
University of South Florida
Scholar Commons

Graduate Theses and Dissertations Graduate School

2011

Knowledge Guided Non-Uniform Rational B-
Spline (NURBS) for Supporting Design Intent in
Computer Aided Design (CAD) Modeling
Khairan Rajab
University of South Florida, khairanr@gmail.com

Follow this and additional works at: http://scholarcommons.usf.edu/etd

Part of the American Studies Commons, and the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in
Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact
scholarcommons@usf.edu.

Scholar Commons Citation
Rajab, Khairan, "Knowledge Guided Non-Uniform Rational B-Spline (NURBS) for Supporting Design Intent in Computer Aided
Design (CAD) Modeling" (2011). Graduate Theses and Dissertations.
http://scholarcommons.usf.edu/etd/3302

http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F3302&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F3302&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu?utm_source=scholarcommons.usf.edu%2Fetd%2F3302&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F3302&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F3302&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F3302&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/439?utm_source=scholarcommons.usf.edu%2Fetd%2F3302&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarcommons.usf.edu%2Fetd%2F3302&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu

Knowledge Guided Non-Uniform Rational B-Spline (NURBS) for Supporting

Design Intent in Computer Aided Design (CAD) Modeling

by

Khairan D. Rajab

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science and Engineering

College of Engineering

University of South Florida

Major Professor: Les A. Piegl. Ph.D.

Susanna Lai-Yuen, Ph.D.

Miguel Labrador, Ph.D.

Dewey Rundus, Ph.D.

Arthur Shapiro, Ph.D.

Date of Approval:

June 9, 2011

Keywords: NURBS Model exchange, CAD robustness, CAD incompatibility,

Design intent exchange, Data migration

Copyright © 2011, Khairan D. Rajab

Acknowledgements

First and foremost, my highest gratitude goes to my advisor, Dr. Les A. Piegl. To

work with and be mentored by a renowned expert in the area of NURBS has truly been

an honor and privilege. He is a generous and conscientious mentor who was always there

when I needed advice and guidance.

I thank the members of my committee: Dr. Susanna Lai-Yuen, Dr. Arthur

Shapiro, Dr. Dewey Rundus, and Dr. Miguel Labrador. I appreciate their valuable time

and comments. They have been inspiration in many ways. I would also like to thank Dr.

Steve Permuth for taking the time to serve as the Committee Chair.

My appreciation is also extended to the seminar members who listened to my

research presentations on numerous occasions. Thanks to Dr. Daniel Simkens and to

Olya Grove for the lively and rewarding discussions about my research ideas.

I have thanked many yet also have left many out. Thanks to all whom I left out

but were available to help and encourage. Special thanks to Dr. Yousef AL-Marshad for

his relentless encouragement throughout most of my studies as an undergraduate and

graduate student. Thanks to Dr. Fahd Rajab for the many comments he provided at the

time of writing this dissertation.

Dedication

I most certainly thank and dedicate this work to my family for all their love and

unconditional support. Without them my graduation would have been impossible.

i

Table of Contents

List of Tables ... iv

List of Figures ...v

Abstract ... ix

Chapter 1 --- Introduction ..1

1.1 Motivation and Problem Formulation ..1

1.1.1 Why isn't Design Intent Supported Yet? ..7

1.2 Prior Works ...9

1.2.1 Design Intent ...10

1.2.1.1 Exisiting Design Intent System 11

1.2.2 CAD Models Repair ..16

1.2.3 Design Intent Exchange ...18

1.2.4 CAD Model's Data Exchange..20

1.2.4.1 Efforts for Standardization ...21

1.2.4.2 IGES: Initial Graphic Exchange Specification23

 1.2.4.2.1 Shortcomings of IGES.....................................25

1.2.4.3 STEP: STandard for the Exchange of Product

 Model Data ...27

1.2.4.4 Quasi Industry Standards ..30

1.3 Contributions ..31

1.4 Organization of the Dissertation ...32

Chapter 2 --- NURBS Fundamentals ...34

2.1 Mathematical Representations of Curves and Surfaces35

2.1.1 Explicit ..35

2.1.2 Implicit ..36

2.1.3 Parametric ..37

2.2 NURBS Basics ...38

2.2.1 NURBS Curve ...43

2.2.1.1 Knot Vectors ...44

2.2.1.2 Basis Functions ...46

2.2.2 NURBS Surface ..48

2.2.3 NURBS with Higher Dimensions ...50

2.3 Modelling Techniques ..51

ii

2.3.1 NURBS Modeling Techniques ..52

2.4 NURBS Model Representation ..58

2.5 NURBS Data Export to Other CAD Systems and Storage60

2.5.1 NURBS within Standards ..61

Chapter 3 --- Knowledge Guided Desing Intent Systems ..64

3.1 What is Knowledge? ..65

3.1.1 Knowledge Acquisition and Representation67

3.2 What is Design Intent? ...68

3.2.1 Design Alternatives ...69

3.2.2 Design Functions ...69

3.2.3 Design Decisions ...70

3.2.4 Design History ...70

3.3 What Information Needs to be Retained? ..71

Chapter 4 --- Knowledge Guided NURBS ..75

4.1 Knowledge Guided NURBS ..76

4.1.1 Identification ...77

4.1.2 Classification ...80

4.1.2.1 Type ..80

4.1.2.2 Origin ..82

4.1.2.3 Destination ..82

4.1.3 Definition ...83

4.1.4 Representation ...84

4.1.4.1 Parametrization Factor ...85

4.1.4.2 Level of Continuity ..87

4.1.4.3 Irregularities ...88

4.1.5 Geometry ...88

4.1.6 Relationship Maps ...90

4.1.6.1 Proper Naming ...92

4.1.6.2 Participating Objects ..93

4.1.6.3 Parameters ..94

4.1.6.4 Conditions ..94

4.2 Knowledge Acquisistion Manager ...95

4.2.1 Construction ..96

4.2.2 Design Intent Enforcment ...96

4.2.3 Reclassification ...97

4.2.4 Design Augmentation ..99

4.2.5 Bookkeeping ..100

4.3 Knowledge Mining ...100

4.3.1 General Usage of Knowledge Mining ...101

4.3.1.1 Design Replay ..101

4.3.1.2 Computations ..102

4.3.1.3 Design Documentation ...102

4.3.1.4 Design Maintenance ...103

4.3.1.5 Learning ..103

iii

4.3.2 Knowledge Mining Manager ...104

4.3.2.1 Specific Entity Queries ...104

4.3.2.2 Part Interrogation ..105

4.3.2.3 Relationship Query ...106

4.3.2.4 Time Stamp Browsing ..107

4.3.2.5 Hierarchical Browsing ..107

4.4 Design Replay ..108

4.5 Export/Import Managers .. 110

4.5.1 Data Structure and Memory Management 112

4.5.2 KGN Files Structure .. 113

Chapter 5 --- Prototype System and Case Studies ... 115

5.1 KGN Software Architecture ... 116

5.1.1 User Interface .. 117

5.1.2 User Interface Issues ... 118

5.1.3 Knowledge Base Edit and Update ...120

5.2 Knowledge Acquisition Manager ...121

5.2.1 Construction ..122

5.2.2 Reclassification and Augmentation ...124

5.2.3 Bookkeeping ..125

5.3 Knowledge Mining Manager ..126

5.3.1 Part Interrogation ...126

5.3.2 Relationship Query ..128

5.3.3 Hierarchical Browsing ...129

5.4 Design Replay and Case Studies ..132

5.4.1 Case Study 1: Model Exchange by Standards133

5.4.2 Case Study 2: Flawed Model in KGN Prototype136

5.4.3 Case Study 3: Different Circle Representations with KGN140

Chapter 6 --- Conclusions and Future Work ..143

6.1 Conclusions ..143

6.2 Future Work ...145

6.2.1 Knowledge Seeding ...146

6.2.2 Knowledge Harvesting ..147

References ...149

iv

List of Tables

Table 2.1. A selection of CAD file formats ...61

Table 4.1. KGN basic entities and definitions ...84

Table 4.2. Parametrization factor ..86

Table 4.3. NURBS geometries in KGN ...89

v

List of Figures

Figure 1.1. USB drive designed with Rhino modeling system 2

Figure 1.2. Parts of the USB.. 2

Figure 1.3. Process of data exchange .. 3

Figure 1.4. Model converted to CATIA implementation of IGES 4

Figure 1.5. Patch operator in Rhino .. 5

Figure 1.6. Ruled surface (thin patch) ... 6

Figure 1.7. Relationship of issue, position, and argument .. 12

Figure 1.8. Chronological order of IBIS-based approaches .. 13

Figure 1.9. Ways to exchange CAD data .. 21

Figure 1.10. Flavoring of IGES in Rhino .. 26

Figure 1.11. Partial implementations of standards (subsetting) 27

Figure 1.12. STEP: general structure .. 28

Figure 2.1. Unit circle created by cubic polynomial ... 35

Figure 2.2. Closed NURBS curve (degree 2 circle) .. 39

Figure 2.3. Free form NURBS curve .. 39

Figure 2.4. Modifying NURBS curve via control points .. 40

Figure 2.5. Effects of multiple knots ... 41

Figure 2.6. NURBS curve with different degrees ... 42

Figure 2.7. Cubic NURBS curve, with w6 varying... 43

vi

Figure 2.8. Third-degree basis functions, uniform knots. ... 47

Figure 2.9. Third-degree basis functions, multiple internal knots................................. 47

Figure 2.10. Third-degree basis functions, full multiplicity in internal knots 47

Figure 2.11. NURBS surface ... 48

Figure 2.12. Polygonal (triangles) mesh of a dolphin ... 52

Figure 2.13. Rhino‘s curves and surfaces modeling techniques 53

Figure 2.14. Degree elevation and reduction, ... 54

Figure 2.15. Special-case NURBS surfaces .. 55

Figure 2.16. Extrusion (swept) NURBS surface ... 56

Figure 2.17. Surface of revolution... 56

Figure 2.18. Gordon surface .. 57

Figure 2.19. Different representations of a cylinder ... 58

Figure 2.20. Different circle representations in NURBS .. 59

Figure 2.21. Snapshot of IGES file ... 62

Figure 2.22. STEP file (USB in Figure 1.1) .. 63

Figure 3.1. Data, information, knowledge within NURBS-based systems 66

Figure 3.2. Design intent in NURBS modeling... 69

Figure 3.3. Design-and-edit in knowledge guided system .. 72

Figure 3.4. Surface-curve information for design replay of surface of revolution 73

Figure 4.1. Knowledge guided NURBS system global architecture. 75

Figure 4.2. Knowledge guided NURBS constituents .. 77

Figure 4.3. Unique part ID in KGN: avoid associated naming problems 79

Figure 4.4. Classification in KGN: what-how-why paradigm 80

vii

Figure 4.5. Using objects' type (information) to locate a suitable algorithm 81

Figure 4.6. Representations in KGN, increase robustness and reliability 85

Figure 4.7. Geometry: example of open and closed NURBS surface (torus) 89

Figure 4.8. Bidirectional relationship map with sub-relationships 90

Figure 4.9. Types of sub-relationships in naming ... 91

Figure 4.10. Factors to consider for relationship map implementation in KGN 92

Figure 4.11. General structure of relationship map ... 93

Figure 4.12. Using distance condition ... 95

Figure 4.13. Knowledge acquisitions for knowledge guided NURBS systems 95

Figure 4.14. Contradictions caused by enforcing intent .. 98

Figure 4.15. Knowledge mining usages .. 101

Figure 4.16. Knowledge mining for knowledge guided NURBS systems 104

Figure 4.17. Design replay interaction with other managers .. 108

Figure 4.18. General view of import/export manager‘s functionality 110

Figure 4.19. Import/export managers accounts for three types of information 111

Figure 4.20. Output-file formats generated by export manager 114

Figure 5.1. KGN prototype system ... 117

Figure 5.2. Knowledge edit for NURBS curve in KGN ... 120

Figure 5.3. Knowledge edit for NURBS surface in KGN ... 121

Figure 5.4. Object constructions in KGN prototype system 123

Figure 5.5. Reclassification of line‘s relationships or augmentation 124

Figure 5.6. Two coincident curves .. 125

Figure 5.7. Bookkeeping creates coincident relationship.. 126

viii

Figure 5.8. Specific part interrogation NURBS curve (circle degree 2) 127

Figure 5.9. Relationships map in KGN ... 128

Figure 5.10. Relationships map in KGN represented as a tree...................................... 129

Figure 5.11. Hierarchal browsing (a) .. 130

Figure 5.12. Hierarchal browsing (b) .. 130

Figure 5.13. Hierarchal browsing (c) .. 131

Figure 5.14. Hierarchal browsing (d) .. 131

Figure 5.15. Hierarchal browsing (e) .. 132

Figure 5.16. Camera model by KGN prototype system (left) and by Rhino (right) 133

Figure 5.17. Extreme cases of data-driven migration ... 134

Figure 5.18. Original model (top left), gaps and intersections (indicated with

arrows) .. 135

Figure 5.19. Patching the gaps manually .. 135

Figure 5.20. Camera on KGN prototype (a) .. 137

Figure 5.21. Camera on KGN prototype (b) ... 137

Figure 5.22. Camera on KGN prototype (c) .. 138

Figure 5.23. Camera on KGN prototype (d) ... 138

Figure 5.24. Camera on KGN prototype: all model replayed 139

Figure 5.25. Design replay: systems using degree 2 circle ... 141

Figure 5.26. Design replay: systems using degree 4 circle ... 141

Figure 5.27. Design replay: systems using degree 5 circle ... 142

Figure 6.1. Augmenting the system with knowledge farming manager 146

Figure 6.2. Proposed knowledge farming in KGN .. 147

ix

Abstract

 For many years, incompatible computer-aided design (CAD) packages that are

based on Non-uniform Rational B-Spline (NURBS) technology carried out the exchange

of models and data through either neutral file formats (IGES or STEP) or proprietary

formats that have been accepted as quasi industry standards. Although it is the only

available solution at the current time, the exchange process most often produces

unsatisfactory results. Models that are impeccable in the original modeling system

usually end up with gaps or intersections between surfaces on another incompatible

system. Issues such as loss of information, change of data accuracy, inconsistent

tolerance, and misinterpretation of the original design intent are a few examples of

problems associated with migrating models between different CAD systems. While these

issues and drawbacks are well known and cost the industry billions of dollars every year,

a solution to eradicate problems from their sources has not been developed. Meanwhile,

researchers along with the industries concerned with these issues have been trying to

resolve such problems by finding means to repair the migrated models either manually or

by using specialized software.

