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Abstract 

Kinetic target-guided synthesis (TGS) and in situ click chemistry are among 

unconventional discovery strategies having the potential to streamline the development of 

protein-protein interaction modulators (PPIMs). In kinetic TGS and in situ click 

chemistry, the target is directly involved in the assembly of its own potent, bidentate 

ligand from a pool of reactive fragments. Herein, we report the use and validation of 

kinetic TGS based on the sulfo-click reaction between thio acids and sulfonyl azides as a 

screening and synthesis platform for the identification of high-quality PPIMs. Starting 

from a randomly designed library consisting of nine thio acids and nine sulfonyl azides 

leading to eighty one potential acylsulfonamides, the target protein, Bcl-XL selectively 

assembled four PPIMs, acylsulfonamides SZ4TA2, SZ7TA2, SZ9TA1, and SZ9TA5, 

which have been shown to modulate Bcl-XL/BH3 interactions. To further investigate the 

Bcl-XL templation effect, control experiments were carried out using two mutants of Bcl-

XL. In one mutant, phenylalanine Phe131 and aspartic acid Asp133, which are critical for 

the BH3 domain binding, have been substituted by alanines, while arginine Arg139, a 

residue identified to play a crucial role in the binding of ABT-737, a BH3 mimetic, has 

been replaced by an alanine in the other mutant. Incubation of these mutants with the 

reactive fragments and subsequent LC/MS-SIM analysis confirmed that these building 

block combinations yield the corresponding acylsulfonamides at the BH3 binding site, 

the actual “hot spot” of Bcl-XL. These results validate kinetic TGS using the sulfo-click 

reaction as a valuable tool for the straightforward identification of high-quality PPIMs. 
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Protein-protein interactions of the Bcl-2 family have been extensively 

investigated and the anti-apoptotic proteins (Bcl-2, Bcl-XL, and Mcl-1) have been 

validated as crucial targets for the discovery of potential anti-cancer agents. At the outset, 

Bcl-2 and Bcl-XL were considered to play an important role in the regulation of 

apoptosis. Accordingly, several small molecule inhibitors targeting Bcl-2 and/or Bcl-XL 

proteins were primarily designed. A series of acylsulfonamides targeting these proteins 

were reported by Abbott laboratories, ABT-737 and ABT-263 being the most potent 

candidates. Remarkably, these molecules were found to exhibit weaker binding affinities 

against Mcl-1, another anti-apoptotic protein. Further experimental evidence suggests 

that, inhibitors targeting Mcl-1 selectively or in combination with other anti-apoptotic 

proteins would lead to desired therapeutic effect. As a result, numerous small molecules 

displaying activity against Mcl-1 have been identified so far. Specifically, 

acylsulfonamides derived from structure activity relationship by interligand nuclear 

overhauser effect (SAR by ILOEs), a fragment-based approach, have been recently 

reported with binding affinities in the nanomolar range. In the meantime, we have 

reported that the kinetic TGS approach can also be applied to identify acylsulfonamides 

as PPIMs targeting Bcl-XL. Taken together, structurally novel acylsulfonamides can be 

potentially discovered as Mcl-1 inhibitors using the kinetic TGS approach. Thus, a library 

of thirty one sulfonyl azides and ten thio acids providing three hundred and ten potential 

products was screened against Mcl-1 and the kinetic TGS hits were identified. 

Subsequently, control experiments involving Bim BH3 peptide were conducted to 

confirm that the fragments are assembled at the binding site of the protein. The kinetic 

TGS hits were then synthesized and subjected to the fluorescence polarization assay. 
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Gratifyingly, activities in single digit micromolar range were detected, demonstrating that 

the sulfo-click kinetic TGS approach can also be used for screening and identification of 

acylsulfonamides as PPIMs targeting Mcl-1. 

The amide bond serves as one of nature’s most fundamental functional group and 

is observed in a large number of organic and biological molecules. Traditionally, the 

amide functionality is introduced in a molecule through coupling of an amine and an 

activated carboxylic acid. Recently, various alternative methods have been reported 

wherein, the aldehydes or alcohols are  oxidized using transition metal catalysts and are 

treated with amines to transform into the corresponding amides. These transformations 

however, require specially designed catalysts, long reaction times and high temperatures. 

We herein describe a practical and efficient amidation reaction involving aromatic 

aldehydes and various azides under mild basic conditions. A broad spectrum of 

functional groups was tolerated, demonstrating the scope of the reaction. Consequently, 

the amides were synthesized in moderate to excellent yields, presenting an attractive 

alternative to the currently available synthetic methods. 
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Chapter 1 

Various Drug Discovery Approaches and Protein-Protein Interaction Targets 

1.1 Drug discovery approaches 

 Advances in the field of molecular biology have resulted in a better understanding 

of various biochemical pathways. Consequently, a large number of proteins have been 

recognized and validated as therapeutic targets creating an urgent need for generation of 

novel drug-like molecules. Over the last two decades, conventional drug discovery 

approaches such as combinatorial chemistry and high-throughput screening (HTS) have 

been extensively explored in the quest of biologically active molecules. These approaches 

demand generation of a large library of compounds and data analysis making it expensive 

and cumbersome. Moreover, the false positives obtained during the library screening 

presents additional drawbacks thereby impeding the drug discovery and development 

process. Alternatively, a wide range of fragment-based approaches have emerged as 

promising tools towards lead discovery. These approaches can be divided into two 

categories. In the first category, the fragments with weak binding affinities are identified 

using various biophysical techniques and are subsequently converted into the drug-like 

molecules using traditional synthetic procedures. In the second category, the target serves 

as a template assembling the fragments together to yield the inhibitor of that target itself. 

These approaches are termed as template-assisted strategies or target-guided synthesis 
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(TGS). TGS can be further classified into three subcategories: (a) dynamic combinatorial 

chemistry (DCC), (b) catalyst/reagent-accelerated TGS and (c) kinetic TGS. 

1.2 Combinatorial chemistry and high-throughput screening (HTS) 

Combinatorial chemistry was developed by Merrifield in 1960s to rapidly 

generate a large number of compounds, utilizing a solid phase synthesis methodology.1 

Since then this approach has been widely used for drug discovery and development.2 

Hundreds to thousands of compounds can be synthesized and tested in much shorter time 

compared to the conventional synthetic procedures thereby increasing the chances of 

finding molecules with biological activity. Especially, mixtures of compounds are 

obtained in a mix and split method. These mixtures are directly subjected to the 

biological assays and if found active, the exact compound displaying the activity can then 

be identified via a specialized deconvolution procedure. In the HTS approach, libraries of 

compounds (> 106), primarily generated through combinatorial chemistry, are tested in an 

automated fashion against a wide range of targets to identify potential hits. Various types 

of HTS assays have been developed to detect binding of the compound to a desired 

target. Some of the commonly used assays include the fluorescence polarization (FP) 

assay3 and the amplified luminescent proximity homogeneous assay (Alpha).4 

Importantly, these strategies require huge investments since a large set of molecules 

needs to be synthesized and analyzed using automated liquid handling tools. Also, a high 

rate of false positives is observed during HTS screening especially for difficult targets 

considered to belong to the class of “undruggable” targets. This could be attributed to the 

presence of chemically reactive members in the library and/or inhibitory activity arising 

from formation of molecular aggregates, known as promiscuous inhibitors. Moreover, 
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approximately 1063 drug-like molecules consisting of up to 30 heavy atoms have been 

estimated to exist.5 Screening all of these molecules is practically impossible, presenting 

limitations in exploring the chemical space efficiently.6 As a result, although the 

pharmaceutical industry has heavily relied on combinatorial chemistry and HTS 

approaches, they have met with limited success. In order to find alternatives, modern 

approaches such as fragment-based lead discovery (FBLD) have been extensively 

exploited. 

1.3 Fragment-based lead discovery 

Recently, several fragment-based lead discovery (FBLD) approaches have been 

established as an attractive alternative to the conventional drug discovery methods.7 This 

approach involves synthesis of libraries of small molecules or fragments (molecular 

weight in the range of 150-300 Da).8 As opposed to the drug-like molecules, only 107 

fragments consisting of up to 12 heavy atoms have been estimated to exist.9 

Consequently, the fragments possess higher ligand efficiency compared to the molecules 

arising from the combinatorial libraries and HTS. Initially, the fragments exhibiting weak 

affinity (binding constants in the milli- to micromolar ranges) are identified and 

subsequently combined using synthetic procedures to develop ligands with high affinity 

(binding constants in the micro- to nanomolar ranges).8, 10 Various techniques employed 

to detect fragments with weak binding affinities include surface plasmon resonance 

(SPR),11 X-ray crystallography,12 isothermal titration calorimetry (ITC),13 nuclear 

magnetic resonance (NMR) spectroscopy14 and mass spectrometry.15 Some of the 

disadvantages of the aforementioned methods are the relatively low throughout, the 

requirement of sensitive and expensive instrumentation for the detection of small 
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molecular weight compounds, and the necessity of large amount of protein. Importantly, 

these techniques fail to provide the most critical piece of information: what is the best 

way to combine identified fragments with weak binding affinities leading to high-affinity 

ligands?16 Thus, extensive synthetic efforts have to be implemented in order to obtain 

potent inhibitors immediately after the fragments are detected. For example, Fesik et al. 

utilized a SAR by NMR approach to develop dual inhibitors of anti-apoptotic proteins, 

Bcl-2 and Bcl-XL.17 Starting from the initial fragments, more than 2300 compounds had 

to be synthesized,18 leading to ABT-737, one of the most potent inhibitor of Bcl-2 and 

Bcl-XL.19 To overcome these shortcomings, several template-assisted strategies, known 

as target-guided synthesis (TGS), have been recently established. 

1.4 Target-guided synthesis (TGS) 

 In a target-guided synthesis (TGS) approach, the biological target, a protein or an 

enzyme plays a significant role in the synthesis of its own bidentate ligand from a library 

of various building blocks derivatized with complementary reacting functional groups. 

The TGS can be broadly divided into three sets: (a) dynamic combinatorial chemistry 

(DCC) (b) catalyst/reagent-accelerated TGS and (c) kinetic TGS. 

1.4.1 Dynamic combinatorial chemistry (DCC) and its variants 

 The dynamic combinatorial chemistry (DCC) approach was first applied by Huc 

et al. in 1997 to discover inhibitors of carbonic anhydrase.20 In a DCC approach, the 

reaction combining sublibraries of building blocks into a larger library of larger 

compounds is reversible (Figure 1.1). When the biological target is added to this library, 

also known as the dynamic combinatorial library (DCL), the equilibrium is shifted 
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towards the formation of compounds possessing the strongest affinities towards the 

target, thereby enabling the identification of the most potent compounds from the DCC 

library.21  

 

Figure 1.1. Schematic representation of the dynamic combinatorial chemistry (DCC) 

approach 

Hence, the generation and isolation of the desired compound can be combined in 

a single step making the entire process simple and rapid. Especially, the DCC approach 

has been proved useful in case of library of building blocks possessing a variety of 

functional groups, which are not compatible and cannot be handled conveniently using 

the conventional combinatorial chemistry methods. For example, Hochgurtel et al. 

designed the DCL of imines derived from a highly functionalized diamine and 41 diverse 

ketones, which was screened against an influenza virus enzyme, neuraminidase.22 

Reduction of imines using NaCNBH3 yielded corresponding amines, which were 

subjected to HPLC/MS analysis for the identification of hits. Other examples of the 

reactions utilized in developing the DCLs include, the trans-esterification, the olefin 
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metathesis, the peptide-bond exchange, the boronic ester formation, the Diels-Alder 

reaction and the disulfide formation.23 The variants of DCC consist of tethering, 

pseudo-dynamic combinatorial chemistry (pDCC) and dynamic combinatorial resolution 

(DCR).  

Tethering, a DCC variant has been proved to be highly successful in the 

identification of inhibitors for numerous challenging targets such as interleukin-2 

(IL-2),24
 protein tyrosine phosphatase 1B (PTP-1B),25 caspases26 and others.27 A specific 

segment of the protein template is exploited, wherein a cysteine residue in the proximity 

of the binding site actively takes part in the thiol-disulfide exchange reaction (Figure 

1.2).24, 27b  

 

Figure 1.2. Schematic representation of tethering 

Alternatively, a cysteine residue can be either incorporated through site-directed 

mutagenesis27a, 28 or extended by a thiol bearing linker.26 For example, the caspase-3 
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enzyme was modified by attaching a thiol bearing aspartate analogue and subsequently 

screened against a library of 7000 disulfides.26 The disulfides binding near the 

thiol-bearing linker would thus be exchanged through the reaction with the thiol. The 

enzyme-disulfide complex can be subsequently identified using mass spectrometry. 

Although the disulfide needs to be transformed into a chemically stable entity and large 

amounts of the biological template (close to stoichiometric amounts) are required, this 

tethering approach can be applied to various enzymes/proteins due to the readily 

available cysteine residue.6 In case of dynamic combinatorial resolution (DCR),29 an 

enzyme, when treated with the DCL, selectively transforms certain members of the 

library into structurally different products through an irreversible reaction. Ramstrom and 

co-workers have demonstrated the utility of this approach using a nitroaldol in a Henry 

reaction (Figure 1.3).29a  

 

Figure 1.3. Dynamic combinatorial resolution using nitroaldol reaction 

The DCL consisting of five different aromatic aldehydes along with 

2-nitropropane leading to ten corresponding nitroaldol products (including all the 

enantiomers) was designed and treated with lipase PS-C I in the presence of 

4-chlorophenyl acetate serving as the acyl donor. Only two β-nitroalcohols (as single 
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enantiomers) were found by 1H NMR spectroscopy to be predominantly acylated by the 

lipase after 14 days of incubation.29a On the contrary, pseudo-dynamic combinatorial 

chemistry (pDCC)30 strategy relies on an enzymatic bond cleavage reaction (Figure 1.4). 

This strategy was successfully employed by Corbett et al. utilizing pronase, a nonspecific 

protease, facilitating the hydrolysis of dipeptides. Eight dipeptides were synthesized and 

incubated with carbonic anhydrase and subsequently treated with pronase. Consequently, 

the dipeptide with highest binding affinity towards carbonic anhydrase was protected, 

whereas other dipeptides, being more susceptible to hydrolysis by pronase, were 

eliminated.30a Although the applicability of this approach is restrained by the cleavage 

reaction, requirement of the template in only catalytic amounts makes it advantageous 

over conventional DCC methods. 

 

Figure 1.4. Pseudo-dynamic combinatorial chemistry 

1.4.2 Catalyst/reagent-accelerated target-guided synthesis 

 In this two-step approach, the templated combination of two fragments with 

highest binding affinities by the protein target constitutes the first step. The second step 
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entails the addition of a catalyst or a reagent resulting in the covalent bond formation 

between the binding fragments. This approach has been successfully applied to develop 

various Vancomycin dimers,31 trimers32 or oligomers33 as inhibitors of 

vancomycin-resistant bacterial strains. Nicolaou and co-workers employed the disulfide 

bond forming reaction and/or the olefin metathesis reaction to link two Vancomycin units 

together in a back-to-back fashion generating disulfide or alkene linkages, respectively.34 

The reaction conditions for the disulfide bond formation were comprised of a 

saponification using NaOH followed by the dimerization via air oxidation, whereas the 

Grubb’s catalyst ([(PCy3)2Ru(CHPh)Cl2]) along with a phase-transfer catalyst 

(C12H25NMe3Br) were required for the olefin metathesis reaction. Several analogues with 

varied linker lengths and/or different amino acid sequences at the N-terminus were 

designed and subjected to the aforementioned reaction conditions in the presence and 

absence of the targets Ac-D-Ala-D-Ala or Ac2-L-Lys-D-Ala-D-Ala. The rate of 

dimerization was found to be accelerated by the target for selective Vancomycin 

derivatives. In accordance, these dimers displayed higher potency compared to other 

dimers against the Vancomycin-resistant bacterial strains, demonstrating the utility of this 

approach. 

1.4.3 Kinetic target-guided synthesis 

 In this particular approach, the used building blocks or fragments are decorated 

with complementary reacting functional groups. Thus, when a biological target (a protein 

or an enzyme) is introduced, it selectively templates the irreversible bond formation 

between specific building blocks with high affinity. As a result, the target-facilitated 

covalent bond formation between two building blocks yields a potent inhibitor through an 
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irreversible reaction, which ideally has characteristics of a click chemistry reaction 

(Figure 1.5).35 

 

Figure 1.5. Schematic representation of the kinetic TGS approach 

A set of criteria that must be met for a reaction to be used as a click reaction 

includes: (a) high yield, (b) sluggish reactivity profile, (c) wide scope, and (d) generate 

no or minimal amounts of byproducts.36 In addition, the reaction needs to 

stereospecifically proceed smoothly in organic as well as aqueous solvents, along with a 

simple isolation of the product.36 

 

Figure 1.6. Reactions suitable for click chemistry  

Typically, reactions leading to a carbon-heteroatom bond formation are found to 

be suitable as click reactions. Some well-known reactions used for the click chemistry 

are: (a) the 1,3-dipolar cycloaddition, (b) the hetero-Diels-Alder reaction, (c) the 

reactive
fragments
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target

selective

binding
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nucleophilic ring-opening reactions of aziridines and epoxides, (d) the non-aldol 

reactions of carbonyl moiety generating oxime ethers, the formation of hydrazones and 

aromatic heterocycles, (e) the oxidative additions to olefins such as dihydroxylations and 

epoxidations, and (f) the recently developed sulfo-click reaction between azides or 

sulfonyl azides and thio acids yielding amides or acylsulfonamides (Figure 1.6 A-D).36-37 

1.4.3.1 In situ click chemistry  

Amongst the reactions mentioned above, the Huisgen 1,3-dipolar cycloaddition 

reaction between azides and alkynes resulting in 1,2,3-triazoles, termed as in situ click 

chemistry, has been instrumental in the validation of kinetic TGS approaches due to its 

desirable reactivity profile. Conveniently, the triazoles display favorable physicochemical 

properties, take part in hydrogen-bonding, and are stable towards hydrolytic cleavage as 

well as oxidative or reductive reaction conditions.36b Various reaction conditions have 

been established to synthesize the disubstituted 1,2,3-triazoles (Scheme 1.1). For 

example, copper-(I) catalysts are generally employed to regioselectively obtain 

1,4-disubstituted triazoles (anti-triazoles),38 whereas 1,5-disubstituted triazoles 

(syn-triazoles) can be synthesized using magnesium acetylides or ruthenium catalysts.39 

On the contrary, when an azide and an alkyne are heated in the absence of solvent, 

equimolar mixture of syn- and anti-triazoles is obtained.36a, 40 Interestingly, only one of 

the regioisomers is preferentially formed in the templated reaction.41 
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Scheme 1.1. Synthesis of disubstituted 1,2,3-triazoles via Huisgen cycloaddition 

The sluggish rate of this reaction has actually been proved to be advantageous for 

its application in the kinetic TGS approach.42 Mock and co-workers investigated the 

reaction of an azide and an alkyne, each attached to an alkyl ammonium moiety. They 

reported that the rate of triazole formation was radically accelerated (by a factor of 

5.5104) in the presence of catalytic amounts of cucurbituril, a nonadecacyclic cage-like 

structure comprised of substituted urea subunits.43 Based on the NMR studies and other 

experiments, the ammonium moiety (RNH3
+) was found to be involved in the hydrogen 

bonding with the urea carbonyls, placing the azide and alkyne functionalities in proximity 

within the cavity of the cucurbituril cage, thereby accelerating the triazole formation.43a 

Inspired by these results, Sharpless and co-workers extended this approach to 

acetylcholinesterase (AChE),41, 44 an enzyme which a crucial role in the functioning of 

central and peripheral nervous system by catalyzing hydrolysis of acetylcholine.45 A set 
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of azides and alkynes leading to ninety eight potential triazoles (arising from forty nine 

combinations, considering syn- and anti- regioisomers) were incubated as binary 

mixtures in the presence of an eel AChE at room temperature for 6 days (Figure 1.7).44a 

   

Figure 1.7. In situ click chemistry approach using eel AChE as a template 

Out of ninety eight potential triazoles, only one triazole, syn-TZ2PA6, was 

generated in detectable amounts in the presence of the eel AChE. It is important to note 

that, the sluggish rate of this reaction would make it impossible to generate detectable 

amount of triazole in the absence of the target, underlining the role of the templation in 

accelerating the triazole formation by bringing the azide and alkyne functionalities 

together. The dissociation constants for syn- and anti-TZ2PA6 were found be 99 fM and 

14 pM respectively.44a These results clearly indicate that the triazole syn-TZ2PA6 with 

its significantly higher potency was preferentially assembled by the enzyme. Due to its 

versatility and reliability, the in situ click chemistry approach has been successfully 

employed to discover potent inhibitors of the enzymes such as bovine carbonic anhydrase 

(bCAII),46 HIV-1 protease47 and chitinase.48 Other noteworthy examples include, 
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DNA-templated triazole formation starting from hairpin polyamide azides and alkynes,49 

and polypeptide-based antibody-like capture agents for bCAII.50 

1.4.3.2 Sulfo-click reaction 

Williams and co-workers recently developed a reaction, wherein 

electron-deficient azides (sulfonyl azides) or electron-rich azides (alkyl/aryl azides) react 

with thio acids leading to the corresponding amides.37a, b Detailed mechanistic studies 

have revealed that this reaction follows two distinct pathways depending upon the 

electronic nature of the azide used. The electron-rich azides favor the formation of 

thiatriazoline intermediate 7 directly whereas the electron-deficient azides primarily 

generate the linear intermediate 8 eventually leading to thiatriazoline 7 (Scheme 1.2).37b 

This reaction requires mild conditions, is high yielding and can be carried out in various 

organic as well as aqueous solvents. Importantly, the byproducts generated are not 

detrimental to the biological systems.  

 

Scheme 1.2. Mechanism of the amidation reaction between azides and thio acids 
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These features qualify this amidation reaction, involving sulfonyl azides (termed 

as sulfo-click reaction37c) to be applied for the kinetic TGS approach. For example, Hu et 

al. designed a proof-of-concept experiment wherein, a set of six sulfonyl azides 

(SZ1-SZ6) and three thio acids (TA1-TA3) (eighteen possible combinations) was 

incubated as binary mixtures at 37 °C for six hours with the target protein Bcl-XL, an 

anti-apoptotic protein of the Bcl-2 family (Figure 1.8).51 As a control, all eighteen 

combinations were incubated in the phosphate buffer without Bcl-XL. The samples were 

then analyzed by liquid chromatography combined with mass spectrometry using selected 

ion mode (LC/MS-SIM). Of all eighteen possible N-acylsulfonamide products, SZ4TA2, 

an inhibitor of Bcl-XL reported by Abbott laboratories,52 was identified as a kinetic TGS 

hit.  

 

Figure 1.8. Screening of sulfonyl azides and thio acids against Bcl-XL 
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Additional control experiments incorporating wildtype (WT) and mutant versions 

of pro-apoptotic BH3 peptides (Bak and Bim) were carried out to probe whether the 

fragments are being templated at the binding site of Bcl-XL or through non-specific 

binding. The WT BH3 peptides were found to compete with the fragments resulting in 

the suppression of the templated product formation, whereas the mutant BH3 peptides did 

not affect the templated reaction owing to the weaker binding affinities.51 These findings 

have suggested that the kinetic TGS approach utilizing an amidation reaction could also 

be applied to protein-protein interaction targets.  

1.4.3.3 Other reactions used for kinetic TGS 

 Apart from the reactions described above, additional reactions have also been 

found suitable for the kinetic TGS approach due to their favorable characteristics (Figure 

1.9 A-D). Inspired from the serendipitous discovery by Chase and Tubbs involving 

carnitine acetyltransferase templated C-S bond forming reaction between 

bromoacetyl-carnitine and coenzyme-A,53 Nguyen and Huc extended this approach 

against bovine carbonic anhydrase II (CA II).54 A set of five alkyl chlorides and a thiol 

consisting of a sulfonamide moiety were used for this purpose. It is important to note that 

the fragments leading to more potent sulfides were preferably templated by CA II when 

two alkyl chlorides and one thiol were simultaneously incubated. Other reactions utilized 

as click reactions include a C-N bond formation templated by glycinamide ribonucleotide 

transformylase (GAR Tfase),55 a C-C bond formation with sirtuin as a template56 and a 

multi-component Ugi reaction templated by thrombin.57 
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Figure 1.9. Other reactions explored for kinetic TGS application 

1.5 Targeting protein-protein interactions 

 Protein-protein interactions constitute an integral part of the biological system and 

are involved in the regulation of many key processes ranging from signal transduction to 

apoptosis, a programmed cell death mechanism. Therefore, targeting specific 

protein-protein interactions has been of great therapeutic interest.58 Despite enormous 

potential, identification of small molecules disrupting these interactions remains a 

challenging task.58c, 58l, 59 The challenges are mainly associated with the nature of binding 

interfaces involved during these interactions. Typically, these interfaces are large 

(1500-3000 Å2),60 flat and do not provide well-defined binding pockets or grooves.58a, b 

Additionally, the binding regions involved are noncontiguous, which complicates the 

design of synthetic peptides.58b, 58d Moreover, unlike enzymatic targets, natural small 

molecules or ligands binding to the protein-protein interfaces are hardly available posing 

difficulties during the inception.58a-c Proteins are also known to undergo significant 



18 
 

conformational changes. As a result, X-ray crystal structures may not be able to reveal 

deep cavities.58a, 58e In fact, a particular crystal structure can possibly represent merely 

one out of various conformations. It is quite possible that the conformation of the protein 

suitable for small molecule binding may not be obtained in one crystal structure.58a, 61 

Due to these hurdles, protein-protein interaction targets were thought to be 

‘undruggable’. However, Clackson and Wells demonstrated through the pioneering work, 

that only a small region of the interface composed of few amino acids in the binding 

interface heavily contribute to the free energy of binding.62 It was then envisioned that 

the small molecules targeting these small regions, termed as ‘hot spots’, would serve as 

initial drug candidates displaying reasonable binding affinities. Generally, the ‘hot spots’ 

are identified by alanine scanning62b, 63 (wherein amino acid residues are replaced by 

alanine methodically and the change in the binding free energy for each mutation is 

determined) and are mainly comprised of aromatic as well as positively charged 

residues.62b Wells and co-workers used this technique to analyze the binding interactions 

between human growth hormone (hGH) and the extracellular domain of its receptor 

(hGHbp).64 During the alanine screening, they discovered that out of thirty one side 

chains constituting the binding interface of hGH, only eight make up for approximately 

85% of the binding free energy, while eleven of the side chains did not contribute 

towards the binding affinity at all.64b These findings have tremendously triggered the 

drug discovery process towards identification of various small molecules as 

protein-protein interaction modulators. Some noteworthy examples of protein-protein 

interactions include Bcl-XL / Bak, IL-2 / IL-2Rα, MDM2 / p53, LFA-1 / ICAM-1, Mcl-1 

/ Bim and TNF / TNFRc1.58a, b, 65 
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1.5.1 Protein-protein interactions of the Bcl-2 family  

The Bcl-2 family of proteins has been validated as a central regulator of apoptosis 

through an intrinsic pathway (also known as mitochondrial pathway) and can be divided 

into two categories, namely pro-apoptotic proteins and anti-apoptotic proteins.66 The 

pro-apoptotic proteins, which can be further divided into two sub-categories, include Bak, 

Bax, Bok (multidomain proteins) and Bid, Bim, Bad and Noxa (BH3-only proteins). On 

the other hand, anti-apoptotic proteins mainly include Bcl-2, Bcl-XL, Mcl-1, Bcl-w and 

A1.66c Almost all the Bcl-2 family proteins consist of a dimerization domain, known as 

BH3 domain, represented by a 16 amino acid amphipathic α helix. The NMR structure of 

Bcl-XL bound to Bak has revealed that the latter, in the α-helical structure, binds to the 

hydrophobic groove of Bcl-XL.67 The ability of the anti-apoptotic proteins to 

heterodimerize with pro-apoptotic proteins (both, multidomain and BH3 only) through 

the BH3 domain can be correlated with their role in the suppression of cell death 

mechanism resulting in tumor progression.66a In accordance, the majority of human 

cancers display overexpression of anti-apoptotic Bcl-2 family proteins. For example, high 

levels of Bcl-2 and Bcl-XL are observed in prostate, breast and colorectal cancers.68 Some 

BH3-only proteins (e.g. Bad) antagonize the anti-apoptotic proteins making the 

multidomain pro-apoptotic proteins available during apoptosis and are known as 

sensitizers or de-repressors. Alternatively, other BH3-only proteins (such as Bid or Bim) 

can directly activate the Bak or Bax and hence are termed as activators.66c Therefore, 

small molecules mimicking the BH3 domain can be developed to induce apoptosis and 

hence have the potential as anti-cancer therapeutics.69 
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Figure 1.10. Small-molecular inhibitors of Bcl-2/Bcl-XL 

 Several combinations of drug discovery methods have been employed for 

developing potent inhibitors of the Bcl-2 and/or Bcl-XL (Figure 1.10).19, 52, 70 In 

particular, small molecules mimicking the α-helix involved in the binding interactions 

have displayed high affinities (Ki ~ 5-100 nM).71 During the last decade, Fesik and 

co-workers at Abbott laboratories designed highly potent small molecular dual inhibitors 

of Bcl-2 and Bcl-XL utilizing a fragment-based approach known as SAR-by-NMR.17, 19, 

52, 72 In this approach, small fragments were screened against 15N-labeled Bcl-XL using 

15N HSQC analysis. First, ligands with weak binding affinities targeting first and second 

site within the hydrophobic groove of Bcl-XL were identified. These fragments were then 
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optimized using NMR analysis in combination with parallel synthesis to generate 

high-affinity ligands. Moreover, these compounds retained the activity in cell-based 

assays as well as in animals (tumor xenograft models).58b The most potent compound, 

ABT-737 obtained after extensive efforts exhibited a Ki of 0.6 nM against Bcl-2, Bcl-XL 

and Bcl-w.19 ABT-263, an analogue of ABT-737 has entered in phase I/II clinical trials 

for cancer treatment.73 Interestingly, these compounds were found to be selective and 

showed lower binding affinity (Ki = 0.46 µM) against other anti-apoptotic proteins such 

as Mcl-1, Bcl-B and A1.19  Analysis of various peptides derived from Bak through 

alanine scanning has revealed that the amino acid residues Val 74, Leu 78, Ile 81, Asp 83 

and Ile 85 are responsible for the key binding interactions with Bcl-XL.67, 71b Although 

ABT-737 binds to Bcl-XL in the same domain as observed for Bak-analogous peptides, it 

captures Bcl-XL in a different conformation, exposing deeper cavities in the binding 

site.58b Remarkably, these findings have highlighted the significance of ‘hot spots’ in 

targeting protein-protein interactions.  

