their choices. It is hypothesized that travelers treat stops differently based on various 
schemes (strategies); minimizing travel time, access time, and the number of transfers are 
the schemes considered in this study, and the effectiveness of several discrete choice model 
specifications was examined. The study found that path attributes and stop attributes 
have significant impacts on stop selection behavior. Furthermore, users’ socioeconomic 
characteristics along with trip timing play important roles in choosing transit stops. The 
outcomes of this study could facilitate the recent move toward development of behavioral 
route choice models using smart card data, which can then assist travel demand 
estimation models with a focus on public transport.

Keywords: Transit stop choice, transit path choice, travel scheme, nested logit, mixed logit

Introduction

In transit demand modeling literature, two areas have been discussed: 1) transit mode 
choice (or general transit ridership) and 2) transit assignment or path choice. Recently, 
researchers have started using smart card data to develop transit path choice models 
(Schmöcker, Shimamoto, and Kurauchi 2013; Jánošíková, Slavík, and Koháni 2014). 
As smart card datasets can detect repetitive observations, path identification and 
estimation become much easier. By using a smart card dataset, Schmöcker, Shimamoto, 
and Kurauchi (2013) proposed a bi-level discrete choice model in which the upper level 
considers the choice preference of users and the lower level deals with the deterministic 
probabilities of boarding paths. However, as smart card datasets usually lack information 
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about the actual origin and destination, these models can determine path choice from 
only the departure stop. Consequently, these models miss the link between the trip 
origin and departure transit stops. 

This gap was addressed by Nassir et al. (2015) by developing a transit stop choice model. 
They assumed that transit users select their route by selecting a stop (bus stop, train 
station, or ferry terminal) from a desirable choice set. They argue that modeling the 
path choice behavior at the stop level is more appropriate, as the observed data are 
consistent with the choice actually made by the users. They proposed a nested structure 
in which an acceptable model fit is gained by considering a bi-level train and no-train 
nesting structure. Moreover, the study found that the choice of stop depends not only 
on the attributes of the paths (fastest travel time, number of transfers, etc.), but also 
on the attributes of the stops. They showed that the presence of shelter at stops, walk 
time from the origin location to the stop, travel time, number of transfers, and number 
of routes significantly affect the choice of stops. These findings add to the body of 
knowledge on the behavioral aspect of transit mode choice, but their work cannot be 
treated as a comprehensive stop choice study due to three major shortcomings: 1) they 
did not consider users’ socioeconomic and demographic characteristics; 2) attributes 
related to the trip were missing; and 3) their modeling specification was quite limited 
and restricting.

Other stop choice studies are found in the literature, but they focused on other issues. 
Debrezion, Pels, and Rietveld (2009) conducted a railway station choice model for 
Dutch railway users. The main focus of their study was to determine a measure of 
station accessibility. They proposed a nested logit model in which access modes are 
modeled at the upper level and stations are modeled at the lower level. They found 
that access distance has a negative effect on the accessibility indicator, and parking 
availability, frequency of public transport, and railway station quality have a positive 
effect on station choice. Chakour and Eluru (2013) modeled access modes and station 
choice using a different approach. They found that a latent segmentation technique 
delivers better results than the nested logit approach proposed by Debrezion, Pels, and 
Rietveld (2009). Mahmoud, Habib, and Shalaby (2014) investigated the choice of park-
and-ride stations for cross-regional commuter trips in the greater Toronto and Hamilton 
area. The study aimed to find aspects important to the design of more sustainable and 
attractive transit stations. They developed several multinomial logit models by using 
data on parking facilities, surrounding land use, and station amenities.

The work presented in this paper aimed to develop a stop choice model by addressing 
the shortcomings of the model developed by Nassir et al. (2015) and also to introduce 
a strategy-based (scheme-based) decision-making mechanism for transit users, which 
is a unique contribution from this paper. As such, we considered a total of 28 variables 
containing users’ socioeconomic and demographic attributes and 9 variables addressing 
trip attributes, along with path attributes, stop attributes, and correction attributes. We 
also considered three strategy attributes. This study investigated appropriate modeling 
structures by testing different discrete choice models from the Household Travel Survey 
(HTS) of 2009 in Southeast Queensland (SEQ), Australia. The detailed description of 
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the model is presented in the next section, followed by model results, discussions, and 
conclusions. 

Description of the Model

In this study, it was assumed that when a transit user wants to make a trip, he/she 
decides what type of travel scheme is suitable for his/her current situation. In this 
study, we considered three basic schemes: minimize the time of travel (MTT scheme), 
minimize the access time (MAT scheme) to reach the boarding stop, and minimize the 
number of transfers (MTr scheme). Combinations of these three basic schemes (four 
combinations) also were considered. We assumed that users choose the alternative 
(access stop) that best matches their desired scheme and maximizes their utility. For 
example, if a user wants to minimize travel time (an MTT user), he/she chooses an 
alternative that falls under the MTT scheme. Similarly, an MAT-MTr user chooses a stop 
that takes less time to access and has the most direct connection to the destination 
(MAT-MTr scheme). The detailed descriptions of the models are discussed later in this 
section. 

Model Structure

We considered four types of model structures: Multinomial Logit (MNL), Mixed MNL, 
Nested Logit (NL), and Mixed NL. In the MNL structure, the restricting Independence 
of Irrelevant Alternatives (IIA) property holds. This model forms the base case scenario. 
The form of MNL can be described by Equation (1):

 (1)

where, Pni is the probability of selecting the alternative i by an individual n, xni is the 
column vector associated with attributes influencing the choice, and βꞌ is the vector of 
parameters to be estimated.

A Mixed MNL model also was tested to determine if it could capture random taste 
variations among individuals. In the Mixed MNL formulation, βꞌ is treated as a random 
parameter to be estimated, having a probability density function of f (β). The choice 
probability of the Mixed MNL form can be written by the form provided in Equation 
(2). To capture the effects of the three basic schemes in MNL and Mixed MNL models, 
dummy variables (whether or not the option offers the scheme) were considered, 
because no nesting structure can be included in these models.

 (2)

The third type, NL, was chosen to capture the correlation between alternatives 
belonging to different travel schemes. We assumed that alternatives falling under the 
same scheme have some unobserved similarities among them, and a nested structure 
might be able to capture them. Here, the schemes were considered to form the nests 
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and the stops associated with the schemes were included under that nest. In the NL 
formulation, the choice probability for alternative i ∈ Bk can be written as in Equation 
(3):

 (3)

The fourth model, Mixed NL, can capture both random taste variations and correlation 
among the alternatives. Recently, some researchers (Hess, Bierlaire, and Polak 2005; 
Antonini, Bierlaire, and Weber 2004; Bajwa et al. 2008; Hammadou et al. 2008) reported 
a technique in which the βꞌ coefficients inside the nests are treated as random 
parameters with a function of f (β). The nest coefficients were not assumed to have any 
distribution. The model can be written as in Equation (4):

 (4)

In the mixed models, randomness was captured assuming a log-normal distribution 
for the variables that show negative signs in MNL models, a uniform distribution for 
dummy variables, and a normal distribution for all the other variables (Hensher and 
Greene 2002).

Several studies focusing on the optimal choice of transit users combine all costs into 
a unified generalized cost to be considered in the objective function. Unlike this 
approach, this study attempted to introduce a “behavioral” stop selection model that 
reflects the process of decision-making by travelers. This behavioral model assumes 
that travelers maximize their utility based on the attributes of alternatives as well as a 
random error component capturing what is not known to the modeler. The proposed 
behavioral model is unique in a sense that it takes into account different ways to 
capture the unobserved error component in the utility function. It also examines mixed 
formulations to capture complicated taste variation structures.

Nest Structures

In this study, we considered three schemes (MTT, MAT, and MTr) individually and 
their combinations. Therefore, seven nesting groups were analyzed (see Table 1). These 
nesting structures also were used in Mixed NL estimation models. Thus, each group 
consisted of two models: NL and Mixed NL. The idea of considering different schemes 
as nests derived from the findings of other researchers (Nassir et al., 2015; Kurauchi et 
al., 2012; Fonzone and Bell 2010; Fonzone et al. 2010). Nassir et al. (2015) showed that 
transit users tend to choose stops that minimize travel time, minimize access time, and 
minimize the number of transfers. Kurauchi et al. (2012) found that London Oyster Card 
users might use different schemes (strategies) for their regular commute because they 
do not use fixed routes. Fonzone and Bell (2010) and Fonzone et al. (2010) also reported 
similar findings. 
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Group Model Name Number 
of Nests Nest Structure

1 TT, TT[M]* 2 MTT, NoMTT

2 AT, AT[M] 2 MAT, NoMAT

3 Tr, Tr[M] 2 MTr, NoMTr

4 TT-AT, TT-AT[M] 4 MTT, MAT, MTT&MAT, None

5 TT-Tr, TT-Tr[M] 4 MTT, MTr, MTT&MTr, None

6 AT-Tr, AT-Tr[M] 4 MAT, MTr, MAT&MTr, None

7 TT-AT-Tr, TT-AT-Tr[M] 8
MTT, MAT, MTr, MTT&MAT, MTT&MTr, 
MAT&MTr, MTT&MAT&MTr, None

* [M] = Mixed NL model

In Table 1, the first nesting group is for the MTT scheme. Here, we considered two 
nests: 1) stops that are fastest (fastest routes from the stop) were grouped in the MTT 
nest, and 2) the rest of the stops were grouped in NoMTT nest. The next two groups 
considered the MAT and MTr schemes, similar to the first nesting group. The next three 
groups (4, 5, and 6) coupled two schemes; for example, in the fourth structure, both 
MTT and MAT were coupled. Here, there were four probable combinations of these two 
schemes: 1) minimizing travel time only (MTT), 2) minimizing access time only (MAT), 
3) considering both (MTT and MAT), and 4) considering none of them (None). The last 
structure considered all three schemes, with all the probable combinations (eight nests). 

Data Preparation

Descriptive Analysis

The dataset used in this research was taken from the Household Travel Survey (HTS) 
of May 2009 conducted in Southeast Queensland, Australia. All travel records (1,693 
journeys) using public transport (which includes three modes: bus, train, and ferry), with 
walking legs of access, egress, and transfer(s), were extracted from the HTS data for this 
research. These 1,693 journeys included 1,435 transit trips with no transfers, 229 trips 
with a single transfer, 26 trips with 2 transfers, and 3 trips with 3 transfers. Regarding 
the mode of the access stop, 1,176 travelers had chosen bus stops, 492 travelers had 
chosen train stations, and 25 had chosen ferry terminals. The Queensland Department 
of Transport and Main Roads (DTMR) provided another dataset containing information 
about stop facilities such as shelter, lighting, access walkways, boarding slabs, etc. The 
SEQ transit authority Translink shared transit network data and service schedules 
for May 2009. The transit network included 14,442 stops, 767 paths, and 33,897 
scheduled trips. The walk network data, consisting of local streets, sidewalks, crosswalk 
connections, walking ramps, footways, and stairways for SEQ, were obtained from 
OpenStreetMap (http://www.openstreetmap.org/). This included about 250,000 nodes 
and 340,000 links. ArcGIS was used to calculate the shortest walking paths. The average 
walking speed of a traveler was assumed to be 1.2 m/s to calculate walking times.

TABLE 1.
Nest Structures for Proposed 

NL and Mixed NL Models

http://www.openstreetmap.org
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At the end of the choice set generation process, 1,238 observations were finalized. 
The scheme preferences of users for selecting their access stops were revealed from 
these data. A “reasonably minimum” travel time and access time were fixed for each 
choice set to account for the fact that users’ perception of time does not exactly 
match reality. It was considered likely that an alternative stop yielding a travel time 
that was reasonably close to the minimum travel time of that choice set would be 
considered by an MTT user (who chooses a minimizing travel time scheme). To calculate 
the “reasonably minimum” travel/access time for a choice set, 10% of the difference 
between the maximum and minimum travel/access times was added to the minimum 
travel/access time. Stops that yielded less than this “reasonably minimum” travel/
access time threshold were flagged as MTT or MAT stops. For the MTr scheme, only the 
minimum number of transfers was considered. Finally, to be consistent with the relevant 
nesting group, separate data files were generated for each model. The revealed choice of 
schemes for each nesting group is presented in Figure 1.

FIGURE 1.
User preference  

of schemes

Figure 1 shows that most travelers choose access stops that contain some schemes. In 
the three-single-scheme situation, MTT and MTr schemes seem to be more popular 
(63% of users choose MTT and 71% choose MTr) than MAT schemes (only 49% of users 
choose MAT schemes). If there are multiple schemes, users seem to prefer combined 
schemes rather than single schemes or none. For example, in TT-AT and TT-Tr, the share 
of combined schemes are dominant (MTT&MAT=37%, MTT&MTr=49%) compared 
to single schemes or none. Contrastingly, in the AT-Tr combination, the share of MTr 
(38%) is more than the combined schemes of MAT&MTr (34%). Finally, in the TT-AT-Tr 
combination, users seem to prefer combined schemes. Very few (8%) users seem to have 
no preference for schemes.
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Explanatory Variables

Several stop choice works were studied to develop the explanatory variables. Debrezion, 
Pels, and Rietveld (2009) mainly considered station facility attributes to construct 
their model. Chakour and Eluru (2013) considered socio-demographic attributes, 
trip characteristics, facility attributes, and land-use and built-environment factors. 
Mahmoud, Habib, and Shalaby (2014) studied facility attributes and land use variables. 
Nassir et al. (2015) considered facility attributes, impedance attributes, and correction 
attributes. In this study, we considered a total of 61 explanatory variables, which could 
be classified in 6 classes: 1) facility attributes, 2) impedance attributes, 3) user attributes, 
4) trip attributes, 5) strategy attributes, and 6) correction attributes. Brief descriptions 
of the variables are provided in Table 2.

