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Abstract 

 

 

 

 

 For many years, incompatible computer-aided design (CAD) packages that are 

based on Non-uniform Rational B-Spline (NURBS)  technology carried out the exchange 

of models and data through either neutral file formats (IGES or STEP) or proprietary 

formats that have been accepted as quasi industry standards.  Although it is the only 

available solution at the current time, the exchange process most often produces 

unsatisfactory results.  Models that are impeccable in the original modeling system 

usually end up with gaps or intersections between surfaces on another incompatible 

system.  Issues such as loss of information, change of data accuracy, inconsistent 

tolerance, and misinterpretation of the original design intent are a few examples of 

problems associated with migrating models between different CAD systems.  While these 

issues and drawbacks are well known and cost the industry billions of dollars every year, 

a solution to eradicate problems from their sources has not been developed.  Meanwhile, 

researchers along with the industries concerned with these issues have been trying to 

resolve such problems by finding means to repair the migrated models either manually or 

by using specialized software. 

Designing in recent years is becoming more knowledge intensive and it is 

essential for NURBS to take its share of the ever increasing use of knowledge.  NURBS 

are very powerful modeling tools and have become the de facto standard in modeling.  If 



 

x 

 

we stretch their strength and make them knowledge driven, benefits beyond current 

expectations can be achieved easily. This dissertation introduces knowledge guided 

NURBS with theoretical and practical foundations for supporting design intent capturing, 

retrieval, and exchange among dissimilar CAD systems.  It shows that if NURBS entities 

are tagged with some knowledge, we can achieve seamless data exchange, increase 

robustness, and have more reliable computations, all of which are ultimate objectives 

many researchers in the field of CAD have been trying to accomplish for decades.  

Establishing relationships between a NURBS entity and its origin and destinations can 

aid with seamless CAD model migration. The type of the NURBS entity and the 

awareness of any irregularities can lead to more intelligent decisions on how to proceed 

with many computations to increase robustness and achieve a high level of reliability.  

As a result, instead of having models that are hardly modifiable because of 

migrating raw numerical data in isolation, the knowledge driven migration process will 

produce models that are editable and preserve design intent.  We have addressed the 

issues not only theoretically but also by developing a prototype system that can serve as a 

test bed.  The developed system shows that a click of a button can regenerate a migrated 

model instead of repairing it, avoiding delay and corrective processes that only limit the 

effective use of such models. 
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Chapter 1---Introduction 

 

 

 

 

1.1 Motivation and Problem Formulation 

Most current Computer-Aided Design (CAD) systems primarily focus on 

designing and manufacturing capabilities. They accommodate only geometric and limited 

production data, ignoring one of the most important factors in the designing process, 

namely the design intent.  Some commercial CAD systems retain the design process 

history.  However, when a CAD model is converted from one system to another, using 

natural format files, the modeling history, the knowledge used during modeling process, 

and the design intent are all lost and cannot be recovered.  If CAD systems can encode 

and support knowledge and design intent at the lowest level, along with the geometries of 

each Non-uniform Rational B-Spline (NURBS) entity during the modeling process, a 

wide range of benefits can easily be achieved.  Benefits can be as important as enhancing 

robustness that has been hindering CAD system builders for many years to overcoming 

the more serious issues usually stemming from data migration and inconsistencies across 

incompatible CAD systems, which cost industries and governments billions of dollars 

each year [1]. 

To put things in perspective for the reader, a simple example will illustrate why it 

is important to support design intent in CAD modeling.  Figures 1.1 and 1.2 are 
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renderings of a complete intended design of a flash drive.  This design was generated 

with Rhino, the NURBS modeling system for Windows. 

 

 

Figure 1.1.  USB drive designed with Rhino modeling system 

 

 

 

Figure 1.2.  Parts of the USB 

 

To be able to send or open the model in another system, e.g., CATIA, the designer 

will have to export the intended model to a neutral format.  Usually designers use one of 
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the two standards: Initial Graphics Exchange Specification (IGES) or Standard for the 

Exchange of Product model data (STEP).  Other non-standards or de facto standards, 

such as STL and DFX, can be used as well.  The receiving system, CATIA in this case, 

will have to reverse the mapping process by remapping the migrated entities from the 

neutral file (in IGES or STEP format) to its local proprietary format.  Figure 1.3 shows 

schematically how the process works between two CAD systems. 

 

 

Figure 1.3.  Process of data exchange 

 

While this seems feasible and should not introduce inaccuracies, the processes of 

data exchange are afflicted by several problems, such as information loss (how entities 

are created), total loss of design intent (symmetry, equality, parallelism, perpendicularity, 

concentricity, etc.), and change of data (analytic surfaces such as cones and planes 

changed into NURBS surfaces or spline surfaces). 

The body of the flash drive without the sleeve, shown in Figure 1.4 (Part 4 in 

Figure 1.2), is constructed from 10 surfaces.  Five of the original 10 surfaces 

topologically have changed after converting the surfaces into CATIA‘s implementation 
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of IGES.  Cracks on the left side of the top surface are introduced.  Recall that model 

rendering is a visualization of the geometries of the model that are usually sent to 

downstream applications such as Rapid Prototyping, CAE, and CAM packages.  If this 

model is to be sent to a CAM for machining, surfaces have to be continuous or tangent to 

one another.  CAE systems (FEA/CFD) will also be affected by the gaps and cracks since 

an accurate tessellated model to simulate stress, strains, and temperature differences 

cannot be achieved.  Therefore, neither horizontal migration (CAD to CAD) nor vertical 

migration (CAD to Downstream Applications) can be subjected to these issues. 

 

 

Figure 1.4.  Model converted to CATIA implementation of IGES 

 

To remedy problems in a CAD model, such as cracks, gaps, overlaps, self-

intersecting surfaces, and change in topologies, CAD designers at the receiving ends will 

have to fix, patch, or repair the models manually or use specialized software [2,3].  

However, patching up and fixing CAD models based on NURBS will create another 
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dimension to the problem [4].  For example, to correct the gaps and cracks that appear in 

Figure 1.4, three possible approaches can be used. 

The first is to generate a small patch that fills the gap.  Many CAD systems will 

provide a patch operator.  However, this does not work if the objective is to insert a tiny 

patch between two large surfaces. Bulged, rounded, or sometimes unpredictable patches 

will be created because continuity conditions require the use of existing cross-boundary 

derivatives of the two surfaces [4,5].  Figure 1.5 shows the result from the patch operator 

in Rhino.  The produced patch disfigures the model to point of being hardly recognizable. 

 

 

Figure 1.5.  Patch operator in Rhino 

 

The second approach is to extend the existing surfaces to fill the gap.  While this 

is a better approach, the original tensor product surfaces may not be extended in the 

tensor product sense and the extension is not unique [5].  The third approach is to extract 

the boundary curves of the two offending surfaces manually and rule another long and 

thin surface between the two surfaces as in Figure 1.6.  In this case it is feasible since we 

have two boundary curves of the same length and direction.  If the boundaries are of 
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different lengths and directions, then the designer must creatively come up with a patch 

that will fit.  The designer also needs to account for continuities among the three surfaces 

to ensure smoothness. 

 

 

Figure 1.6.  Ruled surface (thin patch) 

 

In the best-case scenario, one can ignore the fact that this model might go to a 

third and fourth system, resulting in more repairs. The design intent, however, has never 

made it from the first conversion of the model. 

If CAD systems can preserve the designer‘s intent and endow sufficient 

knowledge in each NURBS entity, the receiving systems can regenerate the whole model 

or parts of the model without having to repair it. Systems can also verify that the design is 

the intended design. Other advantages that can be achieved include but are not limited to: 

evaluating the chosen design, mining and browsing the whole and partial designing 

process, tradeoffs between alternative designs and priorities [6],  justification of why one 

choice is considered over another, and documentation that can be valuable for both the 

producers (designers)  and consumers (manufacturers). 
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1.1.1 Why isn’t Design Intent Supported Yet? 

If design intent in the modeling process of an artifact has such potential values, 

and there is widespread agreement on the need to support it [6-8], then why is it not in 

widespread use? There are a number of reasons why CAD systems in existence do not 

support the exchange of design intent. 

One difficulty, despite a good deal of research, is the capture and supporting of 

design intent in general.  Intrusive recording of design intent can be time consuming and 

expensive [9].   Designers will be reluctant to spend the time to document, among many 

other parameters, the type or what NURBS entity they are creating, the origin or how it 

was created, and the destination or where it is going to be used.  If deadlines are an issue, 

designers will tend to resist spending time on documenting and recording their intentions 

especially if the difference between a project that meets its deadlines and is completed 

versus one that did not meet deadlines results in cancellation [10].  In their survey [8], 

Tang et al. stated that 90% of the participants agree on the important of design intent, 

however, 60% do not care to document it because of time constraints.  Capturing designer 

intent for a NURBS model should be non-intrusive but should be modifiable if the 

designer finds the need to change it. 

Another issue affecting the likelihood of designers to record their intent is that 

designers do not gain immediate benefits from the extra efforts put into recording their 

intent [10].  This provides little incentive to take the extra time and effort to record the 

design intent intrusively as stated previously.  It is common for companies to outsource 

the modeling of an artifact for reasons such as the developing company‘s superior 

knowledge of the development of that particular object.   When it is time to deliver the 
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model, it could be in a neutral format (IGES or STEP), and the model could suffer from 

many issues as stated before.  It is the receiver of the CAD model who bears the burden 

of not supporting and exchanging the design intent.  Supported design intent in NURBS 

modeling should provide incentives for the designers (not only for the receivers) in order 

to make sure that their intent is recorded correctly.  Immediate benefits include, for 

example, ―what-if scenarios‖ that can be supported by design intent. 

Another reason for not supporting design intent is the lack of standardized design 

intent.  The survey in [8] stated that 40% of the designers do not document design intent 

because of non-standardization.  Design intent is not easy to standardize in general since 

it is difficult to quantify.  Geometries are easy to standardize since they are well-defined.  

Design intent in a CAD environment has to be well-defined and structured in order to 

make it standard.  If we can find concise yet expandable structured design intent to 

support, the idea to standardize it can emerge to the surface.   Fortunately, structuring 

design intent in NURBS modeling can be achieved if NURBS entities are tagged with 

some extra knowledge. 

A final reason is the ―push‖ for standardization.  The first version of IGES as a 

standard to exchange and transfer designs among dissimilar CAD systems was released in 

1981.  However, it was not widely used until years later (1988) when the U.S. 

Department of Defense (DoD) required that all engineering drawings, circuit diagrams, 

etc. be delivered in electronic form, and specifically in the IGES format [11].  By pushing 

these requirements on subcontractors, all Computer-Aided technologies (CAx) vendors 

who want to market their product to DoD subcontractors were pushed to support IGES 

format files.  If key players in the market ask for design intent to be supported and 
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standardized, then CAx vendors will follow.  With the advances in technology, CAD 

models will only get more and more complicated and knowledge intensive; with it, the 

need to support design intent will only grow. 

Literatures relevant to the topic agree on the need to support design intent; 

however, how to support and exchange it among the incompatible CAD systems is not a 

trivial problem to solve [7]. Chapters 3, 4, and 5 discuss the solution.  They provide the 

needed theory as well as a  prototype system to illustrate that with the right approach, a 

well-defined and structured design intent can be captured automatically to be exchanged 

among CAD systems environments and lay the ground for possible future standardization 

of design intent. 

 

 

1.2 Prior Works 

Research in the area of design intent, knowledge-guided systems, and 

interoperability among systems has been active for the past two decades.  Although 

thorough research on relevant topics can be performed, it would be tedious to cover all 

the work related to the problem of interest in details.  Therefore, we will primarily focus 

on the most significant topics and contributions.  Section 1.2.1 discusses research in the 

area of design intent.  Section 1.2.2 details the works on CAD models repair.  Section 

1.2.3 provides a literature review on attempts to exchange design intent.  Finally section 

1.2.4 summarizes the research and history of CAD models‘ exchange including both 

standards and non-standards formats. 

 



 

10 

 

1.2.1 Design Intent 

Research in design intent covers a wide range of fields and topics resulting in a 

large body of papers and approaches.  Researchers from software engineering, civil 

engineering, artificial intelligence, mechanical design, knowledge-based engineering, 

design manufacturing, and cognitive science are among the research communities that 

relate to this concept.   Research is quite diverse in both depth and involvement.  Some 

pursue this concept at a theoretical level while some others create prototype systems that 

are able to capture and retrieve designers‘ intent.  A number of authors from different 

fields try to formalize definitions to terms that are used inconsistently and 

interchangeably, e.g., design intent, design rationale, and design history, while others try 

to demystify the distinctions and overlaps among these terms [12].  Below are selective 

definitions from different fields that researchers in the area of design intent are interested.   

Gurber, from the Knowledge-based and Systems Engineering [13] argues that 

design rationale and intent can be constructed form design history. Garcia [14] states that 

―design rationale can be viewed as the design history – the sequence of events that 

occurred while performing the design.‖ Conklin and Yakemovic from Human-Computer 

Interactions [9] define design rationale as the reason for constructing an artifact in certain 

way. 

From the Artificial Intelligence standpoint, Sim and Dufy [15] describe design 

intent as ―the reasoning and argument that lead to the final decision of how the design 

intent is achieved.‖  Ullman [16] views design history as ―a record of the rationale behind 

design decisions and of the intent of designers.‖ Louridas and Loucopoulos from 

Software Engineering [17] argue that ―design rationale aims at capturing the why behind 
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the how in design, i.e., on externalizing and documenting the reasons behind design 

decisions and artifact features.‖ 

Iyer and Mills [12] define this concept most clearly and comprehensively in their 

survey on design intent.  They state that  ―design intent is application, domain and 

context dependent knowledge that describes design space, represents design alternatives 

and processes history, justifies design solutions and decisions and determines the 

characteristics of features and entities and the relationships among them‖ [12]. 

While these definitions span many fields, have merits and overlaps, the focus of 

this section is to give an overview of the most influential contributions on general design 

intent and rationale.  

 

1.2.1.1 Existing Design Intent System 

There are numerous design intent tools that have been developed since the early 

1980‘s, but only a handful have made it into practical use in industry.   The first notable 

work on design intent is by the design theorists Rittel and Kunz in 1970 [18]. They 

developed Issue-Based Information System (IBIS) tool to structure the intent as 

argumentation.  IBIS is only an argumentative notation, not software.  However, it was 

very influential in the early developments of design intent and rationale systems; several 

prototypes have been proposed and developed as variations of IBIS notations.   IBIS 

works by creating ―issue-maps.‖   The map consists of an issue (design question) 

specifying the main problem with resolutions answering the design question and 

arguments supporting or objecting to these positions, as in Figure 1.7.  It supports 9 

relations (Generalized, Specialized, Questions, etc.). 
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Figure 1.7.  Relationship of issue, position, and argument 

 

Two immediate variations of IBIS are:  gIBIS (for graphical IBIS), which has 

been used in an influential hypertext implementation, and itIBIS (for indented text IBIS), 

which uses only indented text for the representation of IBIS trees [19].   gIBIS and itIBIS 

are the earliest case study of the use of design intent and rationale in a real industrial 

design setting where they used it at NCR.  Two extensions of IBIS are Procedural 

Hierarchy of Issues (PHI) [20] and Potts and Bruns [21].  Decision Representation 

Language (DRL) [22] extends the Potts and Bruns model. As indicated by its name, DRL 

is an expressive language that focuses more on the representation of decision making and 

its rationale than on design rationale. Drawbacks for these four systems include, but are 

not limited to, user-intervention knowledge capture and inability to retrieve captured 

knowledge. 

REpresentation and MAintenance of Process Knowledge (REMAP) [23] is 

another system that is based on IBIS.  It is a more complex system that enables users to 

retrieve knowledge by a set of queries.  Knowledge capture capability still requires user 

intervention with REMAP.  Other systems that are implemented based on the IBIS 



 

13 

 

methodology include Potts and Bruns [24], IBIS-Style browser [25], KBDS-IBIS [26] for 

chemical plants, and DRAMA [27].  These have automotive capture of knowledge and 

intent, but no knowledge retrieval methods are supported.  CRACK [28], VIEWPOINTS 

[28], and JANUS [29] are used specifically for kitchen design.  They follow a hybrid 

approach to retrieve knowledge.  Hyper-Object Substrate (HOS) [30] permits triggered 

intent and knowledge retrieval.  It allows the capture of data informally during the design 

process and converts it into a useable form.  PHIDIAS [30], which is based on PHI, is 

also a hyperemia system.  It represents design intent and rationale as nodes and links.  

Both HOS and PHIDIAS capture knowledge automatically. 
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Figure 1.8.  Chronological order of IBIS-based approaches 
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QuestMap [31] by Soft Bicycle Co. and Compendium [31] by Verizon Research 

Lab are the two of the latest systems that are based on the IBIS methodology.  In 2005 

Verizon research lab released Compendium 2.0 as open source tools that is intended to 

replace QuestMap.  Both help users visualize the connections between people, ideas, and 

information at multiple levels of discussions and debates. Figure 8 shows the approaches 

that are based on IBIS on a chronological order.  Figure 1.8 gives the chronological order 

of IBIS-based approaches mentioned above. 

Other systems are built on different notation, such as Questions, Options, and 

Criteria (QOC) [32].  QOC focuses on alternative-features of an artifact as the main 

objective of a discussion.  A QOC process starts by establishing Questions about an 

artifact followed by Options that address the questions. The options are evaluated and 

selected based on specific Criteria that describe the goals to be fulfilled.  Similar to some 

previous approaches, QOC lacks the abilities to capture and retrieve knowledge and 

intent without designers‘ intervention. 

Design History Tool [33] for mechanical design records the design history from 

the specification and constraints to the detailed designing process.  One appealing feature 

of this system is the playback facility that permits the user to retrieve information about 

the design.  However, this system depends heavily on the design constraints that are 

based on the designer‘s knowledge of the domain.  AIDEMS [34] asks the user to create 

product specifications at the beginning of the design. The specifications are then refined 

at each level of the designing process.  Thus, intent emerges during the design process 

and theoretically captured during that time.  Design Rationale Authoring and Retrieval 

System (DRARS) and TED [35] use variations of QOC.  In DRARS, it is the user‘s 
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responsibility to give descriptive names to the system‘s object (claims, questions, and 

answers).  

Functional Representation (FR) [36] is an approach for a formal representation of 

the artifact‘s functioning. It supports knowledge generation, simulation, design 

verification, and case-based design. The focus of FR is to automate the design intent 

support.  Another approach that automates the design intent support is Generative Design 

Rationale [37], which proposes reasoning ontology and processes for use by computers. 