1.6 Development of novel reactions suitable for kinetic TGS 

As described earlier, the kinetic TGS approach has the potential to streamline the 

drug discovery process and has been successfully applied to various enzymatic as well as 

protein-protein interaction targets. Various reactions suitable for kinetic TGS have been 

identified so far. Most prominent examples include, (a) the Huisgen 1,3-dipolar 

cycloaddition reaction between azides and alkynes resulting in 1,2,3-triazoles, and (b) the 

sulfo-click reaction between sulfonyl azides and thio acids yielding amides. Importantly, 

using these reactions, biologically valuable functional moieties such as triazoles and 

amides could be incorporated generating drug-like molecules. Therefore, the 
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development of novel reactions with the potential to be applied for a kinetic TGS 

approach would be of great importance.  

1.7 Research aims 

1.7.1 Identification of protein-protein interaction modulators (PPIMs) targeting Bcl-XL 

 Although protein-protein interactions possess significant biological importance, 

identification of small molecules modulating specific protein-protein interactions remains 

challenging due to the flexible nature of proteins. Several fragment based approaches 

have been established to identify fragments with good ligand efficiencies, but fail to 

provide insights into efficient fragment linkage, making the drug discovery process 

complicated. In another type of fragment-based approach, termed as kinetic target-guided 

synthesis (TGS), the target serves as a template assembling the fragments together to 

yield the inhibitor of that target itself. This approach was recently shown to be suitable 

for the identification of PPIMs. Our research efforts were focused on utilizing the kinetic 

TGS approach based on the sulfo-click reaction between thio acids and sulfonyl azides 

for the identification of high-quality PPIMs targeting an anti-apoptotic protein, Bcl-XL. 

1.7.2 Identification of PPIMs targeting Mcl-1 

 Recently, Mcl-1, another anti-apoptotic protein of the Bcl-2 family has been 

established to be actively involved in controlling the apoptotic pathway. As a result, 

several small molecules targeting Mcl-1 selectively or in combination with other 

anti-apoptotic proteins have been reported in the past few years. After obtaining 

encouraging results with Bcl-XL, our aim was to extend the kinetic TGS approach to 

Mcl-1 utilizing the sulfo-click reaction. The key features of this research endeavor 
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involved (a) the expansion of sulfonyl azide and thio acid libraries, (b) the in situ 

generation of thio acids starting from thio esters to address the issues associated with the 

stability of thio acids, (c) the screening of the expanded libraries of sulfonyl azides and 

thio acids against Mcl-1, (d) the confirmation of the kinetic TGS hits identified using 

control experiments followed by synthesis of the same, and (e) the determination of 

biological activities (IC50 values) of these kinetic TGS hits against Mcl-1 and Bcl-XL 

using fluorescence polarization assay. 

1.7.3 Development of an amidation reaction 

 Although, the kinetic TGS has been well established as a highly reliable and 

efficient approach for the identification of novel inhibitors of various biological targets 

with therapeutic interest, only a limited set of reactions have been found to be suitable for 

this method. We identified that a set of alkyl azides (substituted benzyl azides and 

α-azido amides) can undergo a reaction with aromatic aldehydes under mild basic 

conditions generating corresponding amides. First, the reaction conditions were 

optimized and t-BuOK alone was found to be suitable for this transformation, while best 

results were obtained when DMF was used as a solvent. The potential of this reaction to 

be used for kinetic TGS approach was then probed. Unfortunately, this reaction turned 

out to be sensitive to moisture and thus cannot be applied for the TGS. Nevertheless, 

biologically relevant amidomethylarenes could be easily generated using this method. As 

a result, our efforts entailed (a) expanding the scope of the reaction with respect to both 

azides and aldehydes, and (b) designing control experiments to investigate the 

mechanistic details. 
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Chapter 2 

Screening of Protein-Protein Interaction Modulators via Sulfo-Click Kinetic 

Target-Guided Synthesis 

2.1 Introduction 

 Protein-protein interactions (PPIs) are central to a large number of vital 

biological processes and thus represent attractive targets for the development of novel 

therapies for a variety of diseases.1 Although scientists recognized the tremendous 

potential in targeting PPIs over the last two decades, the development of small 

molecules, which specifically modulate or disrupt a particular PPI, remains a 

challenging and risky undertaking.1a Commonly, protein-protein interfaces are large 

and flat, and they lack deep cavities that might serve as good binding sites for small 

molecules.2 Moreover, amino acids at the interfaces of PPIs are flexible and thus pose 

challenges at conducting computer-guided compound design.3  

 Although protein-protein interfaces bury 500–3000 Å2 of total surface area, 

which exceeds the potential binding area of low-molecular-weight compounds,4 Wells 

and co-workers demonstrated that only a fraction of the amino acid residues at the 

protein-protein interface contributes to the major portion of the binding free energy.5 

These key amino acids, defined as recognition patches or hot spots, therefore provide 

the theoretical and experimental evidence that PPIs can be disrupted or modulated by 
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low-molecular-weight compounds. In the last 15 years, numerous approaches have 

been developed for the discovery of small molecules modulating or disrupting PPIs. 

Often, small molecule design is aimed at mimicking a peptide or a protein secondary 

structure in a truncated form.6 Alternatively, fragment-based drug discovery strategies 

using biomolecular NMR, X-ray crystallography, or surface plasmon resonance (SPR) 

lead to the identification of fragments with good ligand efficiencies, which are further 

developed into potent protein-protein interaction modulators (PPIMs). Herein we 

report the expansion and utilization of kinetic target-guided synthesis (TGS) as a 

screening platform for the identification of PPIMs.  

 In the last two decades, several TGS approaches have been described, in which 

the target biomolecule assembles its inhibitory ligand from a collection of reactive 

fragments. Depending on the nature of the assembly step, TGS approaches can be 

classified into (a) dynamic combinatorial chemistry (DCC), (b) reagent-accelerated 

TGS, and (c) kinetic TGS.7 In dynamic combinatorial chemistry, the assembly process 

is reversible, whereas reagent-accelerated TGS uses building blocks, which combine 

in an irreversible fashion only in presence of an external reagent or a catalyst upon 

binding to the biological target. In kinetic TGS, a biological target accelerates the 

irreversible covalent bond formation only between complementary reacting fragments 

binding to adjacent binding sites of the target (Figure 2.1A). Kinetic TGS6b and in situ 

click chemistry7a, b have been exclusively applied for the identification of inhibitors of 

enzymatic targets with well defined binding pockets. In a recent proof-of-concept 

study with the anti-apoptotic protein Bcl-XL as the biological target, we demonstrated 

that kinetic TGS can also be used for the “rediscovery” of a PPIM previously reported 
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by the Abbott Laboratories starting from smaller fragments bearing a thio acid or a 

sulfonyl azide functional group.7d Williams and coworkers described that the 

amidation reaction between thio acids and sulfonyl azides,8 which in the meantime 

has been named as the sulfo-click reaction,9 proceeds in aqueous media. 

 

Figure 2.1. Kinetic TGS approach targeting PPIs. A) TGS approaches are based on 

the principle that multidentate interactions between a ligand and a biological target 

are collectively much stronger than the corresponding monovalent interactions of 

each of the fragments.10 Thus, target-assembled compound most likely will have a 

stronger interaction with the biological target as compared to the individual building 

blocks.10 In kinetic TGS, fragments decorated with complementary reactive groups 
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are incubated with the target biomolecule. If two fragments reside simultaneously in 

close proximity in binding pockets of the target, the two reactive functionalities react 

with each other forming a covalent linkage between the two fragments. B) 

Acylsulfonamide 1, ABT-737 and ABT-263 compounds targeting Bcl-XL. C) Proof-

of-concept study to demonstrate that the amidation between thio acids and  sulfonyl 

azides is suited for kinetic TGS targeting PPIs. 

 The proteins of the Bcl-2 family have been validated as attractive PPI targets 

for cancer therapy.11 The Bcl-2 family of proteins, which consists of both anti- and 

pro-apoptotic molecules, plays a pivotal role in the regulation of the intrinsic pathway 

of apoptosis. The anti-apoptotic Bcl-2 family proteins Bcl-2, Bcl-XL, and Mcl-1 

inhibit the release of certain pro-apoptotic factors from mitochondria. In contrast, 

pro-apoptotic Bcl-2 family members, which can be further separated into two 

subgroups, the multidomain BH1-3 proteins (i.e., Bax and Bak) and the BH3-only 

proteins (e.g., Bad, Bim, and Noxa), induce the release of mitochondrial apoptogenic 

molecules into the cytosol.12 Evidence has been accumulated that the majority of 

human cancers overexpress the pro-survival Bcl-2 family proteins, which not only 

contribute to cancer progression by preventing normal cell turnover, but also render 

cancer cells resistant to current cancer treatments.13 Although there is a controversy 

over how anti-apoptotic Bcl-2 family proteins function,14 it is generally accepted that 

apoptosis is initiated by the binding of pro-apoptotic BH3-only proteins to 

anti-apoptotic Bcl-2 family molecules in cancer cells. These interactions are mediated 

by the insertion of the BH3 domain of pro-death proteins into the hydrophobic groove 

on the surface of anti-apoptotic proteins Bcl-2, Bcl-XL, or Mcl-1.15 Therefore, small 
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molecules that mimic the BH3 domains of pro-apoptotic Bcl-2 family proteins have 

potential as anti-cancer therapeutics.  

 Previously, Abbott Laboratories developed acylsulfonamide 1, ABT-737, 

ABT-263, and other structurally related acylsulfonamides, which efficiently disrupt 

Bcl-XL-Bad interaction (Figure 2.1B).16 On the basis of these reports, we designed 

reactive fragments structurally related to ABT-737 and ABT-263 (SZ1-SZ6 and 

TA1-TA3), and incubated these as binary fragment mixtures in presence of Bcl-XL 

(Figure 2.1C). Analysis of each incubation sample by liquid chromatography 

combined with mass spectrometry detection in the Selected Ion Mode (LC/MS-SIM) 

showed that of all 18 possible products only compound SZ4TA2, which was 

developed by Abbott Laboratories, has been detected. In comparison, incubations of 

fragments in the absence of Bcl-XL or in presence of Bcl-XL and various 

BH3-containing peptides failed to yield detectable amounts of acylsulfonamide 

products. In addition, IC50 inhibitory constants in the nM range have been determined 

for SZ4TA2, while their corresponding thio acid or sulfonyl azide fragments did not 

show any inhibition up to 100 µM concentrations.  

 Herein, we successfully employed and validated the sulfo-click kinetic TGS 

approach as a straightforward yet reliable PPIM screening platform for the 

identification of Bcl-XL-protein modulators. The design of kinetic TGS incubations 

with wildtype and mutant Bcl-XL proteins provided an additional layer of 

confirmatory experiments for the delivery of high-quality PPIMs. Furthermore, 

experimental evidence has been accumulated indicating that kinetic TGS is a PPIM 
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screening and synthesis method generating only active compounds. 

2.2 Results and discussion 

2.2.1 Screening of an extended reactive fragment library  

 The proof-of-concept study motivated us to investigate whether kinetic TGS is 

also successful at generating hit compounds which have not been previously reported. 

Two sublibraries of reactive fragments, one consisting of thio acids and the other of 

sulfonyl azides, have been synthesized. The thio acids were generated from the 

corresponding acid chlorides and sodium hydrosulfide, while the sulfonyl azides were 

prepared by alkylation of amines with 4-(bromomethyl)benzenesulfonyl azide 

(Scheme 2.1A-C). A selection of acylsulfonamides has been synthesized mainly by: 

a) EDCI coupling of corresponding carboxylic acids and sulfonamides, or b) the 

previsouly reported reaction between sulfonyl azides and selenocarboxylates which 

were generated from corresponding carboxylic acids and the selenating reagent, 

LiAlHSeH (Scheme 2.1D).17
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Scheme 2.1. Synthesis of sulfonyl azides, thio acids and acylsulfonamides. Reaction 

conditions: (a) SOCl2, DMF, reflux, 2 h (b) 2-(phenylthio)ethanamine (0.5 eq), 

K2CO3, CHCl3, 12 h, RT (c) NaN3, acetone, H2O, 0 °C, 3 h, 70% (over 3 steps) (d) 

K2CO3, CH3CN:H2O (9:1), 12 h, RT, 87% (e) 2-(phenylthio)ethanamine (0.5 eq), 

K2CO3, CH3CN:H2O (9:1), 12 h, RT, 60% (f) ICH2CN, K2CO3, CH3CN:H2O (10:1), 2 

d, 60 °C, 79% (g) 12 N HCl, 90 °C, 3 h, 66% (h) i) (COCl)2, CH2Cl2, 0 °C to RT, 8 h; 

ii) dimethylthioformamide, H2S, 15 min, 25% (i) NaSH, acetone, H2O, 2 h, RT (j) 

NaSH, neat, 0 °C to RT, 1 h (k) EDCI, DMAP, CH2Cl2, RT, 24-48 h (l) 

(CH3)2CHOCOCl, N-methyl piperidine, THF, 0 °C, 30 min (m) LiAlHSeH, THF, 0 

°C, 30 min (n) RSO2N3, THF, 0 °C to RT, 3 h. 

 The majority of the reactive fragments have been randomly selected, while a 

small fraction of the reactive fragments has been designed to be structurally related to 

ABT-737 or ABT-263. Eighty one binary mixtures containing one thio acid 

(TA1-TA9) and one sulfonyl azide (SZ1-SZ9) were incubated with the target protein 

Bcl-XL for 6 hours at 37 C (Figure 2.2).  
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Figure 2.2. Kinetic TGS screening of Bcl-XL via sulfo-click chemistry 

 In parallel, identical binary fragment mixtures were incubated in buffer 

without Bcl-XL. Similar to in situ click chemistry,7a, b all incubations were directly 

subjected to HPLC analysis with acylsulfonamide product detection by electrospray 

ionization in the positive Selected Ion Mode (LC/MS-SIM).18 Comparison of the 

LC/MS-SIM traces of identical fragment combinations with or without protein 

Bcl-XL, led to the identification of the previously reported fragment combination 

SZ4TA27d and three new combinations SZ7TA2, SZ9TA1, and SZ9TA5 with 

increased amounts of acylsulfonamide products in the incubations containing Bcl-XL 

(Figure 2.3A-B and experimental section).  
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Figure 2.3. LC/MS-SIM analysis of kinetic TGS incubations with fragments SZ7 and 

TA2 targeting Bcl-XL. The samples were incubated at 37 °C for 6 hours and subjected 

to LC/MS-SIM analysis with gradient system 1 (see experimental section). A) 

Incubation sample containing fragments SZ7 and TA2 in absence of Bcl-XL; B) 

Incubation sample containing fragments SZ7 and TA2 in presence of 2 M Bcl-XL; 

C) Incubation sample containing fragments SZ7 and TA2 in presence of 2 M Bcl-XL 

and 20 M Bim BH3 peptide; D) Incubation sample containing fragments SZ7 and 

TA2 in presence of 2 M Bcl-XL and 20 M mutant Bim BH3 peptide; E) Synthetic 

SZ7TA2 as the reference compound. 

 Prior to synthesizing the new TGS hit compounds SZ7TA2, SZ9TA1, and 

SZ9TA5, control incubations with wildtype and mutant pro-apoptotic Bim BH3 
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peptides were conducted to assess whether the hit combinations assemble at the 

targeted binding sites of Bcl-XL or randomly elsewhere on the protein surface (Figure 

2.3C-D and experimental section). These control experiments with Bak BH3 peptide 

have been previously introduced to confirm the kinetic TGS assembly of compound 

SZ4TA2.7d Wildtype Bim BH3 peptide (Bim sequence 

CEIWIAQELRRIGDEFNAYYAR), the natural Bcl-XL ligand, outcompetes the 

reactive fragments for binding at the BH3 binding site of Bcl-XL and thus suppresses 

the Bcl-XL-templated assembly of acylsulfonamides SZ7TA2, SZ9TA1, and 

SZ9TA5. Contrarily, mutant of the Bim BH3 peptide (mutant Bim sequence 

CEIWIAQEARRIGAEFNAYYAR) exhibits low affinity towards Bcl-XL and 

therefore does not significantly affect the Bcl-XL-templated assembly of SZ7TA2, 

SZ9TA1, and SZ9TA5. Since these co-incubations with wildtype and mutant BH3 

peptides strongly suggest that the formation of acylsulfonamides SZ7TA2, SZ9TA1, 

and SZ9TA5 takes place at the BH3 binding site of Bcl-XL, compounds SZ7TA2, 

SZ9TA1, and SZ9TA5 have been synthesized and subjected to LC/MS-SIM analysis. 

Comparison of the LC/MS-SIM traces of the Bcl-XL-templated reactions with the 

ones of the synthetic compounds clearly confirmed that Bcl-XL templates the 

formation of hit compounds SZ7TA2, SZ9TA1, and SZ9TA5 (Figure 2.3E and 

experimental section). 

2.2.2 Kinetic TGS with mutant Bcl-XL  

 Experiments were designed, in which mutated Bcl-XL proteins are incubated 

with reactive fragments. Alterations of the BH3 binding site directly affect the 



51 

 

binding of reactive fragments SZ4, SZ7, SZ9, TA1, TA2, and TA5 to the protein, 

which in turn will influence the rate of the protein-templated acylsulfonamide 

formation. The purpose of these mutant Bcl-XL proteins is to expand the repertoire of 

controls with Bim BH3 peptides with complementary experiments indicating whether 

the TGS reaction occurs with the help of the target protein Bcl-XL and specifically at 

the binding site of interest. The known mutant of Bcl-XL, in which phenylalanine 

Phe131 and aspartic acid Asp133 have been substituted by alanines, has been 

prepared since it fails at interacting with Bak or Bim BH3 peptides.19 In addition, a 

second mutant Bcl-XL has been prepared, in which arginine Arg139 has been replaced 

by alanine. Arginine Arg139 has been identified to be a key residue interacting with 

ABT-737 and analogues thereof.16a As a proof-of-concept, incubations of the mutant 

Bcl-XL with building blocks SZ4 and TA2 were first undertaken at various reactive 

fragment concentrations (Figures 2.4, 2.5 and experimental section). In comparison to 

the incubation with wildtype Bcl-XL, a reduction in the templation activity by 

approximately 40 or more has been observed in both mutant Bcl-XL-templated 

reactions (Table 2.1). This observation can be explained by closer examination of a 

reported NMR-structure of Bcl-XL complexed with acylsulfonamide 1, whose 

structure is closely related to the kinetic TGS product SZ4TA2.16a Comparison of the 

location of Phe131 and Asp133 with the position of compound 1 in the wildtype 

Bcl-XL binding site reveals that the residues Phe131 and Asp133, although important 

for the binding to Bak or Bim BH3 peptides, are relatively distant from the 

acylsulfonamide 1, while Arg139 appears to be closer to compound 1. Surprisingly, 

mutant R139ABcl-XL displays a slightly increased templation reaction in comparison to 
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F131A,D133ABcl-XL. Conformational changes iduced by seemingly distant amino acid 

residues are difficult to trace and may probably influence the templation effect 

observed during the incubations with wildtype and mutant Bcl-XL proteins.  
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Figure 2.4. LC/MS-SIM analysis of kinetic TGS incubations with fragments SZ4 and 

TA2 targeting the wildtype and mutant of Bcl-XL. The samples were incubated at 37 

°C for 6 hours and subjected to LC/MS-SIM analysis with gradient system 1 (see 

experimental section). A) Incubation sample containing fragments SZ4 and TA2 in 

absence of wildtype Bcl-XL; B) Incubation sample containing fragments SZ4 and 

TA2 in presence of 2 M wildtype Bcl-XL; C) Incubation sample containing 

fragments SZ4 and TA2 in presence of 2 M single mutant R139ABcl-XL; D) Synthetic 

SZ4TA2 as the reference compound. 
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Figure 2.5. LC/MS-SIM analysis of kinetic TGS incubations with fragments SZ4 and 

TA2 targeting the wildtype and double mutant of Bcl-XL. The samples were 

incubated at 37 °C for 6 hours and subjected to LC/MS-SIM analysis with gradient 

system 2 (see experimental section). A) Incubation sample containing fragments SZ4 

and TA2 in absence of wildtype Bcl-XL; B) Incubation sample containing fragments 

SZ4 and TA2 in presence of 2 M wildtype Bcl-XL; C) Incubation sample containing 

fragments SZ4 and TA2 in presence of 2 M double mutant F131A,D133ABcl-XL; D) 

Synthetic SZ4TA2 as the reference compound. 

 For TGS hit combinations SZ7TA2, SZ9TA1, and SZ9TA5, confirmatory 
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experiments have been conducted with single mutant R139ABcl-XL only, since the 

preparation of double mutant F131A,D133ABcl-XL has been cumbersome. Similar to the 

incubations of fragments SZ4 and TA2, experiments with the mutant protein leading 

to acylsulfonamides SZ7TA2, SZ9TA1, and SZ9TA5 displayed a reduction in 

acylsulfonamide formation compared to the incubations with wildtype  Bcl-XL. These 

experiments suggest that the acylsulfonamide genesis occurs in proximity to key 

amino acid residue Arg139. 

Table 2.1. Kinetic TGS incubations 

Incubation 

Fragment Combinations 
SZ4TA2 SZ7TA2 SZ9TA1 SZ9TA5 

Peak 
Area 

% 
Signal 

Peak 
Area 

% 
Signal 

Peak 
Area 

% 
Signal 

Peak 
Area 

% 
Signal 

Buffer alone 26,794 7.4 3,594 6.8 313 35.3 466 10.9 
WT Bcl-XL 363,187 100.0 52,920 100.0 887 100.0 4,275 100.0 

WT Bcl-XL and WT 
Bak BH3 

59,437 16.3 n.d. n.d. n.d. n.d. n.d. n.d. 

WT Bcl-XL and 
mutant Bak BH3 

181,156 49.8 n.d. n.d. n.d. n.d. n.d. n.d. 

WT Bcl-XL and WT 
Bim BH3 

51,773 14.3 28,911 54.6 552 62.2 944 22.1 

WT Bcl-XL and 
mutant Bim BH3 

217,813 59.9 47,728 90.2 761 85.8 2,557 59.8 

Buffer alone 44195 9.6 n.d. n.d. n.d. n.d. n.d. n.d. 
WT Bcl-XL 460532 100.0 n.d. n.d. n.d. n.d. n.d. n.d. 

F131A,D133ABcl-XL 196429 42.7 n.d. n.d. n.d. n.d. n.d. n.d. 
Buffer alone 4,733 11.0 2,046 7.2 939 25.0 726 11.4 
WT Bcl-XL 43,210 100.0 28,600 100.0 3,750 100.0 6,370 100.0 
R139ABcl-XL 25,959 60.1 16,965 59.3 2,637 70.3 4,406 69.2 

n.d. = not determined; WT = wildtype 
 

2.2.3 PPIM activity of kinetic TGS hits and additional acylsulfonamides  

 The kinetic TGS hits were subjected to dose–response studies to obtain IC50s and 

to investigate if the hit compounds are also modulating or disrupting the interaction 

between Bcl-XL and a native BH3 peptide ligand. Previously, Abbott Laboratories 

determined by their assay, that SZ4TA2 is a good PPIM with a Ki constant of 19 nM.16b, c 
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Abbott determined the dissociation constants by a competitive fluorescence polarization 

assay using a fluorescein-labeled Bad-BH3 peptide. In order to precisely compare the 

inhibitory properties of our kinetic TGS hits with the compounds reported by Abbott, we 

decided to perform binding studies by a fluorescence polarization assay implemented in 

our laboratories, which uses GST-Bcl-XL and fluorescein-labeled Bak-BH3 peptide. 

Consistently, compound SZ4TA2 has been validated by our assay as a Bcl-XL inhibitor 

against Bak-BH3 with an IC50 constant of 106 nM (Table 2.2). Kinetic TGS hit 

compounds SZ7TA2, SZ9TA1, and SZ9TA5 showed IC50s in the low M range (Figure 

2.3 and experimental section). Taken together, these results indicate that the hit 

compounds SZ4TA2, SZ7TA2, SZ9TA1, and SZ9TA5 identified through the kinetic 

TGS screening are indeed respectable ligands of the biological target, which underscores 

the utility of kinetic TGS as a valuable approach to PPIM discovery. 

Table 2.2. PPIM activity of kinetic TGS hit compounds 

Compound    IC50    Ki  
SZ4TA2 106 ± 12 nM 37.5 ± 5.0 nM 
SZ7TA2 28.4 ± 3.5 M 11.5 ± 1.4 M 
SZ9TA1 28.7 ± 4.1 M 11.6 ± 1.6 M 
SZ9TA5 36.0 ± 2.5 M 14.6 ± 1.0 M 

 

 To assess whether the kinetic TGS hits are more potent than acylsulfonamides, 

which were not identified in the kinetic TGS screening, 33 randomly selected 

acylsulfonamides were synthesized. All compounds, as well as TGS hit compounds 

SZ4TA2, SZ7TA2, SZ9TA1, and SZ9TA5 were tested at a 50 M concentration for PPI 

disruption in the Bcl-XL/Bak-BH3 fluorescence polarization assay. The 37 
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acylsulfonamides tested corresponds to 45.7 of the 81 member library. Strikingly, the 

four kinetic TGS hits were the most potent compounds tested, disrupting the Bcl-XL/BH3 

interaction with 60 inhibition or more, while the randomly selected acylsulfonamides 

demonstrated an average of 15 inhibition (Table 2.3). Only four of the 33 randomly 

selected acylsulfonamides demonstrated moderate inhibition (35–45). In contrast, all 

reactive fragments SZ1-SZ9 and TA1-TA9 have been tested in the fluorescence 

polarization assay at 100 M concentration and less than 5 inhibition was detected. 

These measurements indicate that the dissociation constants for the corresponding 

reactive building blocks SZ1-SZ9 and TA1-TA9 have to be higher than 100 M. These 

important results suggest that the amidation reaction between thio acids and sulfonyl 

azides is suitable for kinetic TGS using building blocks displaying weak binding 

affinities.  In addition, this study strongly suggests that the kinetic TGS screening 

identified the more active members of the library of potential acylsulfonamides arising 

from reactive fragments SZ1-SZ9 and TA1-TA9.  

Table 2.3. Percentage inhibition displayed by an acylsulfonamide at 50 M 

concentration. Of the 37 compounds tested, the four most potent compounds were 

identified by kinetic TGS 

Fragments SZ1 SZ2 SZ3 SZ4 SZ5 SZ6 SZ7 SZ8 SZ9 
TA1 n.d. 2 0 14 29 n.d. n.d. 19 80 
TA2 n.d. 8 n.d. 100 28 26 76 n.d. 38 
TA3 6 7 n.d. n.d. n.d. n.d. n.d. 30 22 
TA4 n.d. 25 n.d. n.d. n.d. n.d. n.d. 8 n.d. 
TA5 5 n.d. n.d. n.d. 0 n.d. 15 11 60 
TA6 4 n.d. 0 n.d. 0 n.d. 20 n.d. n.d. 
TA7 n.d. n.d. 0 n.d. n.d. n.d. 47 30 45 
TA8 n.d. n.d. 0 n.d. n.d. n.d. n.d. 38 n.d. 
TA9 3 n.d. 0 n.d. 1 n.d. n.d. 24 n.d. 

n.d. = not determined 
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2.2.4 Discussion   

 Generally, cell-permeable small modulators of PPIs have been considered to be 

desirable tools with great implications for drug discovery and development.1c, d 

Nevertheless, reliable yet straightforward techniques or approaches for the development 

of potent and effective PPIMs are currently unavailable. Over the past 15 years, a variety 

of fragment-based lead discovery approaches have been developed and successfully 

applied for the development of potent PPIMs.20 These approaches are commonly based 

on the detection of fragments binding to the target protein followed by the study of their 

binding to the protein target at atomic level resolution using X-ray crystallography or 

NMR spectroscopy. The initial hits are further optimized via fragment growing, in which 

fragments are extended into identified binding sites step-by-step, or via fragment linking, 

in which fragments identified to bind to adjacent binding sites are covalently linked 

together.20c, 21 Even though fragment-based lead discovery strategies have been very 

successful for the development of PPIMs, they are mainly limited by two constraints. 

Detection and quantification of fragment binding requires specially designed 

methodology due to the weak binding typically observed for fragments. Furthermore, the 

optimization of fragments into potent and selective compounds is not straightforward and 

not rapidly achievable, even though structural information is available.21b, 22 For example, 

though high quality NMR structures were available, the development of Bcl-XL PPIMs 

by Abbott16a, b required several design iterations, and the preparation and testing of more 

than 1000 compounds in order to yield ABT-737 and ABT-263.23  Furthermore, of the 

very first design consisting of 21 different structures containing the structural motifs of 

the initial fragments identified by NMR, most compounds bound to Bcl-XL with a 
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dissociation constant greater than 10 M.16a Thus, though the hit compounds SZ7TA2, 

SZ9TA1, and SZ9TA5 display IC50 constants of 28–37 M in the Bak-BH3 fluorescence 

polarization assay, the herein reported kinetic TGS approach suggests that the high-

quality PPIMs will be identified early on in the screening process. This outcome is 

consistent with previously reported kinetic TGS studies, in which the enzyme carbonic 

anhydrase II preferably accelerates the formation of the better inhibitory compounds from 

a pool of reactive fragments.24 Other kinetic TGS examples using exclusively in situ click 

chemistry also suggest that the triazoles generated in the protein-templated reactions are 

the more potent inhibitors.18, 24b, 25  

 Recently, fragment-based discovery strategies have been reported which involve 

the protein target directly to select and assemble its own inhibitory compounds from a 

pool of reactive fragments. These approaches, also termed as in situ click chemistry or 

kinetic TGS approaches,6b, 7b were conceptually described in the 1980s26 and are still 

relatively unexplored compared to dynamic combinatorial chemistry. Thus far, kinetic 

TGS has mainly been applied to the identification of potent enzyme inhibitors. 