TABLE 2.  Explanatory Variables of Models

Variable Mean SD Description

Facility

AccessWalk 11.33 7.11 Walk time from origin location to stop (min) 

Shelter 0.41 0.49 Binary variable indicating sheltered stop 

StopLight 0.34 0.47 Binary variable indicating illuminated stop 

StreetLight 0.31 0.46 Binary variable indicating illuminated street 

BoardingSlab 0.88 0.32 Binary variable indicating existence of boarding slab 

FootPath 0.87 0.34 Binary variable indicating existence of foot path 

Map 1.65 2.74 Total number of printed map/schedule at stop 

Impedance

FastestTT 46.95 19.85 Travel time (min) of fastest path to destination from stop (excluding AccessWalk)

MinTransfer 0.83 0.84 Minimum number of transfers among paths from stop to destination 

MinWalk 19.05 8.88 Minimum walk time (min) among paths from stop to destination (excluding AccessWalk) 

MinFare 1.15 1.10 Minimum fare among paths from stop to destination

MinWait 10.56 14.34 Minimum wait time (min) among paths from stop to destination

NumRoutes 1.74 1.96 Number of available paths from stop to destination

TotalFreq 4.55 7.46 Summation of frequency for all paths from stop to destination 

AveTT 48.50 20.33 Average travel time of all paths from stop to destination (excluding AccessWalk) 

AveTransfer 0.95 0.83 Average number of required transfers for all paths from stop to destination 

AveWalk 19.70 8.83 Average walking time (min) for all paths from stop to destination (excluding AccessWalk) 

AveFare 1.17 1.10 Average fare for all paths from stop to destination

AveWait 12.37 15.17 Average waiting time (min) for all paths from stop to destination

User

Age 35.55 19.20 Age of user

Male 0.44 0.50 Binary variable indicating user is male

HHSize 3.02 1.35 Total number of members in HH (Household)

CoupleKids 0.36 0.48 Binary variable indicating user H/H type is couple with kids

OneParent 0.08 0.27 Binary variable indicating user H/H type is one parent with kids
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Variable Mean SD Description

Sole 0.13 0.33 Binary variable indicating user H/H type is sole

Couple 0.20 0.40 Binary variable indicating user H/H type is couple

OtherHHType 0.23 0.42 Binary variable indicating user H/H type is other

House 0.81 0.40 Binary variable indicating user lives in a house

Flat 0.15 0.35 Binary variable indicating user lives in a flat

Townhouse 0.05 0.21 Binary variable indicating user lives in a townhouse

Bedrooms 3.13 0.98 Number of bedrooms in accommodation

OwnedProp 0.57 0.50 Binary variable indicating user lives in owned property

LivedInTheProp 99.38 127.87 Total number of months lived on accommodation

HHIncome 1,850.28 1,340.09 Weekly income of H/H

HighPerIncome 0.11 0.31 Binary variable indicating user falls in high income group

MedPerIncome 0.38 0.49 Binary variable indicating user falls in medium income group

LowPerIncome 0.51 0.50 Binary variable indicating user falls in low income group

FullTimeWork 0.37 0.48 Binary variable indicating user is full time worker

AnyWork 0.58 0.49 Binary variable indicating user works

Student 0.00 0.06 Binary variable indicating user is student

AustralianBorn 0.72 0.45 Binary variable indicating user born in Australia

CarLicence 0.51 0.50 Binary variable indicating user has car license

BikeLicence 0.02 0.15 Binary variable indicating user has motorbike license

NoLicence 0.39 0.49 Binary variable indicating user has no license

TotalVehs 1.37 0.99 Total number of vehicles in HH

PersonalVeh 0.75 0.43 Binary variable indicating user has personal vehicle

Bicycles 1.39 1.52 Total number of bicycles in HH

Trip

Train 0.05 0.22 Binary variable indicating trip access stop is train station

AMPeakDep 0.28 0.45 Binary variable indicating trip starts in AM peak Hour

PMPeakDep 0.17 0.38 Binary variable indicating trip starts in PM peak Hour

PeakHourDep 0.45 0.50 Binary variable indicating trip starts in a peak Hour

AMPeakArv 0.25 0.44 Binary variable indicating trip ends in AM peak Hour

PMPeakArv 0.22 0.42 Binary variable indicating trip ends in PM peak Hour

PeakHourArv 0.48 0.50 Binary variable indicating trip ends in a peak Hour

Weekday 0.90 0.30 Binary variable indicating trip was on weekday

PurposeWork 0.67 0.47 Binary variable indicating trip was made for work purpose

Strategy (used only for MNL and Mixed MNL models)

MTTStr 0.23 0.42 Binary variable indicating option offers minimum travel time

MTransferStr 0.45 0.50 Binary variable indicating option offers minimum number of transfers

MAccessStr 0.17 0.37 Binary variable indicating option offers minimum walking access time

Correction for Correlation

CfC1 1.09 0.79 Correction for correlation, basic definition

CfC2 1.09 0.79 Correction for correlation, weighted by path frequency 

CfC3 1.09 0.79 Correction for correlation, weighted by path travel time 
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Facility attributes included seven variables related to the transit stop. Two types of 
impedance attributes, direct and aggregate, were calculated from a path enumeration 
process. The path enumeration process refers to the procedure of generating a set 
of reasonable paths from a given origin and destination at the given departure time. 
Direct impedance attributes (the measures of best paths from different points of view) 
included five variables: fastest travel time, minimum number of transfers, minimum 
walking time, minimum fare, and minimum waiting time among all the reasonable paths 
from the origin to the destination. These, in fact, represented the best reasonable path 
in these five aspects from each stop. For example, for a particular stop, the fastest travel 
time variable indicated the fastest travel time of all reasonable paths from that stop. 
Similarly, the minimum number of transfers of all reasonable paths from the stop was 
recorded for the minimum transfer variable, and so on. Aggregate impedance attributes 
(including averages among all reasonable paths) included seven variables, among which 
five included the average measure (travel time, number of transfers, walking time, 
fare, and waiting time) among all reasonable paths. The other two contained the total 
number of possible paths from the access stop to destination and the total frequency of 
all these paths.

User attributes contained a variety of socio-economic attributes of the user. Trip 
attributes contained trip mode, timing, and trip purpose. Strategy attributes were used 
only for the MNL and Mixed MNL models. Corrections for correlation attributes were 
developed to deal with path commonalities (overlapping routes, which have strong 
correlations) among the stops. Path commonalities breach the IID (independent and 
identically-distributed) property of the MNL models to some extent and can lead to 
inaccurate estimations. The correction factors (CfC1, CfC2, CfC3) proposed in this 
research were defined based on the Path Size Correction Logit (PSCL) formulation 
(Nassir et al. 2014). To meet the specifications of the access stop choice model, these 
factors were adjusted as follows (equations 5, 6, and 7). For an observation from origin 
location o at departure time τ to destination location d, three definitions of correction 
for correlation were defined for every stop s in the choice set :

 (5)

  
 (6)

 

 (7)

Where i, j are the indices of the routes; s, t are the indices of stops; Γ d,τ is the set of all 
routes at stop s with reasonable paths to destination d at time τ; fi,s is the frequency of 
route i at stop s at time τ; Tj,d is the travel time of the fastest path from stop s boarding 
on route i to destination d at time τ; and δi,t  is the top-route incidence parameter, 

δi,t   =    1, if i ∈ Γ d,τ

 o, if i ∉ Γ d,τ

s
τ

τ

τ

d,τ

s

s
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Choice Set Generation

Stop choice sets were generated by the algorithm in Nassir et al. (2015) in four steps 
(Figure 2). Initially, observed origin-destination and departure information (day and 
time) data were collected along with the walkway network and transit schedule. This 
information was used in the second step as an input. A version of a transit Trip-Based 
Shortest Path (TBSP) algorithm was used in this step (Khani et al. 2012; Nassir et al. 2012; 
Khani, Hickman, and Noh 2014; Khani 2013). This version is a transit time-dependent 
K-shortest path algorithm that aims to minimize the arrival time to the destination 
and was modified to terminate after the destination was marked for computational 
efficiency.

FIGURE 2. 
Choice set generation 

framework

This algorithm has a “segment elimination” module that was executed after each 
iteration of the TBSP code. A segment is a combination of three elements: boarding 
stop, alighting stop, and the path connecting these two stops. In each iteration, after 
the TBSP generates a path, the segment elimination module eliminates all the segments 
used in that path from the schedule data and, thus, updates the schedule for the next 
iteration. This was done to create diversity among the generated paths.

In the third step, reasonable paths were sorted out. The TBSP code contained three 
reasonability conditions for path generation: 1) transfer walking distance cannot exceed 
1km, 2) access and egress walks cannot exceed 2km, and 3) waiting time before a 
boarding cannot exceed 1 hour. Two other reasonability checks also were set after the 
TBSP path generation: 1) path travel time does not exceed the shortest path travel time 
plus a threshold factor known as off-optimality, and 2) number of transfers does not 
exceed 3. The maximum off-optimality threshold was set as 20 minutes, as suggested in 
Nassir, Hickman, and Ma (2015).

The TBSP code also had an embedded maximum walking range of 2 km to generate the 
locations of the access stops from which the paths are generated. This 2km threshold 
range was taken from the preliminary analysis of access walk from the SEQ HTS data, in 
which about 17% of the observations were found to walk more than 1km to access to 
a transit stop (Nassir et al. 2015). At the end, the maximum number of stop choices in 
a set was found to be 70 stops, although the majority of observations had fewer than 
20 stop choices in the set. Finally, based on the set of reasonable paths, impedance 
attributes and correction factors for each stop choice were calculated.



Modeling Transit User Stop Choice Behavior: Do Travelers Strategize?

 Journal of Public Transportation, Vol. 19, No. 3, 2016 108

It was found that the TBSP algorithm could select about 94.5% of the chosen access 
stops (1,599 out of 1,693) successfully. The unsuccessful choices of stops were added 
in the choice sets manually. The impedance attributes of these stops were calculated 
by restricting the K-shortest path generation algorithm to start from these stops. 
However, some observations were not matched to the exact stop location. We inferred 
these locations by applying three matching keys: whether the distance is within a 100m 
threshold, the mode of the stops, and the path serving that stop. Ultimately, we had to 
exclude some of the observations (about 26.8%), as we failed to locate the chosen access 
stop or observed ambiguity between the HTS data and generated paths.

Model Results and Discussions

The models were estimated using the discrete choice estimation package BIOGEME 
(Bierlaire 1998). Initially, all the models were estimated separately by one of the correction 
factors. Finally, the correction factors had to be dropped because these seemed to be 
insignificant, even at the 10% significance level. Table 3 provides a comparison between 
the models (MNL, NL, Mixed MNL, and Mixed NL) estimated in this study.

From Table 3, we can see that the MNL and NL models show similar adjusted ρ2 
values compared to the Mixed MNL and Mixed NL models. However, the Bayesian 
Information Criteria (BIC) values seem to be better in the MNL and NL models 
compared to the Mixed MNL and Mixed NL models. The model results indicate that 
two of the single-scheme NL models (AT model and TT model) result in significant nest 
structures. Nonetheless, in the single scheme Mixed NL models, the nest coefficients are 
insignificant. Furthermore, among the dual scheme models, TT-AT models show better 
nest structures and TT-Tr models show better BIC values than the other two groups. In 
contrast, most of the nest coefficients of the only tri-scheme model are insignificant, 
although their model fit (adjusted ρ2) is better than all the other models. Therefore, 
from Table 3 we can conclude that travel schemes such as MTT and MAT have an 
influence on the users’ choice of access stops; users generally follow MTT or MAT 
schemes or a combination of these two schemes (MTT-MAT). 

From the comparisons shown in Table 3, we selected the best models according to three 
criteria: BIC, adjusted ρ2, and significance of the nest coefficients. The MNL model shows 
the best BIC value among all the models; the adjusted ρ2 value also is better than some of 
the models. The Mixed MNL model has a low BIC value compared to the MNL model, but 
the adjusted ρ2 value is slightly better than the MNL model. Among the nested and mixed 
nested models, the TT-Tr and TT-Tr[M] models show the best BIC values (4012.04 and 
4014.21, respectively). Moreover, the adjusted ρ2 values also are higher than most of the 
other models in this group. Nevertheless, two of the nest coefficients of these two models 
seem to be insignificant (nest coefficient “None” was highly insignificant). On the other 
hand, TT and AT models have significant nest coefficients, but BIC and adjusted ρ2 values 
seem to be worse than the other models in this group. However, if we want to balance the 
three criteria for model selection (BIC, adjusted ρ2, and nesting coefficients), the TT-AT 
model can be considered as the best model among the nested and mixed nested models. 
The estimates of the MNL model and the TT-AT model are shown in Table 4. 
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TABLE 3.  Comparisons of Models*

MNL
Nested Logit Models

TT AT Tr TT-AT TT-Tr AT-Tr TT-AT-Tr

No. of parameters 9 11 13 15 17 21 23 26

Final log-likelihood -1970.858 -1980.199 -1985.941 -1962.492 -1951.951 -1931.246 -1943.24 -1917.642

Likelihood ratio test 1939.051 1915.459 1903.974 1950.872 1971.955 2013.364 1989.377 2040.369

ρ2 0.329 0.326 0.324 0.332 0.336 0.343 0.339 0.347

Adjusted ρ2 0.326 0.322 0.32 0.327 0.33 0.336 0.331 0.338

BIC 4005.81 4038.73 4064.46 4031.80 4024.96 4012.04 4050.27 4020.44

Nest Coefficients (λ) Not Applicable
MTT=0.81
NoMTT=0.82

MAT=0.78
NoMAT=0.75

MTr=0.79
NoMTr=1.00 

(0.02, 0.97)

MTT=0.67
MAT=0.81 (1.32, 0.19)
MTT&MAT= 0.63
None=0.78

MTT=0.83 (1.43, 0.15)
MTr=0.66
MTT&MTr= 0.73
None=0.99 (0.13, 0.9)

MAT=0.90 (0.78, 0.44)
MTr=0.69
MAT&MTr= 0.93 (0.36, 0.72)
None=0.96 (0.52, 0.61)

MTT=0.71 (1.35, 0.18)
MAT=0.95 (0.32, 0.75)
MTr=0.63
MTT&MAT=0.68 (1.21, 0.23)
MTT&MTr=1.00
MAT&MTr=0.38 (1.03, 0.3)
MTT&MAT&MTr=1
None=0.98 (0.31, 0.76)

Mixed MNL
Mixed Nested Logit Models

TT[M] AT[M] Tr[M] TT-AT[M] TT-Tr[M] AT-Tr[M] TT-AT-Tr[M]

No. of parameters 11 14 14 17 18 22 23 27

Final log-likelihood -1966.73 -1982.25 -1974.53 -1960.11 -1976.32 -1928.77 -1938.57 -1916.69

Likelihood ratio test 1942.397 1905.092 1926.789 1955.643 1923.224 2018.315 1998.724 2042.266

ρ2 0.331 0.325 0.328 0.333 0.327 0.343 0.34 0.348

Adjusted ρ2 0.327 0.32 0.323 0.327 0.321 0.336 0.332 0.338

BIC 4011.79 4064.19 4048.77 4041.28 4081.28 4014.21 4040.92 4025.66

Nest Coefficients (λ) Not Applicable

MTT=0.89 
(1.2, 0.23)

NoMTT=0.91 
(1.24, 0.21)

MAT=0.78 
(1.78, 0.08)

NoMAT=0.76

MTr=0.81
NoMTr=1 

(0.01, 1.00)

MTT=0.74
MAT=0.79 (1.44, 0.15)
MTT&MAT= 0.63
None=0.81

MTT=0.85 (1.23, 
0.22)

MTr=0.65
MTT&MTr= 0.75
None=1 (0.06, 0.95)

MAT=0.96 (0.3, 0.76)
MTr=0.66
MAT&MTr= 0.93 (0.33, 0.74)
None=0.95 (0.58, 0.56)

MTT=0.73 (1.27, 0.2)
MAT=1 (.01, 1.00)
MTr=0.63
MTT&MAT=0.74 (0.97, 0.33)
MTT&MTr=0.54
AT Tr=0.3 (0.97, 0.33)
MTT&MAT&MTr=1
None=0.94 (0.8, 0.42)

*t-test value and p-value are provided in parentheses for coefficients that are not significant at 5% level. 
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MNL Model TT-AT Model