Designing in recent years is becoming more knowledge intensive and it is

essential for NURBS to take its share of the ever increasing use of knowledge. NURBS

are very powerful modeling tools and have become the de facto standard in modeling. If

x

we stretch their strength and make them knowledge driven, benefits beyond current

expectations can be achieved easily. This dissertation introduces knowledge guided

NURBS with theoretical and practical foundations for supporting design intent capturing,

retrieval, and exchange among dissimilar CAD systems. It shows that if NURBS entities

are tagged with some knowledge, we can achieve seamless data exchange, increase

robustness, and have more reliable computations, all of which are ultimate objectives

many researchers in the field of CAD have been trying to accomplish for decades.

Establishing relationships between a NURBS entity and its origin and destinations can

aid with seamless CAD model migration. The type of the NURBS entity and the

awareness of any irregularities can lead to more intelligent decisions on how to proceed

with many computations to increase robustness and achieve a high level of reliability.

As a result, instead of having models that are hardly modifiable because of

migrating raw numerical data in isolation, the knowledge driven migration process will

produce models that are editable and preserve design intent. We have addressed the

issues not only theoretically but also by developing a prototype system that can serve as a

test bed. The developed system shows that a click of a button can regenerate a migrated

model instead of repairing it, avoiding delay and corrective processes that only limit the

effective use of such models.

1

Chapter 1---Introduction

1.1 Motivation and Problem Formulation

Most current Computer-Aided Design (CAD) systems primarily focus on

designing and manufacturing capabilities. They accommodate only geometric and limited

production data, ignoring one of the most important factors in the designing process,

namely the design intent. Some commercial CAD systems retain the design process

history. However, when a CAD model is converted from one system to another, using

natural format files, the modeling history, the knowledge used during modeling process,

and the design intent are all lost and cannot be recovered. If CAD systems can encode

and support knowledge and design intent at the lowest level, along with the geometries of

each Non-uniform Rational B-Spline (NURBS) entity during the modeling process, a

wide range of benefits can easily be achieved. Benefits can be as important as enhancing

robustness that has been hindering CAD system builders for many years to overcoming

the more serious issues usually stemming from data migration and inconsistencies across

incompatible CAD systems, which cost industries and governments billions of dollars

each year [1].

To put things in perspective for the reader, a simple example will illustrate why it

is important to support design intent in CAD modeling. Figures 1.1 and 1.2 are

2

renderings of a complete intended design of a flash drive. This design was generated

with Rhino, the NURBS modeling system for Windows.

Figure 1.1. USB drive designed with Rhino modeling system

Figure 1.2. Parts of the USB

To be able to send or open the model in another system, e.g., CATIA, the designer

will have to export the intended model to a neutral format. Usually designers use one of

3

the two standards: Initial Graphics Exchange Specification (IGES) or Standard for the

Exchange of Product model data (STEP). Other non-standards or de facto standards,

such as STL and DFX, can be used as well. The receiving system, CATIA in this case,

will have to reverse the mapping process by remapping the migrated entities from the

neutral file (in IGES or STEP format) to its local proprietary format. Figure 1.3 shows

schematically how the process works between two CAD systems.

Figure 1.3. Process of data exchange

While this seems feasible and should not introduce inaccuracies, the processes of

data exchange are afflicted by several problems, such as information loss (how entities

are created), total loss of design intent (symmetry, equality, parallelism, perpendicularity,

concentricity, etc.), and change of data (analytic surfaces such as cones and planes

changed into NURBS surfaces or spline surfaces).

The body of the flash drive without the sleeve, shown in Figure 1.4 (Part 4 in

Figure 1.2), is constructed from 10 surfaces. Five of the original 10 surfaces

topologically have changed after converting the surfaces into CATIA‘s implementation

4

of IGES. Cracks on the left side of the top surface are introduced. Recall that model

rendering is a visualization of the geometries of the model that are usually sent to

downstream applications such as Rapid Prototyping, CAE, and CAM packages. If this

model is to be sent to a CAM for machining, surfaces have to be continuous or tangent to

one another. CAE systems (FEA/CFD) will also be affected by the gaps and cracks since

an accurate tessellated model to simulate stress, strains, and temperature differences

cannot be achieved. Therefore, neither horizontal migration (CAD to CAD) nor vertical

migration (CAD to Downstream Applications) can be subjected to these issues.

Figure 1.4. Model converted to CATIA implementation of IGES

To remedy problems in a CAD model, such as cracks, gaps, overlaps, self-

intersecting surfaces, and change in topologies, CAD designers at the receiving ends will

have to fix, patch, or repair the models manually or use specialized software [2,3].

However, patching up and fixing CAD models based on NURBS will create another

5

dimension to the problem [4]. For example, to correct the gaps and cracks that appear in

Figure 1.4, three possible approaches can be used.

The first is to generate a small patch that fills the gap. Many CAD systems will

provide a patch operator. However, this does not work if the objective is to insert a tiny

patch between two large surfaces. Bulged, rounded, or sometimes unpredictable patches

will be created because continuity conditions require the use of existing cross-boundary

derivatives of the two surfaces [4,5]. Figure 1.5 shows the result from the patch operator

in Rhino. The produced patch disfigures the model to point of being hardly recognizable.

Figure 1.5. Patch operator in Rhino

The second approach is to extend the existing surfaces to fill the gap. While this

is a better approach, the original tensor product surfaces may not be extended in the

tensor product sense and the extension is not unique [5]. The third approach is to extract

the boundary curves of the two offending surfaces manually and rule another long and

thin surface between the two surfaces as in Figure 1.6. In this case it is feasible since we

have two boundary curves of the same length and direction. If the boundaries are of

6

different lengths and directions, then the designer must creatively come up with a patch

that will fit. The designer also needs to account for continuities among the three surfaces

to ensure smoothness.

Figure 1.6. Ruled surface (thin patch)

In the best-case scenario, one can ignore the fact that this model might go to a

third and fourth system, resulting in more repairs. The design intent, however, has never

made it from the first conversion of the model.

If CAD systems can preserve the designer‘s intent and endow sufficient

knowledge in each NURBS entity, the receiving systems can regenerate the whole model

or parts of the model without having to repair it. Systems can also verify that the design is

the intended design. Other advantages that can be achieved include but are not limited to:

evaluating the chosen design, mining and browsing the whole and partial designing

process, tradeoffs between alternative designs and priorities [6], justification of why one

choice is considered over another, and documentation that can be valuable for both the

producers (designers) and consumers (manufacturers).

7

1.1.1 Why isn’t Design Intent Supported Yet?

If design intent in the modeling process of an artifact has such potential values,

and there is widespread agreement on the need to support it [6-8], then why is it not in

widespread use? There are a number of reasons why CAD systems in existence do not

support the exchange of design intent.

One difficulty, despite a good deal of research, is the capture and supporting of

design intent in general. Intrusive recording of design intent can be time consuming and

expensive [9]. Designers will be reluctant to spend the time to document, among many

other parameters, the type or what NURBS entity they are creating, the origin or how it

was created, and the destination or where it is going to be used. If deadlines are an issue,

designers will tend to resist spending time on documenting and recording their intentions

especially if the difference between a project that meets its deadlines and is completed

versus one that did not meet deadlines results in cancellation [10]. In their survey [8],

Tang et al. stated that 90% of the participants agree on the important of design intent,

however, 60% do not care to document it because of time constraints. Capturing designer

intent for a NURBS model should be non-intrusive but should be modifiable if the

designer finds the need to change it.

Another issue affecting the likelihood of designers to record their intent is that

designers do not gain immediate benefits from the extra efforts put into recording their

intent [10]. This provides little incentive to take the extra time and effort to record the

design intent intrusively as stated previously. It is common for companies to outsource

the modeling of an artifact for reasons such as the developing company‘s superior

knowledge of the development of that particular object. When it is time to deliver the

8

model, it could be in a neutral format (IGES or STEP), and the model could suffer from

many issues as stated before. It is the receiver of the CAD model who bears the burden

of not supporting and exchanging the design intent. Supported design intent in NURBS

modeling should provide incentives for the designers (not only for the receivers) in order

to make sure that their intent is recorded correctly. Immediate benefits include, for

example, ―what-if scenarios‖ that can be supported by design intent.

Another reason for not supporting design intent is the lack of standardized design

intent. The survey in [8] stated that 40% of the designers do not document design intent

because of non-standardization. Design intent is not easy to standardize in general since

it is difficult to quantify. Geometries are easy to standardize since they are well-defined.

Design intent in a CAD environment has to be well-defined and structured in order to

make it standard. If we can find concise yet expandable structured design intent to

support, the idea to standardize it can emerge to the surface. Fortunately, structuring

design intent in NURBS modeling can be achieved if NURBS entities are tagged with

some extra knowledge.

A final reason is the ―push‖ for standardization. The first version of IGES as a

standard to exchange and transfer designs among dissimilar CAD systems was released in

1981. However, it was not widely used until years later (1988) when the U.S.

Department of Defense (DoD) required that all engineering drawings, circuit diagrams,

etc. be delivered in electronic form, and specifically in the IGES format [11]. By pushing

these requirements on subcontractors, all Computer-Aided technologies (CAx) vendors

who want to market their product to DoD subcontractors were pushed to support IGES

format files. If key players in the market ask for design intent to be supported and

9

standardized, then CAx vendors will follow. With the advances in technology, CAD

models will only get more and more complicated and knowledge intensive; with it, the

need to support design intent will only grow.

Literatures relevant to the topic agree on the need to support design intent;

however, how to support and exchange it among the incompatible CAD systems is not a

trivial problem to solve [7]. Chapters 3, 4, and 5 discuss the solution. They provide the

needed theory as well as a prototype system to illustrate that with the right approach, a

well-defined and structured design intent can be captured automatically to be exchanged

among CAD systems environments and lay the ground for possible future standardization

of design intent.

1.2 Prior Works

Research in the area of design intent, knowledge-guided systems, and

interoperability among systems has been active for the past two decades. Although

thorough research on relevant topics can be performed, it would be tedious to cover all

the work related to the problem of interest in details. Therefore, we will primarily focus

on the most significant topics and contributions. Section 1.2.1 discusses research in the

area of design intent. Section 1.2.2 details the works on CAD models repair. Section

1.2.3 provides a literature review on attempts to exchange design intent. Finally section

1.2.4 summarizes the research and history of CAD models‘ exchange including both

standards and non-standards formats.

10

1.2.1 Design Intent

Research in design intent covers a wide range of fields and topics resulting in a

large body of papers and approaches. Researchers from software engineering, civil

engineering, artificial intelligence, mechanical design, knowledge-based engineering,

design manufacturing, and cognitive science are among the research communities that

relate to this concept. Research is quite diverse in both depth and involvement. Some

pursue this concept at a theoretical level while some others create prototype systems that

are able to capture and retrieve designers‘ intent. A number of authors from different

fields try to formalize definitions to terms that are used inconsistently and

interchangeably, e.g., design intent, design rationale, and design history, while others try

to demystify the distinctions and overlaps among these terms [12]. Below are selective

definitions from different fields that researchers in the area of design intent are interested.

Gurber, from the Knowledge-based and Systems Engineering [13] argues that

design rationale and intent can be constructed form design history. Garcia [14] states that

―design rationale can be viewed as the design history – the sequence of events that

occurred while performing the design.‖ Conklin and Yakemovic from Human-Computer

Interactions [9] define design rationale as the reason for constructing an artifact in certain

way.

From the Artificial Intelligence standpoint, Sim and Dufy [15] describe design

intent as ―the reasoning and argument that lead to the final decision of how the design

intent is achieved.‖ Ullman [16] views design history as ―a record of the rationale behind

design decisions and of the intent of designers.‖ Louridas and Loucopoulos from

Software Engineering [17] argue that ―design rationale aims at capturing the why behind

11

the how in design, i.e., on externalizing and documenting the reasons behind design

decisions and artifact features.‖

Iyer and Mills [12] define this concept most clearly and comprehensively in their

survey on design intent. They state that ―design intent is application, domain and

context dependent knowledge that describes design space, represents design alternatives

and processes history, justifies design solutions and decisions and determines the

characteristics of features and entities and the relationships among them‖ [12].

While these definitions span many fields, have merits and overlaps, the focus of

this section is to give an overview of the most influential contributions on general design

intent and rationale.