Nevertheless, the herein reported kinetic TGS offers an attractive approach to PPIM lead 

discovery because it allows the protein to select and combine building blocks that fit best 

into its binding sites, thus assembling larger compounds.6b, 7b The screening method can 

be as simple as determining whether or not the PPIM product has been formed in a given 

test mixture. This is especially advantageous over a conventional high-throughput 

screening of difficult targets such as protein interfaces requiring cumbersome and time-

consuming experiments to confirm whether screening hits are true or false positives.  
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 Finally, considering that the flexible nature of protein interfaces complicates the 

development of PPIMs by conventional means, kinetic TGS has the potential to target the 

protein in a conformation, which is short-lived, undetectable or easily missed with 

present techniques. A small number of in situ click chemistry approaches targeting 

enzymatic systems lead to the identification of triazole inhibitors stabilizing the protein in 

an unprecedented and less abundant conformation.27 Thus, we speculate that the herein 

reported sulfo-click chemistry kinetic TGS approach provides medicinal chemists a 

straightforward search strategy to stabilize conformations of dynamic protein targets such 

as PPIs. 

2.3 Conclusions   

 Herein, we demonstrate that the sulfo-click kinetic TGS approach exhibits great 

promise in fragment-based PPIM discovery since it combines synthesis and screening of 

libraries of low-molecular-weight PPIMs into a single step. Samples containing the 

protein target Bcl-XL and reacting fragments leading to 81 structurally different 

acylsulfonamides have been incubated and analyzed by LC/MS-SIM for acylsulfonamide 

formation. Of the 81 possible fragment combinations, only combinations SZ4TA2, 

SZ7TA2, SZ9TA1, and SZ9TA5 yielded acylsulfonamides in the Bcl-XL-templated 

reactions. Control incubations with the four hit fragment combinations, in which the BH3 

binding site of the wildtype Bcl-XL has been competitively occupied by a Bim BH3 

peptide, generated decreased amounts of acylsulfonamides. Furthermore, control 

incubations with mutants R139ABcl-XL or F131A,D133ABcl-XL, in which amino acid residues 

at the BH3 binding site have been replaced by alanines, also failed at generating the hit 
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acylsulfonamides suggesting that the protein-templated assembly of SZ4TA2, SZ7TA2, 

SZ9TA1, and SZ9TA5 occurs at the desired BH3 binding site of Bcl-XL. Subsequent 

testing of synthesized kinetic TGS hit acylsulfonamides in a fluorescence-based 

competitive binding assay demonstrated that the kinetic TGS hit compounds indeed 

display PPIM activity. These findings have been supported by a set of 33 additional 

acylsulfonamides randomly selected from the 81-member library, which have been 

shown to fail at demonstrating potent PPIM activity in the fluorescence-based 

competitive binding assay. These results provide a general test case for the sulfo-click 

kinetic TGS approach to generate hits targeting the proteins of the Bcl-2 family and 

further validate the kinetic TGS approach to be suitable for PPIM discovery. In contrast 

to conventional screening approaches, experimental data suggests that PPIM screening 

via kinetic TGS reduces the number of false positives, cutting down the number of 

screening hits to be validated in confirmatory assays. We speculate that the herein 

reported PPIM discovery strategy for the family of the Bcl-2 proteins is general and can 

easily be implemented to lead development targeting other PPIs such as MDM2/p53, 

IAP/caspase, and others.1a, 1d, 28  

2.4 Experimental section 

2.4.1 General information 

All reagents and solvents were purchased from commercial sources and used 

without further purification. All reactions were run under an Argon atmosphere unless 

otherwise indicated. Prior to use of solvents in reactions, they were purified by passing 

the degassed solvents through a column of activated alumina and transferred by an oven-
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dried syringe or cannula. Thin layer chromatography was performed on Merck TLC 

plates (silica gel 60 F254). 
1H NMR and 13C NMR were recorded on a Varian Inova 400 

(400 MHz) or a Bruker Avance DPX-250 (250 MHz) instrument. The purification of 

designated compounds was carried out using reverse phase HPLC system (Waters Prep 

LC 4000 system with Waters 996 photo-diode array detector, Agilent column Eclipse 

XDB-C18, 5 µm, 9.4 mm  250 mm). Compounds were eluted using a gradient elution of 

A:B (80:20 to 0:100) over 40 min at a flow rate of 5.0 mL/min, where solvent A was H2O 

(0.05% TFA) and solvent B was CH3CN (0.05% TFA). The HRMS data were measured 

on an Agilent 1100 Series MSD/TOF with electrospray ionization. The LC/MS data were 

measured on an Agilent 1100 LC/MSD-VL with electrospray ionization.  

The gradient used for LC/MS-SIM analysis is shown below: 

Table 2.4. Elution gradient system 1 employed for the LC/MS-SIM analysis 

Time % B* Flow rate Time % B* Flow rate 

0.00 10% 0.7 mL min-1 11.50 100% 1.0 mL min-1 

2.00 10% 0.7 mL min-1 11.51 10% 0.7 mL min-1 

10.00 100% 1.0 mL min-1 13.50 10% 0.7 mL min-1 

* eluent A: H2O (0.05% TFA); eluent B: CH3CN (0.05% TFA) 

 

Table 2.5. Elution gradient system 2 employed for the LC/MS-SIM analysis 

Time % B* Flow rate Time % B* Flow rate 

0.00 10% 0.7 mL min-1 13.01 100% 1.5 mL min-1 

4.00 20% 0.7 mL min-1 15.00 100% 1.5 mL min-1 

12.00 100% 0.7 mL min-1 15.50 20% 0.7 mL min-1 

13.00 100% 0.7 mL min-1 16.50 20% 0.7 mL min-1 

* eluent A: H2O (0.05% TFA); eluent B: CH3CN (0.05% TFA) 
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The sulfonyl azides, SZ1-SZ6, thio acids, TA1-TA3 and the acylsulfonamides SZ2TA1, 

SZ2TA2, SZ2TA3, SZ4TA1, SZ4TA2, SZ5TA1 and SZ5TA2 have been previously 

reported.7d 

2.4.2 Expression and purification of wildtype and mutant Bcl-XL fusion proteins  

 The protocols for the expression and purification of GST-tagged and His-tagged 

Bcl-XL TM fusion proteins have been previously reported.7d The F131A,D133ABcl-XL TM 

and R139ABcl-XL TM mutants were generated by PCR mutagenesis using Bcl-XL TM 

cDNA as a template as described previously.19 

2.4.3 General protocol for incubations of Bcl-XL with reactive fragments  

 In a 96-well plate, one thio acid building block (1 L of a 2 mM solution in 

methanol) and one sulfonyl azide building block (1 L of a 2 mM solution in methanol) 

were added to a solution of Bcl-XL (98 L of a 2 M Bcl-XL solution in buffer (58 mM 

Na2HPO4, 17 mM NaH2PO4, 68 mM NaCl, 1 mM NaN3, pH = 7.40)). The 96-well plate 

was sealed and incubated at 37 °C for six hours. The incubation samples were then 

subjected to Liquid Chromatography combined with mass spectrometry analysis in the 

Selected Ion Mode (LC/MS-SIM, Zorbax SB-C18 preceded by a Phenomenex C18 guard 

column, electrospray ionization and mass spectrometric detection in the positive SIM, 

tuned to the expected molecular mass of the product). The TGS hit compound was 

identified by the mass and the retention time. As a control, identical building block 

combinations were incubated in buffer without Bcl-XL and subjected to LC/MS-SIM 

analysis. Comparison of the LC/MS-SIM chromatograms of these control incubations 
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with the chromatograms of the Bcl-XL containing incubations allows us to determine 

whether the protein is templating the corresponding amidation reaction. Furthermore, 

synthetically prepared acylsulfonamide was subjected to LC/MS-SIM analysis and the 

retention time was compared with the one identified in the Bcl-XL containing incubation. 

2.4.4 General protocol for the control incubations of Bcl-XL with reactive fragments 

and Bim BH3 peptides   

 For the Bcl-XL containing incubation sample showing acylsulfonamide formation, 

control incubations with Bim peptides have been undertaken to demonstrate that the 

templation reaction occurs at the desired binding site. Thus, in a 96-well plate, one thio 

acid (1 L of a 2 mM solution in methanol) and one sulfonyl azide (1 L of a 2 mM 

solution in methanol) were added to a solution of Bcl-XL (97 L of a 2 M Bcl-XL 

solution in buffer). Finally,  Bim BH3 peptide (1 L of a 2 mM solution in DMSO) was 

added and the incubation sample in a sealed 96-well plate was incubated at 37 °C for six 

hours. Similar procedure was followed for the mutant Bim BH3 peptide incubation. 

These two incubation samples were then subjected to LC/MS-SIM analysis along with 

the wildtype Bcl-XL containing sample without any of the Bim BH3 peptides. 

2.4.5 General protocol for the control incubations of mutants of Bcl-XL with reactive 

fragments  

 Additional control experiments were carried out using the mutants of Bcl-XL. In a 

96-well plate, one thio acid (1 L of a 2 mM solution in methanol) and one sulfonyl azide 

(1 L of a 2 mM solution in methanol) were added to a solution of mutant Bcl-XL (98 L 
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of a 2 M mutant Bcl-XL solution in buffer). This control sample was incubated along 

with the wildtype Bcl-XL containing sample at 37 °C for six hours and subjected to 

LC/MS-SIM analysis.  

2.4.6 Fluorescence polarization-based competitive binding assay  

 The detailed protocol to conduct fluorescence polarization-based competitive 

binding assays has been previously reported.7d 

2.4.7 Synthesis of building blocks 

 

Sulfonyl azide SZ7: The mixture of compound 2 (664 mg, 2 mmol), SOCl2 (4 mL), and 

DMF (16 mL) was refluxed for 2 h. The reaction mixture was then treated with cold 

water (15 mL), extracted with DCM (15 mL  3), and combined organic phases were 

dried over Na2SO4. A quick filtration through a pad of silica gel, evaporation, and 

vacuum drying gave the crude product 3 according to a similar procedure.29 The sulfonyl 

chloride 3 obtained was used for the next step without further purification. A solution of 

sulfonyl chloride 3 (325 mg, 1 mmol), 2-(phenylthio)ethanamine (155 mg, 1 mmol) and 
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potassium carbonate (200 mg, 1.44 mmol) in CHCl3 (8 mL) was stirred at room 

temperature for 12 hours. The reaction mixture was then concentrated, treated with ethyl 

acetate (20 mL) and water (20 mL), and extracted with ethyl acetate (20 mL  3). The 

combined organic layers were dried over Na2SO4 and concentrated. The crude product 4 

obtained was dissolved in acetone and the solution of sodium azide (70 mg, 1 mmol) in 

water was added dropwise at 0 °C. The mixture was stirred at 0 °C for 3 hours. Ethyl 

acetate (20 mL) and saturated aqueous potassium carbonate solution (20 mL) were added 

to the mixture and after extraction with ethyl acetate (20 mL  3), the combined organic 

phases were dried over Na2SO4 and concentrated. The sulfonyl azide SZ7 (315 mg, 70% 

over 3 steps) was obtained by flash chromatography (hexane : EtOAc = 4:1; Rf = 0.6 in 

hexane : EtOAc = 1:1). 1H NMR (400 MHz, CDCl3) : 8.56 (s, 1H), 8.49 (s, 1H), 8.11 – 

8.01 (m, 4H), 7.19 – 7.10 (m, 5H), 5.37 (t, J = 6.0 Hz, 1H), 3.21 – 3.13 (m, 2H), 2.99 (t, J 

= 6.4 Hz, 2H) ppm. 13C NMR (101 MHz, CDCl3) : 139.27, 137.05, 136.80, 133.49, 

130.84, 130.25, 130.22, 130.15, 129.76, 129.44, 129.04, 126.93, 126.24, 124.59, 41.60, 

33.85 ppm. HRMS (ESI) calcd for C18H16N4O4S3 [M+H]+: 449.0406, found: 449.0410 

 

Sulfonyl Azide SZ8: A mixture of bromide 57d (276 mg, 1 mmol), amine 630 (276 mg, 1 

mmol), and potassium carbonate (200 mg, 1.44 mmol) in acetonitrile and water (9:1; 6 

mL), was stirred at room temperature for 12 hours. After treating with ethyl acetate (20 

mL) and water (20 mL), the system was extracted with ethyl acetate (20 mL 3). The 
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combined organic layers were dried over anhydrous sodium sulfate and concentrated. 

Sulfonyl azide SZ8 (404 mg, 87%) was obtained by flash chromatography (hexane : 

EtOAc = 6:1 with 0.1% triethylamine; Rf = 0.4 in hexane : EtOAc = 1:1). 1H NMR (400 

MHz, CDCl3) : 7.82 (d, J = 6.8 Hz, 2H), 7.54 (d, J = 7.3 Hz, 2H), 7.38 – 7.18 (m, 5H), 

6.62 (s, 1H), 6.20 (s, 1H), 4.57 (s, 1H), 3.84 (d, J = 10.6 Hz, 1H), 3.80 (s, 3H), 3.56 (s, 

3H), 3.39 (d, J = 14.5 Hz, 1H), 3.05 – 2.95 (m, 2H), 2.71 (d, J = 15.4 Hz, 1H), 2.58 – 

2.48 (m, 1H) ppm. 13C NMR (101 MHz, CDCl3) : 147.82, 147.18, 146.78, 143.40, 

136.27, 129.48, 129.15, 129.08, 128.04, 127.14, 127.03, 126.22, 111.36, 110.59, 68.05, 

57.90, 55.42, 47.32, 28.21 ppm. HRMS (ESI) calcd for C24H24N4O4S [M+H]+: 465.1597, 

found: 465.1597 

 

Sulfonyl azide SZ9: The sulfonyl azide SZ9 was synthesized using a procedure 

described for the synthesis of SZ8, starting from 2-(phenylthio)ethanamine (72 mg, 0.47 

mmol) and bromide 5 (260.4 mg, 0.94 mmol). The sulfonyl azide SZ9 (154 mg, 60%) 

was obtained by flash chromatography (hexane : EtOAc = 6:1; Rf = 0.2 in hexane : 

EtOAc = 4:1). 1H NMR (400 MHz, CDCl3) : 7.87 (d, J = 8.3 Hz, 4H), 7.6 (d, J = 8.1 

Hz, 4H), 7.33 – 7.09 (m, 5H), 3.72 (s, 4H), 3.07 (t, J = 7.2 Hz, 2H), 2.76 (t, J = 6.9 Hz, 

2H) ppm. 13C NMR (101 MHz, CDCl3) : 146.61, 137.36, 129.63, 129.22, 128.97, 

127.92, 127.65, 126.35, 57.91, 52.73, 31.48 ppm. HRMS (ESI) calcd for C22H21N7O4S3 

[M+H]+: 544.0890, found: 544.0887 
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Nitrile 7: To a solution of amine 630 (1 g, 3.71 mmol) and iodoacetonitrile (620 mg, 3.71 

mmol) in acetonitrile (30 mL) and water (3 mL), was added potassium carbonate (1.53 g, 

11.13 mmol) and the resulting reaction mixture was stirred at 60 °C for 2 days. After 

cooling to room temperature, the solvent was removed under reduced pressure and the 

crude was purified by flash chromatography (hexane : EtOAc = 6:1; Rf = 0.67 in hexane : 

EtOAc = 1:1) to obtain nitrile 7 with 79% yield (904 mg). 1H NMR (400 MHz, CDCl3) : 

7.33 – 7.26 (m, 5H), 6.58 (s, 1H), 6.06 (s, 1H), 4.62 (s, 1H), 3.82 (s, 3H), 3.53 (s, 3H), 

3.41 (d, J = 8.1 Hz, 2H), 3.27 – 3.16 (m, 1H), 3.09 – 2.94 (m, 2H), 2.74 (d, J = 15.7 Hz, 

1H) ppm. 13C NMR (101 MHz, CDCl3) : 147.85, 147.47, 142.24, 129.53, 128.97, 

128.38, 125.92, 115.05, 111.63, 110.89, 66.98, 56.01, 50.04, 44.00, 29.18 ppm. HRMS 

(ESI) calcd for C19H20N2O2 [M+H]+: 309.1598, found: 309.1584 

 

Acid 8: To a flask charged with nitrile 7 (100 mg, 0.32 mmol), was added 12 N HCl (1.5 

mL) and the reaction mixture was stirred at 90 °C for 3 hours. The reaction mixture was 

then cooled to room temperature and treated with 2 N NaOH solution (pH = 5). The 

crashed out white solid was filtered, washed with cold MeOH and dried to obtain acid 8 
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as a hydrochloride salt (66%, 78 mg). The analytical sample was obtained by flash 

chromatography (MeOH : EtOAc = 2:1 with 0.2% acetic acid; Rf = 0.5 in MeOH : 

EtOAc = 3:1). 1H NMR (400 MHz, DMSO-d6) δ 7.31 – 7.18 (m, 5H), 6.69 (s, 1H), 6.13 

(s, 1H), 4.95 (s, 1H), 3.71 (s, 3H), 3.44 (s, 3H), 3.07 – 2.98 (m, 1H), 2.96 – 2.81 (m, 4H), 

2.72 – 2.62 (m, 1H) ppm. 13C NMR (101 MHz, DMSO-d6) δ 174.02, 147.02, 146.60, 

144.42, 130.23, 129.29, 127.87, 126.85, 126.83, 111.98, 111.51, 64.97, 57.17, 55.44, 

55.38, 47.30, 28.31 ppm. HRMS (ESI) calcd for C19H21NO4 [M+H]+: 328.1543, found: 

328.1536 

 

Thio acid TA4: The thio acid TA4 was obtained starting from acid 8 (340 mg, 0.93 

mmol) with 25% yield via the same procedure as previously reported for the thio acid 

TA2.7d Rf = 0.6 in DCM : MeOH = 10:1. 1H NMR (400 MHz, CDCl3) : 7.35 – 7.23 (m, 

5H), 6.66 (s, 1H), 6.27 (s, 1H), 5.57 (s, 1H), 3.83 (s, 3H), 3.63 (s, 3H), 3.50 – 3.39 (m, 

2H), 3.37 (s, 2H), 3.24 – 3.01 (m, 2H) ppm. 13C NMR (101 MHz, CDCl3) : 204.67, 

149.54, 148.69, 136.42, 130.45, 129.99, 129.30, 123.44, 121.74, 111.17, 110.88, 66.16, 

63.53, 56.08, 45.27, 24.46 ppm. HRMS (ESI) calcd for C19H21NO3S [M+H]+: 344.1315, 

found: 344.1315 
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Thio acid TA5: The synthesis of thio acid TA5 was accomplished starting from acid 

chloride 9 (400 mg, 1.99 mmol) via the same procedure as previously reported for thio 

acid TA37d with 15% yield. Rf = 0.17 in hexane : EtOAc = 2:1.  1H NMR (400 MHz, 

CDCl3) : 7.00 (d, J = 2.1 Hz, 2H), 6.65 – 6.63 (m, 1H), 3.8 (s, 6H) ppm. 13C NMR (101 

MHz, CDCl3) : 190.10, 160.97, 138.57, 106.36, 105.69, 55.73 ppm. HRMS (ESI) calcd 

for C9H10O3S [M-H]-: 197.0278, found: 197.0278 

 

Thio acid TA6: To a solution of NaSH (90 mg, 1.6 mmol) in water (1mL) was added 

dropwise a solution of acid chloride 10 (200 mg, 1.07 mmol) in acetone (6 mL). The 

resulting mixture was stirred for 2 h. The solvent was removed under reduced pressure 

and resulting crude was basified using 10% NaOH solution (pH = 12).  The reaction 

mixture was then extracted with ethyl acetate to remove organic impurities. The aqueous 

layer was slowly acidified using 2 N HCl solution (pH = 1). Corresponding thio acid 

TA6 crashed out and was filtered, washed with deionized water and dried under vacuum 

to obtain pale yellow crystals of thio acid TA6 with 25% yield. Rf = 0.26 in hexane : 

EtOAc = 1:3. 1H NMR (400 MHz, CDCl3) : 8.75 – 8.72 (m, 1H), 8.50 – 8.44 (m, 1H), 

8.22 (d, J = 7.8 Hz, 1H), 7.70 (t, J = 8.0 Hz, 1H) ppm.  13C NMR (101 MHz, CDCl3) : 

188.19, 137.96, 133.42, 130.32, 128.32, 122.96 ppm.  HRMS (ESI) calcd for C7H5NO3S 

[M-H]-: 181.9917, found: 181.9917 
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Thio acid TA7: To a solution of NaSH (90 mg, 1.6 mmol) in water (1mL) was added 

dropwise a solution of acid chloride 11 (204 mg, 1.07 mmol) in acetone (6 mL). The 

resulting mixture was stirred for 2 h. The solvent was removed under reduced pressure 

and resulting crude was basified using 10% NaOH solution (pH = 12). The reaction 

mixture was then extracted with ethyl acetate to remove organic impurities. The aqueous 

layer was slowly acidified using 2 N HCl solution and the aqueous layer was extracted 

using ethyl acetate at various pH values starting from 6 to 2, collecting organic fractions 

for every unit change in the pH. Fractions collected between pH changing from 5 to 2 

were combined and were subjected to preparative HPLC to obtain thio acid TA7 with 

27% yield. Rf = 0.24 in hexane : EtOAc = 1:1. 1H NMR (400 MHz, CDCl3) : 8.61 – 

8.50 (m, 1H), 8.35 (d, J = 7.1 Hz, 1H), 8.13 – 7.99 (m, 1H), 7.94 – 7.84 (m, 1H), 7.68 – 

7.53 (m, 3H) ppm. 13C NMR (101 MHz, CDCl3) : 188.15, 134.29, 134.00, 133.43, 

129.52, 129.09, 128.79, 128.65, 127.27, 125.41, 124.71 ppm.  HRMS (ESI) calcd for 

C11H8OS [M-H]-: 187.0223, found: 187.0218 

 

Thio acid TA8: The acid chloride 12 (500 mg, 2.22 mmol) and NaSH (149 mg, 2.66 

mmol) were stirred at 0 °C under solvent free conditions for 1 h and the thio acid TA8 

obtained, after filtering the salts, was used without further purification.  1H NMR (250 



71 

 

MHz, CDCl3) : 7.93 – 7.85 (m, 2H), 7.32 – 7.17 (m, 2H) ppm. HRMS (ESI) calcd for 

C8H5F3O2S [M-H]-: 220.9890, found: 220.9886 

 

Thio acid TA9: The thio acid TA9 was prepared following the same procedure as 

described for TA8. 1H NMR (250 MHz, CD3OD) : 7.92 (dd, J = 1.7, 0.8 Hz, 1H), 7.49 

(dd, J = 3.7, 0.8 Hz, 1H), 6.73 (dd, J = 3.7, 1.7 Hz, 1H) ppm. HRMS (ESI) calcd for 

C5H4O2S [M-H]- : 126.9859, found: 126.9863 

2.4.8 General procedure A for the synthesis of acylsulfonamides 

A solution of sulfonamide (1 eq), carboxylic acid (1 eq), EDCI (2 eq) and DMAP 

(0.2 eq) were stirred in dry DCM or THF, under inert atmosphere at room temperature 

overnight, quenched by adding water and the system was extracted with ethyl acetate. 

The combined organic layers were dried over anhydrous sodium sulfate and concentrated. 

The crude was then subjected to flash chromatography to obtain the corresponding 

acylsulfonamide. 

2.4.9 General procedure B for the synthesis of acylsulfonamides  

Synthesis of acylsulfonamide was accomplished by reacting selenocarboxylate 

(generated from corresponding carboxylic acid and selenating reagent, LiAlHSeH) with 

the sulfonyl azide according to a previously reported procedure.17 
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2.4.10 Synthesis of kinetic TGS hits 

 

Sulfonamide 14: Sodium borohydride (60 mg, 1.5 mmol) was added slowly to the 

solution of SZ7 (500 mg, 1.1 mmol) in methanol (6mL) at 0 °C. The reaction mixture 

was stirred for 30 min at room temperature, quenched using solid NH4Cl and the solvent 

was removed under reduced pressure to afford the crude product. Sulfonamide 14  (418 

mg, 90%) was obtained by flash chromatography. Rf = 0.64 in hexane : EtOAc = 1:2. 1H 

NMR (250 MHz, Acetone-d6) : 8.67 (s, 1H), 8.60 (s, 1H), 8.21 – 8.12 (m, 3H), 8.02 (dd, 

J = 8.7, 1.7 Hz, 1H), 7.28 – 7.10 (m, 5H), 6.97 (t, J = 5.8 Hz, 1H), 6.87 (bs, 2H), 3.30 – 

3.18 (m, 2H), 3.15 – 3.06 (m, 2H) ppm. 13C NMR (63 MHz, Acetone-d6)  : 143.54, 

140.22, 136.63, 135.93, 132.11, 130.57, 130.32, 130.03, 129.97, 129.74, 128.52, 127.20, 

125.86, 125.83, 43.24, 33.73 ppm. HRMS (ESI) calcd for C18H18N2O4S3 [M+H]+: 

423.0502, found: 423.0486 

 

Acylsulfonamide SZ7TA2: The acylsulfonamide SZ7TA2 was prepared following the 

general procedure A, starting from sulfonamide 14 and 4-(4,4-dimethylpiperidin-1-

yl)benzoic acid7d with 16% yield (102 mg) after purification using preparative HPLC 

system. Rf = 0.28 in EtOAc. 1H NMR (400 MHz, CDCl3) : 8.77 (s, 1H), 8.46 (s, 1H), 

8.23 (d, J = 8.2 Hz, 1H), 7.91 – 7.78 (m, 3H), 7.67 (d, J = 8.1 Hz, 2H), 7.19 – 7.01 (m, 
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5H), 6.64 (d, J = 8.0 Hz, 2H), 5.65 (bs, 1H), 3.34 – 3.15 (m, 4H), 3.12 (d, J = 5.7 Hz, 

2H), 2.96 (d, J = 5.6 Hz, 2H), 1.46 – 1.23 (m, 4H), 0.93 (s, 6H) ppm. 13C NMR (101 

MHz, CDCl3) : 164.05, 154.37, 138.41, 137.92, 136.46, 133.56, 131.23, 130.84, 130.17, 

129.94, 129.51, 129.45, 129.02, 126.88, 126.18, 125.42, 117.85, 113.03, 43.71, 41.66, 

37.76, 33.87, 28.58, 27.68 ppm. HRMS (ESI) calcd for C32H35N3O5S3 [M+H]+: 

638.1812, found: 638.1810 

 

Sulfonamide 17: A solution of sulfonamide 157d (900 mg, 3.6 mmol), benzaldehyde (381 

mg, 3.6 mmol) and p-toluenesulfonic acid (10 mg) in benzene was refluxed for 12 h 

using Dean-stark apparatus. The reaction mixture was cooled down to room temperature 

and extracted with ethyl acetate (20 mL  3). The combined organic phases were dried 

over anhydrous sodium sulfate and concentrated to afford the product 16, which was used 

without further purification. The mixture of 16 (1.22 g, 3.6 mmol), sulfonyl azide SZ6 

(1.25 g, 3.6 mmol) and potassium carbonate (1.0 g, 7.2 mmol) in acetonitrile and water 

(9:1, 20 mL), was refluxed for 24 hours. After cooling down to room temperature, the 

reaction mixture was treated with ethyl acetate (20 mL) and water (20 mL), extracted 

with ethyl acetate (20 mL  3). The combined organic phases were dried over anhydrous 

sodium sulfate and concentrated. Interestingly, hydrolysis of the imine occurred smoothly 
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under this basic condition. Sulfonamide 17 (930 mg, 50% over 2 steps) was thus obtained 

by flash chromatography (hexane : EtOAc = 2:1; Rf = 0.2 in hexane : EtOAc = 2:1). 1H 

NMR (400 MHz, CDCl3) : 7.83 (d, J = 8.2 Hz, 4H), 7.56 (d, J = 8.2 Hz, 2H), 7.47 (d, J 

= 8.2 Hz, 2H), 7.24 – 7.14 (m, 5H), 5.00 (bs, 2H), 3.67 (d, J = 3.8 Hz, 4H), 3.06 (t, J = 

6.8 Hz, 2H), 2.75 (t, J = 6.8 Hz, 2H) ppm. 13C NMR (101 MHz, CDCl3) : 147.00, 

144.11, 140.87, 137.06, 135.81, 129.61, 129.24, 129.08, 128.94, 127.50, 126.52, 126.19, 

58.11, 57.99, 53.01, 31.56 ppm. HRMS (ESI) calcd for C22H23N5O4S3 [M+H]+: 

518.0985, found: 518.0999  

 

Acylsulfonamide SZ9TA1: The acylsulfonamide SZ9TA1 was prepared following the 

general procedure A starting from sulfonamide 17 and benzoic acid with 54% yield (65 

mg). Rf = 0.77 in EtOAc. 1H NMR (400 MHz, CDCl3) : 8.09 (d, J = 8.0 Hz, 2H), 7.78 

(d, J = 8.1 Hz, 2H), 7.77 (d, J = 7.6 Hz, 2H), 7.60 – 7.51 (m, 5H),  7.47 – 7.37 (m, 3H), 

7.19 (d, J = 4.3 Hz, 3H), 7.14 – 7.08 (m, 1H), 3.67 (s, 4H), 3.04 (t, J = 7.2 Hz, 2H), 2.73 

(t, J = 7.2 Hz, 2H) ppm. 13C NMR (101 MHz, CDCl3) : 165.13, 147.07, 145.64, 137.64, 

137.16, 135.85, 133.47, 131.42, 130.22, 129.70, 129.14, 129.03, 128.86, 128.73, 128.09, 

127.64, 126.28, 58.00, 57.92, 52.84, 31.50 ppm. HRMS (ESI) calcd for C29H27N5O5S3 

[M+H]+: 622.1247, found: 622.1240 
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Acylsulfonamide SZ9TA5: was prepared following the general procedure A starting 

from sulfonamide 17 and 3,5-dimethoxybenzoic acid with 56% yield (110 mg). Rf = 0.28 

in hexane : EtOAc = 1:1. 1H NMR (400 MHz, CDCl3) : 7.97 (d, J = 6.8 Hz, 2H), 7.78 