The idea of actively generating documentation is pursued in Active Design Documents 

(ADD) [38].  ADD allows the user to verify the knowledge required for justifying each 

decision.  However, it only provides a read-only interface to navigate through the 

decisions and reasoning associated with an artifact.  MultiADD [39] is an extension to 

ADD that is proposed to deal with group design.  

Some of the new tools are more geared towards a specific field than being 

generic.  View and Beyond (V&B) is a collection of methods proposed by Clements et al. 

[40] to document software architecture design.  They argue the importance of 

documenting why the architecture is the way it is and the justification of decisions.  

Architecture Rationalization Method (ARM) [41] uses qualitative and quantitative 

rationale in design reasoning.  It selects an optimal solution by eliminating inferior design 

alternatives, using the quantification of the design options.  Tyree and Akerman [42] 

provide a template that captures certain types of information as design rationale.  

Software Engineering Using RATionale (SEURAT) [43] is based on DRL.  SEURAT 

ensures that the system building is complete and consistent by providing insight into the 
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reasons behind the choices made during the design process and implementation of 

software systems.  

The need for capturing design intent and rationale has been recognized in 

software architecture design and has led to several efforts to standardize it.  The IEEE 

1471-2000 standard [44] provides a definition of design rationale and discusses its 

importance.  Even though this is a step in the right direction, the real work still needs to 

be done.  The standardization needs further elaborations on the nature of design intents 

and how they might be captured, retrieved, and represented. 

 

1.2.2 CAD Models Repair 

There have been various attempts to repair poor quality exchanged CAD models, 

both in research institutions and commercially.   The most relevant attempt to our work is 

the approach by Jeongsam and Han [45].  They propose to correct a CAD model based on 

the design history.  They claim that their system Q-Raider can repair six types of CAD 

model: tiny faces, narrow regions, non-tangent faces, narrow steps, sharp face angles, and 

narrow spaces.  Even though this is called history-based repair, the corrected model can 

collapse if it is reconstructed solely on the design history.  They have to couple the repair 

with other parameters, constraints, and boundary representation (B-Rep), which make the 

repair process very delicate.  

Other notable approaches are based the B-Rep of a model.  STEP application 

protocol AP203 [46] allows the transfer of B-Rep.  This makes it appealing to use to 

repair transferred models.  However, correcting CAD models based on B-Rep suffers 

from drawbacks, such as no consideration of the designer intent.  B-Rep‘s lack of concern 
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with designer intent is a consequence of the model being a ―dumb‖ solid that has no 

parameters, constraints, reason for a particular choice, or the engineering data that are big 

part of the design intent.  Repairing the model based on B-Rep while ignoring the design 

intent could lead to failure of the geometric structure of the transferred model.  This also 

will create another problem if the model is to be reused or transferred back ―upstream‖ to 

the creating CAD system.  Another drawback is the computation and complex data 

structure that require large memory to repair even simple models with B-Rep.   Literature 

reveals three classes of B-Rep approaches: exact B-Rep, faceted B-Rep, and boundary 

curve-based approach.  

Exact B-Rep approaches include the work of Hoffman et al [47].  They correct 

errors in a CAD model by analyzing the topological and geometric elements of the 

boundary representation (B-Rep) of 3D shapes.  They proposed the architecture for a 

master model to correct problems arising from different geometric tolerances between 

different downstream applications.  Gu et al. [48] correct topological errors in CAD 

models by storing and using a model object tree that represents the topological entities 

and use the tree to repair the model.  Their focus is on correcting the topological errors 

rather than on geometrical errors since errors in the topology are catastrophic [48]. 

Faceted B-Rep approach is faster than the exact B-Rep approach that is used in 

[47,48]. It approximates the B-Rep model with a set of polyhedrons.  One of the early 

works on faceted B-Rep is by Rock et al. [49].  They present efficient data structures for 

computing exact matches between polygon edges in order to reconstruct the topology of 

the model.  Makela et al. [50] use local techniques to fill cracks in the model surface by 

triangles. Turk et al.  [51] remove error resulting from overlapped polygons by clipping 
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them. Barequet et al. [52] describe a globally consistent approach for identifying and 

filling holes. However, when a large number of cracks is involved, the technique can 

result in a very large number of polygons to describe the model. In [53], Barequet et al. 

describe a hashing algorithm that corrects errors in a model by stitching the small gaps 

between polygons. 

The boundary curve-based approach is restricted to 3D shapes that are constructed 

from surfaces.  Works based on this approach used the idea of simplifying the original 

object‘s mesh and then reconstructing a smooth surface on top of it. The original idea of 

simplification is to produce a smaller model to aid the analysis and display of surfaces 

[54, 55].  Steinbrenner et al. [56] correct gaps and overlaps between surfaces through 

edge-splitting and merging of the boundary curves. 

Commercially, some companies find this problem lucrative and implement 

commercial software packages to correct errors in CAD models.   CAD Doctor by 

Elysium Inc.[2], CADfix [3] by ITI, and TransMagic [57] are a few examples.  Many of 

the commercial software in the area are based on B-Rep approach, which suffers from the 

drawbacks stated earlier.   

 

1.2.3 Design Intent Exchange 

One of the earliest attempts to exchange parts of the design intent was by 

Hoffmann et al. [58].  The authors suggested a method of exchanging CAD models in 

terms of their construction history using their EREP (Editable REPresentation), which is 

a neutral format for expressing form features, parametrization and constraints.  Although 

EREP presents the foundation for the exchange of parametric information, there are a 
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number of key technical problems with this approach that have been discussed in a 

number of papers [59]. 

Another early attempt to exchange more than the geometries of CAD models is 

ENGEN (Enabling Next GENeration design) [60] by PDES Inc. It concentrates on the 

exchange of geometric constraints, and demonstrates the exchange of constrained 2D 

profile data.  CHAPS (Construction History And ParametricS) [61] is another recent 

project by the same company.  It mainly concentrates on using new draft ISO 10303 

capabilities to transfer construction history or procedural models without explicit 

parameters or constraints.  Another approach that follows the exchange of procedural 

models is proposed in [62].  It uses the journal file created by CAD systems, which 

should contain a record of every action of the system user.  The exchange of procedural 

models provides some level of flexibility to edit the model in the receiving system but 

omits certain information relating to design intent that may be important in maintaining 

product functionality after a modification. 

Bettig et al. [63] also attempt to exchange constraints for parametric modeling. 

They proposed a standard set of geometric constraints for parametric modeling and data 

exchange. They defined explicit constraints for the relationships between all the 

geometric entity data types specified in ISO 10303-42[64], STEP geometric, and 

topological representation of CAD models. 

Rappoport [65] tackles the problem by focusing more on the consistency of pure 

geometry between the original and the exchanged models.  While geometrically this is 

satisfactory, design intent and characteristics of the original design usually get lost by his 

approach. 
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Kim et al. [66] suggested a theoretical approach to extract the design intent 

information using Parts 55 [67], Part 108 [68], and Part 111 [69] of STEP.  These are 

recently published Parts of ISO 10303 that are not yet widely used in current translators 

and commercial CAD systems. A drawback of this method is that explicit design 

constraints are big part of extracting the design intent in their approach.  For example, 

some widely used CAD systems do not allow access to constraint information used in the 

model [61].  Without access to these constraints, the whole process may halt.  Pratt et al. 

[70,71] also used these new Parts of ISO 10303  as a solution  to exchange the parametric 

data of CAD models.  Both [61] and [71] call for standardizing data exchange of CAD 

models with design intent.  

 

1.2.4 CAD Model’s Data Exchange  

In the early 1970‘s only a few CAD systems were implemented, and only few 

organizations could justify the purchase of a CAD system or machine, which had an 

average price tag of $125,000.  With only a few CAD vendors in existence and only a 

few users applying CAD technologies, it was very common for organizations and 

manufacturers to agree on the use of a single CAD system.  Others, like Boeing and 

General Electric, faced with the need to migrate and exchange data among the different 

CAD systems they were using and implemented their own in-house CAD and translators.  

The translations had to be direct, as in Figure 1.9(a), which shows the increasing 

complexity with the addition of more incompatible CAD systems. 

By the end of the 1970s, the need for efficient means to exchange modeling data 

with incompatible CAD system was evident. Advances in technologies made the CAD 
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system a valuable developing tool for organizations and manufacturers. However, most 

organizations find it difficult to enforce the use of a common CAD tool within their 

organization.  It is much harder to enforce it across multiple supply chains and among 

joint venture partners.  At the same time, CAD vendors guarded their proprietary data 

format in order to not lose the competitive advantages.  These needs and concerns have 

driven the development of a standard for a neutral format as illustrated in Figure 1.9 (b).  

It relives the manufacturers from developing and maintaining several system-specific 

translators as in Figure 1.9 (a) and grants the CAD vendors the choice not to disclose 

their data format. 

 

c a 

b d
 

(a) 

c a 

b d
 

(b) 

Figure 1.9.  Ways to exchange CAD data 

 

 

1.2.4.1 Efforts for Standardization 

In the early 1970‘s most of the efforts were focused on the foundational 

description data, which could be exchanged and shared among CAD systems. The 
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Computer-Aided Manufacturing - International Inc. (CAM-I) organization contributed 

greatly to the formal description of B-Rep data [72].   However, it did not provide an 

exchange mechanism. CAM-I also investigated the mathematical representation of 

standard geometry and topology and then submitted the results to ANSI committee 

Y14.26 (Computer Aided Preparation of Product Definition Data) for standardization.  

The U.S. Air Force also made a significant contribution to the standardization of 

product data exchange.   The funded Integrated Computer Aided Manufacturing (ICAM) 

program developed new formal manufacturing technologies such as IDEF0  (ICAM 

DEFinition) for activities modeling, IDEF1 for information modeling, and IDEF1X for 

data modeling [73].  Contractors were required to use these new engineering 

methodologies as if they were standards. 

The Product Definition Data Interface (PDDI) program, also funded by the U.S. 

Air Force, contributed to the advancements of the tools and methodologies that were key 

components in subsequent standards [74], most notably ISO 10303 (STEP).  PDDI was a 

research exercise that focused on developing a mechanism to allow the complete 

exchange of product model data directly among computer applications.  It also 

contributed to standardization of data exchange by developing a modeling language that  

later would be used in developing EXPRESS [75], an exchange file format used in STEP 

to separate the exchanged data from its definition.   

International efforts, largely European, also contributed greatly to the process of 

standardization for CAD model exchanges.  The earliest effort was in 1977 when the 

European Association of Aerospace Industries (AECMA) developed an intermediate 

format to exchange shape representation between different systems.  The format was very 
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basic and only supported the exchange of limited basic surface types.  When more 

complex surfaces representations were developed in subsequent years, the format did not 

perform as needed causing it to be abandoned [74].   In 1984, the United Kingdom 

submitted the ―AECMA Report of the Geometry Data Exchange Study Group‖ [76] to 

the International Organization for Standardization (ISO) as an effort to develop an 

international product model data standard.   

The West Germany Organization of the Automotive Industry (VDA for ―Verband 

der Automobilindustrie‖) standardized VDA-FS [77] in 1982.  VDA-FS was developed 

to address the exchange of free form surfaces and curves that were needed by the 

automotive industry during that time.  The FS, which stands for ―Flächen Schnittstelle,‖ 

translates to ―surface translation format.‖  

The French standard, Standard for Exchange and Transfer (SET) [78], was 

developed at Aerospatiale in 1983 to address the difficulties using IGES.  

Like AECMA, both VDA-FS and SET were submitted to ISO in the same year 

(1984) to contribute toward the international efforts for standardization of product model 

data.  The international standard ―STandard for the Exchange of Product model data‖ 

(STEP) was released a decade later in (1994). 

 

1.2.4.2 IGES: Initial Graphic Exchange Specification [79] 

IGES is a national (ANSI) standard for CAD data exchange.  The origin of IGES 

has a history associated with it.  It was the result of combined efforts form CAD vendors, 

interests of users, and the standards committee.  
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In 1979, The Society of Manufacturing Engineers held a two-day meeting.  On 

the first day of the meeting, a CAD user from General Electric (GE) asked the CAD 

vendors panel about possibility of working together to enable a common neutral 

exchange mechanism [74].  This proposition was very threatening to the CAD vendors‘ 

panel, which included ComputerVision, Applicon and Gerber, since sharing their 

proprietary data formats and the databases structures would put them in less competitive 

advantage.  On the other hand, there were large and important Navy contracts, and every 

CAD vendor wanted to look responsive to customer requirements.  In response to the 

suggestion, the vendors‘ panel stated that they would share their database structures if 

Boeing and GE would supply the CAD translators they had already developed for their 

organizations‘ uses. 

By the end of the first day of the meeting, Air Force ICAM agreed to begin the 

effort to implement a common translator with a $50,000 contract.  The National Institute 

of Standards and Technology (known at the time as National Bureau of Standards) agreed 

to support the process. The two big CAD vendors, Applicon and ComputerVision, agreed 

to disclose their internal databases. GE offered its neutral database and its translator.  

Boeing offered the structure of its Computer Integrated Information Network (CIIN) 

database and its existing translator. 

The next meeting day, the name, Initial Graphic Exchange Specification, was 

chosen.  It was carefully selected to avoid any suggestion of a database standard that 

would compete with the proprietary databases and to avoid offending ANSI committee 

Y14.26, that had worked for years towards Y14.26 standard [79].  In January 1980, the 

first draft was submitted to the ANSI Y14.26 committee for standardization that released 
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version one of IGES in 1981 after attaching the work on B-Rep that was funded by 

CAM-I. 

As stated, IGES was released in 1981; however, it was not widely used until years 

later (1988) when the DoD required that all engineering drawings, circuit diagrams, etc. 

be delivered in electronically, and specifically in the IGES format [14].   These 

mandatory requirements forced all CAx venders who wanted to market their product to 

DoD subcontractors to support IGES file formats.  IGES 2.0 was released in 1982, IGES 

3.0 in 1987, IGES 4.0 in 1988, IGES 5.0 in mid 1991 [80], and IGES 5.3, the last version, 

in 1996.  

 

1.2.4.2.1 Shortcomings of IGES 

IGES is a good and a practical initial solution for CAD data exchange.  However, 

it suffers from many drawbacks.  A thorough report [81] by PDDI defines IGES‘s 

shortcomings. The report details the problem of representing and capturing the same 

information in several ways. For example, a curve may be tagged as a NURBS curve 

(IGES 126) or a spline curve (IGES 112). The reason for this discrepancy lies in the 

preferences by which companies implement standards.  Over the years CAD vendors 

have abused the IGES file format by making variants or ―flavors‖ to suit their specific 

needs. This annoying problem of ―flavoring‖ [80] made proper interpretation of the 

exchanged entity be based on the particular flavor of the pre- and post-processors.  One 

look at the Rhinoceros IGES export options dialog box in Figure 1.10 illustrates the 

magnitude of the problem.  The figure  shows  a portion of  the 60  flavors  of  IGES  that  
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allows user to specify, and the list will 

just grow in time.  Flavoring a standard 

is oxymoronic as it defies the very 

purpose of having it in the first place. 

Peter Wilson [81] also reported 

the problem of partial implementation of 

IGES, as illustrated in Figure 1.11.   

Vendors selected and implemented only 

portions of the standards that are 

deemed most important.  This 

―subsetting,‖ which allows for full 

exchange between two systems, seems impossible without agreement on what to 

exchange.  To overcome the unpredictability of translations, with the help of the 

Department of Defense Computer-Aided Acquisition and Lifecycle Support program, the 

standard committee formalized the subsets of IGES entities.  However, it was insufficient 

since accurate exchange required additional instructions and information. 

Loss of modeling information is another drawback of IGES when migrating a 

model from one CAD system to another dissimilar CAD system with different 

capabilities. Other drawbacks of IGES include upward compatibility, file size, processing 

time, and inability to capture product information [80, 81]. The shortcomings and 

evolutions of IGES justified a shift toward a better standard, STEP. 

 

 

Figure 1.10.  Flavoring of IGES in Rhino 
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Figure 1.11. Partial implementations of standards (subsetting) 

 

 

1.2.4.3 STEP:  STandard for the Exchange of Product Model Data [82] 

STEP (ISO 10303) is an international standard developed by ISO in 1994 to 

replace IGES, SET, and VDA-FS.  It is meant to avoid all their drawbacks, not only by 

exchanging data between dissimilar CAx but also by providing mechanisms and rules to 

describe the product data throughout the phases of its life cycle.  The information 

generated about a product during its life cycle can include its design, manufacture, 

utilization, maintenance, quality control testing, inspection and product support functions, 

and even disposal.   The nature of this description makes STEP the largest ISO standard, 

which has to be implemented as parts that are published separately and over an extended 

period of time. 
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Figure 1.12. STEP: general structure 

 

The basic parts, such as testing procedures, file formats, programming interfaces, 

and industry-specific information, are complete and published. The new parts that are 

added to the standard after the initial release of STEP are published as ISO 10303-xxx, 

where (xxx) represents the parts numbers.  The number of the published parts is in the 

hundreds; however, they can be grouped in three main clusters: STEP environment parts, 

integrated data models parts, and top parts.  Figure 1.12 shows the general structure of 

STEP. 

STEP environment parts include Parts 1x for description methods of data, Parts 

2x for implementation methods data, and Parts 3x that are used for conformance testing 

methodologies.  They form the infrastructure of STEP and have been separated from 

industry-specific Parts. 

STEP uses EXPRESS [75] as its description method.  EXPRESS is a formal data 

modeling language defined in standard ISO 10303-11 to specify the representation of 
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product information.  It uses schema in which various data types can be defined together 

with structural constraints and algorithmic rules.  The use of a formal description method 

enables consistency of representation and facilitates development of implementation.  

The encoding methods and implementations of the EXPRESS schema are defined in 

Parts 21, 22, and 28. 

Conformance testing methodology and framework are the testing procedures and 

setups that are used to guide the testing processes of the implementations of a new STEP 

preprocessor and postprocessor.  This is to ensure that products comply with the standard 

both syntactically and structurally. 

STEP top parts group includes Parts 2xx for Application Protocols (APs), Parts 

3xx for Abstract Test Suites (ATS) for APs, and Parts 4xx for Application Modules (AM) 

for the APs. The APs form the bulk of the standard, and are the basis for STEP product 

data exchange.  A single AP usually covers a particular application or industry domain. 

For example, AP 214 focuses on automotive mechanical design processes and AP 236 is 

for furniture product data and project data in the mechanical field, AP 215 and AP 218 is 

for ship arrangements and structure, and AP 239 for product life cycle.  The idea of AP 

helps in controlling STEP from forming a single large standard. 

