
University of South Florida
Scholar Commons

Graduate Theses and Dissertations Graduate School

11-5-2010

Statistical Analysis and Modeling of Breast Cancer
and Lung Cancer
Chunling Cong
University of South Florida

Follow this and additional works at: http://scholarcommons.usf.edu/etd

Part of the American Studies Commons

This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in
Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact
scholarcommons@usf.edu.

Scholar Commons Citation
Cong, Chunling, "Statistical Analysis and Modeling of Breast Cancer and Lung Cancer" (2010). Graduate Theses and Dissertations.
http://scholarcommons.usf.edu/etd/3563

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholar Commons | University of South Florida Research

https://core.ac.uk/display/154469123?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F3563&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F3563&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu?utm_source=scholarcommons.usf.edu%2Fetd%2F3563&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F3563&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F3563&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F3563&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/439?utm_source=scholarcommons.usf.edu%2Fetd%2F3563&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu


 

 

 

Statistical Analysis and Modeling of  

 

Breast Cancer and Lung Cancer  

 

 

 
by 
 
 
 

 Chunling Cong 
 
 
 
 
 

A dissertation submitted in partial fulfillment  
of the requirements for the degree of  

Doctor of Philosophy 
Department of Mathematics and Statistics  

College of Arts and Sciences  
University of South Florida 

 
 
 

Major Professor: Chris Tsokos, Ph.D. 
Gangaram Ladde, Ph.D.  

Kandethody M. Ramachandran, Ph.D. 
Wonkuk Kim, Ph.D.  

Marcus McWaters, Ph.D. 
 
 

Date of Approval:  
November 5, 2010 

 
 
 

Keywords: decision tree, survival analysis, accelerated failure model,  
Cox proportional hazard model, Kaplan-Meier  

 
© Copyright 2010, Chunling Cong 



 
 

 

Dedication 

 

I would like to dedicate my dissertation to my parents, Weihua Cong and Lanzi 

Peng and my sister Lian Cong for their unconditional support and trust in me 

which enables me to be confident in myself. 

 

I would also like to dedicate my dissertation to my advisor Dr. Chris Tsokos. In 

the past three years, his continuous support and encouragement inspired me to 

never giving up the dream of becoming not only a good statistician, but also a 

better person. He has also given me lots of opportunities to achieve whatever 

goal I may have. I have been truly enjoying the wonderful mentoring relationship 

with him. He made the whole Ph.D. process a journey full of endeavors, learning 

experience and feeling of accomplishments. 

 
 
 
 
 
 
 
 
 

 

 

 



 

 

Acknowledgements 

 

First of all, I would like to thank my dissertation committee for their great efforts in 

refining my research design and writing. Dr. Chris Tsokos has been given my help 

and suggestions throughout the whole process and my growing interest in 

research to a good extent owes to the helpful inputs from Dr. Wonkuk Kim. Dr. 

Gangaram Ladde has been always very kind and supportive in every step of the 

way. Dr. Kandethody M. Ramachandran certainly also contributed a lot to my 

pleasant and rewarding dissertation process.  

 

I am truly grateful for the internship opportunity from American Cancer Society 

and valuable inputs provided by Dr. James Kepner which makes the current 

research applicable to real world problems. At last, I would like to extend my 

appreciation to all the members in the cancer research team, their hard work 

and cooperation made my statistical analysis possible.  

 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

Table of Contents  
 
 
 
List of Tables  iii 
 
List of Figures v 
 
Abstract    vii 
 
Chapter 1 Introduction 1 
 1.1 Breast Cancer and Lung Cancer 1 
  1.1.1 Breast Cancer 1 
  1.1.2 Lung Cancer 2 
 1.2 Decision Tree 3 
  1.2.1 Introduction to Decision Tree 4 
  1.2.2 Theory behind Decision Tree Analysis 5 
  1.2.3 Survival Tree and Random Forest  9 
  1.3 Survival Analysis  11 
  1.3.1 Kaplan - Meier Estimator 13 
 1.3.2 Accelerated Failure Time Model 14 
  1.3.3 Cox Proportional Hazard Model 15 
 
Chapter 2 Breast Cancer Treatment Effectiveness  17 
 2.1 Background and Data 17 
 2.2 Nonparametric Comparison of Treatment Effectiveness 19 
 2.3 Parametric Comparison of Treatment Effectiveness 21 
 2.4 Decision Tree Analysis 26 
 2.5 Conclusion  30 
 
Chapter 3 Statistical Modeling of Breast Cancer Relapse Time  32 
 3.1 Background and Data  32 
 3.2 AFT and Cox – PH Model 33 
 3.3 Kaplan – Meier VS. Parametric Survival Analysis 37 
 3.4 Cure Rate Statistical Model  44 
  3.4.1 Model Introduction  44 
  3.4.2 Model Results for the Breast Cancer Data 46 
  3.4.3 Conclusion  49 
 
 
 
 

 i



Chapter 4 Markov Modeling of Breast Cancer Stages  50 
 4.1 Background 50 
 4.2 Markov Model 51 
 4.3 Breast Cancer Markov Chain Model Results 54 
 4.4 Conclusion                                                                                           61 
 
Chapter 5 Statistical Comparison between Different Histology Types 62 
 5.1 Background and Data 62 
 5.2 Comparison of Survival Time and Relapse Time  64 
 5.3 Treatment Effectiveness of Different Histology Types 66 
 5.4 Conclusion 69 
 
Chapter 6 Sensitivity Analysis of Breast Cancer Doubling Time  71 
  6.1 Background 71 
  6.2 Breast Cancer Doubling Time Data  74 
  6.3 Geometrical Formulas of Tumor Volume 77 
  6.4 Analytical Calculation of Doubling Time 83 
  6.5 Probability Distribution of Doubling Time 91 
  6.6 Conclusion 99 
 
Chapter 7 Statistical Modeling of Lung Cancer Mortality Time  102 
 7.1 Background and Data 102 
 7.2 Results of Parametric Analysis 104 
 7.3 Results of Nonparametric Comparison 108 
 7.4 Results of Modeling of Mortality Time  110 
 7.5 Discussion  117 
 
Chapter 8 Conclusions and Future Research 119 
 7.1 Conclusions 119 
 7.2 Future Research 120 
 
References 123 
 
Appendices  126 
 
  Appendix A1:  Probability Density Functions of Distributions 126 
 
About the Author End Page 
 
 
 
 
 
 
 
 

 ii



 
 
 
 

List of Tables 
 
 
 
Table 2.1   Test the Difference of Means of Two Treatments 21 
 
Table 2.2   Estimators and Log-likelihood of Lognormal distribution 22 
 
Table 3.1   Factors in Parametric Regression Models for RT+Tam  34 
 
Table 3.2   Factors in Parametric Regression Models for Tam  35 
 
Table 3.3   Reoccurrence-free Probability 43 
 
Table 3.4   Cure Rate of Uncured Patients 46 
 
Table 3.5   Cure Rate with Interactions of Uncured Patients  48 
 
Table 4.1   Transition Intensity Matrix of RT+Tam 55 
 
Table 4.2   Transition Intensity Matrix of Tam 55 
 
Table 4.3   2-year Transition Probability for RT+Tam  58 
 
Table 4.4   2-year Transition Probability for RT+Tam  59 
 
Table 4.5   4-year Transition Probability for RT+Tam  59 
 
Table 4.6   4-year Transition Probability for RT+Tam  59 
 
Table 4.7   5-year Transition Probability for RT+Tam  59 
 
Table 4.8   5-year Transition Probability for RT+Tam  60 
 
Table 4.9   10-year Transition Probability for RT+Tam  60 
 
Table 4.10 10-year Transition Probability for RT+Tam  60 
 
Table 5.1   Log-Rank Test for Survival Time and Relapse Time 69 
 
Table 6.1   Date and Dimensions of Tumor Observations 75 
 

 iii



Table 6.2  Doubling Time under Linear Growth 86 
 
Table 6.3  Doubling Time under Quadratic Growth 88 
 
Table 6.4  Doubling Time under Exponential Growth 89 
 
Table 6.5  Distribution of Doubling Time under Linear Growth 93 
 
Table 6.6  Distribution of Doubling Time under Quadratic Growth 95 
 
Table 6.7  Distribution of Doubling Time under Exponential Growth 98 
 
Table 6.8  Summary of Results  100 
 
Table 7.1  Mean and Standard Deviation of Fitted Distribution 106 
 
Table 7.2  Confidence Interval of Fitted Distribution 107 
 
Table 7.3  Wilcoxin Two–Sample Test Result 108 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 iv



 
 
 
 

List of Figures 
 
 
 
Figure 1.1   CART  6 
 
Figure 1.2   ID3  6 
 
Figure 2.1   Patient Treatment Data 18 
 
Figure 2.2   Survival Curves of Two Treatment Groups 20 
 
Figure 2.3   Fitted Lognormal CDF curve for RT+Tam  23 
 
Figure 2.4   Fitted Lognormal Survival Curve for Tam 24 
 
Figure 2.5   Radiation +Tamoxifen 28 
 
Figure 2.6   Tamoxifen 28 
 
Figure 2.7   Survival Curves for Different Subgroups 29 
 
Figure 3.1   Lognormal VS. Kaplan-Meier for RT+Tam 38 
 
Figure 3.2   Exponential VS. Kaplan-Meier for RT+Tam 38 
 
Figure 3.3   Weibull VS. Kaplan-Meier for RT+Tam 39 
 
Figure 3.4   Cox-PH VS. Kaplan-Meier for RT+Tam 40 
 
Figure 3.5   Lognormal VS. Kaplan-Meier for Tam 41 
 
Figure 3.6   Exponential VS. Kaplan-Meier for Tam 41 
 
Figure 3.7   Weibull VS. Kaplan-Meier for Tam 42 
 
Figure 3.8   Cox-PH VS. Kaplan-Meier for Tam 42 
 
Figure 4.1   Three Stages of Breast Cancer 51 
 
Figure 4.2   Survival Curves of Patients in RT+Tam  57 
 

 v



Figure 4.3   Survival Curve of Patients in Tam 57 
 
Figure 5.1   Breast Cancer Patients by Histology Types and Treatments 63 
 
Figure 5.2   Kaplan-Meier Curves of Survival Time in DUC and MIX 65 
 
Figure 5.3   Kaplan-Meier Curves of Relapse Time in DUC and MIX 66 
 
Figure 5.4   Kaplan-Meier Curves of Survival Time in RT+TAM and TAM  67 
 
Figure 5.5   Kaplan-Meier Curves of Relapse Time in RT+TAM and TAM  68 
 
Figure 6.1   Breast Cancer Mammogram Data 75 
 
Figure 6.2   Averaged Tumor Size VS. Age  79 
 
Figure 6.3   Average Tumor Size with Age 17-48  80 
 
Figure 6.4   Average Tumor Size with Age 49-78 81 
 
Figure 6.5   Average Tumor Size with Age above 78 83 
 
Figure 7.1   Lung Cancer Data 103 
 
Figure 7.2   Percentage Plot of Female Ex-Smokers 113 
 
Figure 7.3   Predicted Survival Curve of Female Smokers 114 
 
Figure 7.4   Percentage Plot of Male Ex-Smokers 115 
 
Figure 7.5   Predicted Survival Curve of Male Smokers 116 
 
Figure 8.1   Stepwise Variable Selection Macro 121 

 

 

 

 

 

 

 vi



 

 

 

Abstract 

 

The objective of the present study is to investigate various problems associate 

with breast cancer and lung cancer patients. In this study, we compare the 

effectiveness of breast cancer treatments using decision tree analysis and come 

to the conclusion that although certain treatment shows overall effectiveness 

over the others, physicians or doctors should discretionally give different 

treatment to breast cancer patients based on their characteristics.  Reoccurrence 

time of breast caner patients who receive different treatments are compared in 

an overall sense, histology type is also taken into consideration. To further 

understand the relation between relapse time and other variables, statistical 

models are applied to identify the attribute variables and predict the relapse time.  

Of equal importance, the transition between different breast cancer stages are 

analyzed through Markov Chain which not only gives the transition probability 

between stages for specific treatment but also provide guidance on breast cancer 

treatment based on stating information.  

 

Sensitivity analysis is conducted on breast cancer doubling time which involves 

two commonly used assumptions: spherical tumor and exponential growth of  

 

 vii



 viii

tumor and the analysis reveals that variation from those assumptions could 

cause very different statistical behavior of breast cancer doubling time.  

 

In lung cancer study, we investigate the mortality time of lung cancer patients 

from several different perspectives: gender, cigarettes per day and duration of 

smoking. Statistical model is also used to predict the mortality time of lung cancer 

patients.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



 

 

Chapter 1 

  Introduction 

1.1 Breast Cancer and Lung Cancer 

Cancer is a class of diseases when a cell or group of cells display uncontrolled 

growth, invasion and sometimes spread to other locations in the body via lymph 

or blood (metastasis). It causes about 13% of all human deaths in 2007 with a 

total of 7.6 million affecting people at all ages. Although there are many causes 

of cancer, 90-95% of cancer is caused due to lifestyle and environmental factors 

and 5-10% are due to genetics. 

1.1.1 Breast cancer 

According to an authoritative source of information on cancer incidence and 

survival in the United States: the Surveillance, Epidemiology and End Results 

(SEER) Program of the National Cancer Institute (NCI) collects and publishes 

cancer incidence and survival information from around 28 percent of the US 

population, it is estimated that 207,090 women will be diagnosed with and 39,840 

women will die of cancer of breast in year 2010. From the statistics based on 

2003 to 2007, the median age at diagnosis for cancer of the breast was 61 years 

old, and the incidence rate was 122.9 per 100,000 women per year.  From the 
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same data source, the median age at death for breast cancer was 68 years old 

with a death rate of 24.0 per 100,000 women per year. The overall 5-year 

survival for 1999-2006 was as high as 89.0%.  Based on rates from 2005-2007, 

12.15% of women born today will be diagnosed with cancer of the breast at some 

time during their lifetime. In other words, 1 in 8 women will be diagnosed with 

breast cancer during their lifetime. 

1.1.2 Lung Cancer 

For lung cancer, it is estimated that 222,520 men and women will be diagnosed 

with and 157,300 men and women will die of lung and bronchus cancer in 2010.  

Based on NCI’s SEER Cancer Statistics Reivew, the incidence rate was 62.5 per 

100,000 men and women per year and the median age at death for lung and 

bronchus cancer was 72 years old, based on the cases diagnosed in 2003-2007 

from 17 SEER geographic areas. The death rate was 52.5 per 100,000 men and 

women per year.  Overall 5-year survival rate was 15.8% based on data from 

1999-2006 with highest survival rate 18.6% for white women and lowest rate 

11.3% for black men. As to the lifetime risk, 6.95% men and women born today 

will be diagnosed with lung and bronchus cancer at some point during their 

lifetime. In other words, 1 in 14 men and women will be diagnosed with lung or 

bronchus cancer during their lifetime. 

Of all cancer incidences among women, breast cancer comprises 10.4% 

worldwide and it is the most common type of non-skin cancer in women and the 

fifth most common cause of cancer death. The primary epidemiologic and risk 
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factors identified are sex, age, lack of childbearing or breastfeeding, higher 

hormones level, race and economic status. 

The most common cause of cancer-related death in men and women is lung 

cancer, responsible for 1.3 million deaths worldwide annually. It is a disease of 

uncontrolled cell growth in tissues in lung. 

Due to the high incidence rate and death rate cause by breast cancer and lung 

cancer, significant amount of statistical analysis has been done on causes of 

cancer, treatment effectiveness, transition between cancer stages, prediction of 

reoccurrence time and survival time.  