(d, J = 7.8 Hz, 2H), 7.47 (d, J = 7.6 Hz, 2H), 7.33 – 6.92 (m, 10H), 6.42 (s, 1H), 3.66 – 

3.48 (m, 10H), 3.04 – 2.85 (m, 2H), 2.79 – 2.50 (m, 2H) ppm. 13C NMR (101 MHz, 

CDCl3) : 160.67, 147.23, 137.21, 135.98, 129.81, 129.16, 129.00, 127.72, 126.37, 

106.56, 105.27, 58.07, 57.91, 55.61, 52.89, 31.50 ppm. HRMS (ESI) calcd for 

C31H31N5O7S3 [M+H]+: 682.1458, found: 682.1440 

2.4.11 Synthesis of additional acylsulfonamides 

 

 Sulfonamide 18: To a solution of 1-phenylpiperazine (285 mg, 1.76 mmol) and bromide 

15 (400 mg, 1.59 mmol) in THF (8 mL), was added potassium carbonate (441 mg, 3.19 

mmol) and the resulting solution was stirred at room temperature overnight. The reaction 

mixture was treated with 1N potassium carbonate solution (10 mL), extracted with ethyl 

acetate (20 mL  3). The combined organic phases were dried over anhydrous sodium 

sulfate and concentrated. The sulfonamide 18 (461 mg, 87%) was thus obtained by flash 

chromatography (hexane : EtOAc = 2:1 with 0.1% triethylamine; Rf = 0.38 in hexane : 
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EtOAc = 1:2). 1H NMR (400 MHz, DMSO-d6) δ 7.80 – 7.75 (m, 2H), 7.49 (d, J = 8.1 

Hz, 2H), 7.31 – 7.28 (m, 2H), 7.16 (t, J = 7.7 Hz, 2H), 6.88 (d, J = 8.1 Hz, 2H), 6.73 (t, J 

= 7.2 Hz, 1H), 3.56 (s, 2H), 3.11 – 3.08 (m, 4H), 2.50 – 2.46 (m, 4H) ppm. 13C NMR 

(101 MHz, DMSO-d6) δ 151.41, 143.24, 142.77, 129.59, 129.32, 126.07, 119.23, 115.81, 

61.76, 52.98, 48.64 ppm. HRMS (ESI) calcd for C17H21N3O2S [M+H]+: 332.1427, found: 

332.1425 

S
O O

N

N
H
N

O

SZ1TA3

S

N

 

Acylsulfonamide SZ1TA3: was prepared following the general procedure A starting 

from sulfonamide 18 and 4-methyl-2-phenylthiazole-5-carboxylic acid with 58% yield 

(279 mg). Rf = 0.3 in EtOAc : MeOH = 20:1. 1H NMR (400 MHz, CD3OD) δ 8.16 (d, J = 

7.0 Hz, 2H), 7.76 (t, J = 10.0 Hz, 4H), 7.39 – 7.29 (m, 3H), 7.13 (t, J = 6.8 Hz, 2H), 6.84 

(d, J = 7.3 Hz, 2H), 6.79 (t, J = 6.6 Hz, 1H), 5.28 – 5.10 (m, 2H), 4.42 (s, 2H), 3.45 – 

3.23 (m, 6H), 2.46 (s, 3H) ppm. 13C NMR (101 MHz, CD3OD) δ 169.70, 161.16, 160.43, 

149.67, 141.85, 134.50, 132.22, 132.00, 131.40, 129.16, 129.12, 128.86, 126.68, 123.40, 

121.18, 116.73, 59.25, 51.80, 46.63, 16.60 ppm. HRMS (ESI) calcd for C28H28N4O3S2 

[M+H]+: 533.1676, found: 533.1668 
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Acylsulfonamide SZ1TA5: was prepared following the general procedure B with 45% 

yield (67 mg). Rf = 0.44 in EtOAc. 1H NMR (400 MHz, CDCl3) δ 8.24 – 7.97 (m, 2H), 

7.82 – 7.51 (m, 2H), 7.05 – 6.79 (m, 6H), 6.56 (s, 2H), 4.33 (s, 2H), 3.70 (s, 6H), 3.57 – 

3.04 (m, 8H) ppm. 13C NMR (101 MHz, CDCl3) δ 165.35, 161.11, 148.73, 140.80, 

134.11, 133.02, 132.01, 129.77, 129.57, 122.78, 117.63, 106.30, 106.07, 60.10, 55.78, 

51.89, 47.48 ppm. HRMS (ESI) calcd for C26H29N3O5S [M+H]+: 496.1901, found: 

496.1915 

 

Acylsulfonamide SZ1TA6: was prepared following the general procedure B with 33% 

yield (48 mg). Rf = 0.54 in hexane : EtOAc = 1:1. 1H NMR (400 MHz, CD3OD) δ 8.58 – 

8.55 (m, 1H), 8.40 – 8.34 (m, 1H), 8.18 (d, J = 8.3 Hz, 2H), 8.13 (d, J = 7.9 Hz, 1H), 7.77 

(d, J = 8.4 Hz, 2H), 7.67 (t, J = 8.0 Hz, 1H), 7.20 (t, J = 8.0 Hz, 2H), 6.92 (d, J = 8.0 Hz, 

2H), 6.85 (t, J = 7.3 Hz, 1H), 4.48 (s, 2H), 3.47 – 3.32 (m, 6H), 3.28 – 3.22 (m, 2H) ppm. 

13C NMR (101 MHz, CD3OD) δ 164.63, 149.76, 148.45, 141.33, 134.81, 133.89, 133.77, 

132.88, 131.95, 130.19, 129.10, 127.39, 122.99, 121.22, 116.79, 59.22, 51.88, 46.74 

ppm. HRMS (ESI) calcd for C24H24N4O5S [M+H]+: 481.1540, found: 481.1551 

 

Acylsulfonamide SZ1TA9: was prepared following the general procedure B with 15% 

yield (19 mg). Rf = 0.47 in hexane : EtOAc = 1:1. 1H NMR (400 MHz, CDCl3) δ 8.15 (d, 
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J = 8.0 Hz, 2H), 7.66 (d, J = 8.1 Hz, 2H), 7.50 (s, 1H), 7.31 – 7.23 (m, 4H), 6.97 (t, J = 

7.2 Hz, 1H), 6.90 (d, J = 8.3 Hz, 2H), 6.53 – 6.49 (m, 1H), 4.33 (s, 2H), 3.57 – 3.12 (m, 

8H) ppm. 13C NMR (101 MHz, CDCl3) δ 155.11, 149.12, 146.53, 145.08, 140.71, 

134.43, 131.97, 129.74, 129.60, 122.43, 118.81, 117.51, 113.23, 59.99, 51.87, 47.32 

ppm. HRMS (ESI) calcd for C22H23N3O4S [M+H]+ : 426.1482, found: 426.1481 

 

Acylsulfonamide SZ2TA4: was prepared following the general procedure B with 15% 

yield (55 mg). Rf = 0.56 in DCM : MeOH = 10:1. 1H NMR (400 MHz, CD3OD) δ 8.14 

(d, J = 8.4 Hz, 2H), 7.76 (d, J = 8.4 Hz, 2H), 7.46 – 7.41 (m, 3H), 7.33 – 7.24 (m, 7H), 

6.90 (s, 1H), 6.38 (s, 1H), 5.76 (s, 1H), 4.58 – 4.48 (m, 1H), 4.17 – 4.09 (m, 1H), 4.04 – 

3.98 (m, 1H), 3.88 – 3.84 (m, 4H), 3.60 (s, 3H), 3.44 – 3.40 (m, 2H), 3.20 – 3.11 (m, 4H), 

2.89 (s, 3H), 2.81 – 2.75 (m, 1H), 2.64 – 2.58 (m, 1H) ppm. 13C NMR (101 MHz, 

CD3OD) δ 167.91, 151.33, 150.33, 143.97, 137.46, 136.69, 136.11, 132.85, 132.11, 

131.45, 130.38, 130.18, 129.96, 129.91, 128.52, 124.76, 122.31, 112.66, 112.51, 67.06, 

60.19, 58.51, 56.62, 56.56, 56.01, 46.83, 40.46, 31.50, 27.98 ppm. HRMS (ESI) calcd for 

C35H39N3O5S [M+H]+ : 614.2683, found: 614.2675 
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Acylsulfonamide SZ3TA1: was prepared following the general procedure B with 11% 

yield (21 mg). Rf = 0.33 in EtOAc : MeOH = 20:1. 1H NMR (400 MHz, DMSO-d6) δ 

7.91 – 7.83 (m, 4H), 7.75 (d, J = 8.3 Hz, 2H), 7.56 (t, J = 7.1 Hz, 1H), 7.44 (t, J = 7.7 Hz, 

2H), 2.05 (s, 3H) ppm. 13C NMR (126 MHz, DMSO-d6) δ 169.54, 166.17, 144.03, 

133.86, 133.38, 132.66, 129.45, 128.94, 128.81, 118.76, 24.61 ppm. HRMS (ESI) calcd 

for C15H14N2O4S [M+H]+: 319.0747, found: 319.0744 

 

Acylsulfonamide SZ3TA6: was prepared following the general procedure A with 46 % 

yield (78 mg). Rf = 0.25 in EtOAc : MeOH = 20:1. 1H NMR (250 MHz, Acetone-d6) : 

8.61 (s, 1H), 8.32 (dd, J = 8.1, 1.5 Hz, 1H), 8.22 (d, J = 7.7 Hz, 1H), 7.91 (d, J = 8.7 Hz, 

2H), 7.75 – 7.64 (m, 3H), 1.99 (s, 3H) ppm. 13C NMR (63 MHz, Acetone-d6) : 169.69, 

149.19, 145.17, 135.18, 135.04, 134.10, 131.13, 130.49, 128.09, 123.91, 119.11, 24.37 

ppm.  HRMS (ESI) calcd for C15H13N3O6S [M+H]+: 364.0598, found: 364.0588  

 

Acylsulfonamide SZ3TA7: was prepared following the general procedure B with 14% 

yield (31 mg). Rf = 0.44 in hexane : EtOAc = 1:3. 1H NMR (400 MHz, CD3OD) δ 8.08 

(d, J = 8.8 Hz, 2H), 8.01 (d, J = 8.2 Hz, 1H), 7.94 (d, J = 8.0 Hz, 1H), 7.91 – 7.87 (m, 

1H), 7.84 (d, J = 8.8 Hz, 2H), 7.65 (d, J = 7.0 Hz, 1H), 7.51 – 7.46 (m, 3H), 2.17 (s, 3H) 

ppm. 13C NMR (101 MHz, CD3OD) δ 170.66, 168.03, 143.78, 133.64, 133.48, 131.69, 
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130.91, 129.74, 129.18, 128.14, 127.10, 126.25, 126.18, 124.26, 124.11, 118.72, 22.66 

ppm. HRMS (ESI) calcd for C19H16N2O4S [M+H]+: 369.0904, found: 369.0904 

 

Acylsulfonamide SZ3TA8: was prepared following the general procedure B with 26% 

yield (63 mg). Rf = 0.63 in hexane : EtOAc = 1:3. 1H NMR (400 MHz, CD3OD) δ 8.01 – 

7.98 (m, 2H), 7.91 – 7.87 (m, 2H), 7.78 – 7.74 (m, 2H), 7.36 – 7.32 (m, 2H), 2.13 (s, 3H) 

ppm. 13C NMR (101 MHz, CD3OD) δ 170.62, 164.89, 152.34, 143.69, 133.35, 130.74, 

130.16, 129.22, 120.30, 118.62, 22.62 ppm. HRMS (ESI) calcd for C16H13F3N2O5S 

[M+H]+: 403.0570, found: 403.0566 

 

Acylsulfonamide SZ3TA9: was prepared following the general procedure A with 36% 

yield (52 mg). Rf = 0.23 in EtOAc. 1H NMR (400 MHz, CD3OD) : 7.97 (d, J = 8.8 Hz, 

2H), 7.75 (d, J = 8.8 Hz, 2H), 7.70 (s, 1H), 7.25 (d, J = 3.5 Hz, 1H), 6.58 (dd, J = 3.4, 1.5 

Hz, 1H), 2.13 (s, 3H) ppm. 13C NMR (101 MHz, CD3OD) : 170.87, 156.36, 147.08, 

145.63, 143.91, 133.74, 129.33, 118.85, 117.76, 112.34, 22.87 ppm. HRMS (ESI) calcd 

for C13H12N2O5S [M+H]+: 309.0540, found: 309.0547 
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Acylsulfonamide SZ5TA5: was prepared following the general procedure B with 46% 

yield (46 mg). Rf = 0.72 in EtOAc. 1H NMR (400 MHz, CDCl3) δ 8.04 (d, J = 8.2 Hz, 

2H), 7.35 (d, J = 8.1 Hz, 2H), 6.94 (d, J = 2.0 Hz, 2H), 6.61 – 6.59 (m, 1H), 3.75 (s, 6H), 

2.44 (s, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 164.37, 161.20, 145.50, 135.56, 

133.22, 129.85, 128.83, 106.53, 105.59, 55.85, 21.91 ppm. HRMS (ESI) calcd for 

C16H17NO5S [M+H]+: 336.0900, found: 336.0904 

 

Acylsulfonamide SZ5TA6: was prepared following the general procedure B with 10% 

yield (10 mg). Rf = 0.29 in EtOAc. 1H NMR (400 MHz, CDCl3) δ 8.68 (s, 1H), 8.41 (d, J 

= 7.9 Hz, 1H), 8.17 (d, J = 7.6 Hz, 1H), 8.06 (d, J = 8.0 Hz, 2H), 7.66 (t, J = 7.9 Hz, 1H), 

7.38 (d, J = 7.9 Hz, 2H), 2.45 (s, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 162.46, 

148.54, 145.97, 135.11, 133.80, 133.21, 130.46, 129.96, 128.98, 127.93, 123.11, 21.95 

ppm. HRMS (ESI) calcd for C14H12N2O5S [M+H]+: 321.0540, found: 321.0533 
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Acylsulfonamide SZ5TA9: was prepared following the general procedure B with 40% 

yield (32 mg). Rf = 0.4 in EtOAc. 1H NMR (400 MHz, CDCl3) δ 8.84 (s, 1H), 8.03 (d, J 

= 8.2 Hz, 2H), 7.50 (s, 1H), 7.34 (d, J = 8.1 Hz, 2H), 7.22 (d, J = 3.4 Hz, 1H), 6.53 (d, J 

= 1.8 Hz, 1H), 2.43 (s, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 154.53, 145.97, 145.50, 

145.40, 135.71, 129.80, 128.82, 118.30, 113.26, 21.89 ppm. HRMS (ESI) calcd for 

C12H11NO4S [M+H]+: 266.0482, found: 266.0481 

 

Sulfonyl Azide 19: To a solution of sulfonyl azide SZ67d (600 mg, 1.72 mmol) and 

NaHCO3 (145 mg, 1.72 mmol) in CHCl3 (6.5 mL) was added (Boc)2O (376 mg, 1.72 

mmol) at 0 °C. The reaction mixture was then slowly warmed to room temperature and 

monitored using TLC until SZ6 was completely consumed. The reaction mixture was 

then treated with 1N NaHCO3 solution (20 mL) and extracted with CHCl3 (15 mL  3). 

The combined organic phases were dried over anhydrous sodium sulfate and 

concentrated. The crude obtained was subjected to flash chromatography (hexane : 

EtOAc = 8:1; Rf = 0.54 in hexane : EtOAc = 2:1) to obtain the corresponding sulfonyl 

azide 19 with 93% yield (717 mg). 1H NMR (400 MHz, CDCl3) δ 7.86 (d, J = 8.2 Hz, 

2H), 7.38 – 7.16 (m, 7H), 4.51 (s, 2H), 3.39 – 3.29 (m, 2H), 3.01 – 2.95 (m, 2H), 1.45 (s, 

9H) ppm. 13C NMR (101 MHz, CDCl3) δ 155.50, 146.12, 137.21, 129.52, 129.07, 

128.52, 127.99, 127.78, 126.52, 80.82, 50.48, 47.04, 31.80, 28.32 ppm. HRMS (ESI) 

calcd for C20H24N4O4S2 [M+Na]+: 471.1131, found: 471.1127 
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Sulfonamide 20: The sulfonamide 20 was prepared starting from sulfonyl azide 19 (600 

mg, 1.54 mmol) following the procedure described for synthesis of sulfonamide 14 with 

92% yield (600 mg). Rf = 0.42 in hexane : EtOAc = 1:1. 1H NMR (400 MHz, CDCl3) δ 

7.81 (d, J = 7.3 Hz, 2H), 7.30 – 7.13 (m, 7H), 5.16 (s, 2H), 4.45 (s, 2H), 3.34 – 3.27 (m, 

2H), 3.00 – 2.89 (m, 2H), 1.43 (s, 9H) ppm. 13C NMR (101 MHz, CDCl3) δ 155.57, 

143.41, 140.98, 135.12, 129.44, 129.05, 128.08, 127.53, 126.68, 80.73, 50.37, 46.90, 

31.66, 28.34 ppm. HRMS (ESI) calcd for C20H26N2O4S2 [M+Na]+: 445.1226, found: 

445.1219 

 

Acylsulfonamide 21: was prepared following the general procedure A with 85% yield 

(576 mg). Rf = 0.54 in hexane : EtOAc = 1:1. 1H NMR (400 MHz, CDCl3) δ 8.04 (d, J = 

8.1 Hz, 2H), 7.71 (d, J = 8.9 Hz, 2H), 7.31 – 7.06 (m, 9H), 4.47 (s, 2H), 3.38 – 3.30 (m, 

6H), 3.01 – 2.90 (m, 2H), 1.59 (t, J = 5.4 Hz, 4H), 1.41 (s, 9H), 1.00 (s, 6H) ppm. 13C 

NMR (101 MHz, CDCl3) δ 163.91, 155.80, 150.97, 137.88, 135.29, 130.25, 129.72, 

129.26, 129.09, 127.97, 127.56, 126.68, 126.38, 116.78, 80.99, 50.62, 47.71, 47.23, 

37.11, 31.93, 28.52, 28.28, 27.72 ppm. HRMS (ESI) calcd for C34H43N3O5S2 [M+H]+: 

638.2717, found: 638.2693 
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Acylsulfonamide SZ6TA2: To a solution of acylsulfonamide 21 (437 mg, 0.68 mmol) in 

CHCl3 (5 mL) cooled to 0 °C, was added TFA (1.2 mL) dropwise. The reaction mixture 

was then slowly warmed to room temperature and monitored using TLC until 

acylsulfonamide 21 was completely consumed. The reaction was then treated with 

saturated K2CO3 solution (pH = 7) and extracted with CHCl3 (20 mL  3). The combined 

organic phases were dried over anhydrous sodium sulfate and concentrated. The crude 

obtained was purified using preparative HPLC to afford the acylsulfonamide SZ6TA2 

with 90% yield (330 mg). Rf = 0.69 in EtOAc : MeOH = 20:1. 1H NMR (400 MHz, 

CD3OD) δ 8.21 (d, J = 8.4 Hz, 2H), 7.77 (dd, J = 17.2, 8.7 Hz, 4H), 7.49 (d, J = 7.7 Hz, 

2H), 7.40 (t, J = 7.5 Hz, 2H), 7.32 (t, J = 7.3 Hz, 1H), 7.08 (d, J = 9.1 Hz, 2H), 4.40 (s, 

2H), 3.53 – 3.44 (m, 4H), 3.41 – 3.38 (m, 3H), 1.63 – 1.52 (m, 4H), 1.37 (s, 1H), 1.10 (s, 

6H) ppm. 13C NMR (101 MHz, CD3OD) δ 165.85, 154.02, 141.32, 136.66, 133.42, 

130.61, 130.22, 130.07, 129.29, 128.91, 127.38, 120.11, 113.83, 50.10, 46.32, 44.57, 

37.67, 29.35, 28.26, 26.87 ppm. HRMS (ESI) calcd for C29H35N3O3S2 [M+H]+: 

538.2193, found: 538.2180 
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Acylsulfonamide SZ7TA5: was prepared following the general procedure B with 28% 

yield (49 mg). Rf = 0.31 in EtOAc. 1H NMR (400 MHz, CD3OD) δ 8.80 (s, 1H), 8.50 (s, 

1H), 8.22 (d, J = 8.0 Hz, 1H), 8.18 – 8.05 (m, 2H), 7.98 (d, J = 8.2 Hz, 1H), 7.17 – 7.01 

(m, 5H), 6.97 (s, 2H), 6.67 (s, 1H), 3.77 (s, 6H), 3.07 (t, J = 6.1 Hz, 2H), 2.94 (t, J = 6.2 

Hz, 2H). 13C NMR (101 MHz, CD3OD) δ 166.26, 161.22, 139.44, 138.34, 136.65, 

134.86, 133.71, 131.15, 131.02, 129.52, 129.10, 128.74, 126.28, 125.57, 105.83, 105.28, 

54.86, 41.97, 32.93 ppm. HRMS (ESI) calcd for C27H26N2O7S3 [M+H]+: 609.0794, 

found: 609.0772 

 

Acylsulfonamide SZ7TA6: was prepared following the general procedure B with 46% 

yield (79 mg). Rf = 0.5 in EtOAc. 1H NMR (400 MHz, CD3OD) δ 8.79 (s, 1H), 8.61 (s, 

1H), 8.47 (s, 1H), 8.37 (d, J = 7.4 Hz, 1H), 8.23 – 8.03 (m, 4H), 7.94 (d, J = 8.0 Hz, 1H), 

7.67 (t, J = 8.0 Hz, 1H), 7.15 – 6.95 (m, 6H), 3.04 (t, J = 7.0 Hz, 2H), 2.91 (t, J = 7.0 Hz, 

2H) ppm. 13C NMR (101 MHz, CD3OD) δ 164.42, 148.39, 139.47, 138.06, 136.70, 

134.89, 133.95, 133.63, 131.31, 131.01, 130.13, 129.54, 129.46, 129.22, 129.12, 128.74, 

127.36, 126.24, 125.61, 123.00, 41.99, 32.94 ppm. HRMS (ESI) calcd for C25H21N3O7S3 

[M+H]+: 572.0614, found: 572.0597 
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Acylsulfonamide SZ7TA7: was prepared following the general procedure B with 42% 

yield (145 mg). Rf = 0.48 in EtOAc : MeOH = 20:1. 1H NMR (400 MHz, CDCl3) δ 8.78 

(s, 1H), 8.45 (s, 1H), 8.27 (d, J = 8.7 Hz, 1H), 8.09 (d, J = 8.3 Hz, 1H), 7.98 (d, J = 8.7 

Hz, 1H), 7.95 – 7.83 (m, 4H), 7.72 (d, J = 8.0 Hz, 1H), 7.66 (d, J = 7.1 Hz, 1H), 7.43 – 

7.29 (m, 4H), 7.14 – 7.05 (m, 5H), 3.11 (m, 2H), 2.93 (t, J = 6.4 Hz, 2H) ppm. 13C NMR 

(101 MHz, CDCl3) δ 166.50, 138.81, 137.55, 136.87, 133.78, 133.36, 131.85, 131.09, 

130.43, 130.10, 129.80, 129.53, 129.29, 128.71, 128.18, 127.25, 127.17, 127.02, 126.17, 

125.88, 124.85, 124.55, 41.86, 34.12 ppm. HRMS (ESI) calcd for C29H24N2O5S3 

[M+H]+: 577.0920, found: 577.0905 

 

Sulfonamide 22: The sulfonamide 22 was obtained starting from sulfonyl azide SZ8 

(290 mg, 0.62 mmol) following the procedure described for synthesis of sulfonamide 14 

with 89% yield (243 mg). Rf = 0.33 in hexane : EtOAc = 1:1. 1H NMR (250 MHz, 

CDCl3) : 7.59 (d, J = 7.6 Hz, 2H), 7.22 – 7.00 (m, 7H), 6.39 (s, 1H), 5.99 (s, 1H), 5.28 

(bs, 2H), 4.34 (s, 1H), 3.62 – 3.51 (m, 4H), 3.34 (s, 3H), 3.11 (d, J = 13.9 Hz, 1H), 2.85 – 

2.67 (m, 2H), 2.55 – 2.42 (m, 1H), 2.36 – 2.21 (m, 1H) ppm. 13C NMR (63 MHz, CDCl3) 

δ 147.44, 147.06, 144.95, 143.84, 140.81, 129.97, 129.51, 129.10, 128.45, 127.52, 

126.78, 126.30, 111.75, 111.03, 68.20, 58.26, 55.80, 55.74, 47.26, 28.47 ppm. HRMS 

(ESI) calcd for C24H26N2O4S [M+H]+: 439.1686, found: 439.1682 
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Acylsulfonamide SZ8TA1: was prepared following the general procedure B with 50% 

yield (163 mg). Rf = 0.4 in hexane : EtOAc = 1:1. 1H NMR (400 MHz, CD3OD) : 8.17 

(d, J = 8.3 Hz, 2H), 7.77 (d, J = 7.8 Hz, 2H), 7.67 (d, J = 8.3 Hz, 2H), 7.63 – 7.55 (m, 

1H), 7.51 – 7.42 (m, 5H), 7.29 (s, 2H), 6.89 (s, 1H), 6.35 (s, 1H), 5.71 (s, 1H), 4.57 (d, J 

= 12.7 Hz, 1H), 4.35 (bs, 1H), 3.83 (s, 3H), 3.71 – 3.60 (m, 1H), 3.57 (s, 3H), 3.49 – 3.37 

(m, 2H), 3.23 (d, J = 5.4 Hz, 2H) ppm. 13C NMR (101 MHz, CD3OD) δ 166.83, 149.85, 

148.85, 141.35, 136.04, 135.70, 133.27, 132.08, 131.45, 130.70, 130.04, 129.21, 128.99, 

128.62, 128.09, 123.76, 111.17, 66.85, 56.59, 55.27, 55.19, 45.22, 23.57 ppm. HRMS 

(ESI) calcd for C31H30N2O5S [M+H]+: 543.1948, found: 543.1936 

 

Acylsulfonamide SZ8TA3: was prepared following the general procedure A with 14% 

yield (20 mg). Rf = 0.35 in EtOAc. 1H NMR (400 MHz, CDCl3) : 8.09 (bs, 2H), 7.82 (d, 

J = 7.2 Hz, 2H), 7.63 (bs, 2H), 7.47 – 7.34 (m, 6H), 7.24 (bs, 2H), 6.67 (s, 1H), 6.25 (s, 

1H), 4.51 (d, J = 10.1 Hz, 1H), 3.82 (s, 3H), 3.65 (s, 3H), 3.58 – 3.34 (m, 3H), 3.33 – 

3.06 (m, 3H), 2.60 (s, 3H) ppm. 13C NMR (101 MHz, CDCl3) : 169.52, 161.45, 159.66, 

149.51, 148.72, 140.63, 135.02, 133.97, 132.17, 131.55, 131.41, 130.99, 130.28, 129.72, 
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129.22, 129.12, 126.89, 126.61, 122.50, 122.22, 110.54, 65.52, 55.88, 43.00, 23.67, 17.73 

ppm. HRMS (ESI) calcd for C35H33N3O5S2 [M+H]+: 640.1940, found: 640.1935 

 

Acylsulfonamide SZ8TA4: was prepared following the general procedure A with 18% 

yield (31 mg). Rf = 0.45 in EtOAc. 1H NMR (400 MHz, CDCl3) : 9.58 (bs, 1H), 7.98 

(bs, 2H), 7.56 (bs, 2H), 7.39 – 7.18 (m, 11H), 6.65 (s, 2H), 6.20 (s, 2H), 5.68 (s, 1H), 

4.45 – 4.25 (m, 2H), 4.07 – 3.96 (m, 3H), 3.84 (s, 3H), 3.83 (s, 3H), 3.60 (s, 6H), 3.38 

(bs, 3H), 3.13 – 3.03 (m, 4H) ppm. 13C NMR (101 MHz, CDCl3) : 165.34, 149.47, 

148.56, 140.50, 134.64, 131.67, 130.80, 130.16, 129.71, 129.25, 129.13, 128.63, 127.99, 

122.76, 121.64, 120.84, 110.84, 110.63, 66.50, 65.95, 56.20, 55.85, 54.09, 45.50, 23.51 

ppm. HRMS (ESI) calcd for C43H45N3O7S [M+H]+: 748.3057, found: 748.3062 

 

Acylsulfonamide SZ8TA5: was prepared following the general procedure B with 42% 

yield (152 mg). Rf = 0.58 in hexane : EtOAc = 1:3. 1H NMR (400 MHz, CD3OD) : 8.21 

– 8.12 (m, 2H), 7.69 – 7.63 (m, 2H), 7.49 – 7.43 (m, 3H), 7.30 – 7.25 (m, 2H), 6.94 – 

6.85 (m, 3H), 6.69 – 6.65 (m, 1H), 6.33 (s, 1H), 5.64 (s, 1H), 4.50 (d, J = 13.1 Hz, 1H), 

3.83 (s, 3H), 3.76 (s, 6H), 3.67 – 3.60 (m, 1H), 3.57 (s, 3H), 3.46 – 3.34 (m, 1H), 3.31 – 
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3.26 (m, 1H), 3.23 – 3.15 (m, 2H) ppm. 13C NMR (101 MHz, CD3OD) : 166.18, 161.04, 

149.68, 148.67, 141.13, 135.56, 133.58, 131.29, 130.51, 129.89, 129.20, 129.02, 128.84, 

123.41, 110.95, 110.88, 105.64, 104.85, 66.54, 56.29, 55.03, 54.95, 54.65, 23.20 ppm. 