To support the conformance requirements, each AP uses ATS which contains the 

set of abstract test cases for that particular AP. This is to guarantee the compliance to the 

standard and to ensure quality of service to service providers, equipment manufacturers, 

and equipment suppliers.  STEP Parts 4xx for AMs define common building blocks to 

create modular AP within the standard. 
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The last group, integrated data models, includes Parts 4x, 5x, and 1xx for the 

Integrated Resources (IR), and Parts 5xx for Application Integrated Constructs (AIC). 

Every AP defines a top data module to be used for data exchange by following 

specifications in AMs. The AMs are higher-level modules that are constructed by 

choosing generic objects defined in lower level data modules (4x, 5x, 1xx, 5xx).  The 

common generic data models are the basis for interoperability between APs for different 

kinds of industries and life cycle stages.  If specializations are needed for the particular 

application domain of the AP, they can be chosen and added to the AP.  AICs define 

collections of common definitions that can be shared between Application Protocols. 

 

1.2.4.4 Quasi Industry Standards 

Some privately developed formats are widely used and are regarded as quasi 

industry standards.  Drawing Exchange Format (DXF) is developed by Autodesk for 

enabling data interoperability between their produce, AutoCAD, and other CAx systems.   

Autodesk for many years did not publish specifications of DXF; however, recently they 

published the specifications to further the use of their formats.  JT, developed by Siemens 

PLM Software, is not only used for CAD data exchange but also for product 

visualization, collaboration, and Product and Manufacturing Information (PMI). In 2009, 

JT specification has been accepted for publication as an ISO Publicly Available 

Specification.  
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1.3 Contributions 

In this research, we investigate how knowledge-guided NURBS [83,84] can be 

used to support design intent of CAD models.  This work contributed the following: 

 Augmentation of geometric models with design knowledge for use during the 

design process. 

 Support for design intent at the lowest level of geometry construction and 

incorporate it into the model‘s knowledge base. 

 Support for knowledge acquisitions, i.e., provide various ways to gather 

knowledge about NURBS entities during and after the construction of these 

entities.  

 Provision of mechanisms to mine the knowledge-base to assist a wide range of 

processes that are deemed important for CAD designers.  

 Provision of the ability to reproduce (or adjust) CAD models instead of patching 

them up through a design replay manager. 

 Enhancement of the robustness of CAD systems by providing knowledge support 

to computational algorithms that deal with knowledge types instead of data types. 

 

The goal, in summary, is to show that with the appropriate approach, well defined 

and structured design intent can be identified and supported in a NURBS environment to 

provide a wide range of benefits.  These benefits are expressed through a prototype 

system that supports design intent, addresses the issues of robustness, and enables 

seamless data transfer.   This is an important step in the direction toward showing both 

the CAx standards committees and the systems implementers that the costs and effort can 
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be justified to modify current systems‘ kernels to incorporate knowledge and design 

intents.  

 

 

1.4 Organization of the Dissertation 

The remainder of this dissertation presents our approach in using knowledge-

guided NURBS for supporting design intent in CAD modeling. Chapter 2 presents 

NURBS fundamentals and model representation and storage.   Chapter 3 answers 

fundamental questions, such as:  

 What is knowledge? 

 What information needs to be retained? 

 What is design intent? 

 How to support design intent? 

Chapter 4 reports on the results from previous chapters to form the optimum 

knowledge to store.  It details works on knowledge-guided NURBS (KGN) specifically 

on: 

 How to build a knowledge base for KGN. 

 Type of all relationships between entities (point, curves, quadrics …etc.). 

 Features and functionalities that are important and must be supported in order to 

make a system a truly knowledge guided system. These features are organized in 

the four managers: knowledge acquisition, knowledge mining, design replay, and 

export/import managers. 
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 How to use a knowledge base for knowledge acquisition, design replay to 

reconstruct the whole design, knowledge mining to learn and support design 

intent, and export or import of knowledge. 

 Robustness issues when using knowledge in CAD modeling. 

 

Chapter 5 describes the system architecture and initial design of the prototype 

including the implementation and user interface issues. It presents case studies with 

results using a test object to demonstrate the effectiveness of using KGN to support 

design intent.  Chapter 6 concludes the dissertation with summary of the research and 

important conclusions.  Some potential and important goals for future work are also 

presented at the end of this chapter. 
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Chapter 2 --- NURBS Fundamentals 
 

 

 

 

The main focus of this chapter is on NURBS, which are mathematical 

representations for both analytic (e.g., conics) and freeform shapes.  The acronym 

NURBS stands for Non-Uniform Rational B-Spline and refers to the following. 

 Non-Uniform refers to the parametrization  of the curve which allows the use of 

the needed multiple knots to represent Bezier curves, among other important 

advantages that will be discussed in this chapter.  

 Rational refers to the shapes‘ mathematical representation.  It allows for both free 

form shapes and exact conic (such as parabolic curves, circles, etc.) representation 

in NURBS.  Non-Rational B-Spline can only approximate the parabola.   

 B-Spline are the piecewise polynomial curves that have a parametric 

representation.  The letter B in B-Spline refers to Basis.  

 

This chapter starts with a very brief overview of various curves and surfaces 

representations in section 2.1.  Section 2.2 discusses the fundamentals of NURBS such as 

the properties and the mathematical representation of both curves and surfaces.  NURBS 

modeling techniques are described in section 2.3.  Representation and storage in a 

NURBS-based model is discussed in section 2.4.  Data export to other CAD systems that 

use NURBS as their modeling kernel is discussed in Section 2.5. 
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2.1 Mathematical Representations of Curves and Surfaces 

Curves and surfaces can mathematically be represented explicitly, implicitly, or 

parametrically.  

 

2.1.1 Explicit 

An explicit representation is the most basic definition of curves in two 

dimensions.  It has the form  xfy  .  For example, the cubic polynomial

dcxbxaxy  23
, where dcba ,,,  are constants, defines a cubic curve.  

 

 

Figure 2.1.  Unit circle created by cubic polynomial 

 

Even though this form is used very often to plot graphs of functions, it is not very 

appealing for CAD, computer aided graphics, and geometry design for many reasons.  

Explicit curves and surfaces are axis dependent and single valued in y , meaning that they 

cannot represent closed, self loops, vertical, and multiple-valued curves.  Many curves of 

practical importance such as circles, ellipses and the other conic sections are not 
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permitted in this form without creating multiple cases.   For example, to create the circle 

in Figure 2.1, it is required to divide the computations into two segments, with 

22 xry   for the upper half and 22 xry  for the lower half.  These limitations 

made this form unsuitable for geometric modeling since segmentations will create cases, 

which are a nuisance in computer programs. 

 

2.1.2 Implicit 

Implicit representations for planar curves have the form 0),( yxf  and 

0),,( zyxf  for surfaces.  The equations describe implicit relationships between the x

and y  coordinates of all the points on the curve, and between the x , y , and z

coordinates for surfaces.  Implicit forms can represent larger classes of curves and 

surfaces when compared to the explicit form.  Difficulties of multiple values and vertical 

tangents inherent in the explicit form can be avoided using the implicit form.  For 

example, a circle of unit radius with its center at the origin is defined implicitly by 

01),( 22  yxyxf  (Figure 2.1).  Overcoming these difficulties makes these type of 

curves and surfaces useful in some applications, typically for low-degree cases such as 

degree one or two.  However, the equations in the implicit representation for curves and 

surfaces are single non-linear equations.  Calculating the x  and y
 values for such 

complex higher-degree equations (curves or surfaces) is not efficient computationally 

since it results in solving the entire non-linear equation.  Moreover, they are still axis 

dependent, which can cripple coordinate transformations such as translation and rotation 

that are required for graphical display and used intensively in CAD.   Computation of 

points on a curve or a surface in the implicit representation is also difficult and adds to 
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the limitations of this representation.  An alternative way to avoid these limitations and 

difficulties is the parametric forms of curves and surfaces discussed below. A detailed 

comparison between implicit and parametric forms is described in [5]. 

 

2.1.3 Parametric 

Parametric forms are the standard representations of curves and surfaces in CAD 

systems.  Curves and surfaces in the parametric form use auxiliary parameters to 

represent the position of a point on a curve or surface.  The concept of associating 

parameters to points on a curve or surface is very important since it can be used by many 

tools in CAx.  A parametric curve in the xy
 plane is defined by       uyuxuC , . A 

parametric surface uses two parameters (u and v) to define it by

        vuzvuyvuxvuS ,,,,,,  .  Every coordinate of a point on the curve is represented 

separately as a function of the parameter u  and by the two parameters u and v on the 

surface.   Parametrization of curves and surfaces (i.e., numbering the points along the 

curve) can be achieved by methods such as uniform and chord-length parametrization.  

The uniform parametrization evenly distributes the parameter along the curve.  The 

chord-length approach assigns parameters based on the chord-length, or shortest linear 

distance on the curve.  Other parametrizations such as arc-length and centripetal are also 

presented in literature  

Parametric curves and surfaces have many properties that make them useful for 

geometric modeling.  Dependencies on parameters rather than on the axis allow for easy 

transformations such as translation and rotation that are difficult in the non-parametric 

forms (explicit or implicit).  Problems that arise in representing closed or multiple-valued 
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curves and surfaces in explicit forms are also avoided.  The same circle in Figure 2.1 

represented by explicit and implicit methods can be represented parametrically by an 

angle parameter  ,0u  by    uux cos  and    uuy sin . 

Furthermore, the parametric method can be easily used to describe free form 

shapes and three-dimensional curves.  Due to these advantages, parametric 

representations of curves and surfaces are the most commonly used forms with the new 

generations of CAD systems.  

 

 

2.2 NURBS Basics 

NURBS, a class of parametric curves and surfaces, has been the de facto standard 

in the geometric design since the introduction of major CAD systems three decades ago.  

One of the greatest advantages of using NURBS in modeling is the ability to use one 

common mathematical form for both standard analytical objects such as a circle as seen 

in Figure 2.2 and free form shapes as seen in Figure 2.3.  They are generalizations of 

(parametric) non-rational B-Spline and non-rational and rational Bezier curves and 

surfaces. 
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Figure 2.2.  Closed NURBS curve (degree 2 circle) 

 

 

 

Figure 2.3.  Free form NURBS curve 

 

NURBS representations are more popular among developers of CAD systems 

compared with other parametric and non-parametric curves and surfaces representations. 

This is because of the unique properties of NURBS representation.  Desirable theoretical 

properties, such as projective invariance, convex hull property, local scheme, controlled 

continuity, and visually understandable geometric characteristics, are some of NURBS‘ 
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properties.   From the programming standpoint, NURBS are very efficient in computation 

and can easily be processed by a computer and stable algorithms to achieve both accuracy 

and speed.  They can easily represent geometrical shapes in a compact form that can be 

handled efficiently by simple programs.  They are stable to floating points‘ errors and 

require little memory to represent any kind of curves or surface.  These properties 

allowed NURBS to serve and perform well in a wide range of fields like designing, 

manufacturing, prototyping, visualization, and virtual reality.  NURBS properties also 

made them very popular among new fields such as bio-engineering and nano-

manufacturing since they can allow for easy human interactions.  

NURBS are defined by a set of control points, basis (or blending) functions, 

knots, degrees, and weights that are associated with every control point. These five 

components are evaluated mathematically at a range of parameters to produce NURBS 

curves and surfaces. 

 

 

Figure 2.4.  Modifying NURBS curve via control points 
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The set of control points are used to characterize the general shape of the curve or 

surface.  Moving one of the control points is one of easiest ways to change the shape of a 

NURBS curve or surface.  CAD systems usually allow users to modify NURBS entities 

using this option.  Figure 2.4 shows the cubic curve (in Figure 2.3) after moving control 

point P4.  The desirable locality property of NURBS will limit the effect of a single 

control point to the area of the curve in the vicinity of the point. In this particular 

example, the effect will span 4 knots. 

Basis functions, computed over the knots, are used to determine how much each 

point will influence the curve or surface smoothness and continuity.  Figure 2.5 shows 

how we can use multiple knots (non-uniform knot vector) to control the continuity of 

NURBS.  A full-multiplicity knot, when the number of duplicated knots is the same as 

the degree, can create a kink or sharp corner on the curve by interpolating the control 

point. Control point P4 is shown in Figure 2.5. 

 

 
Figure 2.5.  Effects of multiple knots 
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Degree is also one of the ways to control the shape of the NURBS curves and 

surfaces.  Figure 2.6 shows the effect of using various degrees (2,3,4,5 and 6) with the 

same control points and knot vector.  NURBS lines and polylines are usually degree 1 

where the curve will follow the control polygon (dashed line in Figure 2.6).  By looking 

at Figure 2.6, one can generally conclude that the lower the degree, the closer a NURBS 

curve follows its control polygon.  More importantly, however, the degree of the curve 

determines the smoothness of the joins between spans.  A linear curve (degree 1) has 

positional continuity at the join.  A quadric curve (degree 2) provides tangent continuity, 

whereas the cubic (degree 3) curve, which is sufficient in many modeling tasks, gives 

curvature continuity, which incorporates the positional and tangential continuities. 

 

 

Figure 2.6.  NURBS curve with different degrees, using the same control points 

 

Weights are also used to influence how much a particular control point affects the 

curve or surface.  Generally, the higher the weight compared to other weights, the closer 

a NURBS curve is to its control point as illustrated in Figure 2.7. 
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Figure 2.7.  Cubic NURBS curve, with w6 varying 

 

 

2.2.1 NURBS Curve 

A NURBS curve  uC  is vector-valued tensor-product function in the follow form 

[5]: 

  
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Where Pi  are the control points that form the control polygon, iw  are values of 

weighting functions associated with Pi , n  is the highest index of ( 1n ) control 

points, and i
th

 piN ,  are the p
th

 degree B-Spline non-rational basis functions given by the 

Cox-de Boor recurrence relation 
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and  
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defined over the non-periodic knot vector U for degree p , 
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There are some rules that govern how NURBS curves are defined. The degree p

of a NURBS has to be a positive whole number and cannot be less than one (i.e., lines 

and polylines).  The number of control points 1n  must always be greater than the 

degree.  For example, a degree one NURBS curve (line) must have at least two control 

points, and a cubic NURBS curve must have at least 4 control points.  The highest index 

m  of 1m knots is associated with the degree and the number of control points in a 

NURBS curve by 1 pnm .  For example, the cubic NURBS curve in Figures 2.3, 

2.4 and 2.5 all have 13 knots in their knot vectors; 131)138(1 m  (note that this 

is the number of the knots, not the values). 

 

2.2.1.1 Knot Vectors 

There are more rules that have to be addressed in regard to knot vectors.  The knot 

vector as stated in Equation 2.3 is subjected to 1 ii xx , meaning it must be 

monotonically increasing, with successive values in the knot vector that must be arranged 

in ascending order.  For example, the knot vector that is used for the curve in Figure 2.3 
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is  1,1,1,1,65,64,63,62,61,0,0,0,0U .  Any different arrangement of these 

values is not acceptable.  Typically, knot vectors are normalized as the one above.  But 

they can also be chosen as an array of integers ranging from zero to some maximum 

number.  The magnitude of the values of the knot vector has no effect on the NURBS 

curve.  It is the relative ratios of the differences of the values to each other that affect the 

curve, and thus a knot vector like  70,70,70,70,60,50,40,30,20,10,10,10,10U  has the 

same effect as the normalized one. 

Knot vectors can also be classified as clamped or unclamped. A clamped knot 

vector is the one that has first and last values of the vector repeated p+1 times.  For 

example,  1,1,1,1,65,64,63,62,61,0,0,0,0U   used for the cubic NURBS curves 

in Figure 2.3 and 2.4 is clamped.  The multiplicities at the beginning and end of the knot 

vector force the NURBS curve to pass through the first and last control points.  

Unclamped knot vectors are simply the ones that do not satisfy the multiplicities at the 

beginning and at the end p+1 times. 

Knot vectors can also be divided into uniform and non-uniform, that is, within 

each group of the clamped and unclamped knot vectors discussed earlier.  A uniform knot 

vector has equally spaced values, excluding the multiplicities at the beginning and at the 

end. The knot vector  1,1,1,1,65,64,63,62,61,0,0,0,0U  is a uniform knot 

vector.  A non-uniform knot vector, on the other hand, is the one that has values that are 

not equally spaced.  The knot vector that is used to create the kink in Figure 2.5, 

 1,1,1,1,65,62,62,62,61,0,0,0,0U , is an example of non-uniform knot vector 

since the value 2/6 is repeated 3 times.  Another example is  

 1,1,1,1,2019,2017,207,203,201,0,0,0,0U  used in Figure 2.7. 
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The differences in spacing between the values of the knot vector must be 

significant; otherwise, a non-uniform knot vector will behave much like a uniform one.  

Multiplicity of knots tends to have more drastic effects on the curve, such as those 

illustrated in Figure 2.5. 

 

2.2.1.2 Basis Functions 

The basis (or blending) functions is a set of linearly independent functions, that 

can represent every function in a given function space as long as the functions are in 

linear combination.  The letter ―B‖ in NURBS refers to ―basis‖.  If we let  
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then we can write Equation 2.1 in the form 

 
   Pi

n

i

pi uRuC 



0

,  (2.5) 

The {  uR pi, } are the rational basis functions.  All the desirable geometric characteristics 

of NURBS curves and surfaces are drawn from properties (non-negativities, partition of 

unity, local support, etc.) that Equation 2.4 provides.  The basis functions are defined 

over a knot vector and hence the shapes of the basis functions are determined entirely by 

the relative spacing between the knots in the knot vector.   Figures 2.8-2.10 show the 

basis functions used for the three different curves in Figure 2.5. 
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Figure 2.8.  Third-degree basis functions, uniform knots. 

 

 

 

Figure 2.9.  Third-degree basis functions, multiple internal knots 

 

 

 

Figure 2.10:  Third-degree basis functions, full multiplicity in internal knots 

 1,1,1,1,65,62,62,62,61,0,0,0,0U  

 1,1,1,1,65,64,62,62,61,0,0,0,0U  

 1,1,1,1,65,64,63,62,61,0,0,0,0U
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A B-spline blending function has compact support. The support of this function 

depends on the knot sequence and always covers an interval containing several knots, 

containing p+2 knots if the curve is degree p. 

It is sometimes useful to represent a p
th

 degree NURBS curve in homogeneous 

form.  This can be accomplished easily by using the following equation: 

 
   P
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,  (2.6) 

where   iiiiiii

w

i
wzwywxwP ,,,  is the weighted control points. 