1.2.1.1 Existing Design Intent System

There are numerous design intent tools that have been developed since the early

1980‘s, but only a handful have made it into practical use in industry. The first notable

work on design intent is by the design theorists Rittel and Kunz in 1970 [18]. They

developed Issue-Based Information System (IBIS) tool to structure the intent as

argumentation. IBIS is only an argumentative notation, not software. However, it was

very influential in the early developments of design intent and rationale systems; several

prototypes have been proposed and developed as variations of IBIS notations. IBIS

works by creating ―issue-maps.‖ The map consists of an issue (design question)

specifying the main problem with resolutions answering the design question and

arguments supporting or objecting to these positions, as in Figure 1.7. It supports 9

relations (Generalized, Specialized, Questions, etc.).

12

- Response-to

- Object-to

- Support

- Questions

- Suggested by

- Questions

- Suggested by

- Generalize

- Specialized

- Replaces

- Suggested By

- Questions

ISSUE

POSITION ARGUMENT

Figure 1.7. Relationship of issue, position, and argument

Two immediate variations of IBIS are: gIBIS (for graphical IBIS), which has

been used in an influential hypertext implementation, and itIBIS (for indented text IBIS),

which uses only indented text for the representation of IBIS trees [19]. gIBIS and itIBIS

are the earliest case study of the use of design intent and rationale in a real industrial

design setting where they used it at NCR. Two extensions of IBIS are Procedural

Hierarchy of Issues (PHI) [20] and Potts and Bruns [21]. Decision Representation

Language (DRL) [22] extends the Potts and Bruns model. As indicated by its name, DRL

is an expressive language that focuses more on the representation of decision making and

its rationale than on design rationale. Drawbacks for these four systems include, but are

not limited to, user-intervention knowledge capture and inability to retrieve captured

knowledge.

REpresentation and MAintenance of Process Knowledge (REMAP) [23] is

another system that is based on IBIS. It is a more complex system that enables users to

retrieve knowledge by a set of queries. Knowledge capture capability still requires user

intervention with REMAP. Other systems that are implemented based on the IBIS

13

methodology include Potts and Bruns [24], IBIS-Style browser [25], KBDS-IBIS [26] for

chemical plants, and DRAMA [27]. These have automotive capture of knowledge and

intent, but no knowledge retrieval methods are supported. CRACK [28], VIEWPOINTS

[28], and JANUS [29] are used specifically for kitchen design. They follow a hybrid

approach to retrieve knowledge. Hyper-Object Substrate (HOS) [30] permits triggered

intent and knowledge retrieval. It allows the capture of data informally during the design

process and converts it into a useable form. PHIDIAS [30], which is based on PHI, is

also a hyperemia system. It represents design intent and rationale as nodes and links.

Both HOS and PHIDIAS capture knowledge automatically.

PHI 87

IBIS 1970

Potts & Burns

gIBIS – itIBIS

VIEWPOINTS

IBIS- Style Browser

REMAP

KBDS-IBIS

DRAMA

JANUS

PHIDIAS

HOS

McCall &

others

1988

1989

1991

1992

1997

1998

1997

1989

DRL
1991

QuestMap
2002

Compendium
2005

Figure 1.8. Chronological order of IBIS-based approaches

14

QuestMap [31] by Soft Bicycle Co. and Compendium [31] by Verizon Research

Lab are the two of the latest systems that are based on the IBIS methodology. In 2005

Verizon research lab released Compendium 2.0 as open source tools that is intended to

replace QuestMap. Both help users visualize the connections between people, ideas, and

information at multiple levels of discussions and debates. Figure 8 shows the approaches

that are based on IBIS on a chronological order. Figure 1.8 gives the chronological order

of IBIS-based approaches mentioned above.

Other systems are built on different notation, such as Questions, Options, and

Criteria (QOC) [32]. QOC focuses on alternative-features of an artifact as the main

objective of a discussion. A QOC process starts by establishing Questions about an

artifact followed by Options that address the questions. The options are evaluated and

selected based on specific Criteria that describe the goals to be fulfilled. Similar to some

previous approaches, QOC lacks the abilities to capture and retrieve knowledge and

intent without designers‘ intervention.

Design History Tool [33] for mechanical design records the design history from

the specification and constraints to the detailed designing process. One appealing feature

of this system is the playback facility that permits the user to retrieve information about

the design. However, this system depends heavily on the design constraints that are

based on the designer‘s knowledge of the domain. AIDEMS [34] asks the user to create

product specifications at the beginning of the design. The specifications are then refined

at each level of the designing process. Thus, intent emerges during the design process

and theoretically captured during that time. Design Rationale Authoring and Retrieval

System (DRARS) and TED [35] use variations of QOC. In DRARS, it is the user‘s

15

responsibility to give descriptive names to the system‘s object (claims, questions, and

answers).

Functional Representation (FR) [36] is an approach for a formal representation of

the artifact‘s functioning. It supports knowledge generation, simulation, design

verification, and case-based design. The focus of FR is to automate the design intent

support. Another approach that automates the design intent support is Generative Design

Rationale [37], which proposes reasoning ontology and processes for use by computers.

The idea of actively generating documentation is pursued in Active Design Documents

(ADD) [38]. ADD allows the user to verify the knowledge required for justifying each

decision. However, it only provides a read-only interface to navigate through the

decisions and reasoning associated with an artifact. MultiADD [39] is an extension to

ADD that is proposed to deal with group design.

Some of the new tools are more geared towards a specific field than being

generic. View and Beyond (V&B) is a collection of methods proposed by Clements et al.

[40] to document software architecture design. They argue the importance of

documenting why the architecture is the way it is and the justification of decisions.

Architecture Rationalization Method (ARM) [41] uses qualitative and quantitative

rationale in design reasoning. It selects an optimal solution by eliminating inferior design

alternatives, using the quantification of the design options. Tyree and Akerman [42]

provide a template that captures certain types of information as design rationale.

Software Engineering Using RATionale (SEURAT) [43] is based on DRL. SEURAT

ensures that the system building is complete and consistent by providing insight into the

16

reasons behind the choices made during the design process and implementation of

software systems.

The need for capturing design intent and rationale has been recognized in

software architecture design and has led to several efforts to standardize it. The IEEE

1471-2000 standard [44] provides a definition of design rationale and discusses its

importance. Even though this is a step in the right direction, the real work still needs to

be done. The standardization needs further elaborations on the nature of design intents

and how they might be captured, retrieved, and represented.

1.2.2 CAD Models Repair

There have been various attempts to repair poor quality exchanged CAD models,

both in research institutions and commercially. The most relevant attempt to our work is

the approach by Jeongsam and Han [45]. They propose to correct a CAD model based on

the design history. They claim that their system Q-Raider can repair six types of CAD

model: tiny faces, narrow regions, non-tangent faces, narrow steps, sharp face angles, and

narrow spaces. Even though this is called history-based repair, the corrected model can

collapse if it is reconstructed solely on the design history. They have to couple the repair

with other parameters, constraints, and boundary representation (B-Rep), which make the

repair process very delicate.

Other notable approaches are based the B-Rep of a model. STEP application

protocol AP203 [46] allows the transfer of B-Rep. This makes it appealing to use to

repair transferred models. However, correcting CAD models based on B-Rep suffers

from drawbacks, such as no consideration of the designer intent. B-Rep‘s lack of concern

17

with designer intent is a consequence of the model being a ―dumb‖ solid that has no

parameters, constraints, reason for a particular choice, or the engineering data that are big

part of the design intent. Repairing the model based on B-Rep while ignoring the design

intent could lead to failure of the geometric structure of the transferred model. This also

will create another problem if the model is to be reused or transferred back ―upstream‖ to

the creating CAD system. Another drawback is the computation and complex data

structure that require large memory to repair even simple models with B-Rep. Literature

reveals three classes of B-Rep approaches: exact B-Rep, faceted B-Rep, and boundary

curve-based approach.

Exact B-Rep approaches include the work of Hoffman et al [47]. They correct

errors in a CAD model by analyzing the topological and geometric elements of the

boundary representation (B-Rep) of 3D shapes. They proposed the architecture for a

master model to correct problems arising from different geometric tolerances between

different downstream applications. Gu et al. [48] correct topological errors in CAD

models by storing and using a model object tree that represents the topological entities

and use the tree to repair the model. Their focus is on correcting the topological errors

rather than on geometrical errors since errors in the topology are catastrophic [48].

Faceted B-Rep approach is faster than the exact B-Rep approach that is used in

[47,48]. It approximates the B-Rep model with a set of polyhedrons. One of the early

works on faceted B-Rep is by Rock et al. [49]. They present efficient data structures for

computing exact matches between polygon edges in order to reconstruct the topology of

the model. Makela et al. [50] use local techniques to fill cracks in the model surface by

triangles. Turk et al. [51] remove error resulting from overlapped polygons by clipping

18

them. Barequet et al. [52] describe a globally consistent approach for identifying and

filling holes. However, when a large number of cracks is involved, the technique can

result in a very large number of polygons to describe the model. In [53], Barequet et al.

describe a hashing algorithm that corrects errors in a model by stitching the small gaps

between polygons.

The boundary curve-based approach is restricted to 3D shapes that are constructed

from surfaces. Works based on this approach used the idea of simplifying the original

object‘s mesh and then reconstructing a smooth surface on top of it. The original idea of

simplification is to produce a smaller model to aid the analysis and display of surfaces

[54, 55]. Steinbrenner et al. [56] correct gaps and overlaps between surfaces through

edge-splitting and merging of the boundary curves.

Commercially, some companies find this problem lucrative and implement

commercial software packages to correct errors in CAD models. CAD Doctor by

Elysium Inc.[2], CADfix [3] by ITI, and TransMagic [57] are a few examples. Many of

the commercial software in the area are based on B-Rep approach, which suffers from the

drawbacks stated earlier.

1.2.3 Design Intent Exchange

One of the earliest attempts to exchange parts of the design intent was by

Hoffmann et al. [58]. The authors suggested a method of exchanging CAD models in

terms of their construction history using their EREP (Editable REPresentation), which is

a neutral format for expressing form features, parametrization and constraints. Although

EREP presents the foundation for the exchange of parametric information, there are a

19

number of key technical problems with this approach that have been discussed in a

number of papers [59].

Another early attempt to exchange more than the geometries of CAD models is

ENGEN (Enabling Next GENeration design) [60] by PDES Inc. It concentrates on the

exchange of geometric constraints, and demonstrates the exchange of constrained 2D

profile data. CHAPS (Construction History And ParametricS) [61] is another recent

project by the same company. It mainly concentrates on using new draft ISO 10303

capabilities to transfer construction history or procedural models without explicit

parameters or constraints. Another approach that follows the exchange of procedural

models is proposed in [62]. It uses the journal file created by CAD systems, which

should contain a record of every action of the system user. The exchange of procedural

models provides some level of flexibility to edit the model in the receiving system but

omits certain information relating to design intent that may be important in maintaining

product functionality after a modification.

Bettig et al. [63] also attempt to exchange constraints for parametric modeling.

They proposed a standard set of geometric constraints for parametric modeling and data

exchange. They defined explicit constraints for the relationships between all the

geometric entity data types specified in ISO 10303-42[64], STEP geometric, and

topological representation of CAD models.

Rappoport [65] tackles the problem by focusing more on the consistency of pure

geometry between the original and the exchanged models. While geometrically this is

satisfactory, design intent and characteristics of the original design usually get lost by his

approach.

20

Kim et al. [66] suggested a theoretical approach to extract the design intent

information using Parts 55 [67], Part 108 [68], and Part 111 [69] of STEP. These are

recently published Parts of ISO 10303 that are not yet widely used in current translators

and commercial CAD systems. A drawback of this method is that explicit design

constraints are big part of extracting the design intent in their approach. For example,

some widely used CAD systems do not allow access to constraint information used in the

model [61]. Without access to these constraints, the whole process may halt. Pratt et al.

[70,71] also used these new Parts of ISO 10303 as a solution to exchange the parametric

data of CAD models. Both [61] and [71] call for standardizing data exchange of CAD

models with design intent.

1.2.4 CAD Model’s Data Exchange

In the early 1970‘s only a few CAD systems were implemented, and only few

organizations could justify the purchase of a CAD system or machine, which had an

average price tag of $125,000. With only a few CAD vendors in existence and only a

few users applying CAD technologies, it was very common for organizations and

manufacturers to agree on the use of a single CAD system. Others, like Boeing and

General Electric, faced with the need to migrate and exchange data among the different

CAD systems they were using and implemented their own in-house CAD and translators.

The translations had to be direct, as in Figure 1.9(a), which shows the increasing

complexity with the addition of more incompatible CAD systems.

By the end of the 1970s, the need for efficient means to exchange modeling data

with incompatible CAD system was evident. Advances in technologies made the CAD

21

system a valuable developing tool for organizations and manufacturers. However, most

organizations find it difficult to enforce the use of a common CAD tool within their

organization. It is much harder to enforce it across multiple supply chains and among

joint venture partners. At the same time, CAD vendors guarded their proprietary data

format in order to not lose the competitive advantages. These needs and concerns have

driven the development of a standard for a neutral format as illustrated in Figure 1.9 (b).