Explanatory Variables 
(β) Coefficient Robust 

Std. Error
Robust 
t-test Coefficient Robust 

Std. Error
Robust 
t-test

MinTransfer -0.311 0.13 -2.39 -0.855 0.0772 -11.07

MinWalk -0.0329 0.0105 -3.14 -0.026 0.0091 -2.85

NumRoutes 0.0572 0.0141 4.07 0.048 0.0124 3.85

AccessWalk -0.164 0.0133 -12.39 -0.124 0.0134 -9.24

StopLight 0.388 0.0951 4.08 0.292 0.0799 3.65

Train 2.3 0.123 18.64 2.510 0.3110 8.06

MTTStr 0.341 0.151 2.25 N/A

MTransferStr 1.030 0.176 5.83 N/A

AustralianBorn_TT 0.435 0.177 2.46 0.825 0.1170 7.04

Male_TT_AT N/A -0.363 0.1620 -2.25

Student_TT_AT N/A 9.730 0.7460 13.04

Flat_TT_AT N/A 0.569 0.1950 2.92

HHSize_TT_AT N/A 0.256 0.0343 7.47

PMPeakDep_TT_AT N/A -0.491 0.2390 -2.05

Nest Coefficients (λ)*

TT N/A 0.813 0.177 1.32+

AT N/A 0.671 0.152 3.21

TT AT N/A 0.633 0.237 2.43

None N/A 0.781 0.079 3.58

* Robust t-test is estimated for the hypothesis, H0=1
+ Significant at 0.20 level

From Table 4, the two direct impedance attributes MinTransfers and MinWalk were 
found to be significant. The signs of these coefficients were negative, as expected; 
this means that transit users prefer to start their trip from a stop that had a more 
direct connection to their destination and involved less walking. One of the aggregate 
impedance attributes, NumofRoutes, was found to be significant in the models; this 
means that transit users tend to choose access stops that have multiple path options. 
Facility attributes AccessWalk and StopLight also were found to be significant. The 
negative sign of AccessWalk means users perceives more disutility if they have to walk 
more to the access stop. The positive sign of the StopLight attribute implies that users 
prefer to choose stops that have lighting. The sign of the coefficient of Train is positive, 
which means that transit users in SEQ are much more willing to travel by train than by 
other modes.

Generally, the coefficients of the common variables of these two models (presented in 
Table 4) seem to be quite similar, except for MinTransfer; the coefficient of MinTransfer 
was smaller in the MNL model. This probably happened because some of the effects 
of this parameter might have been captured by MTransferStr, which is a dummy 
variable for the presence of the MTr scheme. These models identify that users consider 
every minute of walking to the access stop to be about five minutes of other types of 

TABLE 4. 
Estimation Results of  

Best Models
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walking (e.g., for transfers or walking to the destination) involved in the travel path. This 
indicates that users do not perceive/evaluate walking in a consistent way. Somehow, 
walking to access stops poses a much higher disutility than other walks in the travel 
path. This might support theories about the myopic behavior of transit users by other 
researchers (Nassir et al. 2015; Fonzone and Bell 2010).

Compared to previous studies, in a nutshell, this study considered 61 attributes, 
compared to 21 attributes considered in Nassir et al. (2015). In analyzing the same 
dataset, the current study found 8 significant attributes in the MNL model and 12 
significant attributes in the TT-AT model compared to 6 significant attributes  in Nassir 
et al. (2015). Furthermore, the model fit (adjusted ρ2: MNL model 0.326, TT-AT model 
0.336) in this study seems to outperform the model fit (adjusted ρ2: 0.287) developed by 
Nassir et al. (2015).

Some of the socio-economic attributes also were found to be significant. As reported 
in Table 4, both the models show that Australia-born users are more likely to select 
MTT schemes for choosing transit stops. In the TT-AT model, female students are 
more likely to use the combination  of MTT and MAT schemes when choosing their 
preferred transit stop. Moreover, users from larger households and users living in a flat 
tend to prefer the combination of MTT and MAT schemes when choosing transit stops. 
Trip attribute PMPeakDep was found to be significant, indicating that users making 
a trip other than at the PM peak hour are inclined to follow the combined scheme of 
MTT and MAT when choosing their transit stop. Another interesting finding is that 
of the three strategy attributes used in the MNL model, two (MTT and MTr) became 
significant, which indicates that users consider either MTT scheme or MTr scheme. The 
NL model presented in Table 4 (TT-AT) shows significance (5% significance level) for the 
AT, TT-AT, and None schemes. The TT scheme is significant at the 20% level.

Model Predictability and Sensitivity

The choice probabilities of all the options were calculated for the MNL and TT-AT 
model. It was found that the models could correctly predict the users’ chosen 
alternatives in 46% (MNL) and 44% (TT-AT) of cases. It also can be interpreted that, 
according to the MNL model, 46% of users choose the stop with the highest probability. 
Again, 84% of users (MNL model) seem to choose the access stop from a set of five 
stops with the highest probabilities; for TT-AT model, this is about 79%. The predictive 
capabilities of these models are shown in Figure 3, which presents the cumulative 
percentage of successful prediction, with an increasing pattern for the number of 
options considered to include the actual selected option. In other words, if a set of 
predicted options is considered to include the observed option, the chance of having 
the observed option increases. Obviously, as the choice set (as defined previously in the 
methodology section) size increases, the chance of including the observed option in the 
set of predicted options decreases. In Figure 3, five curves are fitted, representing the 
prediction capabilities for having the observed choice in the set of predicted options 
where the highest probability is for curve 5. This shows that the models can predict the 
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choices better if the choice set size is relatively small, and vice versa. However, when the 
choice set size is larger than 40, the predictability is uncertain.

FIGURE 3. 
Prediction capabilities of  

stop choice models

The TT-AT model was tested to observe the sensitivity of the nests with a change 
of access time and walking time; the results are shown in Figure 4. Here, the effects 
of waiting time seem to be almost similar to the effects of access time on the nests. 
However, the difference is in the magnitude, which seems to be much higher for the 
access time change. Figure 4 shows that by increasing the access time and waiting time, 
the probability of choosing from the AT and TT AT nests (strategies) increases; however, 
the TT nest seems to be relatively insensitive. This can be interpreted as follows: if the 
access time or waiting time is increased, the probability of selecting a stop that follows 
the MAT or MTT-MAT scheme will be increased, and if the access time or waiting time 
is decreased, the probability of selecting a stop that follows the MAT or MTT-MAT 
scheme will be decreased.
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Conclusions

One of the contributions of this study is to improve the stop choice model developed 
by Nassir et al. (2015) by adding socioeconomic, trip, and strategy variables. 
Furthermore, this study considered different nesting structures and developed several 
types of discrete choice models. Relating the nesting structures to the schemes/
strategies people consider when selecting stops is a unique contribution of this paper. 

This study provides a deeper understanding about stop choice behavior compared to 
the existing literature. It was found that transit users can use different travel schemes/
strategies when selecting access stops. The most appropriate scheme seems to be the 
combination of minimizing travel time and minimizing access time. From the behavioral 
point of view, it can be concluded that SEQ transit users perceive alternatives that are 
either faster (MTT nest) or more easily accessible from the origin of the trip (MAT nest), 
or both (fast and nearby) in a similar way.

FIGURE 4.
Effects of different variables 

on nests
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This study shows that the choice of access stop is not only affected by impedance 
factors of the paths (number of transfers, walking time, travel time), but also by the 
attributes of the stop (such as walking time to access the stop and the presence of 
lighting at the stop). Moreover, the presence of multiple paths from a stop shows a 
positive influence on the utility of stop choices. Again, some socioeconomic attributes, 
such as gender, studentship, place of birth, household size, and dwelling type (flat), 
affect the choice of stop. Furthermore, transit users also take into account the transit 
mode and time of the day of the trip. One interesting point is that the developed 
models relate some of the impedance factors associated with paths linked to the origin 
and destination stops. Therefore, the proposed approach of this study married the stop 
and path selection themes in a straightforward manner, and further analysis is required 
to examine the opposite direction when stop attributes are includes in a route choice 
model. This work is underway by the authors.

The main contribution of this research is that it can be used to develop a behavior-
based transit path choice model from trip origin to destination. For this, the suggested 
access stop choice model can be developed from the trip origin to the departure stop. 
Again, from the departure stop to the destination stop, other boarding strategy-based 
models (from smart card data) can be developed. Eventually, the combination of these 
two models can effectively estimate and evaluate future transit demand from any 
given origin to destination. Thus, the presented study can be extremely beneficial for 
the policy-makers, as this eventually affects the evaluation process of transit policies 
considered for the target year.

Further investigations can be conducted to determine the impacts of travel schemes 
when paths are considered to be selected by travelers rather than stops. Other model 
structures, such as cross-nested logits, mixed cross-nested logits, and nested logits with 
multiple levels and combinations (e.g., scheme-mode-stop, scheme-mode-path, mode-
scheme-path etc.), also can be tested. Results from such models can provide a clearer 
understanding about transit choice research.
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Cross-Elasticities in Frequencies and 
Ridership for Urban Local Routes

Joseph C. Totten and David M. Levinson, Ph.D.
University of Minnesota–Twin Cities

Abstract

Observational data from the Minneapolis-Saint Paul region’s Metro Transit were analyzed 
to determine the effects of service levels on ridership levels at different intervals. The 
research compares changes in service levels and ridership in several service intervals and 
includes elasticities and cross elasticities, or the influence that these service levels have on 
different service intervals’ ridership. These cross-elasticities were found to have little effect 
during the week; however, weekend ridership was found to be influenced by rush-hour 
and overnight frequencies. 

Keywords: Bus transit, scheduling, elasticity

Introduction

Most people in the U.S. do not ride public transportation, specifically local buses. It 
has been posited that one factor is due to flexibility: although services for rush hour 
may be adequate, there is little flexibility for return trips at non-standard times (Jaffe 
2014; Dutch 2015). This study investigated these assertions, with the hypothesis that if 
a common reason for not riding transit is a lack of flexibility, an increase in midday and/
or evening services would increase rush-hour ridership. This was done by determining 
elasticities of ridership with respect to frequencies of bus routes. Elasticities signify the 
percent change in ridership that results from a 1% change in frequency; a cross-elasticity 
is the elasticity of a service interval’s ridership with respect to another interval’s 
frequency. This research is important because it informs transit providers about how 
they can best use their limited resources to garner ridership. The routes examined in 
this study were local routes, primarily within the Minneapolis and St. Paul city limits, 
with pre-existing midday and evening services. The routes examined and their general 
changes in frequency are shown in Figure 1.
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FIGURE 1.  Map of urban-local bus routes and frequency change, Minneapolis
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Literature Review

The studies shown in Table 1 are primarily literature reviews and analysis of existing 
studies. The values shown and discussed in this study focus on short-term elasticities, 
with year-over-year changes in ridership and service levels. Previous works on the effect 
of frequency on ridership have found that frequency has an elasticity between 0.30 
and 1.03 (Evans 2004). The lower value is a better representation of urban systems, the 
higher value is more related to suburban systems with infrequent service. Furthermore, 
on weekends, when there is less-frequent service in metropolitan transit, higher 
elasticities are observed than on weekdays (Paulley et al. 2006). As a proxy for the 
influence of increasing service levels, service expansion or increasing the hours that a 
service is offered also has been studied (Simmons 2014), with findings that expanding 
evening service had an elasticity of 0.30 to 0.50 while equivalent increases occur during 
the day (Currie and Loader 2009). Studies regarding the frequency of off-peak service 
and its effect on ridership during other service periods were not found by the author.

TABLE 1. 
Previous Study Results

Study Author Year(s) Range Locations Studied

Evans 2004 0.30–1.03 North America, Europe

Currie and Loader 2009 0.17–0.38 weekday 0.80+ weekends Melbourne, Australia, 

Litman 2015 0.50–0.70
North America, Western 
Europe 

Paulley et al. 2006 0.38 Europe

Brown and Neog 2012 0.76–0.91 United States

Koonce et al. 2006 0.30–1.11 Portland, Oregon

Lago et al. 1981 0.30–0.85 North America, London

Methods

Data were collected by Metro Transit of Minneapolis-St. Paul, Minnesota, for the fall 
quarters of three years (2011, 2012, 2013) and include the number of runs started each 
hour and ridership figures for weekday, Saturday, and Sunday service, with weekday 
ridership divided into rush-hour ridership and non-rush-hour ridership. Only data 
from local and limited-stop routes were used, as these routes were less susceptible to 
changes in routing while still providing changes in scheduling. Making the raw data 
usable for this analysis required taking the runs started each hour and averaging them 
for each service interval to get each service interval’s average runs per hour in each year. 
Additionally, the percent change of every service interval’s data needed to be taken for 
2011 to 2012 and 2012 to 2013. The equation used for percent change in frequency is:

 

Where ΔF is the percent change of hourly frequency for the service interval from one 
year to the next and Ft is the hourly frequency for the service interval in year t.
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The equation used for percent change in ridership is:

 

Where ΔR is the percent change of ridership from one year to the next and Rt is the 
ridership in year t.

To investigate the hypothesis, elasticities and cross-elasticities were studied. Elasticity is 
used when both the dependent and independent variables vary over time and can be 
expressed in percent changes. The value of elasticity is the coefficient of percent change 
of the independent variable to produce the dependent variable, as seen in the following 
equation:

	 ∆R =	∆F * E

Where ΔR is the percent change of ridership, ΔF is the percent change of frequency, and 
E is the elasticity.

As this study aimed to determine elasticities not only during the same hours, but also 
across hours,  both own-elasticities and cross-elasticities were evaluated. An own-
elasticity is when the dependent variable of ridership and the independent variable 
of frequency are represented in the same time period; a cross-elasticity has variables 
representing different time periods. Because elasticities were considered as a coefficient 
in a linear relationship, the regression used was a Robust Standard Error Linear 
regression, to minimize the effect of outliers.

Table 2 shows the times of each service interval and how ridership data were compiled.

TABLE 2.
Hours of Ridership and 

Service Interval Data

Hours Ridership Data Service Data

01:00–05:001 Non-Rush Hour Owl

06:00–09:00 Rush Hour Rush Hour

09:00–15:00 Non-Rush Hour Midday

15:00–18:302 Rush Hour Rush Hour

18:30–01:00 Non-Rush Hour Evening

Saturday Saturday Saturday

Sunday3 Sunday Sunday
1 05:00 was not used in any service interval and was 

ignored for this analysis.
2 8:00 is split between rush hour and evening service; 

therefore, any runs starting between 18:00 and 18:59 
were considered half a run in rush hour and half a run in 
evening service.

3 Weekend frequencies consist of runs from 08:00-21:00 to 
isolate changes in frequency, as opposed to service-hour 
expansion.
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Results

Whereas 120 route-years are displayed, only 80 elasticity measurements (including 
zeroes) were included due to needing two route-years to get one elasticity 
measurement. The lack of data points for owl service levels, as seen in Table 3, make it 
difficult to make a strong claim about any significance using this service interval. Table 
3 shows there are high standard deviations for frequencies, as compared to average 
frequencies; this indicates the diversity of local bus routes in the Minneapolis-Saint Paul 
metropolitan area. Some routes require many buses per hour, such as Route 5, with a 
frequency of 8.75 buses per hour or 7-minute headways during rush hour; some require 
a much lower level of service, such as Route 62 with a frequency of 1.08 per hour and 
nearly 1-hour headway during rush hour.