 

2.2.2 NURBS Surface 

NURBS surfaces mathematically work like their curve counterpart, except they 

have two parametric directions ),( vu  instead of one )(u  as in Figure 2.11. 

 

 

Figure 2.11.  NURBS surface 
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 A NURBS surface of degree p  in the u direction and degree q  in the v direction 

is defined by 
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1,0  vu , (2.7) 

where P ji ,  
are the control points that form a bidirectional control net, jiw ,  are the 

weights associated with each of the control points, and    vNuN qjpi ,, ,  are the non-

rational B-Spline basis functions (Equations 2.2a and 2.2b) defined on the non-periodic 

knot vectors U and V for degrees p and q that are denoted by 
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with the highest indexes of knots ( r and s ) hold the relationships 1 pnr  for the U

knot vector, and 1 qms  for the V  knot vector. 

All the rules that are stated for the NURBS curve apply to a surface‘s two 

directions.  Different surface directions can have different degrees.  For example, the U-

direction can have degree 2 while the V-direction can have degree 4.  As with curves, we 

can introduce the piecewise rational basis function for the surface as follows: 
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so that Equation 2.7 can be written as 
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A NURBS surface can also be efficiently represented in homogeneous 

coordinates as in Equation (2.11) 
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2.2.3 NURBS with Higher Dimensions 

NURBS can also be used for higher dimensional representations. However, their 

visualization is more difficult and precarious [85]. For each additional dimension of the 

NURBS, for example a trivariate, an additional summation of the Cox-de Boor recursion 

formulas is performed. Equation 2.12 defines the trivariate (i.e., volume) representation 

in a homogeneous form 
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Comprehensive information and explanations about the intricacies of NURBS and 

the various types of curves and surfaces can be found in literature [5,86,87]. 

 

 

2.3 Modeling Techniques 

Creating complex 2D or 3D models using specialized software such as AutoCAD 

or SolidWorks usually starts by constructing basic geometric entities such as circles, 

lines, or curved surfaces in order that an idea can be realized from a designer‘s mind.  

These models can be represented and constructed in a number of ways. 

A model can be constructed using polygonal modeling techniques where vertices 

are connected by line segments to form what is called a polygonal mesh or net. Polygonal 

models are flexible and can be rendered quickly.  The main disadvantage is that polygons 

are planar; hence, curves and curved surfaces used to structure models cannot be 

accurately represented.  They can only be approximated using many polygons as 

illustrated in Figure 2.12.  Another problem is that polygon objects are more or less fixed. 

In other words, the shape of the object cannot be changed easily. 

Another modeling technique that is used is to combine basic geometric primitives, 

like cones, cubes, and cylinders, to construct more complex and larger models.  

Typically, geometry can be joined through Boolean operations such as union, subtraction, 

and intersection.  Like polygonal techniques, using primitives are quick and precise but 

cannot accurately represent complex curved surfaces.   
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Figure 2.12.  Polygonal (triangles) mesh of a dolphin 

 

The subdivision of surfaces modeling technique is also used to create complex 

models.  It combines some of the features of polygonal and NURBS modeling techniques 

in terms of flexibility and ease of use. 

NURBS modeling techniques, which is the focus of the reminder of this section, 

is similar to polygonal mesh except that individual polygons are truly curved surfaces, 

not an approximation.  Because of their accuracy and flexibility, NURBS models can be 

used in several applications such as illustration, animation, and manufacturing. 

 

2.3.1 NURBS Modeling Techniques 

NURBS modeling allows for truly smooth surfaces, not approximations using 

small flat surfaces.  This makes them suitable for various modeling needs, including 

organic modeling.  A complex NURBS model usually consists of many curves and 

surfaces joined together to form a complete model.  NURBS modelers, such as Maya and 

Rhino, which use NURBS as the modeling kernel, usually provide designers with sets of 

modeling techniques.  Such systems allow users to carry out the modeling process 

without mathematical experience although the the underlying implementation could 
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include complex mathematical functions.  Figure 2.13 (a) and (b) shows a portion of the 

wide varieties of curves and surfaces generations‘ techniques used in Rhino 4.0.  

However, whatever software a designer uses, there are a set of underlying basic NURBS 

modeling techniques that are used in creating NURBS curves and surfaces. 

 

(a) (b) 

Figure 2.13.  Rhino’s curves and surfaces modeling techniques 
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The first set of techniques used in NURBS modeling is to use fundamental 

geometric tools such as reparametrization, degree elevation and reduction, knots 

insertion, deletion, and refinement.  These fundamentals can be used for both NURBS 

curves and surfaces to enable extra modeling techniques and simplify the modeling 

process of complex models.  Commercial CAD modelers usually allow the user to edit 

such parameters.  However, these techniques are mostly used by the systems internally. 

For example, joining two NURBS curves with different degrees to form a single NURBS 

curve, or creating a surface by lofting a set of curves with different knot vectors and 

degrees might require degree elevation and knots insertion.  Changing the direction of a 

curve or surface without changing the geometry can easily be achieved by 

reparametrization of the curve or surfaces.  Figure 2.14 shows the process of skinning 

(lofting) three curves with different degrees and directions. 

 

 

Figure 2.14.  Degree elevation and reduction, knot insertion and removal,  

and reparametrization needed internally to perform surface lofting 

 



 

55 

 

The other set of NURBS modeling techniques involves the generation of NURBS 

curves and surfaces.  Curves and surfaces can be created from a set of control points 

supplied to the system or by interpolating (or approximating with some tolerance) a set of 

data points.  However, these are not the most convenient ways to model many NURBS 

entities, particularly surfaces.  For example, an iso-parametric curve can be extracted 

from a surface; circles can be constructed from a center and a radius; and the special-case 

NURBS surfaces such as tours, spheres, or cylinders, illustrated in Figure 2.15, can be 

constructed from radiuses and some more parameters other than the control points. 

  

 

Figure 2.15.  Special-case NURBS surfaces 

 

NURBS surfaces are usually defined by a curve or set of curves.  Beside the 

skinned surface and special-case surfaces illustrated above, there are many NURBS 

modeling techniques used to create wide varieties of surfaces: extrusion, full revolution 

and Gordon surfaces.  Extrusion or swept surfaces are constructed by given a spine 

(sometimes called trajectory) and a cross section NURBS curves, as in Figure 2.16.  Even 

though the basic idea is the same, extruding a curve to generate a surface can be done in 

many ways, such as to a point or by a straight line.  See the Extrude option in Figure 

2.13(b).  
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Figure 2.16.  Extrusion (swept) NURBS surface 

 

Surfaces of revolution are constructed by given a circle (full revolution) or 

circular arc (degree of revolution) and a cross section NURBS curve, Figure 2.17. 

 

 

Figure 2.17.  Surface of revolution 
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Gordon surfaces are created by interpolating two bidirectional sets of curves 

network, as in Figure 2.18.   

 

 

Figure 2.18.  Gordon surface, interpolating of bidirectional curve network 

 

Other types and techniques include but are not limited to swung surface, ruled 

surface, and Coons patches.  Swung surface is a generalization of surface of revolution. 

Ruled surfaces are constructed from two rail curves, and Coons patches are bicubic 

blended surfaces constructed from 4 border curves [5]. 

One can notice the simplicity of constructing the class in Figure 2.16 by designing 

one curve compared to the curves network used to construct the similar class in Figure 

2.17.  The above NURBS modeling techniques are some of the basic ones used.  There is 

a wide range of modeling techniques in NURBS allowing for design with simplicities and 

modeling with more possibilities. 
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2.4 NURBS Model Representation 

Once created, every NURBS surface is exactly the same as every other NURBS 

surface; it is defined by control net, degrees, and knot vectors.  The inconsistencies are 

within different CAD systems.  For example, one system, CATIA, generates the 

cylindrical surface as two open patches, while the other, Rhino, produces a closed surface 

with a seam. See Figure 2.19. 

 

 

Figure 2.19.  Different representations of a cylinder 

 

The inconsistency is going to result in difficulties when converting one format 

into another.  This is because open and closed surfaces are handled differently at the 

software level.  For example, intersection curves crossing the seam must be split, 

topology differences may result in geometry problems in addition to confusing the 

systems with the number of vertices, edges, and faces that are also represented differently 

in different CAD systems. 

Another example is the circle that is represented as a degree two, degree four, or 

degree five rational-curve in different systems. See Figure 2.20.  Degree elevation, e.g., 
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going from degree two to five, can be made precisely.  However, there are two 

disadvantages. 

One, the process only changes the form of the curve.  It keeps the geometry as 

well as the parametrization intact.  A NURBS curve is a parametric entity whose 

geometry is closely tight to its parametrization.  A poorly parametrized NURBS curve 

can cause discontinuities in subsequent surface constructions and operations, such as 

when used to generate ruled and lofted surfaces or when used for offsetting based on 

point sampling.  After degree elevation, the curve has the structure of degree five; 

however, its behavior is degree two only. 

Second, a circle is an important entity in modeling and many systems prefer to 

represent it as a degree five NURBS curve to avoid multiple knots and to have adequate 

continuity for subsequent operations.  The conversion process from degree two to five 

introduces knots with multiplicity five and discontinuities in the homogeneous space, 

which contradicts the purpose of having it in the first place.  The process can also 

increase the data drastically when a set of curves are merged together for subsequent 

(surface) constructions. 

 

Figure 2.20.  Different circle representations in NURBS 



 

60 

 

Degree reduction, for example, going from degree five to two, is an imprecise 

process, and the original precise circle representation is now inaccurate.  The converted 

degree five circle, which is four times continuously differentiable, becomes either a non-

rational approximation or a discontinuous curve in homogeneous space after degree 

reduction. 

NURBS models are usually constructed from a set of NURBS curves and 

surfaces.  However, the representation of the same model could vary based on the 

systems that are used during the initial and intermediate construction of the model.   

 

 

2.5 NURBS Data Export to Other CAD Systems and Storage 

Every CAD system has its own methods of describing geometry, resulting in a 

large variety of data formats. See Table 2.1.  CAD vendors secure and protect their data 

formats since sharing their proprietary data formats and the database structures would put 

them at a less competitive advantage.  Moreover, new CAD systems are constantly 

emerging with new data formats, and some old vendors go out of business.  Supply chain 

companies that use CAD systems are faced with the task of continually exporting data 

formats from one system to other CAD systems in order to complete a complicated model 

that could be the product of tens of contributors. 

When exchanging data that represents NURBS curves and surfaces to and from 

systems that use NURBS as their modeling kernel, three possible scenarios can occur.  A 

NURBS entity can be translated precisely both mathematically and geometrically with 

only floating point round off errors.  It can also be geometrically precise, but the  



 

61 

 

parametrization is changed: for 

example, if a circle is parameterized by 

trigonometric functions in one system 

while parameterized based on chord 

length in another system.  Notice that 

surfaces that use circles in their 

constructions can be different 

geometrically.  Finally, the NURBS 

entity can be translated approximately 

with some specified tolerance: for 

example, if there is a degree restriction in one system and the other system allows for 

higher degrees.  Converting a higher degree NURBS entity to a lower degree can only be 

achieved by approximation. 

Exchanging different data formats is a risky process since it is afflicted by many 

issues, including information loss or misinterpretation and change of data accuracies, as 

illustrated in the motivation section of Chapter 1.  However, it is the only option used in 

the industry so far, and most often it is achieved through the use of standard formats, i.e., 

IGES and STEP. 

 

2.5.1 NURBS within Standards 

An IGES file must structurally be composed of five sections: Start for sender 

comments, Global section for general file characteristics, Directory entry for entity index 

and common attributes, Parameter data for entity data, and Terminate section to indicate 

Table 2.1.  A selection of CAD file formats 

ART 

ASC 

ASM 

CCM 

CAD 

CAT 

DWG 

DGN 

DGK 

FM 

GRB 

ICD 

IGES 

ISFF 

PRT 

SKP 

RWS 

SLDPRT 

STEP 

ArtCAM 

BRL-CAD 

Solidedge assembly 

CopyCAD model 

CADst 

CATIA 

AutoCAD 

MicroStation design file 

Delcam geometry 

FeatureCAM part file 

T-FLEX CAD file 

IronCAD 2D file 

IGES file 

Integraph format for MicroStation 

Unigraphics,Pro/ENGINEER 

SketchUp model 

Rhino work session 

SolidWorks part model 

STEP file 

  



 

62 

 

the end of the file.  Each section consists of records that are 80 ASCII characters long 

with characters in column 73 (S, G, D, P, or T) to indicate what section this record 

belongs to. The start section is set up by the person creating the IGES file to contain 

useful information to the receiver of the file. The global section contains parameters 

needed for the file translation.  The directory section is generated by the IGES pre-

processor and contains entry for each IGES entity in the file.  IGES entities are labeled 

with numbers to indicate their type.  For example, the repeated 126 shown in Figure 2.21 

is for NURBS curve entity.  The second column value indicates the line number in the 

next section (Parameter Data) where specific parameters such as knot vectors and control 

points are associated with each IGES entity.  

 

 
Figure 2.21. Snapshot of IGES file 

 

For storage and representation of a piece of geometry, the amount of data required 

is much smaller than the amount of information required by many other representations, 

including the common faceted approximations.   IGES requires degrees and number of 

control points, Euclidean control points, knot vector, parameter values, and other useful 
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information such as tagging a curve or a surface as a special type.  For example, line, 

conic arc, and circular arc used to define a NURBS curve; and plane, torus, surface of 

revolution, and cylinder are used to define special surfaces. 

STEP files can be implemented by ASCII structure defined in STEP-File (ISO 

10303-21), by Extensible Markup Language (XML) format defined in STEP-XML (ISO 

10303-28), or through an abstract Application Programming Interface (API) that is 

defined in Standard Data Access Interface or simply SDAI (ISO 10303-22).  STEP-File 

implementation is the most widely used due to its ASCII nature. See Figure 2.22.  Almost 

every translator will have the option to import or export to STEP-File, which ends with 

file extensions ―.stp‖ or ―.step‖. 

 

 

Figure 2.22. STEP file (USB in Figure 1.1) 

 

NURBS curves and surfaces are defined in Part 42, which focuses on basic 

geometry and topology of a product model.   The same data and information that are used 

in IGES to define NURBS curves and surfaces are also used with STEP definition of 

NURBS, with little extra information such as a flag for self-intersecting. 
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Chapter 3 --- Knowledge Guided Design Intent Systems 

 

 

 

 

Knowledge guided design intent systems are, in general, much more complex 

than CAD systems that primarily focus on the design and manufacture capabilities.  Such 

systems go several steps beyond the basic CAD systems by not only providing the basic 

capabilities of traditional CAD system but also by dealing with knowledge and design 

intent capturing, archival, management, and retrieval without hindering the designing 

processes.  The added features make such systems fairly complex.  However, they can 

enable benefits and capabilities ranging from object classification to knowledge mining 

and design replay that are discussed in Chapter 4. 

To be able to add these extra features to CAD systems, a set of questions about 

knowledge and design intent has to be addressed.  Section 3.1 deals with fundamental 

questions such as the meaning of knowledge in the general sense and within the context 

of NURBS environment.  It also discusses knowledge acquisitions and representations in 

a CAD setting.   Section 3.2 narrows the general discussion of design intent from the 

Prior Work section in Chapter 1 to structure a well-defined design intent within NURBS. 

It also discusses the mechanisms by which we can support the presence of design intent 

in NURBS.  The last section of this chapter, section 3.3, discusses the type and amount of 

information that needs to be retained in such systems.  Investigating the above questions 
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should set the stage for Chapter 4, in which the broad definition of the knowledge guided 

design intent systems can be focused to form a knowledge guided NURBS system. 

 

 

3.1 What is Knowledge? 

Data, information and knowledge are often considered synonyms of one another, 

and the distinction between them is certainly fuzzy [88].  However, researchers 

differentiate and describe the relationship between them.  Miller et al. [89] detail how 

data can be structured or unstructured and can represent a measure such as a quantity.  

For example, a string of numbers on a piece of paper (e.g., 8139740000) is considered 

data since it represents raw and non-interpreted facts.  Information, on the other hand, has 

been described as the ―describing a fact‖ where the fact is an occurrence of a measure or 

inference of some quantity or quality [90,91].  Knowing that these numbers represent a 

phone number in the US is an example of information.  The more information that is 

inferred, derived, or deducted from the telephone number is what constitutes knowledge: 

for example, knowing that a number with a particular area code was issued in the state of 

Florida or using a number to get an address. 

Within the NURBS-based modeling environment, most current CAD systems 

produce raw numerical data at the end of a designing task, that is, control points, degree, 

and knots of a curve or a surface.  A knowledge guided design intent system goes beyond 

the basic CAD systems by gathering and managing information such as the type of curve 

that was created: for example, a circle with a given radius and center, how it was created, 

function used in creation, alternative algorithms, relationships (if any) with other NURBS 
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entities, and much more other information that is part of the designing process.  Such 

information is usually not accounted for in traditional CAD systems and is largely lost 

either at the low level of object design or during model transfer, causing topological 

inaccuracies and threatening robust computations down-streams.  Using the gathered data 

and the important information about NURBS entities to get more information—i.e. 

knowledge—is what makes the system a knowledge guided NURBS system.  In the 

designing process, the gathered data and information will be stored in a design base and a 

knowledge base.  The knowledge base and design base can enable knowledge mining to 

learn about the design, document the design, aid design replay to reconstruct offending 

parts of the design.  Figure 3.1 shows how data, information and knowledge can be 

integrated into knowledge guided NURBS-based system. 

 

 

Figure 3.1.  Data, information, knowledge within NURBS-based systems 

 

From the literature definitions of data, information and knowledge and from 

Figure 3.1, one can conclude: knowledge is built or constructed on top of both data and 

information that are acquired at earlier stages or during the designing process of a model; 

the presence of information implies the abilities to access data; and the presence of 

knowledge implies the ability to access both data and information.   
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3.1.1 Knowledge Acquisition and Representation 

The process of acquiring knowledge can be achieved in three main ways: user-

intervention, automatic, or a hybrid approach.  The designing process is highly creative. 

If knowledge and information is to be gathered with great user intervention, the designer 

might get reluctant to record the information needed to preserve the designing intent.  

Moreover, the knowledge base might have gaps that will render it useless if the 

knowledge acquisition is left to the designer.  Thus, in a CAD environment, knowledge 

acquisition should be fully automated with flexibility to allow for knowledge 

management such as modifications, deletions, retrieval, and maintenance to the acquired 

knowledge.   

Acquired knowledge can be represented based on the purpose and intended use of 

it.  Literature, however, usually classifies it under three broad classes of representations: 

formal, informal, and semi-formal. 