It relives the manufacturers from developing and maintaining several system-specific

translators as in Figure 1.9 (a) and grants the CAD vendors the choice not to disclose

their data format.

c a

b d

(a)

c a

b d

(b)

Figure 1.9. Ways to exchange CAD data

1.2.4.1 Efforts for Standardization

In the early 1970‘s most of the efforts were focused on the foundational

description data, which could be exchanged and shared among CAD systems. The

22

Computer-Aided Manufacturing - International Inc. (CAM-I) organization contributed

greatly to the formal description of B-Rep data [72]. However, it did not provide an

exchange mechanism. CAM-I also investigated the mathematical representation of

standard geometry and topology and then submitted the results to ANSI committee

Y14.26 (Computer Aided Preparation of Product Definition Data) for standardization.

The U.S. Air Force also made a significant contribution to the standardization of

product data exchange. The funded Integrated Computer Aided Manufacturing (ICAM)

program developed new formal manufacturing technologies such as IDEF0 (ICAM

DEFinition) for activities modeling, IDEF1 for information modeling, and IDEF1X for

data modeling [73]. Contractors were required to use these new engineering

methodologies as if they were standards.

The Product Definition Data Interface (PDDI) program, also funded by the U.S.

Air Force, contributed to the advancements of the tools and methodologies that were key

components in subsequent standards [74], most notably ISO 10303 (STEP). PDDI was a

research exercise that focused on developing a mechanism to allow the complete

exchange of product model data directly among computer applications. It also

contributed to standardization of data exchange by developing a modeling language that

later would be used in developing EXPRESS [75], an exchange file format used in STEP

to separate the exchanged data from its definition.

International efforts, largely European, also contributed greatly to the process of

standardization for CAD model exchanges. The earliest effort was in 1977 when the

European Association of Aerospace Industries (AECMA) developed an intermediate

format to exchange shape representation between different systems. The format was very

23

basic and only supported the exchange of limited basic surface types. When more

complex surfaces representations were developed in subsequent years, the format did not

perform as needed causing it to be abandoned [74]. In 1984, the United Kingdom

submitted the ―AECMA Report of the Geometry Data Exchange Study Group‖ [76] to

the International Organization for Standardization (ISO) as an effort to develop an

international product model data standard.

The West Germany Organization of the Automotive Industry (VDA for ―Verband

der Automobilindustrie‖) standardized VDA-FS [77] in 1982. VDA-FS was developed

to address the exchange of free form surfaces and curves that were needed by the

automotive industry during that time. The FS, which stands for ―Flächen Schnittstelle,‖

translates to ―surface translation format.‖

The French standard, Standard for Exchange and Transfer (SET) [78], was

developed at Aerospatiale in 1983 to address the difficulties using IGES.

Like AECMA, both VDA-FS and SET were submitted to ISO in the same year

(1984) to contribute toward the international efforts for standardization of product model

data. The international standard ―STandard for the Exchange of Product model data‖

(STEP) was released a decade later in (1994).

1.2.4.2 IGES: Initial Graphic Exchange Specification [79]

IGES is a national (ANSI) standard for CAD data exchange. The origin of IGES

has a history associated with it. It was the result of combined efforts form CAD vendors,

interests of users, and the standards committee.

24

In 1979, The Society of Manufacturing Engineers held a two-day meeting. On

the first day of the meeting, a CAD user from General Electric (GE) asked the CAD

vendors panel about possibility of working together to enable a common neutral

exchange mechanism [74]. This proposition was very threatening to the CAD vendors‘

panel, which included ComputerVision, Applicon and Gerber, since sharing their

proprietary data formats and the databases structures would put them in less competitive

advantage. On the other hand, there were large and important Navy contracts, and every

CAD vendor wanted to look responsive to customer requirements. In response to the

suggestion, the vendors‘ panel stated that they would share their database structures if

Boeing and GE would supply the CAD translators they had already developed for their

organizations‘ uses.

By the end of the first day of the meeting, Air Force ICAM agreed to begin the

effort to implement a common translator with a $50,000 contract. The National Institute

of Standards and Technology (known at the time as National Bureau of Standards) agreed

to support the process. The two big CAD vendors, Applicon and ComputerVision, agreed

to disclose their internal databases. GE offered its neutral database and its translator.

Boeing offered the structure of its Computer Integrated Information Network (CIIN)

database and its existing translator.

The next meeting day, the name, Initial Graphic Exchange Specification, was

chosen. It was carefully selected to avoid any suggestion of a database standard that

would compete with the proprietary databases and to avoid offending ANSI committee

Y14.26, that had worked for years towards Y14.26 standard [79]. In January 1980, the

first draft was submitted to the ANSI Y14.26 committee for standardization that released

25

version one of IGES in 1981 after attaching the work on B-Rep that was funded by

CAM-I.

As stated, IGES was released in 1981; however, it was not widely used until years

later (1988) when the DoD required that all engineering drawings, circuit diagrams, etc.

be delivered in electronically, and specifically in the IGES format [14]. These

mandatory requirements forced all CAx venders who wanted to market their product to

DoD subcontractors to support IGES file formats. IGES 2.0 was released in 1982, IGES

3.0 in 1987, IGES 4.0 in 1988, IGES 5.0 in mid 1991 [80], and IGES 5.3, the last version,

in 1996.

1.2.4.2.1 Shortcomings of IGES

IGES is a good and a practical initial solution for CAD data exchange. However,

it suffers from many drawbacks. A thorough report [81] by PDDI defines IGES‘s

shortcomings. The report details the problem of representing and capturing the same

information in several ways. For example, a curve may be tagged as a NURBS curve

(IGES 126) or a spline curve (IGES 112). The reason for this discrepancy lies in the

preferences by which companies implement standards. Over the years CAD vendors

have abused the IGES file format by making variants or ―flavors‖ to suit their specific

needs. This annoying problem of ―flavoring‖ [80] made proper interpretation of the

exchanged entity be based on the particular flavor of the pre- and post-processors. One

look at the Rhinoceros IGES export options dialog box in Figure 1.10 illustrates the

magnitude of the problem. The figure shows a portion of the 60 flavors of IGES that

26

allows user to specify, and the list will

just grow in time. Flavoring a standard

is oxymoronic as it defies the very

purpose of having it in the first place.

Peter Wilson [81] also reported

the problem of partial implementation of

IGES, as illustrated in Figure 1.11.

Vendors selected and implemented only

portions of the standards that are

deemed most important. This

―subsetting,‖ which allows for full

exchange between two systems, seems impossible without agreement on what to

exchange. To overcome the unpredictability of translations, with the help of the

Department of Defense Computer-Aided Acquisition and Lifecycle Support program, the

standard committee formalized the subsets of IGES entities. However, it was insufficient

since accurate exchange required additional instructions and information.

Loss of modeling information is another drawback of IGES when migrating a

model from one CAD system to another dissimilar CAD system with different

capabilities. Other drawbacks of IGES include upward compatibility, file size, processing

time, and inability to capture product information [80, 81]. The shortcomings and

evolutions of IGES justified a shift toward a better standard, STEP.

Figure 1.10. Flavoring of IGES in Rhino

27

Common

Subset to All

Systems

Standards

 Mapped Entities Between

And System dSystem a

System

Translator

a

S
ys

te
m

T
ra

n
sl

a
to

r b

System

Translator

c

S
ys

te
m

T
ra

n
sl

a
to

r d

Standards Subset Implemented

 in Only System d

Figure 1.11. Partial implementations of standards (subsetting)

1.2.4.3 STEP: STandard for the Exchange of Product Model Data [82]

STEP (ISO 10303) is an international standard developed by ISO in 1994 to

replace IGES, SET, and VDA-FS. It is meant to avoid all their drawbacks, not only by

exchanging data between dissimilar CAx but also by providing mechanisms and rules to

describe the product data throughout the phases of its life cycle. The information

generated about a product during its life cycle can include its design, manufacture,

utilization, maintenance, quality control testing, inspection and product support functions,

and even disposal. The nature of this description makes STEP the largest ISO standard,

which has to be implemented as parts that are published separately and over an extended

period of time.

28

Figure 1.12. STEP: general structure

The basic parts, such as testing procedures, file formats, programming interfaces,

and industry-specific information, are complete and published. The new parts that are

added to the standard after the initial release of STEP are published as ISO 10303-xxx,

where (xxx) represents the parts numbers. The number of the published parts is in the

hundreds; however, they can be grouped in three main clusters: STEP environment parts,

integrated data models parts, and top parts. Figure 1.12 shows the general structure of

STEP.

STEP environment parts include Parts 1x for description methods of data, Parts

2x for implementation methods data, and Parts 3x that are used for conformance testing

methodologies. They form the infrastructure of STEP and have been separated from

industry-specific Parts.

STEP uses EXPRESS [75] as its description method. EXPRESS is a formal data

modeling language defined in standard ISO 10303-11 to specify the representation of

29

product information. It uses schema in which various data types can be defined together

with structural constraints and algorithmic rules. The use of a formal description method

enables consistency of representation and facilitates development of implementation.

The encoding methods and implementations of the EXPRESS schema are defined in

Parts 21, 22, and 28.

Conformance testing methodology and framework are the testing procedures and

setups that are used to guide the testing processes of the implementations of a new STEP

preprocessor and postprocessor. This is to ensure that products comply with the standard

both syntactically and structurally.

STEP top parts group includes Parts 2xx for Application Protocols (APs), Parts

3xx for Abstract Test Suites (ATS) for APs, and Parts 4xx for Application Modules (AM)

for the APs. The APs form the bulk of the standard, and are the basis for STEP product

data exchange. A single AP usually covers a particular application or industry domain.

For example, AP 214 focuses on automotive mechanical design processes and AP 236 is

for furniture product data and project data in the mechanical field, AP 215 and AP 218 is

for ship arrangements and structure, and AP 239 for product life cycle. The idea of AP

helps in controlling STEP from forming a single large standard.

To support the conformance requirements, each AP uses ATS which contains the

set of abstract test cases for that particular AP. This is to guarantee the compliance to the

standard and to ensure quality of service to service providers, equipment manufacturers,

and equipment suppliers. STEP Parts 4xx for AMs define common building blocks to

create modular AP within the standard.

30

The last group, integrated data models, includes Parts 4x, 5x, and 1xx for the

Integrated Resources (IR), and Parts 5xx for Application Integrated Constructs (AIC).

Every AP defines a top data module to be used for data exchange by following

specifications in AMs. The AMs are higher-level modules that are constructed by

choosing generic objects defined in lower level data modules (4x, 5x, 1xx, 5xx). The

common generic data models are the basis for interoperability between APs for different

kinds of industries and life cycle stages. If specializations are needed for the particular

application domain of the AP, they can be chosen and added to the AP. AICs define

collections of common definitions that can be shared between Application Protocols.

1.2.4.4 Quasi Industry Standards

Some privately developed formats are widely used and are regarded as quasi

industry standards. Drawing Exchange Format (DXF) is developed by Autodesk for

enabling data interoperability between their produce, AutoCAD, and other CAx systems.

Autodesk for many years did not publish specifications of DXF; however, recently they

published the specifications to further the use of their formats. JT, developed by Siemens

PLM Software, is not only used for CAD data exchange but also for product

visualization, collaboration, and Product and Manufacturing Information (PMI). In 2009,

JT specification has been accepted for publication as an ISO Publicly Available

Specification.

31

1.3 Contributions

In this research, we investigate how knowledge-guided NURBS [83,84] can be

used to support design intent of CAD models. This work contributed the following:

 Augmentation of geometric models with design knowledge for use during the

design process.

 Support for design intent at the lowest level of geometry construction and

incorporate it into the model‘s knowledge base.

 Support for knowledge acquisitions, i.e., provide various ways to gather

knowledge about NURBS entities during and after the construction of these

entities.

 Provision of mechanisms to mine the knowledge-base to assist a wide range of

processes that are deemed important for CAD designers.

 Provision of the ability to reproduce (or adjust) CAD models instead of patching

them up through a design replay manager.

 Enhancement of the robustness of CAD systems by providing knowledge support

to computational algorithms that deal with knowledge types instead of data types.

The goal, in summary, is to show that with the appropriate approach, well defined

and structured design intent can be identified and supported in a NURBS environment to

provide a wide range of benefits. These benefits are expressed through a prototype

system that supports design intent, addresses the issues of robustness, and enables

seamless data transfer. This is an important step in the direction toward showing both

the CAx standards committees and the systems implementers that the costs and effort can

32

be justified to modify current systems‘ kernels to incorporate knowledge and design

intents.

1.4 Organization of the Dissertation

The remainder of this dissertation presents our approach in using knowledge-

guided NURBS for supporting design intent in CAD modeling. Chapter 2 presents

NURBS fundamentals and model representation and storage. Chapter 3 answers

fundamental questions, such as:

 What is knowledge?

 What information needs to be retained?

 What is design intent?

 How to support design intent?

Chapter 4 reports on the results from previous chapters to form the optimum

knowledge to store. It details works on knowledge-guided NURBS (KGN) specifically

on:

 How to build a knowledge base for KGN.

 Type of all relationships between entities (point, curves, quadrics …etc.).

 Features and functionalities that are important and must be supported in order to

make a system a truly knowledge guided system. These features are organized in

the four managers: knowledge acquisition, knowledge mining, design replay, and

export/import managers.

33

 How to use a knowledge base for knowledge acquisition, design replay to

reconstruct the whole design, knowledge mining to learn and support design

intent, and export or import of knowledge.

 Robustness issues when using knowledge in CAD modeling.

Chapter 5 describes the system architecture and initial design of the prototype

including the implementation and user interface issues. It presents case studies with

results using a test object to demonstrate the effectiveness of using KGN to support

design intent. Chapter 6 concludes the dissertation with summary of the research and

important conclusions. Some potential and important goals for future work are also

presented at the end of this chapter.