TABLE 3. 
Descriptive Statistics Frequency 

Time 
Frame

Number of 
Route-Years 

with Any 
Service

Number of 
Route-Years 
with at Least 

Hourly Service

Number of 
Changes in 
Frequency1

Average 
Frequency of 
Routes with 

Service

Standard 
Deviation of 
Frequency of 
Routes with 

Service

Rush Hour 120 114 35 3.91 2.10

Midday 111 102 19 3.48 2.02

Evening 99 76 20 1.87 1.00

Owl 78 3 4 0.42 0.31

Saturday 96 82 18 2.94 1.62

Sunday 90 75 21 2.30 1.19
1 If a route’s frequency changed from one year to the next for the service period shown, then that would 
be one change in frequency. Thus, this represents the number of data points actually used for determining 
elasticity. 

 
As seen in Table 4, the percent change of ridership is very highly-correlated between 
Saturday and Sunday ridership, with a lesser correlation in scheduling. As shown, 
Saturday and Sunday are similar, but are still different enough that they should be 
considered separately, as they are in the analysis. In Table 5, all ridership correlations are 
positive, indicating that if ridership increases in one service period, it generally increases 
in other periods.

TABLE 4.
Correlation Matrix of Percent 

Change in Ridership

Saturday Sunday Off Peak Peak Weekday Total

Saturday 1 0.8334 0.0851 0.0478 0.1240

Sunday 1 0.0998 0.0835 0.1318

Off Peak 1 0.4261 0.5850

Peak 1 0.9261

Weekday Total 1
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 Rush Hour Midday Evening Owl Saturday Sunday

Rush Hour 1 0.4725 -0.0111 -0.0344 -0.0233 -0.0557

Midday 1 0.0585 -0.0316 0.0066 0.0347

Evening 1 0.57694 -0.0835 0.0987

Owl 1 0.0485 0.0160

Saturday 1 0.7339

Sunday 1

 
For rush-hour ridership, as shown in Table 6, it can be seen that rush hour is the only 
service level that has an elasticity significant at p<0.10. Rush-hour frequency has a 
strong positive elasticity with ridership. The found elasticity of 0.39 falls in the normal 
range, as shown in the literature review, for short-term elasticity. The influences of the 
frequencies of other schedule periods were not seen to be significant in this study. No 
service period had an effect significant at p<0.05 on rush hour ridership.

TABLE 5.
Correlation Matrix of Percent 

Change in Frequency

TABLE 6.
Results

 

 
Percent Change in Ridership

Rush Hour
Non-Rush Hour 

Weekday
Saturday Sunday

Percent 
Change in 
Frequency

Rush Hour 
Elasticity 0.385a 0.003 0.056 0.273c

RSE 0.195 0.132 0.107 0.073

Midday 
Elasticity 0.349 0.391b 0.169 -0.225

RSE 0.248 0.159 0.132 0.141

Evening 
Elasticity 0.004 0.070 0.036 0.158

RSE 0.046 0.051 0.054 0.122

Owl 
Elasticity -0.081 -0.035 0.075c 0.011

RSE 0.077 0.026 0.022 0.025

Saturday 
Elasticity -0.042 0.026 0.257c 0.123a

RSE 0.028 0.026 0.043 0.070

Sunday 
Elasticity 0.013 0.009 0.100c 0.496c

RSE 0.019 0.020 0.032 0.050

Constant
Elasticity 0.021b -0.023 -0.020c -0.027c

RSE 0.008 0.019 0.007 0.009
a |p|<0.10
b |p|<0.05
c |p|<0.01

 
For non-rush hour weekday ridership, as shown in Table 6, midday frequency has 
an elasticity of 0.39, which is significant at p<0.05. Whereas non-rush hour weekday 
ridership contains midday, evening, and owl service within its defined times, midday 
frequencies had an effect that would put it in line with the own-elasticities found in 
previous studies. No other service intervals were seen as being significant at p<0.10 for 
non-rush hour weekday ridership. Further research with ridership data for each service 
interval would allow for more accurate and useful results for all service intervals.
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As shown in Table 6, weekend and owl service intervals have elasticities significant 
at p<0.10 with Saturday ridership, whereas Saturday and owl service are significant 
at p<0.01 and Sunday service is significant at p<0.05. This is likely associated with 
Saturday ridership comprising riders using both Saturday service and owl service on 
Friday night after midnight. The own-elasticity seen for Saturday service of 0.26 is 
lower than expected compared to previous studies. The effect of Sunday service on 
Saturday ridership is posited as due to the weekend being observed as one entity to 
most of the traveling public and possibly the correlation of 0.7339 between Saturday 
and Sunday frequencies. The magnitude of the Sunday elasticity is not great, at 0.10. 
The low elasticity value of owl frequency, at 0.08, and the small number of changes in 
owl frequency, as seen in Table 3, make this result questionable, as there are not enough 
data to make a strong claim.

Significant elasticities for Sunday ridership at p<0.10, as shown in Table 6, were seen with 
rush hour, Saturday, and Sunday service intervals. Sunday and rush-hour frequencies are 
significant at p<0.01. Sunday’s own-elasticity was seen as 0.50, and rush hour’s services 
had an elasticity of 0.27 on Sunday ridership. A possible explanation for why rush hour 
frequency appears to have a significant effect on Sunday ridership may be due simply 
to a growing transit mode share along a route, as people may become less averse to 
using transit for weekend travel if they use it for their daily commuting needs. Saturday 
frequency had a smaller effect on Sunday ridership, with an elasticity of only 0.12. As 
with Saturday ridership, the correlation between Saturday and Sunday changes in 
frequency are a possible factor in these elasticities; more data are needed with changes 
in these service intervals to know if they are truly affecting one another or simply 
changing together.

Conclusion

This research established that the ridership of weekday service depends on the 
frequencies of rush hour and midday and refutes the hypothesis that changes 
in midday and evening frequencies would have a noticeable effect on rush-hour 
ridership. During the week, rush-hour ridership is seen as being affected by changes 
of only rush-hour frequency, with an elasticity of 0.39; likewise, non-peak ridership 
was seen as affected only by changes in midday frequency, with an elasticity of 0.39. 
The weekends are far more interconnected, with service levels during rush hour, owl, 
and the entire weekend being significant for the ridership on one or both days of the 
weekend. Saturday ridership was affected by changes in Saturday frequency with an 
elasticity of 0.26 and Sunday frequency with an elastic of 0.10; owl frequency also was 
seen as a contributor in this analysis, but with so few changes in owl frequency, this 
cannot be certain. Sunday ridership was affected by changes in Sunday frequencies 
with an elasticity of 0.50, Saturday frequencies with an elasticity of 0.12, and rush-hour 
frequency with an elasticity of 0.27. It is intuitive that all own-elasticities and cross-
elasticities would be positive and cross-elasticities would overall be smaller than own-
elasticities. Additionally, the hypothesis of this research failed to be corroborated; if the 
goal of a transit agency is to provide as many rush-hour trips as possible, this research 
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has established that using driver hours at other times is not shown to have any effect, 
whereas using those driver hours during rush hours will increase ridership.

This research should be expanded to include a larger data set, including express and 
suburban local routes, and should be replicated in other metropolitan areas. The 
additional research also would allow for a better determination of significance, as there 
would be more data to solidify significance or non-significance. Express routes, in 
particular, should be investigated, as midday and evening service usually is not provided 
on these routes; thus, adding these services would allow for investigation of new 
services and elasticities at much lower frequencies. 
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Effects of Speed, Curves, and Driver 
Behavior on Passive Securement 
Systems on Large Transit Buses 
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Oregon State University

Abstract

Wheeled mobility devices that are not secured properly on large transit vehicles pose 
risks to all passengers. The purpose of this study was to increase the understanding of 
the effects of horizontal and vertical curves, speed, and driver behavior on the safety 
and security of people using wheeled mobility devices in rear-facing passive containment 
systems on large transit buses. Testing included the use of manual wheelchairs and 
lightweight scooters on an articulated low-floor transit bus. The project conclusions 
were derived from data produced by accelerometers placed on the bus as well as visual 
observations of wheeled mobility device movement. The data showed a clear difference in 
the amount of movement of the wheeled mobility devices and the comfort of the seated 
passenger when the bus traveled on a combination of horizontal and vertical curves at 
different driving speeds. 

Keywords: Wheeled mobility devices, rear facing containment, bus dynamics

Introduction

The securement of wheeled mobility devices (WhMDs) on transit buses is required 
under the transportation regulations associated with the Americans with Disabilities 
Act (ADA) (ADA 1998). Since the enactment of the ADA, securement systems have 
been studied, designed, and deployed to increase passenger safety, security, and 
comfort. Large transit buses are equipped with two types of securement systems: active 
and passive. Common active securement systems include auto docking systems or belt-
type tie-downs. Active systems that have belts or straps usually require a second person 
to attach them to the wheeled mobility device. This often increases dwell time at bus 
stops and encroachment on the personal space of the passenger. 
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WhMDs on large transit buses that have a gross vehicle weight greater than 26,000 
pounds are required to be equipped with one forward-facing belt-type securement in 
addition to any rear-facing containment systems. The belt-type securement systems 
usually require another person, often the driver, to secure the WhMD appropriately. 
This often increases the vehicle dwell time at stops and can influence the transit 
schedule. Rear-facing passive systems are designed to allow the passenger to secure 
himself or herself without the assistance of another person. These containment systems 
have widespread use in Europe and Canada (Hunter-Zaworski and Rutenberg 2014). 

This study focused on rear-facing passive containment systems that are deployed on 
transit buses that travel on mixed right-of-way streets with both horizontal and vertical 
curvature.

Background 

In 2001, a survey conducted by the University of South Florida found that all 94 transit 
agencies included in the study used a belt securement system (Foreman and Hardin 
2002). In 2013, Frost et al. found that for the past 20 years, forward-facing belt-type 
securement systems were the most common securement system in the U.S. on large 
transit vehicles. The researchers also found that only 7.5% of trips made by people in 
manual chairs used securement systems (Frost et al. 2013). 

Intersections that are designed for large transit vehicles have recommended geometric 
design dimensions set forth by the American Association of State Highway and 
Transportation Officials (AASHTO). The AASHTO Guide for Geometric Design of Transit 
Facilities on Highway and Streets states that the maximum grade for roadways on which 
transit vehicles operate is 10%, but it recommends a lower grade (AASHTO 2014). Tables 
1 and 2 show AASHTO’s standard bus design characteristics and bus performance 
characteristics. 

TABLE 1.
AASHTO Standard Bus Design 

Characteristics 

Item
Regular Bus Articulated Bus

40 ft 45 ft 60 ft

Gross Weight 36,900–40,000 lbs 55,200 lbs 66,600 lbs

Turning Radius Inside 24.5-30 ft 24.5-30 ft 27.3 ft

Turning Radius Outside 42.0 ft–47 ft 42.0–47 ft 39.8–42 ft

Source: AASHTO, Guide for Geometric Design of Transit Facilities on Highways and 
Streets, 2014
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MPH/Sec Ft/Sec2 g's

Acceleration

0–10 sec 3.33 4.9 0.15

10–30 sec 2.22 3.3 0.10

30–50 sec 0.95 1.4 0.04

Deceleration

Normal 2-3 2.9–4.4 0.09–0.14

Maximum 6-12 8.8–17.6 0.27–0.54

Maximum Grade (Sustained Roadway) 6%

Maximum Grade (Short Upgrade) 10-12%

Source: AASHTO, Guide for Geometric Design of Transit Facilities on Highways and Streets, 2014

 
Researchers developed guidelines for transit operations at standard operating speeds 
around corners. This includes guidelines from transit districts and departments 
of education (school buses) (Kentucky Department of Education 2008). These 
recommendations are 10 miles per hour (mph) for turns and 15 mph for evasive 
maneuvers (MUTD 2011). 

Objectives and Motivation 

Lane Transit District (LTD) in Eugene, Oregon, approached the research team with 
questions concerning several major intersections in its operating system and the 
performance of rear-facing passive containment systems. The primary objective of the 
research was to determine the relationship between horizontal and vertical curves and 
speed and the effect on passive containment for WhMDs on large transit vehicles. This 
relationship is very complex, with multiple factors interacting with each other. The 
study was designed to isolate several key factors in the field tests. 

Description of Testing 

Testing was conducted in partnership with LTD using LTD buses. LTD operates vehicles 
in demand-responsive paratransit, fixed-route, and bus rapid transit (BRT) services. The 
project focused on buses operating in fixed-route and BRT operating modes. Vehicle 
testing occurred over two days, the first in February 2015 and the second in October 
2015. Testing included driving trials at the maintenance facility and roadway tests on 
regular transit routes that included steep hills and sharp turns. The purpose of testing in 
the yard was a controlled study of horizontal turning maneuvers. Testing conducted in 
the maintenance yard calibrated the data acquisition equipment and validated testing 
assumptions related to horizontal curves. The test drives on the roadway included sharp 
horizontal and steep vertical curves. 

TABLE 2.
AASHTO Bus Performance 

Characteristics 
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Horizontal Curve Testing 

To study the acceleration and WhMD behavior in horizontal curves, tests were 
conducted in LTD’s parking lot in Springfield (Figure 1). This provided the research team 
with the opportunity to conduct sharp horizontal turning maneuvers on a level grade. 
The bus made sharp left turns at the places indicated by the number 2 on Figure 1 and 
slalom turns through the parking lot down the lanes indicated by the number 1. The 
parking lot was mostly empty during the testing and was similar to the configuration 
shown in Figure 1. This allowed the driver to make sharp turns to demonstrate the 
worst-case scenario. 

FIGURE 1.
Aerial view of flat parking lot 
used to test horizontal curves 

1 = location of S turns, 2 = sharp left turns  
Source: Google Maps

Testing on Horizontal and Vertical Curves 

The vertical and horizontal curve driving tests were conducted at a highway interchange 
in Eugene  that has a mix of steep vertical and sharp horizontal curvature and a 
signalized intersection. The section of roadway is at the end of a highway overpass 
that includes a signalized intersection followed by a left turn onto a downgrade ramp. 
This intersection was of particular interest because of the combination of vertical 
and horizontal curvature and a signal-controlled intersection. This intersection is the 
location of a prior incident involving LTD passengers seated in WhMDs who were 
secured in an active forward-facing securement systems that resulted in the WhMD 
tipping over. The bus traveled on the overpass westbound on Goodpasture Island Road, 
followed by a downgrade to the signal. The intersection has one through/left lane (no 
right turn). 