1.2 Decision tree 

Recently, the decision tree analysis plays a very significant role in the analysis 

and modeling of various types of medical data, especially in cancer research. In 

addition, decision tree analysis has been extensively used in areas in the 

financial world, for example, loan approval, portfolio management, health & risk 

assessment, insurance claim evaluation, supply chain management, etc. It is 

also widely applied in fields such as engineering, forensic examination and 

biotechnology. The objective of present study is to review the theory behind 

decision tree analysis and to illustrate its usefulness by applying the subject area 

to various applications. Furthermore, statistical software information is given to 

assist scientists in applying decision tree analysis. 

 

 3



1.2.1 Introduction to Decision Tree  

A decision tree as a visual and analytical decision support tool is a hierarchical 

tree structure. Inductive machine learning algorithms are used to learn the 

decision function stored in the data of the form 1 2 3( , ) ( , , ... , )kX Y X X X X Y  that 

maps some sets of attributes 1 2 3( , , ... , )kX X X X Y  to the conclusion about some 

target variable Y, and then the target variable Y can be classified or predicted as 

necessary. The attributes could be any type of variables and based on the type 

of the outcomes that we are interested in, a decision tree can be called 

classification tree in descriptive manner if the outcome is discrete or regression 

tree in a predictive manner if there are continuous outcomes. 

The theory of a decision tree has the following main parts: a “root” node is the 

starting point of the tree; branches connect nodes showing the flow from question 

to answer. Nodes that have child nodes are called “interior” nodes. “leaf” or 

“terminal” nodes are nodes that do not have child nodes and represent a possible 

value of target variable given the variables represented by the path from the root. 

The following graphs are two examples of decision trees of 320 breast cancer 

patients who received the medical treatment of tamoxifen and radiation and 321 

patients who received tamoxifen alone respectively. The target variable is 

relapse time, and the attributes are age, hgb, hist, nodediss, hrlevel, pathsize 

(will be explained in detail in section 3). As can be seen Figure 1.1 and 1.2, not 

all attributes are used to split the nodes. The next section explains the 
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mathematical algorithms of how to construct a decision tree including how an 

attribute and the value of attribute are chosen to split a given node. 

There are several advantages of decision tree over other classification theory 

tools that make decision tree popular besides its simplicity and interpretability. 

The approach is supervised learning that given a training data that consist of 

input and output, we can induce a decision tree even with little hard data; it 

performs well with large data in a short time, and other statistical or mathematical 

techniques can be easily incorporated in it. 

1.2.2 Theory behind Decision Tree Analysis  

The basic idea of decision tree analysis is to spit the given source data set into 

subsets by recursive portioning of the parent node into child nodes based on the 

homogeneity of within-node instances or separation of between-node instances 

with respect to target variables. For each node, attributes are examined and the 

splitter is chosen to be the attribute such that after dividing the nodes into two 

child nodes according to the value of the attribute variable, the target variable is 

differentiated to the best using algorithm. Because of this, we need to be able to 

distinguish between important attributes, and attributes which contribute little to 

overall decision process. This process is repeated on each child node in a 

recursive manner until splitting is either non-feasible or all certain pre-specified 

stopping rules are satisfied. 

 5



Classification & Regression Tree is a decision tree algorithm (L. Breiman, 1984)  

is a non-parametric probability distribution free technique to construct binary 

classification or regression trees as shown in Figure 2.1. Splitting points – 

attribute variables and values of chosen variables – are chosen based on Gini 

impurity and Gini gain are given by: 

2

1

( ) 1 ( , ) ( , ) ( , )
m

i i i

i t f t i f t i f t j
 

     

( , ) ( ) ( ) ( )L L R Ri s t i t P i t P i t      , 

LP

       
 

( )i t YES: p 
NO: n 

 

   RP

 

Figure 1.1.  CART                                      Figure 1.2 ID.3 

where ( , )f t i is the probability of getting i  in node , and the target variable takes 

values in {1,2,3…m}.  is the proportion of cases in node t  divided to the left 

child node and is the proportion of cases in t sent to the right child node. If the 

target variable is continuous, the split criterion is used with the Least Squares 

Deviation (LSD) as impurity measure. If there is no Gini gain or the preset 

stopping rule are satisfied, the splitting process stops. 

t

LP

LP

       ( )Li t       ( )Ri t
YES: 1p  

NO:  1n

YES: ip  

NO:  in

YES: Np  

NO:  Nn
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CHAID (Chi-Squared Automatic Interaction Detection) classification technique 

introduced by Kass (1980) for nominal predictors and extended by Magidson 

(1993) to ordinal predictors is another effective approach for nominal or ordinal 

target variable. CHAID exhausts all possible pairs of categories of the target 

variable and merge each pair until there is no statistically significant difference 

within the pair using Chi-square test. 

ID.3 (Iterative Dichotomiser 3) developed by Ross Quinlan (1986) is a 

classification tree used the concept of information entropy first brought in a 

publication by Claude Shannon and Warren Weaver (1949) . This provides a 

method to measure the number of bits each attribute can provide, and the 

attribute that yields the most information gain becomes the most important 

attribute and it should go at the top of the tree. Repeat this procedure until all 

instances in the node are in the same category. 

As shown in Figure 2.2, It works in the following manner. Suppose there are only 

two outcomes “Yes” and “No” in the root node T  of target variable. Let p and n 

denotes the number of “positive records and negative records, respectively. The 

initial information entropy is given by: 

2 2( , ) log log
p p n n

I p n
p n p n p n p

  
n   

, 

If attribute X with values { , , …, } is chosen to be the split predictor and 

partition the initial node into { , , …,  }, and 

1x 2x

1T

Nx

T2T N ip and denotes the number of in
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positive records  and negative records in the child node i . Then the expected 

information ( )EI X and information gain are given by, ( )G X

,
1

i ip n

p n




)

( ) ( )
N

i i
i

EI X I p n


  , 

Information gain G X . ( ) ( , ) (I p n EI X 

In 1993, Ross Quinlan made several improvements to ID.3 and extended it to 

C4.5.  Unlike ID.3 which deals with discrete attributes, C4.5 handles both 

continuous and discrete attributes by creating a threshold to split the attribute into 

two groups, those above the threshold and those that are up to and including the 

threshold. C4.5 also deals with records that have unknown attribute values. C4.5 

algorithm used normalized information gain or gain ratio as a modified splitting 

criterion of information gain which is the ratio of information gain divided by the 

information due to the split of a node on the basis of the value of a specific 

attribute. The reason of this modification is that the information gain tends to 

favor attributes that have a large number of values. 

The best approach in selecting the attribute for a specific node is to choose the 

one that maximize the given ratio. Stopping rule of C4.5 needs to be pre-

specified and it initiated a pruning procedures by replacing branches that do not 

help with leaf nodes after they are created to decrease overall tree size and the 

estimated error of the tree. A rule set can be derived from the decision tree 

constructed by writing a rule for each path from the root node to the leaf node. 

After C4.5, Quinlan created C5.0 as an extended commercial version of C4.5 
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featuring a number of improvements including smaller decision trees, weighting 

different attributes and misclassification types, reducing noise, speed and 

memory efficiency, support for boosting which gives the trees more accuracy. 

As a binary-split algorithm, like CART, QUEST (Quick, Unbiased, Efficient, 

Statistical Tee) proposed by Loh and Shih in 1997 is a classification algorithm 

dealing with either categorical or continuous predictor X. Pearson’s chi-square 

test is applied to target variable Y and predictor X’s independence if X is a 

categorical predictor. Otherwise, if X is continuous, ANOVA F test is performed to 

test if all the difference classes of Y have the same mean of X. In both cases, p-

values are calculated and compared to a Bonferroni adjusted threshold to 

determine if further Levene’s F-statistics test needs to be performed to determine 

if the predictor should be chosen as the split predictor for the node. 

Overfitting occurs in large tree models where the model fits noise in the data, 

such as including some attributes that are irrelevant to the decision-making 

process. If such a model is applied to data other than the training set, the model 

may not perform well. There are generally two ways to reduce overfitting: stop 

growing when data is split not statistically significant, or grow full tree, and then 

post prune. For example, if Gain of the best attribute at a node is below a 

threshold, stop and make this node a leaf rather than generating children nodes. 
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1.2.3 Survival Tree and Random Forest  

A decision tree is of great importance in classification and modeling of health-

related data and in many situations the data is censored due to various reasons 

one of which is that some patients left before the end of the period of study. Due 

to the incompleteness of the data, a special portioning and pruning algorithm 

should be used to construct a survival tree. Gordon and Olshen (1985) gave the 

first adaption of CART algorithm in censored data using Wasserstein metrics to 

measure distances between Kaplan-Meier curves and certain point masses . 

After that, Segal (1988)  extended regression-tree methodology to right-censored 

target variables by replacing the splitting rules with between-node separation 

rules based on the Tarone-Ware or Harrington-Fleming classes of two-sample 

statistics and a new pruning algorithm was also devised, and  truncation and 

time-dependent covariates were included in the method proposed by Bacchetti 

and Segal (1995). Davis and Anderson (1989) used likelihood-ratio test to split 

nodes under parametric exponential distribution or within-node constant hazard 

assumptions. LeBlanc and Crowley used martingale residuals for splitting rule 

assuming a proportional hazards model and also developed an corresponding 

efficient pruning algorithm, and the model was extended to time-dependent case 

assuming the survival times are piecewise exponential by Huang, Chen and 

Soong (1998).  Both Davis and Leblanc algorithms are based on a definition of a 

within-node homogeneity measure,  unlike Segal’s algorithm which tried to 

maximize between-node separation. Su and Fan extended the CART algorithm 

to multivariate survival data by introducing a gamma distributed frailty to account 
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for the dependence among survival times based on likelihood ratio test as the 

splitting function. In addition, this method was extended to competing risks based 

on proportional hazards for subdistribution of competing risks and deviance was 

used to grow a tree proposed by Ibrahim, Kudus, Daud and Bakar . 

Random forest is an ensemble classifier first developed by Leo Breiman and 

Adele Cutler in 2001. Random forest has more accuracy than the single-tree 

model, and handles a very large number of input variables. Besides, it provides a 

experimental way to detect variable interactions, etc. Instead of using all training 

data, a random sample of N observations with replacement is chosen to build a 

tree. In the tree building process, for each node, a random subset of the predictor 

variables is considered as possible splitters for each node, a predictor excluded 

from one split is allowed to be used as splitters in the same tree. Repeat the 

above procedure until a large number of trees are constructed.  The average of 

the predicted value in regression trees are computed as the predicted value and 

the most frequently predicted category in the classification trees are considered 

to be the predicted category. 

1.3 Survival Analysis  

Survival analysis is widely used in areas that deal with biological organism and 

failure of mechanical systems. It is a branch of statistical analysis that are 

commonly seen in engineering, economics or sociology when modeling time to 

event data, such as death of a cancer patient, failure of a equipment. The 

difference of survival analysis is that it deals with censoring. Censoring is a form 
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of missing data problem which is common seen in those above mentioned areas. 

If it is known only that the time of an event is after some date, it is called right 

censoring. This often happens when the individual are lost to follow up or when 

the study ends after a certain period. Similarly, if the time of event is know to be 

less than a certain time; the data is called left censoring. The object of primary 

interest is to investigate the time of event or the probability of the occurrence of 

an event after certain time, which is also called a survival probability. Time-to-

event data are increasingly common in health research, particularly in 

longitudinal or cohort studies where the onset of certain health outcomes is 

observed. The timing of event onset, in addition to the outcome event (e.g. cure 

of disease, development of a symptom, death), provides important information 

about disease progression or treatment effects. Furthermore, the outcome may 

not be observed on every study subject because of limitations in the study design. 

For example, a study may terminate before a subject develops the symptom of 

interest. This characteristic of incomplete observation is called censoring, must 

be considered in evaluating the study. 

A survival function measures the probability of nonevent after certain time which 

defined as 

)Pr()( tTtS  , 

where  is some time, and t T  is a random variable denoting the time of an event. 

According to definition, a survival function is always between 0 and 1. It must be 

non-increasing and approaches 0 as time goes to infinitely. 

 12



The corresponding lifetime distribution function is defined as 

)(1)Pr()( tStTtF  . 

The hazard function is defined as the event rate at time t conditional on survival 

until time t or later. 

)(

)('

)(

)(
)|Pr()(

tS

dttS

tS

dttf
tTdttTtdtt  . 

1.3.1 Kaplan – Meier Estimator 

Nonparametric analysis is used to analyze data without assuming an underlying 

distribution which avoids potentially larges errors brought about by making 

incorrect assumptions about the underlying distribution. However, nonparametric 

analysis usually generated much wider confidence bounds than those calculated 

via parametric analysis and predictions outside the range of observations are not 

possible. Kaplan – Meier (KM) estimator, also called product limit estimator is 

commonly used to get the survival function of lifetime data. A plot of Kaplan - 

Meier estimate of the survival function is a series steps of declining magnitude. 

When the sample size is large enough with respect to the population, Kaplan-

Meier estimator approaches the true survival function for the population. 

Let  be the probability that an individual will not have reoccurrence of an 

event after time t . For a sample of size , denote the observed times until death 

)(tS

n
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of sample members as n ntttt  ...321 . Then the nonparametric Kaplan-

Meier estimator of the survival function is estimated by: 

i

ii

tt n

n

i

ts 


)(
^ d

 

Kaplan-Meier estimator (also known as the product limit estimator) estimates the 

survival function from survival related data. In many medical researches, it is 

used to measure the portion of patients living for a certain amount of time after 

treatment. Kaplan-Meier is useful when we have censored data, and it is 

equivalent to the empirical distribution when no truncation or censoring occurs. 

1.3.2 Accelerated Failure Time model 

When covariates are considered, we assume that the relapse time has an explicit 

relationship with the covariates. Furthermore, when a parametric model is 

considered, we assume that the relapse time follows a given theoretical 

probability distribution and has an explicit relationship with the covariates. 

Let denote a continuous non-negative random variable representing the 

survival time (relapse time in this case), with probability density function (pdf) 

T

f ( )t ( )F t and cumulative distribution (cdf) Pr( )T t  . We will focus on the 

survival function , the probability of being alive at t  (reoccurrence 

free in this case. In this model, we start from a random variable W with a 

standard distribution in  and generate a family of survival distributions by 

introducing location and scale parameters to relate to the relapse time as follows: 

( ) Pr(S t 

( , 

)T t

)
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    logT Y W    ,                                             (1) 

where  and   are the location and scale parameters, respectively. 

Adding covariates into the location parameter in equation (1) we have 

'logY T x W    , 

where the error term W has a suitable probability distribution, e.g. extreme value, 

normal or logistic. This transformation leads to the Weibull, log-normal and log-

logistic models forT . This type of statistical models are also called accelerated 

failure time (AFT) model.  

1.3.3 Cox Proportional Hazard Model 

An alternative approach to modeling survival data is to Cox Proportional Hazard 

(Cox - PH) model which assumes that the effect of the covariates is to increase 

or decrease the hazard function by a proportionate amount at all durations. Thus, 

'

0( , ) ( ) xt x t e    

or 

'

0

( , )
ln

( )

t x
x

t

 


 , 
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where 0 ( )t is the baseline hazard function or the hazard for an individual with 

covariate values 0, and 
'xe  is the relative risk associated with the covariate 

values x . Subsequently, for the survival functions 

'

0( , ) ( )
xeS t x S t


 . 

Hence the survival function for covariates x  is the baseline survivor raised to a 

power. 

Parameter estimates in the Cox-PH model are obtained by maximizing the partial 

likelihood as opposed to the likelihood. The partial likelihood is given by 

'

'
 uncensored

exp( )
( )

exp( )
i j i

i

Y Y Y j

x
L

x





 . 

The log partial likelihood is given by 

                  ' '

Y  uncensored Y Y  

( ) log ( ) log[ exp( )]
i j i

i jl L x x  



     
  

   .         