34

Chapter 2 --- NURBS Fundamentals

The main focus of this chapter is on NURBS, which are mathematical

representations for both analytic (e.g., conics) and freeform shapes. The acronym

NURBS stands for Non-Uniform Rational B-Spline and refers to the following.

 Non-Uniform refers to the parametrization of the curve which allows the use of

the needed multiple knots to represent Bezier curves, among other important

advantages that will be discussed in this chapter.

 Rational refers to the shapes‘ mathematical representation. It allows for both free

form shapes and exact conic (such as parabolic curves, circles, etc.) representation

in NURBS. Non-Rational B-Spline can only approximate the parabola.

 B-Spline are the piecewise polynomial curves that have a parametric

representation. The letter B in B-Spline refers to Basis.

This chapter starts with a very brief overview of various curves and surfaces

representations in section 2.1. Section 2.2 discusses the fundamentals of NURBS such as

the properties and the mathematical representation of both curves and surfaces. NURBS

modeling techniques are described in section 2.3. Representation and storage in a

NURBS-based model is discussed in section 2.4. Data export to other CAD systems that

use NURBS as their modeling kernel is discussed in Section 2.5.

35

2.1 Mathematical Representations of Curves and Surfaces

Curves and surfaces can mathematically be represented explicitly, implicitly, or

parametrically.

2.1.1 Explicit

An explicit representation is the most basic definition of curves in two

dimensions. It has the form  xfy  . For example, the cubic polynomial

dcxbxaxy  23
, where dcba ,,, are constants, defines a cubic curve.

Figure 2.1. Unit circle created by cubic polynomial

Even though this form is used very often to plot graphs of functions, it is not very

appealing for CAD, computer aided graphics, and geometry design for many reasons.

Explicit curves and surfaces are axis dependent and single valued in y , meaning that they

cannot represent closed, self loops, vertical, and multiple-valued curves. Many curves of

practical importance such as circles, ellipses and the other conic sections are not

36

permitted in this form without creating multiple cases. For example, to create the circle

in Figure 2.1, it is required to divide the computations into two segments, with

22 xry  for the upper half and 22 xry  for the lower half. These limitations

made this form unsuitable for geometric modeling since segmentations will create cases,

which are a nuisance in computer programs.

2.1.2 Implicit

Implicit representations for planar curves have the form 0),(yxf and

0),,(zyxf for surfaces. The equations describe implicit relationships between the x

and y coordinates of all the points on the curve, and between the x , y , and z

coordinates for surfaces. Implicit forms can represent larger classes of curves and

surfaces when compared to the explicit form. Difficulties of multiple values and vertical

tangents inherent in the explicit form can be avoided using the implicit form. For

example, a circle of unit radius with its center at the origin is defined implicitly by

01),(22  yxyxf (Figure 2.1). Overcoming these difficulties makes these type of

curves and surfaces useful in some applications, typically for low-degree cases such as

degree one or two. However, the equations in the implicit representation for curves and

surfaces are single non-linear equations. Calculating the x and y
 values for such

complex higher-degree equations (curves or surfaces) is not efficient computationally

since it results in solving the entire non-linear equation. Moreover, they are still axis

dependent, which can cripple coordinate transformations such as translation and rotation

that are required for graphical display and used intensively in CAD. Computation of

points on a curve or a surface in the implicit representation is also difficult and adds to

37

the limitations of this representation. An alternative way to avoid these limitations and

difficulties is the parametric forms of curves and surfaces discussed below. A detailed

comparison between implicit and parametric forms is described in [5].

2.1.3 Parametric

Parametric forms are the standard representations of curves and surfaces in CAD

systems. Curves and surfaces in the parametric form use auxiliary parameters to

represent the position of a point on a curve or surface. The concept of associating

parameters to points on a curve or surface is very important since it can be used by many

tools in CAx. A parametric curve in the xy
 plane is defined by       uyuxuC , . A

parametric surface uses two parameters (u and v) to define it by

        vuzvuyvuxvuS ,,,,,,  . Every coordinate of a point on the curve is represented

separately as a function of the parameter u and by the two parameters u and v on the

surface. Parametrization of curves and surfaces (i.e., numbering the points along the

curve) can be achieved by methods such as uniform and chord-length parametrization.

The uniform parametrization evenly distributes the parameter along the curve. The

chord-length approach assigns parameters based on the chord-length, or shortest linear

distance on the curve. Other parametrizations such as arc-length and centripetal are also

presented in literature

Parametric curves and surfaces have many properties that make them useful for

geometric modeling. Dependencies on parameters rather than on the axis allow for easy

transformations such as translation and rotation that are difficult in the non-parametric

forms (explicit or implicit). Problems that arise in representing closed or multiple-valued

38

curves and surfaces in explicit forms are also avoided. The same circle in Figure 2.1

represented by explicit and implicit methods can be represented parametrically by an

angle parameter  ,0u by    uux cos and    uuy sin .

Furthermore, the parametric method can be easily used to describe free form

shapes and three-dimensional curves. Due to these advantages, parametric

representations of curves and surfaces are the most commonly used forms with the new

generations of CAD systems.

2.2 NURBS Basics

NURBS, a class of parametric curves and surfaces, has been the de facto standard

in the geometric design since the introduction of major CAD systems three decades ago.

One of the greatest advantages of using NURBS in modeling is the ability to use one

common mathematical form for both standard analytical objects such as a circle as seen

in Figure 2.2 and free form shapes as seen in Figure 2.3. They are generalizations of

(parametric) non-rational B-Spline and non-rational and rational Bezier curves and

surfaces.

39

Figure 2.2. Closed NURBS curve (degree 2 circle)

Figure 2.3. Free form NURBS curve

NURBS representations are more popular among developers of CAD systems

compared with other parametric and non-parametric curves and surfaces representations.

This is because of the unique properties of NURBS representation. Desirable theoretical

properties, such as projective invariance, convex hull property, local scheme, controlled

continuity, and visually understandable geometric characteristics, are some of NURBS‘

40

properties. From the programming standpoint, NURBS are very efficient in computation

and can easily be processed by a computer and stable algorithms to achieve both accuracy

and speed. They can easily represent geometrical shapes in a compact form that can be

handled efficiently by simple programs. They are stable to floating points‘ errors and

require little memory to represent any kind of curves or surface. These properties

allowed NURBS to serve and perform well in a wide range of fields like designing,

manufacturing, prototyping, visualization, and virtual reality. NURBS properties also

made them very popular among new fields such as bio-engineering and nano-

manufacturing since they can allow for easy human interactions.

NURBS are defined by a set of control points, basis (or blending) functions,

knots, degrees, and weights that are associated with every control point. These five

components are evaluated mathematically at a range of parameters to produce NURBS

curves and surfaces.

Figure 2.4. Modifying NURBS curve via control points

41

The set of control points are used to characterize the general shape of the curve or

surface. Moving one of the control points is one of easiest ways to change the shape of a

NURBS curve or surface. CAD systems usually allow users to modify NURBS entities

using this option. Figure 2.4 shows the cubic curve (in Figure 2.3) after moving control

point P4. The desirable locality property of NURBS will limit the effect of a single

control point to the area of the curve in the vicinity of the point. In this particular

example, the effect will span 4 knots.

Basis functions, computed over the knots, are used to determine how much each

point will influence the curve or surface smoothness and continuity. Figure 2.5 shows

how we can use multiple knots (non-uniform knot vector) to control the continuity of

NURBS. A full-multiplicity knot, when the number of duplicated knots is the same as

the degree, can create a kink or sharp corner on the curve by interpolating the control

point. Control point P4 is shown in Figure 2.5.

Figure 2.5. Effects of multiple knots

42

Degree is also one of the ways to control the shape of the NURBS curves and

surfaces. Figure 2.6 shows the effect of using various degrees (2,3,4,5 and 6) with the

same control points and knot vector. NURBS lines and polylines are usually degree 1

where the curve will follow the control polygon (dashed line in Figure 2.6). By looking

at Figure 2.6, one can generally conclude that the lower the degree, the closer a NURBS

curve follows its control polygon. More importantly, however, the degree of the curve

determines the smoothness of the joins between spans. A linear curve (degree 1) has

positional continuity at the join. A quadric curve (degree 2) provides tangent continuity,

whereas the cubic (degree 3) curve, which is sufficient in many modeling tasks, gives

curvature continuity, which incorporates the positional and tangential continuities.

Figure 2.6. NURBS curve with different degrees, using the same control points

Weights are also used to influence how much a particular control point affects the

curve or surface. Generally, the higher the weight compared to other weights, the closer

a NURBS curve is to its control point as illustrated in Figure 2.7.

43

Figure 2.7. Cubic NURBS curve, with w6 varying

2.2.1 NURBS Curve

A NURBS curve  uC is vector-valued tensor-product function in the follow form

[5]:

  
 

 






n

i

ipi

n

i
iipi

wuN

wuN

uC
P

0

,

0

,

 for bua  , (2.1)

Where Pi are the control points that form the control polygon, iw are values of

weighting functions associated with Pi , n is the highest index of (1n) control

points, and i
th

 piN , are the p
th

 degree B-Spline non-rational basis functions given by the

Cox-de Boor recurrence relation

  





0

1
0,

uN i

if 1 ii uuu

otherwise
(2.2a)

44

and

      u
uu

uu
u

uu

uu
u NNN pi

ipi

pi

pi
ipi

i

pi 1,1
11

1

1,, 





 







 , (2.2b)

defined over the non-periodic knot vector U for degree p ,























1

11

1

,...,,,...,,,...,

p

pmp

p

bbuuaaU subject to 1 ii xx (2.3)

There are some rules that govern how NURBS curves are defined. The degree p

of a NURBS has to be a positive whole number and cannot be less than one (i.e., lines

and polylines). The number of control points 1n must always be greater than the

degree. For example, a degree one NURBS curve (line) must have at least two control

points, and a cubic NURBS curve must have at least 4 control points. The highest index

m of 1m knots is associated with the degree and the number of control points in a

NURBS curve by 1 pnm . For example, the cubic NURBS curve in Figures 2.3,

2.4 and 2.5 all have 13 knots in their knot vectors; 131)138(1 m (note that this

is the number of the knots, not the values).

2.2.1.1 Knot Vectors

There are more rules that have to be addressed in regard to knot vectors. The knot

vector as stated in Equation 2.3 is subjected to 1 ii xx , meaning it must be

monotonically increasing, with successive values in the knot vector that must be arranged

in ascending order. For example, the knot vector that is used for the curve in Figure 2.3

45

is  1,1,1,1,65,64,63,62,61,0,0,0,0U . Any different arrangement of these

values is not acceptable. Typically, knot vectors are normalized as the one above. But

they can also be chosen as an array of integers ranging from zero to some maximum

number. The magnitude of the values of the knot vector has no effect on the NURBS

curve. It is the relative ratios of the differences of the values to each other that affect the

curve, and thus a knot vector like  70,70,70,70,60,50,40,30,20,10,10,10,10U has the

same effect as the normalized one.

Knot vectors can also be classified as clamped or unclamped. A clamped knot

vector is the one that has first and last values of the vector repeated p+1 times. For

example,  1,1,1,1,65,64,63,62,61,0,0,0,0U used for the cubic NURBS curves

in Figure 2.3 and 2.4 is clamped. The multiplicities at the beginning and end of the knot

vector force the NURBS curve to pass through the first and last control points.

Unclamped knot vectors are simply the ones that do not satisfy the multiplicities at the

beginning and at the end p+1 times.

Knot vectors can also be divided into uniform and non-uniform, that is, within

each group of the clamped and unclamped knot vectors discussed earlier. A uniform knot

vector has equally spaced values, excluding the multiplicities at the beginning and at the

end. The knot vector  1,1,1,1,65,64,63,62,61,0,0,0,0U is a uniform knot

vector. A non-uniform knot vector, on the other hand, is the one that has values that are

not equally spaced. The knot vector that is used to create the kink in Figure 2.5,

 1,1,1,1,65,62,62,62,61,0,0,0,0U , is an example of non-uniform knot vector

since the value 2/6 is repeated 3 times. Another example is

 1,1,1,1,2019,2017,207,203,201,0,0,0,0U used in Figure 2.7.

46

The differences in spacing between the values of the knot vector must be

significant; otherwise, a non-uniform knot vector will behave much like a uniform one.

Multiplicity of knots tends to have more drastic effects on the curve, such as those

illustrated in Figure 2.5.

2.2.1.2 Basis Functions

The basis (or blending) functions is a set of linearly independent functions, that

can represent every function in a given function space as long as the functions are in

linear combination. The letter ―B‖ in NURBS refers to ―basis‖. If we let

 

 

 



n

j

jpj

ipi

pi

wuN

wuN
uR

0

,

,

,

for bua  , (2.4)

then we can write Equation 2.1 in the form

   Pi

n

i

pi uRuC 



0

, (2.5)

The {  uR pi, } are the rational basis functions. All the desirable geometric characteristics

of NURBS curves and surfaces are drawn from properties (non-negativities, partition of

unity, local support, etc.) that Equation 2.4 provides. The basis functions are defined

over a knot vector and hence the shapes of the basis functions are determined entirely by

the relative spacing between the knots in the knot vector. Figures 2.8-2.10 show the

basis functions used for the three different curves in Figure 2.5.

47

Figure 2.8. Third-degree basis functions, uniform knots.