Test Methodology 

The accelerometers were placed in a longitudinal orientation on the floor of the bus 
to collect three-dimensional acceleration data. The acceleration data collection was 
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independent of the type of WhMD. During the bus testing, two different WhMDs were 
occupied by a 50-percentile male anthropometric test dummy (TED) sitting in the seat. 
The test dummy was used in these data collection activities to minimize human subject 
risk. The WhMD types included a standard manual chair and a three-wheeled scooter. 
The scooter used in the testing was similar to models that can be bought without a 
prescription at a non-medical supply store and is representative of WhMDs that many 
passengers use when riding LTD vehicles. The center of gravity of the scooter was higher 
off the ground than the manual chair and more prone to tipping over; the majority of 
the tests used the scooter for this reason. Some of the initial tests in the maintenance 
yard used the manual chair with the test dummy sitting in the wheelchair. Both WhMDs 
were in good working condition. 

In all tests, the WhMDs had the brakes set on the device or powered down. Research 
has shown that during revenue service, passengers do not consistently set the brake 
on their devices. The research team conducted previous research on other transit 
vehicles that showed that setting the brake has a significant impact on the movement 
of WhMDs. For the safety of the research team in this study, the brakes were set. The 
mobility of TED also was restricted to folding his arms in his lap. Prior testing showed 
that TED is much more stable when he puts an arm on the folded-up seat. The position 
of TED’s arms was intentionally included to evaluate a passenger who has no upper 
body strength or control. Figure 2 illustrates the placement of TED’s arms during testing 
and shows a manual wheelchair in the rear-facing containment with the aisle side-
arm lowered. Passengers have the potential to increase their stabilization if they have 
mobility and strength in their upper body. 

All the testing used a rear-facing passive containment system that is located directly 
behind the driver. The passenger is rear-facing, with the back of his WhMD touching the 
backboard of the system. The system also features containment on three sides, with a 
bar that extends from the back on the aisle side and a folded seat on the window side. 
Figure 2 shows TED in the rear-facing containment location and sitting in a wheelchair.

 
FIGURE 2.

TED in wheelchair in passive 
rear-facing containment
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To increase stability, the passenger may use the back of the folded seat. Figure 3 shows 
TED in the rear-facing containment location and sitting in a scooter.

FIGURE 3.
TED in scooter in  

passive rear-facing 
containment system

The study included two forms of data collection: observations and accelerometers. Each 
of the researchers and officials from LTD conducted observations. One researcher was 
located next to the securement system and one in the middle of the bus to allow for 
multiple viewing angles during testing. Taking photos occurred only before and after 
testing for reference of orientation and experimental design. 

Data were collected for this study using Gulf Coast Data Concepts Model X2-2 
USB Accelerometers, shown in Figure 4. The placement of the accelerometers 
included locations before the vehicle articulation point and over the wheel well. The 
accelerometers recorded acceleration in three axis directions (axial, longitudinal, 
vertical) with a 32-Hz sample rate. For redundancy in data, data were collected from 
two accelerometers. Also used during data collection were time stamps on the 
accelerometers and GPS tracking. Figure 4 shows the location of the accelerometers. 

FIGURE 4.
Accelerometer placement on 

longitudinal axis of bus
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Consistent weather conditions prevailed during both days of testing—clear with no rain 
or moisture on the roadway. During each day of testing, the same operator drove for all 
tests, but there were different operators in February and October. The operator during 
the February testing was from the LTD Maintenance Department and was very familiar 
with the performance of the vehicle. The operator in the October testing was a veteran 
driver who was also an instructor and operator trainer. 

The study used an articulated low-floor bus designed for the BRT system. The 
only people on the bus during the time of testing were researchers and LTD Risk 
Management staff. The crash dummy occupied the WhMD during the entirety of the 
testing. Severe cornering test runs were conducted only at the LTD maintenance facility. 
Figure 5 shows an LTD Emerald Express Bus used for BRT service (EmX) and is similar to 
the one used in the study. 

FIGURE 5.
Example of type of 
bus used for tests 

Photo courtesy of Lane Transit District

Table 3 summarizes the experimental conditions, showing information for both days of 
testing and data collection locations. 

TABLE 3.
Summary of Variables Used 

in Testing

Equipment Variable Description

Bus Constant Low-floor articulated BRT bus 

Wheeled Mobility Device Variable 
Lightweight three-wheel scooter (powered off) and 
standard wheelchair with brakes applied

Data Collection System Constant 
Accelerometers placed in same location and 
collection rate.

Test Location Variable 
Flat maintenance yard to isolate horizontal curves 
and Goodpasture Island Road intersection to study 
both vertical and horizontal curves

Driver Constant/Variable
Driver stayed constant for day, but different drivers 
used in February and October tests

Speed of Curves Variable 
Curve speed changed to show difference between 
recommended speed and extreme speed
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Study Limitations 
LTD has only rear-facing passive containment on the large articulated buses used in its 
BRT service. Rear-facing containment is very popular with passengers who use wheeled 
mobility devices, and LTD is considering installing rear-facing containment systems on 
its new non-articulated buses. Limitations to the study included using only one type 
of bus and only regular or moderately-severe driving conditions. Future testing should 
consider using non-articulated transit buses to expand the applicability of the results. 

The nature of the data collection process in the field limits the isolation of all 
contributing factors and conditions. Different tests were used to isolate some factors, 
but not all factors could be limited in the field. 

Results

The results of this study were divided into three segments: isolated horizontal curves, 
combination of horizontal and vertical curves, and driver behavior. Calibration tests for 
the accelerometers were conducted before the start of the testing. The results of the 
study were derived from the accelerometer data from the bus and observations made 
by research team. 

Horizontal Curves

The graph in Figure 6 is from the tests conducted at the bus parking lot at the LTD 
maintenance facility. The data from the three axis accelerometers show the very low 
acceleration rates during slow speed and increasing to the maximum safe speed on 
horizontal curves. The lower speeds were 5 mph and increased to approximately 15 
mph. The researchers observed no movement during the test of the manual wheelchair 
that was occupied with TED. The testing was completed in a single session.

 

FIGURE 6.
Results of low-speed 
(5–15 mph) S-curve 

tests conducted at LTD 
maintenance facility
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Since acceleration is the rate of change of velocity, as the speeds changed during 
cornering, this was reflected in the accelerations. Figure 6 shows the lateral acceleration 
resulting from the “S” cornering. The vertical acceleration measured the “bumps in the 
road,” and the forward or longitudinal acceleration measured the changes in speed until 
the bus came to a complete stop (183 sec).

Observations of TED showed very little to no movement throughout the testing of the 
isolated horizontal curvature. The test dummy’s movement was very limited to within 
the containment system and did not cause any alarm for safety. 

Vertical and Horizontal Curves

The second group of tests conducted included a vertical curve and a horizontal curve 
at the interchange of Goodpasture Island Road and Delta Highway in Eugene. Three 
data collection tests were conducted under the conditions of low speed, high speed, 
and excess speed on cornering that caused the WhMD to tip within the containment 
system. Each of the speed tests was conducted only once due to time limitations. 

Accelerometer data, as shown in Figure 7, illustrates the accelerations of the bus 
at a low speed (5 mph) while navigating the horizontal and vertical curvature. The 
change in acceleration was the smallest of any of three tests. The slower speed has the 
smallest amount of acceleration. This test also had the lowest difference in maximum 
longitudinal and axial acceleration. Observations of the TED and the WhMD within the 
containment system were limited to little to no movement. 

FIGURE 7.
Low-speed (5 mph ) 

no-movement  
acceleration data

The higher-speed (14 mph) test—the highest speed a professional driver would drive—
showed minimal movement of the WhMD. This movement would typically occur in 
regular revenue service operations and likely would not cause injury to a passenger. 
When compared to the low-speed test, the higher-speed test had much larger changes 
in the maximum longitudinal and minimum axial acceleration. The changes in 
acceleration also produced a larger jerk during the turning maneuver. The accelerations 
of the vehicle are shown in Figure 8. 
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Figure 9 shows the accelerations when the wheeled mobility device tipped over and also 
illustrates the higher levels of acceleration. The jagged lines show that the changes in 
accelerations were sudden. At approximately the 70-sec mark, a spike in the acceleration 
occurred. This was when the bus started from the stop line at the intersection and also 
is when the wheels at the front of the WhMDs moved in the direction of the tipping. 
The maximum acceleration occurred in the middle of the turn. The side-to-side motion 
of the test dummy induced some of the motion of the WhMD, which caused the test 
dummy to shift weight off center and start to tip over. The tipping also was due to the 
high center of gravity of the scooter with a 50% test dummy.  

FIGURE 8.
Higher-speed (14 mph)  

slight-movement  
acceleration data

FIGURE 9.
High-speed test that tipped 

WhMD accelerations data

Driver Performance 

Different drivers drove the bus on each day of testing. On the first day, the driver was 
from the LTD Maintenance Department and was very experienced with performance 
of the bus used in testing. On the second test day, the driver was very experienced 
with the bus and was a professional operator with more than 20 years’ experience as 
a commercial vehicle operator and also was a bus operator trainer. The differences in 
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how each driver completed turns were shown in the accelerometer data. The first day 
of testing was designed to look at the maximum or most severe driving conditions. The 
operator drove close to the top level of vehicle performance to simulate severe driving 
operations. At the intersection of interest, the driver drove through the corner at a 
high speed. Both the high speed and sudden changes in direction caused the WhMD 
to become unstable and tip. On the second day of testing, the professional driver 
completed all the driving trials within the standard driving parameters. In addition, he 
called out the speed that he took the corners. The testing began at the low speed, and 
no movement of the WhMD or TED was observed. During the higher-speed tests, there 
was still very little movement of WhMD or TED. The data also showed that the driver 
still drove through the curves very smoothly. The research team observed a higher level 
of passenger comfort (less motion sickness) when the professional driver drove the 
corners at the suggested speeds that are used in operator training. 

Conclusions and Recommendations 

This study showed that passive rear-facing containment systems for WhMDs are 
adequate for preventing users from tipping when the bus is operated within normal 
driving parameters. This also assumes that the passenger and the WhMD have the 
brakes applied or are powered off and that the WhMD fits in the containment space. 
The WhMD also must be constrained, with the back of the WhMD near or touching the 
backboard of the passive containment area. Information about proper use of the rear-
facing containment area should be placed on placards on board so users understand 
correct use and the consequences for using the system improperly. 

Transit operators need to understand the implications of driver behavior on the safety 
and comfort of all passengers. The acceleration data showed the influence of the driving 
style of the operator. Driver style during turns was found to be a contributing factor to 
tipping. This was an unexpected factor. On the first day of testing, a driver from the LTD 
Maintenance Department operated the bus with the intent to simulate severe driving. 
On the second day of testing, a professional driver and operator trainer drove the bus 
with the intent to study normal operations. The difference in the smoothness of the 
curves was obvious, as shown in the accelerometer data and visual observations. 

In the 5 mph and 14 mph tests, the rate of change of acceleration was more gradual; 
in the tipping test, the rate of change of acceleration was much more rapid and 
showed greater changes in acceleration in all of the directions. The severe driving was 
more erratic. Even though speed data were not collected in the tipping, a post-testing 
interview with the driver led the researchers to believe that the speed was about 20 
mph during the tipping test. 

In summary, passive rear-facing containment systems are adequate for most roadway 
geometries, with the assumption that drivers operate the vehicle at the prescribed 
speeds for the roadway geometrics. 
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Future Research 

The results of this study were shared with LTD, but additional research should be 
conducted on this topic. The impact of driving style was a surprising and unintended 
outcome of this study. Targeted research to isolate the characteristics of an “expert” 
driver and the impact on accelerations would produce better training and best practices 
for operators. In this study, using only one intersection limited the conclusions. 
Additional roadway geometry types, intersection types, and types of vehicles are 
needed to determine the extent of the effects of the combination of vertical and 
horizontal curves on passive securement systems on large transit buses. 
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Abstract

Smartphone applications that provide transit information are now very popular. 
However, there is limited research that examines when and where passengers use mobile 
transit information. The objective of this research was to perform an exploratory analysis 
of the use of a smartphone application known as Transit App, which provides real-time 
transit information and trip planning (schedule) functionality. Backend data from Transit 
App were examined by time of day and day of week in the New York City metropolitan 
area. The results show that the pattern of both the trip planning feature and overall real-
time information usage follow the typical pattern of transit ridership, which has morning 
and evening peaks. Additionally, self-reported household locations of Transit App users 
in the New York City area were compared with household socioeconomic characteristics 
(specifically, income, ethnicity, and age) from census data using GIS visualizations and the 
Pearson correlation coefficient, but they do not appear to be correlated. This implies that 
passengers use Transit App regardless of household income, race, or age trends in their 
neighborhood. This exploratory study examined a rich new data source—backend data 
from a transit information smartphone application—that could be used in many future 
analyses to help transit agencies better understand how transit riders use information 
and plan their trips.

Introduction

The emergence of smartphones and other mobile-based technologies has revolutionized 
the way travelers’ access both static and real-time transit information. As adoption 
of these new devices has grown rapidly among transit riders, public transportation 
agencies have explored the best ways to deliver this information to their passengers. 
Some transit agencies have developed their own official web or mobile applications, 
others have released their data openly and encouraged the private sector to develop 
applications using their data, and some have pursued both strategies. By opening 
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their transit data to third parties, agencies have spawned innovative and cost effective 
applications (“apps”) for cities all over the world (Schweiger 2011; Barbeau et al. 2014). 

For both transit riders and agencies, easily-accessible real-time information has been 
one of the main benefits of these applications. When riders know the approximate 
arrival time of their vehicle, the burden of waiting for transit can be significantly 
reduced (Watkins et al. 2011; Brakewood et al. 2014; Brakewood, Rojas et al. 2015). For 
example, bus riders in Seattle, Washington, who used mobile real-time information 
before arriving at a stop waited approximately two minutes less than other riders; 
similarly, their perceived wait times were approximately 30% less than riders who did 
not use real-time information (Watkins et al. 2011). Additionally, access to real-time 
information can be influential on an individual’s decision to use the transit system. 
Indeed, prior research has shown that it can increase ridership by approximately 2% 
(Tang and Thakuriah 2012; Brakewood, Macfarlane, and Watkins 2015). Considering the 
constrained budgets of many transit agencies, providing real-time information can be a 
cost-effective way to increase ridership. 

Despite these documented benefits, there has been little prior research examining when 
and where transit passengers use mobile transit information. Moreover, many of these 
new information and communication technologies collect detailed data on the backend 
about when and where this information is being accessed. Therefore, this study aimed 
to conduct an exploratory analysis of usage of mobile transit information and focuses 
specifically on Transit App, one of the most popular multi-regional real-time transit 
information apps. The objective of this research was to analyze trends of Transit App 
usage by time of day and day of week and to examine the relationship of users’ household 
locations with socioeconomic characteristics in the New York metropolitan area.