HRMS (ESI) calcd for C33H34N2O7S [M+H]+: 603.2160, found: 603.2145 

 

Acylsulfonamide SZ8TA7: was prepared following the general procedure A with 48% 

yield (97 mg). Rf = 0.41 in hexane : EtOAc = 1:1. 1H NMR (400 MHz, CD3OD) δ 8.24 

(d, J = 8.1 Hz, 2H), 8.07 – 7.86 (m, 4H), 7.77 – 7.66 (m, 4H), 7.54 – 7.45 (m, 5H), 7.32 – 

7.26 (m, 1H), 6.90 (s, 1H), 6.34 (s, 1H), 5.68 (s, 1H), 4.58 (d, J = 12.9 Hz, 1H), 3.84 (s, 

3H), 3.70 – 3.62 (m, 1H), 3.55 (s, 3H), 3.48 – 3.40 (m, 1H), 3.35 – 3.30 (m, 1H), 3.26 – 

3.19 (m, 2H) ppm. 13C NMR (101 MHz, CD3OD) δ 168.17, 150.02, 148.99, 141.41, 

135.69, 135.18, 133.95, 133.65, 132.18, 131.79, 130.80, 130.52, 130.26, 129.33, 129.16, 

128.53, 127.42, 126.92, 126.55, 124.52, 124.28, 123.53, 121.83, 111.22, 111.08, 66.62, 

56.41, 55.29, 55.19, 45.10, 23.25 ppm. HRMS (ESI) calcd for C35H32N2O5S [M+H]+: 

593.2105, found: 593.2094 
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Acylsulfonamide SZ8TA8: was prepared following the general procedure A with 44% 

yield (50 mg). Rf = 0.63 in EtOAc : MeOH = 20:1. 1H NMR (400 MHz, CD3OD) δ 7.98 

(d, J = 8.2 Hz, 2H), 7.71 (d, J = 8.7 Hz, 2H), 7.54 (d, J = 8.2 Hz, 2H), 7.30 – 7.23 (m, 

3H), 7.14 (d, J = 8.2 Hz, 4H), 6.69 (s, 1H), 6.17 (s, 1H), 5.57 (s, 1H), 4.40 (d, J = 13.3 

Hz, 1H), 4.20 (s, 1H), 3.63 (s, 3H), 3.53 – 3.44 (m, 1H), 3.36 (s, 3H), 3.15 – 3.02 (m, 3H) 

ppm. 13C NMR (101 MHz, CD3OD) δ 165.65, 152.66, 149.86, 148.82, 141.39, 135.45, 

135.11, 131.81, 130.89, 130.55, 130.20, 129.29, 128.99, 123.64, 122.17, 120.53, 120.49 

(q, J = 259.81 Hz), 111.22, 111.14, 66.88, 56.53, 55.29, 55.22, 45.14, 23.42 ppm. HRMS 

(ESI) calcd for C32H29F3N2O6S [M+H]+: 627.1771, found: 627.1785 

 

Acylsulfonamide SZ8TA9: was prepared following the general procedure A with 49% 

yield (47 mg). Rf = 0.52 in EtOAc : MeOH = 20:1. 1H NMR (400 MHz, CD3OD) δ 8.13 

(d, J = 7.8 Hz, 2H), 7.73 – 7.65 (m, 3H), 7.44 (s, 3H), 7.31 (s, 2H), 7.25 (d, J = 3.2 Hz, 

1H), 6.88 (s, 1H), 6.58 (d, J = 2.0 Hz, 1H), 6.35 (s, 1H), 5.73 (s, 1H), 4.57 (d, J = 12.9 

Hz, 1H), 4.36 (s, 1H), 3.82 (s, 3H), 3.70 – 3.60 (m, 1H), 3.56 (s, 3H), 3.49 – 3.40 (m, 

1H), 3.23 (s, 2H) ppm. 13C NMR (101 MHz, CD3OD) δ 156.66, 149.87, 148.83, 147.32, 

145.55, 141.36, 135.47, 135.06, 131.77, 130.84, 130.19, 129.27, 128.89, 123.58, 122.05, 

118.06, 112.46, 111.18, 111.09, 66.81, 56.51, 55.29, 55.21, 45.10, 23.34 ppm. HRMS 

(ESI) calcd for C29H28N2O6S [M+H]+: 533.1741, found: 533.1735 
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Acylsulfonamide SZ9TA2: was prepared following the general procedure A with 60% 

yield (169 mg). Rf = 0.56 in hexane : EtOAc = 1:1. 1H NMR (400 MHz, CDCl3) : 8.08 

(d, J = 8.4 Hz, 2H), 7.85 (d, J = 8.0 Hz, 2H), 7.63 (d, J = 8.6 Hz, 2H), 7.56 (d, J = 8.4 Hz, 

2H), 7.51 (d, J = 8.0 Hz, 2H), 7.22 – 7.12 (m, 5H), 6.86 (d, J = 9.2 Hz, 2H), 3.77 (d, J = 

4.8 Hz, 4H), 3.32 (t, J = 5.8 Hz, 4H), 3.06 (t, J = 7.2 Hz, 2H), 2.79 (t, J = 7.2 Hz, 2H), 

1.47 (t, J = 5.6 Hz, 4H), 0.98 (s, 6H) ppm. 13C NMR (101 MHz, CDCl3) : 154.12, 

147.00, 136.96, 135.69, 130.03, 129.54, 128.96, 128.87, 128.72, 128.30, 127.46, 126.11, 

113.06, 57.87, 57.69, 52.65, 43.87, 37.79, 31.29, 28.53, 27.70, 27.59 ppm. HRMS (ESI) 

calcd for C36H40N6O5S3 [M+H]+: 733.2295, found: 733.2297 

 

Acylsulfonamide SZ9TA3: was prepared following the general procedure A with 45% 

yield (62 mg). Rf = 0.66 in EtOAc : MeOH = 20:1. 1H NMR (400 MHz, DMSO-d6) δ 

8.01 – 7.95 (m, 4H), 7.95 – 7.91 (m, 2H), 7.76 (d, J = 8.4, 2H), 7.66 (d, J = 8.2, 2H), 7.53 

– 7.49 (m, 3H), 7.19 – 7.15 (m, 4H), 7.09 – 7.04 (m, 1H), 3.91 (s, 4H), 3.21 (t, J = 7.1 

Hz, 2H), 2.73 (s, 2H), 2.55 (s, 3H) ppm. 13C NMR (101 MHz, DMSO-d6) δ 168.41, 

161.13, 159.47, 145.80, 143.06, 139.86, 136.90, 135.55, 132.49, 131.71, 130.99, 129.91, 

129.77, 129.33, 128.55, 128.21, 127.80, 126.85, 126.15, 124.67, 57.27, 57.14, 52.14, 
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29.03, 17.81 ppm. HRMS (ESI) calcd for C33H30N6O5S4 [M+H]+: 719.1233, found: 

719.1228 

 

Acylsulfonamide SZ9TA7: was prepared following the general procedure A with 69% 

yield (45 mg). Rf = 0.44 in hexane : EtOAc = 1:1. 1H NMR (400 MHz, CDCl3) : 8.44 (s, 

1H), 7.96 (d, J = 8.0 Hz, 2H), 7.74 – 7.68 (m, 3H), 7.60 – 7.51 (m, 3H), 7.35 (d, J = 8.0 

Hz, 2H), 7.18 – 6.93 (m, 10H), 3.37 (s, 2H), 3.31 (s, 2H), 2.86 (t, J = 6.4 Hz, 2H), 2.50 

(bs, 2H) ppm. 13C NMR (101 MHz, CDCl3) : 146.99, 143.43, 140.01, 136.83, 135.75, 

133.39, 131.40, 130.42, 129.47, 128.86, 128.82, 128.66, 127.93, 127.66, 127.36, 127.12, 

126.86, 126.06, 125.73, 124.34, 57.60, 57.39, 52.47, 31.14 ppm. HRMS (ESI) calcd for 

C33H29N5O5S3 [M+H]+: 672.1404, found: 672.1409 
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2.4.12 Mutant Bcl-XL ( R139ABcl-XL ) experiments: LC/MS-SIM analysis 
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Figure 2.6. Bcl-XL and mutant Bcl-XL templated incubations with SZ7 and TA2. The 

samples were incubated for six hours at 37 °C and subjected to LC/MS-SIM analysis 

with gradient system 1. A) Incubation of SZ7 and TA2 without Bcl-XL B) Incubation of 

SZ7 and TA2 with 2 M Bcl-XL C) Incubation of SZ7 and TA2 with 2 M mutant Bcl-

XL D) Synthetic SZ7TA2 as the reference. 
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Figure 2.7. Bcl-XL and mutant Bcl-XL templated incubations with SZ9 and TA1. The 

samples were incubated for six hours at 37 °C and subjected to LC/MS-SIM analysis 

with gradient system 1. A) Incubation of SZ9 and TA1 without Bcl-XL B) Incubation of 

SZ9 and TA1 with 2 M Bcl-XL C) Incubation of SZ9 and TA1 with 2 M mutant Bcl-

XL D) Synthetic SZ9TA1 as the reference. 
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Figure 2.8. Bcl-XL and mutant Bcl-XL templated incubations with SZ9 and TA5. The 

samples were incubated for six hours at 37 °C and subjected to LC/MS-SIM analysis 

with gradient system 1. A) Incubation of SZ9 and TA5 without Bcl-XL B) Incubation of 

SZ9 and TA5 with 2 M Bcl-XL C) Incubation of SZ9 and TA5 with 2 M mutant Bcl-

XL D) Synthetic SZ9TA5 as the reference. 
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2.4.13 Peptide control experiments: LC/MS-SIM analysis 

6 8 10 12

200

400

600

6 8 10 12

200

400

600

6 8 10 12

200

400

600

6 8 10 12

200

400

600

6 8 10 12

200000

400000

600000

A

8.
36

1

Are
a: 3

12.5

B

8.
36

4

Are
a: 8

87.2

C

8.
36

1

Are
a: 5

51.8

D

8.
36

1
Are

a: 7
60.9A

to
m

ic
 M

as
s 

U
ni

ts
 [u

]

Retention Time [min]

E

8.
36

5

Are
a: 1

.45e+006

 

Figure 2.9. Incubation of SZ9 and TA1 and suppressing Bcl-XL-templated incubations 

with Bim and mutant Bim. The samples were incubated for six hours at 37 °C and 

subjected to LC/MS-SIM analysis with gradient system 1. A) Incubation of SZ9 and TA1 

without Bcl-XL B) Incubation of SZ9 and TA1 with 2 M Bcl-XL C) Incubation of SZ9 

and TA1 with 2 M Bcl-XL and 20 M Bim D) Incubation of SZ9 and TA1 with 2 M 

Bcl-XL and 20 M mutant Bim E) Synthetic SZ9TA1 as the reference. 
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Figure 2.10. Incubation of SZ9 and TA5 and suppressing Bcl-XL-templated incubations 

with Bim and mutant Bim. The samples were incubated for six hours at 37 °C and 

subjected to LC/MS-SIM analysis with gradient system 2. A) Incubation of SZ9 and TA5 

without Bcl-XL B) Incubation of SZ9 and TA5 with 2 M Bcl-XL C) Incubation of SZ9 

and TA5 with 2 M Bcl-XL and 20 M Bim D) Incubation of SZ9 and TA5 with 2 M 

Bcl-XL and 20 M mutant Bim E) Synthetic SZ9TA5 as the reference. 
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Chapter 3 

Identification of Protein-Protein Interaction Modulators Targeting Mcl-1 via Sulfo-

Click Kinetic Target-Guided Synthesis 

3.1 Introduction 

The discovery of B-cell lymphoma-2 (Bcl-2) almost three decades ago has been 

considered as a major breakthrough in understanding the development of cancer, thus 

providing channels to deliver potential anti-cancer agents.1 This Bcl-2 family can be 

classified into two categories: pro-apoptotic and anti-apoptotic proteins. Although the 

complete mechanism through which these two types of proteins interact remains 

controversial, the anti-apoptotic proteins in the Bcl-2 family (e.g. Bcl-2, Bcl-XL, Mcl-1) 

have been established as the promising targets for drug discovery and development.2 

Initially, Bcl-2 and Bcl-XL were identified as the key players in regulation of apoptosis. 

As a result, majority of the research endeavors were aimed at development of small-

molecules disrupting the interactions between pro-apoptotic proteins and Bcl-2/Bcl-XL.3 

Remarkably, a few of these candidates have made it to the clinical trials.4 For example, 

ABT-263, an analogue of ABT-737, was developed by Abbott laboratories and is 

currently in phase I/II clinical trials.4c Despite being highly potent against Bcl-2 and Bcl-

XL (Ki <1 nM), these molecules exhibited weaker binding affinities against Mcl-1 (Ki = 

550 nM for ABT-263; Ki >1000 nM for ABT-737).4c Moreover, cancer cells have been 

reported to develop resistance against ABT-737 through up-regulation of Mcl-1.5
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Accordingly, down-regulation of Mcl-1 has resulted in restoring the sensitivity of cancer 

cells towards ABT-263 and ABT-737.4c, 6 Meanwhile, Willis et al.7 and Warr et al.8 have 

recently demonstrated that Mcl-1 also plays a crucial role in regulating the apoptotic 

pathway. For instance, the pro-apoptotic Bak interacts with Bcl-XL and Mcl-1 through 

BH3 domain, which is also essential for dimerization of Bak, eventually leading to 

apoptosis.7 Besides, Bak does not bind to the other members of the anti-apoptotic family, 

Bcl-2, Bcl-w and A1. In other words, antagonism of both, Bcl-XL and Mcl-1 by BH3-

only proteins is required for the Bak-assisted cell death.7 Strikingly, certain BH3-only 

proteins are known to heterodimerize with anti-apoptotic members with high selectivity. 

For example, Noxa binds strongly to Mcl-1 (but not Bcl-2 and Bcl-XL) and also triggers 

its destruction. Whereas, Bad binds to Bcl-XL and Bcl-2 but not Mcl-1.9 Collectively, 

these findings suggest that the small molecule inhibitors either targeting Mcl-1 

selectively or multiple members of the Bcl-2 family (Bcl-2, Bcl-XL and Mcl-1) 

simultaneously, hold great therapeutic potential. Consequently, several research groups 

have reported structurally diverse molecules as pan-active antagonists of the Bcl-2 family 

(Figure 3.1A),10 although a few Mcl-1-selective candidates are also available (Figure 

3.1B).9, 11  

Recently, Pellecchia and co-workers identified acylsulfonamides as potent 

inhibitors displaying nanomolar binding affinities against both, Bcl-XL and Mcl-1 using a 

fragment-based approach, termed as SAR by ILOE (structure activity relationship by 

interligand nuclear overhauser effect).10d Contrary to SAR by NMR, SAR by ILOE12 
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Figure 3.1. Inhibitors targeting multiple Bcl-2 family members or Mcl-1 selectively  

relies on identifying protein-assisted ligand-ligand NOEs (ILOEs) between two 

adjacently binding fragments at the binding site of the protein, which can be covalently 

linked, guided by molecular modeling studies along with appropriate synthetic methods 

to obtain a bidentate ligand (Figure 3.2B).10d Importantly, 15N labeled protein is not 

required for ILOE-based screening. Moreover, tedious HSQC experiments need not be 

performed, presenting advantages over the SAR by NMR approach.  

Initially, fragments binding to Bcl-XL, identified by Petros et al.13 through SAR 

by NMR screening, were chosen as model substrates. As anticipated, Bcl-XL-assisted 

ILOEs between hydrogens on the aromatic rings of acid 6 and methylene hydrogens of 

naphthalenol 7 were clearly recognized (Figure 3.2). Additionally, the majority of the 
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Figure 3.2. Comparison of SAR by NMR and SAR by ILOEs approaches 

ILOE signals were abolished when Bak BH3 peptide was added to the NMR sample, 

indicating that the fragments were targeting the binding site of Bcl-XL.10d ILOEs arising 

from nonspecific binding interactions can thus be clearly distinguished and corresponding 

fragments may not be considered useful. After establishing these experiments, Pellecchia 

et al. utilized this approach with diverse set of fragments to identify several 

acylsulfonamides as potent inhibitors of Bcl-XL and Mcl-1. Strikingly, this is the only 

example in the literature wherein acylsulfonamides were found to be active against Mcl-

1, since the Abbott candidates (ABT-737 and ABT-263) exhibited poor binding affinities 

against this target. Meanwhile, Manetsch and co-workers have established another 

fragment-based approach, kinetic target-guided synthesis (TGS) for the identification of 

protein-protein interaction modulators (PPIMs). They reported that the sulfo-click 

reaction, wherein sulfonyl azides react with thio acids generating acylsulfonamides, can 

be successfully employed to disrupt Bcl-XL-protein interactions.14  
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Figure 3.3. Kinetic TGS screening via sulfo-click chemistry against Bcl-XL  

A library of nine sulfonyl azides and nine thio acids (eighty one potential 

products), was incubated as binary mixtures at 37 °C for six hours in presence and 

absence of Bcl-XL and the samples were analyzed by liquid chromatography combined 

with mass spectrometry detection in the selected ion mode (LC/MS-SIM) for the product 

formation (Figure 3.3). Comparison of samples with and without Bcl-XL revealed that, of 

all eighteen fragments, only SZ4, SZ7, SZ9, TA1, TA2, and TA5 were selectively 

templated by Bcl-XL thereby yielding acylsulfonamides SZ4TA2, SZ7TA2, SZ9TA1, 

and SZ9TA5 in amplified amounts. Furthermore, these compounds showed IC50s in the 

low micromolar range, which underscores the utility of kinetic TGS as a valuable 

approach to PPIM discovery.14b Based on the reports from Pellecchia and Manetsch, the 

kinetic TGS approach can also be envisioned to be applied to Mcl-1 to discover 
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structurally diverse acylsulfonamides. Herein, we disclose our findings towards screening 

and identification of acylsulfonamides as PPIMs targeting Mcl-1 via sulfo-click kinetic 

TGS. 

3.2 Results and discussion 

3.2.1 Expansion of fragment library  

Inspired by the results obtained for Bcl-XL, the libraries of sulfonyl azides and 

thio acids were first expanded in order to explore a wider chemical space. Majority of the 

sulfonyl azides were synthesized using one of the following three reactions conditions: 

(a) alkylation of amines with 4-(bromomethyl)benzenesulfonyl azide,14b (b) treating the 

corresponding sulfonamides with triflyl azide (TfN3), a diazo transfer reagent,15 or (c) 

alkylation of amines with in situ generated 2-chloroethanesulfonyl azide (Scheme 3.1 A-

B).16 Thus, a set of twenty two sulfonyl azides were added to the previous library 

bringing up the total number of fragments to thirty one.  

The thio acids were derived from corresponding acid chlorides using sodium 

hydrosulfide (Scheme 3.1C). Although the synthetic procedure seems fairly 

straightforward, purification of the thio acids is problematic at times. Moreover, they are 

not stable over a reasonable period of time due to formation of by-products such as 

anhydride of thio acid. As a result, handling and storage of thio acids becomes difficult 

and they have to be freshly prepared before the kinetic TGS screening to obtain 

reproducible results. A method deprived of these limitations was recently reported, 

wherein the carboxylic acids were first coupled with 9-fluorenylmethanethiol providing 
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Scheme 3.1. Synthesis of sulfonyl azides, thio acids, thioesters and acylsulfonamides. 

Reaction conditions: (a) K2CO3, CH3CN:H2O (9:1), 12 h, rt (b) K2CO3, KI (cat.), 

CH3CN:H2O (9:1), 3 h, rt (c) TfN3, CuSO4, NaHCO3, H2O, toluene, t-BuOH, 24 to 48 h, 

rt (d) NaSH, acetone, H2O, 2 h, rt or NaSH, neat, 1 h, 0 °C to rt (e) EDCI, DMAP, DCM, 

2 h, rt (f) 3.5% DBU, DMF, 1 min, rt; RSO2N3, 1 min, rt (g) EDCI, DMAP, CH2Cl2, rt, 

24 to 48 h (h) (CH3)2CHOCOCl, N-methyl piperidine, THF, 0 °C, 30 min (i) LiAlHSeH, 

THF, 0 °C, 30 min (j) RSO2N3, THF, 0 °C to rt, 3 h 

corresponding thioesters, which upon deprotection quantitatively yield the thio acids.16 

Hence, the corresponding thioesters of the thio acids TA1-TA10 were synthesized as 

described above. The deprotection can be accomplished by treating the thioesters with (a) 

5% piperidine in DMF, or (b) 3.5% 1,8-Diazabicycloundec-7-ene (DBU) in DMF, or (c) 

5 equivalents of Cs2CO3. The reaction is completed in about an hour with Cs2CO3, 

whereas it takes two minutes when DBU or piperidine is used, making it highly 

efficient.16 After deprotection with piperidine, the thio acid generated can be diluted to a 
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stock solution in methanol and used for kinetic TGS experiments without further 

purification. Importantly, this process has been tailored towards synthesis of 

acylsulfonamides (Scheme 3.1D). In a one-pot approach, deprotection of thio ester with 

DBU or Cs2CO3 followed by addition of sulfonyl azide results in formation of 

corresponding acylsulfonamide in good to excellent yields.16 Alternatively, the 

acylsulfonamides can be synthesized by (a) reaction between sulfonamides and 

carboxylic acids using EDCI coupling conditions, or (b) the previously reported reaction 

between sulfonyl azides and selenocarboxylates which were produced from 

corresponding carboxylic acids and the selenating reagent LiAlHSeH (Scheme 3.1 E-F).17 

3.2.2 Kinetic TGS screening against Mcl-1 

 The entire library of fragments was incubated as binary mixtures (31 sulfonyl 

azides and 10 thio acids; 310 possible combinations) against Mcl-1 at 37 °C for six hours 

(Figure 3.4). As previously described, the thio acids TA1-TA10 were generated in situ 

from corresponding thio esters using 5% piperidine in DMF prior to the kinetic TGS 

screening. Based on previously optimized conditions for Bcl-XL, initially the screening 

was carried out at 2 µM concentration of Mcl-1. Unfortunately, no TGS hits were 

obtained under these conditions, while increasing the concentration by five-fold to 10 µM 

provided consistent results. Furthermore, these 310 binary mixtures were incubated in the 

phosphate buffer in the absence of Mcl-1. Subsequently, all the samples were analyzed 

using liquid chromatography in combination with mass spectrometry equipped with 

electrospray ionization in the positive selected ion mode (LC/MS-SIM) to detect 

corresponding acylsulfonamides. 
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Figure 3.4. Library of sulfonyl azides and thio acids utilized for kinetic TGS screening 

against Mcl-1 

Comparison of LC/MS-SIM data for samples in presence and absence of Mcl-1 

revealed that, out of forty one fragments, only eleven fragments (SZ9, SZ15, SZ17, 

SZ31, TA1, TA2, TA3, TA5, TA6, TA7, and TA8) leading to fourteen combinations 

were templated by the protein, since elevated amounts of those acylsulfonamides were 

observed in the Mcl-1 containing samples (Figure 3.5). To investigate whether these 

fragments were templated at the binding site of Mcl-1, a control experiment incorporating 

wildtype pro-apoptotic Bim BH3 peptide along with the fragments in the presence of 

Mcl-1 was designed. Suppression of the product formation is observed if the fragments 

compete with Bim BH3 peptide for the binding site. On the contrary, if the product 

formation results from non-specific binding, addition of Bim BH3 peptide to the 

incubation sample would not have any effect and such fragment combinations can 

obviously be ruled out. 
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Figure 3.5. LC/MS-SIM analysis of kinetic TGS incubations with fragments SZ15 and 

TA8 targeting Mcl-1. The samples were incubated for six hours at 37 °C and subjected to 

the LC/MS-SIM analysis. (A) Incubation sample containing fragments SZ15 and TA8 in 

the absence of Mcl-1. (B) Incubation sample containing fragments SZ15 and TA8 in the 

presence of 10 μM Mcl-1. (C) Incubation sample containing fragments SZ15 and TA8 in 

the presence of 10 μM Mcl-1 and 20 μM Bim BH3 peptide. (D) Synthetic SZ15TA8 as 

the reference compound. 

Consequently, some combinations (SZ9TA3, SZ15TA2, and SZ31TA2) could be 

abandoned based on the aforementioned control experiments, whereas other eleven 

combinations were confirmed as the kinetic TGS hits (Figure 3.6). 
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 Figure 3.6. Acylsulfonamides confirmed as kinetic TGS hits against Mcl-1 

3.2.3 Biological activity of the kinetic TGS hits 

 The acylsulfonamides confirmed as kinetic TGS hits were synthesized using 

synthetic procedures mentioned above and then tested for their ability to disrupt Mcl-

1/BH3 interactions using conventional fluorescence polarization assay utilizing GST-

Mcl-1 and fluorescein-labeled Bim BH3 peptide. Majority of these compounds displayed 

IC50 values in the single digit µM range when subjected to dose-response studies. 

Moreover, ligand efficiencies in the range of 0.16-0.18 were observed for these 

acylsulfonamides (Table 3.1). It is worth mentioning that, the ligand efficiencies between 

0.16-0.24 are theoretically predicted to be optimal for PPIMs.18 Interestingly, when all 

reactive fragments (SZ1-SZ31 and TA1-TA10) were tested in the fluorescence 

polarization assay at 100 μM concentration, less than 5% inhibition was detected except 

four sulfonyl azides: SZ4 (23%), SZ9 (13%), SZ15 (25%), and SZ27 (14%). These 

results are exciting since the high-quality inhibitors can be unambiguously identified 
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through the screening of fragments possessing weak binding affinities, remarkably 

reducing the synthetic efforts. To probe whether these molecules would display any 

biological activity against Bcl-XL, they were subjected to the fluorescence polarization 

assay designed using fluorescein-labeled GST-Bcl-XL and fluorescein-labeled Bak BH3 

peptide. Strikingly, comparison of IC50 values revealed that all of the compounds 

exhibited noticeable selectivity towards Mcl-1, evident from the selectivity indices 

ranging from 3 to 19 (Table 3.1).  

Table 3.1. Biological activity of acylsulfonamides against Mcl-1 and Bcl-XL 
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1 SZ15TA1 569.1 9.7 0.180 29.1 3.00 

2 SZ15TA3 666.3 5.8 0.162 36.4 6.27 

3 SZ15TA5 629.0 13.4 0.158 53.0 3.95 

4 SZ15TA6 614.1 11.7 nd 71.6 6.12 

5 SZ15TA8 653.1 7.6 0.162 47.0 6.18 

6 SZ17TA3 643.8 8.6 0.157 50.0 5.81 

7 SZ17TA8 630.7 8.4 0.161 76.0 9.05 

8 SZ31TA3 657.8 9.4 0.152 84.0 8.94 

9 SZ31TA6 605.7 6.2 0.169 20.4 3.29 

10 SZ31TA7 610.7 10.6 0.158 56.7 5.35 

11 SZ31TA8 644.7 5.9 0.162 111 18.81 
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3.2.4 Discussion 

 Recent advances in the field of fragment-based lead discovery have demonstrated 

that the PPIMs targeting the anti-apoptotic Bcl-2 family can be developed. Although 

highly potent molecules such as ABT-737 and ABT-263 were discovered as dual 

inhibitors of Bcl-2 and Bcl-XL through SAR by NMR approach, subsequent resistance 

developed by cancer cells has highlighted the role of Mcl-1 as another key regulator of 

apoptosis. Recently, the SAR by ILOEs approach was exploited leading to the 

identification of acylsulfonamides targeting Bcl-XL and Mcl-1 with binding affinities in 

the nanomolar range. Meanwhile, acylsulfonamides as PPIMs of Bcl-XL were also 

identified through the sulfo-click kinetic TGS, another fragment-based approach. Inspired 

by these results, we extended this approach for the identification of structurally diverse 

acylsulfonamides as Mcl-1 inhibitors. First, a library of thirty one sulfonyl azides and ten 

thio acids resulting in three hundred and ten acylsulfonamides was incubated as binary 

mixtures in the presence and absence of the target protein, Mcl-1. In an additional control 

experiment, Bim BH3 peptide was added to the incubation sample containing Mcl-1. 

Subsequent LC/MS-SIM analysis disclosed that only eleven acylsulfonamides were 

templated by the protein, designated as kinetic TGS hits. Also, the product formation 

through templation was suppressed by addition of Bim BH3 peptide suggesting that, the 

templation occurs at the binding site of Mcl-1. The kinetic TGS hits were synthesized and 

tested using fluorescence polarization assay. As expected, all the acylsulfonamides were 

found to possess respectable biological activity in the single digit micromolar range and 

also displayed optimal ligand efficiencies. 
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 Careful observation of all the acylsulfonamides identified through kinetic TGS 

screening provided some useful structural information. For example, acylsulfonamides 

derived from sulfonyl azides with bis-benzylic tertiary amines (SZ15, SZ17, and SZ31) 

were found to be most active against Mcl-1. Surprisingly, none of the alkyl sulfonyl 

azides (SZ22-SZ28) led to the kinetic TGS hits. Moreover, other sulfonyl azides, being 

comparatively smaller in size, were also found to be not templated by the protein target. 

On the other hand, thio acids TA3 and TA8 were found to be favored during the kinetic 

TGS screening, although thio acids TA1, TA5, TA6, and TA7 also featured in some of 

the PPIMs. Notably, structurally bulky (TA2 and TA4) as well as heterocyclic (TA9 and 

TA10) thio acids did not contribute to the kinetic TGS hits. It is noteworthy to mention 

that, the majority of the fragments showed less than 5% inhibition even at 100 µM 

concentration. Importantly, these acylsulfonamides exhibited striking selectivity towards 

Mcl-1. These results are highly valuable since identification of Mcl-1-selective inhibitors 

still remains a challenging task and has met with limited success. Collectively, these 

results can be regarded as preliminary structure activity relationship studies and therefore 

serve as a foundation for the future endeavors towards hit-to-lead optimization. 

3.3 Conclusions 

 Herein, we have demonstrated that the sulfo-click kinetic TGS approach can also 

be applied to discover acylsulfonamides with diversified scaffolds as inhibitors of Mcl-1. 

Based on our previous work on Bcl-XL, fragment libraries of sulfonyl azides and thio 

acids were screened against Mcl-1. Eleven acylsulfonamides were identified as kinetic 

TGS hits, which were confirmed using peptide control experiments. Interestingly, certain 

fragments from the library (SZ15, SZ17, SZ31, TA3, and TA8) were found to be 
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predominantly templated by the protein target. Furthermore, the kinetic TGS hits 

displayed IC50 values in the single digit nanomolar range, underlining that the most 

potent compounds of the library were identified during the screening. Besides, these 

acylsulfonamides were found to be selective towards Mcl-1, presenting a route to 

generate Mcl-1-selective inhibitors. Based on these findings, this strategy can be 

envisioned to be applied to other challenging protein-protein interaction targets such as 

MDM2/p53, TNF/TNFR1 and IL-2/IL-2Rα. 