In application of the Cox-PH model, we also included the interactions of the 

attributable variables. 
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Chapter 2  

Parametric and Nonparametric Analysis of Breast Cancer Patients with 

Decision Tree Analysis 

2.1 Background and Data 

Extensive literature and studies can be found related to whether radiation shows 

a benefit to breast cancer patients with respect to relapse time. It is clear that 

radiation makes a difference in recurrence for some women. However, the 

potential side effect of heart damage from breast radiation makes it desirable to 

avoid radiotherapy unless it is absolutely necessary. Therefore, it is of great 

importance to identify the patients who could potentially benefit from radiation 

and those who would be put at higher risk for receiving radiation treatment. The 

aim of the present research is to perform parametric, nonparametric, and 

decision tree analysis to answer the above question. Our parametric and 

nonparametric analysis confirms the overall advantage of combined radiation and 

tamoxifen (RT+Tam) over tamoxifen (Tam) alone in reducing the probability of 

relapse; however, after utilizing decision tree analysis in conjunction with survival 

analysis of relapse time of breast cancer patients, we have concluded under 

some conditions, giving both treatments to patients without considering the 

clinicopathological characteristics could be negatively effective or catastrophic. 
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Between December 1992 and June 2000, a total of 769 women were enrolled 

and randomized, of which 386 received combined radiation and tamoxifen 

(RT+Tam), and the rest, 383, received tamoxifen-alone (Tam). The last follow up 

was conducted in the summer of 2002. Only those 641 patients enrolled at the 

Princess Margaret Hospital are included: 320 and 321 in RT+Tam and Tam 

treatment group, respectively. 

This censored data consists of 77 uncensored observations and 564 censored 

observations as shown in Figure 2.1. The censored observations are mostly due 

to two reasons: (1) the breast cancer patient emigrated out of the study area; (2) 

the individual survived (did not experience occurrence) past the end of the study 

period. Due to the fact that nearly 90% of the data are censored observations, we 

take into consideration two datasets, 77 uncensored dataset, and 641 censored 

dataset for later analysis. 

 

 
564 censored  
Observations 

77 uncensored  
Observations 

 

641  
(RT + Tam 320 

Tam 321) 
 

 

 

                                          Figure 2.1 Patient Treatment Data 

In the original data, three relapse events are recorded: local relapse, axillary 

relapse and distant relapse. The original dataset was used to analyze competing 
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risks (also called multiple causes of death) including relapse, second malignancy, 

and other causes of death. Since in the present study we are interested in the 

relapse time regardless of the reoccurrence type, minimum time of the three 

types of relapse is chosen for analysis purpose, and the values of censoring 

indicator variable are adjusted accordingly. Variables assessed at the time of 

randomization are: pathsize( size of tumor in cm) ; hist(Histology: DUC=Ductal, 

LOB=Lobular, MED= Medullar, MIX=Mixed, OTH=Other); hrlevel( Hormone 

receptor level: NEG=Negative, POS=Positive); hgb(Hemoglobin g/l); 

nodediss( Whether axillary node dissection was done: Y=Yes, N=No); age(Age 

at diagnosis in years). All these attributable variables will be used in the modeling 

of breast cancer in a separate study where various statistical models are used to 

identify the significant prognostic factors in the relapse of breast cancer, as well 

as the interactions between the variables and ranking of significant individual 

attributable variables and interactions. 

2.2 Nonparametric Analysis 

Kaplan-Meier estimator (also known as the product limit estimator) estimates the 

survival function from survival related data. In many medical researches, it is 

used to measure the portion of patients living for a certain amount of time after 

treatment. Kaplan-Meier is useful when we have censored data, and it is 

equivalent to the empirical distribution when no truncation or censoring occurs. 

Let  be the probability that an individual will not have reoccurrence of breast 

cancer after time t . For a sample of size , denote the observed times until death 

)(tS

n
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of pateints as n ntttt  ...321 , the nonparametric Kaplan-Meier estimator of 

the survival function is estimated by: 

i

ii

tt n

dn

i

ts( 
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
)

^

 

Kaplan-Meier estimates of the survival curves of relapse time for the two 

treatment groups are shown in Figure 2.2. 

Figure 2.2 Survival Curves of Two Treatment Groups 

Kaplan-Meier is a nonparametric procedure for estimating the survival curve; 

however, it is not commonly used to compare the true mean effectiveness of the 
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two treatments. In the present study, we perform actual nonparametric analysis 

utilizing Wilcoxon rank sum test and Peto & Peto modification of the Gehan-

Wilcoxon test. We proceed in nonparametric direction for comparison purpose 

with the results obtained using parametric analysis. Utilizing the two different 

nonparametric tests, we found the information in Table 2.1, which shows that the 

combination of the two treatments (RT+Tam) is more effective than using the 

single treatment (Tam) which is consistent with Figure 2.1. 

Table 2.1 Test the Difference of Means of Two Treatments 

 Chi-Square Degrees of 

freedom 

P-value 

Log-rank 9.8 1 0.0017 

Peto & Peto 

modification of the 

Gehan-Wilcoxon 

9.6 1 0.00197 

 

2.3 Parametric Analysis 

First, censored dataset which consists of 641 patients are analyzed, and the 

characteristic of the behavior of relapse time in RT+Tam arm is investigated 

through goodness of fit tests. The best probability distribution is the lognormal 

distribution, with corresponding maximum likelihood estimator (MLE) of the 

 21



following form ̂ =5.148, ̂ =2.47 (as shown in Table 2.2). A graphical 

presentation of the cumulative distribution function (CDF) is shown by Figure 2.3 

where Kaplan-Meier curve and its 95% confidence band, as well as CDF of the 

fitted lognormal distribution are plotted. 

Table 2.2 Estimators and log-likelihood of Lognormal Distribution 

 

 

̂  ̂  

 

Log-likelihood 

Totality 4.101 2.04 -367 

RT+Tam 5.148 2.47 -134.4 

Tam 3.491 1.79 -227.3 
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Figure 2.3 Fitted Lognormal CDF Curve for RT+Tam 

As can be seen from the above graph, lognormal probability distribution seems to 

be a good fit for the relapse time of breast cancer patients in RT+Tam, and the 

survival curve from the lognormal probability distribution with estimated 

parameters is very close to the Kaplan-Meier survival curve and it is within the 

95% confidence band constructed from Kaplan-Meier survival curve. 
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Similarly, we perform a parametric analysis for patients in Tam arm. It has been 

proven through goodness-of-fit test that the subject data follows a lognormal 

distribution as well, with MLE of ̂ =3.419, ̂ =1.79 (as shown in Table 2.2). 

Therefore, the final estimated form of the lognormal probability distribution is 

given in Table 2.2 and a graphical form of the cumulative distribution function is 

given in Figure 2.4. 
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Figure 2.4 Fitted lognormal survival curve for Tam 
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Since relapse time in RT+Tam and Tam arm both follow lognormal probability 

distribution, the log-likelihood ratio test can be applied to test hypothesis 

0H : 1  = 2 =  vs. : 1H 1  2  

The log-likelihood ratio test statistic is given by 

T=-2[l( , )-l( 1 , 2 )]=10.6 

with one degree of freedom, and from the Chi-square distribution table, p-value is 

between 0.05 and 0.001. Thus, there is significant difference between the 

locations of the two treatment groups, which is consistent with the conclusion 

using nonparametric tests. 

While for the uncensored dataset of the 77 breast cancer patients, of which 26 

are treated with  RT+Tam  and 51 with Tam alone, in order to perform goodness 

of  fit test to identify the PDF of the 26 patients, we employ bootstrapping 

technique to increase the sample size of the RT+Tam arm. Through goodness of 

fit tests including Kolmogorov-Smirnov, Anderson-Darling and Chi-Square tests, 

the best fit for RT+Tam is log-logistic probability distribution while the best for 

Tam arm is general Pareto probability distribution. Considering the difference in 

probability distributions of the two groups, further analysis or tests are not 

conducted to check the mean difference in relapse time. Since consistent results 

were obtained using nonparametric and parametric tests with regard to the 

censored dataset, we only considered the censored dataset for the subsequent 

analysis. However, as we will see in the following discussion, after applying 
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decision tree analysis to partition the subject data as a function of the tumor size, 

age of patient and haemoglobin, the findings of the two treatments give 

contradictory results which could be quite misleading in the treatment of breast 

cancer patients as the nonparametric and parametric analysis indicates. 

2.4 Decision Tree Analysis 

The clinicopathological characters of breast cancer patients are heterogeneous. 

Consequently, the survival times are different in subgroups of patients. Decision 

tree analysis is used to homogenize the data by separating the data into different 

subgroups on the basis of similarity of their response to treatment. The general 

goal of such applications is to identify prognostic factors that are predictive of 

survival outcome and time to an event of interest (relapse time in this study). For 

example, a tree-based decision analysis enables the natural identification of 

prognostic groups among patients, using information available regarding several 

clinicopathologic variables. Such groupings are important because patients 

treated with RT+Tam and Tam present considerable heterogeneity in terms of 

relapse time, and the groupings allow physicians to make early yet prudent 

decisions regarding adjuvant combination therapies. 

The concept of exponential decision tree analysis [5] is to reduce the impurity 

within nodes by splitting based on covariates using a specified loss function. 

Assuming the hazard rate within a given node is constant, ( ) jh y   for all y in 

group j , and then the survival function within each node is an exponential 

function. The split point is selected so that the loss among the possible binary 
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splits defined by the covariates are minimized. The loss function for a node t  is 

given by 

)/log()(ˆ)( Tttt YDDDtLtR  , 

Where is the number of complete observations at the node and 

is the total observed time. 

t
i

D 

iy

id

t
i

Y 

Considering our main focus here is to compare the two treatments instead of 

analyzing each treatment alone, the maximum tree depth is set to be 3 with 

complexity parameter 0.02. The trees of RT+Tam and Tam are shown in Figure 

2.5 and Figure 2.6 shown below. 

RT+Tam arm is divided into 4 groups denoted by RT1,RT2,RT3,RT4 from the left 

to the right; Tam arm is divided into 4 groups denoted by T1,T2,T3,T4 from the 

left to the right. To further investigate the survival curves of a subgroup from 

different treatment arms, Kaplan-Meier survival curves are plotted in Figure 2.7. 

Using decision tree analysis we conclude that giving radiation to a patient whose 

tumor size exceeds 3.05cm would be catastrophic as has been shown in Figure 

5.3 since patients in RT1 are most likely to relapse. Furthermore, treatment Tam 

is more effective than treatment RT+Tam with respect to relapse time has also 

been shown by the survival curves of T2 and RT2. 
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  Figure 2.5 Radiation +Tamoxifen                              Figure 2.6 Tamoxifen 

In addition, we can conclude that by using decision tree analysis and the 

corresponding survival analysis, we can group the breast cancer patients into 

three clusterings that identify the effectiveness of treatment RT+Tam versus 

treatment Tam. For example, the survival curve of RT3 is very close to that of T1, 

which suggests that for patients whose age is under 74.5 and have tumor size 

between 1.45cm and 3.05 cm, RT+Tam shows no advantage over Tam. Thus, it 

would be desirable for this patient not to consider receiving radiation. 
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Figure 2.7 Survival Curves for Different Subgroups 

We summarize below when RT+Tam and Tam are almost equally effective 

(1)RT4, T2, RT3, RT2, T1 

(2)T3, T4 

(3)RT1 
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Thus, our findings are important in guiding the physicians to recommend 

tamoxifen alone without radiation rather than a combined treatment of tamoxifen 

and radiation when they are equally effective to breast cancer patients with 

certain size of tumor, age and hemoglobin level. 

2.5 Conclusion 

The objective of this chapter is to perform parametric, nonparametric, and 

decision tree analysis to evaluate two treatments that are being used for breast 

cancer patients. Our study is based on utilizing real data which was initially used 

in “Tamoxifen with or without breast irradiation in women of 50 years of age or 

older with early breast cancer” [9], and the data is supplied to us by N.A. Ibrahim 

“Decision tree for competing risks survival probability in breast cancer study” [2]. 

We agree upon certain aspects of our findings with the published results. 

However, in this manuscript, we focus on relapse time of breast cancer patients 

instead of survival time and parametric analysis instead of semi-parametric 

decision tree analysis is applied to provide more precise recommendations of 

effectiveness of the two treatments with respect to reoccurrence of breast cancer. 

Although overall parametric and nonparametric comparisons of RT+Tam and 

Tam arms show that the combination of radiation and tamoxifen is more effective 

than tamoxifen alone with regard to the relapse time of a breast cancer patient, a 

decision tree analysis for censored data reveals that the heterogeneity of 

clinicopathological characteristics lead to important difference between 
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subgroups of the two treatment groups, thus affecting the decision making 

process in choosing suitable treatment for breast cancer patients. 
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Chapter 3  

Statistical Modeling of Breast Cancer Relapse Time with Different 

Treatments 

3.1 Background and Data 

In the current chapter, same data is used to predict the relapse time of breast 

cancer patients with different treatments. The proposed statistical models in the 

present study are constructed for patients in RT+Tam Group and Tam group, 

respectively. Information concerning potential prognostic factors (attributable 

variables) are pathsize (size of tumor in cm) ; hist(Histology: DUC=Ductal, 

LOB=Lobular, MED= Medullar, MIX=Mixed, OTH=Other); hrlevel (Hormone 

receptor level: NEG=Negative, POS=Positive); hgb (Hemoglobin g/l); nodediss 

(Whether axillary node dissection was done: Y=Yes, N=No); age (Age of the 

patient in years). The dependent variable or response variable is the relapse time 

(in years) of a given patient. 

One important question that we will address is that which of these attributable 

variables are significantly contributing to the response variable - the relapse time. 

In addition, identify all possible contributing to relapse time. 
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3.2 AFT Model and Cox- PH Model  

As mentioned, for censored data, the most commonly used methods is survival 

analysis. To model the relapse time of breast cancer patients, accelerated failure 

time model and cox proportional hazard model are applied. The major objective 

of applying these models is to identify which of the six attributable variables are 

significant contributing to the relapse time of breast cancer patients receiving 

different treatments. The six explanatory variables used in the models are 

pathsize (size of tumor in cm) ; hist(Histology: DUC=Ductal, LOB=Lobular, MED= 

Medullar, MIX=Mixed, OTH=Other); hrlevel (Hormone receptor level: 

NEG=Negative, POS=Positive); hgb (Hemoglobin g/l); nodediss (Whether axillary 

node dissection was done: Y=Yes, N=No); age (Age of the patient in years). 

The most commonly used AFT models such as exponential, Weibull and log-

normal AFT models and Cox-PH model are applied. After running the model 

including all covariates and interactions between covariates, number of 

parameters that drive the attributable variables are reduced using stepwise 

regression based on Arkariki Information Critria (AIC) is a measure of the 

goodness of fit of an estimated statistical model. It is trades off the complexity of 

an estimated model against how well the model fits the data. It is given 

by , where 2log( ) 2( )AIC likelihood p k    p is the number of parameter, and k  

is the number of parameters in the distribution. Statistical models with lower AIC 

are preferred. Table 3.1 given below shows the covariates and interactions in the 

related statistical models chosen using the AIC as well as their corresponding p-
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values for the breast cancer patients that were treated with both radiation and 

tamoxifen. *  indicates the variables is statistically significant.  

Table 3.1 Factors in Parametric Regression Models for RT+Tam 

RT+Tam lognormal exponential Weibull Cox-PH 

AIC 237.64 234.49 235.97 245.8 

age 0.002* 0.008* 0.011* 0.01* 

pathsize 0.01* 0.0002* 0.0002* 0.00086* 

nodediss 0.021* 0.009* 0.012* 0.012* 

hrlevel 0.027* 0.010* 0.008* 0.016* 

age:nodediss 0.037* 0.022* 0.026* 0.028* 

nodediss:hrlevel 0.009* 0.0005* 0.0008* 0.00067* 

pathsize:hrlevel 0.078 0.060 0.041* 0.099 

 

As can be seen from the table, age, pathsize, nodediss , hrlevel, and the 

interactions between age and nodediss, and interaction between nodediss and 

hrlevel are significant with respect to relapse time of breast cancer patients who 

received radiation and tamoxifen. The interaction of pathsize and hrlevel proves 

to be significant only in Weibull AFT model. 