Lee [91] describes the formal representation as a full written documentation.  He 

states that it is overly costly and can limit the creative thought and development.  Hicks et 

al. [90] sub-classify the formal representation into three categories: textual, pictorial, and 

verbal.  They state that textual representation of knowledge is usually structured numeric, 

alphabetic, or symbolic, or a combination of these.  Pictorial representation is any visual 

image, such as three-dimensional engineering drawing.  Verbal representation is the 

documented descriptions and explanations of design intent and decisions of the design 

team. 

Informal representation is in the form of memos, emails, meetings, videotapes, 

etc.  This type of representation can be difficult to combine and present into single 
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coherent form [92].  The level of details of the documentation varies based on a 

designer‘s judgment. 

 Semi-formal representation is a compromise between the formal and the informal 

approaches.  It provides some computation power but is still understandable by the 

human providing the information.   

 

 

3.2 What is Design Intent? 

Design intent has various meanings in different applications and fields.  The Prior 

Works section in Chapter 1 gives a detailed discussion on design intent in the general 

sense and from the perspective of many fields.  The section states that the definition 

formulated by Iyer and Mills survey [12] on design intent is adequately comprehensive.  

Repeated here for convenience: they state that ―design intent is application, domain and 

context dependent knowledge that describes design space, represents design alternatives 

and processes history, justifies design solutions and decisions and determines the 

characteristics of features and entities and the relationships among them.‖   

According to general connotations of the term, this definition is difficult to 

quantify and structure.  Fortunately, in a NURBS-based modeling environment, it is 

fairly clear what design intent is: all relevant design information that can be structured to 

support design replay. See Figure 3.2.  In other words, it is all the information we need to 

enable the regeneration of a CAD model or design on many dissimilar CAD systems as if 

it was created on each one them.  To this end, the capabilities outlined in Figure 3.2 and 

presented in the subsections that follow are supported. 
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Figure 3.2.  Design intent in NURBS modeling 

 

 

3.2.1 Design Alternatives 

Modeling systems usually provide various alternatives to perform the same design 

tasks. If the design is not up to standard in the receiving system, it is most useful to know 

what kind of modeling tool was used in the first place and alternatives in order to make 

the proper decision.  At a minimum, knowledge guided design intent system will support 

the following:  

 Name of the function(s) that produced the current design. 

 Alternative capabilities and their short descriptions. 

 Justification as to why the current function was chosen. 

 

3.2.2 Design Functions 

All design tasks in a NURBS system are performed by some function. In order to 

support the replay of the designer‘s intent (design session), functional information 

becomes a must. The following functional information will be provided:  

 Name of the function(s) that produced the final result, e.g. KGN_surruled.c. 
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 Location of the function, e.g. c:\KGnurbs\src. 

 Version and the release date, e.g. V2.1_2011. 

 Reference to documentation (on-line or offline), e.g. 

 c:\KGnurbs\doc\surruled.htm. 

 

3.2.3 Design Decisions 

Designers tend to make mistake during the designing process and then repeat the 

same mistake at later stage of the designing process.  They also undo and redo each 

other‘s work because there is no information on what led to one‘s decision and what the 

relevant circumstances were.  For example, one designer might create a kink on a surface 

because it is stylish and was part of the original concept of the design while another 

designer might remove it because of the machining process.  The second decision should 

be recorded to avoid redoing the same mistake.  To assist in proper reconstruction of the 

design and to avoid mistakes caused by repetition, knowledge guided design intent 

system will provide at least the following:  

 Recording of the decisions that resulted in the current design, i.e., what. 

 The reasons and justification that led to decisions that were made, i.e., why. 

 Deliberations that lead to the decisions, i.e., how. 

 

3.2.4 Design History 

Designers need history for many reasons, most importantly for learning from prior 

designs and avoiding repetitive mistakes and works on what had been proven to be 

infeasible.  Design history can be detailed; however, the amount of information should be 
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under control and the design history should be kept short.  The following capabilities are 

the minimal information:  

 The date of the initial design‘s creation. 

 The name and contact details of all people involved in the process. 

 All major updates, error fixes, and other maintenance information. 

 Reference to any history file, if any. The history file will contain a complete 

profile of the design, incorporating all of the above: alternatives, decisions, 

functions, maintenance and a time stamp. 

 

 

3.3 What Information Needs to be Retained? 

One of the major challenges in knowledge guided design intent systems is what 

and how much information needs to be generated and retained.  Too little information 

may not allow the system to replay the design process.  On the other hand, too much 

information may devastate the system and create problems with storing, usage, and 

maintaining all the relevant as well as irrelevant knowledge.   

One of the main objectives of knowledge guided design intent systems is to 

preserve the designer intent when migrating models from one system to another 

dissimilar system.  All information and data that are part of design intent as described 

above must be retained—i.e., design alternatives, functions, decisions, and history.   

Other objectives such as reliability and robustness are also supported by retaining 

necessary information.  For example, finding the distance between a set of points and a 

curve or surface can be made robust if we know the object type and discontinuities (if 
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any) and some other information that might help in choosing the right algorithms and 

computations.  Knowing the type of curve is a line can aid in robustness by projecting all 

the points without any Newton-type iterations is an example of such a case.  Anomalies 

such as cusps and boundary points can be accounted for if we know where at the curve or 

surface they exist. 

 

CAD System BCAD System A

Acceptable

Design Replay

(Reconstruct Desing)

NO

Yes

Knowledge base

Database

Knowledge base

Database

Updated 

(Not Patched-up)

Figure 3.3.  Design-and-edit in knowledge guided system 

 

Current CAD systems do not preserve the design intent and work in a design-and-

repair behavior, where the final model might be repaired and patched up manually or 

using specialized software as described in the motivation section in Chapter 1.   

Knowledge guided design intent systems work on a design-and-edit approach.  If the 

migrated design is not acceptable at the other end, the system will reconstruct the whole 

design based on local requirements through a design replay manager. See Figure 3.3.  In 

order to accomplish this goal, all necessary information that enables design replay 

(design regenerate in particular) must be gathered and stored in a design base and 

knowledge base.   

An example is a surface of revolution constructed form a profile curve.  If the 

surface is not acceptable in the receiving system, the design scenario must be repeated.  
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For simplicity at this point, we focus our concern on the information needed for 

reconstructing the design, not accounting for objectives such as the information needed to 

aid the robustness and reliability.  A design replay process has to be provided with the 

following: 

 Identities of the participating objects. These can be attained by proper naming and 

identification.  

 Design intent will provide the receiving system with what functions were used to 

design the entities, what alternatives were considered, and what decisions were 

made.  

 Relationship maps are complicated data structure.  They are made of nodes that 

hold objects references, relationships, and their parameters. For example, when 

the surface of revolution is computed, the surface and the profile curve enter into 

a Surface-Curve-Revolution relationship and all the parameters needed to recreate 

the design are saved. 

 

 

Figure 3.4.  Surface-curve information for design replay of surface of revolution 
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Figure 3.4 shows the C code used in the system for a surface-curve node that hold 

information needed to reconstruct a surface of revolution.  Recall that having information 

implies the presence of data, and hence the control points, knot vectors, and degree are all 

available to be accessed and retrieved.  The design intent and as the information used for 

the relationship map are implemented in different parts of the system based on where 

suitable and hence only parts of them are encoded in the nodes. 

Using this fundamental data and information, the designer at the receiving system 

should repeat the designing process with ease using a user friendly interface.  The system 

can determine what objects are involved in the design and find their IDs and references.  

The system should retrieve design alternatives, functions, and decisions to perform the 

redesign so as not to repeat previous mistakes.  Finally, the system must access the 

modeling kernel, pass all required parameters, and reconstruct the surface based on the 

receiving system specifications—e.g., tolerance. 

The next chapter, Chapter 4, provides a complete definition of all knowledge and 

information needed to achieve all the objectives of the knowledge guided design intent 

system.  It details information needed for knowledge acquisition, knowledge mining, as 

well as detailed information on design replay. 
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Chapter 4 --- Knowledge Guided NURBS 

 

 

 

 

Previous chapters set the stage for what follows by discussing knowledge guided 

design intent systems and the motivations to embrace them.  This chapter discusses the 

system in more detail.  The global architecture of a knowledge guided design intent 

system within NURBS environment is shown in Figure 4.1 

 

 

Figure 4.1.  Knowledge guided NURBS system global architecture. 

Chapter sections shown in brackets 

 

The system is built on top of a knowledge guided NURBS kernel.  Access to 

modeling functions, memory stacks, and knowledge stacks are enabled via access links 

(routines).  Knowledge acquisition manager, knowledge mining manager, design replay 
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manager, and export/import managers are the other main components of the system.  As 

with any CAD modeling system, the users interface with the system‘s functionalities via 

a user-friendly interface. 

Section 4.1 defines knowledge guided NURBS (KGN) kernel as the heart of the 

whole system.  Section 4.2 describes the ways that KGN acquires knowledge through the 

knowledge acquisition manager.   The knowledge mining manager is discussed in section 

4.3 as a mean of browsing the knowledge and design bases for many reasons, such as 

assisting with design replay as well as learning about the generated models.  Design 

replay and reconstruction capability of KGN models is the subject of section 4.4.  Finally, 

sections 4.5 details exported/imported managers and how design and knowledge bases 

are built within KGN environment. 

 

 

4.1 Knowledge Guided NURBS 

The core of the system is a KGN kernel.  Like any other NURBS-based kernel, it 

is required to provide the modeling capabilities and routines that enable designers to 

realize ideas and concepts into a geometric model.  However, it surpasses the traditional 

kernels by incorporating a wealth of information to individual entities as well as to the 

whole model.  KGN is capable of processing enough information and knowledge to 

support our three main objectives: seamless model migration, robustness, and reliability.  

The precise definition of KGN is a compromise between data storage and design and 

manufacturing requirements.  Figure 4.2 gives the major components of KGN kernel 

along with the corresponding chapter‘s section that covers each of them.  Except for 
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design intent, which has been discussed in depth previously in Section 3.2, this section 

covers identification, classification, definition, representation, geometry, and relationship 

maps.  These constituents are the keys to achieving our objectives, and they are encoded 

at the lowest level of the designing process making it part of the kernel. 

 

 

Figure 4.2.  Knowledge guided NURBS constituents. 

Chapter sections shown in brackets 

 

 

4.1.1 Identification 

Literature reveals that the naming of entities is causing many problems when 

migrating CAD models between the inherently incompatible CAx systems.  The papers 

[93-98] proposed a set of approaches that can be classified into two main approaches: (1) 

naming based on topological ID‘s such as faces, edges, and vertices and (2) naming based 

on geometric coordinates of the entities.  Both approaches have weaknesses, such as 

ambiguity and naming collisions.  Some commercial CAD systems—e.g., SolidWorks— 
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minimize the problem by naming entities based on type and the 3D coordinates of the 

referenced entities.   Proper naming and identification is important for consistency within 

the KGN system and many issues have to be considered. 

Like database tables that have primary keys, entities in KGN must have unique 

IDs for proper database building and management.  However, for a proper persistent 

naming, a proper migration, and an error-free knowledge bases rebuilding, a simple 

indexing mechanism that merely gives entities a simple unique number is not sufficient.  

Simple indexing, for practical purposes, can preserve the integrity of the design base or 

the database within one system.  But CAD models are always going from one system to 

another, raising problems such as naming collisions and ambiguities.  Names of objects 

in KGN have to be meaningful and should contain enough information to eliminate issues 

associated with persistent naming in CAx.  The first issue that KGN naming should 

address is to distinguish its entities names from the many NURBS kernels that are in the 

market today with inconsistent naming.  KGN uses a prefix (KGN) before every entity 

goes to the data and knowledge bases in order to avoid clashes with other CAD systems 

or kernels. 

The second is that the same kernel or CAx system gets updated with new versions 

over the course of the years, hence there is no version control.  KGN incorporates the 

version number into the name—e.g., (V2.1)—to gain a better version controlled naming.  

This will assist with upward and downward versions‘ compatibilities of the naming.  It 

will also assist with design replay, particularly when to redesign an entity if a newer 

version or update (ideally) fixes coding bugs that were encountered in older versions of 

the system, particularly with the designing functions.  The year of the release—e.g., 
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2011—is also added to the name to recognize the name and versions years later if the 

system ever gets to be a legacy. 

 

 

Figure 4.3.  Unique part ID in KGN: avoid associated naming problems 

 

Another identifier that KGN adds to its entities‘ names is the object general 

type—e.g., curve, surface, and volume.  For implementation and consistency purposes, 

the first three letters of each type is proven to be good choice.  For example, a curve 

object name will be tagged with (CUR), a surface (SUR), and volume (VOL).  The last 

part of the name is the index or number ID—e.g., (0001).  It is the only part that must 

be unique for every name.  The system must not allow any duplicate names.  If, for any 

reason, there is an ambiguity or a collision between two or more names, the other parts of 

the name are used for validation.  An example of a curve object full name used in KGN is 

shown in Figure 4.3 with an explanation of each part. 
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4.1.2 Classification 

Classification of NURBS objects follows the what-how-why paradigm that 

corresponds to type-origin-destination. See Figure 4.4. 

 

 

Figure 4.4.  Classification in KGN: what-how-why paradigm 

 

4.1.2.1 Type 

This represents the exact type of the object, or what exactly it is in terms of 

NURBS. The type is not the general type used in identification mentioned before.  It is 

more specific.  For example, a NURBS curve can be: line, circle, ellipse, hyperbola, 

biarc, conic section, etc.  NURBS surfaces can be special cases, such as a cone or 

cylinder, torus, sphere, etc.  Other advanced constructed NURBS surfaces types can be a 

lofted surface, ruled surface, surface of revolution, Gordon, etc.  KGN tagged every 

object created with the proper type.  Although KGN should provide all possible types, an 

unknown type case is added to the list of available types to cover any type that is not 

accounted for during the implementation of the kernel.   

An immediate benefit of classifying NURBS objects based on types is that certain 

object types are handled by special algorithms.  A significant number of operators, such 
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as intersection routine or point distance calculators, have special codes for known data 

types.   For example, there is a big difference between intersecting a line and a circle, and 

a line and a NURBS curve.  Knowing that the NURBS is a circle would provide the 

system with enough information to produce a more accurate result than simply using 

general code such as general purpose intersection code for line/circle intersection.   Many 

types of surfaces can be considered separately, such as ruled surfaces, lofted surfaces, and 

surfaces of revolution.  Special case NURBS surfaces such as planes, spheres, cones, 

cylinders, and torii can also be handled separately by the system with special case 

routines if accuracy and reliability becomes an issue. 

 

 

Figure 4.5. Using objects' type (information) to locate a suitable algorithm 

 

It is clear that coding will increase in both size and complexity since the kernel 

has to consider calling different routines for different cases, as illustrated in Figure 4.5.  

However, this is a much more efficient and more reliable computing system than having 
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to deal with the inaccurate results that could result in a wait time of days or even weeks to 

fix errors.  The system does all this in the background within a fraction of a second. 

 

4.1.2.2 Origin 

This tells KGN where exactly the part comes from, or how it was created in terms of 

NURBS modeling tools.  Every NURBS object originated somewhere in the system.  The 

most basic origin is when the designer defines a NURBS entity by some components—

e.g., creating a curve by plotting control points on the modeling canvas or creating a 

circle by its center and radius.   

Other origins of NURBS entities involve other NURBS objects.  For example, a 

set of points can originate from sampling a NURBS curve, or a curve can be created from 

approximating a set of points.  Examples of possible origins used in KGN include 

intersection, sketching, fitting, offsetting, transformation, and general advance 

construction.  To account for NURBS objects that are created on different systems or of 

unknown origins, KGN adds import and unknown origins to the list of the possible 

origins of an entity.  

 

4.1.2.3 Destination 

 This is the application where the object will be used, or why and what-for it was 

created.  Examples of destination include intersection, styling, and fitting. The destination 

of an object is more involved than the type and origin described above.  This is because 

the system cannot determine the destination in advance—i.e., during the initial creation 

of an object.  Another issue is that an object can have multiple destinations.  For example, 
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a curve can be used in the construction of a ruled surface and then used as a base curve 

for sampling. 

A simple solution is to ask the designer to record the destination with a pop up 

window that has a selection list of possible destination.  However, this choice is not 

practical and can be a bothersome to the designing and creativity process of the designer.  

The system deals with this issue by marking the destination as unknown, and then 

updates the destination once the system determines it.   

  KGN does not account for multiple destinations at this junction of information 

gathering since it can be easily inferred from different parts of the knowledge base and 

the relationship map.  Relationship query, discussed in Section 4.2.2 as part of knowledge 

mining, can provide the designer and the system with all objects involved with a 

particular object, including destination object(s).  

 

4.1.3 Definition 

Control points, knots, and degrees are necessary to fully define NURBS curves, 

surfaces, and volumes; this includes special case NURBS such as lines, conics, planes, 

and quadrics.  However, for the purpose of design replay, which is a major objective of 

the system, additional definition information has to be gathered and stored in the 

database.  For example, if the NURBS entity at hand is a degree 2 circle that is generated 

in one system, and another system needs to regenerate (not convert but actually redesign) 

the circle as a degree 5 circle, the system needs the center point, radius, and normal 

vector to define the original circle.  Having these defining components can assure that the 

receiving system produces another NURBS curve (circle) whose topology is identical to 

the original curve but with different characteristics—i.e., control points, knots, and 
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degree that are suitable for this receiving system. Table 4.1 shows what KGN stores as 

defining components for different NURBS entities.  

 

Table 4.1.  KGN basic entities and definitions  

Entity Defining Components 

Point   Point coordinates 

Line   Start point 

  End point 

Conics 

(circle,  parabola, 

 ellipse, hyperbola) 

  Center  

  Radii 

  Unit Axes 

Plane  Co-planar points, or 

 Closed polygon 

 Normal vector 

Quadric 

(sphere, ellipsoid, 

cone, torus) 

 Center  

 Radii 

 Unit axes 

Curve, 

Surface, 

Volume 

 Control points 

 Knot vector(s) 

 Degree(s) 

 

Additional information such as color, material types, cost of processing, etc. can also be 

included.  

 

4.1.4 Representation 

A NURBS is a parametric entity whose parametric representation is not unique. 

How well it is represented parametrically has a profound effect on many subsequent 

operations, such as point sampling, numerical processes, and surface constructions.  

Every single construction is valid only with respect to a given parametrization and must 

be recorded in the knowledge base to ensure a reliable and robust system.  Figure 4.6 
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shows the representation parts recorded in KGN to aid with a wide range of numerical 

processes. 