3.4 Experimental section 

3.4.1 General information 

 All reagents and solvents were purchased from commercial sources and used 

without further purification. All reactions were run under an Argon atmosphere unless 

otherwise indicated. Prior to use of solvents in reactions, they were purified by passing 

the degassed solvents through a column of activated alumina and transferred by an oven 

dried syringe or cannula. Thin layer chromatography was performed on Merck TLC 

plates (silica gel 60 F254). 
1H NMR and 13C NMR were recorded on a Varian Inova 400 

(400 MHz) or a Bruker Avance DPX 250 (250 MHz) instrument. The purification of 

designated compounds was carried out using reverse phase HPLC system (Waters Prep 

LC 4000 system with Waters 996 photo-diode array detector, Agilent column Eclipse 

XDB-C18, 5 µm, 9.4 mm  250 mm). The compounds were eluted using a gradient 

elution of A:B (80:20 to 0:100) over 40 min at a flow rate of 5.0 mL/min, where solvent 

A was H2O (0.05% TFA) and solvent B was CH3CN (0.05% TFA). The HRMS data were 
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measured on an Agilent 1100 Series MSD/TOF with electrospray ionization. The LC/MS 

data were measured on an Agilent 1100 LC/MSD-VL with electrospray ionization.  

The gradient used for LC/MS-SIM analysis is shown below: 

Table 3.2. Elution gradient system employed for the LC/MS-SIM analysis 

Time % B* Flow rate Time % B* Flow rate 

0.00 10.0 2.0 mL min-1 4.60 100.0 3.0 mL min-1 

0.60 10.0 2.0 mL min-1 4.61 100.0 2.0 mL min-1 

4.09 100.0 2.0 mL min-1 4.62 10.0 2.0 mL min-1 

4.10 100.0 3.0 mL min-1 5.20 10.0 2.0 mL min-1 

* eluent A: H2O (0.05% TFA); eluent B: CH3CN (0.05% TFA) 

The sulfonyl azides14, 16 SZ1-SZ11, SZ16, SZ18, SZ19, SZ21, SZ23, SZ28 and the 

thioesters16 TE1-TE3, TE5, TE7, and TE8 have been previously reported. 

3.4.2 General protocol for incubations of Mcl-1with reactive fragments  

 In a 96-well plate, one thio acid building block (1 L of a 2 mM solution in 

methanol) and one sulfonyl azide building block (1 L of a 2 mM solution in methanol) 

were added to a solution of Mcl-1 (98 L of a 10 M Mcl-1 solution in buffer (58 mM 

Na2HPO4, 17 mM NaH2PO4, 68 mM NaCl, 1 mM NaN3, pH = 7.40)). The 96-well plate 

was sealed and incubated at 37 °C for six hours. The incubation samples were then 

subjected to Liquid Chromatography combined with mass spectrometry analysis in the 

Selected Ion Mode (LC/MS-SIM, Kinetex PFP preceded by a Phenomenex C18 guard 

column, electrospray ionization and mass spectrometric detection in the positive SIM, 

tuned to the expected molecular mass of the product). The TGS hit compound was 

identified by the mass and the retention time. As a control, identical building block 
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combinations were incubated in buffer without Mcl-1 and subjected to LC/MS-SIM 

analysis. Comparison of the LC/MS-SIM chromatograms of these control incubations 

with the chromatograms of the Mcl-1 containing incubations allows us to determine 

whether the protein is templating the corresponding amidation reaction. Furthermore, 

synthetically prepared acylsulfonamide was subjected to LC/MS-SIM analysis and the 

retention time was compared with the one identified in the Mcl-1 containing incubation. 

3.4.3 General protocol for the control incubations of Mcl-1 with reactive fragments and 

Bim BH3 peptide   

 For the Mcl-1 containing incubation sample showing acylsulfonamide formation, 

control incubation with Bim peptide has been undertaken to demonstrate that the 

templation reaction occurs at the desired binding site. Thus, in a 96-well plate, one thio 

acid (1 L of a 2 mM solution in methanol) and one sulfonyl azide (1 L of a 2 mM 

solution in methanol) were added to a solution of Mcl-1 (97 L of a 10 M Mcl-1 

solution in buffer). Finally, Bim BH3 peptide (1 L of a 2 mM solution in DMSO) was 

added and the incubation sample in a sealed 96-well plate was incubated at 37 °C for six 

hours. This incubation sample was then subjected to LC/MS-SIM analysis along with the 

Mcl-1 containing sample without the Bim BH3 peptide. 

3.4.4 General procedure A for the synthesis of sulfonyl azides  

 A mixture of 4-(bromomethyl)benzenesulfonyl azide (276 mg, 1 mmol), 

corresponding amine (1 mmol), and potassium carbonate (276 mg, 2 mmol) in 

acetonitrile and water (9:1; 6 mL), was stirred at room temperature for 12 hours. After 

treating with ethyl acetate (20 mL) and water (20 mL), the system was extracted with 
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ethyl acetate (20 mL 3). The combined organic layers were dried over anhydrous 

sodium sulfate and concentrated. The sulfonyl azide was then obtained by flash 

chromatography. 

 The sulfonyl azides SZ12-SZ15, SZ17, and SZ31 were synthesized using this 

procedure. In case of SZ12, corresponding aniline was used, whereas corresponding 

phenol was used for the synthesis of SZ13 and SZ14. Also, the reaction temperature was 

maintained at 66 °C for the sulfonyl azides SZ12-SZ14. 

3.4.5 General procedure B for the synthesis of sulfonyl azides 

 The sulfonyl azides were synthesized starting from corresponding amines, in situ 

generated 2-chloroethanesulfonyl azide and potassium carbonate, using a previously 

reported procedure.16 

 The sulfonyl azides SZ22, and SZ24-SZ27 were synthesized using this procedure. 

3.4.6 General procedure C for the synthesis of sulfonyl azides 

 The sulfonyl azides were synthesized starting from corresponding sulfonamides 

using triflyl azide, a diazo transfer reagent, following the previously reported procedure.15 

The synthesis of the sulfonamides used has been described later in this document. 

 The sulfonyl azides SZ29-SZ30 have been synthesized using this procedure. 
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3.4.7 Synthesis of fragments 

 

Sulfonyl azide SZ12: Yield = 67%. Rf = 0.35 in hexanes : EtOAc = 3:1. 1H NMR (400 

MHz, CDCl3) : 1H NMR (600 MHz, CDCl3) δ 7.94 (d, J = 8.3 Hz, 2H), 7.61 (d, J = 8.2 

Hz, 2H), 7.57 (dd, J = 8.1, 1.8 Hz, 1H), 7.40 (t, J = 2.1 Hz, 1H), 7.30 (t, J = 8.2 Hz, 1H), 

6.86 (dd, J = 8.2, 2.2 Hz, 1H), 4.64 (s, 1H), 4.56 (s, 2H) ppm. 13C NMR (101 MHz, 

CDCl3) : 148.2, 146.4, 130.2, 128.4, 128.3, 128.2, 127.8, 118.9, 113.0, 106.9, 47.5 ppm. 

HRMS (ESI) calcd for C13H11N5O4S [M+K]+: 372.0163, found: 372.0145 

 

Sulfonyl azide SZ13: Yield = 40%. Rf = 0.44 in hexanes : EtOAc = 3:1. 1H NMR (400 

MHz, CDCl3) : 7.94 – 7.84 (m, 3H), 7.68 – 7.34 (m, 5H), 4.50 (s, 2H) ppm. 13C NMR 

(101 MHz, CDCl3) : 143.3, 141.2, 134.4, 134.2, 129.2, 128.7, 127.9, 126.0, 125.2, 53.8 

ppm. HRMS (ESI) calcd for C13H10N4O5S [M+NH4]
+: 352.0716, found: 352.0719  
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Sulfonyl azide SZ14: Yield = 45%. Rf = 0.21 in hexanes : EtOAc = 3:1.   1H NMR (400 

MHz, CDCl3) : 8.10 (dd, J = 8.6, 3.4 Hz, 1H), 7.91 – 7.82 (m, 4H), 7.51 (d, J = 7.4 Hz, 

5H), 7.38 (d, J = 2.1 Hz, 1H), 6.93 (dd, J = 8.7, 1.9 Hz, 1H), 6.77 (d, J = 3.8 Hz, 1H) 4.49 

(s, 2H) ppm. 13C NMR (101 MHz, CDCl3) : 177.2, 163.9, 156.5, 152.9, 143.0, 134.6, 

132.0, 131.2, 129.2, 129.0, 128.7, 127.6, 126.3, 122.8, 119.5, 112.2, 107.7, 53.8 ppm. 

HRMS (ESI) calcd for C22H15N3O5S [M+H]+: 434.0805, found: 434.0796 

 

Sulfonyl azide SZ15: was synthesized starting from SZ6 and 1-chloro-2-(chloromethyl)-

3-fluorobenzene. Yield =54%. Rf = 0.62 in hexanes : EtOAc = 5:1.  1H NMR (400 MHz, 

CDCl3) : 7.80 (d, J = 8.1 Hz, 2H), 7.54 (d, J = 8.1 Hz, 2H), 7.22 – 7.11 (m, 7H), 6.96 – 

6.89 (m, 1H), 3.87 (s, 2H), 3.75 (s, 2H), 3.07 (t, J = 7.6 Hz, 2H), 2.79 (t, J = 7.6 Hz, 2H) 

ppm. 13C NMR (101 MHz, CDCl3) : 162.1 (d, J = 249.0 Hz), 147.9, 136.8, 136.5, 136.0, 

129.6, 129.5, 129.1 (d, J = 26.0 Hz), 127.3, 126.1, 125.6, 124.2 (d, J = 16.8 Hz), 114.1 

(d, J = 23.3 Hz), 58.0, 53.7, 49.6, 31.3 ppm. HRMS (ESI) calcd for C22H20ClFN4O2S2 

[M+H]+: 491.0779, found: 491.0771 

 

Amine 6: A mixture of 2-(phenylthio)ethanamine (500 mg, 3.3 mmol), 1-(chloromethyl)-

3-methoxybenzene (517 mg, 3.3 mmol) and potassium carbonate (911 mg, 6.6 mmol) in 

acetonitrile and water (9:1, 20 mL), was stirred at room temperature for 12 hours. After 
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adding ethyl acetate (20 mL) and water (20 mL), the system was extracted with ethyl 

acetate (20 mL 3). The combined organic phase was dried over anhydrous sodium 

sulfate and concentrated. Intermediate 6 was obtained by flash chromatography in 37% 

yield. Rf = 0.2 in hexanes : EtOAc = 1:1. 1H NMR (400 MHz, CDCl3) : 7.40 – 7.15 (m, 

6H), 6.94 – 6.87 (m, 2H), 6.81 (d, J = 8.5 Hz, 1H), 3.79 (s, 3H), 3.78 (s, 2H), 3.09 (t, J = 

6.1 Hz, 2H), 2.87 (t, J = 6.2 Hz, 2H), 1.72 (s, 1H) ppm. 13C NMR (101 MHz, CDCl3) : 

159.7, 141.7, 135.8, 129.4, 129.3, 128.8, 126.0, 120.2, 113.4, 112.4, 55.0, 53.2, 47.4, 34.1 

ppm. HRMS (ESI) calcd for C16H19NOS [M+H]+: 274.1260, found: 274.1257 

 

Sulfonyl azide SZ17: Yield = 82%. Rf = 0.43 in hexanes : EtOAc = 4:1.   1H NMR (400 

MHz, CDCl3) : 7.86 (d, J = 8.3 Hz, 2H), 7.61 (d, J = 8.2 Hz, 2H), 7.28 – 7.12 (m, 6H), 

7.00 – 6.95 (m, 2H), 6.82 (dd, J = 8.1, 1.7 Hz, 1H), 3.81 (s, 3H), 3.69 (s, 2H), 3.63 (s, 

2H), 3.07 (t, J = 7.2 Hz, 2H), 2.77 (t, J = 7.2 Hz, 2H) ppm. 13C NMR (101 MHz, CDCl3) 

: 159.7, 147.8, 140.2, 136.7, 136.2, 129.6, 129.3, 128.8, 128.7, 127.4, 125.8, 121.0, 

114.3, 112.5, 58.4, 57.7, 55.1, 52.8, 31.3 ppm. HRMS (ESI) calcd for C23H24N4O3S2 

[M+H]+: 469.1368, found: 469.1378  
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Sulfonyl azide SZ20: To a solution of 2-methylbenzene-1-sulfonyl chloride (1 g, 5.24 

mmol) in aqueous ethanol (24 mL) was added sodium azide (682 mg, 10.5 mmol) and the 

reaction mixture was stirred at room temperature for 2.5 hours. The reaction mixture was 

treated with water, extracted with ethyl acetate (30 mL 3). The combined organic phase 

was dried over anhydrous sodium sulfate and concentrated. The sulfonyl azide SZ20 was 

obtained after flash column chromatography. Yield = 89%. Rf = 0.64 in hexanes : EtOAc 

= 4:1. 1H NMR (250 MHz, CDCl3) δ 8.06 – 7.96 (m, 1H), 7.62 – 7.52 (m, 1H), 7.42 – 

7.32 (m, 2H), 2.65 (s, 3H) ppm. 13C NMR (63 MHz, CDCl3) : 138.6, 136.9, 134.8, 

133.2, 129.5, 126.6, 20.5 ppm.  

 

Sulfonyl azide SZ22: Yield = 18%. Rf = 0.63 in hexanes : EtOAc = 2:1 (stained with 

Ninhydrin).  1H NMR (400 MHz, CDCl3) δ 3.56 – 3.47 (m, 1H), 3.43 – 3.25 (m, 2H), 

2.96 – 2.83 (m, 2H), 2.22 – 2.13 (m, 1H), 2.04 – 1.98 (m, 1H), 1.84 – 1.68 (m, 2H), 1.67 

– 1.53 (m, 5H), 1.28 – 1.06 (m, 4H), 1.03 – 0.89 (m, 2H) ppm. 13C NMR (101 MHz, 

CDCl3) δ 66.2, 54.0, 52.7, 46.8, 42.0, 33.1, 32.4, 30.2, 25.9, 25.8, 25.7 ppm. HRMS (ESI) 

calcd for C11H20N4O2S [M+H]+: 273.1380, found: 273.1375 

 

Sulfonyl azide SZ24: Yield = 38%. Rf = 0.73 in hexanes : EtOAc = 1:1.  1H NMR (400 

MHz, CDCl3) δ 7.32 – 7.11 (m, 5H), 3.47 (t, J = 6.3 Hz, 2H), 2.91 (d, J = 11.1 Hz, 2H), 
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2.83 (t, J = 6.3 Hz, 2H), 2.52 (d, J = 7.0 Hz, 2H), 1.97 (m, 2H), 1.66 (d, J = 12.6 Hz, 2H), 

1.60 – 1.48 (m, 1H), 1.38 – 1.23 (m, 2H) ppm. 13C NMR (101 MHz, CDCl3) δ 140.5, 

129.2, 128.3, 126.0, 53.9, 53.8, 52.5, 43.2, 37.8, 32.2 ppm. HRMS (ESI) calcd for 

C14H20N4O2S [M+H]+: 309.1380, found: 309.1373 

 

Sulfonyl azide SZ25: Yield = 42%. Rf = 0.45 in hexanes : EtOAc = 1:4.  1H NMR (400 

MHz, CDCl3) δ 6.82 (s, 1H), 6.72 (m, 2H), 5.91 (s, 2H), 3.48 (t, J = 6.3 Hz, 2H), 3.39 (s, 

2H), 2.87 (t, J = 6.3 Hz, 2H), 2.56 – 2.42 (m, J = 22.7 Hz, 8H) ppm. 13C NMR (101 

MHz, CDCl3) δ 147.7, 146.7, 131.9, 122.2, 109.4, 107.9, 100.9, 62.6, 53.5, 53.0, 52.8, 

52.2 ppm. HRMS (ESI) calcd for C14H19N5O4S [M+H]+: 354.1231, found: 354.1226 

 

Sulfonyl azide SZ26: Yield = 60%. Rf = 0.54 in hexanes : EtOAc = 4:1.  1H NMR (400 

MHz, CDCl3) δ 7.38 – 7.23 (m, 10H), 3.65 (s, 4H), 3.34 (dd, J = 8.3, 6.1 Hz, 2H), 3.05 

(dd, J = 8.3, 6.2 Hz, 2H) ppm. 13C NMR (101 MHz, CDCl3) δ 138.1, 129.0, 128.7, 127.7, 

58.8, 53.8, 47.6 ppm. HRMS (ESI) calcd for C16H18N4O2S [M+H]+: 331.1223, found: 

331.1218 
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Sulfonyl azide SZ27: Yield = 40%. Rf = 0.44 in hexanes : EtOAc = 2:1.  1H NMR (400 

MHz, CDCl3) δ 7.35 – 7.21 (m, 5H), 6.61 (s, 1H), 6.18 (s, 1H), 4.61 (s, 1H), 3.85 (s, 3H), 

3.61 (s, 3H), 3.49 – 3.40 (m, 1H), 3.39 – 3.30 (m, 1H), 3.18 – 2.94 (m, 4H), 2.89 – 2.72 

(m, 2H) ppm. 13C NMR (101 MHz, CDCl3) δ 147.9, 147.4, 142.5, 129.6, 129.1, 128.5, 

127.9, 126.3, 111.6, 110.9, 67.7, 55.9, 55.9, 54.1, 48.8, 47.3, 28.0 ppm. HRMS (ESI) 

calcd for C19H22N4O4S [M+H]+: 403.1435, found: 403.1435 

 

Sulfonyl azide SZ29: Yield = 35%. Rf = 0.51 in hexanes : EtOAc = 4:1.  1H NMR (400 

MHz, CDCl3) δ 7.69 (d, J = 8.8 Hz, 2H), 7.49 (d, J = 8.2 Hz, 2H), 7.21 (d, J = 8.2 Hz, 

2H), 6.64 (d, J = 8.8 Hz, 2H), 4.91 (t, J = 5.3 Hz, 1H), 4.38 (d, J = 5.4 Hz, 2H) ppm. 13C 

NMR (101 MHz, CDCl3) δ 152.8, 136.6, 132.2, 130.0, 129.0, 125.2, 121.8, 112.3, 47.0 

ppm.  

 

Sulfonyl azide SZ30: Yield = 50%. Rf = 0.48 in hexanes : EtOAc = 4:1.  1H NMR (400 

MHz, CDCl3) δ 7.69 (d, J = 8.6 Hz, 2H), 7.17 (d, J = 8.4 Hz, 2H), 6.70 – 6.59 (m, 4H), 

4.73 (s, 1H), 4.24 (d, J = 4.8 Hz, 2H), 3.35 (q, J = 6.9 Hz, 4H), 1.16 (t, J = 7.0 Hz, 6H) 

ppm. 13C NMR (101 MHz, CDCl3) δ 153.3, 147.7, 130.1, 129.1, 124.1, 123.6, 112.1, 
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112.1, 47.4, 44.6, 12.7 ppm. HRMS (ESI) calcd for C17H21N5O2S [M+H]+: 360.1489, 

found: 360.1490 

 

Sulfonyl azide SZ31: Yield = 81%. Rf = 0.64 in hexanes : EtOAc = 2:1.  1H NMR (400 

MHz, CDCl3) δ 7.87 (d, J = 8.3 Hz, 2H), 7.60 (d, J = 8.3 Hz, 2H), 7.22 (d, J = 4.3 Hz, 

4H), 7.19 – 7.12 (m, 1H), 6.92 (s, 1H), 6.80 – 6.73 (m, 2H), 5.94 (s, 2H), 3.68 (s, 2H), 

3.55 (s, 2H), 3.09 – 3.03 (m, 2H), 2.78 – 2.72 (m, 2H) ppm. 13C NMR (101 MHz, CDCl3) 

δ 147.8, 147.8, 146.8, 136.8, 136.2, 132.4, 129.6, 128.8, 128.8, 127.4, 125.9, 121.9, 

109.1, 107.9, 100.9, 58.3, 57.6, 52.6, 31.3 ppm. HRMS (ESI) calcd for C23H22N4O4S2 

[M+H]+: 483.1155, found: 483.1159 

 

Sulfonamide 7: Sodium borohydride (60 mg, 1.5 mmol) was added slowly to the 

solution of sulfonyl azide SZ15 (540 mg, 1.1 mmol) in methanol at 0 °C. The system was 

stirred for 30 min at room temperature, quenched by solid NH4Cl and the solvent was 

removed under reduced pressure to obtain crude product. The sulfonamide 7 (484 mg, 

95%) was obtained by flash chromatography. Rf = 0.33 in hexanes : EtOAc = 2:1.  1H 

NMR (400 MHz, CDCl3) : 7.79 (d, J = 8.2 Hz, 2H), 7.42 (d, J = 8.1 Hz, 2H), 7.21 – 

7.09 (m, 7H), 6.97 – 6.88 (m, 1H), 5.23 (bs, 2H), 3.83 (s, 2H), 3.68 (s, 2H), 3.06 – 2.99 
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(m, 2H), 2.78 – 2.71 (m, 2H) ppm. 13C NMR (101 MHz, CDCl3) : 162.1 (d, J = 248.2 

Hz), 145.1, 140.5, 136.5, 136.0, 129.5, 129.4, 129.2, 129.0, 128.9, 126.2, 126.0, 125.6, 

124.4 (d, J = 17.2 Hz), 114.1 (d, J = 23.4 Hz), 58.0, 53.3, 49.5, 31.1 ppm. HRMS (ESI) 

calcd for C22H22ClFN2O2S2 [M+H]+: 465.0868, found: 465.0866 

 

Sulfonamide 8: The sulfonamide 8 was obtained starting from the sulfonyl azide SZ17 

following the procedure described for the synthesis of sulfonamide 7 in 97% yield. Rf = 

0.5 in hexanes : EtOAc = 1:1.  1H NMR (400 MHz, CDCl3) δ 7.85 (d, J = 8.4 Hz, 2H), 

7.51 (d, J = 8.3 Hz, 2H), 7.24 – 7.10 (m, 6H), 6.96 – 6.91 (m, 2H), 6.80 (dd, J = 8.3, 2.5 

Hz, 1H), 5.08 (s, 2H), 3.81 (s, 3H), 3.65 (s, 2H), 3.60 (s, 2H), 3.07 – 3.01 (m, 2H), 2.78 – 

2.72 (m, 2H) ppm. 13C NMR (101 MHz, CDCl3) δ 159.8, 145.2, 140.6, 140.6, 136.4, 

129.5, 129.4, 129.0, 128.9, 126.5, 126.0, 121.2, 114.5, 112.6, 58.5, 58.0, 55.3, 52.9, 31.5 

ppm. HRMS (ESI) calcd for C23H26N2O3S2 [M+H]+: 443.1458, found: 443.1446 

Br
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ii) NaBH4, MeOH

0 oC to rt 9  

Sulfonamide 9: To a solution of 4-bromobenzaldehyde (200 mg, 1.08 mmol) and 

4-aminobenzenesulfonamide (186 mg, 1.08 mmol) in MeOH (7 mL) was added sodium 

sulfate (1 g) and acetic acid (50 µL) and the resulting mixture was stirred at room 

temperature. After 3 hours, sodium sulfate was removed, reaction mixture was cooled to 

0 °C and the sodium borohydride (123 mg, 3.24 mmol) was added carefully. The system 
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was stirred for 30 min at room temperature, quenched by solid NH4Cl and the solvent 

was removed under reduced pressure. The sulfonamide 9 was obtained after flash 

chromatography in 45% yield. Rf = 0.59 in DCM : MeOH = 10:1.   1H NMR (400 MHz, 

DMSO-d6) δ 7.55 – 7.47 (m, 4H), 7.29 (d, J = 8.3 Hz, 2H), 7.03 (t, J = 6.1 Hz, 1H), 6.91 

(s, 2H), 6.62 (d, J = 8.8 Hz, 2H), 4.32 (d, J = 6.1 Hz, 2H) ppm. 13C NMR (101 MHz, 

DMSO-d6) δ 151.0, 139.0, 131.2, 130.5, 129.3, 127.3, 119.7, 111.2, 45.2 ppm. HRMS 

(ESI) calcd for C13H13BrN2O2S [M+Na]+: 362.9773, found: 362.9759 

 

Sulfonamide 10: The sulfonamide 10 was obtained following the procedure described 

for the synthesis of sulfonamide 9 in 65% yield. Rf = 0.28 in hexanes : EtOAc = 1:1.  1H 

NMR (400 MHz, DMSO-d6) δ 7.49 (d, J = 8.8 Hz, 2H), 7.13 (d, J = 8.6 Hz, 2H), 6.88 (s, 

2H), 6.79 (t, J = 5.6 Hz, 1H), 6.66 – 6.60 (m, 4H), 4.16 (d, J = 5.6 Hz, 2H), 3.29 (q, J = 

6.9 Hz, 4H), 1.06 (t, J = 7.0 Hz, 6H) ppm. 13C NMR (101 MHz, DMSO-d6) δ 151.4, 

146.5, 129.9, 128.4, 127.2, 125.1, 111.6, 111.0, 45.6, 43.7, 12.4 ppm. HRMS (ESI) calcd 

for C17H23N3O2S [M+H]+: 334.1584, found: 334.1584 

 

Sulfonamide 11: The sulfonamide 11 was obtained starting from sulfonyl azide SZ31 

following the procedure described for sulfonamide 7 in 92% yield. Rf = 0.2 in hexanes : 
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EtOAc = 2:1.  1H NMR (400 MHz, CDCl3) δ 7.84 (d, J = 8.3 Hz, 2H), 7.48 (d, J = 8.3 

Hz, 2H), 7.23 – 7.10 (m, 5H), 6.89 – 6.87 (m, 1H), 6.75 – 6.72 (m, 2H), 5.92 (s, 2H), 5.23 

(s, 2H), 3.62 (s, 2H), 3.50 (s, 2H), 3.04 – 2.99 (m, 2H), 2.73 – 2.69 (m, 2H) ppm. 13C 

NMR (101 MHz, CDCl3) δ 147.7, 146.7, 145.0, 140.5, 136.2, 132.6, 129.2, 128.9, 128.8, 

126.4, 125.8, 121.9, 109.1, 107.9, 100.9, 58.2, 57.7, 52.6, 31.3 ppm. HRMS (ESI) calcd 

for C23H24N2O4S2 [M+H]+: 457.1250, found: 457.1240 

3.4.8 Synthesis of 9-fluorenylmethyl thioesters  

 All the 9-fluorenylmethyl thioesters were synthesized from the corresponding 

carboxylic acids following the reported procedure.16 The carboxylic acids were 

commercially available, while 2-(6,7-dimethoxy-1-phenyl-3,4-dihydroisoquinolin-2(1H)-

yl)acetic acid was synthesized as reported previously.14b 

 

Thioester TE4: Yield = 51%. Rf = 0.2 in hexanes : EtOAc = 10:1.  1H NMR (600 MHz, 

CDCl3) δ 7.76 (t, J = 6.5 Hz, 2H), 7.64 (dd, J = 7.3, 3.9 Hz, 2H), 7.39 (t, J = 7.4 Hz, 2H), 

7.34 – 7.26 (m, 7H), 6.62 (s, 1H), 6.13 (s, 1H), 4.54 (s, 1H), 4.15 (t, J = 5.8 Hz, 1H), 3.87 

(s, 3H), 3.61 (s, 3H), 3.46 (d, J = 5.9 Hz, 2H), 3.33 (d, J = 16.5 Hz, 1H), 3.16 (d, J = 16.5 

Hz, 1H), 3.06 – 3.00 (m, 1H), 2.89 – 2.84 (m, 1H), 2.69 – 2.60 (m, 2H) ppm. 13C NMR 

(151 MHz, CDCl3) δ 201.4, 147.6, 147.2, 145.9, 145.7, 143.0, 141.3, 129.7, 128.4, 127.7, 

127.7, 127.6, 127.1, 126.5, 124.9, 124.9, 119.9, 119.8, 111.7, 111.0, 67.5, 63.9, 55.9, 
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55.9, 49.2, 47.0, 31.4, 28.5 ppm. HRMS (ESI) calcd for C33H31NO3S [M+K]+: 560.1656, 

found: 560.1656 

 

Thioester TE6: Yield = 80%. Rf = 0.71 in hexanes : EtOAc = 3:1.  1H NMR (400 MHz, 

CDCl3) δ 8.70 (t, J = 1.9 Hz, 1H), 8.36 (ddd, J = 8.2, 2.2, 1.0 Hz, 1H), 8.19 – 8.15 (m, 

1H), 7.76 (d, J = 7.4 Hz, 2H), 7.71 (d, J = 7.5 Hz, 2H), 7.58 (t, J = 8.0 Hz, 1H), 7.41 (t, J 

= 7.2 Hz, 2H), 7.38 – 7.32 (m, 2H), 4.29 (t, J = 5.7 Hz, 1H), 3.78 (d, J = 5.8 Hz, 2H) 

ppm. 13C NMR (101 MHz, CDCl3) δ 189.7, 148.3, 145.1, 141.2, 138.2, 132.7, 129.8, 

128.0, 127.5, 127.3, 124.7, 122.2, 120.1, 46.5, 33.0 ppm. HRMS (ESI) calcd for 

C21H15NO3S [M+H]+: 362.0845, found: 362.0848 

 

Thioester TE9: Yield = 84%. Rf = 0.75 in hexanes : EtOAc = 2:1.  1H NMR (400 MHz, 

CDCl3) δ 7.78 – 7.71 (m, 4H), 7.55 – 7.54 (m, 1H), 7.44 – 7.31 (m, 4H), 7.18 – 7.16 (m, 

1H), 6.50 (dd, J = 3.6, 1.7 Hz, 1H), 4.26 (t, J = 6.0 Hz, 1H), 3.68 (d, J = 6.0 Hz, 2H) 

ppm. 13C NMR (101 MHz, CDCl3) δ 180.3, 150.9, 146.3, 145.6, 141.2, 127.9, 127.3, 

124.8, 120.0, 115.7, 112.3, 46.9, 31.7 ppm. HRMS (ESI) calcd for C19H14O2S [M+Na]+: 

329.0607, found: 329.0611 
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Thioester TE10: Yield = 75%. Rf = 0.63 in hexanes : EtOAc = 3:1.  1H NMR (400 MHz, 

CDCl3) δ 8.32 – 8.29 (m, 1H), 7.76 (d, J = 7.6 Hz, 2H), 7.68 (d, J = 7.5 Hz, 2H), 7.44 – 

7.39 (m, 2H), 7.37 – 7.31 (m, 2H), 6.84 (m, 1H), 4.27 (t, J = 5.7 Hz, 1H), 3.74 (d, J = 5.8 

Hz, 2H) ppm. 13C NMR (101 MHz, CDCl3) δ 179.6, 164.4, 150.7, 144.9, 141.1, 128.0, 

127.3, 124.6, 120.1, 105.9, 46.3, 32.2 ppm. HRMS (ESI) calcd for C18H13NO2S 

[M+Na]+: 330.0559,  found: 330.0558 

3.4.9 General procedure A for the synthesis of acylsulfonamides 

 The acylsulfonamides were synthesized from corresponding sulfonamides, 

carboxylic acids in the presence of EDCI following a reported procedure.14b 

 The acylsulfonamides SZ15TA1, SZ15TA3, SZ15TA5, SZ15TA6, SZ15TA8, 

and SZ17TA3 were synthesized using this procedure. 