Literature Review

This section provides a brief review of prior research pertaining to real-time transit 
information. Before the widespread availability of mobile phones, real-time transit 
information was provided primarily via signage at transit stops or in stations. Many 
early studies focused on the effects of at-stop signage on transit riders’ perceptions 
and behavior (e.g., Hickman and Wilson 1995; Dziekan and Vermeulen 2006; Dziekan 
and Kottenhoff 2007; Tang and Thakuriah 2011). More recently, the literature pertains 
primarily to the passenger and transit agency benefits of providing real-time information 
via mobile and web-based devices (Zhang et al. 2008; Ferris et al. 2010; Watkins et al. 
2011; Tang and Thakuriah 2012; Tang, Ross, and Ha 2012; Carrel et al. 2013; Gooze et al. 
2013; Brakewood et al. 2014; Brakewood, Macfarlane, and Watkins 2015). Only two prior 
references have specifically examined backend data from real-time information transit 
applications, and these are briefly summarized in the following paragraphs. 

The first study using backend data from a real-time transit information smartphone 
application is an unpublished master’s thesis that examined two smartphone 
applications known as “AnyStop” and “TreKing” (Feakins 2013). The author examined 
usage patterns in Chicago, Illinois, using a two-week sample from December 2010 from 
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AnyStop and a three -month sample from 2011 from TreKing. By counting the number 
of sessions recorded in the AnyStop backend database by time of day, the author 
concluded that the pattern of using AnyStop followed the classic pattern of transit 
ridership: on weekdays, there are two significant peaks in the morning and evening and 
one smaller peak around noon, and on weekends, there are multiple peaks distributed 
relatively equally throughout the day. The author also compared the utilization of both 
apps to route-level Chicago Transit Authority ridership data and found correlation 
between the usage of these transit apps and ridership levels (Feakins 2013).

The second and more recent study used backend data from a real-time information 
transit application called Transit App, which is also the focus of this paper (Davidson 
2016). Davidson (2016) examined similarities and differences of origin-destination 
patterns between two datasets. One dataset was the trip planning feature of Transit 
App, which provides a-to-b directions based on transit schedules, and the other was the 
most recent (2010/2011) Regional Household Travel Survey conducted by the New York 
Metropolitan Transportation Council. The trip planning feature of Transit App provides 
origins and destinations of the trips that app users are interested in making, whereas 
the Regional Household Travel Survey data provides the stated origins and destinations 
of actual trips. The two datasets were compared at the community board level, and the 
results suggest that they have very similar origin-destination patterns (Davidson 2016). 

This brief literature review demonstrates that there has been limited research using 
the backend data from transit information apps. The most relevant prior study looked 
at the same data source and location as this study (Transit App backend data in New 
York City), but it considered only the trip planning feature of the app, which provides 
scheduled transit information. The analysis in Davidson’s study consists of a small subset 
of the data; real-time information and temporal differences were not studied. The 
other relevant prior study used Chicago data from 2010 and 2011; however, adoption 
of smartphones has rapidly grown since then, which could lead to different trends. 
Moreover, there has been little analysis of who is actually using these apps. Therefore, 
this study sought to fill these gaps in the literature by examining a recent real-time 
information dataset and assessing socioeconomic trends associated with usage. 

Objective

The objective of this study was to perform an exploratory analysis of Transit App 
usage among transit riders in the New York metropolitan region. The specific topics 
addressed in this study fall into two categories: general Transit App utilization patterns 
and usage among different socioeconomic groups. The first section explores overall 
Transit App usage by time of day and day of week and analyzes whether individual users 
can be categorized by their daily frequency of app usage. The second part examines 
whether Transit App may be used more frequently in areas with residents of certain 
socioeconomic characteristics.
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Dataset

This section provides a brief description of the data used in this analysis. First, background 
information is provided about Transit App, and next, the geographic area of analysis is 
defined. Last, a detailed description of the data files used in the analysis is provided. 

Overview of Transit App

Transit App is a company based in Montreal, Canada, that has developed a freely-
available smartphone application providing urban transportation information. In 2012, 
the company released the first version of its application for iPhone. In the initial version, 
the app provided transit schedule information for Montreal, Toronto, and Quebec 
City. Since then, Transit App launched an Android version of its application and has 
expanded to more than 100 cities in 9 countries, including widespread coverage in the 
United States. Transit App also has added many features, including real-time transit 
information, trip planning using schedule information, service alerts, and multimodal 
support (including bike sharing, car sharing, and Uber). The most heavily-used features 
of the app are those providing real-time transit information, and Transit App uses real-
time information to display transit vehicle departure times when the transit agency 
makes it available; otherwise, it displays schedule information (Transit App 2015). 
Additionally, users can store their favorite locations in the app, such as home or work, 
to facilitate quickly finding information that they commonly use. The app includes a 
combination of map and list view interfaces. Figure 1 shows the Transit App Android 
interface displaying real-time transit information for nearby routes (left), trip planning 
(center), and a stored home location (right), respectively. 

a) Nearby routes b) Trip planning c) a stored home location

FIGURE 1.  Transit App screenshots
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Area of Analysis

The New York metropolitan area was selected as the geographic area for this analysis 
because it has the highest concentration of transit trips in the United States (McKenzie 
and Rapino 2011) and also has the highest Transit App usage in the United States. 
Because smartphones are mobile devices and some people used the app in regions 
other than New York, a small percentage of Transit App sessions in this dataset took 
place in other regions. Usage outside the New York region was not considered in this 
analysis and was removed from the dataset before conducting the following analysis. 
After removing the records from outside the New York region, these datafiles, which are 
discussed in the following section, were imported into ArcGIS 10-2. 

Data Files and Description

The dataset for this study was obtained directly from Transit App and contains data for 
any user that opened Transit App at least once in October 2014 in the New York City 
region. The dataset includes the user location (latitude/longitude), which is recorded 
whenever the application is opened. For privacy purposes, all geographic coordinates 
contained in these files were offset by Transit App developers by a random number up 
to 300 meters per position. By anonymizing the data, Transit App ensured that none of 
the data used in this analysis contain personally identifiable information. Also, locations 
mentioned herein refer to the anonymized version of the data point (e.g., a reference to 
“home locations” refers to the anonymized home locations). 

The raw dataset contained multiple files in a Comma Separated Values (CSV) format, 
which were as follows: 

• Locations file: Every time users open Transit App, regardless of what feature they 
are using, their location is sent to the Transit App server based on the coordinates 
from the location services in their smartphone. Date, time, accuracy of their 
location, and speed (e.g., if they are in a vehicle) are recorded in what is referred to 
as the “locations” file. Also, a unique session ID is created each time a user opens 
the app. For October 2014, a total of 10,875,013 records were sent to the Transit 
App server for the New York metropolitan area. This file was imported into GIS 
based on the users’ start coordinates (i.e., where they were when opening Transit 
App).

• Trips file: This file contained information about usage of the trip planning feature 
in Transit App and is referred to as the “trips” file. Specifically, it included start 
and end coordinates (latitude/longitude), date, and timestamps of all the trip 
planning requests. It should be noted that this is a subset of the locations file 
because anytime a user opens the app, including using the trip planning feature, 
his/her coordinates are stored in the locations file. For October 2014, the trips file 
had a total of 399,831 records for the New York metropolitan area. This file was 
imported into GIS based on the users’ start coordinates (i.e., where they were 
when opening Transit App).
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• Placemarks file: This file included coordinates of home and work locations that 
users have stored in Transit App and is referred to as the “placemarks” file. This 
represents data from an optional function in Transit App where users can store 
places that they often go (e.g., home or work) to easily access relevant transit 
information for that specific location. This file contains the coordinates of users’ 
home or work locations, of which there were a total of 11,782 in New York 
metropolitan area. Of these, only the home locations were imported into GIS 
based on the user’s defined coordinate.

Analysis of General Utilization Trends

For this analysis, nine counties in New York and nine counties in New Jersey were 
included in the area of analysis; counties farther than Somerset and Morris counties 
in New Jersey had few Transit App users and were excluded. North of New York City, 
Westchester and Rockland counties were selected as the New York boundaries since 
there were very few Transit App users in counties farther north and in counties located 
in Connecticut. From the east, Suffolk County was set as the boundary.

For this analysis of general trends, Transit App usage was first examined by time of day 
and then by day of week. Next, the frequency of usage in a day by individual app users 
was examined. For each of these analyses, the overall usage of Transit App (which is 
predominantly checking real-time arrival information) and the utilization of only the 
trip-planning feature (for a-to-b directions) were considered separately

Time of Day Analysis

First, the data were categorized by date and hour. Using the open source statistical 
program RStudio (RStudio Team 2015), the number of unique session IDs were counted 
in each hour for the two datasets (all records from the locations file and the trip 
planning feature only); the results are shown in Figure 2. It should be noted that the 
scales on the y-axis of Figure 2 are different for the graph displaying all usage from the 
locations file and the trip planning feature because the number of unique sessions is 
much larger for all usage. 
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FIGURE 2.  Frequency of using Transit App by time of day

On Tuesday, October 21, 2014, there were approximately 178,000 unique sessions in the 
locations file and only approximately 7,000 unique session IDs in the trips file. Although 
Tuesday was selected for presentation, this pattern was typical of Mondays, Tuesdays, 
Wednesdays, and Thursdays. Both October 21 graphs have two significant peaks: one 
in the morning from 6:00–8:00 AM and another in the evening from 3:00–6:00 PM, 
which likely represent commuting trips. There is also a smaller peak around 12:00 
noon, which may represent trips for lunch or personal business. Another interesting 
finding is the slightly higher and wider range of Transit App usage in the evening peak 
period compared to the morning peak. This disparity may be because users make more 
recreational trips after work or chain errand/shopping trips in the evening. It also may 
imply that users do not use the app as frequently in the morning, perhaps because they 
are more familiar with their morning commutes.

For Friday, October 24, 2014, the pattern of Transit App usage shows overall usage 
of approximately 179,000 unique sessions and use of the trip planning feature of 
approximately 7,800 unique sessions. Both Friday graphs reveal morning and evening 
peaks similar to the Tuesday image. However, the evening peak on Fridays is slightly higher 
and wider (from 3:00–7:00 PM) than the evening peak on Tuesdays. This larger peak may 
represent additional leisure trips or people leaving work earlier on Friday afternoons. 



Trends in Mobile Transit Information Utilization: An Exploratory Analysis of Transit App in New York City

 Journal of Public Transportation, Vol. 19, No. 3, 2016 146

For Saturday, October 25, 2014, the pattern of Transit App usage for all features 
includes approximately 164,000 unique sessions and the trip planning feature includes 
approximately 7,700 unique sessions. The Saturday figures do not have large peaks; 
instead, multiple small peaks are distributed nearly equally throughout the day, possibly 
for recreational and leisure trips. Additionally, usage on Saturday was lower than on 
weekdays, which is in line with lower levels of transit ridership generally seen on weekends. 

Day of the Week Analysis

To compare usage frequency of Transit App on different days of the week, the total 
number of unique sessions for each day were counted for overall usage of Transit App 
as well as for the trip planning feature. Figure 3 shows total usage and trip planning 
utilization for Sunday, October 19, 2014, to Saturday, October 25, 2014. Total usage 
ranged from 165,000 to 185,000 unique sessions per day for the New York City region, 
whereas there were only 6,600 to 7,800 unique trip planning sessions per day. The peak 
for all usage occurred on Monday, whereas trip planning utilization was highest on 
Friday; the high value on Friday may be because of additional non-commute trips (e.g., 
recreational trips) for which travelers seek trip planning information. On Sunday, usage 
(both overall and trip planning specifically) was slightly lower, which likely reflects day-
of-the-week trends in transit ridership. 

FIGURE 3.
Use of Transit App by day of 
week, October 19–25, 2014

Individuals’ Frequency-of-Use Analysis  

This analysis examined how often individual Transit App users typically check the app in 
a single day. The number of sessions associated with each user defined by their unique 
device ID was counted, and the results are shown for a single day (Tuesday, October 21) 



Trends in Mobile Transit Information Utilization: An Exploratory Analysis of Transit App in New York City

 Journal of Public Transportation, Vol. 19, No. 3, 2016 147

in Figure 4. Results for all usage from the locations file indicate approximately 22,000 
users, and trip planning usage had approximately 3,600 users. As can be seen in Figure 
4, frequency of usage from the locations file shows that almost 80% of users checked 
the Transit App two times or more in one day. This may imply that many Transit App 
users check the app for their commute to and from work and may be accustomed to 
checking the app for most, if not all, of their daily trips. 

FIGURE 4.
Frequency of Transit App 

usage by individuals on 
Tuesday, October 21, 2014

The percentage of users who checked Transit App exactly once per day is almost three 
times higher for the trip planning feature (59.3%) than for the overall utilization (21.1%). 
Infrequent users of the trip planning feature may represent either infrequent users of 
the transit system, travelers making irregular trips, or those who use the app for only 
one way of a commute trip. 

Notably, there was a small number of heavy users (i.e., more than 21 times in a day), 
which may have been the result of experiencing delays on the transit system. These 
sessions most likely represent “simulated” sessions, meaning that the user moved the 
GPS point on the map interface of the app to a location other than where they actually 
were to search for transit information there. Alternatively, these heavy users may not 
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have exited the app, so it was running in the background on their phones and sending 
signals to the server. Further investigation of these heavy users is recommended for 
future research. 

This analysis was repeated for other days in October 2014, which showed similar 
patterns.

Census Analysis

The next set of analyses assessed whether Transit App is used more frequently in areas 
with residents of certain socioeconomic characteristics (specifically, income, race, and 
age). For the analysis in this part, nine counties in New Jersey and five counties in New 
York (specifically, the five boroughs of New York City) were considered. The geographic 
unit chosen for this analysis was the census tract, and tract geometry was obtained 
from the US Census Bureau website (United States Census Bureau 2015). Socioeconomic 
information was obtained from the 2010 census through the American Fact Finder 
website (United States Census Bureau 2015). Because census data are based on home 
locations, the self-reported home locations of Transit App users were chosen to 
represent app utilization for this analysis. The home locations of Transit App users were 
imported into GIS and joined to census tracts based on their coordinates. The number 
of home locations was counted for each tract and compared to the population density 
in each tract from the census data. The number of home locations for each census tract 
was then compared with mean income, dominant race, and dominant age from the 
census data. The results are discussed in the following sections. 

Transit App Users’ Home Locations and Population Density

Transit App users’ self-reported home locations and population density in census tracts 
across the five boroughs of New York and areas of New Jersey are shown in Figure 5. 
Transit App users’ home locations appear to be distributed relatively equally among 
the Bronx, Manhattan, and Staten Island. In Manhattan, home locations have a slightly 
higher frequency on the west side of Manhattan. Also, the census tract including 
Central Park has the highest observed value of Transit App users’ home locations (29 in 
total); this is likely due to the shift applied to the latitude and longitude by Transit App 
developers to respect user privacy since there is very high residential density on either 
side of Central Park. Staten Island has a relatively low number of Transit App users’ 
home locations (fewer than 5 homes in most census tracts). Many of the census tracts in 
Queens with higher frequency of Transit App home locations are located near subway 
lines. In Brooklyn, the number of home locations in each census tract is higher in the 
areas closer to Manhattan and Queens (mainly 6–20 home locations per tract) and 
lower in the southern parts of Brooklyn (fewer than 5 home locations in each census 
tract). In New Jersey, Transit App users’ home locations are mostly concentrated on 
the eastern part of the state close to Manhattan; many of the census tracts with higher 
numbers of Transit App users’ homes are located near the Port Authority Trans-Hudson 
(PATH) lines and NJ TRANSIT’s light rail lines.  
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FIGURE 5.  Population density and Transit App users’ home locations in New York and New Jersey census tracts
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Figure 5 also shows that population per square mile is relatively low (less than 25,000 
people per square mile) and relatively homogeneous throughout the census tracts in 
New Jersey and Staten Island. Population density is higher and more diverse across 
census tracts in Brooklyn, Queens, and the Bronx. In these three boroughs, population 
density generally ranges from 25,000 to 100,000 people/square mile. The highest 
population density is observed in Manhattan’s census tracts, which generally fall in 
the range of 50,000 to 150,000 people/square mile. Distribution of Transit App users’ 
home locations and population density also shows that in the census tracts with higher 
population density, the number of Transit App users’ home locations is also higher, 
which is an expected observation.