Figure 2.9. Third-degree basis functions, multiple internal knots

Figure 2.10: Third-degree basis functions, full multiplicity in internal knots

 1,1,1,1,65,62,62,62,61,0,0,0,0U

 1,1,1,1,65,64,62,62,61,0,0,0,0U

 1,1,1,1,65,64,63,62,61,0,0,0,0U

48

A B-spline blending function has compact support. The support of this function

depends on the knot sequence and always covers an interval containing several knots,

containing p+2 knots if the curve is degree p.

It is sometimes useful to represent a p
th

 degree NURBS curve in homogeneous

form. This can be accomplished easily by using the following equation:

   P

w

i

n

i

pi

w uNuC 



0

, (2.6)

where  iiiiiii

w

i
wzwywxwP ,,, is the weighted control points.

2.2.2 NURBS Surface

NURBS surfaces mathematically work like their curve counterpart, except they

have two parametric directions),(vu instead of one)(u as in Figure 2.11.

Figure 2.11. NURBS surface

49

 A NURBS surface of degree p in the u direction and degree q in the v direction

is defined by

 
   

   



 

 


n

i

m

j

jiqjpi

n

i

m

j
jijiqjpi

wvNuN

wvNuN

vuS
P

0 0

,,,

0 0
,,,,

,

1,0  vu , (2.7)

where P ji ,
are the control points that form a bidirectional control net, jiw , are the

weights associated with each of the control points, and    vNuN qjpi ,, , are the non-

rational B-Spline basis functions (Equations 2.2a and 2.2b) defined on the non-periodic

knot vectors U and V for degrees p and q that are denoted by





















 1

11

1

1,...,1,,...,,0,...,0
p

prp

p

uuU  1 ii uu
,
 (2.8a)





















 1

11

1

1,...,1,,...,,0,...,0
q

qsq

q

uvV  1 ii vv , (2.8b)

with the highest indexes of knots (r and s) hold the relationships 1 pnr for the U

knot vector, and 1 qms for the V knot vector.

All the rules that are stated for the NURBS curve apply to a surface‘s two

directions. Different surface directions can have different degrees. For example, the U-

direction can have degree 2 while the V-direction can have degree 4. As with curves, we

can introduce the piecewise rational basis function for the surface as follows:

50

 

   

   
 


n

k

m

l

lkqlpk

jiqjpi

ji

wvNuN

wvNuN
vuR

0 0

,,,

,,,

, , 1,0  vu , (2.9)

so that Equation 2.7 can be written as

   

 


n

i

m

j
jiji PvuRvuS

0 0
,, ,, (2.10)

A NURBS surface can also be efficiently represented in homogeneous

coordinates as in Equation (2.11)

      
 


n

i

m

j

w

jiqjpi

w

PvNuNvuS
0 0

,,,, (2.11)

where  jijijijijijiji

w

ji
wzwywxwP ,,,,,,,,

,,, .

2.2.3 NURBS with Higher Dimensions

NURBS can also be used for higher dimensional representations. However, their

visualization is more difficult and precarious [85]. For each additional dimension of the

NURBS, for example a trivariate, an additional summation of the Cox-de Boor recursion

formulas is performed. Equation 2.12 defines the trivariate (i.e., volume) representation

in a homogeneous form

       

  


n

i

m

j

l

k

w

kjidkqjpi PtNvNuNtvuV
0 0 0

,,,,,,, (2.12)

51

Comprehensive information and explanations about the intricacies of NURBS and

the various types of curves and surfaces can be found in literature [5,86,87].

2.3 Modeling Techniques

Creating complex 2D or 3D models using specialized software such as AutoCAD

or SolidWorks usually starts by constructing basic geometric entities such as circles,

lines, or curved surfaces in order that an idea can be realized from a designer‘s mind.

These models can be represented and constructed in a number of ways.

A model can be constructed using polygonal modeling techniques where vertices

are connected by line segments to form what is called a polygonal mesh or net. Polygonal

models are flexible and can be rendered quickly. The main disadvantage is that polygons

are planar; hence, curves and curved surfaces used to structure models cannot be

accurately represented. They can only be approximated using many polygons as

illustrated in Figure 2.12. Another problem is that polygon objects are more or less fixed.

In other words, the shape of the object cannot be changed easily.

Another modeling technique that is used is to combine basic geometric primitives,

like cones, cubes, and cylinders, to construct more complex and larger models.

Typically, geometry can be joined through Boolean operations such as union, subtraction,

and intersection. Like polygonal techniques, using primitives are quick and precise but

cannot accurately represent complex curved surfaces.

52

Figure 2.12. Polygonal (triangles) mesh of a dolphin

The subdivision of surfaces modeling technique is also used to create complex

models. It combines some of the features of polygonal and NURBS modeling techniques

in terms of flexibility and ease of use.

NURBS modeling techniques, which is the focus of the reminder of this section,

is similar to polygonal mesh except that individual polygons are truly curved surfaces,

not an approximation. Because of their accuracy and flexibility, NURBS models can be

used in several applications such as illustration, animation, and manufacturing.

2.3.1 NURBS Modeling Techniques

NURBS modeling allows for truly smooth surfaces, not approximations using

small flat surfaces. This makes them suitable for various modeling needs, including

organic modeling. A complex NURBS model usually consists of many curves and

surfaces joined together to form a complete model. NURBS modelers, such as Maya and

Rhino, which use NURBS as the modeling kernel, usually provide designers with sets of

modeling techniques. Such systems allow users to carry out the modeling process

without mathematical experience although the the underlying implementation could

53

include complex mathematical functions. Figure 2.13 (a) and (b) shows a portion of the

wide varieties of curves and surfaces generations‘ techniques used in Rhino 4.0.

However, whatever software a designer uses, there are a set of underlying basic NURBS

modeling techniques that are used in creating NURBS curves and surfaces.

(a) (b)

Figure 2.13. Rhino’s curves and surfaces modeling techniques

54

The first set of techniques used in NURBS modeling is to use fundamental

geometric tools such as reparametrization, degree elevation and reduction, knots

insertion, deletion, and refinement. These fundamentals can be used for both NURBS

curves and surfaces to enable extra modeling techniques and simplify the modeling

process of complex models. Commercial CAD modelers usually allow the user to edit

such parameters. However, these techniques are mostly used by the systems internally.

For example, joining two NURBS curves with different degrees to form a single NURBS

curve, or creating a surface by lofting a set of curves with different knot vectors and

degrees might require degree elevation and knots insertion. Changing the direction of a

curve or surface without changing the geometry can easily be achieved by

reparametrization of the curve or surfaces. Figure 2.14 shows the process of skinning

(lofting) three curves with different degrees and directions.

Figure 2.14. Degree elevation and reduction, knot insertion and removal,

and reparametrization needed internally to perform surface lofting

55

The other set of NURBS modeling techniques involves the generation of NURBS

curves and surfaces. Curves and surfaces can be created from a set of control points

supplied to the system or by interpolating (or approximating with some tolerance) a set of

data points. However, these are not the most convenient ways to model many NURBS

entities, particularly surfaces. For example, an iso-parametric curve can be extracted

from a surface; circles can be constructed from a center and a radius; and the special-case

NURBS surfaces such as tours, spheres, or cylinders, illustrated in Figure 2.15, can be

constructed from radiuses and some more parameters other than the control points.

Figure 2.15. Special-case NURBS surfaces

NURBS surfaces are usually defined by a curve or set of curves. Beside the

skinned surface and special-case surfaces illustrated above, there are many NURBS

modeling techniques used to create wide varieties of surfaces: extrusion, full revolution

and Gordon surfaces. Extrusion or swept surfaces are constructed by given a spine

(sometimes called trajectory) and a cross section NURBS curves, as in Figure 2.16. Even

though the basic idea is the same, extruding a curve to generate a surface can be done in

many ways, such as to a point or by a straight line. See the Extrude option in Figure

2.13(b).

56

Figure 2.16. Extrusion (swept) NURBS surface

Surfaces of revolution are constructed by given a circle (full revolution) or

circular arc (degree of revolution) and a cross section NURBS curve, Figure 2.17.

Figure 2.17. Surface of revolution

57

Gordon surfaces are created by interpolating two bidirectional sets of curves

network, as in Figure 2.18.

Figure 2.18. Gordon surface, interpolating of bidirectional curve network

Other types and techniques include but are not limited to swung surface, ruled

surface, and Coons patches. Swung surface is a generalization of surface of revolution.

Ruled surfaces are constructed from two rail curves, and Coons patches are bicubic

blended surfaces constructed from 4 border curves [5].

One can notice the simplicity of constructing the class in Figure 2.16 by designing

one curve compared to the curves network used to construct the similar class in Figure

2.17. The above NURBS modeling techniques are some of the basic ones used. There is

a wide range of modeling techniques in NURBS allowing for design with simplicities and

modeling with more possibilities.

58

2.4 NURBS Model Representation

Once created, every NURBS surface is exactly the same as every other NURBS

surface; it is defined by control net, degrees, and knot vectors. The inconsistencies are

within different CAD systems. For example, one system, CATIA, generates the

cylindrical surface as two open patches, while the other, Rhino, produces a closed surface

with a seam. See Figure 2.19.

Figure 2.19. Different representations of a cylinder

The inconsistency is going to result in difficulties when converting one format

into another. This is because open and closed surfaces are handled differently at the

software level. For example, intersection curves crossing the seam must be split,

topology differences may result in geometry problems in addition to confusing the

systems with the number of vertices, edges, and faces that are also represented differently

in different CAD systems.

Another example is the circle that is represented as a degree two, degree four, or

degree five rational-curve in different systems. See Figure 2.20. Degree elevation, e.g.,

59

going from degree two to five, can be made precisely. However, there are two

disadvantages.

One, the process only changes the form of the curve. It keeps the geometry as

well as the parametrization intact. A NURBS curve is a parametric entity whose

geometry is closely tight to its parametrization. A poorly parametrized NURBS curve

can cause discontinuities in subsequent surface constructions and operations, such as

when used to generate ruled and lofted surfaces or when used for offsetting based on

point sampling. After degree elevation, the curve has the structure of degree five;

however, its behavior is degree two only.

Second, a circle is an important entity in modeling and many systems prefer to

represent it as a degree five NURBS curve to avoid multiple knots and to have adequate

continuity for subsequent operations. The conversion process from degree two to five

introduces knots with multiplicity five and discontinuities in the homogeneous space,

which contradicts the purpose of having it in the first place. The process can also

increase the data drastically when a set of curves are merged together for subsequent

(surface) constructions.

Figure 2.20. Different circle representations in NURBS

60

Degree reduction, for example, going from degree five to two, is an imprecise

process, and the original precise circle representation is now inaccurate. The converted

degree five circle, which is four times continuously differentiable, becomes either a non-

rational approximation or a discontinuous curve in homogeneous space after degree

reduction.

NURBS models are usually constructed from a set of NURBS curves and

surfaces. However, the representation of the same model could vary based on the

systems that are used during the initial and intermediate construction of the model.

2.5 NURBS Data Export to Other CAD Systems and Storage

Every CAD system has its own methods of describing geometry, resulting in a

large variety of data formats. See Table 2.1. CAD vendors secure and protect their data

formats since sharing their proprietary data formats and the database structures would put

them at a less competitive advantage. Moreover, new CAD systems are constantly

emerging with new data formats, and some old vendors go out of business. Supply chain

companies that use CAD systems are faced with the task of continually exporting data

formats from one system to other CAD systems in order to complete a complicated model

that could be the product of tens of contributors.

When exchanging data that represents NURBS curves and surfaces to and from

systems that use NURBS as their modeling kernel, three possible scenarios can occur. A

NURBS entity can be translated precisely both mathematically and geometrically with

only floating point round off errors. It can also be geometrically precise, but the

61

parametrization is changed: for

example, if a circle is parameterized by

trigonometric functions in one system

while parameterized based on chord

length in another system. Notice that

surfaces that use circles in their

constructions can be different

geometrically. Finally, the NURBS

entity can be translated approximately

with some specified tolerance: for

example, if there is a degree restriction in one system and the other system allows for

higher degrees. Converting a higher degree NURBS entity to a lower degree can only be

achieved by approximation.

Exchanging different data formats is a risky process since it is afflicted by many

issues, including information loss or misinterpretation and change of data accuracies, as

illustrated in the motivation section of Chapter 1. However, it is the only option used in

the industry so far, and most often it is achieved through the use of standard formats, i.e.,

IGES and STEP.

2.5.1 NURBS within Standards

An IGES file must structurally be composed of five sections: Start for sender

comments, Global section for general file characteristics, Directory entry for entity index

and common attributes, Parameter data for entity data, and Terminate section to indicate

Table 2.1. A selection of CAD file formats

ART

ASC

ASM

CCM

CAD

CAT

DWG

DGN

DGK

FM

GRB

ICD

IGES

ISFF

PRT

SKP

RWS

SLDPRT

STEP

ArtCAM

BRL-CAD

Solidedge assembly

CopyCAD model

CADst

CATIA

AutoCAD

MicroStation design file

Delcam geometry

FeatureCAM part file

T-FLEX CAD file

IronCAD 2D file

IGES file

Integraph format for MicroStation

Unigraphics,Pro/ENGINEER

SketchUp model

Rhino work session

SolidWorks part model

STEP file

62

the end of the file. Each section consists of records that are 80 ASCII characters long

with characters in column 73 (S, G, D, P, or T) to indicate what section this record

belongs to. The start section is set up by the person creating the IGES file to contain

useful information to the receiver of the file. The global section contains parameters

needed for the file translation. The directory section is generated by the IGES pre-

processor and contains entry for each IGES entity in the file. IGES entities are labeled

with numbers to indicate their type. For example, the repeated 126 shown in Figure 2.21

is for NURBS curve entity. The second column value indicates the line number in the

next section (Parameter Data) where specific parameters such as knot vectors and control

points are associated with each IGES entity.