Table 3.2 given below address the same aspects as table 3.1, for breast cancer 

patients that were treated with tamoxifen only. 
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Table 3.2 Factors in Parametric Regression Models for Tam 

Tam lognormal exponential Weibull Cox-PH 

AIC 439.34 439.55 440.76 525.89 

age 0.343 0.294 0.287 0.32 

hgb 0.037* 0.645 0.630 0.68 

pathsize 0.339 0.316 0.300 0.33 

nodediss 0.025* 0.017* 0.020* 0.018* 

hrlevel 0.006* 0.002* 0.003* 0.002* 

age:pathsize 0.143 0.112 0.106 0.120 

age:nodediss 0.038* 0.006* 0.007* 0.0065* 

hgb:nodediss 0.054 0.077 0.079 0.075 

age:hgb NA 0.131 0.128 0.150 

 

For patients who received tamoxifen only, only nodediss, hrlevel as single 

attributable variables are significant with respect to relapse time in this group. It is 

worth noticing that although age itself is not significantly contributing to relapse 

time, the interaction between age and nodediss is significant. hgb is found to be 

significant only in lognormal AFT model. 

Comparing the results from the two treatment groups, for each group at 

significance level of 0.05, the three AFT models give almost the same results. 

Significant prognostic factors for relapse time of breast cancer patients who 
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received combined treatment of radiation and tamoxifen are age, pathsize, 

nodediss, hrlevel, age:nodediss, nodediss:hrlevel which appears statistically 

significant in all lognormal, exponential and Weibull regression models. Only in 

Weibull regression model pathsize: hrlevel shows significant contribution to the 

model. For patients who are in Tam arm, all three models show nodediss, hrlevel 

and age:nodediss are significant contributing, only in lognormal regression model 

hgb shows significance. 

Furthermore, significant prognostic factors identified using Cox-PH model confirm 

our conclusion. There are six significantly contributing variables two of which are 

interactions for RT+Tam arm and three significantly contributing variables one of 

which is interaction for Tam arm. 

Next the predicted survival curves of the three AFT models and Cox-PH model 

for each arm are compared to Kaplan-Meier survival curve along with 95% 

confidence band to determine the best predicting model for relapse time and the 

results will be shown and discussed. 
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3.3 Kaplan-Meier VS. Parametric Survival Analysis 

From the above four models, we identified the significant attributable variables 

and interactions between them that contributes to the relapse time of breast 

cancer patients in two different treatment groups. To investigate which model 

gives the best fit of the relapse time of breast cancer patients in those two groups, 

graphical presentation would be a useful tool. In this study, Kaplan-Meier curve 

as a commonly used nonparametric survival curve and its 95% confidence limits 

are plotted against the survival curves obtained from the four models discussed 

above to see which model gives the closest curve to Kaplan-Meier survival curve. 

Using the breast cancer data for patients from RT+Tam arm, the Kaplan-Meier 

curves along with its 95% confidence limits against the lognormal AFT model are 

plotted in Figure 3.1 below. 

As can be seen from Figure 3.1, for the second year, third year and around the 

sixth year , the survival curve from lognormal AFT model runs out of the 95% 

confidence band of Kaplan-Meier curve. 

For exponential AFT model, the same graphical representation is given in Fiugre 

3.2 below. Form this graph, the survival curve estimated from the exponential 

AFT model is off the 95% confidence band from year 1 to year 4, and from year 5 

to year 6. 
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Figure 3.1 Lognormal VS. Kaplan-Meier for RT+Tam 

 

Figure 3.2 Exponential VS. Kaplan-Meier for RT+Tam 
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Figure 3.3 shows the graph of survival curve obtained from the Weibull AFT 

model, it deviates from the 95% confidence band of the Kaplan-Meier in a similar 

pattern as the survival curve of the exponential AFT model. 

0 2 4 6 8 10

0.
0

0.
2

0.
4

0
.6

0.
8

1.
0

0 2 4 6 8 10

0.
0

0.
2

0.
4

0
.6

0.
8

1.
0

Time

su
rv

iv
al

 p
ro

b
a
bl

ity

 

1. Kaplan-Meier 
2.  Weibull 

1 

  2 

Figure 3.3 Weibull VS. Kaplan-Meier for RT+Tam 

However, in Figure 3.4 which shows the survival curve obtained from the Cox-PH 

model, it is clear that most of the time, the survival curve lies within the 95% 

confidence band of Kaplan-Meier curve. 
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Figure 3.4 Cox-PH VS. Kaplan-Meier for RT+Tam  

Thus, we can conclude from the above analysis that Cox-PH model with 

interactions gives a better prediction of relapse possibility of breast cancer 

patients in RT+Tam arm comparing to the three AFT models. 

Similarly, we proceed to perform a survival analysis of the relapse time for the 

patients who are treated with tamoxifen only. Figures 3.5, 3.6 and 3.7 shows the 

survival curves obtained from lognormal, exponential and Weibull AFT models. It 

is clear that those survival curves fall out of the 95% confidence limits of the 

Kaplan-Meier curve most of the time. However, in Figure 3.8 which shows the 

survival curve obtained from the Cox-PH model with interactions, we can see the 

survival curve lies within the 95% confidence band. Therefore, we can conclude 
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that for patients who received tamoxifen only, Cox-PH model with interactions 

gives a more precise prediction of the relapse time than AFT model. 
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Figure 3.5 Lognormal VS. Kaplan-Meier for Tam 
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Figure 3.6 Exponential VS. Kaplan-Meier for Tam 
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Figure 3.7 Weibull VS. Kaplan-Meier for Tam 
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Figure 3.8 Cox-PH VS. Kaplan-Meier for Tam 
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Since Cox-PH model gives better prediction of relapse possibility than AFT 

models for both groups, we recommend Cox-PH model to approximate the 

probability of having 

2-year, 5-year, and 8-year reoccurrence-free and the results are shown in Table 

3.3 below. 

Table 3.3 Reoccurrence-free Probability  

  2-year 5-year 8-year 

RT+Tam K-M 0.98 0.95 0.93 

 Cox-PH 0.98 0.97 0.95 

Tam K-M 0.94 0.88 0.76 

 Cox-PH 0.97 0..92 0.84 

 

Although there is consistency on indentifying significant prognostic factors for 

reoccurrence of breast cancer, it can be seen from the above six graphs, 

regression model might not be a good choice for predicting purpose. Cox-PH 

models with interactions show more efficiency over regression models with 

respect to predicting power. So it would be advisable to use Cox-PH model with 

interactions to predict the relapse time of a breast cancer patient given all the 

information of the attributable variables. And as can be seen form the 

reoccurrence-free table, patients with combined treatments have higher 

possibility of free of reoccurrence of cancer than those with single treatment.  
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3.4 Cure Rate Statistical Model 

3.4.1 Model introduction 

Any clinical trial consists of a heterogeneous group of patients that can be 

divided into two groups. Those who respond favorably to the treatment and 

become insusceptible to the disease are called cured. The others that do not 

respond to the treatment remain uncured. It would be of interest to determine the 

proportion of cured patients and study the causes for the failure of the treatment 

or reoccurrence of the disease. Unlike the above mentioned survival parametric 

regression model and semi-parametric Cox-PH model with interactions that 

assume each patient is susceptible to failure of treatment or reoccurrence, cure 

rate statistical models are survival models consisting of cured and uncured 

fractions. These models are being widely used in analyzing cancer data from 

clinical trials. The first model to estimate cure fraction was developed by Boag 

(1949) which is called mixture model or standard cure rate model. Let  denote 

the proportion of cured patients and 1-  is the proportion of uncured patients, 

then the survival function for the group is given by 

( ) (1 ) ( )uS t S t    , 

where  is the survival function of the uncured group.  ( )uS t
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It follows that the density function is given by 

( ) (1 ) ( )uf t f t  . 

For uncured patients, we assume that the failure time or relapse time T follows a 

classical probability distribution, and also we can add the effect of covariates into 

the model using the parametric survival regression models that we studied in the 

previous section. For cure rate  , it can either be assumed constant or 

dependent on covariates by a logistic model, that is, 

'log( ) exp( )
1

x
 





. 

Thus, covariates may be used either in cure rate or in the failure time probability 

distribution of the uncured patients. These different conditions will be considered 

in developing the modeling process. 

Estimates of parameters in the model can be obtained by maximizing the overall 

likelihood function given by 

   1

1 (1 ) ( ) (1 ) ( )i in
i i u i i i u iL f t S t

    
     , 

where is the observed relapse time, and it i  is the censoring indicator with i =1 

if  is uncensored and it i =0, otherwise. 
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3.4.2 Model results for the breast cancer data 

For the survival regression part, Weibull, lognormal (Lnormal), Gamma, 

generalized 

log-logistic (GLL), log-logistic(Llogistic), generalized F(GF), extended generalized 

gamma(EGG) and Rayleigh parametric regression are used. The following cases 

encompass the above statistical analysis as set forth. 

Case 1: No covariates in and : when both cure rate and survival curve of 

uncured groups are independent of covariates. But we get very different cure 

rates using different distributions which suggest the model is very sensitive to the 

underlying distribution of the failure time of uncured patients. 

( )uS t

Case 2: No covariates in , six single covariates in : when we consider 

covariates in survival function of uncured group, table 3.4 shows there is some 

kind of consistency of cure rate among different distribution assumptions. 

( )uS t

Table 3.4 Cure Rate of Uncured Patients 

 RT+Tam Tam 

 Likelihood Cure rate Likelihood Cure rate 

Weibull -98.9810 0.1000 -171.2401 0.0748 

Lnormal -96.6371 0.0057 -171.4864 0.0748 

Gamma -95.9291 0.0064 -171.6280 0.449 

GLL -96.6900 0.1000 -171.3320 0.0748 
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Llogistic -100.6583 0.1000 -171.6338 0.0748 

GF -96.2180 0.002152 -171.9223 0.0748 

EGG -95.6891 0.0038 -167.6022 0.5582 

Rayleigh -117.5059 0.1000 -204.8281 0.0748 

 

Case 3: Six single covariates in  , six single covariates in : when we 

consider covariates in both cure rate and survival function of uncured group. 

Although we add six covariates into cure rate, there is not much improvement in 

the likelihood and sometimes the likelihood is even lower, which suggests cure 

rate might not be dependent on those covariates; instead, we can consider it as a 

constant. 

( )uS t

Case 4: No covariates in , six single covariates and their interactions in : 

Since there is no significant difference in maximum likelihood between case 2 

and case 3, it shows including covariates does not improve the model much. 

Thus, in the following analysis, we consider cure rate as a constant, i.e. 

independent of those covariates. Table 3.5 shows uniformity of cure rates using 

different parametric regression models. 

( )uS t
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Table 3.5 Cure Rate with Interactions of Uncured Patients 

 RT+Tam Tam 

 Likelihood Cure rate Likelihood Cure rate 

Weibull -100.5568 0.1000 -166.6240 0.0748 

Lnormal -109.4816 0.1000 -167.8399 0.0748 

Gamma -88.9750 0.1000 -167.7902 0.0748 

GLL -89.3220 0.1000 -164.8092 0.0748 

Llogistic -101.7427 0.1000 -165.9777 0.0748 

GF -89.0793 0.1000 -164.6293 0.0748 

EGG -90.5768 0.1000 -163.8507 0.0748 

Rayleigh -95.4851 0.1000 -186.6157 0.0748 

 

After computing the AIC of the above models for each group, the smallest one for 

RT+Tam is Gamma, the smallest one for Tam is EGG. Hence, we choose 

mixture cure model with Gamma regression for uncured RT+Tam group and with 

EGG regression for uncured Tam group. For patients who received radiation and 

tamoxifen, 10% of them will be cured of breast cancer and not be subject to 

reoccurrence. However, for those who received tamoxifen alone, only 7.48% will 

be cured of breast cancer which suggests that giving radiation to breast cancer 

patients who take tamoxifen could possibly decrease the probability of 

reoccurrence of breast cancer. 

 48



3.4.3 Conclusions 

By applying AFT and Cox-PH models, the significant factors and interactions that 

contribute to relapse time of a breast cancer patient receiving different treatments 

are identified and AFT and Cox-PH gives consistent results. With respect to 

predicting survival curve, Cox-PH model gives better fit than AFT models. Thus, 

given information of covariates of a given breast cancer patient, Cox-PH model 

with interactions can be applied to determine the time before reoccurrence of 

breast cancer. 

From a different perspective, cure rate model takes into consideration the fact 

that some part of the patients are cured and will never experience reoccurrence. 

It is found that cure rates for RT+Tam and Tam groups both are independent of 

the covariates and are different. For RT+Tam group, the cure rate is 0.1 which is 

higher than that of Tam group which is 0.0748. Thus, using the cure rate 

statistical model we conclude that patients received combined treatment of 

radiation and tamoxifen are more likely to be cured of breast cancer and less 

susceptible to reoccurrence of breast cancer than those who received single 

treatment. 
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Chapter 4 

Markov Modeling of Stages of Breast Cancer Patients 

4.1 Background 

Markov chain model was first produced by Andrey Markov (1906) theoretically 

and has been applied in various fields such as physics, queueing theory, internet 

application, economics, finance, and social sciences. As an efficient way of 

describing a process in which an individual moves through a series of states in 

continuous time, it has also been extensively used in health filed where the 

progression of a certain disease are of great importance to both patients and 

doctors. In this chapter, the main objective is to investigate the progression of 

breast cancer patients in three different stages who took different treatments, of 

which the first group of patients received combined treatments of tamoxifen and 

radiation, and the other group of patients received tamoxifen alone. The three 

stages that we are interested in are: alive with no relapse, alive with relapse, and 

death as shown in Figure 1. Even though breast cancer patients who have 

reoccurrence may be treated and recovered from breast cancer and become 

alive with no relapse, due to the fact that the data does not include any 

observations of that process, we consider the second state- alive with relapse- as 
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those patients who ever had relapse and are still alive, no matter they are 

recovered from breast cancer or not. 

Alive with no relapse  Alive with relapse 

        Dead  

 

Figure.4.1 Three Stages of Breast Cancer 

4.2  Markov Chain Model 

Markov chain is a model for a finite or infinite random process sequence 

 Unlike i.i.d model which assumes the independency of a 

sequence of events Xi’s, Markov model takes into account the dependencies 

between Xi’s. 

1 2,...,{ , }
NXX X X

Suppose a random process 1 1, 2{ } { ,...}t tX X X X 

{1,2,3,..., }S s

 of random variables taking 

values in a discrete set of states  and tX  represents the state of the 

process of an individual at time . In this study, there are three states: alive 

without relapse, alive with relapse and death and the arrows in Figure.1 show 

which transitions are possible between states. Consider a realization of the entire 

history of the process up to and including time t is 

t

1 1 1{ , ,..., }t t t t 1X x X x X x    where 1 1, ,...,t tx x x  is a sequence of states at different 

times. A random process is called a Markov Chain if the conditional probabilities 
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between the outcomes at different times satisfy the Markov property, that is, the 

conditional probability of an event one step into future conditioned on the entire 

past of the process is equal to the conditional probability of the future event given 

just the present. In other words, the one-step future state depends only on the 

current state: 

t , 

For every sequence 

1 1 1 1 1 1 1 1( | , ,..., ) ( | )t t t t t t t t tP X x X x X x X x P X x X x           

1 1,..., ,t tx x x  of elements of and every

 probability from state to state 

S 1t  . 