 

Figure 4.6. Representations in KGN, increase robustness and reliability 

 

 

4.1.4.1 Parametrization Factor 

Parameters in NURBS usually are classified broadly as either uniform or non-

uniform.  But a closer look can reveal that we could have degrees of non-uniformity—

e.g., some parameters are almost uniform.  The variations and types of parametrization 

have a profound effect on many important applications.  For example, curve/surface 

decomposition and choosing the start value for point projection using Newton iterations 

[99].  In the case of decomposition, knowing the type of parameters becomes critical in 

finding the proper decomposition, that is, the iterative process can be anchored to not 

―run-off‖ if the parametrization is highly non-uniform.  For Newton‘s method, it is 

important to start with good initial value; good start points are easy to guess if the 

curve/surface is parametrized uniformly. 

Parametrization factor is a measure of how far a parametrization is from being 

uniform.  Choosing a good method to measure the parametrization factor has been 
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discussed in detail in [99].   Briefly, a parametric curve is the path traced out, say by a 

particle, while the parameter sweeps out the parametric domain.  If the particle moves 

along the path of the curve/surface with constant speed, the parameters are spaced 

uniformly.  On the other hand, if the speed of the particle changes, then the entity has a 

non-uniform parameters.  Since speed is measured by the magnitude of the first 

derivatives, the parametrization factor (pf) can be measured as follows: 

D
DDpf

max

minmax




 

   DD minmax
,    are min-max derivatives 

The formula above is the standard measure of variation in terms of a range.  If the 

curve is parametrized uniformly— DD minmax
  and 0pf — there are no variations 

between the values.  On the other hand, if the entity has a vanishing derivative (the 

particle comes to a stop), the parametrization factor is 1.  Simply put, the smaller the 

factor, the less variation between the values and the more uniform the parametrization.  

Table 4.2 gives a good distribution of the sub-classification of parameters we have found 

to be practical based on testing numerous different cases of NURBS curves and surfaces.  

 

Table 4.2.  Parametrization  factor 

Pf Parametrization 

0.0 ≤ pf ≤ 0.2 (Nearly) uniform 

0.2 < pf ≤ 0.4 Nearly non-uniform 

0.4 < pf ≤ 0.7 Non-uniform 

0.7 < pf ≤ 1.0 Highly non-uniform 

 

The parametrization  factor plays as an indicator when it is imperative to 

reparametrize entities before any computation begins, such as when it is highly non-
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uniform (0.7 < pf ≤ 1.0) and may cause computation problems.  Therefore, KGN 

computes and records the parametrization  factor for every parametric entity created.  

Doing this, KGN can increase robustness and reliability of routines, where speed and 

guaranteed convergence is highly dependent on the type of parametrization, such as 

Newton‘s method. 

 

4.1.4.2 Level of Continuity 

NURBS curves and surfaces have continuity or smoothness associated with them 

internally, that is, between the curves‘ segments and the surfaces‘ patches, or at joint 

points and edges.  There are two forms of continuities: geometric (i.e., physical) and 

parametric (i.e., mathematical).   These two types are further subdivided into various 

levels of continuities—e.g., positional (G0), tangential (G1), curvature (G2), or only an 

approximate geometric continuity.  Generally, the increase of the order for both 

geometric and parametric indicates an increasing measure of smoothness and motion.  

Many numerical algorithms require first or second-degree parametric continuity, other 

processes are achieved by geometric continuity only, and yet some constructions can only 

guarantee continuity in an approximate manner.  For example, filling an n-sided hole 

with a set of rectangular patches guarantees only approximate continuity, which then 

must be recorded in order to avoid failure in subsequent numerical processes.  A 

continuity level greater than C
2
 is unnecessary for most 3D computer modeling; however, 

KGN records continuities up to level five.  
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4.1.4.3 Irregularities 

Significant work has been done on fairing and smoothing, that is, removing 

unwanted irregularities. The robustness of any CAD system can be improved greatly by 

appropriately dealing with irregularities that not only create unacceptable designs, but 

also may crash the system.  Typical irregularities that hinder numerical code from 

working properly are cusps, poles, seams, zero curvatures, zero normals, large or 

negative weights, collapsing derivatives, and multiple knots.  For example, a numerical 

process to find the distance between a point and a curve using Newton‘s method can fail 

to converge if the curve has a discontinuity, for example, a cusp or the closest point 

(projection) is at the point of discontinuity.  The Newton method tends to jump over the 

discontinuity or hovers around it, entering into an infinite loop.   

KGN records all forms of irregularities that are known to cause failures or may 

result in decreased system performance.  The awareness of their presence in a NURBS 

entity can increase the system robustness and reliably through special code segments that 

account for these irregularities or initiate redesign or reparametrization processes to 

remove them. 

 

4.1.5 Geometry 

Curves and surfaces in NURBS models have a lot of geometry that can be tagged 

for downstream applications for robustness and reliability.   For example, curves and 

surface curvature can play important roles in a robotics path, NC machining, and shape 

analysis.  It is highly recommended to slow down the robot or the cutter of an NC 

machine in high curvature areas.  In shape analysis applications, the curvature can play an 
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important task in the process of sampling or discretization.  High curvature areas must be 

sampled with more density, whereas low curvature segments can use fewer sampling 

points. 

 

 

Figure 4.7. Geometry: example of open and closed NURBS surface (torus) 

 

Important information that can be used by many processes and applications is 

knowing if the curve or surface is closed or open. A curve can be either closed or open 

while a surface can be open in both directions like a grid, closed in both like a torus, or 

open in one and closed in the other like a tube as shown in Figure 4.7.  Table 4.3 list 

some of the important geometries that KGN record for NURBS entities.  

 

Table 4.3.  NURBS geometries in KGN  

NURBS Geometry Components 

Curve 

 Length 

 Curvatures (min, max) 

 Openness  

Surface 

 Area 

 Perimeter 

 Curvatures (min, max, mean) 

 Openness (U and V-directions) 

Volume  

 Volume 

 Perimeter 

 Openness (U, V, and W- directions) 
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4.1.6 Relationship Maps 

Organizing and managing a large amounts of related but disjointed information is 

a great challenge that KGN must address.  Knowledge has to be structured in a way that 

permits easy access for knowledge mining and design replay as well as the ability to 

perform modifications that might cause full backward regression to the whole knowledge 

base.  There are a number of ways to represent and structure knowledge in computer and 

information science.  However, the most suitable form for NURBS-based modeling is a 

relationship map, which is a sophisticated data structure recording important 

relationships. 

 

 

Figure 4.8. Bidirectional relationship map with sub-relationships 
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In order to create a structured knowledge map, it is necessary to identify specific 

pieces in the designing process and use them to imply the knowledge they are 

representing.  During any construction operation in a NURBS system—e.g., point 

sampling or interpolation—entities enter into directional, and usually two-way, 

relationships.  For example, the upper part of Figure 4.8 shows that when a NURBS 

curve is sampled, the points and the curve enter into a Curve  Points relationship, 

which may be called sampling. 

On the other hand, when points are used to generate an interpolating curve, the 

points and the curve enter into a Curve  Points relationship that may be called 

interpolation.  The direction arrow represents the sequence of the operation: e.g., first we 

had points, then we generated the curve, and the name of the sub-relationship represents 

the operation used to obtain the design, e.g. interpolation. 

 

 

 

Figure 4.9.  Types of sub-relationships in naming 

 

The two-way directional relationship explained above is a good way to illustrate 

how we can establish relationships between different NURBS entities if the association is 

based on construction operations.  However, other types of relationships can complicate 

the implementation, storage, and management of the data structure.  For example, 

geometrical relationships, such as if two lines are parallel or perpendicular, have no sense 
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of direction.  Positional relationships, such as if points are co-planer or collinear, also 

lack the directional relationship. See Figure 4.9.  To overcome these difficulties we use a 

bidirectional approach for the relationships as:  Rel = {entity  entity | 

relationship: …}, as illustrated in the lower part of Figure 4.8.   

Proper relationship naming, participating objects, parameters, and conditions used 

to establish relationships, as outlined in Figure 4.10, are the most relevant pieces of 

information that will be needed to design a relationship map for KGN.  These key pieces 

of the relationship maps are most crucial with design replay.  They also play an important 

role in elevating the system robustness and reliabilities 

 

 

Figure 4.10.  Factors to consider for relationship map implementation in KGN 

 

 

4.1.6.1 Proper Naming 

The naming of the relationship should reflect the types of the objects in relation as 

well as the type of the relationship and sub-relationship.  If the relationship is a 

construction relationship, then the operation type and the direction of the relationship can 
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be inferred from the relationship name.  For example:  Rel = {curve  points 

| sampling: …} indicates that a curve was sampled and the result is a set of points.  

On the other hand, Rel = {curve  points | fitting: …} indicates that 

a set of points was interpolated or approximated and the result is a curve.  

 

4.1.6.2 Participating Objects 

All objects that participate in the relationship should be recorded and should be 

accessible.  For example, a fitting operation should have access to the generated curve 

and to the set of points that was used to generate the curve.  Example: Rel = {curve 

 points | fitting: C, P;…}.  Figure 4.11 shows the general structure of 

the relationship map along with curve-point relationship.  It also illustrates that the IDs 

can be used to access the objects from the design base to get all the needed information—

e.g., information needed for design replay. 
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Figure 4.11.  General structure of relationship map. Curve-point relationship 
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4.1.6.3 Parameters 

Different CAD systems can use different sets of modeling parameters, which can 

cause problems when migrating a model from one system to another.  To be able to 

perform design replay and model editing, it is imperative to record every one of them.  

An example: Rel = {curve  points | fitting: C, P; t0,…,tk; 

u0,…,um; deg; tol;…}.  That is, the system has access to the points and the curve 

(participating objects), the parameters, the knots, degree, and the tolerance used.  For this 

specific example, if the tolerance is zero, then the fitting operation is interpolation to the 

points; otherwise, it indicates an approximation operation.  Moreover, each operation has 

its own set of parameters and different bookkeeping methods and structures.  For 

example, if we have:  Rel = {curve  points | incidence: C, P; 

tol; function}, then only the access to the curve and point, the tolerance, and the 

function used to test for incidence need to be recorded.  A global or a master structure to 

fit all types of parameters can be done but will be a waste of memory space. 

 

4.1.6.4 Conditions 

The conditions that are applied to generate relationships must be the same across 

all functions and platforms.  For example, the reason why two lines in two different 

systems are classified differently—e.g., parallel in one and intersecting in another—is not 

just because of different tolerances, but also because of different conditions [100].  For 

example, one system can use the cross-product condition of two lines (vectors) to test 

parallelism and use dot-product to test for perpendicularity, while another system may 

use the distance conditions to test for the two cases as illustrated in Figure 4.12.  The two 
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testing conditions can give different results.  Therefore, when migrating models between 

the two systems, KGN supplies a set of conditions that might be used to determine a 

relationship. 

  

Figure 4.12.  Using distance condition. Test for parallelism (left) and 

perpendicularity (right) 

 

 

4.2 Knowledge Acquisition Manager 

This section explains how knowledge is acquired and fed into the KGN system.  

The five main sources of knowledge are construction, enforcement, reclassification and 

double bookkeeping. See Figure 4.13.  

 

 

Figure 4.13.  Knowledge acquisitions for knowledge guided NURBS systems 
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4.2.1 Construction 

The greatest amount of knowledge entered the system occurs when constructing 

entities from other components: e.g., a curve from control points, and extruded surface 

from a curve, etc.  New pieces of knowledge are introduced with every incremental 

designing step.   Once the construction has been completed and all relevant relationships 

with their parameters are entered into the relationship graph, the types, origins, 

destinations, design intent, etc. are all saved.  All this is done automatically without user 

intervention.  If the designer requires making any kind of change, the knowledge base is 

sufficiently populated with information to learn about the design and to make the right 

decision.  Any kind of alterations as well as documentations and design maintenance are 

possible with the knowledge acquired at this stage of the designing process. 

 

4.2.2 Design Intent Enforcement 

We have discussed design intent as a mean of enabling design replay—i.e., the 

ability to support and capture intent within KGN.  However, there is yet another side of 

design intent that can be used in knowledge-based systems, called intent enforcement.  

When a model is migrated between incompatible systems, many times there is a 

discrepancy between the resultant model and the intended output—e.g., the user intended 

objects to touch; however, due to the tolerance(s) incompatibility, a system might return 

no touching objects.  The original intent can be enforced through design replay, 

modifying conditions, or sometimes doing the repair manually if the designer prefers.  

The enforcements usually result in new pieces of knowledge that have to be recorded in 

the knowledge base. 
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In some cases, the discrepancy between the intended design and the resultant 

design is subtle, and changing the offending part may cause more damage to subsequent 

processes, such as manufacturing.  In such cases, the offending part may be left as is; 

however, the designer might enter new pieces of knowledge, such as by flagging them 

with the intended outcome. 

 

4.2.3 Reclassification 

When entities enter the supply chain of companies that use different incompatible 

CAD systems, and the resultant model is not the intended model, the first approach to 

rectify the discrepancies is to enforce the design intent, as stated above.  However, it 

could be the case that enforcing the intent is not the best choice.  For example, the change 

can propagate to other relationships causing more serious contradictions.  Figure 4.14 (a) 

shows that System A can have two lines that are perpendicular and one is tangent to a 

circle based on its local tolerances; Figure 4.14 (b) demonstrates that System B finds the 

two lines are not perpendicular anymore based on its local (tighter) tolerances; Figure 

4.14 (c) explains that if we enforce the perpendicularity on System B, the tangency 

relationship might not hold any more, causing contradictions.  In a worst case scenario, 

the system can have a regression that affects the entire knowledge base.  In such cases, a 

second option is to re-classified objects relationships upon entering the receiving system. 

See Figure 4.14 (d).  However, how can reclassification participate in knowledge 

acquisition? 
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Figure 4.14.  Contradictions caused by enforcing intent 

 

Reclassification can cause the old stored knowledge to be erased or modified and 

may generate a new piece of knowledge.  In both cases—either modification or 

generation of new knowledge—the system acquires a new form of information and must 

record it.  The relationship graph has to be updated with the new acquired ―non-parallel‖ 

relationship as well as the local tolerance used to test for parallel cases.  This change 

must also be reflected in the history file so that the designer at the next system is aware of 

the situation and can make proper decision based on the new circumstances. 

Tagging objects as non-parallel while they are almost parallel is a bit extreme, and 

many designers might get reluctant to change or re-classify the relationships.  KGN 

introduces intermediate cases such as nearly-parallel, nearly-perpendicular, etc. in order 

for the designer to re-classify relationships more appropriately for different situations. 
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4.2.4 Design Augmentation 

At the receiving end of a CAD design chain, inconsistencies must be removed by 

either design intent enforcement or reclassification.  If both intent enforcement and re-

classifications are not preferable choices by designers, KGN provides design 

augmentation as a third choice.  Augmentation, as anther knowledge acquisitions 

capability, introduces new pieces of knowledge that will be recorded in the knowledge 

base. 

If we take the same example used above, in which two lines that are parallel in 

one system and non-parallel in another due to differences in tolerances, it is sometimes 

the case that the receiving system finds neither a need to enforce the parallelism intent 

nor a need to re-classify the relationship.  The geometries of the lines can be taken as they 

are and be used without drastic effects on subsequent operations.  In this case, the 

receiving system will augment the knowledge base with: ―lines are parallel in the sending 

system‖, e.g., System A, ―but not on this system‖, e.g., System B, ―and the results are 

obtained by taking the geometries as they are‖ without altering the old relationship graph 

and the databases.  When the design goes to a third system, e.g., System C, it should 

understand that the geometries are those generated on a system other than the sending 

system (i.e., System A); however, numerical results were used to make the decision. 

System C can acknowledge this fact and act accordingly since System B augmented the 

knowledge base with the decisions taking at the time.   
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4.2.5 Bookkeeping 

A final form of knowledge acquisition is due to the fact that most operations can 

produce more than one relationship.  This is because of inquiries about all entities 

involved in creating them.   For example, when two curves intersect, the curves generate 

a curve-curve-intersection relationship.   However, NURBS generates an intersection 

point that is incident on both curves.  It is clear that the system should record the original 

relationship (curve-curve-intersection) but what about the generated extra piece of 

knowledge (curve-point-incident): is it of any benefit?  KGN finds this extra knowledge 

to be important and can aid with many operations; therefore, it keeps record of these new 

pieces of knowledge by double bookkeeping.  For example, if another system (System B) 

finds that the intersection point is not positioned on either of the two curves because of 

different tolerance requirements, the reason can be identified quickly by realizing that an 

intersection routine generated the point; and the tolerance used on this system (System B) 

is not tight enough.  If the systems do not keep record of this extra piece of knowledge 

and do not link the point to any of these curves, the point will be considered a floating or 

general entity, and there is no means by which we can rectify the intersection 

appropriately on System B. 

 

 

4.3 Knowledge Mining 

Once the knowledge and design bases are populated with design data and 

information, a knowledge guided system has to be able to mine them in order to make 

good uses of this wealth of information.  This section explains how the acquired 
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knowledge can be mined to assist with a range of activities as well as the capabilities that 

a knowledge-mining manager supports.  The section starts by discussing the benefits of 

knowledge mining and later details the ways by which knowledge can be mined. 

 

4.3.1 General Usage of Knowledge Mining 

Knowledge mining in KGN can assist as a minimum with the activities outlined 

in Figure 4.15. 

 

 

Figure 4.15.  Knowledge mining usages 

 

4.3.1.1 Design Replay 

A very important application of knowledge guided NURBS systems is to 

overcome issues stemming from cross-platform incompatibility, such as the flawed 

model migration between systems. This is the duty of the design replay manager, 

explained in the next section of this chapter.  However, it cannot achieve its task without 
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the critical support of knowledge mining.  When a design or part of it has to be 

reconstructed—e.g., the intersection curve between two surfaces is found to not lie on the 

surfaces—having as much knowledge about the participating entities is a must, and this 

knowledge must be retrievable. 

 

4.3.1.2 Computations 

When many operations are performed in KGN, the knowledge base is mined to 

find useful information that leads to more robust and reliable computations.  A simple 

example is to find the distance between set of points and a NURBS entity.  The type of 

the entity—e.g., line or circular arc—and the awareness of the presence of any 

irregularities—e.g., loops and cusps—are used to speed up and increase the reliability of 

computations.  Point-distance computation routines treat lines and circular arcs 

differently than a curve with irregularities.  Another example is offsetting a curve.  The 

computation routines can be more accurate if the system distinguishes that we are dealing 

with a circular arc.  The awareness of irregularities assists in avoiding the Newton‘s type 

computations pitfall and leads to a faster convergence.   Blind computation should not be 

the case with the available knowledge that KGN provides and the knowledge mining is a 

key player in achieving that. 