Income Visualization

Figure 6 shows Transit App users’ home locations in relation to mean annual household 
income per census tract in the five boroughs of New York and areas of New Jersey. As 
can be seen in this figure, higher income levels are observed primarily in Manhattan 
(except the northern part). In the other boroughs, mean household income is lower 
in the majority of census tracts. Many census tracts have a mean annual household in 
the range of $40,000 to $80,000 in Brooklyn, the Bronx, and Queens. In Manhattan, the 
Bronx, and Staten Island, Transit App users’ home locations are distributed relatively 
equally. In New Jersey, Queens, and Brooklyn, frequency of home locations is slightly 
higher in the areas with higher accessibility to other boroughs or higher concentrations 
of rail service. Therefore, based on graphical observations of mean household income, 
Transit App usage does not seem to be associated with household income levels in the 
New York City area, since Transit App users live in both high- and low-income areas. 

Race Visualization

Figure 7 shows dominant race from the 2010 census data overlaid with the Transit App 
users’ home locations. In Manhattan and Staten Island, the dominant race in most of 
the census tracts is white, except in the north of Manhattan. In these two boroughs, 
Transit App users’ home locations are distributed relatively equally among the census 
tracts. In the Bronx, most census tracts have a dominant race of Hispanic/Latino or 
Black/African American. In Brooklyn, many census tracts in the northern part of the 
borough have a dominant race of Black/African American, and many census tracts in 
the south part have the dominant race of white. In Queens, the dominant race in the 
southern census tracts is Black/African American; in the other parts of Queens, most 
census tracts have a dominant race of white. The majority of census tracts in New 
Jersey have the dominant race of white except those close to Manhattan. In terms of 
Transit App users’ home locations, there appears to be little, if any, relationship between 
dominant race and Transit App users’ home locations in the New York City region 
based on this visualization. 
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FIGURE 6.  Mean annual household income and Transit App users’ home locations in New York and New Jersey census tracts 
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FIGURE 7.  Dominant race and Transit App users’ home locations in New York and New Jersey census tracts
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Age Visualization 

Figure 8 shows dominant age from the 2010 census data and the number of Transit App 
users’ home locations per census tract. In Manhattan and Staten Island, the majority 
of the census tracts have relatively homogeneous dominant age group patterns; in 
Manhattan, the dominant age typically falls in the range of 25 to 34, and in Staten 
Island, it falls in the range of 45 to 54. Transit App users’ home locations are distributed 
relatively equally in these two boroughs. Therefore, it is unclear if there is a relationship 
between age and frequency of using Transit App in these two boroughs. Distribution of 
dominant age is more diverse across the Bronx, Queens, and New Jersey census tracts. In 
these areas, the visualization does not show much, if any, relationship between age and 
Transit App users’ home locations. However, in Brooklyn, many of the census tracts with 
more than six Transit App users’ home locations fall in the dominant age range of 25 to 
34, so age may play a role in influencing Transit App utilization in this borough. 

Statistical Analysis

In addition to the visualizations presented in the previous section, a statistical 
analysis also was conducted to understand the relationship between household level 
socioeconomic characteristics from the census data and Transit App users’ home 
locations. This analysis was performed at the census tract level in nine counties of New 
Jersey and five counties of New York. Table 1 shows the total number of census tracts, 
total number of the Transit App users’ home locations, and the number of census tracts 
with at least one Transit App user’s home location in each county considered for this 
analysis. 
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FIGURE 8.  Dominant age and Transit App users’ home locations in New York and New Jersey census tracts  
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TABLE 1. 
Number of Census Tracts  

and Transit App Users’ 
 Home Locations

Geographic Area
Total Number of 

Transit App Users’ 
Home Locations

Number of Census Tracts 
with at Least One Transit 

App Users’ Home Location

Total Number 
of Census 

Tracts

Manhattan 1,258 253 288

Brooklyn 2,014 592 761

Bronx 906 280 339

Queens 1,462 542 669

Staten Island 126 65 110

New Jersey (9 counties) 1,675 684 1,250

To understand the relationship between household level socioeconomic characteristics 
obtained from census data and the number of Transit App users’ home locations in 
each census tract, the Pearson correlation coefficient was calculated for each borough 
in New York City and for northern New Jersey. The Pearson correlation coefficient is a 
mathematical indicator of the relationship between two variables, and it ranges from -1 
to +1, with -1 indicating total negative correlation, zero indicating no correlation, and +1 
indicating total positive correlation. The Pearson correlation coefficient was calculated 
between the ratio of Transit App users’ home locations to total population and mean 
household income, percentage of different age groups or percentage of different races in 
each census tract using RStudio. 

The results of Pearson correlation analysis are shown in Table 2. Mean annual household 
income is negatively correlated with the number of Transit App users’ home locations 
divided by the total population in three of the areas (Manhattan, the Bronx, and 
New Jersey). The correlation value is relatively small (r ~ -0.2 in New Jersey; r ~ -0.01 
in Manhattan and the Bronx), implying that Transit App usage and mean household 
income are weakly dependent and that those in areas with higher income levels may 
use the Transit App less. In Staten Island, the observed correlation was positive (r ~ 
0.5), which may be because of the low and equally-distributed Transit App usage across 
Staten Island’s census tracts. There are fewer than five Transit App users’ home locations 
in most of Staten Island’s census tracts. The Pearson correlation coefficient showed 
little, if any, relationship for Brooklyn and Queens (r < 0.01). 

Among different age groups, in Manhattan, Brooklyn, and New Jersey, the percentage 
of the population in the age range of 20 to 34 had slightly positive correlation with the 
number of Transit App users’ home locations divided by the total population. Similarly, 
in the Bronx, Brooklyn, Queens, and Staten Island, the percentage of the population in 
the age range of 35 to 54 had slightly positive correlation with the number of Transit 
App users’ home locations divided by total population. Many of the lowest correlation 
values were observed in the age groups of 55 to 64 and 65 or older. This suggests that 
areas with higher percentages of older residents may be less likely to use Transit App. 

In the terms of ethnicity, correlation values between different race groups and the 
number of Transit App users’ home locations divided by the total population were 
very small (close to zero) across all boroughs. The only exceptions were in New Jersey, 
where the percentage of Transit App users’ home locations has a positive correlation 
with percentage of Black/African American population (r ~ 0.358), and in Staten Island, 
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Manhattan 
Census Tracts

Bronx 
Census Tracts

Brooklyn 
Census Tracts

Queens 
Census Tracts

Staten Island 
Census Tracts

New Jersey 
Census Tracts

Mean Household Income -0.011 -0.017 0.005 0.009 0.497 -0.215

Percent Under Age 5 -0.098 -0.199 -0.092 -0.024 -0.208 0.196

Percent Ages 5–14 -0.232 -0.251 -0.092 -0.199 0.535 -0.142

Percent Ages 15–19 -0.033 -0.170 -0.020 -0.150 -0.221 -0.060

Percent Ages 20–34 0.010 -0.309 0.242 -0.223 -0.017 0.361

Percent Ages 35–54 -0.346 0.278 0.013 0.194 0.298 -0.107

Percent Ages 55–64 0.150 -0.200 -0.140 0.349 -0.286 -0.218

Percent Ages 65 and Over 0.338 0.384 -0.106 -0.009 -0.218 -0.212

Percent of White Population 0.093 -0.087 -0.142 0.062 0.041 -0.418

Percent of Asian Population 0.017 -0.053 -0.133 -0.071 -0.032 0.030

Percent of Hispanic/Latino 
Population

-0.124 -0.097 0.018 -0.074 0.334 0.145

Percent of Black/African 
American Population

-0.075 0.151 0.167 0.022 -0.018 0.358

*Pearson correlation coefficient results for socioeconomic characteristics and number of Transit App users’ home locations divided by total population

TABLE 2.  Pearson Correlation Coefficient Results*

where percentage of Transit App users’ home locations has a positive correlation with 
the percentage of Hispanic/Latino population (r ~ 0.334). Altogether, correlation values 
suggest that there is limited correlation between ethnicity and use of the Transit App as 
represented by user’s home locations.  

Conclusions and Future Research

Transit App is one of the most popular mobile applications in North America that 
provides real-time transit information and a-to-b directions based on transit schedules. 
This study used backend data from Transit App to examine when and where passengers 
use this information in the New York City metropolitan area in a two part analysis, and 
the key findings are summarized as follows.

General trends of Transit App usage were first assessed by time of day and day of week. 
The time of day analysis for overall utilization and the trip planning feature showed that 
there were two significant peaks—one in the morning and the second in the evening—
for Monday through Thursday, which likely represents the typical pattern of transit 
ridership. On Fridays, the evening peak was slightly higher and wider than the evening 
peak on Mondays through Thursdays, which may be because people make more 
recreational or chained trips on Friday evenings for which they seek transit information. 
On the weekends, there were multiple small peaks in Transit App usage distributed 
relatively equally during the day. The day of the week analysis revealed that overall 
utilization of Transit App was highest on Mondays, whereas usage of the trip planning 
feature peaked on Fridays, which may be because of additional non-commute trips by 
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app users. On Sundays, usage (both overall and trip planning specifically) was slightly 
lower, which likely reflects general trends in transit ridership. 

Next, the frequency with which individual Transit App users typically check the app 
in a single day was assessed. The results show that approximately 60% of users utilize 
the trip planning feature of the app exactly once per day. This group of users might be 
infrequent users of the transit system or travelers making irregular trips who use the 
trip planning feature of the Transit App only occasionally. Examining overall utilization, 
the percentage of users who check the Transit App two times or more in one day is 
almost 80%, which could imply that the majority of real-time information users check 
this information for their commute and also for other trips, such as shopping and 
recreational trips. In other words, many transit riders may become accustomed to using 
the app and checking real-time information for most, if not all, of their transit trips.  

The second part of the analysis assessed whether Transit App is used more frequently in 
areas with residents of certain socioeconomic characteristics based on 2010 census data. 
Visualizations of mean annual household income, dominant race, and dominant age per 
census tract showed limited, if any, relationship with the self-reported home locations 
of Transit App users. Transit App usage appeared to be higher in areas with a high 
concentration of transit service and high accessibility to businesses and recreational 
activities. Calculating the Pearson correlation coefficient between socioeconomic 
characteristics (household income, race, and age) and the number of Transit App users’ 
self-reported home locations divided by the total population in each census tract also 
showed limited, if any, correlation. This finding implies that people throughout the New 
York City region use Transit App regardless of dominant age, race, or ethnicity in each 
area. Moreover, it suggests that mobile apps are becoming increasingly common and 
accessible to transit passengers in all areas. 

In summary, this study used a new data source to assess temporal and spatial patterns 
of using mobile transit information use in the New York metropolitan area. Results from 
the temporal analysis of Transit App usage were similar to typical temporal patterns of 
transit system utilization, but results from the socioeconomic analysis were somewhat 
surprising. Limited, if any, relationship was found between Transit App usage and 
the socioeconomic characteristics of the population in the study region. This may be 
specific to New York City, which has very high transit usage in general. However, more 
analysis of this dataset in other regions is recommended to assess if this trend holds 
elsewhere. 

There are numerous areas for improvement and future research that emerged from this 
study. One area for improvement is to compare Transit App usage with public transit 
ridership data. This could be done for time of day and day of week analysis, as well as 
the analysis of socioeconomic characteristics, in which the number of Transit App users’ 
home locations were normalized by population per census tract since it is difficult 
to determine the number of transit riders per census tract. Additionally, the area of 
analysis could be expanded beyond the New York region to include other metropolitan 
areas; this is an interesting area of study because other metropolitan areas will have 
different socioeconomic characteristics (e.g., income and race) and varying levels of 
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transit service. Future research also is suggested to verify the accuracy of locations 
(latitude/longitude) of users recorded in the Transit App backend server. Assessing 
trends in usage of the non-transit features in Transit App, such as Uber, bike sharing, 
and car sharing, could be examined in the future studies. Last, future research could be 
conducted to determine how this dataset could be integrated into the short- and long-
term transit planning process. 
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Distance-Based Transit Fare Structure
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Abstract

Horizontal equity requires equal distribution of investment/benefit/costs among equal 
members of society. In other words, a transit passenger should pay as much as he/she 
uses. This study evaluated the measure of fulfillment of this rule in a case study, developed 
a distance-based fare structure, and shows that justice is better served by switching to 
the proposed structure. Fare elasticity of demand and probability distribution of transit 
passenger trip lengths were investigated through a field survey. Although mainly used in 
the measurement of inequality in income or wealth, the Gini index and the recovery ratio 
(revenue to cost for each transit passenger) in evaluating equity were used in this study. 
Results show that the Gini index would decrease from 0.38 to 0.17 after switching from a 
flat to a distance-based structure. Assessment of the ratio of revenue per mile over cost 
per mile (RPM/CPM) shows that switching to a distance-based fare structure makes the 
RPM/CPM curve significantly flatter, which indicates more similarity among passengers. 
As a byproduct, the amount of change in demand and revenue of the transit system also 
were formulated. 

Keywords: Equity, elasticity, fare structure, Gini index.

Introduction

This study aimed to quantify the effect of distance-based fare structure on horizontal 
equity in public transportation systems. Equity may be defined with respect to the 
distribution of the system’s costs, benefits, or both among users (Pucher 1981). Access/
egress time, waiting time, and monetary cost are the main impediments to public 
transportation ridership. Benefits of a public transportation system include accessibility 
and subsidy in payments. An extensive study of equity in public transportation systems 
should include all these elements. This study, however, focused on the monetary cost, 
since other factors are not expected to be sensitive to fare structure.

From economic and social points of view, equity is divided in two categories—
horizontal and vertical. Horizontal equity requires equal treatment of equals, i.e., one 
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pays as much as one uses/takes. Vertical equity, on the other hand, requires distribution 
of costs and/or benefits according to the users’ need for the service or their capability 
for payment.

Two general structures of fare calculation are flat and graduated. In a flat structure, 
the fare of a line is predetermined and, therefore, is not sensitive to passenger trip 
characteristics (length, time, etc.). In a graduated fare structure, the fare rate may be 
dependent on a trip characteristic (length, time, zone, etc.) (Grey 1975; Nash 1982; 
Lovelock 1987).