The transition  i j  at time and transition intensity 

is defined as 

t  

1( ) ( | )ij t tp t p X j X i   , 

0

( ( ) | ( ) )
( ) limij

h

P X t h j X t i
q t

h

  
  . 

If the transition probabilities do not depend on time, ( )ijp t  can simply be written 

as ijp , then the Markov chain is called time-homogeneous. A transition probability 

matrix ( )P t consists of all the transition probabilities between states in the matrix 

form 

11 12 1

21 22 2

1 2

( ) ( ) ... ( )

( ) ( ) ... ( )
( )

... ... ... ...

( ) ( ) ... ( )

s

s

s s ss

p t p t p t

p t p t p t
P t

p t p t p t

 
 
   
 
  

, 
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where probabilities in each row add up to 1. 

The transition probability matrix can be calculated by taking the matrix 

exponential of the scaled transition intensity matrix ( ) ( )P t Exp tQ  where  

11 12 1

21 22 2

...

...

... ... ... ...

...

s

s

1 2s sq q ss

q q q

q q q
Q

q

 
 
   
 



 

 

The exponential of a matrix  is defined by A

2 3( ) 1 / 2! / 3! ...Exp A A A     

where each summand in the series is matrix products. 

and corresponding states

Next, the intensity matrix and transition probabilities matrix can be obtained by 

maximizing the likelihood . Consider an individual consist of a series of times ( )L Q

1 2( , ,..., )nt t t  1 2( , ,..., )nx x x

i

. More specifically, we consider 

a pair of successive states observed to be and j  at time  and . Three 

(1) If the information of the individual are obtained at arbitrary observation times 

and the exact time of the transition of stages is unknown, the contribution to the 

likelihood from this pair of states is 

it jt

scenarios are considered as follows. 
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( )ij ij j iL p t t   

(2) If the exact times of transitions between different states are recorded and 

there is no transition between the observation times, the contribution to the 

likelihood from this pair of states is 

(ij jp t )ij i ijL t q   

(3) If the time of death is known or j death  

h we denote by 

but the state on the previous instant 

could be any possible state 

between state and death), the contribution to the likelihood from this pair of 

states is 

before death is unknown whic k ( k

i

( )ik j i kj
k j

p t t q


ijL   

After the likelihood function  is constructed, the estimated intensity and 

 maximize . 

. For the patients in Tam group, 51 patients 

( )L Q

( )L Qtransition probabilities would be the ones that

4.3 Breast Cancer Markov Chain Results  

The breast cancer patients are divided into two groups RT+Tam and Tam based 

on the different treatment they received. For those patients who received 

combined treatments, 26 patients experienced relapse, 13 patients died without 

reoccurrence of breast cancer during the entire period of study, 14 died after 

reoccurrence of breast cancer
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experienced relapse, 10 died without reoccurrence of breast cancer, 13 died after 

reoccurrence of breast cancer. 

After r  matrixes for both groups 

are obtained as shown in the tables below. 

able.4.1 Transition Intensity Matrix of RT+Tam 

 State 1 State 2 State3 

unning the Markov model, the transition intensity

T

State 1 -0.02301 0.01957 0.0034 

State 2 0 -0.3074 0.3074  

State 3 0 0 0 

 

able.4.2 Tra nsity Matri

 State 1 State 2 State3 

T nsition Inte x of Tam 

State 1 -0.03917 0.03528 0.003889 

State 2 0 -0.08533 0.08533 

State 3 0 0 0 

As we can observe from the two tables, patients who received single treatment 

are have a higher transition intensity form State 1 to State 2, thus they are more 

likely to have breast cancer reoccurrence. For those patients who died without 

relapse, there is not much significant difference between the two treatments as 

illustrated by the intensity form State 1 to State 3. Combined treatment is also 
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more effective than single treatment with respect to the possibility of death 

without relapse as can be seen from the transition intensity from State 1 to State 

3. However, for those who already experienced relapse of breast cancer, patients 

who received combined treatments are more likely to die than those who 

received single treatment. In other words, combined treatment should be chosen 

over single treatment to avoid reoccurrence, but for those patients who already 

had breast cancer relapse, it would be advisable to choose single treatment to 

extend the time from reoccurrence to death. 

l probability. The two graphs show the 

survival curves of the patients who had reoccurrence and who had no 

reoccurrence in each treatment group. 

 for Tam group in 

Figure 3 which suggests combined treatment of tamoxifen and radiation is not as 

effective as radiation alone for patients who had reoccurrence. 

 

The following two graphs give a clearer view of the effectiveness of the two 

treatments with respect to the surviva

Comparing the above two graphs, it is clear that for patients who are in State 2 

(ever experienced reoccurrence of breast cancer), the curve for RT+Tam group 

in Figure 2 has a much faster decreasing slope than the curve
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Figure.4.2 Survival Curves of Patients in RT+Tam 
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Figure.4.3 Survival Curves of Patients in Tam 
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From the above analysis, Markov chain model gives us recommendations on 

which treatment to choose for breast cancer patients with respect to relapse and 

survival time. Moreover, it provides patients with very important information on 

the exact time or possibilities of reoccurrence and death. Estimated mean 

sojourn times in each transient state for patients who received combined 

treatment are 43.46 and 3.25 in State 1 and State 2, respectively. Estimated 

mean sojourn times for patients who received single treatment are 25.53 and 

11.72 in State 1 and State 2. This further confirms our conclusion that patients 

with combined treatment will stay in State 1 longer than those with single 

treatment, however, for patients who had relapse of breast cancer, patients with 

single treatment with stay alive longer than those with combined treatment. 

Another major concern of this study is to provide transition probability matrix at 

different times so that given specific time period, we will be able to tell the 

probability that a given state will transit to another state. Tables 3 to Table 10 

give 2-year, 4-year, 5-year and 10-year transition probability matrixes of patients 

in RT+Tam and Tam groups. 

Table 4.3 2-year Transition Probability for RT+ Tam  

 Stage 1 Stage 2 Stage 3 

Stage 1 0.9550 0.0285 0.0165 

Stage 2 0 0.5408 0.4592 

Stage 3 0 0 0 
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Table 4.4 2-year Transition Probability for Tam 

 Stage 1 Stage 2 Stage 3 

Stage 1 0.9247 0.0623 0.0130 

Stage 2 0 0.8431 0.1569 

Stage 3 0 0 0 

 

Table 4.5 4-year Transition Probability for RT+Tam 

 Stage 1 Stage 2 Stage 3 

Stage 1 0.9121 0.0426 0.0453 

Stage 2 0 0.2925 0.7075 

Stage 3 0 0 0 

 

Table 4.6 4-year Transition Probability for Tam 

 Stage 1 Stage 2 Stage 3 

Stage 1 0.8550 0.1102 0.0348 

Stage 2 0 0.7108 0.2892 

Stage 3 0 0 0 

 

Table 4.7 5-year Transition Probability for RT+Tam 

 Stage 1 Stage 2 Stage 3 

Stage 1 0.8913 0.0466 0.0621 

Stage 2 0 0.2151 0.7849 

Stage 3 0 0 0 
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Table 4.8 5-year Transition Probability for Tam 

 Stage 1 Stage 2 Stage 3 

Stage 1 0.8221 0.1295 0.0484 

Stage 2 0 0.6527 0.3473 

Stage 3 0 0 0 

 

Table 4.9 10-year Transition Probability for RT+Tam 

 Stage 1 Stage 2 Stage 3 

Stage 1 0.7945 0.0515 0.1540 

Stage 2 0 0.0463 0.9537 

Stage 3 0 0  

 

Table 4.10 10-year Transition Probability for Tam 

 Stage 1 Stage 2 Stage 3 

Stage 1 0.6759 0.1910 0.1331 

Stage 2 0 0.4260 0.5740 

Stage 3 0 0 0 

 

 

 



4.4 Conclusion 

Through Markov chain modeling of the three stages of breast cancer patients: 

alive with no relapse, alive with relapse, and death, it shows that combined 

treatment of tamoxifen and radiation is more effective than single treatment of 

tamoxifen in preventing the reoccurrence of breast cancer. However, for patients 

who had relapse of breast cancer, single treatment of tamoxifen proves to be 

more effective than combined treatment with respect the survival probability. 

Transition probabilities between different stages during 2 years, 4 years, 5 years 

and 10 years are also constructed for predicting purpose. 
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Chapter 5 

Statistical Comparison of Breast Cancer Patients with Different Histology 

Types 

5.1 Background and Data  

The relapse time and survival time of breast cancer patients could be different 

between groups who receive different treatment. Another important factor that 

should be taken into consideration is the histology type of breast cancer patients. 

In order to see the effect of histology type of breast cancer patients on survival 

time, relapse time, the previous mentioned data is divided into the following 

several subgroups shown in the Figure 5.1 based on the histology type and 

treatment they received, those 641 breast cancer patients can be divided into the 

following several subgroups shown in Figure 1 for later analysis. It can be noticed 

that the majority of the breast cancers are ductal (397) or mixed(174), only a 

small number are lobular (31), medullar(5), mucinous (16) or others(18). 
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(16) 
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(18) 
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RT 
(203) 

TAM 
(194) 

RT 
(17) 

TAM 
(14) 

RT 
(82) 

TAM
(92) 

RT 
(1) 

TAM
(4) 

RT 
(8) 

TAM 
(8) 

RT 
 (10)

TAM
(8) 

Figure 5.1.Breast Cancer Patients Grouped by Histological Types and 

Treatments 

Information concerning potential prognostic factors (attributable variables) are 

pathsize (size of tumor in cm); hist (Histology: DUC=Ductal, LOB=Lobular, MED= 

Medullar, MIX=Mixed, MUC=mucinous, OTH=Other); hrlevel (Hormone receptor 

level: NEG=Negative, POS=Positive); hgb (Hemoglobin g/l); nodediss (Whether 

axillary node dissection was done: Y=Yes, N=No); age (Age of the patient in 

years). The response variables we are interested in are survival time and relapse 

time of a given patient. 

In the next several sections, related research of breast cancer based on the 

same dataset is first reviewed, then we proceed to addresses the following 

questions: is there a difference of survival curves between different histological 

types; is there a difference of relapse time between different histological types; 

do patients of different cancer types react differently to treatments with respect to 

survival time and relapse time? 



Despite the usefulness of the previous work done on the dataset, it does not take 

into consideration of the possible different behavior of different histological breast 

cancer types. For example, patients with different cancer type would react 

differently to the same treatments, and also there are potential significant 

differences among various cancer types with respect to survival time and relapse 

time. In this study, we divide the dataset into several subgroups based on the 

histology of the tumors as shown previously, and confine our study to the major 

two breast cancer types: ductal (DUC) and mixed (MIX) to address the following 

questions: 

1. Is there significant difference for survival time among different histological 

breast cancer types? 

2. Is there significant difference for relapse time among different histological 

breast cancer types? 

3. Do patients with different histological breast cancer types react the same 

way to treatment with respect to survival time and relapse time? 

5.2 Comparison of Survival Time and Relapse Time  

It is of importance to see if the survival curves of patients in different cancer 

types are the same. Thus Kaplan-Meier [8] curves are plotted for each of the 

three major breast cancer types. 

Kaplan-Meier estimates of the survival curves of relapse time for the two 

treatment groups are shown in Figure 5.2. 
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DUC  ___   
MIX  ..… 

Figure 5.2. Kaplan-Meier Curves of Survival Time in DUC and MIX 

As seen from the graph, the two curves almost overlap showing there is not 

much difference for survival time of the two breast cancer types. To verify that, 

Log-rank test is applied and p-value of 0.693 showing that there is no significant 

difference between survival curves of ductal breast cancer patients and mixed 

breast cancer patients. This suggests that there is homogeneity of survival time 

with respect to breast cancer types, so when analysis is conducted on survival 

time of breast cancer patients, there is no need to separate data into subgroups 

based on histology type. 

Similar analysis is conducted for relapse time and the Kaplan-Meier survival 

curves are shown in Figure 5.3 below. 
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Figure 5.3. Kaplan-Meier Curves of Relapse Time in DUC and MIX 

Furthermore, p-value 0.516 of Log-rank test indicates that there is no significant 

difference of relapse curve between Ductal and Mixed breast cancer patients. 

5.3 Treatment Effectiveness of Different Histology  

From the previous analysis we find that histology type does not affect the survival 

and reoccurrence behavior of breast cancer patients. Therefore, we proceed to 

investigate the treatment effects in different histology types. In another words, we 

are interested in if combined treatment and single treatment affect survival and 

relapse time in the same pattern for breast cancer patients with different 

histological types. 
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First, the survival curves of survival time and relapse time of patients of 

combined treatment group (RT+Tam) and single treatment group (Tam) are 

compared to see the overall effectiveness of the two treatments. For survival time 

and relapse time, the Kaplan-Meier curves are shown in Figure 5.4 and 5.5 

below. And the p-values of the Log-rank test are 0.379 and 0.00192 for survival 

time and relapse time, respectively. Under significance level of 0.05, it can be 

concluded that there is no significant difference for survival time between the two 

treatments. However, combined treatment seems to be more effective than 

single treatment with respect to relapse time of breast cancer patients. 
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Figure 5.4. Kaplan-Meier Curves of Survival Time in RT+TAM and TAM 
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Figure 5.5. K-M Curves of Relapse Time of RT+TAM and TAM 

Same analysis is conducted to the patients groups determined by various 

histology types. As mentioned above, we confine our analysis to the major two 

histological types: ductal and mixed because the other histology types do not 

have enough number of observations for statistical analysis. After running Log-

rank test for survival time and relapse time with respect to two different 

treatments of each histology type, the p-values are obtained and listed in Table 

5.1. 
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Table 5.1. Log-rank Test for Survival Time and Relapse Time 

Histology Type DUC MIX 

Survival/Relapse Survival 

Time 

Relapse 

Time 

Survival 

Time 

Relapse 

Time 

P-value 0.217 0.0114 0.708 0.0256 

 

As can be observed from Table 5.1, for patients in both DUC and MIX group, 

survival time of patients who received combined treatment does not significantly 

differ from those who received single treatment.  However, there is significant 

difference for relapse time between different treatment groups within both DUC 

and MIX cancer types.  This result is consistent with the result obtained from the 

complete data that consists of all histology types.  Thus, breast cancer type does 

not affect the choice of treatment with respect to survival time and relapse time. 

5.4  Conclusion 

Previous research on real breast cancer data is reviewed and the question of 

homogeneity among different breast cancer histology types is brought into 

consideration. By dividing the data based on histology type, Kaplan-Meier curve 

and Log-rank test are performed to test the homogeneity of survival time, relapse 

time, and treatment effect between the  two major histology types: ductal and 

mixed. Results show there is no significant difference for survival time and 

relapse time between this two histology types of breast cancer, and treatment 
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effect is the same between the two breast cancer types as well. Thus, there are 

no significant treatment effects with respect to survival time for DUC, MIX, and 

the totality data, and combined treatment is more effective than single treatment 

with respect to relapse time for DUC, MIX and the totality data. This finding 

provide useful information for statistical analysis and modeling of breast cancer 

data in the way that all the observations from different histology types can be 

analyzed as a combined dataset because of the homogeneity among different 

histology types instead of splitting them into subgroups, and could effectively 

reduce the time and effort spent on modeling of breast cancer data. 
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Chapter 6 

Sensitivity Analysis of Breast Cancer Doubling Time  

6.1 Background 

Growth rate of breast cancer tumors is a critical aspect to understanding the 

natural history of breast cancer and doubling time (DT) is most commonly used 

to indicate how fast tumors grow. To be more specific, doubling time is the time it 

takes for a tumor to double in size. With respect to that objective, we need to 

identify the geometrical behavior of the tumor so that we can obtain an estimate 

of its volume, we need to identify the mathematical behavior of the growth of the 

tumor and once we have determined the doubling times, we need to obtain the 

best possible fit of a probability distribution that characterizes their behavior. Peer 

P. G. M. et. al in an article concerning age dependent growth rate of primary 

breast cancer assumed one of four possible geometrical formulas to calculate the 

volume of the tumor. If we consider any of the others that are also commonly 

used, the overall results will be different. They also assumed exponential growth 

of the tumor when in fact actual data reveals that the tumor growth is decaying 

exponentially up to the age of 48, then it follows a quadratic growth between the 

age 49 and 68, and then follows a exponential growth up to age 100. Thus, 

assuming exponential growth for all ages will lead to misleading decisions. 
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Furthermore, in the subject paper, they assumed that the doubling time follows a 

two parameter lognormal probability distribution. However, our goodness-of-fit 

statistical testing shows that the lognormal is not the best probability distribution. 

