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al., 2011; Engene et al., 2013). These interesting and 
biochemically active compounds possess biological 
activity covering a wide range of antibacterial (Mundt 
et al., 2003; Kaushik & Chauhan, 2008; Ramadan 
et al., 2008; Asthana et al., 2009; Kaushik et al., 
2009; Khairy & El-Kassas, 2010; Suhail et al., 2011), 
antifungal (MacMillan et al., 2002), antialgal (Papke et 
al., 1997), antiviral (Hayashi et al., 1996; Zainuddin et 
al., 2002), anti-thrombotic (Antonopoulou et al., 2002; 
2005a,b) and also anticancer effectiveness (Luesh et 
al., 2001; Simmons et al., 2005).

Many Cyanobacteria from various biotopes have been 
tested for antibacterial activity, e.g. marine (Luesh et 
al., 2001; Simmons et al., 2005; Mathew et al., 2008; 
Vijaya Baskara Sethubathi & Ashok Prabu, 2012), 
freshwater (Østensvik et al., 1998; Mian et al., 2003; 
Madhumathi et al., 2011) and terrestrial (Mian et al., 
2003; Abdel-Raouf & Ibraheem, 2008; Ramamurthy 
et al., 2012). Considering cave ecosystems as an 
extreme environment (due to the insufficient light 

INTRODUCTION

Cyanobacteria represent a group of Gram-negative 
photoautotrophic prokaryotes thriving in almost all 
aquatic and terrestrial habitats on earth, including 
extreme environments. This widespread distribution 
reflects the tolerance of Cyanobacteria towards 
environmental stress due, inter alia, to a broad 
spectrum of specific properties in physiology (Uzair 
et al., 2012). Generally, microorganisms forming 
microbial mats in extreme environments have been 
recently identified as a good source of bioactive 
compounds for different biotechnological applications 
(Harvey, 2000; Dobretsov et al., 2011).

Modern research has focused on a variety of bioactive 
compounds produced by Cyanobacteria. After analysis 
of a great number of marine cyanobacterial natural 
products, lipopeptides seem to prevail followed at 
much lesser proportions by amino acids, fatty acids, 
macrolides and amides (Burja et al., 2001; Singh et 

Cave Cyanobacteria - thriving in an ‘extreme’ environment with interesting species 
biodiversity - are supposed to be a potential source of bioactive compounds. Lipid extracts 
from pure cultures of two recently established Cyanobacteria from Greek caves, Toxopsis 
calypsus and Phormidium melanochroun, were used for antibacterial screening against 
human pathogenic bacteria (reference and clinical isolates). Antimicrobial Susceptibility 
testing for both taxa was carried out using the disc-diffusion (Kirby Bauer) method, while 
preliminary data applying the standard broth microdilution method for the determination 
of the Minimal Inhibitory Concentration (MIC) are given only for T. calypsus. Antibacterial 
activity was demonstrated against the Gram-positive clinical and reference bacteria, 
mostly pronounced in enterococci; no activity was observed against the Gram-negative 
bacteria. The above screening is the first record of antibacterial activity from lipid extracts 
of cave Cyanobacteria enhancing the importance of cave microbiota and the necessity  
for cave conservation.
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one volume of pre-equilibrated 87% ethanol (Galanos 
& Kapoulas, 1962). The PLs were further fractioned 
by Thin Layer Chromatography (TLC) on ten (10) 
TLC plates using chloroform/acetone/methanol/
acetic acid/water at a ratio of 100:40:34:10:10 
(v/v/v/v/v) as developing system. Appropriate 
standards of phospho- and glycol-lipids were also 
used. After exposure of the TLC plate to I2 vapor, the  
fractions of PLs were scraped off separately, 
centrifuged, and the organic solvents were phased by 
adding appropriate volumes of chloroform, methanol 
and water at a ratio of 1:2:0.8 (v/v/v). All reagents and 
chemicals were of analytical grade and supplied by 
Merck (Darmstadt, Germany). The chromatographic 
material used for TLC was silica gel H-60 (Merck, 
Darmstadt, Germany).