3.4.10 General procedure B for the synthesis of acylsulfonamides 

 The acylsulfonamides were prepared according to a reported procedure wherein, 

the thioesters were first deprotected to generate corresponding thio acids in situ, followed 

by the addition of the sulfonyl azide.16 

 The acylsulfonamides SZ17TA8, SZ31TA3, SZ31TA6, SZ31TA7, and 

SZ31TA8 were synthesized using this procedure. 
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3.4.11 Synthesis of acylsulfonamides 

 

Acylsulfonamide SZ15TA1: Yield = 61%. Rf = 0.6 in DCM : MeOH = 20:1. 1H NMR 

(600 MHz, DMSO) δ 7.88 – 7.84 (m, 4H), 7.56 (t, J = 7.3 Hz, 1H), 7.49 (d, J = 8.1 Hz, 

2H), 7.44 (t, J = 7.7 Hz, 2H), 7.32 – 7.26 (m, 2H), 7.15 (t, J = 7.8 Hz, 3H), 7.09 (d, J = 

7.4 Hz, 2H), 7.01 (t, J = 7.2 Hz, 1H), 3.80 (s, 2H), 3.72 (s, 2H), 3.11 – 3.06 (m, 2H), 2.66 

– 2.62 (m, 2H) ppm. 13C NMR (101 MHz, CD3CN) : 166.3, 163.1 (d, J = 249.0 Hz), 

160.9, 160.5, 141.3, 138.0, 137.3, 134.5, 134.0, 133.7 (d, J = 10.0 Hz), 132.4, 132.3, 

131.0, 130.3, 129.7, 129.2, 128.1, 127.1, 115.7 (d, J = 22.5 Hz), 58.2, 53.8, 49.8, 28.7 

ppm. HRMS (ESI) calcd for C29H26ClFN2O3S2 [M+H]+: 569.1136, found: 569.1144 

 

Acylsulfonamide SZ15TA3: Yield = 55%. Rf = 0.29 in DCM : MeOH = 20:1. 1H NMR 

(600 MHz, DMSO) δ 7.88 – 7.84 (m, 2H), 7.71 (d, J = 8.0 Hz, 2H), 7.45 – 7.40 (m, 3H), 

7.32 – 7.25 (m, 4H), 7.17 – 7.10 (m, 3H), 7.03 – 6.95 (m, 3H), 3.76 (s, 2H), 3.63 (s, 2H), 

3.04 – 2.98 (m, 2H), 2.60 – 2.55 (m, 2H), 2.52 (s, 3H) ppm. 13C NMR (63 MHz, CDCl3) 

: 169.9, 160.4 (d, J = 145.0 Hz), 160.3, 140.0, 137.0 (d, J = 12.5 Hz), 136.9, 133.0, 

132.6 (d, J = 10.3 Hz), 132.1, 131.8, 131.1, 130.9, 129.5, 129.4, 129.3, 127.7, 127.1, 
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126.4, 122.1, 117.2, 116.9, 115.0 (d, J = 22.5 Hz), 57.6, 52.8, 49.0, 28.9, 17.8 ppm. 

HRMS (ESI) calcd for C33H29ClFN3O3S3 [M+H]+: 666.1116, found: 666.1097 

 

Acylsulfonamide SZ15TA5: Yield = 44%. Rf = 0.57 in DCM : MeOH = 20:1. 1H NMR 

(600 MHz, DMSO) δ 7.72 (d, J = 8.0 Hz, 2H), 7.45 – 7.39 (m, 1H), 7.33 – 7.22 (m, 4H), 

7.16 – 7.10 (m, 3H), 7.05 – 7.00 (m, 4H), 6.98 (t, J = 7.4 Hz, 1H), 6.45 (s, 1H), 3.75 (s, 

2H), 3.68 (s, 6H), 3.62 (s, 2H), 3.04 – 2.98 (m, 2H), 2.61 – 2.55 (m, 2H) ppm. 13C NMR 

(101 MHz, CDCl3) : 165.0, 162.4 (d, J = 226.0 Hz), 161.0, 140.2, 136.8, 136.1, 133.0, 

132.9, 132.6, 131.2, 131.0, 129.5, 129.4, 127.8, 126.4, 116.3 (d, J = 17.0 Hz), 115.0 (d, J 

= 22.7 Hz), 106.3, 105.9, 57.6, 55.7, 52.8, 49.0, 28.6 ppm. HRMS (ESI) calcd for 

C31H30ClFN2O5S2 [M+H]+: 629.1342, found: 629.1343 

 

Acylsulfonamide SZ15TA6: Yield = 61%. Rf = 0.24 in DCM : MeOH = 20:1. 1H NMR 

(600 MHz, DMSO) δ 8.63 (s, 1H), 8.24 (t, J = 6.3 Hz, 2H), 7.78 – 7.72 (m, 2H), 7.61 (t, J 

= 7.9 Hz, 1H), 7.45 – 7.38 (m, 2H), 7.34 – 7.22 (m, 5H), 7.15 – 7.09 (m, 3H), 7.04 – 6.94 

(m, 1H), 3.75 (s, 2H), 3.64 (s, 2H), 3.04 – 2.99 (m, 2H), 2.62 – 2.55 (m, 2H) ppm. 13C 

NMR (101 MHz, CDCl3) : 163.7, 162.5 (d, J = 207.0 Hz), 161.0, 148.2, 140.0, 136.8, 

134.3, 133.2, 132.8, 131.3, 130.7, 130.1, 129.4, 127.7, 126.4, 123.6, 116.7 (d, J = 18.0 
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Hz), 115.0 (d, J = 22.0 Hz), 57.7, 52.8, 49.0, 28.7 ppm. HRMS (ESI) calcd for 

C29H25ClFN3O5S2 [M+Na]+: 636.0800, found: 636.0804 

 

Acylsulfonamide SZ15TA8: Yield = 82%. Rf = 0.52 in DCM : MeOH = 20:1. 1H NMR 

(400 MHz, CDCl3) : 1H NMR (400 MHz, CDCl3) δ 8.00 (d, J = 8.8 Hz, 2H), 7.94 (s, 

2H), 7.84 (d, J = 8.3 Hz, 2H), 7.19 (d, J = 8.3 Hz, 2H), 7.10 – 7.04 (m, 4H), 7.04 – 7.00 

(m, 2H), 6.98 – 6.90 (m, 3H), 6.89 – 6.82 (m, 1H), 3.75 (s, J = 1.2 Hz, 2H), 3.53 (s, 2H), 

2.95 – 2.88 (m, 2H), 2.68 – 2.60 (m, 2H) ppm. 13C NMR (101 MHz, CDCl3) : 164.3, 

162.2 (d, J = 250.0 Hz), 161.4 (d, J = 37.0 Hz), 152.9, 139.8, 137.8, 136.8, 133.2, 132.3 

(d, J = 9.5 Hz), 131.0, 130.5, 129.6, 129.3, 129.2, 127.4, 126.2, 120.5, 120.3 (q, J = 

259.25 Hz), 117.6 (d, J = 16.1 Hz), 114.8 (d, J = 22.6 Hz), 57.4, 52.7, 48.8, 28.7 ppm. 

HRMS (ESI) calcd for C30H25ClF4N2O4S2 [M+H]+: 653.0953, found: 653.0935 

 

Acylsulfonamide SZ17TA3: Yield = 80%. Rf = 0.26 in DCM : MeOH = 20:1. 1H NMR 

(600 MHz, DMSO) δ 7.88 – 7.84 (m, 2H), 7.75 (d, J = 7.8 Hz, 2H), 7.44 – 7.41 (m, 3H), 

7.36 (d, J = 7.8 Hz, 2H), 7.21 – 7.12 (m, 3H), 7.09 (d, J = 8.0 Hz, 2H), 7.01 (t, J = 7.2 

Hz, 1H), 6.94 – 6.88 (m, 2H), 6.76 (d, J = 7.9 Hz, 1H), 3.70 (s, 3H), 3.59 (s, 2H), 3.55 (s, 

2H), 3.12 – 3.06 (m, 2H), 2.61 – 2.55 (m, 2H), 2.53 (s, 3H) ppm. 13C NMR (101 MHz, 
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CD3OD) δ 170.7, 163.2, 161.7, 161.2, 143.3, 136.1, 134.1, 133.6, 132.8, 132.5, 132.1, 

131.8, 131.6, 130.5, 130.3, 130.0, 128.8, 127.9, 125.6, 124.2, 117.4, 117.0, 59.3, 58.0, 

56.0, 52.5, 28.8, 17.9 ppm. HRMS (ESI) calcd for C34H33N3O4S3 [M+H]+: 644.1706, 

found: 644.1737 

 

Acylsulfonamide SZ17TA8: Yield = 68%. Rf = 0.46 in DCM : MeOH = 20:1. 1H NMR 

(600 MHz, DMSO) δ 7.95 (d, J = 8.8 Hz, 2H), 7.81 (d, J = 8.2 Hz, 2H), 7.44 (d, J = 8.1 

Hz, 2H), 7.31 (d, J = 8.3 Hz, 2H), 7.19 (t, J = 7.8 Hz, 1H), 7.14 – 7.07 (m, 4H), 6.98 (t, J 

= 7.2 Hz, 1H), 6.93 – 6.88 (m, 2H), 6.76 (d, J = 6.1 Hz, 1H), 3.70 (s, 3H), 3.62 (s, 2H), 

3.57 (s, 2H), 3.12 – 3.06 (m, 2H), 2.61 – 2.55 (m, 2H) ppm. 13C NMR (101 MHz, CDCl3) 

δ 164.5, 161.9, 161.5, 160.6, 153.1, 140.7, 134.7, 132.5, 131.7, 131.3, 130.8, 130.6, 

129.6, 129.6, 128.1, 123.0, 120.6, 120.4 (q, J = 259.8 Hz), 116.6, 115.9, 58.2, 57.0, 55.4, 

51.3, 28.3 ppm. HRMS (ESI) calcd for C31H29F3N2O5S2 [M+H]+: 631.1543, found: 

631.1534 

 

Acylsulfonamide SZ31TA3: Yield = 60%. Rf = 0.4 in DCM : MeOH = 20:1. 1H NMR 

(600 MHz, DMSO) δ 7.88 – 7.84 (m, 2H), 7.77 – 7.72 (m, 2H), 7.44 – 7.41 (m, 3H), 7.35 
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(d, J = 7.9 Hz, 2H), 7.16 (t, J = 7.5 Hz, 2H), 7.10 (d, J = 7.8 Hz, 2H), 7.02 (t, J = 7.1 Hz, 

1H), 6.90 (s, 1H), 6.80 – 6.75 (m, 2H), 5.94 (s, 2H), 3.57 (s, 2H), 3.48 (s, 2H), 3.10 – 

3.04 (m, 2H), 2.58 – 2.54 (m, 2H), 2.53 (s, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 

170.0, 161.5, 159.8, 149.6, 148.8, 140.8, 134.8, 132.6, 132.1, 131.8, 131.6, 131.5, 129.6, 

129.6, 129.4, 128.2, 127.2, 125.6, 122.5, 121.2, 110.9, 109.1, 102.0, 58.1, 56.8, 50.8, 

28.5, 17.9 ppm. HRMS (ESI) calcd for C34H31N3O5S3 [M+Na]+: 680.1318, found: 

680.1344 

 

Acylsulfonamide SZ31TA6: Yield = 65%. Rf = 0.27 in DCM : MeOH = 20:1. 1H NMR 

(600 MHz, DMSO) δ 8.63 (s, 1H), 8.25 (d, J = 7.6 Hz, 1H), 8.20 (d, J = 8.0 Hz, 1H), 7.77 

(t, J = 7.8 Hz, 2H), 7.58 (t, J = 7.9 Hz, 1H), 7.51 – 7.41 (m, 2H), 7.36 (d, J = 7.9 Hz, 2H), 

7.15 (t, J = 7.6 Hz, 2H), 7.10 (d, J = 7.8 Hz, 2H), 7.00 (t, J = 7.2 Hz, 1H), 6.80 – 6.74 (m, 

2H), 5.94 (s, 2H), 3.57 (s, 2H), 3.47 (s, 2H), 3.08 (d, J = 6.9 Hz, 2H), 2.55 (d, J = 6.9 Hz, 

2H) ppm. 13C NMR (101 MHz, CD3OD) δ 164.9, 149.4, 148.6, 148.3, 141.1, 135.4, 

134.0, 132.8, 131.6, 131.0, 130.1, 129.3, 129.0, 127.6, 127.3, 125.5, 123.1, 122.2, 110.7, 

108.6, 101.9, 58.1, 56.6, 50.9, 27.6 ppm. HRMS (ESI) calcd for C30H27N3O7S2 [M+H]+: 

606.1363, found: 606.1360 
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Acylsulfonamide SZ31TA7: Yield = 50%. Rf = 0.54 in DCM : MeOH = 20:1. 1H NMR 

(400 MHz, CDCl3) δ 8.15 (d, J = 7.9 Hz, 1H), 8.05 (d, J = 7.8 Hz, 2H), 7.84 (d, J = 8.0 

Hz, 1H), 7.75 (d, J = 7.7 Hz, 1H), 7.60 (d, J = 6.5 Hz, 1H), 7.52 – 7.37 (m, 5H), 7.20 – 

7.13 (m, 5H), 6.85 (s, 1H), 6.73 – 6.68 (m, 2H), 5.90 (s, 2H), 3.60 (s, 2H), 3.48 (s, 2H), 

3.03 – 2.94 (m, 2H), 2.73 – 2.65 (m, 2H) ppm. 13C NMR (101 MHz, CDCl3) δ 167.2, 

147.9, 146.9, 146.6, 137.6, 136.4, 133.8, 132.7, 130.7, 130.2, 129.2, 129.1, 128.6, 128.0, 

126.9, 126.1, 125.1, 124.6, 122.1, 109.3, 108.1, 101.1, 58.4, 57.9, 52.8, 31.6 ppm. HRMS 

(ESI) calcd for C34H30N2O5S2 [M+Na]+: 633.1488, found: 633.1506 

 

Acylsulfonamide SZ31TA8: Yield = 62%. Rf = 0.57 in DCM : MeOH = 20:1. 1H NMR 

(400 MHz, DMSO) δ 7.99 – 7.90 (m, 3H), 7.75 (d, J = 8.2 Hz, 2H), 7.34 (d, J = 8.2 Hz, 

2H), 7.24 (d, J = 8.1 Hz, 2H), 7.18 – 7.08 (m, 4H), 7.00 (t, J = 7.1 Hz, 1H), 6.81 – 6.74 

(m, 2H), 5.95 (s, 2H), 3.57 (s, 2H), 3.48 (s, 2H), 3.11 – 3.04 (m, 2H), 2.59 – 2.52 (m, 2H) 

ppm. 13C NMR (101 MHz, CDCl3) δ 164.4, 153.1, 149.6, 148.8, 140.6, 134.9, 132.6, 

131.6, 131.5, 130.6, 129.6, 129.6, 128.1, 125.6, 121.2, 120.6, 120.4 (q, J = 259.6 Hz), 

110.8, 109.1, 102.0, 58.1, 56.9, 50.8, 28.5 ppm. HRMS (ESI) calcd for C31H27F3N2O6S2 

[M+H]+: 645.1335, found: 645.1352 
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3.4.12 Peptide control experiments: LC/MS-SIM analysis 
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Figure 3.7. Incubation of SZ15 and TA1 and suppressing Mcl-1-templated incubations 

with Bim BH3 peptide. The samples were incubated for six hours at 37 °C and subjected 

to the LC/MS-SIM analysis. A) Incubation of SZ15 and TA1 without Mcl-1 B) 

Incubation of SZ15 and TA1 with 10 M Mcl-1 C) Incubation of SZ15 and TA1 with 10 

M Mcl-1 and 20 M Bim D) Synthetic SZ15TA1 as the reference. 
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Figure 3.8. Incubation of SZ15 and TA3 and suppressing Mcl-1-templated incubations 

with Bim BH3 peptide. The samples were incubated for six hours at 37 °C and subjected 

to the LC/MS-SIM analysis. A) Incubation of SZ15 and TA3 without Mcl-1 B) 

Incubation of SZ15 and TA3 with 10 M Mcl-1 C) Incubation of SZ15 and TA3 with 10 

M Mcl-1 and 20 M Bim D) Synthetic SZ15TA3 as the reference. 
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Figure 3.9. Incubation of SZ15 and TA5 and suppressing Mcl-1-templated incubations 

with Bim BH3 peptide. The samples were incubated for six hours at 37 °C and subjected 

to the LC/MS-SIM analysis. A) Incubation of SZ15 and TA5 without Mcl-1 B) 

Incubation of SZ15 and TA5 with 10 M Mcl-1 C) Incubation of SZ15 and TA5 with 10 

M Mcl-1 and 20 M Bim D) Synthetic SZ15TA5 as the reference. 
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Figure 3.10. Incubation of SZ15 and TA6 and suppressing Mcl-1-templated incubations 

with Bim BH3 peptide. The samples were incubated for six hours at 37 °C and subjected 

to the LC/MS-SIM analysis. A) Incubation of SZ15 and TA6 without Mcl-1 B) 

Incubation of SZ15 and TA6 with 10 M Mcl-1 C) Incubation of SZ15 and TA6 with 10 

M Mcl-1 and 20 M Bim D) Synthetic SZ15TA6 as the reference. 
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Figure 3.11. Incubation of SZ17 and TA3 and suppressing Mcl-1-templated incubations 

with Bim BH3 peptide. The samples were incubated for six hours at 37 °C and subjected 

to the LC/MS-SIM analysis. A) Incubation of SZ17 and TA3 without Mcl-1 B) 

Incubation of SZ17 and TA3 with 10 M Mcl-1 C) Incubation of SZ17 and TA3 with 10 

M Mcl-1 and 20 M Bim D) Synthetic SZ17TA3 as the reference. 
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Figure 3.12. Incubation of SZ17 and TA8 and suppressing Mcl-1-templated incubations 

with Bim BH3 peptide. The samples were incubated for six hours at 37 °C and subjected 

to the LC/MS-SIM analysis. A) Incubation of SZ17 and TA8 without Mcl-1 B) 

Incubation of SZ17 and TA8 with 10 M Mcl-1 C) Incubation of SZ17 and TA8 with 10 

M Mcl-1 and 20 M Bim D) Synthetic SZ17TA8 as the reference. 
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Figure 3.13. Incubation of SZ31 and TA3 and suppressing Mcl-1-templated incubations 

with Bim BH3 peptide. The samples were incubated for six hours at 37 °C and subjected 

to the LC/MS-SIM analysis. A) Incubation of SZ31 and TA3 without Mcl-1 B) 

Incubation of SZ31 and TA3 with 10 M Mcl-1 C) Incubation of SZ31 and TA3 with 10 

M Mcl-1 and 20 M Bim D) Synthetic SZ31TA3 as the reference. 
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Figure 3.14. Incubation of SZ31 and TA6 and suppressing Mcl-1-templated incubations 

with Bim BH3 peptide. The samples were incubated for six hours at 37 °C and subjected 

to the LC/MS-SIM analysis. A) Incubation of SZ31 and TA6 without Mcl-1 B) 

Incubation of SZ31 and TA6 with 10 M Mcl-1 C) Incubation of SZ31 and TA6 with 10 

M Mcl-1 and 20 M Bim D) Synthetic SZ31TA6 as the reference. 
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Figure 3.15. Incubation of SZ31 and TA7 and suppressing Mcl-1-templated incubations 

with Bim BH3 peptide. The samples were incubated for six hours at 37 °C and subjected 

to the LC/MS-SIM analysis. A) Incubation of SZ31 and TA7 without Mcl-1 B) 

Incubation of SZ31 and TA7 with 10 M Mcl-1 C) Incubation of SZ31 and TA7 with 10 

M Mcl-1 and 20 M Bim D) Synthetic SZ31TA7 as the reference. 
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Figure 3.16. Incubation of SZ31 and TA8 and suppressing Mcl-1-templated incubations 

with Bim BH3 peptide. The samples were incubated for six hours at 37 °C and subjected 

to the LC/MS-SIM analysis. A) Incubation of SZ31 and TA8 without Mcl-1 B) 

Incubation of SZ31 and TA8 with 10 M Mcl-1 C) Incubation of SZ31 and TA8 with 10 

M Mcl-1 and 20 M Bim D) Synthetic SZ31TA8 as the reference. 
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Chapter 4 

A Simple Base-Mediated Amidation of Aldehydes with Azides 

4.1 Introduction 

The amide bond serves as one of the nature’s most fundamental functional 

groups. Indeed, it is an integral component of a large number of organic and biological 

molecules such as pharmaceuticals, natural products, peptides, and proteins. 

Traditionally, the amide functionality is incorporated through a reaction of an amine with 

either an activated carboxylic acid (generally acid halides or anhydrides) or by an 

activation using carbodiimide coupling reagents. However, several innovative approaches 

have been developed in the past decade, which include the Staudinger reaction,1 the α-

bromo nitroalkane-amine coupling,2 the native chemical ligation,3 the thio acid-azide 

amidation,4 the alkyne-sulfonyl azide coupling,5 the coupling of acyltrifluoroborates with 

hydroxylamines6 or azides,7 the Au/DNA-catalyzed amidation from alcohols and 

amines,8 the aminocarbonylation of aryl halides,9 and the Pd catalyzed coupling of aryl 

halides with isocyanides.10 Additionally, numerous one-pot oxidative amidation methods 

have been reported wherein, aldehydes,11 alcohols12 or alkynes13 are oxidized using 

transition metal catalysts and treated with amines yielding corresponding amides. 

Meanwhile, some environmentally benign metal-free amidation procedures employing 

silyl reagents14 or oxidants like sodium chlorite,15 peroxide16 have also been exploited.  
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Another important approach to amides is the Schmidt reaction,17 involving 

ketones and hydrazoic acid. Aube and co-workers have reported an intramolecular 

Schmidt reaction of cyclic ketones to construct N-substituted lactams in which hydrazoic 

acid was replaced by an alkyl azide.18 An interesting extension of this reaction, known as 

the Boyer reaction,19 was first reported19a in 1950s, wherein, two aromatic aldehydes 

were reacted with β-phenylethyl azide under harsh acidic conditions generating the 

corresponding amides in moderate yields. Strikingly, this reaction failed to afford the 

desired amide when benzyl or n-butyl azide was used. The reaction of benzyl azide is of 

particular interest since it leads to amidomethylarenes. In fact, a variety of therapeutic 

agents such as Picotamide,20 Raltegravir21 and others22 are comprised of an 

amidomethylarene moiety. Recently, Molander et al. reported a synthetic route to 

generate these types of molecules via a C-C bond forming reaction between 

amidomethyltrifluoroborates and aryl or heteroaryl chlorides (Scheme 4.1).22c  

 

Scheme 4.1. Synthesis of amidomethylarenes 

Implementing a one-pot approach, a series of reactions were performed starting 

from 2-(chloromethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane and various acid 

chlorides to obtain the corresponding amidomethyltrifluoroborates, which were 
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subsequently treated with the aryl or heteroaryl chlorides under standard Pd catalyzed 

cross-coupling conditions leading to the amidomethylarenes. Although a wide range of 

substrates were tolerated under the reported reaction conditions, a tedious 4-step 

sequence to access amidomethyltrifluoroborates demanding long reaction times, high 

temperatures and the Pd catalyst required in the following C-C bond formation are the 

drawbacks associated with this approach. Therefore, a simple, convenient method 

deprived of the aforementioned disadvantages would be of great interest. We herein 

unveil a straightforward protocol starting from azides and aromatic aldehydes to 

synthesize amidomethylarenes under mild basic conditions (Scheme 4.2). 

 

Scheme 4.2. Reaction between azides and aromatic aldehydes yielding amides 

4.2 Results and discussion 

4.2.1 Optimization of the reaction conditions 

Initially, the reaction conditions were screened using benzyl azide and 

benzaldehyde as the model substrates. The summary of these results is presented in Table 

4.1. Surprisingly, among the non-nucleophilic bases tested, t-BuOK alone produced the 

desired amide. From the set of the solvents explored, polar aprotic solvents such as THF, 

DMF, and DMSO proved to be suitable for this transformation, DMF offering the best 

results. In the course of further optimization, increasing the amount of t-BuOK to 2 eq 

was found to significantly improve the yield of the product. Furthermore, the reaction 
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was completed in 15 min at room temperature making it a highly efficient and practical 

synthetic route. 

Table 4.1. Optimization of the reaction conditionsa  

 

Entry Base Solvent Yield (%)b 

1 DIPEA DMF - 

2 Cs2CO3 DMF - 

3 DBU DMF - 

4 t-BuOK DMF 50 

5 t-BuOK THF 40 

6 t-BuOK DMSO 23 

7 t-BuOKc DMF 72 

    
a General reaction conditions: 1a (0.5 mmol), 2a (0.6 mmol), base (0.75 mmol), solvent 

(2.5 mL), 15 min; b Isolated yield based on 1a; c t-BuOK (1.0 mmol). 

4.2.2 Scope of the reaction regarding the aldehydes 

Having the reaction conditions optimized, the scope of the reaction involving 

benzyl azide and a diverse array of aldehydes was first examined (Table 4.2). Aromatic 

aldehydes bearing electron-donating groups afforded excellent yields although an excess 

amount of the base was required in some cases (3ad, 3aj, and 3al). Changing the position 

of methoxy substituent on the aromatic ring from para to meta did not affect the yield 

(3ab and 3ac). However, the amidation reaction with the sterically challenging 

2-methoxybenzaldehyde offered a moderate amount of the product (3ad). Substrates such 

as 3-methylbenzaldehyde, 4-(methylthio)benzaldehyde, [1,1'-biphenyl]-4-carbaldehyde 

and 1-naphthaldehyde led to the formation of desired products 3ae-3ah in good to 



164 
 

excellent yields. Functional moieties like 1,3-dioxolane (3ai) and N,N-dimethylamine 

(3aj) were well tolerated as well. Heterocyclic substrates such as furan and indole 

derivatives provided excellent results (3ak and 3al). 

Table 4.2. Reaction of benzyl azide with various aromatic aldehydesa,b 

 

a Reaction conditions: 1a (0.5 mmol), 2 (0.6 mmol), t-BuOK (1.0 mmol), DMF (2.5 mL), 

15 min; b Isolated yields based on 1a; c t-BuOK (2.0 mmol). 

Among aldehydes with electron-withdrawing substituents, 4-chlorobenzaldehyde 

exhibited great compatibility (3am) whereas, lower yield was obtained when 

4-cyanobenzaldehyde was used (3an). Cinnamaldehyde, despite being a Michael 

acceptor, did undergo the reaction (3ao) albeit with poor yield. Unfortunately, the 
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aliphatic aldehydes are not appropriate starting materials under these reaction conditions 

due to the presence of a more acidic α-proton. 

4.2.3 Scope of the reaction regarding the azides 

These encouraging results prompted us to expand the scope of this reaction with 

respect to the azides (Table 4.3). Benzyl azides consisting of electron-withdrawing 

substituents were successfully converted to the amides 3ba, 3ca, and 3da in moderate to 

substantial yields. Especially, the reaction of an azide incorporated on a heteroaryl moiety 

proceeded smoothly resulting in amide 3da. Benzyl azides containing electron-donating 

substituents were found to be suitable substrates for this reaction (3ea and 3fa). It is 

noteworthy to mention that an azide with both electron-donating and withdrawing 

functionalities furnished the amide 3ga in 77% yield. Substrates with sterical hindrance 

participated well under these reaction conditions (3ha and 3ia). In pursuit of substrates 

other than the substituted benzyl azides, we discovered that the α-azido amides also take 

part in this reaction efficiently providing moderate yields for the corresponding diamides 

3ja, 3ka, and 3la. An acid labile Boc group was obviously unaffected (3la) under these 

conditions, offering an advantage over the Boyer reaction. Aromatic and other aliphatic 

azides failed to generate corresponding amides under the reaction conditions described 

herein.  

4.2.4 Control experiments and the plausible mechanism 

 Intrigued by the outcome of this study, we decided to delve into the mechanistic 

details of this reaction. A control experiment was designed wherein t-BuOK was added to 



166 
 

a solution of azide 1a in DMF resulting in a deprotonation followed by the loss of 

molecular nitrogen leading to benzylideneamide 5 (Scheme 4.3). 

Table 4.3. Reaction of various azides with benzaldehydea,b 

R N3 + PhCHO
DMF, rt

1b-l 2a 3ba-la

3ba (78%)

t-BuOK

3ea (58%)

3ia (60%)3ha (78%)

3ca (52%) 3da (65%)
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a Reaction conditions: 1 (0.5 mmol), 2a (0.6 mmol), t-BuOK (1.0 mmol), DMF (2.5 mL), 

15 min; b Isolated yields based on 1. 

After 10 minutes of stirring, aldehyde 2a was added to the reaction mixture. 

Interestingly, the desired amide 3aa was formed only in trace amounts. On the contrary, 

when a mixture of azide 1a and aldehyde 2a in DMF was treated with t-BuOK, amide 

3aa was obtained in 72% yield (Table 4.2). 
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Scheme 4.3. Control experiments to investigate the reaction mechanism. Reaction 

conditions: 1a (0.5 mmol), 2a (0.6 mmol), t-BuOK (1.0 mmol), DMF (2.5 mL), 15 min. 