The methodology and results of the subject article lead to a sequence of other 

publications.  

Most recently, Green, L. (2009), in a conference presentation, “Age Dependent 

Screening”  used Peer’s et al. results in their research on the subject matter, that 

is exponential growth of the tumor, the same geometrical volume formula and the 

lognormal probability distribution of the doubling time. Thus, the results that 

followed are subject to the above comments. 

However, it is rarely possible for medical doctors to obtain the exact doubling 

time of a given breast cancer patient since there is no record of two 

mammograms of which the volume of larger tumor is exactly twice as large as 

the other of one given patient. Thus, we need to assume the shape of the tumor 

to estimate the volume of the tumor, and pre-specify the tumor growth model to 

estimate the doubling time. As a result of different volume and growth model 

assumptions, the probability behavior of doubling time can be significantly 

different. 

In the present study we shall consider the four commonly used formulas to 

measure the volume of the tumor, in conjunction with negative exponential, linear 

and quadratic growth behavior of the tumor as a function of age. For each case 

we will calculate the doubling time and proceed to identify the appropriate 
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probability distribution for parametric analysis. Thus, having these various 

scenarios a physician can make the optimal decision concerning his patients. In 

other words, the following questions are addressed: 

1. What is the mathematical growth behavior of breast tumor as a function of age? 

2. What are the time (age) intervals that have the same analytical form of the 

average tumor growth? 

3. What is the best mathematical expression that best characterize the behavior 

of the average tumor size for specific time (age) intervals? 

4. Can we use these analytical characterizations of the average tumor size to 

predict or estimate the rate of tumor growth as a function of age? 

5. Are the four different commonly used volumes to determine doubling time 

robust with respect to the analytical form of the growth of the tumor? 

6. Do the resulting doubling time of the twelve possible configurations of volume 

and analytical form of the average size of tumor results in the same probability 

distribution? 

7. Can we justify using the standard lognormal probability distribution for any of 

the four volumes or different analytical growth of the average tumor size? 
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8. How are the current findings compared with the commonly used standard 

lognormal probability distribution to characterize the probabilistic behavior of the 

doubling times? 

 

6.2 Breast Cancer Data 

The present data was first used by Heuser et.al. (1979) where 108 women 

underwent screening for breast cancer at the Breast Cancer Detection and 

Demonstration Project conducted at the  University of Louisville. All of these 108 

women received mammography as their screening method among which 45 

were diagnosed on the initial mammography; thus, there is no previous 

mammography record. However, for the remaining 64 women, 32 had two or 

more mammograms based on which we conduct the subject study on tumor 

growth. For each of these 32 patients, the mammograms were displayed in 

series, and measurements of the major axis ( a ) and minor axis (b ) are obtained 

from the medio-lateral views as shown in Figure 6.1 and the details are listed 

below in Table 6.1. It is clear that there is no growth of breast tumor in 4 patients. 
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Breast Cancer 
Patients 

(32)  

Initial Date Second Date 

 

Figure 6.1 Breast Cancer Mammogram Data 

Table 6.1 Date and Dimensions of Tumor Observations 

Patient ID Initial Date Initial 

Dimension 

(mm) 

Second Date Second 

Dimension 

(mm) 

1 04/25/75 12*11 01/06/76 30*14 

2 10/15/74 22*17 01/15/75 27*20 

3 01/30/74 10*8 01/28/75 22*15 

4 10/14/74 7*5 07/10/75 16*8 

5 04/12/76 30*20 04/28/77 70*28 

6 08/29/73 6*3 02/11/75 20*5 

7 11/08/73 20*7 11/21/74 30*12 

8 06/04/75 13*10 06/18/76 18*16 

9 01/02/75 30*15 04/01/75 40*15 

10 01/24/74 6*5 01/10/75 18*5 

( ) 1t ( 2 ) t

Major Axis  
(a) 

Minor Axis  
(b) 

Major Axis 
(a) 

Minor Axis 
(b) 
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11 07/17/75 15*15 07/21/76 26*22 

12 02/24/76 5*4 07/22/76 8*4 

13 03/17/75 8*6 03/09/76 12*8 

14 10/09/75 11*8 09/22/76 12*12 

15 11/18/74 13*11 11/07/75 20*13 

16 01/07/75 18*15 05/29/75 18*17 

17 06/23/75 20*18 04/02/75 25*20 

18 02/11/75 12*11 01/09/76 20*15 

19 10/24/74 18*7 06/23/76 19*9 

20 03/23/75 70*70 02/24/76 90*80 

21 10/24/74 22*12 10/09/75 24*14 

22 03/23/75 18*10 04/01/77 21*11 

23 02/20/75 10*6 02/24/76 13*6 

24 10/08/75 25*17 04/01/76 25*17 

25 12/06/74 5*3 03/07/75 5*3 

26 06/26/75 6*5 12/10/75 6*5 

27 02/01/75 8*6 08/01/75 9*6 

28 06/03/75 18*13 06/04/76 19*13 

29 08/03/74 10*8 08/10/75 11*8 

30 02/06/75 6*6 02/23/76 7*6 

31 01/30/74 38*27 01/28/75 44*26 

32 07/15/74 20*12 08/01/75 20*12 
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The above table identifies the patient data of first and second mammograms 

along with the major & minor axis. 

 

6.3 Geometrical Formulas of Tumor Volume 

In the present study we will investigate the volume of the breast tumor that is 

commonly used in the subject matter. 

Spherical Shape: 

3

3

4
rV   ; 

where r is the radius calculated from the major axis, 2/ar   with a being the 

major axis. This formula is commonly used for purpose of simplicity as in 

Hesuer’s paper  and Green’s presentation. 

Averaged Spherical Shape: 

3

3

4
rV   . 

The radius r is the average of the major and minor axis,
6

2 ba
r


 , where a is the 

major axis and b is the minor axis. This formula assumes the same shape of 

tumor but takes into consideration the two measurements instead of focusing on 
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only one dimension of the tumor. This form of the volume was also used in 

Hesure’s paper. 

Oblate Spheroid: 

)
2

()
2

(
3

4 2 ba
V    . 

This formula assumes different shapes of volume as the two above. However, it 

gives more emphasis on the major axis. This formula is also mentioned in 

Hesure’s paper. 

Averaged Oblate Spheroid: 

)
2

1

2

1
(

2

1

2

1

2

1

3

4
babaV   . 

This formula uses the average of major and minor axis’s, thus gives equal weight 

to the two measurements as used in Peer, et. al (1993) publication . 

We shall study each of these volumes separately with respect to different growth 

rate of the tumor and the resulting probability distribution of the doubling time. 

Figure 6.2 below shows a scattered diagram of the average breast tumor size as 

a function of the age of the cancer patients. 
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Figure 6.2 Average Tumor Size VS. Age 

It is clear from the above scattered diagram that the mathematical configuration 

over all the ages is different. Thus, we shall group the average tumor size into 

three age groups. First group starts from 17 to 48, the second group from 49 to 

78, and the last one from 79 years old and on. The first group clearly shows an 

exponential decay, and then flat linear or quadratic decrease and then 

exponential increase.  Thus, we shall approximately partition the average tumor 

sizes into three groups as mentioned above and proceed to identify the best 

mathematical fitting function of the observed data in each of the three regions. 

We begin by graphing respectively the three age intervals, the first being from 

age 17 to 48. Figure 6.3 gives a better diagram of the data in that interval. 

 79



20 25 30 35 40 45 50

10 

20

30

40

50 

age (in years) 

20 25 30 35 40 45 50

10 

20

30

40

50 

 

av
er

ag
e 

tu
m

o
r 

si
ze

  

 

Figure 6.3 Average Tumor Size with Age 17-48 

The best mathematical function that describes breast tumor size as a function of 

age in this interval is given by 

tetf  015254.042)( , 17 48 t . 

A residual analysis supports that gives a good fit of the breast tumor growth 

in the given interval. Furthermore, we can differentiate the above equation with 

respect to t, and evaluate it in a specific age of interest to identify an estimate of 

the rate of growth of the size of the breast tumor. 

)(tf
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The scattered diagram of the breast tumor size between the patients age 

between 49 and 78 is shown below by Figure 6.4. 

 

Figure 6.4 Average Tumor Size with Age 49-78 

Thus, visually it could be approximated by either a linear or quadratic function 

and therefore, we will include both in our statistical analysis. If we assume it is 

linear, the best estimate is given by 

ttf  05925.067865.22)( , 7849  t . 

 

50 55 60 65 70 75 80

age (in years)  

50 55 75 8060 65 70

20 

22 

24 

20 

22 

24 

av
er

ag
e 

tu
m

o
r 

si
ze

  

16 

18 

16 

18 

 81



The quadratic function form of the average breast tumor size in the second 

interval is given by 

200547.0764531.0014257.45)( tttf  , 7849  t . 

Residual analysis reveals that the analytical quadratic function gives a better fit 

than the linear function. However, since some medical scientist use the linear 

function, we will include it in the present analysis. 

Finally, the scattered diagram for breast cancer patients older than 78 years old 

is given by Figure 6.5 below. 

It is clear that the breast tumor size slowly increases exponentially after the age 

of about 78 years old. The best mathematical form that fits the tumor growth 

behavior in this age interval is given by 

tetf  033947.0208443.1)( , . 78t

Residual analysis that we performed supports the quality of the fit for the given 

function in the third age interval. 

Again, once we have identified the analytical function form of the size of the 

breast tumor, we can differentiate it with respect to time (age) and evaluate at a 

specific age to determine the change of the tumor size. 

Now we will proceed to obtain the doubling time for each volume and growth rate 

we have identified. 
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Figure 6.5 Average Tumor Size with  Age above 78 

6.4 Analytical Calculation of Doubling Time 

After having identified the best possible analytical form of the average size of 

breast tumor as a function of age, we can proceed to calculate the doubling time 

of tumors. Since we only have two observations of each patient, for the growth 

function, we have to be specific so that there is only one parameter in the 

function. First, we have to choose the suitable geometric volume of the tumor 

and obtain the corresponding initial volume and second observation of volume. 
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After that we will see the calculation of the doubling time of breast tumor based 

on different growth assumptions. 

Under linear growth, the following relation between two observations from a 

given individual can be obtained: 

tVV o 1 . 

Thus, 

t

VV 01  , 

and 

01

0

01

00002

VV

tV

t

VV
VVVV

DT











    . 

Estimates of  and  DT in the above equations will be obtained using actual data. 

Quadratic growth model takes into consideration the quadratic growth with 

respect to time. As mentioned above, since there are only two observations of 

each patient, only one parameter is involved in the quadratic function. 

2
01 tVV  . 

Thus, 
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2
01

t

VV 
 , 

and 

01

0

01

00002

VV

tV

t

VV
VVVV

DT











  . 

Under exponential growth, the following growth model can be obtained: 

)exp(0 tVV  , 

Where  is the initial tumor size, and oV   and doubling time DT can be obtained 

as 

t

VV olnln 1   ,                                              

and 


2ln

DT  . 

The above two expressions are the true analytical forms and we will use actual 

data to obtain the approximate estimates. 

Thus, we will use the derived analytical forms of DT for the four different volumes 

to obtain the actual doubling times. 
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If we use the finding that the breast tumors follow linear growth, we can calculate 

the doubling times under each of the four different volumes: spherical; averaged 

spherical; oblate spherical; averaged oblate spherical.  The results of the 

calculated doubling times are shown in Table 6.2. Because the last observation 

has no change in major axis, thus there is no change in spherical volume which 

causes the doubling time not applicable.  

Table 6.2 Doubling Time under Linear Growth 

Spherical 

Average 

Spherical 

Oblate 

Spherical 

Averaged Oblate 

Spherical 

17.50427 64.57835 83.94580 50.32479 

108.42457 129.10155 131.68303 124.32018 

37.62438 51.85714 53.90255 48.53482 

24.58487 47.44559 55.44759 42.60181 

32.55380 78.84934 106.62313 70.52073 

14.73484 36.30769 64.29148 36.79299 

159.15789 125.73555 110.91018 126.00000 

229.67263 153.33034 149.33495 192.76923 

64.94595 151.37008 267.00000 167.03911 

13.50000 80.51613 175.50000 141.35294 

87.93395 133.86104 135.60104 66.56897 

48.12661 172.38178 248.33333 120.61721 
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150.73684 205.27523 214.80000 131.47059 

1170.07305 254.67568 239.93750 327.08969 

134.02344 278.69026 308.15827 236.00000 

201.44262 523.18977 499.21875 702.90000 

100.28571 340.55765 353.45455 297.79592 

2078.39533 166.94660 173.40157 148.05788 

335.89119 670.56684 491.34247 703.84615 

1173.42569 550.07197 556.45494 481.98513 

1258.58268 787.28970 721.87500 828.48101 

308.27068 1648.27603 1797.57085 1585.71429 

427.05991 789.45389 1230.00000 678.62069 

2084.07400 1148.29500 1448.00000 881.39130 

1123.86707 5262.16597 6606.00000 4095.72000 

649.70079 3103.11913 3720.00000 2308.96552 

657.11718 2169.25414 2292.00000 1447.57895 

NA  2665.43211 4924.49853 1807.95146 

 

Similarly, for the quadratic growth of the breast tumors, we can calculate the 

doubling times under each of the four different volume formulas: spherical; 

averaged spherical; oblate spherical; averaged oblate spherical.  The results are 

given in Table 6.3 below. 
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Table 6.3 Doubling Time under Quadratic Growth 

Spherical Averaged 

Spherical 

Oblate Spherical Average Oblate 

Spherical 

66.94097 128.5771 146.5951 113.5039 

99.87522 108.9832 110.0674 106.946 

116.866 137.2011 139.8808 132.7333 

81.32238 112.9728 122.1286 107.0509 

111.3687 173.3251 201.5525 163.9158 

88.45451 138.8502 184.7668 139.7751 

245.2788 218.0093 204.7536 218.2384 

295.4244 241.3825 238.2169 251.9422 

76.02756 116.0687 154.1525 112.1624 

68.83676 168.1106 248.1945 152.8585 

180.3762 222.5502 223.9919 211.2543 

84.68096 160.265 192.3582 139.9611 

232.3011 271.0877 277.3056 262.7002 

639.027 298.1305 289.3755 337.8673 

217.8171 314.0961 330.2848 289.0398 

196.6647 272.5673 266.25 315.9301 

191.0602 255.709 260.5058 239.1167 

872.177 246.5128 251.2333 232.1488 
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356.3241 495.4064 424.0653 507.5507 

640.858 455.9904 458.6284 426.8376 

965.0654 524.9299 502.6492 538.4871 

337.2712 1104.411 1153.344 1083.249 

278.0249 539.73 673.6987 500.4109 

874.56 455.8963 511.9453 399.4144 

646.5899 1389.682 1557.049 1226.022 

498.1824 1074.412 1176.367 926.7876 

488.399 910.3049 935.7051 743.623 

NA  983.6421 1337.009 810.115 

     

Finally, as we have shown that in the third age interval, for patients older than 78 

years of age, the breast tumor growth follows the exponential function , we can 

calculate the doubling times under each of the four different volume formulas: 

spherical; averaged spherical; oblate spherical; averaged oblate spherical. 