Antibacterial activity determination
The potential antibacterial activity was tested in 

both Cyanobacteria strains by the disk diffusion 
method with Mueller-Hinton II agar (OXOID, UK) 
according to CLSI guidelines. Dried extracts were 
dissolved in methanol. The plates were inoculated 
with a suspension of each strain adjusted to 
a turbidity of 0.5 McFarland. Sterilized blank  
(3 mm Chr Whatman) paper disks (6 mm diameter) 
were applied to the surface of the inoculated agar 
and were loaded with a total amount of 10 μl and 
20 μl of each extract solution. The antibiotic disks 
(BIORAD, UK) gentamicin 10 μg (GEN), ampicillin 
10 μg (AMP), cefoxitin 30 μg (FOX), tetracycline  
30 μg (TET), ciprofloxacin 5 μg (CIP) and co-trimoxazole 
1.25 / 23.75 μg (SXT) were used as positive controls 
depending of the bacterial species. Methanol alone 
was used as a negative control since a volume of 
V ≥5 μl pure methanol was inhibitory to bacterial 
growth. The plates were left to dry for 15 min and 
were incubated for 18 h at 35º ± 2ºC. For all agents 
the diameters of zones of inhibition were measured 
to the nearest millimeter and for the positive controls 
the results were interpreted according to CLSI (2012) 
breakpoints. Each fraction of PLs, as well as the NLs 
as a whole, was tested in vitro for their ability to inhibit 
growth of the following eight reference or clinical 
isolates: S. aureus NCTC 6571, Methicillin-Resistant 
S. aureus (MRSA) 1629, Methicillin-Susceptible S. 
aureus (MSSA) 1646, Enterococcus faecalis ATCC 
29212, Vancomycin-Resistant E. faecalis (VRE) 
880, Vancomycin-Resistant E. faecium (VRE) 1291, 
Escherichia coli ATCC 25922, and Pseudomonas 
aeruginosa ATCC 27853.

After the initial evaluation of antibacterial activity, 
the Minimum Inhibitory Concentrations (MICs) were 
determined only for T. calypsus by broth microdilution 
method as recommended by CLSI. The tests were 
performed in sterile 96-well microtiter plates. 
Briefly, 50 μl of two-fold serial dilutions of examined 
samples was added to 50 μl microbial suspensions 
adjusted to yield approximately 5×105 CFU/ml. MIC 
was encountered as the lowest concentration of the 
examined sample that inhibits the visible microbial 
growth after 24 h incubation at 37ºC. Negative 
controls (methanol) were included, too.

and nutrient limitation), antibiotic effectiveness by 
cave bacteria has recently been recorded (Montano 
& Henderson, 2013); however, no studies have yet 
identified the antibacterial potential of cyanobacterial 
isolates from caves.  

Exploitation of new natural products as antibacterial 
agents against resistant pathogens is very important 
for clinical medicine and public health, and a limited 
number of new antimicrobial classes have been 
developed by the international pharmaceutical industry 
in the last 20 years (Infectious Diseases Society of 
America, 2007). The aim of the present study is to 
assess the potential antibacterial activity of extracts 
from two recently established Cyanobacteria from 
Greek caves, i.e. Toxopsis calypsus and Phormidium 
melanochroun (Lamprinou et al., 2012, 2013). It 
is noted that cave environments are still relatively 
underexploited, and may prove to be a rich source of 
novel biodiversity possessing bioactive compounds 
potentially useful in biotechnology.