 

4.3.1.3 Design Documentation 

Although the knowledge base is the main form of documentation in KGN, 

participating companies may want a different form of documentation.  The designing 

process is documented at the generating system: e.g., types, destination, design intent, 
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decisions, etc.  The receiving system can use knowledge mining manager to gain access 

to information such as entities, relationships, and parameters to form extra 

documentations for the design. 

 

4.3.1.4 Design Maintenance 

Designing systems and models need to be updated as time goes on.  Certain 

parameters and measures—e.g., tolerances—that were sufficient at the initial designing 

process may go out of date, and maintenance (or update) may be required.  Knowledge 

mining provides the ability to browse the knowledge base to find all entities and the 

parameters that can be affected by such updates, that is before the system applies the 

changes to the model via design replay. 

 

4.3.1.5 Learning 

Mining the design and knowledge base to learn about a design can be done for 

many reasons.  Example-based design is a powerful method of accomplishing great new 

designs and can be achieved easily in KGN by mining a similar model to learn how it 

was created.  Mining the knowledge base to find information on design alternatives, 

functions, decisions, and history is a way to educate designers about past designs and 

why it was design the way it is.  Moreover, the structure of the knowledge base can be 

mined sequentially allowing the simulation of the designing process as a learning tool 

about a design.  
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4.3.2 Knowledge Mining Manager 

A knowledge base is usually structured in such a way that it allows for 

information access and retrieval.  Theoretically, every piece of stored data and 

information in the knowledge and data bases can be browsed, and in many different 

ways.  However, it would be confusing, misleading, and overwhelming if a knowledge 

guided system allows users access to about everything in the bases.  It is the mining 

manager‘s responsibility to present the information in the right order and form for each 

design task. Figure 4.16 outlines the types of mining/browsing capabilities that are 

supported. 

 

 

Figure 4.16.  Knowledge mining for knowledge guided NURBS systems 

 

4.3.2.1 Specific Entity Queries 

This type of mining gathers information about specific entities and their 

relationships.  The queries are submitted in a question form and the response can be 

saved in the relationships map if the designer chooses to.  The following are some 

examples referring to line and plane entities: 
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Are line and plane parallel? The response could be one of the following:  

 line and plane are parallel   (parallel relationship) 

 line is on the plane    (coplanar relationship) 

 line is in a general position  (general relationship) 

 line is degenerate case    (degenerate relationship) 

 

Are the line and plane perpendicular? The response could be one of the following:  

 line and plane are perpendicular  (perpendicular relationship) 

 line is in a general position  (general relationship) 

 line is degenerate case    (degenerate relationship) 

 

4.3.2.2 Part Interrogation 

This type of mining reveals all the stored knowledge about one specific entity.  It 

starts with brief information about the entity.  If the designer requires more information 

or ―interrogation‖ of the object in question, the system mines deeper and deeper until all 

relevant information is displayed.  An example: given an offset curve, what do we know 

about this curve? After a quick response on identification, date of creation, and 

classification (type, origin, and destination), more mining may be needed to find all 

relevant information, such as the base curve, the offset distance, and the tolerance was 

used to approximate the offset,  alternatives, decisions, etc. 
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4.3.2.3 Relationship Query 

This type of mining is concerned with the relationship and can come in the 

following three subtypes: 

 Find all the entities that are in immediate relationships. It returns the objects 

participate in the creation of the entity in question, and all the objects use it in 

their creation—i.e., created-from and used-in objects.  This is useful for finding 

the actual origin and destinations (the entities themselves, not a general origin and 

destination).   

 The designer can recursively find all distance relationships in a similar way by 

finding the connected components in an undirected graph.  It will return all the 

entities that could have any type of connection with the object in question, 

immediate, as in the first type mentioned above, or through other entities.  This 

type of relationship query is very useful on many levels.  It can be used to judge 

the ripple effect or magnitude of any change or update to the design.  In other 

words, how much of the whole design can be affected if the designer replays the 

entity in question. It can also be used to show breaking points of the model if the 

model needs to be broken into smaller sub-models without breaking a chain of 

relationships. 

 Find all entities under one type of relationship.  For example, find all overlapping 

entities in a part or in the entire design. Parameters and participating entities are 

sought along with historical updates. 

 

 



 

107 

 

4.3.2.4 Time Stamp Browsing 

Mining based on time is a way of finding out what has been changed since a 

certain date.  The system tags every entity with its creation date.  If the designer performs 

some changes, the system will update the knowledge base with the new date by either 

changing the creation date to the new date (default) or by reflecting the modification date 

in the history file.  When browsing the design based on the date, the designer can see all 

the changes, updates, or new designs that have been introduced since the date in question.   

 

4.3.2.5 Hierarchical Browsing 

This form of mining is for learning about the design as well as for design replay.  

It can aid with design animation to learn about the whole designing process of a model 

once a model is complete.  The designer can step through the designing stages one at a 

time with the ability to pause, play back, and fast forward animation.  It starts with the 

complete design and traverses the database in the order the various elements were 

generated. 

An internal use of this type of mining is by the design replay manager.  As with 

the animation, it mines part of the whole model in the order the entities were generated.  

The design replay, however, applies changes to the mined model by regenerating the 

entities—e.g., with different tolerances—as if they are designed on the current system the 

model is on. 
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4.4 Design Replay 

One of the main objectives of knowledge guided systems is to deal with cross-

platform incompatibility.  This is the main task of the design replay manager.  The idea is 

simple: regenerate the model from all the components that created it in the first place but 

perhaps with some different parameters and tolerances.  Even though this sounds very 

simple, the process is very complicated and only is made possible by what knowledge 

acquisition and mining managers have provided. Figure 4.17 illustrates the interaction of 

the three managers and how design replay is the core of the editable system. 

 

 

Figure 4.17.  Design replay interaction with other managers 

 

Successful design replay requires the following capabilities. 

 Hierarchical knowledge base browsing; this is a part of the knowledge mining 

manager that we discussed in Section 4.3.2.  It returns data, information, and all 

parameters in the same order the design occurred.   

 Retrieve design functions and alternatives as well as previous decisions to 

redesign the model but avoid repeating past mistakes. The mining manager will 

handle this task too. 
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 Access to a compatible modeling kernel and the design user interface.  That is, the 

receiving end must have the same capabilities as the sending end.  This is when 

the entities‘ proper naming with version control can be utilized to overcome 

upward and downward compatibilities.  

 Update of knowledge and design bases. This is a very involved process and needs 

well-structured databases to allow for changes that can cause ripple effects 

(regression update) requiring a lot of updates of several entities and relationships.  

Moreover, it is sometimes the case that these updates may produce 

inconsistencies, as discussed in design intent enforcement as part of knowledge 

acquisition manager.  In the worst case (if the inconsistencies cannot be removed) 

the entire design may have to be redone with a new set of requirements. A process 

can be performed with a very simple button click that hides all involved 

complexities form the designer. 

 

An example is generating a ruled surface by the following steps: first, two curves 

interpolated two set of points; and second the curves are used to create the surface.  If the 

ruled surface is not acceptable in the receiving system, any or all of the steps can be 

repeated with new parameters.  Whether individual step or the entire process is repeated 

is the decision of the application engineer who may consider all available knowledge.  

The design replay invokes hierarchal browsing to find all the data and information 

involved in the initial constructions of the curves and the ruled surface.  It also requests 

the mining manager to supply it with the functions, alternatives, and previous decisions 

taken.  Finally, it accesses the modeling kernel (KGN) and invokes the designing 
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functions or alternative functions with new parameters which are suitable for the current 

system.  The process is done in such a way that the intended design will be recreated with 

almost no user interventions. 

 

 

4.5 Export/Import Managers 

Data structure, memory management, and input/output files processing are the 

main tasks of this manager.  The export part converts the data structure (in-memory 

database) for both the model and relationship map into a KGN file, while the import 

manager‘s task is to take a KGN file, and then allocate and populate  a dynamic data 

structure with the data and information it contains.  The cycle of the the process is 

illustrated in Figure 4.18. 

 

 

Figure 4.18.  General view of import/export managers’ functionality 
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Figure 4.19.  Import/export manager accounts for three types of information:  

system specific (upper); KGN entities information(lower, left), and knowledge tree 

(lower, right) 

 

When exporting or importing, the system accounts for three types of information 

that are placed in disjointed locations (structures), illustrated in Figure 8.19.  First, the 

system specific data that is common to all entities is accounted for.  It consists of a set of 

flags and variables as well as some references to the objects in relation with particular 

shape.  They are dependent on the system implementation and the type of graphic engine.  

In other words, it is the data that is targeted to support the interface.   Second, KGN 

specific data and information, such as control points, knot vectors, classification (type, 

origin, and destination), representation, etc., is accounted for.  The export and import 
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managers account for every type in the KGN system differently.  Third, the knowledge 

tree that holds all recorded relationships in a stack like structure is accounted for.  We 

have recognized 84 sub-relationships.  As with the KGN specific data, the export and 

import managers have to account for every sub-relationship data in a different manner. 

 

4.5.1 Data Structure and Memory Management 

KGN system on the surface is similar to all CAD systems, highly interactive and 

has to deal with a lot of graphic objects that might be translated, edited, and deleted.  The 

frequent data structure access is highly coupled with two processes: (1) numerical and 

geometrical operations performed by the KGN routines and (2) the frequent repaint of the 

model on the screen performed by a graphics engine such as OpenGL. 

The data structure for both the design base and knowledge base along with 

memory management for the NURBS routines are integrated in KGN as part of the 

kernel.  KGN deals with the fact that all memory allocation is dynamic, which is much 

harder to manage since the system has to deal with unfulfilled memory requests, memory 

leaks, etc.  Improper allocation, using, or deallocation can cause serious errors and cause 

the system to crash.  Therefore, KGN employs very strict memory rules through a set of 

memory routines. The export manager does not allocate any memory directly.  It utilizes 

these special memory routines. 

The data structure that is targeted for the graphic engine is separated and is part of 

the interface design.  A poorly designed data structure can play significant roles in 

degrading the application performance, and hence must be considered with great 

attention. Most CAD systems are multi-threaded with four viewing ports, memory 
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management routines have to deal with concurrency issues.  For example, one viewing 

port might try to access the data structure for the repainting purpose, while another active 

port might want to update the data structure with some new values.  The protection of 

memory manipulation has to account for any critical sections.   

 

4.5.2 KGN  Files Structure 

The export manager organizes a KGN file as a heap file where records are 

inserted and stored in their chronological sequence.  The file starts with a header holding 

some global information about the model and the file itself.  Each record starts with a 

header tag bearing the type of the entity in order to prepare a node for it in the data 

structure, followed by some system specific data for that particular shape, and finally all 

the data and information about the entity.  The record is then terminated with a tag 

showing the end of the record.  Breaking a file into individual records assists with fault 

tolerance importing by isolating and ignoring bad records in case there were errors 

(corrupted data) in the file.  KGN outputs the design data and information in two formats: 

ASCII and XML as shown in Figure 4.20.  
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(a) 

 
(b) 

Figure 4.20.  Output-file formats generated by export manager 
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Chapter 5 --- Prototype System and Case Studies 

 

 

 

 

To validate the theoretical aspects of this research, we developed a prototype 

knowledge guided NURBS system.  This prototype system is intended to support our 

objectives of seamless data exchange, robustness, and reliability.  Moreover, it is meant 

to eliminate any uncertainty as to whether the proposed methods are actually 

implementable and can accomplish the objectives we claim to achieve. 

Chapter 4 presented the tasks of knowledge acquisition, knowledge mining, 

design replay, and export/import managers.  This chapter illustrates how these tasks can 

be realized in a real CAD system, a prototype system in this case.  Some of the system‘s 

internal functionalities are highlighted and presented in visible forms to show their 

advantages.  For example, the relationships map is made visible as a hierarchical tree to 

represent the internal structure. 

Section 5.1 addresses the general design requirements along with the developing 

environments used in coding the prototype.  This section also touches on some of the 

system interface issues that developers have to account for.  Sections 5.2 and 5.3 discuss 

the implementations and support of both knowledge acquisition and mining managers.  

We introduce some examples to illustrate the functionalities of the managers in a real 

software setting.  
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The last section, Section 5.4, gives case studies to verify the suitability of our approach as 

an alternative to the currently used flawed migration process of CAD models.  It gives 

different testing scenarios and mainly evaluates the design replay manager. 

 

 

5.1 KGN Software Architecture 

The system is developed on Microsoft Visual Studio 2005.  KGN kernel and the 

four managers are all written in ANSI C to ensure portability of the code.  The interface 

is written using C++, Windows API (Win32), and OpenGL 3.0.  Figure 5.1 shows a 

screenshot of the system in its current state along with a camera model, which was used 

as a test model.  It consists of four viewports: three orthogonal viewports (top, front, and 

right ports) and one perspective (top-right corner).  They are OpenGL viewports that 

serve as a painting and modeling canvases.  The frame, buttons, menu, and status bar are 

implemented with Windows API.  The left window, also implemented with Windows 

API, holds references to the entities in a knowledge tree.  It represents the relationships as 

parents and the related NURBS entities as children and grandchildren.  Note that the 

screenshots are in color.  This is because the system is intended to be a test bed, and the 

color coding in some situations is used to demonstrate the internal functionalities of the 

system.  If the snapshots are reproduced (printed) in black and white, it can be difficult to 

distinguish between the colors since they will just be different shades of black. 
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Figure 5.1.  KGN prototype system 
 

 

5.1.1 User Interface 

  Although developing a user interface is not an objective of this dissertation, a 

considerable amount of time had to be invested in its design and implementation in order 

to expose the benefits of our proposed approach in a practical setting.  The KGN interface 

as we would like it to be resembles most CAD systems.  It is primarily a graphical user 

interface (GUI) that is based on the use of pointing devices, a mouse in this case.  It has 

to be rapid and provide reversible actions, informative feedback, simple error handling, 

ease of use, and consistency.  Like any modeling system, the central idea of the KGN 
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prototype is visibility of the objects and actions. Therefore, the GUI should support 

functionalities present in basic CAD systems such as the following: 

 Construction of objects, such as points, curves, surfaces, volume, etc. However, 

the backend functionality—e.g., computing the control points and knot vector for 

interpolating a set of points—must be performed using the KGN kernel.   

 Rendering of created objects through a graphical package.  OpenGL was used 

because of the following: it provides good support for NURBS; it is an open 

standard API; and it is available on most modern operating systems, including but 

not limited to Windows, Mac OS X, and GNU/Linux. 

 Picking, translating, rotating, and scaling of objects. Picking is performed mainly 

on the GUI.  Translating, rotating, and scaling of NURBS objects are operations 

that are performed at the backend by the KGN kernel. 

 Navigation of the modeling space: i.e., camera rotation, zooming, and panning.  

These functions are all independent of the kernel and primarily supported by the 

interface.  

 

 

5.1.2 User Interface Issues 

Since the four viewports and knowledge tree window all need to be active at the 

same time, the system needs to be multithreaded.  For example, if we are to translate a 

NURBS curve, all viewports have to reflect the change simultaneously.  This brings to 

the fore some issues that the system has to address: for example, updating the data 
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structure for both the knowledge base and design base, which are shared among the four 

threads and the repeated repaint processes of the four viewports. 

The system has to protect the critical sections in almost every activity that can 

result in a data structure update.  For instance, when a user translates a NURBS curve, the 

system computes new control points and updates the data structure accordingly.  If the 

system does not protect the critical sections (the control points array in this case), one 

viewport (i.e., thread) might access previous coordinates while another might access the 

updated position.  This can result in different positions of the curve on two different 

viewports.  A more severe situation arises if one thread triggers a delete to a curve with 

all its allocated memory while another thread tries to access the deallocated memory 

assuming it is still available.  The system will cause memory access violation and force 

the operating system to halt it. 

The repaint of the viewports is another concern.  With a big model that consists of 

hundreds of surfaces and curves, every repaint of the four viewports will be 

computationally intensive and can degrade the system‘s performance.  For example, if we 

rotate the scene in one viewport, the other three viewports should not be repainted.  Since 

the system is multithreaded, it is not difficult to keep track of the active viewport and it 

only triggers a repaint command when it is most necessary. 

Implementation details of the GUI (such as mapping between OpenGL 

coordinates and window‘s (screen) coordinates), the use of double buffering to eliminate 

any flickering, the coupling of the viewports and the window frames when resizing the 

frame, and the release of all memory and resources that are used by the GUI during a 

designing session were considered and tested thoroughly. 
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5.1.3 Knowledge Base Edit and Update 

The amount of information contained in the knowledge and design bases can be 

overwhelming.  Although every piece of stored data and information has its purpose and 

contributes to the KGN system proposed objectives, it is necessary not to confuse the 

users, especially beginners, with what to modify and what to keep unchanged.  At the 

same time, updating the knowledge base is a very delicate issue.  Several related portions 

of the knowledge base might have to be changed in order to maintain its coherence and 

integrity.  Therefore, KGN permits only high level functionalities to the user while hiding 

all the low level details. 

 

 

Figure 5.2.  Knowledge edit for NURBS curve in KGN 
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Figure 5.2 and Figure 5.3 show a curve and a surface knowledge pieces that can 

be modified in KGN.  Some fields are not intended to be changeable and only can be 

updated by the system such as the entities‘ names.  As previously stated, the names have 

to be unique.  Authorizing the user to modify the names might create unexpected results.  

Note that the changes caused by the two popup windows (Figure 5.2 and Figure 5.3) do 

not cause all participating objects in a relationship to be updated.  These types of changes 

that might cause a series of changes are usually caused by, for example, a change of 

tolerance and usually are implemented through design replay manager. 

 

 

Figure 5.3.  Knowledge edit for NURBS surface in KGN 

 

 

5.2 Knowledge Acquisition Manager 

This manager is responsible for gathering information about the entities and 

populating the design base and knowledge base with the relevant information.  
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Construction is by far the most involved implementation process in knowledge 

acquisition.  Both the interface and the KGN kernel need to support various NURBS 

entities to illustrate the diverse knowledge that is acquired with different NURBS entities.  

For example, knowledge gathered for curves are different than those for surfaces.   

Knowledge acquisition by enforcing design intent, reclassification, augmentation, and 

bookkeeping are all supported as part of this prototype.  

 

5.2.1 Construction 

A great amount of information enters the system at the initial construction of 

NURBS entities.  Figure 5.4 shows some of the provided construction capabilities that 

KGN prototype currently support.  Although these supported construction techniques are 

sufficient to illustrate how knowledge can be acquired through construction, a full blown 

KGN system should provide much more construction techniques.  The KGN prototype 

system automatically updates the relationship map and tags the entities with 

identification, classification, definition, representation, and geometry, as appropriate.   