Table 6.4 Doubling Time under Exponential Growth 

Spherical Averaged 

Spherical 

Oblate Spheroid Average Oblate 

Spheroid 

64.55217 110.74799 126.8724 98.24536 

103.7944 118.52572 120.358 115.1284 

106.3733 121 122.9973 117.70724 
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75.18303 98.26084 105.5403 93.70481 

103.89462 149.7647 173.7151 142.23461 

101.90185 133.89533 165.3744 134.50317 

215.39842 188.78535 176.6209 189 

269.79901 211.30055 208.1474 222.0329 

71.47948 133.39783 214.4385 126.32282 

73.81878 144.91768 221.4563 132.49819 

155.41991 193.48532 194.8772 182.79169 

73.2469 165.79857 219.7407 136.30841 

204.00168 245.83176 252.9968 236.37022 

926.73079 280.29596 269.4032 333.1652 

189.86678 299.2805 320.7961 267.79066 

198.80216 409.89326 393.1944 534.91821 

198.80216 297.65657 306.7415 267.46283 

1564.0522 218.07114 223.0551 203.33541 

347.51902 582.46856 455.7098 605.88872 

929.38618 500.91682 505.442 452.51952 

1109.1505 659.58923 613.6952 688.45059 

324.957 1383.1473 1487.7378 1339.2671 

355.0586 666.93933 974.871 1339.2671 

1568.3256 857.13751 1065.1758 671.71212 

901.79507 3773.2189 4704.9767 2964.3103 

572.56148 2277.4113 2705.3852 1726.1698 
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572.09291 1632.4261 1717.6844 1130.6136 

NA 1970.6666 3537.7173 1375.1483 

 

6.5 Probability Distribution of Doubling Time 

Now that we have calculated the doubling time for each configurations of tumor 

growth behavior and the different volume of the tumor as shown in Table 6.2, 6.3 

and 6.4, we will proceed to identify the best possible probability distribution that 

characterizes the probabilistic behavior of the doubling time. That is, we want to 

statistically using general goodness-of-fit test to identify the best possible 

probability distribution that characterizes the behavior of the doubling time. To 

find the best probability distribution, we utilize three different types of goodness-

of-fit tests including Kolmogorov-Smirnov (1971), Anderson-Darling (1952) and 

Chi-Square (1954) tests. Once we have identified the best possible probability 

distribution, we shall give the basic and useful statistics of each of the scenarios 

for proper and relevant interpretation for comparison purpose along with 

confidence limits of the true doubling time. 

Use the above test criteria for goodness-of-fit, we have found the following 

probability distribution of each growth function. 

Case 1.  Linear Growth and Four Different Volumes 
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(a) Linear Growth and Spherical Volume: Using the data for doubling time as 

given by Table 6.2 and the goodness-of-fit test that we mentioned above, the 

best probability distribution is Fatigue Life with the following probability density 

function (p.d.f). 

/174.79 174.79 / 1 174.79
( ) ( ( ))

2 1.8276 1.8276 174.79

x x x
f x

x x


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 . 

(b) Linear Growth and Average Spherical Volume: The three-parameter 

lognormal is the best fit distribution whose p.d.f.  is given by 

27292.1)052.33(
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(c) Linear Growth and Oblate Spherical Volume: The four-parameter Pearson 

probability distribution is the best fit with p.d.f. 

01378.7
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(d) Linear Growth and Average Oblate Spherical: The three-parameter lognormal 

is the best with p.d.f. 
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In Table 6.5 below, we have calculated the basic statistics and 95% confidence 

limits of the true doubling time along with the same estimates for the commonly 

used lognormal probability distribution for comparison purpose. As can be seen 

that there are significant differences of the basic statistics and confidence limits 

between the justified p.d.f.s and the one that is not statistically acceptable. 

Table 6.5 Distribution of Doubling Time under Linear Growth 

Volume Distribution Mean S.D 95% 

lower 

limit 

95% upper 

limit 

Spherical Fatigue Life  466.69 726.68 11.84 2580.4 

 Lognormal 573.99 1741.8 9.0575 3563.2 

Averaged 

Spherical 

Lognormal 

(3P) 

1030.8 4336.1 40.601 6664.9 

 Lognormal 769.1 1747.2 22.048 4354.5 

Oblate 

Spherical 

Pearson 6 

(4P) 

969.97 2378.3 54.229 15768.0 

 Lognormal 898.33 2028.5 26.075 5074.4 

Averaged 

Oblate 

Spherical 

Lognormal 

(3P) 

963.54 4509.4 40.016 6284.8 

 Lognormal 655.05 1387.4 21.682 3607.4 
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Case 2. Quadratic Growth and Four Different Volumes 

We shall use the same statistical criteria to identify the best possible p.d.f. that 

characterize the doubling time data given in Table 6.3. 

(a) Quadratic Growth and Spherical Volume: Using the data for doubling time 

and the goodness-of-fit test that we mentioned above, the best probability 

distribution is Johnson SB with the following probability density function (p.d.f). 

20.50062 1
( ) exp( (0.84509 0.50062ln( )) ),  where 61.303 1095.303

2 11034 2 (1 )

x
f x x

xx x
    


 

(b) Quadratic Growth and Averaged Spherical Volume: The three-parameter 

Frechet is the best fit distribution whose probability density function (p.d.f.)  is 

given by 

))
814.60

76.138
(exp()

814.60

76.138
(
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1887.1
)( 1887.11887.2


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
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(c) Quadratic Growth and Oblate Spherical: The Burr probability distribution is the 

best fit with p.d.f. 

22469.17215.5

7215.4

))
19.160

(1(19.160

)
19.160

(22469.07215.5
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(d) Quadratic Growth and Average Oblate Spherical: The p.d.f. of the best 

possible probability distribution Frechet is given by 
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The basic statistics along with the corresponding 95% confidence limits are given 

in Table 6.6 below. 

Table 6.6 Distribution of Doubling Time under Quadratic Growth 

Volume Distribution Mean S.D 95% lower 

limit 

95% upper 

limit 

Spherical Johnson SB 331.47 274.66 65.101 994.63 

 Lognormal 336.95 345.11 44.756 1238.0 

Averaged 

Spherical 

Frechet (3P) 873.98 475.31 107.09 3118.6 

 Lognormal 403.76 350.54 70.173 1324.7 

Oblate 

Spherical 

Burr 712.34 477.81 110.47 2823.9 

 Lognormal 435.77 374.89 76.813 1420.7 

Averaged 

Oblate 

Spherical 

Frechet 473.19 422.42 86.007 1997.8 

 Lognormal 377.7 316.05 69.464 1207.9 
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It can be observed that, under linear growth assumption as shown in the previous 

section, Fatigue Life is the best fitting probability distribution. However, when 

quadratic growth function is considered, the best-fitting distribution changes to 

Johnson SB distribution, and the statistical properties such as mean and 95% 

confidence bands change as well. This suggests doubling time is sensitive to the 

growth assumption chosen and thus careful research would be done on the 

shape of breast cancer before assuming any probability distribution for the 

doubling time. 

Furthermore, since doubling time is used widely as an indication of how fast 

tumors grow, mean and 95% confidence bands give both doctors and patients 

useful information on the progression of a breast cancer tumor. However, these 

statistical properties vary significantly from distribution to distribution. Not only 

tumor shape affects the doubling time distribution, tumor growth function also 

affects the way tumor volume is calculated and subsequently the doubling times 

calculated from tumor volumes as illustrated both in the table above and the 

analysis below. 

Case 3. Exponential  Growth and Four Different Volumes 

Utilizing the same approach, we calculate doubling times of the 28 breast cancer 

patients under four different geometric shape scenarios: spherical, averaged 

spherical, oblate spherical, averaged oblate spherical as shown below. 
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(a) Exponential Growth and Spherical Volume: Using the data for doubling time 

and the goodness-of-fit test that we mentioned above, the best probability 

distribution is the three-parameter lognormal with the following p.d.f. 
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(b) Exponential Growth and Averaged Spherical Volume: The three-parameter 

lognormal is the best fit distribution whose probability density function (p.d.f.)  is 

given by 
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(c) Exponential Growth and Oblate Spherical: The three-parameter Frechet 

probability distribution is the best fit with p.d.f. 
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(d) Quadratic Growth and Average Oblate Spherical: The p.d.f. of the best 

possible probability distribution, three-parameter Fatigue Life is given by 
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Their 95% confidence limits of the true doubling time along with those of the 

commonly used Lognormal probability distribution of each group of doubling 

times are given in Table 6.7. 

Table 6.7 Distribution of Doubling Time under Quadratic Growth 

Volume Distribution Mean S.D 95% lower 

limit 

95% upper 

limit 

Spherical Lognormal 

(3P) 

628.61 2459.9 66.894 3824.6 

 Lognormal 419.36 551.35 35.631 1809.0 

Averaged 

Spherical 

Logrnnomal 

(3P) 

778.0 2950.5 102.05 4542.0 

 Lognormal 588.58 793.94 47.653 2578.4 

Oblate 

Spherical 

Frechet 770.88 1529.0 110.75 9073.2 

 Lognormal 685.92 983.2 49.467 3113.7 

Averaged 

Oblate 

Spherical 

Fatigue Life 

(3P) 

563.05 744.44 96.523 2728.1 

 Lognormal 543.93 699.01 48.221 2313.9 
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From the above analysis, it is clear that the probability behavior of doubling time 

varies significantly with respect to the tumor volume, and under all circumstances, 

the popular lognormal probability distribution is far from the best fitting probability 

distribution that characterizes the statistical behavior of doubling time. Besides 

that, there is no consistency between the mean and 95% confidence limits 

constructed from the best-fitting distributions. 

Thus, it is of great importance to investigate the shape of the tumor as well as the 

tumor growth pattern before any statistical analysis of the doubling time are 

calculated from the volume and tumor growth assumptions vary significantly from 

scenario to scenario. 

6.6 Conclusion 

As a result of the present study, we can conclude that 

1. The analytical growth behavior of the average breast cancer tumor size is not 

exponential for all ages as commonly assumed. For example, we have found that 

age between 17 and 48, the growth is exponentially decaying. For ages between 

48 and 78, the tumor growth is best characterized by a quadratic analytical 

function. However, not quite as good as the linear behavior. And exponential 

growth function best fits the average tumor size for patient older than 78 years. 

2. There are four commonly used formulas for determining the volume of breast 

tumor, and using these four configurations of the volume results in different 
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doubling times. Thus, the results are sensitive with respect to the choice of the 

specific volume we use. 

3. Calculation of the doubling time of each volume and different mathematical 

growth results in twelve cases with different probability distribution that 

characterize the probabilistic behavior of the doubling time. Table. 6.8 gives a 

summary of the actual probability distribution that one should use along with the 

types of growth rate the volume. 

Table 6.8 Summary of Results 

 Spherical Averaged 

Spherical 

Oblate 

Spheroid 

Averaged 

Oblate 

Spheroid 

Linear Three-

parameter 

lognormal 

Three-

parameter 

lognormal 

Three-

parameter 

Frechet 

Three-

parameter 

Fatigue Life 

Quadratic Fatigue Life Three-

parameter 

lognormal 

Six-parameter 

Pearson 

Three-

parameter 

lognormal 

Exponential Johnson SB Three-

parameter 

Frechet 

Burr Frechet 
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4. Our findings clearly show that the commonly used exponential growth of 

breast tumor will lead to incorrect decisions. 

5. The commonly used standard lognormal probability distribution to characterize 

the behavior of the doubling time is not correct and will lead to wrong decisions. 

6. One should be very careful in selecting one of the four volumes for a given 

situation because all are sensitive with respect to growth rate an age of the 

patients. 
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Chapter 7 

Statistical Modeling of Lung Cancer Mortality Time 

7.1 Background and Data  

Lung cancer is a disease of uncontrolled cell growth in tissues of the lung and 

one of the deadliest common cancers in both men and women. Annually, 1.3 

million deaths are caused by lung cancer worldwide. It is more common in older 

adults than in people under age 45. It is known that cigarette smoking is the 

leading cause of lung cancer, which means the risk of getting lung cancer is 

strongly associated with the number of cigarettes smoked per day and the time 

when one starts and quits smoking. Secondhand smoke contributes to lung 

cancer as well and there is a chance that people who have never smoked will get 

lung cancer.  

The data that were first collected in 1982 and the mortality follow-up in the 

dataset is complete through 2006. It encompasses 1.2 million subjects in 50 

states. Only data from those who got lung cancer are included in this study, 

whether from smoking or non-smoking. For ex-smokers, the total number of lung 

cancer patients is 5,316, of which 1,523 are females and 3,793 are males. For 
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non-smokers, the total number of lung cancer patients is 2,010, of which 1,386 

are females and 624 are males. 

Although there are many other causes associated with lung cancer such as air 

pollution, radon gas, asbestos, family history of lung cancer, radiation therapy to 

the lungs, and exposure to cancer-causing chemicals, we confined our interest in 

smoking only due to the lack of data pertaining to these other causes. The four 

variables of interest are the number of cigarettes per day (CPD), the age at which 

an individual started smoking ( ), the age at which an individual quit smoking 

( ), smoking duration (in years),

st

qt qt ts  (DUR), and mortality time ( ). The 

following diagram gives a clearer view of what the data looks like. 

mt

 

Figure 7.1. Lung Cancer Data 

The objective of this study is to address the following questions related to some 

of the most important entities in lung cancer: cigarettes per day (CPD), time the 

patient started smoking ( ), time the patient quit smoking ( ), duration of st qt
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smoking which is defined as the difference between the two above mentioned 

times (DUR), and, most importantly, the mortality time ( ): mt

(1) What is the probabilistic nature of mortality time in ex-smoker lung cancer 

patients and non-smoker lung cancer patients, for female, male, and the totality 

of female and male patients? 

(2) Is there significant difference of mortality time between ex-smoker and non-

smoker patients? 

(3) For ex-smokers, are there any differences with respect to the key variables 

such as mortality time, CPD, and duration of smoking between female and male 

patients? 

(4) For non-smokers, can we notice a difference in mortality time between female 

and male patients? 

(5) Can we accurately predict mortality time given information on CPD, starting 

time and quitting time for a specific lung cancer patient who smokes? 

7.2 Results of Parametric Analysis 

Before modeling mortality time as a function of CPD, DUR, , , basic 

parametric analysis should be performed to understand its probabilistic behavior. 

More than 40 different classical distributions are fit to the data and three 

goodness-of-fit tests, Kolmogorov-Smirnov. Anderson-Darling and Chi-Square  

are conducted for the mortality time of lung cancer patients for female ex-

st qt
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smokers, male ex-smokers, all ex-smokers, female non-smokers, male non-

smokers, all non-smokers, respectively. The parameters of the three distributions 

ranked the highest by goodness-of-fit are listed and the 90% and 95% 

confidence intervals are constructed. The results appear in the following tables 

where the first table shows the mean and variance of the best fitting distribution 

and Table 7.2 shows the 90% and 95% confidence bands of the true mean of the 

estimated distributions. 