MATERIAL AND METHODS

Sampling
Fresh material, as scrapped mats and pieces of 

rocks of ≤5 g, was collected from ‘Francthi’ Cave 
(37°25’21.01”N, 22°17’51.18”N; altitude 12.5 m 
a.s.l.), an exposed, non typical cave, with partly 
collapsed roof, located in Argolida (Peloponnese, 
Greece). Sampling was conducted seasonally at seven 
selected sites from the entrance inwards. Temperature 
(average 18.26ºC, min 11.53ºC, max 25.94ºC), Relative 
Humidity (average 66.20%, min 50.73%, max 93.51%) 
and photosynthetically active radiation (average 
3.09 μmol·s-1·m-2, min 0.08 μmol·s-1·m-2, max 26.70 
μmol·s-1·m-2) were measured at each sampling site 
and sampling date by a LI-1400 data logger (LI-COR 
Biosciences, USA). Four subsamples were collected 
from each sampling site. Two of them were incubated 
in situ into sterile transparent vials and, the other  
two were partly fixed with formaldehyde solution at 
2.5%. Enrichment cultures were obtained in flasks 
and petri dishes with culture media (BG11o and BG11, 
Stanier et al., 1971) and under proper conditions 
(Gallenkamp, Sanyo incubator; 23ºC, 80% RH,  
7 μmols·s-1·m-2). The two Cyanobacteria selected for 
antibacterial screening (Tables 1 a,b) were: (i) Toxopsis 
calypsus (type strain: ATHU-CY 3314, GenBank acc. 
Nr. JN695681-JN695685) found at the nearest to the 
entrance site, and (ii) Phormidium melanochroun (type 
strain: ATHU-CY 3315, GenBank acc. Nr. JQ692233) 
found in almost all sampling sites. The required time 
for attaining sufficient biomass for lipid extraction 
was 150-200 days. 

Lipids Extraction and Thin Layer 
Chromatography (TLC)

Total lipids were extracted from cell suspensions of 
cultures using the Bligh Dyer method (Bligh & Dyer, 
1959). Total lipids (TLs) were then separated into 
polar (PLs) and neutral lipids (NLs) by countercurrent 
distributions in a binary system formed by mixing 
three volumes of pre-equilibrated petroleum ether and 
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(i) against Enterococcus faecium (VRE) by the fractions 
T2 and T7 of T. calypsus, and by the fraction P3 of 
P. melanochroun, at a total volume of 20 μl, and (ii) 
against Enterococcus faecalis (ATCC) by the fraction 
T9 of T. calyspsus also at a total volume of 20 μl. 
One fraction of polar lipids (P7) from P. melanochroun 
showed no zone of inhibition eliminating the expected 
halo of pure methanol (see Table 1 a,b).

The results obtained by the broth microdilution 
method (MICs) for T. calypsus confirm those of the 
disk diffusion method (Table 3). Antibacterial activity 
of the 12 fractions of PLs (including NLs and PLs as 
a whole) extracted from T. calypsus was recorded 
against staphylococci and enterococci in MIC values 
0.256 μg/ml and 0.512 μg/ml. Seven (7) fractions of 
PLs (T1-T3, T7-T10) showed the greatest MIC values 
against enterococci (0.256 μg/ml). Moreover, one of 
the above fractions (T10) showed antibacterial activity 
against S. aureus (MRSA) at MIC value of 0.256 μg/ml. 
The fractions T11 and T12 indicated no antibacterial 
activity at MIC ≥ 0.512 μg/ml.

RESULTS

Extraction of lipids from the Cyanobacteria T. 
calypsus and P. melanochroun yielded about 31 mg and 
51 mg of total lipids (TLs), respectively. Polar lipids (PLs) 
were further fractioned by TLC, and after exposure in 
I2 vapor a total of 12 and 10 bands were revealed for 
T. calypsus and P. melanochroun, respectively. The 
retention factors (Rfs) for each band of polar lipids 
compared to that of standards are shown in Table 2. 

As examined by the Kirby Bauer Method, each fraction 
of PLs from both Cyanobacteria species, as well as TLs, 
PLs and NLs as a whole, yielded an inhibition halo 
against the examined Gram-positive bacteria, whereas 
none of the examined lipids was effective against the 
Gram-negative bacteria (Tables 1 a,b).