This implies that the intermediate benzylideneamide 5 loses its reactivity towards 

aldehyde, failing to generate an amide. Whereas, if the reactive species 4 formed by 

addition of t-BuOK reacts with the aldehyde prior to the elimination of molecular 

nitrogen, an amide is obtained suggesting that, the nucleophilic attack of outermost 

nitrogen atom in species 4 on the carbonyl carbon of aldehyde is crucial for the reaction 

to proceed. Based on these results, a plausible mechanism is proposed in the Scheme 4.4. 

The first step would involve a deprotonation of benzyl azide, generating a highly reactive 

species 4. One of the resonance forms of species 4 (4-B) can readily react with the 

benzaldehyde 2a leading to an intermediate 6 followed by a 1,5-hydride shift resulting in 

triazenide 7. An intramolecular nucleophilic attack on the carbonyl carbon would produce 

8, which would be converted to the amide 3aa through retro [2+2] cycloaddition or 

stepwise loss of molecular nitrogen.  
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Scheme 4.4. Plausible reaction mechanism of amidation 

4.2.5 Discussion 

 Although a lot of synthetic methods to access amides are available, the amide 

bond formation starting from azide and aldehydes seems to be surprisingly less explored. 

For instance, the Boyer reaction was reported in 1950s wherein, two aromatic aldehydes 

reacted with alkyl azides under harsh acidic conditions yielding amides. While exploring 

various reactions for a different application, we serendipitously discovered a reaction 

between a set of alkyl azides (substituted benzyl azides and α-azido amides) and aromatic 

aldehydes under mild basic conditions which resulted in the formation of corresponding 

amides. Among various bases investigated, only potassium tert-butoxide (t-BuOK) was 

suitable to carry out the desired transformation, whereas DMF was the solvent of choice. 

A wide range of electronically and sterically diverse aromatic aldehydes were tolerated 

and the corresponding amides were obtained in good to excellent yields. Unfortunately, 

aliphatic aldehydes are not suitable under these conditions due to the presence of a more 

acidic α-proton. With these encouraging results, scope of the reaction with respect to 
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azides was then investigated. In addition to various substituted benzyl azides, α–azido 

amides were found to undergo the reaction as well. Aromatic and other aliphatic azides 

however, did not take part in the reaction. This implies that an electron-stabilizing group 

on the azides is required for this reaction to proceed. 

Mechanistically, the initial step involves deprotonation of benzyl azide, followed 

by the nucleophilic attack of the terminal nitrogen on the carbonyl carbon of aldehyde. 

Other key steps include 1,5-hydride shift resulting in a triazenide intermediate, 

intramolecular nucleophilic attack on the carbonyl carbon and loss of molecular nitrogen 

finally leading to the amide. Experiments to gain additional mechanistic insights are 

currently in progress.  

4.3 Conclusion 

In summary, a simple, yet highly efficient methodology has been developed for 

the synthesis of amides starting from benzyl azides or α-azido amides and aromatic 

aldehydes. A wide variety of substrates were shown to deliver the desired product in 

moderate to excellent yields, demonstrating the scope of this reaction. Besides, innocuous 

by-products (molecular nitrogen and t-BuOH), short reaction time, ambient temperature 

and easily accessible starting materials make it an attractive alternative to the 

contemporary synthetic routes. Notably, biologically valuable amidomethylarenes could 

be easily synthesized using this method.  
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4.4 Experimental section 

4.4.1 General information 

 All reagents and solvents were purchased from commercial sources and used 

without further purification. All reactions were run under an Argon atmosphere unless 

otherwise indicated. Prior to use of solvents in reactions, they were purified by passing 

the degassed solvents through a column of activated alumina and transferred by an oven-

dried syringe or cannula. Thin layer chromatography was performed on Merck TLC 

plates (silica gel 60 F254). 
1H NMR and 13C NMR were recorded on a Varian Inova 400 

(400 MHz) or a Bruker Avance DPX-250 (250 MHz) instrument. The HRMS data were 

measured on an Agilent 1100 Series MSD/TOF with electrospray ionization. 

The azides 1a,23 1b,24 1d,25 1e,26 1f,27 1i,28 1j,29 1l,30 and an aldehyde 2n31 were 

synthesized as previously reported in the literature. 

4.4.2 Synthesis of azides 

 

1-(azidomethyl)-3-(trifluoromethyl)benzene (1c): To a solution of 1-(bromomethyl)-3-

(trifluoromethyl)benzene (1.0 g, 4.18 mmol) in DMSO (15 mL), was added sodium azide 

(326 mg, 5.0 mmol, 1.2 eq) and the resulting reaction mixture was stirred overnight at 70 

°C. The reaction was then treated with H2O (40 mL) and extracted with EtOAc (30 mL  

2). The combined organic layers were washed with brine (30 mL  3), dried with Na2SO4 

and concentrated under reduced pressure. The azide 1c was then obtained by flash 
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chromatography. Yield = 76%. Rf = 0.31 in hexanes. 1H NMR (400 MHz, CDCl3) δ 7.61 

– 7.55 (m, 2H), 7.51 – 7.48 (m, 2H), 4.42 (s, 2H) ppm. 13C NMR (101 MHz, CDCl3) δ 

136.74, 131.48, 131.42 (q, J = 32.5 Hz), 129.53, 125.25 (q, J = 3.7 Hz), 124.94 (q, J = 

3.7 Hz), 124.12 (q, J = 272.4 Hz), 54.31 ppm. 

 

5-(azidomethyl)-6-chlorobenzo[d][1,3]dioxole (1g): The azide 1g was prepared 

following the procedure described for the synthesis of azide 1c. Yield = 73%. Rf = 0.62 in 

hexanes : EtOAc = 5:1. 1H NMR (400 MHz, CDCl3) δ 6.86 (s, 1H), 6.82 (s, 1H), 5.98 (s, 

2H), 4.36 (s, 2H) ppm. 13C NMR (101 MHz, CDCl3) δ 148.47, 147.14, 126.41, 126.12, 

110.29, 109.85, 102.22, 52.35 ppm. 

N3

1h  

2-(azidomethyl)-1,1'-biphenyl (1h): The azide 1h was synthesized following the 

procedure described for the synthesis of azide 1c. Yield = 83%. Rf = 0.22 in hexanes. 1H 

NMR (400 MHz, CDCl3) δ 7.47 – 7.43 (m, 2H), 7.42 – 7.37 (m, 4H), 7.36 – 7.30 (m, 

3H), 4.28 (s, 2H) ppm. 13C NMR (101 MHz, CDCl3) δ 142.42, 140.45, 132.99, 130.64, 

129.76, 129.39, 128.53, 127.99, 127.65, 52.80 ppm. 
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2-azido-1-(4-benzylpiperidin-1-yl)ethanone (1k): The azide 1k was prepared following 

the procedure described for the synthesis of azide 1c, starting from 1-(4-benzylpiperidin-

1-yl)-2-chloroethanone.32 Yield = 54%. Rf = 0.3 in hexanes : EtOAc = 2:1. 1H NMR (250 

MHz, CDCl3) δ 7.36 – 7.09 (m, 5H), 4.58 (d, J = 13.3 Hz, 1H), 3.92 (s, 2H), 3.61 (d, J = 

13.7 Hz, 1H), 3.05 – 2.87 (m, 1H), 2.67 – 2.47 (m, 3H), 1.90 – 1.65 (m, 3H), 1.19 (q, J = 

11.8 Hz, 2H) ppm. 13C NMR (63 MHz, CDCl3) δ 165.20, 139.61, 128.95, 128.20, 125.98, 

50.47, 45.11, 42.66, 42.31, 37.83, 32.18, 31.43 ppm. HRMS (ESI) calcd for C14H18N4O 

[M+H]+: 259.1553, found: 259.1557 

4.4.3 General procedure for the synthesis of amides 

To a mixture of the azide (0.5 mmol) and an aldehyde (0.6 mmol, 1.2 eq) in DMF (2.5 

mL) at room temperature, t-BuOK (1.0 or 2.0 mmol, 2 or 4 eq) was carefully added and 

bubbling was observed immediately. After the completion of reaction, (monitored by 

TLC) water (10 mL) was added and the pH was adjusted to 7.0 using saturated NH4Cl 

solution. The reaction mixture was extracted with EtOAc (20 mL  2) and the combined 

organic layers were washed with brine (30 mL  3), dried with Na2SO4 and concentrated 

under reduced pressure. The product was purified by flash chromatography. 

4.4.4 Synthesis of amides 

 

N-benzylbenzamide (3aa): Yield = 72%. Rf = 0.41 in hexanes : EtOAc = 2:1. 1H NMR 

(400 MHz, CDCl3) δ 7.78 (d, J = 7.6 Hz, 2H), 7.46 – 7.37 (m, 2H), 7.31 (t, J = 7.6 Hz, 
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2H), 7.28 – 7.20 (m, 4H), 4.52 (d, J = 5.8 Hz, 2H) ppm. 13C NMR (101 MHz, CDCl3) δ 

167.68, 138.49, 134.37, 131.39, 128.59, 128.43, 127.68, 127.30, 127.16, 43.87 ppm. 

HRMS (ESI) calcd for C14H13NO [M+H]+: 212.1070, found: 212.1068 

 

N-benzyl-4-methoxybenzamide (3ab): Yield = 81%. Rf = 0.31 in hexanes : EtOAc = 

2:1. 1H NMR (400 MHz, CDCl3) δ 7.74 (d, J = 8.7 Hz, 2H), 7.35 – 7.18 (m, 5H), 7.07 (s, 

1H), 6.84 – 6.77 (m, 2H), 4.52 (d, J = 5.8 Hz, 2H), 3.76 (s, 3H) ppm. 13C NMR (101 

MHz, CDCl3) δ 167.16, 162.19, 138.74, 128.99, 128.65, 127.79, 127.35, 126.75, 113.71, 

55.41, 43.94 ppm. HRMS (ESI) calcd for C15H15NO2 [M+H]+: 242.1176, found: 

242.1172 

 

N-benzyl-3-methoxybenzamide (3ac): Yield = 81%. Rf = 0.35 in hexanes : EtOAc = 

2:1. 1H NMR (400 MHz, CDCl3) δ 7.38 – 7.36 (m, 1H), 7.32 (d, J = 0.5 Hz, 1H), 7.32 – 

7.29 (m, 3H), 7.29 – 7.28 (m, 1H), 7.28 – 7.24 (m, 2H), 7.03 – 6.97 (m, 1H), 6.61 (s, 1H), 

4.59 (d, J = 5.7 Hz, 2H), 3.80 (s, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 167.42, 

159.99, 138.35, 136.02, 129.71, 128.91, 128.03, 127.74, 118.89, 117.92, 112.57, 55.59, 

44.29 ppm. HRMS (ESI) calcd for C15H15NO2 [M+H]+: 242.1176, found: 242.1175 
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N-benzyl-2-methoxybenzamide (3ad): Yield = 45%. Rf = 0.39 in hexanes : EtOAc = 

2:1. 1H NMR (400 MHz, CDCl3) δ 8.22 (dd, J = 7.8, 1.8 Hz, 2H), 7.43 – 7.37 (m, 1H), 

7.36 – 7.28 (m, 4H), 7.27 – 7.21 (m, 1H), 7.04 (t, J = 7.5 Hz, 1H), 6.91 (d, J = 8.4 Hz, 

1H), 4.66 (d, J = 5.7 Hz, 2H), 3.83 (s, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 165.33, 

157.48, 138.77, 132.79, 132.20, 128.57, 127.42, 127.16, 121.19, 111.37, 55.87, 43.66 

ppm. HRMS (ESI) calcd for C15H15NO2 [M+H]+: 242.1176, found: 242.1177 

 

N-benzyl-3-methylbenzamide (3ae): Yield = 75%. Rf = 0.51 in hexanes : EtOAc = 2:1. 

1H NMR (400 MHz, CDCl3) δ 7.67 – 7.56 (m, 3H), 7.29 – 7.16 (m, 7H), 4.51 (d, J = 5.9 

Hz, 2H), 2.28 (s, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 167.84, 138.57, 138.06, 

134.31, 132.01, 128.43, 128.19, 127.86, 127.55, 127.11, 124.14, 43.71, 21.17 ppm. 

HRMS (ESI) calcd for C15H15NO [M+H]+: 226.1226, found: 226.1230 

 

N-benzyl-4-(methylthio)benzamide (3af): Yield = 83%. Rf = 0.37 in hexanes : EtOAc = 

2:1. 1H NMR (400 MHz, CDCl3) δ 7.71 – 7.67 (m, 2H), 7.34 – 7.25 (m, 5H), 7.23 – 7.20 

(m, 2H), 6.42 (s, 1H), 4.61 (d, J = 5.7 Hz, 2H), 2.48 (s, 3H) ppm. 13C NMR (101 MHz, 

CDCl3) δ 167.00, 143.65, 138.44, 130.63, 128.92, 128.05, 127.74, 127.57, 125.58, 44.25, 

15.21 ppm. HRMS (ESI) calcd for C15H15NOS [M+H]+: 258.0947, found: 258.0951 
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N-benzyl-[1,1'-biphenyl]-4-carboxamide (3ag): Yield = 74%. Rf = 0.49 in hexanes : 

EtOAc = 2:1. 1H NMR (400 MHz, CDCl3) δ 7.86 (d, J = 7.1 Hz, 2H), 7.58 (t, J = 6.5 Hz, 

4H), 7.44 (t, J = 6.4 Hz, 2H), 7.41 – 7.22 (m, 6H), 6.96 (s, 1H), 4.62 (d, J = 4.5 Hz, 2H) 

ppm. 13C NMR (101 MHz, CDCl3) δ 167.34, 144.40, 140.11, 138.48, 133.18, 129.04, 

128.87, 128.47, 128.12, 127.99, 127.73, 127.31, 44.23 ppm. HRMS (ESI) calcd for 

C20H17NO [M+H]+: 288.1383, found: 288.1384 

N-benzyl-1-naphthamide (3ah): 

 

Yield = 67%. Rf = 0.49 in hexanes : EtOAc = 2:1. 1H NMR (400 MHz, CDCl3) δ 8.24 (d, 

J = 7.7 Hz, 1H), 7.80 (d, J = 8.1 Hz, 2H), 7.51 – 7.40 (m, 3H), 7.34 – 7.21 (m, 6H), 6.85 

(s, 1H), 4.52 (d, J = 5.8 Hz, 2H) ppm. 13C NMR (101 MHz, CDCl3) δ 169.49, 138.34, 

134.19, 133.62, 130.51, 130.18, 128.68, 128.26, 127.75, 127.43, 126.99, 126.33, 125.46, 

125.00, 124.62, 43.85 ppm. HRMS (ESI) calcd for C18H15NO [M+H]+: 262.1226, found: 

262.1224 
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N-benzylbenzo[d][1,3]dioxole-5-carboxamide (3ai): Yield = 86%. Rf = 0.32 in hexanes 

: EtOAc = 2:1. 1H NMR (400 MHz, CDCl3) δ 7.32 – 7.26 (m, 7H), 6.76 (dd, J = 8.0, 0.5 

Hz, 1H), 6.52 (s, 1H), 5.97 (s, 2H), 4.56 (d, J = 5.7 Hz, 2H) ppm. 13C NMR (101 MHz, 

CDCl3) δ 166.84, 150.49, 148.11, 138.48, 128.89, 128.76, 128.01, 127.69, 121.76, 

108.12, 107.86, 101.83, 44.28 ppm. HRMS (ESI) calcd for C15H13NO3 [M+H]+: 

256.0968, found: 256.0966 

N
H

O

N3aj
 

N-benzyl-4-(dimethylamino)benzamide (3aj): Yield = 83%. Rf = 0.26 in hexanes : 

EtOAc = 2:1. 1H NMR (400 MHz, CDCl3) δ 7.68 (d, J = 9.0 Hz, 2H), 7.35 – 7.25 (m, 

5H), 6.64 (d, J = 9.0 Hz, 2H), 6.26 (s, 1H), 4.61 (d, J = 5.7 Hz, 2H), 2.99 (s, 6H) ppm. 

13C NMR (101 MHz, CDCl3) δ 167.44, 152.63, 139.05, 128.81, 128.63, 128.01, 127.49, 

121.25, 111.21, 44.04, 40.27 ppm. HRMS (ESI) calcd for C16H18N2O [M+H]+: 255.1492, 

found: 255.1500 

 

N-benzylfuran-2-carboxamide (3ak): Yield = 86%. Rf = 0.48 in hexanes : EtOAc = 1:1. 

1H NMR (400 MHz, CDCl3) δ 7.33 (s, 1H), 7.30 – 7.18 (m, 4H), 7.06 (d, J = 3.2 Hz, 2H), 

6.43 – 6.37 (m, 1H), 4.53 (d, J = 5.9 Hz, 2H) ppm. 13C NMR (101 MHz, CDCl3) δ 

158.39, 147.89, 143.96, 138.17, 128.58, 127.73, 127.39, 114.18, 111.99, 42.99 ppm. 

HRMS (ESI) calcd for C12H11NO2 [M+H]+: 202.0863, found: 202.0862 



177 
 

 

N-benzyl-5-bromo-1-methyl-1H-indole-3-carboxamide (3al): Yield = 72%. Rf = 0.25 

in hexanes : EtOAc = 1:1. 1H NMR (400 MHz, CDCl3) δ 8.19 – 8.16 (m, 1H), 7.51 (s, 

1H), 7.36 – 7.25 (m, 6H), 7.16 – 7.13 (m, 1H), 6.22 (s, 1H), 4.63 (d, J = 5.8 Hz, 2H), 3.71 

(s, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 164.69, 138.99, 136.00, 132.47, 128.90, 

127.97, 127.60, 127.56, 125.78, 123.53, 115.27, 111.51, 110.43, 43.65, 33.59 ppm. 

HRMS (ESI) calcd for C17H15BrN2O [M+H]+: 343.0441, found: 343.0440 

 

N-benzyl-4-chlorobenzamide (3am): Yield = 80%. Rf = 0.55 in hexanes : EtOAc = 2:1. 

1H NMR (400 MHz, CDCl3) δ 7.70 (d, J = 8.5 Hz, 2H), 7.38 – 7.25 (m, 7H), 6.54 (s, 1H), 

4.59 (d, J = 5.7 Hz, 2H) ppm. 13C NMR (101 MHz, CDCl3) δ 166.53, 138.17, 137.98, 

132.95, 129.02, 128.63, 128.10, 127.90, 44.41 ppm. HRMS (ESI) calcd for C14H12ClNO 

[M+H]+: 246.0680, found: 246.0678 

 

N-benzyl-4-cyanobenzamide (3an): Yield = 37%. Rf = 0.35 in hexanes : EtOAc = 2:1. 

1H NMR (400 MHz, CDCl3) δ 7.83 (d, J = 8.4 Hz, 2H), 7.62 (d, J = 8.4 Hz, 2H), 7.33 – 

7.25 (m, 5H), 7.00 (s, 1H), 4.56 (d, J = 5.7 Hz, 2H) ppm. 13C NMR (101 MHz, CDCl3) δ 
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165.85, 138.36, 137.75, 132.49, 128.95, 127.93, 127.91, 118.14, 115.10, 44.37 ppm. 

HRMS (ESI) calcd for C15H12N2O [M+H]+: 237.1022, found: 237.1023 

 

N-benzylcinnamamide (3ao): Yield = 19%. Rf = 0.38 in hexanes : EtOAc = 2:1. 1H 

NMR (400 MHz, CDCl3) δ 7.63 (d, J = 15.6 Hz, 1H), 7.43 (dd, J = 6.4, 2.8 Hz, 2H), 7.35 

– 7.22 (m, 8H), 6.52 (s, 1H), 6.47 (d, J = 15.6 Hz, 1H), 4.50 (d, J = 5.8 Hz, 2H) ppm. 13C 

NMR (101 MHz, CDCl3) δ 166.14, 141.36, 138.40, 134.97, 129.79, 128.92, 128.83, 

128.16, 127.95, 127.62, 120.80, 43.93 ppm. HRMS (ESI) calcd for C16H15NO [M+H]+: 

238.1226, found: 238.1223 

 

N-(2-chlorobenzyl)benzamide (3ba): Yield = 78%. Rf = 0.5 in hexanes : EtOAc = 2:1. 

1H NMR (400 MHz, CDCl3) δ 7.78 – 7.74 (m, 2H), 7.49 – 7.33 (m, 5H), 7.23 – 7.18 (m, 

2H), 6.75 (s, 1H), 4.69 (d, J = 6.0 Hz, 2H) ppm. 13C NMR (101 MHz, CDCl3) δ 167.55, 

135.79, 134.42, 133.84, 131.76, 130.48, 129.73, 129.17, 128.75, 127.32, 127.17, 42.20 

ppm. HRMS (ESI) calcd for C14H12ClNO [M+H]+: 246.0680, found: 246.0677 

 

N-(3-(trifluoromethyl)benzyl)benzamide (3ca): Yield = 52%. Rf = 0.37 in hexanes : 

EtOAc = 2:1. 1H NMR (400 MHz, CDCl3) δ 7.80 – 7.75 (m, 2H), 7.57 – 7.46 (m, 4H), 
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7.45 – 7.37 (m, 3H), 6.75 (s, 1H), 4.65 (d, J = 5.9 Hz, 2H) ppm. 13C NMR (101 MHz, 

CDCl3) δ 167.79, 139.56, 134.21, 131.96, 131.37 (q, J = 1.3 Hz), 131.22 (q, J = 32.2 Hz), 

129.42, 128.85, 127.19, 124.70 – 124.50 (m, two quartets being merged, J = 3.8 Hz), 

124.20 (q, J = 272.4 Hz), 43.73 ppm. HRMS (ESI) calcd for C15H12F3NO [M+H]+: 

280.0944, found: 280.0949 

N

Cl

N
H

O

3da  

N-((6-chloropyridin-3-yl)methyl)benzamide (3da): Yield = 65%. Rf = 0.33 in hexanes 

: EtOAc = 1:1. 1H NMR (400 MHz, CDCl3) δ 8.24 (s, 1H), 7.77 – 7.72 (m, 2H), 7.61 (dd, 

J = 8.2, 2.4 Hz, 1H), 7.49 – 7.43 (m, 1H), 7.40 – 7.34 (m, 2H), 7.21 (d, J = 8.2 Hz, 1H), 

7.08 (s, 1H), 4.53 (d, J = 6.0 Hz, 2H) ppm. 13C NMR (101 MHz, CDCl3) δ 167.96, 

150.68, 149.07, 138.83, 133.88, 133.37, 132.06, 128.82, 127.19, 124.48, 40.85 ppm. 

HRMS (ESI) calcd for C13H11ClN2O [M+H]+: 247.0633, found: 247.0635 

 

N-(3-methylbenzyl)benzamide (3ea): Yield = 58%. Rf = 0.45 in hexanes : EtOAc = 2:1. 

1H NMR (400 MHz, CDCl3) δ 7.80 – 7.76 (m, 2H), 7.50 – 7.44 (m, 1H), 7.42 – 7.36 (m, 

2H), 7.24 – 7.19 (m, 1H), 7.15 – 7.06 (m, 3H), 6.58 (s, 1H), 4.57 (d, J = 5.7 Hz, 2H), 2.32 

(s, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 167.49, 138.63, 138.30, 134.59, 131.65, 

128.83, 128.83, 128.71, 128.49, 127.16, 125.10, 44.27, 21.55 ppm. HRMS (ESI) calcd 

for C15H15NO [M+H]+: 226.1226, found: 226.1231 
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N-(3-methoxybenzyl)benzamide (3fa): Yield = 75%. Rf = 0.32 in hexanes : EtOAc = 

2:1. 1H NMR (400 MHz, CDCl3) δ 7.80 – 7.75 (m, 2H), 7.51 – 7.44 (m, 1H), 7.42 – 7.36 

(m, 2H), 7.27 – 7.22 (m, 1H), 6.93 – 6.86 (m, 2H), 6.81 (dd, J = 8.2, 2.5 Hz, 1H), 6.60 (s, 

1H), 4.58 (d, J = 5.7 Hz, 2H), 3.77 (s, 3H) ppm. 13C NMR (101 MHz, CDCl3) δ 167.56, 

160.09, 139.98, 134.53, 131.70, 129.97, 128.74, 127.15, 120.26, 113.65, 113.17, 55.41, 

44.23 ppm. HRMS (ESI) calcd for C15H15NO2 [M+H]+: 242.1176, found: 242.1179 

 

N-((6-chlorobenzo[d][1,3]dioxol-5-yl)methyl)benzamide (3ga): Yield = 77%. Rf = 0.4 

in hexanes : EtOAc = 2:1. 1H NMR (400 MHz, CDCl3) δ 7.77 – 7.73 (m, 2H), 7.49 – 

7.43 (m, 1H), 7.41 – 7.35 (m, 2H), 6.91 (s, 1H), 6.80 (s, 1H), 6.70 (s, 1H), 5.92 (s, 2H), 

4.57 (d, J = 6.0 Hz, 2H) ppm. 13C NMR (101 MHz, CDCl3) δ 167.56, 147.91, 147.04, 

134.39, 131.77, 129.03, 128.75, 127.16, 125.61, 110.30, 110.03, 102.03, 42.08 ppm. 

HRMS (ESI) calcd for C15H12ClNO3 [M+H]+: 290.0578, found: 290.0583 

 

N-([1,1'-biphenyl]-2-ylmethyl)benzamide (3ha): Yield = 78%. Rf = 0.53 in hexanes : 

EtOAc = 2:1. 1H NMR (400 MHz, CDCl3) δ 7.63 – 7.60 (m, 2H), 7.49 – 7.40 (m, 4H), 

7.38 – 7.32 (m, 7H), 7.29 – 7.26 (m, 1H), 6.26 (s, 1H), 4.61 (d, J = 5.6 Hz, 2H) ppm. 13C 
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NMR (101 MHz, CDCl3) δ 167.20, 141.89, 140.95, 135.61, 134.51, 131.57, 130.44, 

129.15, 129.03, 128.67, 128.65, 128.03, 127.73, 127.58, 127.02, 42.27 ppm. HRMS 

(ESI) calcd for C20H17NO [M+H]+: 288.1383, found: 288.1383 

 

N-(naphthalen-1-ylmethyl)benzamide (3ia): Yield = 60%. Rf = 0.47 in hexanes : 

EtOAc = 2:1. 1H NMR (400 MHz, CDCl3) δ 8.07 – 8.04 (m, 1H), 7.89 – 7.85 (m, 1H), 

7.81 (d, J = 8.1 Hz, 1H), 7.75 – 7.71 (m, 2H), 7.55 – 7.45 (m, 3H), 7.45 – 7.39 (m, 2H), 

7.38 – 7.32 (m, 2H), 6.48 (s, 1H), 5.05 (d, J = 5.3 Hz, 2H) ppm. 13C NMR (101 MHz, 

CDCl3) δ 167.36, 134.46, 134.09, 133.58, 131.68, 131.66, 128.98, 128.91, 128.71, 

127.15, 127.04, 126.91, 126.22, 125.59, 123.68, 42.54 ppm. HRMS (ESI) calcd for 

C18H15NO [M+H]+: 262.1226, found: 262.1225 

 

N-(2-oxo-2-(4-phenylpiperazin-1-yl)ethyl)benzamide (3ja): Yield = 56%. Rf = 0.17 in 

hexanes : EtOAc = 1:1. 1H NMR (400 MHz, CDCl3) δ 7.86 – 7.81 (m, 2H), 7.52 – 7.46 

(m, 1H), 7.45 – 7.39 (m, 2H), 7.35 (s, 1H), 7.30 – 7.25 (m, 2H), 6.93 – 6.88 (m, 3H), 4.28 

(d, J = 4.0 Hz, 2H), 3.83 – 3.79 (m, 2H), 3.62 – 3.58 (m, 2H), 3.21 – 3.15 (m, 4H) ppm. 

13C NMR (101 MHz, CDCl3) δ 167.38, 166.74, 150.89, 134.05, 131.85, 129.47, 128.74, 

127.26, 121.02, 116.99, 49.77, 49.53, 44.58, 42.22, 41.90 ppm. HRMS (ESI) calcd for 

C19H21N3O2 [M+H]+: 324.1707, found: 324.1716 
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N-(2-(4-benzylpiperidin-1-yl)-2-oxoethyl)benzamide (3ka): Yield = 76%. Rf = 0.14 in 

hexanes : EtOAc = 2:1. 1H NMR (400 MHz, CDCl3) δ 7.86 – 7.81 (m, 2H), 7.51 – 7.46 

(m, 1H), 7.45 – 7.37 (m, 3H), 7.31 – 7.24 (m, 2H), 7.23 – 7.17 (m, 1H), 7.14 – 7.10 (m, 

2H), 4.62 – 4.52 (m, 1H), 4.29 – 4.12 (m, 2H), 3.80 – 3.70 (m, 1H), 2.96 (tt, J = 15.6, 8.0 

Hz, 1H), 2.65 – 2.52 (m, 3H), 1.84 – 1.67 (m, 3H), 1.26 – 1.11 (m, 2H) ppm. 13C NMR 

(101 MHz, CDCl3) δ 167.30, 166.26, 139.79, 134.13, 131.73, 129.20, 128.67, 128.51, 

127.22, 126.31, 44.85, 42.97, 42.69, 41.85, 38.24, 32.36, 31.73 ppm. HRMS (ESI) calcd 

for C21H24N2O2 [M+H]+: 337.1911, found: 337.1904 

 

tert-butyl 4-(2-benzamidoacetyl)piperazine-1-carboxylate (3la): Yield = 45%. Rf = 

0.12 in hexanes : EtOAc = 1:1. 1H NMR (400 MHz, CDCl3) δ 7.83 – 7.76 (m, 2H), 7.46 

(ddd, J = 6.4, 3.7, 1.3 Hz, 1H), 7.42 – 7.37 (m, 2H), 7.31 (s, 1H), 4.22 (d, J = 4.0 Hz, 

2H), 3.63 – 3.56 (m, 2H), 3.48 – 3.37 (m, 6H), 1.43 (s, 9H) ppm. 13C NMR (101 MHz, 

CDCl3) δ 167.39, 166.95, 154.55, 133.94, 131.85, 128.71, 127.23, 80.70, 44.45, 42.05, 

41.89, 28.50 ppm. HRMS (ESI) calcd for C18H25N3O4 [M+Na]+: 370.1737, found: 

370.1738 
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