Figure 2.21. Snapshot of IGES file

For storage and representation of a piece of geometry, the amount of data required

is much smaller than the amount of information required by many other representations,

including the common faceted approximations. IGES requires degrees and number of

control points, Euclidean control points, knot vector, parameter values, and other useful

63

information such as tagging a curve or a surface as a special type. For example, line,

conic arc, and circular arc used to define a NURBS curve; and plane, torus, surface of

revolution, and cylinder are used to define special surfaces.

STEP files can be implemented by ASCII structure defined in STEP-File (ISO

10303-21), by Extensible Markup Language (XML) format defined in STEP-XML (ISO

10303-28), or through an abstract Application Programming Interface (API) that is

defined in Standard Data Access Interface or simply SDAI (ISO 10303-22). STEP-File

implementation is the most widely used due to its ASCII nature. See Figure 2.22. Almost

every translator will have the option to import or export to STEP-File, which ends with

file extensions ―.stp‖ or ―.step‖.

Figure 2.22. STEP file (USB in Figure 1.1)

NURBS curves and surfaces are defined in Part 42, which focuses on basic

geometry and topology of a product model. The same data and information that are used

in IGES to define NURBS curves and surfaces are also used with STEP definition of

NURBS, with little extra information such as a flag for self-intersecting.

64

Chapter 3 --- Knowledge Guided Design Intent Systems

Knowledge guided design intent systems are, in general, much more complex

than CAD systems that primarily focus on the design and manufacture capabilities. Such

systems go several steps beyond the basic CAD systems by not only providing the basic

capabilities of traditional CAD system but also by dealing with knowledge and design

intent capturing, archival, management, and retrieval without hindering the designing

processes. The added features make such systems fairly complex. However, they can

enable benefits and capabilities ranging from object classification to knowledge mining

and design replay that are discussed in Chapter 4.

To be able to add these extra features to CAD systems, a set of questions about

knowledge and design intent has to be addressed. Section 3.1 deals with fundamental

questions such as the meaning of knowledge in the general sense and within the context

of NURBS environment. It also discusses knowledge acquisitions and representations in

a CAD setting. Section 3.2 narrows the general discussion of design intent from the

Prior Work section in Chapter 1 to structure a well-defined design intent within NURBS.

It also discusses the mechanisms by which we can support the presence of design intent

in NURBS. The last section of this chapter, section 3.3, discusses the type and amount of

information that needs to be retained in such systems. Investigating the above questions

65

should set the stage for Chapter 4, in which the broad definition of the knowledge guided

design intent systems can be focused to form a knowledge guided NURBS system.

3.1 What is Knowledge?

Data, information and knowledge are often considered synonyms of one another,

and the distinction between them is certainly fuzzy [88]. However, researchers

differentiate and describe the relationship between them. Miller et al. [89] detail how

data can be structured or unstructured and can represent a measure such as a quantity.

For example, a string of numbers on a piece of paper (e.g., 8139740000) is considered

data since it represents raw and non-interpreted facts. Information, on the other hand, has

been described as the ―describing a fact‖ where the fact is an occurrence of a measure or

inference of some quantity or quality [90,91]. Knowing that these numbers represent a

phone number in the US is an example of information. The more information that is

inferred, derived, or deducted from the telephone number is what constitutes knowledge:

for example, knowing that a number with a particular area code was issued in the state of

Florida or using a number to get an address.

Within the NURBS-based modeling environment, most current CAD systems

produce raw numerical data at the end of a designing task, that is, control points, degree,

and knots of a curve or a surface. A knowledge guided design intent system goes beyond

the basic CAD systems by gathering and managing information such as the type of curve

that was created: for example, a circle with a given radius and center, how it was created,

function used in creation, alternative algorithms, relationships (if any) with other NURBS

66

entities, and much more other information that is part of the designing process. Such

information is usually not accounted for in traditional CAD systems and is largely lost

either at the low level of object design or during model transfer, causing topological

inaccuracies and threatening robust computations down-streams. Using the gathered data

and the important information about NURBS entities to get more information—i.e.

knowledge—is what makes the system a knowledge guided NURBS system. In the

designing process, the gathered data and information will be stored in a design base and a

knowledge base. The knowledge base and design base can enable knowledge mining to

learn about the design, document the design, aid design replay to reconstruct offending

parts of the design. Figure 3.1 shows how data, information and knowledge can be

integrated into knowledge guided NURBS-based system.

Figure 3.1. Data, information, knowledge within NURBS-based systems

From the literature definitions of data, information and knowledge and from

Figure 3.1, one can conclude: knowledge is built or constructed on top of both data and

information that are acquired at earlier stages or during the designing process of a model;

the presence of information implies the abilities to access data; and the presence of

knowledge implies the ability to access both data and information.

67

3.1.1 Knowledge Acquisition and Representation

The process of acquiring knowledge can be achieved in three main ways: user-

intervention, automatic, or a hybrid approach. The designing process is highly creative.

If knowledge and information is to be gathered with great user intervention, the designer

might get reluctant to record the information needed to preserve the designing intent.

Moreover, the knowledge base might have gaps that will render it useless if the

knowledge acquisition is left to the designer. Thus, in a CAD environment, knowledge

acquisition should be fully automated with flexibility to allow for knowledge

management such as modifications, deletions, retrieval, and maintenance to the acquired

knowledge.

Acquired knowledge can be represented based on the purpose and intended use of

it. Literature, however, usually classifies it under three broad classes of representations:

formal, informal, and semi-formal.

Lee [91] describes the formal representation as a full written documentation. He

states that it is overly costly and can limit the creative thought and development. Hicks et

al. [90] sub-classify the formal representation into three categories: textual, pictorial, and

verbal. They state that textual representation of knowledge is usually structured numeric,

alphabetic, or symbolic, or a combination of these. Pictorial representation is any visual

image, such as three-dimensional engineering drawing. Verbal representation is the

documented descriptions and explanations of design intent and decisions of the design

team.

Informal representation is in the form of memos, emails, meetings, videotapes,

etc. This type of representation can be difficult to combine and present into single

68

coherent form [92]. The level of details of the documentation varies based on a

designer‘s judgment.

 Semi-formal representation is a compromise between the formal and the informal

approaches. It provides some computation power but is still understandable by the

human providing the information.

3.2 What is Design Intent?

Design intent has various meanings in different applications and fields. The Prior

Works section in Chapter 1 gives a detailed discussion on design intent in the general

sense and from the perspective of many fields. The section states that the definition

formulated by Iyer and Mills survey [12] on design intent is adequately comprehensive.

Repeated here for convenience: they state that ―design intent is application, domain and

context dependent knowledge that describes design space, represents design alternatives

and processes history, justifies design solutions and decisions and determines the

characteristics of features and entities and the relationships among them.‖

According to general connotations of the term, this definition is difficult to

quantify and structure. Fortunately, in a NURBS-based modeling environment, it is

fairly clear what design intent is: all relevant design information that can be structured to

support design replay. See Figure 3.2. In other words, it is all the information we need to

enable the regeneration of a CAD model or design on many dissimilar CAD systems as if

it was created on each one them. To this end, the capabilities outlined in Figure 3.2 and

presented in the subsections that follow are supported.

69

Figure 3.2. Design intent in NURBS modeling

3.2.1 Design Alternatives

Modeling systems usually provide various alternatives to perform the same design

tasks. If the design is not up to standard in the receiving system, it is most useful to know

what kind of modeling tool was used in the first place and alternatives in order to make

the proper decision. At a minimum, knowledge guided design intent system will support

the following:

 Name of the function(s) that produced the current design.

 Alternative capabilities and their short descriptions.

 Justification as to why the current function was chosen.

3.2.2 Design Functions

All design tasks in a NURBS system are performed by some function. In order to

support the replay of the designer‘s intent (design session), functional information

becomes a must. The following functional information will be provided:

 Name of the function(s) that produced the final result, e.g. KGN_surruled.c.

70

 Location of the function, e.g. c:\KGnurbs\src.

 Version and the release date, e.g. V2.1_2011.

 Reference to documentation (on-line or offline), e.g.

 c:\KGnurbs\doc\surruled.htm.

3.2.3 Design Decisions

Designers tend to make mistake during the designing process and then repeat the

same mistake at later stage of the designing process. They also undo and redo each

other‘s work because there is no information on what led to one‘s decision and what the

relevant circumstances were. For example, one designer might create a kink on a surface

because it is stylish and was part of the original concept of the design while another

designer might remove it because of the machining process. The second decision should

be recorded to avoid redoing the same mistake. To assist in proper reconstruction of the

design and to avoid mistakes caused by repetition, knowledge guided design intent

system will provide at least the following:

 Recording of the decisions that resulted in the current design, i.e., what.

 The reasons and justification that led to decisions that were made, i.e., why.

 Deliberations that lead to the decisions, i.e., how.

3.2.4 Design History

Designers need history for many reasons, most importantly for learning from prior

designs and avoiding repetitive mistakes and works on what had been proven to be

infeasible. Design history can be detailed; however, the amount of information should be

71

under control and the design history should be kept short. The following capabilities are

the minimal information:

 The date of the initial design‘s creation.

 The name and contact details of all people involved in the process.

 All major updates, error fixes, and other maintenance information.

 Reference to any history file, if any. The history file will contain a complete

profile of the design, incorporating all of the above: alternatives, decisions,

functions, maintenance and a time stamp.

3.3 What Information Needs to be Retained?

One of the major challenges in knowledge guided design intent systems is what

and how much information needs to be generated and retained. Too little information

may not allow the system to replay the design process. On the other hand, too much

information may devastate the system and create problems with storing, usage, and

maintaining all the relevant as well as irrelevant knowledge.

One of the main objectives of knowledge guided design intent systems is to

preserve the designer intent when migrating models from one system to another

dissimilar system. All information and data that are part of design intent as described

above must be retained—i.e., design alternatives, functions, decisions, and history.

Other objectives such as reliability and robustness are also supported by retaining

necessary information. For example, finding the distance between a set of points and a

curve or surface can be made robust if we know the object type and discontinuities (if

72

any) and some other information that might help in choosing the right algorithms and

computations. Knowing the type of curve is a line can aid in robustness by projecting all

the points without any Newton-type iterations is an example of such a case. Anomalies

such as cusps and boundary points can be accounted for if we know where at the curve or

surface they exist.

CAD System BCAD System A

Acceptable

Design Replay

(Reconstruct Desing)

NO

Yes

Knowledge base

Database

Knowledge base

Database

Updated

(Not Patched-up)

Figure 3.3. Design-and-edit in knowledge guided system

Current CAD systems do not preserve the design intent and work in a design-and-

repair behavior, where the final model might be repaired and patched up manually or

using specialized software as described in the motivation section in Chapter 1.

Knowledge guided design intent systems work on a design-and-edit approach. If the

migrated design is not acceptable at the other end, the system will reconstruct the whole

design based on local requirements through a design replay manager. See Figure 3.3. In

order to accomplish this goal, all necessary information that enables design replay

(design regenerate in particular) must be gathered and stored in a design base and

knowledge base.

An example is a surface of revolution constructed form a profile curve. If the

surface is not acceptable in the receiving system, the design scenario must be repeated.

73

For simplicity at this point, we focus our concern on the information needed for

reconstructing the design, not accounting for objectives such as the information needed to

aid the robustness and reliability. A design replay process has to be provided with the

following:

 Identities of the participating objects. These can be attained by proper naming and

identification.

 Design intent will provide the receiving system with what functions were used to

design the entities, what alternatives were considered, and what decisions were

made.

 Relationship maps are complicated data structure. They are made of nodes that

hold objects references, relationships, and their parameters. For example, when

the surface of revolution is computed, the surface and the profile curve enter into

a Surface-Curve-Revolution relationship and all the parameters needed to recreate

the design are saved.

Figure 3.4. Surface-curve information for design replay of surface of revolution

74

Figure 3.4 shows the C code used in the system for a surface-curve node that hold

information needed to reconstruct a surface of revolution. Recall that having information

implies the presence of data, and hence the control points, knot vectors, and degree are all

available to be accessed and retrieved. The design intent and as the information used for

the relationship map are implemented in different parts of the system based on where

suitable and hence only parts of them are encoded in the nodes.

Using this fundamental data and information, the designer at the receiving system

should repeat the designing process with ease using a user friendly interface. The system

can determine what objects are involved in the design and find their IDs and references.

The system should retrieve design alternatives, functions, and decisions to perform the

redesign so as not to repeat previous mistakes. Finally, the system must access the

modeling kernel, pass all required parameters, and reconstruct the surface based on the

receiving system specifications—e.g., tolerance.

The next chapter, Chapter 4, provides a complete definition of all knowledge and

information needed to achieve all the objectives of the knowledge guided design intent

system. It details information needed for knowledge acquisition, knowledge mining, as

well as detailed information on design replay.