As can be seen from the tables, the best fitting distribution is always Johnson SB 

followed by Beta distribution and three-parameter Weibull distribution. With this 

finding, we can find the mean and variance and construct the 90% and 95% 

confidence intervals for mortality time. An interesting thing worth noting is that no 

matter which distribution is chosen, Beta, Johnson SB, or three-parameter 

Weibull, their 90% and 95% confidence intervals are very close. Although 

Johnson SB appears to be the best fit for both female and male ex-smokers and 

theoretically a likelihood ratio test could be applied to test the difference of 

means of mortality time in these two groups, the parametric comparison is not 

used here due to the extremely complicated calculation. Furthermore, it appears 

that there are no significant differences between the means and variances of 

mortality times for females and males. However, it is observed that ex-smoker 

lung cancer patients have decreased mortality compared to non-smoker lung 

cancer patients. These parametric results lead us to compare the key variables in 

the different groups, between female and males, or between non-smokers and 

ex-smokers using non-parametric methods as described next. 
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Table 7.1 Mean and Standard Deviation of Fitted Distributions 

 Johnson SB 

 

Beta Three - parameter 

Weibulll 

Female  

ex-smokers 

NA 

 

73.995 

(8.9577) 

74.007 

(8.9365) 

Male ex-smokers NA 

 

74.543 

(8.1875) 

74.542 

(8.2119) 

Ex-smokers NA 

 

74.384 

(8.4155) 

74.387 

(8.428) 

Female  

non-smokers 

NA 76.117 

(10.213) 

76.148 

(10.165) 

Male non-smokers NA 

 

76.011 

(9.6368) 

76.015 

(9.6551) 

Non-smokers NA 

 

76.085 

(10.041) 

76.103 

(10.022) 
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Table 7.2 Confidence Interval of the True Mean 

 Johnson SB 

 

Beta Three - parameter 

Weibulll 

Female  

ex-smokers 

(59.9, 87.622) 

(55.419, 90.07) 

(58.586, 88.016)

(55.364, 90.327)

(58.456, 87.916) 

(55.371, 90.168) 

Male ex-smokers (60.527, 87.493) 

(57.827, 89.55) 

(60.557, 87.52) 

(57.849, 89.591)

(60.304, 87.386) 

(57.519, 89.482) 

Ex-smokers (59.9, 87.622) 

(57.061, 89.701) 

(59.98, 87.659) 

(57.057, 89.85) 

(59.751, 87.541) 

(56.871, 89.68) 

Female  

non-smokers 

(58.145, 91.777) 

(54.682, 93.933) 

(58.304, 91.886)

(54.794, 94.142)

(58.277, 91.742) 

(54.582, 94.205) 

Male non-smokers (58.888, 90.419) 

(55.014, 92.541) 

(58.87, 90.391) 

(55.045, 92.434)

(58.671, 90.298) 

(54.727, 92.425) 

Non-smokers (58.367, 91.373) 

(54.761, 93.541) 

(58.461, 91.428)

(54.811, 93.643)

(58.354, 91.302) 

(54.567, 93.657) 

 

 

 

 107



7.3 Results of Nonparametric Comparison 

After finding the mortality time for both ex-smokers and non-smokers, the next 

question is whether there is significant difference of mortality time between ex-

smokers and non-smokers, between female and male groups. We are also 

interested in the impact of the number of cigarettes smoked per day and duration 

of smoking on female and male smokers (for ex-smokers only since they are all 

zeros for non-smokers). The Wilcoxon Rank Sum two - sample test by Wilcoxin 

(1945) was performed to detect location differences. The results are shown in 

Table 3. For all these tests of hypothesis, we first set the null hypothesis to be 

two-sided, if p-value is large enough; we fail to reject the null hypothesis. 

However, if p-value is small which suggests the rejection of the null hypothesis, 

we proceed to test the one-sided hypothesis. 

Table 7.3 Wilcoxon Two-Sample Test Result 

oH  )(exmt  )(nonmt  )( exfemalemt   

= )( exmalemt   

)( nonfemalemt   

= )( nonmalemt   

female

male

DPC

DPC


 

female

male

RUD

RUD



 

p-value 0.0018 0.1180 0.8106 <0.0001 0.0001 

Conclusio

n 

Reject Accept Accept Reject Reject 

 

 

 108



(1) Mortality time between ex-smokers and non-smokers 

Mortality time of ex-smokers and nonsmokers are compared using the Wilcoxon 

two-sample test. Under hypothesis that )ker( ssmoexmt    )ker( ssmononmt  , the p-value is 

0.0018. Thus, using a significance level of 0.05, we reject the null hypothesis and 

conclude that non-smoker lung cancer patients have longer mortality time than 

that of ex-smokers. 

(2) Ex-Smokers mortality time between female and male 

There is no significant difference between the female and male smokers with 

respect to the death time from lung cancer. For two-sided hypothesis, the p-value 

is 0.1180 and the p-value for one-sided hypothesis is 0.0590 which is still higher 

than 0.05. Thus, using a significance level of 0.05, death time of female ex-

smokers is not significantly different from that of male ex-smokers (p = 0.1180). 

(3) Non-Smokers mortality time between female and male 

As can be seen from the two-sided p-value 0.8106 and one-sided p-value of 

0.4053, there is insufficient evidence to conclude that there is a difference 

between female and male non-smoker lung cancer patients. Thus, no difference 

of mortality time can be found between female and male lung cancer patients, 

both in ex-smokers and non-smokers, which is consistent with the conclusion 

from parametric analysis. 
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(4) Ex-smokers CPD 

As can be seen from the p-value, which is less than 0.0001 under the hypothesis 

that male femaleCPD CPD , there is strong evidence that males tend to have more 

cigarettes per day than females. 

(5) Ex-smokers DUR 

Similarly, the p-value of 0.0001 under null hypothesis that male femaleDUR DUR  

suggests that smoking duration for male smokers exceeds the smoking duration 

of female smokers. 

In summarizing the above analyses, the following conclusions are obtained: 

(1) There is no significant difference in mean mortality time for females and 

males for both ex-smokers and non-smokers. Ex-smokers tend to have a shorter 

mortality time than non-smokers. 

(2) For CPD, mean CPD of males is larger than that of females. 

(3) For DUR, males have longer duration of smoking than females. 

7.4 Results of Modeling of mortality time 

After finding the probabilistic behavior of mortality time and comparison of key 

entities with respect to race and smoking status, we proceed to investigate the 

relation between mortality time and other attributable variables such as CPD , 
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time an individual started smoking ( ), and time an individual quit smoking ( ), 

where multiple regression models is most commonly used tool. First, for the 

female ex-smokers, multiple regression models were run and the backward 

selection method is used to eliminate any variables that do not significantly 

contribute. However, after multiple regression is applied using mortality time as 

the response variable and  , , , and the second-order interaction 

between them as well as the quadratic terms, the R-square (0.2249) of the full 

model is pretty small which indicates multiple regression model is not a good 

choice here. The same procedure was applied to male ex-smokers, where the R-

square was only 0.1301. 

st

st

qt

CPD qt

Although multiple regression models do not perform well, they give us some 

guidance on which variables are not important and can be eliminated in the 

modeling process later. We then proceeded to utilize the survival regression 

model, also called the accelerated failure time (AFT) model, which assumes 

certain distribution of the response variables. 

(1) AFT model 

When covariates are considered, we assume that the relapse time has an explicit 

relationship with the covariates. Furthermore, when a parametric model is 

considered, we assume that the relapse time follows a given theoretical 

probability distribution and has an explicit relationship with the covariates. 

Females 
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Survival regression models were run using statistical software including 

exponential, generalized gamma, loglogistic, lognormal, logistic, normal, and 

Weibull distributions. Their log likelihoods were: -1532, 1215, 1189, 1194, -5326, 

-5309, 1185. Thus, the generalized gamma was determined to prove the best fit 

and backward elimination was used to eliminate the unimportant variables. In the 

final model, the variables left are CPD, , interaction between  and , 

interaction between CPD and , and quadratic terms of CPD and . 

st st qt

qt qt

All terms in the model are significant and they are ranked according to their 

significance. The quadratic term of quitting time ranks first followed by CPD, 

starting time, interaction between starting time and quitting time, quadratic term 

of CPD, and interaction between CPD and quitting time. 

The following percentage plot Figure 7.2 is obtained for the final model. 

After the estimations of the parameters in the model are obtained, the value of 

log(T) can be predicted by plugging the parameters into the equation, and thus 

mortality time T can be calculated by simply taking natural exponentials. The 

mean and standard deviation of the difference between predicted mortality time 

and observed mortality time are 0.1378148 and 7.911363, respectively.  

However, the mean and variance of the difference between predicted log(T) and 

observed log(T) (residual) are only 0.008175027 and 0.1108183, respectively. 

Figure 7.3 shows the survival curves constructed by predicted mortality time and 

observed mortality time. 
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Figure 7.2 Percentage Plot of Female Ex-Smokers 
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Observed:  
Predicted:  ---

Figure 7.3 Predicted Survival Curve of Female Smokers 

After elimination of the insignificant variables, all the variables left in the models 

are significant and the loglikelihood is not much changed. As can be observed 

from the Figure 7.2, all the data falls within the 95% confidence interval of the 

estimated percentage except in the left tail which suggests the model is fairly 

accurate. 

Males 

The same procedure is followed for male ex-smoker lung cancer patients. 

Survival regression models were run including exponential, gamma, loglogistic, 
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lognormal, logistic, normal, and Weibull. And their log likelihoods are as follows: -

3814, 3209, 3128, 3160, -13152, -13093, 3121. Thus, the three parameter 

gamma is chosen to be the best fitting distribution and backward elimination is 

used to eliminate interactions between CPD and ,  and , and the quadratic 

term of  . In the final model, the variables left are CPD, , , interaction 

between CPD and , and quadratic terms of CPD and . 

st st

t

qt

st st qt

qt q

All the terms are significant, and quadratic term of quitting time ranks first 

followed by quitting time, CPD, starting time, interaction between CPD and 

quitting time, and quadratic term of CPD comes last. 

 

Figure 7.4 Percentage Plot of Male Ex-Smokers 
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Similarly, after plugging the estimated parameters into the model and obtaining 

the value of log(T) , mortality time T can be easily calculated by taking natural 

exponentials. The mean and standard deviation of the difference between 

predicted mortality time and observed mortality time are 0.1439845 and 

7.651358, respectively.  However, since the model is constructed using log(T) as 

the response variable,  the mean and variance of the difference between 

predicted log(T) and observed log(T) are only 0.007539421 and 0.1054347, 

respectively, which indicates the predictive power of the model.  Figure 5 below 

shows the survival curves constructed by predicted mortality time and observed 

mortality time. 
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Observed:  
Predicted:  ---

Figure 7.5 Predicted Survival Curve of Male Smokers 
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As can be observed from Figure 7.4, the percentage calculated from real data 

falls well within the 95% confidence interval constructed from the mode. This 

suggests the model is fairly accurate. 

 

7.5 Discussion 

The current chapter performs parametric and nonparametric analysis to address 

some very important questions concerning lung cancer utilizing real lung cancer 

data:  What is the probabilistic nature of mortality time in ex-smoker lung cancer 

patients and non-smoker lung cancer patients, for female, male, and the totality 

of female and male patients? Is there significant difference of mortality time 

between ex-smoker and non-smoker patients? For ex-smokers, are there any 

differences with respect to the key variables such as mortality time, CPD, and 

duration of smoking between female and male patients? For non-smokers, can 

we notice a difference in mortality time between female and male patients? Can 

we accurately predict mortality time given information on CPD, starting time and 

quitting time for a specific lung cancer patient who smokes? Thus best fitting 

probability distributions are identified and their parameters are estimated. Mean 

mortality times are compared between non-smokers and ex-smokers, female 

non-smokers and male non-smokers, and female ex-smokers and male non-

smokers. Important entities related to lung cancer mortality time, such as 

cigarettes per day (CPD), and duration of smoking (DUR), are compared 

between female and male ex-smoker lung cancer patients. Finally, a model is 
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developed to predict the mortality time of ex-smokers with a high degree of 

accuracy. 

By using parametric analysis, distributions of mortality time for both female and 

male ex-smokers and non-smokers are found. Ninety percent and 95% 

confidence intervals are constructed which provide basic information on the 

probabilistic behavior of mortality time. Using nonparametric methods, we found 

that there is no significant difference in mean mortality time for females and 

males for both ex-smokers and non-smokers. Ex-smokers tend to have a shorter 

mortality time than non-smokers; mean CPD of males is larger than that of 

females; males have longer duration of smoking than females. Lastly, an 

accelerated failure time model is constructed for female and male lung cancer 

patients, respectively, so that given information on cigarettes per day, time 

started smoking, and time quit smoking of a specific smoker, mortality time can 

be predicted. 
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Chapter 8 

Conclusion and Future Research 

8.1 Conclusions 

We applied various statistical approaches to modeling and predicting the survival 

time, relapse time of breast cancer patients, mortality time of lung cancer patients. 

We also utilized parametric and nonparametric comparisons including decision 

tree techniques to investigate the effectiveness of breast cancer treatments and 

showed the combined treatment of Tamoxifen and radiation is not always more 

effective than Tamoxifen only and different treatment should be given to patients 

with heterogeneous prognostics factors. Markov Chain also confirmed that 

different treatment should be given based on the stages of breast caner patients 

and the transition probability are calculated between stages of patients with 

different treatments.  

We also used parametric analysis to show the sensitivity of breast tumor 

doubling time with different volume and growth assumptions. The results showed 

the probabilistic behavior of doubling time is very sensitive to the choice of 

volume and growth assumptions of tumors and lognormal probabilistic 

distribution is not the best choice to characterize tumor doubling time. 
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Nonparametric comparisons are conducted to analyze the mortality time between 

different genders, smoking status and mortality time is modeled for prediction 

purpose.  

8.2 Future Research  

Future validation of the models may be conducted using cross validation or by 

using new data. Other datasets such as SEER could provide more relevant 

information on breast cancer such as surgery, chemo theory, number of lymph 

nodes involved, ect, thus providing more compressive understanding of breast 

cancer. With the increased number of variables and need to identified attributable 

variables, considering the fact that accelerated failure model is extensively used 

in survival analysis and current statistical software does not provide variable 

selection in the accelerated failure time regression model, statistical package 

should be developed to satisfy such need. Currently a stepwise selection SAS 

macro based on p-value in accelerated failure model SAS procedure as shown in 

Figure 8.1 has been written and will be implemented the analysis in the future.  

Stepwise Selection Algorithm: 

1. Run univariate regression with each variable; select the one with the lowest p-

value into the initial model 

2. Run the existing model, if any term in the model has p-value > exit tolerance, 

remove the variable with largest p-value and go to 3. 
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3. Run the model with each remaining variable added to the existing model one 

at a time, if any term in the model has p-value < entrance tolerance, add the one 

with smallest p-value and repeat 2 and 3. 

4. Stop until all the terms in the model have p-value < exit tolerance, and all the 

remaining variables have p-value > entrance tolerance if added to the existing 

model one at a time. That is, no variable can be eliminated from the existing 

model, and no variable needs to be added to the existing model. 

                                   %SurvivalSelection 
         

                                         %ScanVar 
 

                                       %UniFit 
 
 
 
                                          

                                           %Selection                                                                                Loop 
                                                                      
       

 
 
 
 
                          
                                                   

 
Yes                                                                                                       No   

 
 
 
 
 
 

                                                                                            Yes 
                                                                                                   

                                                                                                 
                                                       No                                       

PROC LIFEREG: fit univariate model with each covariate. 
Create data set in_model with the covariate with lowest p-
value,  and out_model with the rest covariates 

PROC LIFEREG: fit  model with covariates in in_model 

Identify max p-value 
Is max p-value > &PEXIT?  

Remove variable from in_model , 
add variable to out_model. 

PROC LIFEREG: fit model with covariates in in_model 
plus one variable at a time in out_model  

Identify min p-value of out_model variables 
Is min p-value < &PENTRANCE?  

Final Model  

Remove variable from 
out_mode, 
Add variable to in_model 

 

Figure 8.1 Stepwise Variable Selection Macro 

Last but not least, the methods used in the current study could be implemented 

in the study of other types of cancer in providing important information on 
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treatment of cancer patients, transition of cancer stages and prediction of 

reoccurrence and survival time.  
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