Some of the supported construction capabilities include the following: 

 Points.  A single point and a set of points can be constructed in KGN.  A single 

point can be considered as a degenerate NURBS curve where the curve and the 

point can enter into a definition relationship. 

 Lines.  Given two points, a NURBS curve of degree one (line) is constructed.  

The system records a line-curve definition relationship that also stores the two 

points coordinates. 
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 Curves.  Given three data points or more, an approximating or interpolating curve 

is constructed.  The system records points-curve fitting relationship.  Providing 

the control points and knot vector through a file is also supported as an imported 

curve. 

 Iso-curves.  Given a surface, an iso-curve can be extracted.  The system records 

surface-curve iso-curve relationships. 

 Surfaces.  Given a curve, two curves, or a set of curves, the prototype creates an 

extruded surface, ruled surface, or lofted surface respectively.  The system will 

update the relationship map with the appropriate type of relationship. 

 

 

Figure 5.4. Object constructions in KGN prototype system 
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As an acquisition method, the constructions create new pieces of knowledge 

without user intervention.  All relevant relationships with their parameters are entered 

into the relationship graph. The types, origins, destinations, and design intent are all 

saved once an entity is constructed. 

 

5.2.2 Reclassification and Augmentation 

Figure 5.5 shows an example of reclassifying the relationship between two lines.  

The window also gives the user the choice to augment the knowledge base with new 

information.  The system allows either reclassification or augmentation through the 

utilization of radio buttons.  This is because augmentation is only a second option when it 

is not preferable to reclassify the relationships 

 

 

Figure 5.5.  Reclassification of lines’ relationships or augmentation 
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5.2.3 Bookkeeping 

Figure 5.6 and Figure 5.7 give an example of bookkeeping that is performed by 

the prototype system as a means of acquiring new knowledge.  There are two coincident 

curves in Figure 5.6: one is selected (yellow) while the other is exhibiting a z-buffer 

fighting
1
.  The relationships map tree does not show any relationship between the two 

curves.  Figure 5.7 shows a lofted surface that is created from the four curves.  The 

construction of the lofted surface creates a surface-curve-lofting relationship, which is 

expected.  Bookkeeping detects that there are two curves that are in a coincident 

relationship that create yet another relationship: curve-curve-coincident.  The relationship 

map in Figure 5.7 is marked to indicate the new piece of knowledge that was captured 

with this type of acquisition. 

 

 

Figure 5.6.  Two coincident curves (yellow and black fragments) 

 

                                                 
1
 Z-buffer fighting is a rendering phenomenon when two entities occupy essentially the same space with 

neither in front, resulting in rendering overlapping fragments from each curve.  The fragments‘ visibility is 

dependent on the camera position 
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Figure 5.7.  Bookkeeping creates coincident relationship (marked with a box) 

 

 

5.3 Knowledge Mining Manager 

Once the knowledge and design bases are populated with design data and 

information through the knowledge acquisition manager, the system can trigger mining 

activities to assist with a range of tasks. The following subsections explain the supported 

capabilities by this manager in the implemented KGN prototype system. 

 

5.3.1 Part Interrogation 

In this form of mining, the prototype system allows for finding all recorded 

information about a particular entity.  Figure 5.8 shows the interrogation process of the 

NURBS curve KGN_V2.0_2010_CUR_2. At first, the system presents the most basic 

information about the entity in question.  For a curve, it displays the identification 

information (name and date of construction) and the classification (type, origin, and 

destination).  The destination in the example curve is still unknown and will be updated 
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when the curve is used in further modeling.  The time of creation is recorded and is used 

for time stamp browsing. 

 

 

Figure 5.8.  Specific part interrogation, NURBS curve (circle degree 2) 

 

The interrogation process can continue until all recorded information about the 

entity in question is revealed. The parametrization factor, continuity, top five 

irregularities, and other representation‘s constituents are presented at the second stage of 

the interrogation.  Finally, the system displays the definition components such as the 

control points and knot vector along with their highest indexes. The figure shows the 

interrogation process at its final stage by displaying all associated information to the 

curve in question. 
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5.3.2 Relationship Query 

This type of mining is performed on the relationship map and is illustrated in two 

ways.  Figure 5.9 uses color coding to visually illustrate the backend of the system.  This 

simple example shows that the curve in question (yellow) is generated from an array of 

data points (blue) and is used in the construction of the two surfaces (red).   Although it is 

useful to visually identify the entity in relationship, the main focus of this mining is 

targeted for the system‘s internal operations, such as supplying design replay manager 

with the appropriate sequence of relationships as a requirement to reconstruct a model 

from its components and relationships 

 

 

Figure 5.9.  Relationships map in KGN: curve in question (yellow) created from  

points (blue) and is used in construction of 2 surfaces (red boundary) 

 

The knowledge tree (relationship map) in Figure 5.10 is another example of how 

relationships can be mined and viewed.  A user can click on any of the tree‘s nodes 

(entities‘ names) and the system will color code the actual entities in the relationship 
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Figure 5.10.  Relationships map in KGN represented as a tree 

 

5.3.3 Hierarchical Browsing 

An important task of this type of mining is to provide support for design replay 

manager.  The system can internally mine part or the whole of the model in the order to 

ensure that the entities were generated.  It also used for educating a new user about the 

design through an animated traversal or browsing of the generated model.  Figures 5.11 

through Figure 5.15 show how the system can hierarchically browse the design base.  The 

white curves shown in Figure 5.11 are the hidden curves used in constructions of 

surfaces.  It is essential to keep a record of them in the database for design replay, as 

illustrated in Section 5.4.  The pause, back play, and fast forward buttons are used to 

browse the design base. Note that the knowledge trees in the figures indicate that this is 

actual browsing, not construction where the tree gets updated with new relationships. 
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Figure 5.11.  Hierarchal browsing (a): the completed model. White indicates the  

entity is not part of the final model but is kept in the design base for design replay 

 

 

Figure 5.12.  Hierarchal browsing (b): after three hierarchal steps,  

a surface of revolution (yellow boundary) is last displayed.  
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Figure 5.13.  Hierarchal browsing (c): after 17 hierarchal steps 

 

 

 

Figure 5.14.  Hierarchal browsing (d): after 37 hierarchal steps. 



 

132 

 

 

Figure 5.15.  Hierarchal browsing (e): no more entities to browse and draw.  

 

 

5.4 Design Replay and Case Studies 

For design replay, we designed a camera as our testing model. See Figure 5.16.  

The model was chosen so that we can show different NURBS curves and surfaces and the 

effects of migrating them.  For instance, the model consists of the following types of 

surfaces:  extruded, ruled, lofted, and surface of revolution.  It also contains circles, free-

form curves, and polylines.  The model is constructed on our system as close replica of a 

camera model that is available on Rhino examples folder.  This way we can compare the 

two models after migration between systems using IGES and STEP for the Rhino model 

and using design replay via the KGN prototype system.  To test design replay on a KGN 

system, we introduce gaps, intersections, and flaying edges manually, and then use the 

design replay manager to regenerate the model.  Different circle degrees are also 
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presented to illustrate how KGN can be used to regenerate the design as if we had three 

systems that use dissimilar circle representations.  To augment the undesirable effects 

caused by traditional model‘s migration, surfaces are distorted excessively in some of the 

testing scenarios, a case that can be irreparable on non-knowledge driven systems. 

 

  

Figure 5.16.  Camera model by KGN prototype system (left) and by Rhino (right) 

 

 

5.4.1 Case Study 1: Model Exchange by Standards 

Figure 5.17 shows two very extreme cases of unacceptable migrations of the 

camera model.  In the right side of the figure, the Rhino IGES model was imported to 

HOOPS default settings.  The model seems as if it was constructed from large polygons 

rather than smooth NURBS surfaces.   The model at the lower part of the figure is due to 

the fact that IGES flavoring can result in ignoring trimmed surfaces.  In both cases, the 

model is beyond repair and a user who needs this model for further applications such as 

machining, must get a better converted version. 
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Figure 5.17.  Extreme cases of data-driven migration 
 

With better luck, a migrated model can seem acceptable when compared to the 

extreme cases above.  Figure 5.18 shows the original Rhino model (top-left) and three 

snapshots of the camera after being exchanged using SolidWorks‘ flavor of IGES.  

Although it looks flawless, a closer look shows that the model suffers from some cracks, 

gaps, and boundaries intersections, indicated by red arrows in the figure. 

To patch the gaps, a designer needs to create boundary curves around the crack 

and then fits a tiny surface between them.  Generating the boundary curves is not always 

a straightforward process as can be seen in Figure 5.19 (a).  The designer needs to extract 

boundary curves of neighboring surfaces (yellow) and then split those curves at the 
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appropriate parameters in order to get the desired curves‘ lengths.  Using the extracted 

boundary curves, Figure 5.19 (b) shows a generated patch that fills the gap. 

 

 

Figure 5.18.  Original model (top left), gaps and  

intersections (indicated with arrows)  

 

 

 
(a) 

 
(b) 

Figure 5.19.  Patching the gaps manually 



 

136 

 

5.4.2 Case Study 2: Flawed Model in KGN Prototype 

Figure 5.20 shows the camera with some severe cracks (pointed out with red 

dashed boxes).  The prototype system can reconstruct a flawed design in two ways, a 

designer can replay a single entity in order to fix it or select to replay (reconstruct) the 

whole design with a single command, i.e. one button‘s click.  In both cases, the 

knowledge mining manager will be utilized to provide all required relationships and 

needed parameters.  The knowledge acquisition manager might also bring into play the 

gathering of new knowledge pieces through design intent enforcement that was discussed 

in Section 4.2.2. 

Figure 5.21 and Figure 5.22 show how a designer can fix faulted entities one at a 

time.  The prototype system use red color to point out to the user what entities have been 

reconstructed at a design replay session.  Figure 5.21 shows the lens as a picked entity to 

be fixed while Figure 5.22 shows another choice.  The two figures are intended to 

illustrate the possibility of fixing individual entities without having to redesign the whole 

model.  Figure 5.23 shows the model after fixing only the five damaged surfaces one by 

one, leaving the rest of the model unchanged. 
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Figure 5.20.  Camera on KGN prototype (a): five damaged surfaces 

 

 

 

Figure 5.21.  Camera on KGN prototype (b): lens individually replayed 
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Figure 5.22.  Camera on KGN prototype (c): indicated surface individually replayed 

 

 

 

Figure 5.23.  Camera on KGN prototype (d): five surfaces individually replayed 

 



 

139 

 

Figure 5.24 show an example of using the second way where the design replay 

reconstructs the whole model. 

 

 

Figure 5.24.  Camera on KGN prototype: all model replayed 

 

A third capability can be added easily to incorporate the ―what-if‖ scenarios.  For 

example, a designer can inquire ―what will happen to the model if we alter the lens‘s 

profile?‖  The design replay manager can reconstruct the model based on the new 

introduced modified situation.  Depending on the relationship map, a whole design can be 

fixed with minimal user intervention or the designers might end up doing extensive 

manual reconstructions of the model.  The what-if capability can give a designer an idea 

beforehand of whether a model can be reconstructed automatically or requires some 

manually adjusting.  
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5.4.3 Case Study 3: Different Circle Representations with KGN 

 

Figure 5.25, Figure 5.26, and Figure 5.27 show design replay reconstructing the 

surfaces and curves based on how each system might represent a circle.  The control 

points are made visible for the camera lens to show the differences after design replay, 

although other entities that are in relationships with the lens‘s curves and surfaces are 

reconstructed as well.  In the three figures, we assume that the model is generated on a 

system that uses a degree 2 circle (Figure 5.25).  Figure 5.26 shows a camera model that 

is migrated to another system that is using a degree 4 circle.  The surfaces and curves that 

are colored in red are altered based on the conversion to degree 4.  

The system has gathered enough information in the knowledge base and design 

base about the model, allowing it to be regenerated with specifications that are required 

on the second system.  In other words, the surfaces and curves are not approximations but 

are regenerated entities as if they were not migrated but rather modeled on the second 

system.  The designer‘s intent is preserved and the model is flawlessly replayed.  Figure 

5.27 shows a second migration to a system that might be using a degree 5 circle.  The 

view was zoomed out so that the control points will be visible for proper illustration.  
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Figure 5.25. Design replay: systems using degree 2 circle  

(assume original designing system) 

 

 

Figure 5.26. Design replay: systems using degree 4 circle  

(assume migrated model) 
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Figure 5.27. Design replay: systems using degree 5 circle  

(assume migrated model) 
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Chapter 6 --- Conclusions and Future Work 

 

 

 

 

6.1 Conclusions 

In this dissertation we introduced knowledge guided NURBS along with 

theoretical and practical foundations for supporting design intent capturing, retrieval, and 

exchange among dissimilar CAD systems.  For many years, CAx systems have been 

exchanging raw numerical data, a process that most often results in countless wasted 

hours, money, and manpower to correct and repair CAD models that do not migrate as 

intended.  We have shown that preserving the design intent along with endowing NURBS 

entities with sufficient knowledge are the keys to achieving seamless data exchange, 

increased robustness, and reliable computations in CAD environments that are based on 

NURBS.   

We defined design intent within NURBS environments as the designing 

functions, alternatives, decisions, reasons for considering one decision over another, as 

well as including consideration of the designing history.  Chapter 3 showed how this 

definition of design intent can be structured and incorporated into a knowledge guided 

NURBS system so that it can be captured and exchanged without user intervention.  

Chapter 4 details what and how much information needs to be generated and retained, 

beside design intent, in order to achieve our objectives of seamless model migration as 

well as more robust and reliable computations.  We have established that every NURBS 
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entity should maintain, at a minimum, basic information on identification, classification, 

definition, representation, and geometry.  Moreover, the chapter details how NURBS 

entities are usually not created in isolation.  For example, curves are created from points, 

and surfaces are created from curves.  These relationships are most important in 

reconstructing models that are not migrated as intended.  A relationship map, referred to 

as knowledge tree, is used to chain NURBS entities together, based on origins and 

destinations along with specific information for different types of relationships. 

After identifying all necessary information, the chapter discussed four knowledge 

managers that make a system truly a knowledge guided system.  A knowledge acquisition 

manager exhibits the various ways information can enter the system.  A knowledge 

mining manager describes how the acquired knowledge can be browsed to aid with many 

tasks.  It can be used to aid with knowledge traversal for internal processes, such as 

design replay or it can be used by the users to learn about a model.  Export/import 

managers will interface between two KGN systems.  An export manager writes the 

knowledge and design bases to a file while the import manager will read a KGN file into 

a running system.  The design replay manager makes use of the gathered information and 

the mining capabilities provided by other managers to regenerate models based on new 

local requirements, such as tolerance. 

All the theoretical aspects discussed in chapter 3 and 4 are supported through a 

prototype system in Chapter 5.  The chapter gives many examples to illustrate the 

benefits of the system.  For model migration we presented a NURBS camera model as a 

case study.  The model was tested on different migration scenarios that resemble what it 

would go through when exchanged between dissimilar CAD systems.  The prototype 
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system and the evaluation results showed that there is no doubt that our methods are 

implementable and workable as proposed.  The prototype KGN system shows that a click 

of a button can regenerate a migrated model instead of repairing it, avoiding delay and 

corrective processes that only limit the effective use of such models. 

 

 

6.2 Future Work 

Exploring the potential of knowledge presence should not stop at the stage of 

merely utilizing it to achieve seamless migration of CAD models and aid their 

robustness; rather, it should be extended to investigate other possibilities for future usage.  

An immediate extension to the system is that it can incorporate knowledge farming.  An 

extra manager, namely knowledge farming manager as seen in Figure 6.1, can be added 

to add additional potency of the knowledge.  The process involved with this manager can 

be very challenging, that is, when compared to the other managers we detailed in Chapter 

4.  First, the process requires adding two additional difficult capabilities to the knowledge 

mining manager.  It needs to systematically browse for various forms of patterns of 

behavior and presents pieces of knowledge that may be used in a logical inference.  The 

relationship query in the mining manager has to be augmented with a new capability that 

determines if sets of objects satisfy a certain relationship.  
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Figure 6.1.  Augmenting the system with knowledge farming manager 

 

 

The knowledge farming manager can then perform two basic operations:  

knowledge seeding and knowledge harvesting. See Figure 6.2.  

 

6.2.1 Knowledge Seeding 

Knowledge farming can use two kinds of seeds: one for the design base and one 

for the knowledge base.  Design base seeds can be made of relationship definitions, e.g. 

incidence, whereas knowledge base seeds can be existing relationships, e.g., several 

entities are parallel. These seeds are planted into the data and knowledge bases to see 

what new knowledge they produce when harvested with the right kind of tools. 
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Figure 6.2. Proposed knowledge farming in KGN 

 

 

6.2.2 Knowledge Harvesting 

The design and knowledge bases are in fact full of useful knowledge when 

harvested with the right kind of tools.  KGN can harvest knowledge in two ways:  (1) 

logical inference or (2) relationship query. 

Using logical inference with laws of geometric algebra, new pieces of knowledge 

can be harvested from existing knowledge.   For example, if line 1 and line 2 are 

perpendicular, and line 2 and line 3 are perpendicular, then line 1 and line 3 should be 

parallel.  Once this information is harvested, it can become most useful when line 1 and 

line 3 are used as edges in a new design model.  Before accepting a new knowledge 

candidate, the system verifies it against a set of conditions and requirements.  If the 

verification process accepts the new knowledge, it enters the knowledge base, otherwise, 

it gets discarded. 
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Relationship query, as a harvesting tool, can prevent many serious numerical 

failures that are caused by all sorts of relationships unbeknownst to the designer. For 

example, point sets can be collinear, lines can be parallel, two surfaces can be 

overlapping, etc.  The countless unknown relationships between entities can be harvested 

using proper definitions as seeds.  The core of this type of harvesting is the spatial 

relationship.  Similar to results from the logical inference tool, the new knowledge 

candidate must be verified before it enters the knowledge base. 

Although knowledge farming seems to be a straightforward task, there are 

numerous theoretical and algorithmic challenges, such as the following:  

 Proper spatial data structure for fast relationship query. 

 Efficient algorithms for searching for candidates in relationship query—e.g., 

avoiding a brute-force pair-wise search for overlapping entities.  

 Efficient relationship conditions—e.g., what is a stable and efficient method 

to check if a point cloud is co-planar or co-cylindrical.   

 Identifying patterns of relationships—e.g., perpendicular + parallel → 

perpendicular. 
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