From an organizational perspective, fare influences ridership and ridership determines 
revenue. To quantify the process, an acceptable estimate of price elasticity of demand 
is needed. Price elasticity of demand is the percentage of change in demand for a good 
or service as a result of a 1% change in its price. Therefore, elasticity establishes the 
relationship between fare and demand. Revenue, on the other hand, is the sum of all 
fares paid by passengers. In other words, price elasticity measures the rate of response 
of quantity demanded due to a price change and shows that percentage change in 
quantity demanded versus a 1% change in price.

Technological advances such as automatic fare collection (AFC) and automatic vehicle 
location (AVL) systems have paved the way for implementing distance-based fare 
structures. By using a ticket card upon boarding and alighting, the location and distance 
of a passenger’s trip can be calculated, and the amount of fare can be determined 
accordingly. This process adds a few seconds to the station operation for each passenger 
but brings great benefits in terms of equity and cost incurred by passengers.

Literature Review

Fare Elasticity

Fare elasticity has a rich literature in which relationships between fare and transit 
operational factors are investigated. Fare elasticity is a fundamental parameter to 
estimate demand and income before any change actually occurs in the amount of fare. 
Some previous studies have investigated the effect of fare change on demand in the 
long and short terms (Dargay and Hanly 1999; Goodwin 1992). Litman (2015) concluded 
that the fare elasticity of transit ridership in the short term varies between -0.2 and -0.5 
and in the long term varies between -0.6 and -0.9. Nowak and Savage (2013) assessed 
the cross elasticity between the price of gasoline and transit ridership in Chicago 
and found that it was small (about 0.05) when gas prices are under $3/gallon. When 
gas prices exceed $3/gallon, elasticity for rail-based transit modes is in the range of 
0.12–0.14, and when gas prices exceed $4/gallon, elasticity is in the range of 0.28–0.38. 
Sirikijpanichkul and Winyoopadit (2013) investigated the price elasticity of demand for 
travelers of different ages and travel distances in Bangkok and found that passengers 
older than age 45 traveling long-distance trips have a higher price elasticity of demand 
than young and short-distance passengers. Wardman and Grant-Muller (2011) reported 
the price elasticity of the demand for excursion trips to be greater than business trips. 
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Wang et al. (2015) used metro smart card data of Beijing to evaluate the fare elasticity of 
demand and revenue and found that the elasticity of demand for short-range trips (< 5 
kilometers) was more than longer trips.

Smith (2009) presented nine leading factors affecting the price elasticity of transit 
demand as user type, trip type, geography, type and direction of price change, time 
frame, distance, transit type and time of a day. Clements (1997) evaluated the response 
of dependent and discretionary transit riders and found that elasticity values of 
dependent riders tend to be significantly lower than discretionary riders. Linsalata and 
Pham (1991) conducted a study of 52 transit systems within the United States and 
determined the price elasticity in large and small cities for peak and off-peak hours. 
Their results showed that demand was less price-elastic during peak hours and in large 
cities. Horn af Rantzien and Rude (2014) assessed the price effects on the demand for 
public transport in peak- and off-peak periods in Stockholm; their results showed higher 
elasticities during off-peak periods compared to peak periods.

Fare Structures

Fare structures in public transportation include flat and graduated fare structures. 
Flat fares can be converted into variable fares based on factors such as distance, time, 
quality, cost, region (zone), and customer. A distance-based structure is based on the 
length of the trip. In a time-based fare structure, the amount of fare is determined 
based on trip duration or its occurrence during peak or off-peak hours. In cost-based 
pricing, the amount of fare is determined according to the cost incurred by the system 
to supply the service. In a zonal-based fare structure, the fare amount is determined 
based on the distance across zonal boundaries. In a customer-based fare structure, 
the fare rate is calculated according to the characteristics of the user, such as age and 
economic status.

Social Equity in Public Transportation

The importance of social equity together with a transportation system’s profound 
impact on the fulfillment of equity has led to a significant amount of research in this 
regard. Related research focuses either on geographical distribution of transit benefits 
or on demographic distribution of transit costs. As an example of the first group, Welch 
and Mishra (2013) combined parameters including frequency, speed, and capacity of 
passing lines to introduce the power of each station and analyzed the distribution of 
transit power throughout an urban area using Gini index. Ricciardi et al. (2015) explored 
public transport equity for older residents, low-income households, and no-car 
households and compared the status of two major Australian cities.

As a seminal study in the second group, Cervero (1981, 1990) and Cervero et al. (1980) 
evaluated the efficiency and equity implications of alternative transit fare structures. 
They define pricing structures as being efficient when users contributed to the costs of 
their services in line with the benefits they receive, as reflected by the marginal costs 
of their trips. On the other hand, fares are considered equitable when they take into 
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account the income capacities of riders. To inspect the effect of fare structures on groups 
of transit passengers, farebox recovery ratio was used as the ratio of fare price over the 
cost per passenger-mile. An example of a recent study within the second group is Farber 
et al. (2014), who incorporated a joint ordinal/continuous model of trip generation and 
distance traveled into a GIS Decision Support System. Applying this method to Wasatch 
Front, Utah, revealed that, overall, distance-based fares benefit low-income, older adult, 
and non-white populations. However, the effect was geographically uneven and even 
might be negative for members of these groups living on the urban fringe.

Methodology

This paper makes its contribution to the current body of literature by developing 
a mathematical foundation for a distance-based fare structure and systematically 
investigating its effect on horizontal equity. 

To evaluate the effect of fare structure on equity, three steps should be taken: 1) price 
elasticity of transit demand should be estimated; 2) a formulation for fare structure 
should be developed; and 3) a reasonable framework for evaluating the equity should be 
developed.

As shown in Equation 1, price elasticity of demand ( ) is measured by the percentage 
of change in demand (D) as a result of 1% change in fare (p).

 (1)

To fulfill the first requirement, a survey was conducted among transit passengers 
in Isfahan, a city of 1.7 million located in central Iran.The sample size included 300 
passengers of 6 major lines of the bus transit system. Respondents were asked how 
much they were paying for fare and how much more they were willing to pay before 
switching to alternative modes, if any (consumer surplus). Data were collected during 
both peak and off-peak time periods. It is noteworthy that the Isfahan bus transit 
network is composed of 97 lines with an approximate length of 2K kilometers serving 
900K passengers daily, which makes its share in the city’s transportation equal to 20%. 
The transit lines all over the city are mostly radial and circumferential. Currently, the 
fare of each line is determined based on length. All the buses serving the Isfahan transit 
network are equipped with an AFC system; hence, a distance-based fare structure is 
implementable.

Comparison of the consequences of fixed and distance-based fare structures requries 
establishment of the mathematical relationship between the two structures. In a 
distance-based structure, the fare for traveling through i stations (Fi) consists of a fixed 
“flag-fall” charge (F0) and a unit line haul charge per segment (F1), where a segment is 
defined as the distance between two consecutive stations. Therefore, the fare would be 
calculated from Equation 2.

 (2)

Iran.The
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Without loss of generality, it could be assumed that in a fixed fare structure, the fare 
(FFlat) is equal to the amount of fare for traveling through the whole line divided by a 
factor K ∈ . Hence, if n denotes the number of all stations in a line, the flat fare (FFlat) 
can be formulated as Equation 3.

 (3)

Therefore, by switching from a fixed to a distance-based fare structure, a passenger 
traveling i stations would experience a change in fare equal to ΔF:

 (4)

From the definition of elasticity, it is evident that the percentage of change in demand 
(ΔD%) is equal to the percentage of change in fare (ΔF%) multiplied by the fare 
elasticity of demand (ε). On the other hand, the percentage of change in the fare 
amount is the sum of the fare change for trips with length of i stations. Hence:

 
(5)

Therefore, demand under distance-based fare structure (DD-B) can be calculated from 
Equation 6.

 (6)

To assess the financial consequences caused by the change in fare structure, the amount 
of revenue must be analyzed. Equation 7 shows the change caused by switching from a 
flat-fare to a distance-based fare structure (ΔR).

 (7)                                          

Assessment of the Fairness of Fare Structures

Disparity between a passenger’s benefit (trip length) and cost (fare) implies inequality. 
Revenue per Mile (RPM) is the revenue from fares, and Cost per Mile (CPM) is the cost 
incurred by the system. RPM/CPM would show if passengers are paying more than they 
benefit from the transit service or vice versa. This factor also measures the share of each 
user’s trip cost covered by a rider’s fare. Under the condition of perfect equity, the value 
of RPM/CPM would be equal to 1 for all trip lengths.

Based on value of RPM/CPM, two distinct types of evaluations were carried out. First, 
the distribution of RPM/CPM among the passengers with different trip lengths was 
analyzed. At perfect equity, the ratio of RPM/CPM is equal to 1 for all passengers 
regardless of trip length. Second, the distribution of RPM/CPM among the population of 
passengers could be analyzed and its fairness can be assessed via the use of Gini index. A 
Lorenz curve was used for assessing the uniformity of the distribution of benefits among 
the passengers. A Lorenz curve plots the cumulative percentages of total received 
benefit versus the cumulative number of recipients. The area between the Lorenz curve 
and a hypothetical line of absolute equality is the Gini index value. The Gini index (Ga) 
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measures the extent to which the distribution of an entity among units of concern 
deviates from a perfectly equal distribution. This number ranges between 0 (perfect 
equity) and 1 (perfect unequity) and is calculated using the following formula where Xk 
is the cumulative proportion of the population and and Yk  is the cumulative proportion 
of attribute k. 

 (8)

Case Study

Price elasticity of transit demand was calculated for different categories of passengers 
based on survey data. Passengers were categorized based on gender, income, trip 
distance, age, usage frequency, and available alternative mode. Results show that price 
elasticity was -0.33 and -0.3 for male and female passengers, respectively. The average 
fare elasticity for passengers younger than age 18 was -0.17 compared to -0.28 for 
respondents ages 18–40 and -0.4 for respondents ages 40+. Analysis showed that price 
elasticity falls as income increases. The average elasticity for passengers from households 
with a monthly income below $330 is -0.36 compared to -0.32 for $330–$660 and -0.24 
for whose household income was above $660. Results of the survey also indicated a 
difference pertaining to an available alternative mode. The elasticity value for passengers 
who had a private vehicle at their disposal was -0.3. The values for passengers indicating 
bicycle as their alternative was -0.27, for taxi -0.3, for motorcycle -0.42, and for walking 
-0.48. The price elasticity value for passengers who use a bus every day was -0.33, for 
“often” users it was -0.25, and for “seldom” users it was -0.36. Results also show that 
elasticity is higher during off-peak hours compared to peak hours.

Since this study was based on trip distances, more elaboration was made on the 
demand elasticity of passengers with different trip lengths. Using collected data, price 
elasticity of demand for trips of length i (Ɛi) was estimated. Figure 1 shows the data and 
Equation 9 shows the calibrated formula with coefficient of determination (R2) equal to 
0.67. 

 (9)
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The trip distribution was derived from the survey data and is presented in Equation 10 
and Figure 2.

 
(10)

FIGURE 1. 
Price elasticity of demand 

based on trip length

FIGURE 2.
Frequency of trip lengths

Equity and Fairness of Distance-Based Fare Structure

Total revenue was calculated by summing the product of demand and fare for each 
class of trip length. A unique value was assumed for the cost of traveling each segment. 
Figure 3 shows the Lorenz curve for fixed and distance-based fare. It is evident that 
by switching from a fixed to a distance-based fare structure, the Lorenz curve moves 
toward the bisector (complete equity). This merge could be quantified by the value of 
the Gini Index. The Gini index in fixed and distance-based fare structures was calculated 
to be 0.38 and 0.17, respectively. Hence, the Gini-index value declined after switching 
to a distance-based structure and, therefore, justice is better served. It should be noted 
that this figure is drawn Fint = $0.13, F0 = $0.033, and F1 =$0.007. Values were calculated 
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in local currency and transformed to US dollars. According to the Isfahan Bus Transit 
Organization, the cost of each passenger is about $0.13. Since this value is the same 
for all lines and passengers, it does not affect the methodology. However, it affects the 
prescribed values for parameters of the formulation, e.g., F0 and F1.

Figure 3 shows the difference between each fare structure and the full equity condition. 
In this figure, abscissa and ordinate represent the percentile of the population and the 
portion of the total value of the RPM/CPM respectively (Welch and Mishra, 2013).

FIGURE 3.
Lorenz curves for fixed-fare 

and distance-based fare 
structure

The value of the ratio of RPM/CPM on all segments is depicted in Figure 4. The 
horizontal dashed line shows the perfect status for equity, the “subsidy threshold" 
(Cervero 1981). This threshold shows the situation in which every group of passenges 
compensates for the charges they incur to the system.

FIGURE 4.  RPM/CPM for different trip lengths
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Figure 4 demonsrates that under the current fare structure, passengers with short and 
medium trip lengths (trip lengths between 2 and 12 segments) are paying more than 
what they gain (white bars). On the other hand, passengers with longer trip lengths (trip 
lengths above 14 segments) are paying much less than what they gain. Actually, one 
group of passnegers is paying the cost of the other. In a distance-based fare structure, 
this unevenness is modified to a great extent (gray bars). It is evident that the deviation 
from the dashed line (perfect equity) has diminished considerably. 

To quantify the effect of the change, absolute errors were calculated according to 
Equation 10. It was shown that the absolute error (absolute value of RPM/CPM minus 
1) has decreased from 22 (under the current fare structure) to 14 (under the proposed 
distance-based fare structure), a more than 50% improvement.

Figure 5 shows how the unevenness of RPM/CPM is distributed among passengers 
based on their trip length. Comparing the bars shows that by switching to a distance-
based structure, unevenness diminishes, especially for trip lengths between 5 and 15 
stations which, according to Figure 2, constitutes the majority of passengers.

FIGURE 5.  Deviation from equity for different trip lengths

Conclusion

The effect of a distance-based fare structure adoption on horizontal equity was 
quantified in this study. Adopting an appropriate fare structure influences transit 
ridership and revenue and has a profound effect on social equity. This paper 
investigated the distance-based fare structure from the social equity point of view. 
Results indicate that the status of social equity under a distance-based fare structure 
conforms to the social equity much more than a flat-fare regime. Both the Gini index 
and the revenue-to-cost ratio explicitly show that disparity in the distribution of transit 
benefits decreases under a distance-based structure. For Isfahan, the value of the Gini 
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index would reduce from 0.38 to 0.17 by switching to a distance-based fare structure. 
Moreover, the sum of the absolute deviation from 1 (perfect inequity) diminished from 
22 (under a flat-fare structure) to 14 (under a proposed distance-based fare structure) 
shows more than a 50% improvement.

Results of this study could be used by bus transit organizations to set fares equitably 
and profitably. For Isfahan, setting the F0 = $0.033 and F1 =$0.007 would halve the Gini 
index and increase the revenue. It should be noted that any change in the operational 
cost of a bus system or the demand pattern may change these values. New values may 
be calculated using the formulations presented in the paper.
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