Among the Gram-positive bacteria, the reference and 
clinical isolates of enterococci were mostly affected 
since a greater number of fractions of PLs (including 
NLs and PLs as a whole) showed zones of inhibition. 
The highest zones of inhibition (20 mm) were observed: 

Retention Factors (Rf)

 Toxopsis calypsus Phormidium melanochroun Standards
T1 0.153 ± 0.009 P1 0.151 ± 0.024

LPC = 0.08
SM = 0.17
PC = 0.28
PE = 0.57

SULF = 0.61
DGDG = 0.71

GALCER = 0.78
CERA = 0.93

T2 0.202 ± 0.027 P2 0.196 ± 0.018
T3  0.256 ± 0.020 P3 0.268 ± 0.015
T4 0.304 ± 0.017 P4 0.355 ± 0.050
T5 0.394 ± 0.033 P5  0.422 ± 0.040
T6 0.450 ± 0.037 P6 0.514 ± 0.017
T7 0.517 ± 0.034 P7 0.690 ± 0.032
T8 2.217 ± 0.801 P8 0.844 ± 0.049
T9  0.712 ± 0.035 P9 0.922 ± 0.038
T10  0.804 ± 0.038 P10 0.959 ± 0.031
T11 0.875 ± 0.031
T12 0.918 ± 0.037

Table 2. Retention factors (average ± standard deviation) for each fraction (T1–T12) of Polar Lipids of Toxopsis 
calypsus and for each fraction (P1–P10) of Polar Lipids of Phormidium mealanochroun compared to the 
retention factors given for the following standards: LPC = lysophosphatidyl-choline; SM = sphingomyelin;  
PC = phosphatidyl-choline; PE = phosphatidyl-ethanolamine; SULF = sulfatides; DGDG = digalactosyl-
diglycerides; GALCER = galactosyl-cerebrosides; CERA = ceramides.

S. aureus 
NTCC 6571

S. aureus 
MRSA 1629

S. aureus 
MSSA 1646

E. faecalis 
ATCC 29212

E. faecalis 
VRE 880

E. faecium 
VRE 1291

E. coli ATCC 
25922

P. aeruginosa 
ATCC 27853

T1 0.512 0.512 0.512 0.256 0.256 0.256 - -
T2 0.512 0.512 0.512 0.256 0.256 0.256 - -
T3 0.512 0.512 0.512 0.256 0.256 0.256 - -
T4 0.512 0.512 0.512 - - - - -
T5 0.512 0.512 0.512 - - - - -
T6 - - 0.512 - - - - -
T7 0.512 0.512 0.512 0.256 0.256 0.256 - -
T8 0.512 0.512 0.512 0.256 0.256 0.256 - -
T9 0.512 0.512 0.512 0.256 0.256 0.256 - -
T10 0.512 0.512 0.256 0.256 0.256 0.256 - -
T11 - - - - - - - -
T12 - - - - - - - -
PL - - - 0.512 0.512 0.512 - -
NL - - - 0.512 0.512 0.512 - -
TL - - - 0.512 0.512 0.512 - -

Table 3. Minimum Inhibitory Concentration (MIC) values (in μg/ml) determined for each methanol fraction (T1-T12) of Polar Lipids, as well as of 
Polar Lipids (PL), Neutral Lipids (NL) and Total Lipids (TL) of Toxopsis calypsus when tested against eight reference or clinical isolates. 
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strains (ranging from 0.5 mg/ml to 512 mg/ml; e.g., 
Kaushik & Chauhan, 2008; Asthana et al., 2009; 
Kumar et al., 2012). These data and future similar 
research on Phormidium melanochroun, accompanied 
by precise composition and characterization of these 
active compounds, are highly promising steps for 
developing effective antibiotics from cave Cyanobacteria 
in pharmaceutical industry.

Extreme habitats experiencing steady or fluctuating 
exposure to one or more environmental factors, i.e. 
salinity, osmolality, desiccation, solar irradiance, 
barometric pressure, pH, temperature, nutrient 
limitation (Seufferheld et al., 2008; Dapkevicius, 
2013) are considered as one of the most promising 
sources of biotechnologically useful compounds. As a 
result, several studies have been devoted to screening 
secondary metabolites produced by microorganisms 
inhabiting such environments (e.g., Harvey, 2000; 
Nicolaus et al., 2010; Chang et al., 2011; Singh & Gabani, 
2011). Caves are considered as extreme environments 
in terms of nutrient limitation and insufficient light 
with rather understudied microorganisms; thus, caves 
are promising sources for successful natural product 
research, justifying their conservation and our effort of 
screening the isolated Cyanobacteria.
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