75

Chapter 4 --- Knowledge Guided NURBS

Previous chapters set the stage for what follows by discussing knowledge guided

design intent systems and the motivations to embrace them. This chapter discusses the

system in more detail. The global architecture of a knowledge guided design intent

system within NURBS environment is shown in Figure 4.1

Figure 4.1. Knowledge guided NURBS system global architecture.

Chapter sections shown in brackets

The system is built on top of a knowledge guided NURBS kernel. Access to

modeling functions, memory stacks, and knowledge stacks are enabled via access links

(routines). Knowledge acquisition manager, knowledge mining manager, design replay

76

manager, and export/import managers are the other main components of the system. As

with any CAD modeling system, the users interface with the system‘s functionalities via

a user-friendly interface.

Section 4.1 defines knowledge guided NURBS (KGN) kernel as the heart of the

whole system. Section 4.2 describes the ways that KGN acquires knowledge through the

knowledge acquisition manager. The knowledge mining manager is discussed in section

4.3 as a mean of browsing the knowledge and design bases for many reasons, such as

assisting with design replay as well as learning about the generated models. Design

replay and reconstruction capability of KGN models is the subject of section 4.4. Finally,

sections 4.5 details exported/imported managers and how design and knowledge bases

are built within KGN environment.

4.1 Knowledge Guided NURBS

The core of the system is a KGN kernel. Like any other NURBS-based kernel, it

is required to provide the modeling capabilities and routines that enable designers to

realize ideas and concepts into a geometric model. However, it surpasses the traditional

kernels by incorporating a wealth of information to individual entities as well as to the

whole model. KGN is capable of processing enough information and knowledge to

support our three main objectives: seamless model migration, robustness, and reliability.

The precise definition of KGN is a compromise between data storage and design and

manufacturing requirements. Figure 4.2 gives the major components of KGN kernel

along with the corresponding chapter‘s section that covers each of them. Except for

77

design intent, which has been discussed in depth previously in Section 3.2, this section

covers identification, classification, definition, representation, geometry, and relationship

maps. These constituents are the keys to achieving our objectives, and they are encoded

at the lowest level of the designing process making it part of the kernel.

Figure 4.2. Knowledge guided NURBS constituents.

Chapter sections shown in brackets

4.1.1 Identification

Literature reveals that the naming of entities is causing many problems when

migrating CAD models between the inherently incompatible CAx systems. The papers

[93-98] proposed a set of approaches that can be classified into two main approaches: (1)

naming based on topological ID‘s such as faces, edges, and vertices and (2) naming based

on geometric coordinates of the entities. Both approaches have weaknesses, such as

ambiguity and naming collisions. Some commercial CAD systems—e.g., SolidWorks—

78

minimize the problem by naming entities based on type and the 3D coordinates of the

referenced entities. Proper naming and identification is important for consistency within

the KGN system and many issues have to be considered.

Like database tables that have primary keys, entities in KGN must have unique

IDs for proper database building and management. However, for a proper persistent

naming, a proper migration, and an error-free knowledge bases rebuilding, a simple

indexing mechanism that merely gives entities a simple unique number is not sufficient.

Simple indexing, for practical purposes, can preserve the integrity of the design base or

the database within one system. But CAD models are always going from one system to

another, raising problems such as naming collisions and ambiguities. Names of objects

in KGN have to be meaningful and should contain enough information to eliminate issues

associated with persistent naming in CAx. The first issue that KGN naming should

address is to distinguish its entities names from the many NURBS kernels that are in the

market today with inconsistent naming. KGN uses a prefix (KGN) before every entity

goes to the data and knowledge bases in order to avoid clashes with other CAD systems

or kernels.

The second is that the same kernel or CAx system gets updated with new versions

over the course of the years, hence there is no version control. KGN incorporates the

version number into the name—e.g., (V2.1)—to gain a better version controlled naming.

This will assist with upward and downward versions‘ compatibilities of the naming. It

will also assist with design replay, particularly when to redesign an entity if a newer

version or update (ideally) fixes coding bugs that were encountered in older versions of

the system, particularly with the designing functions. The year of the release—e.g.,

79

2011—is also added to the name to recognize the name and versions years later if the

system ever gets to be a legacy.

Figure 4.3. Unique part ID in KGN: avoid associated naming problems

Another identifier that KGN adds to its entities‘ names is the object general

type—e.g., curve, surface, and volume. For implementation and consistency purposes,

the first three letters of each type is proven to be good choice. For example, a curve

object name will be tagged with (CUR), a surface (SUR), and volume (VOL). The last

part of the name is the index or number ID—e.g., (0001). It is the only part that must

be unique for every name. The system must not allow any duplicate names. If, for any

reason, there is an ambiguity or a collision between two or more names, the other parts of

the name are used for validation. An example of a curve object full name used in KGN is

shown in Figure 4.3 with an explanation of each part.

80

4.1.2 Classification

Classification of NURBS objects follows the what-how-why paradigm that

corresponds to type-origin-destination. See Figure 4.4.

Figure 4.4. Classification in KGN: what-how-why paradigm

4.1.2.1 Type

This represents the exact type of the object, or what exactly it is in terms of

NURBS. The type is not the general type used in identification mentioned before. It is

more specific. For example, a NURBS curve can be: line, circle, ellipse, hyperbola,

biarc, conic section, etc. NURBS surfaces can be special cases, such as a cone or

cylinder, torus, sphere, etc. Other advanced constructed NURBS surfaces types can be a

lofted surface, ruled surface, surface of revolution, Gordon, etc. KGN tagged every

object created with the proper type. Although KGN should provide all possible types, an

unknown type case is added to the list of available types to cover any type that is not

accounted for during the implementation of the kernel.

An immediate benefit of classifying NURBS objects based on types is that certain

object types are handled by special algorithms. A significant number of operators, such

81

as intersection routine or point distance calculators, have special codes for known data

types. For example, there is a big difference between intersecting a line and a circle, and

a line and a NURBS curve. Knowing that the NURBS is a circle would provide the

system with enough information to produce a more accurate result than simply using

general code such as general purpose intersection code for line/circle intersection. Many

types of surfaces can be considered separately, such as ruled surfaces, lofted surfaces, and

surfaces of revolution. Special case NURBS surfaces such as planes, spheres, cones,

cylinders, and torii can also be handled separately by the system with special case

routines if accuracy and reliability becomes an issue.

Figure 4.5. Using objects' type (information) to locate a suitable algorithm

It is clear that coding will increase in both size and complexity since the kernel

has to consider calling different routines for different cases, as illustrated in Figure 4.5.

However, this is a much more efficient and more reliable computing system than having

82

to deal with the inaccurate results that could result in a wait time of days or even weeks to

fix errors. The system does all this in the background within a fraction of a second.

4.1.2.2 Origin

This tells KGN where exactly the part comes from, or how it was created in terms of

NURBS modeling tools. Every NURBS object originated somewhere in the system. The

most basic origin is when the designer defines a NURBS entity by some components—

e.g., creating a curve by plotting control points on the modeling canvas or creating a

circle by its center and radius.

Other origins of NURBS entities involve other NURBS objects. For example, a

set of points can originate from sampling a NURBS curve, or a curve can be created from

approximating a set of points. Examples of possible origins used in KGN include

intersection, sketching, fitting, offsetting, transformation, and general advance

construction. To account for NURBS objects that are created on different systems or of

unknown origins, KGN adds import and unknown origins to the list of the possible

origins of an entity.

4.1.2.3 Destination

 This is the application where the object will be used, or why and what-for it was

created. Examples of destination include intersection, styling, and fitting. The destination

of an object is more involved than the type and origin described above. This is because

the system cannot determine the destination in advance—i.e., during the initial creation

of an object. Another issue is that an object can have multiple destinations. For example,

83

a curve can be used in the construction of a ruled surface and then used as a base curve

for sampling.

A simple solution is to ask the designer to record the destination with a pop up

window that has a selection list of possible destination. However, this choice is not

practical and can be a bothersome to the designing and creativity process of the designer.

The system deals with this issue by marking the destination as unknown, and then

updates the destination once the system determines it.

 KGN does not account for multiple destinations at this junction of information

gathering since it can be easily inferred from different parts of the knowledge base and

the relationship map. Relationship query, discussed in Section 4.2.2 as part of knowledge

mining, can provide the designer and the system with all objects involved with a

particular object, including destination object(s).

4.1.3 Definition

Control points, knots, and degrees are necessary to fully define NURBS curves,

surfaces, and volumes; this includes special case NURBS such as lines, conics, planes,

and quadrics. However, for the purpose of design replay, which is a major objective of

the system, additional definition information has to be gathered and stored in the

database. For example, if the NURBS entity at hand is a degree 2 circle that is generated

in one system, and another system needs to regenerate (not convert but actually redesign)

the circle as a degree 5 circle, the system needs the center point, radius, and normal

vector to define the original circle. Having these defining components can assure that the

receiving system produces another NURBS curve (circle) whose topology is identical to

the original curve but with different characteristics—i.e., control points, knots, and

84

degree that are suitable for this receiving system. Table 4.1 shows what KGN stores as

defining components for different NURBS entities.

Table 4.1. KGN basic entities and definitions

Entity Defining Components

Point  Point coordinates

Line  Start point

 End point

Conics

(circle, parabola,

 ellipse, hyperbola)

 Center

 Radii

 Unit Axes

Plane  Co-planar points, or

 Closed polygon

 Normal vector

Quadric

(sphere, ellipsoid,

cone, torus)

 Center

 Radii

 Unit axes

Curve,

Surface,

Volume

 Control points

 Knot vector(s)

 Degree(s)

Additional information such as color, material types, cost of processing, etc. can also be

included.

4.1.4 Representation

A NURBS is a parametric entity whose parametric representation is not unique.

How well it is represented parametrically has a profound effect on many subsequent

operations, such as point sampling, numerical processes, and surface constructions.

Every single construction is valid only with respect to a given parametrization and must

be recorded in the knowledge base to ensure a reliable and robust system. Figure 4.6

85

shows the representation parts recorded in KGN to aid with a wide range of numerical

processes.

Figure 4.6. Representations in KGN, increase robustness and reliability

4.1.4.1 Parametrization Factor

Parameters in NURBS usually are classified broadly as either uniform or non-

uniform. But a closer look can reveal that we could have degrees of non-uniformity—

e.g., some parameters are almost uniform. The variations and types of parametrization

have a profound effect on many important applications. For example, curve/surface

decomposition and choosing the start value for point projection using Newton iterations

[99]. In the case of decomposition, knowing the type of parameters becomes critical in

finding the proper decomposition, that is, the iterative process can be anchored to not

―run-off‖ if the parametrization is highly non-uniform. For Newton‘s method, it is

important to start with good initial value; good start points are easy to guess if the

curve/surface is parametrized uniformly.

Parametrization factor is a measure of how far a parametrization is from being

uniform. Choosing a good method to measure the parametrization factor has been

86

discussed in detail in [99]. Briefly, a parametric curve is the path traced out, say by a

particle, while the parameter sweeps out the parametric domain. If the particle moves

along the path of the curve/surface with constant speed, the parameters are spaced

uniformly. On the other hand, if the speed of the particle changes, then the entity has a

non-uniform parameters. Since speed is measured by the magnitude of the first

derivatives, the parametrization factor (pf) can be measured as follows:

D
DDpf

max

minmax




 DD minmax
, are min-max derivatives

The formula above is the standard measure of variation in terms of a range. If the

curve is parametrized uniformly— DD minmax
 and 0pf — there are no variations

between the values. On the other hand, if the entity has a vanishing derivative (the

particle comes to a stop), the parametrization factor is 1. Simply put, the smaller the

factor, the less variation between the values and the more uniform the parametrization.

Table 4.2 gives a good distribution of the sub-classification of parameters we have found

to be practical based on testing numerous different cases of NURBS curves and surfaces.

Table 4.2. Parametrization factor

Pf Parametrization

0.0 ≤ pf ≤ 0.2 (Nearly) uniform

0.2 < pf ≤ 0.4 Nearly non-uniform

0.4 < pf ≤ 0.7 Non-uniform

0.7 < pf ≤ 1.0 Highly non-uniform

The parametrization factor plays as an indicator when it is imperative to

reparametrize entities before any computation begins, such as when it is highly non-

87

uniform (0.7 < pf ≤ 1.0) and may cause computation problems. Therefore, KGN

computes and records the parametrization factor for every parametric entity created.

Doing this, KGN can increase robustness and reliability of routines, where speed and

guaranteed convergence is highly dependent on the type of parametrization, such as

Newton‘s method.

4.1.4.2 Level of Continuity

NURBS curves and surfaces have continuity or smoothness associated with them

internally, that is, between the curves‘ segments and the surfaces‘ patches, or at joint

points and edges. There are two forms of continuities: geometric (i.e., physical) and

parametric (i.e., mathematical). These two types are further subdivided into various

levels of continuities—e.g., positional (G0), tangential (G1), curvature (G2), or only an

approximate geometric continuity. Generally, the increase of the order for both

geometric and parametric indicates an increasing measure of smoothness and motion.

Many numerical algorithms require first or second-degree parametric continuity, other

processes are achieved by geometric continuity only, and yet some constructions can only

guarantee continuity in an approximate manner. For example, filling an n-sided hole

with a set of rectangular patches guarantees only approximate continuity, which then

must be recorded in order to avoid failure in subsequent numerical processes. A

continuity level greater than C
2
 is unnecessary for most 3D computer modeling; however,

KGN records continuities up to level five.

88

4.1.4.3 Irregularities

Significant work has been done on fairing and smoothing, that is, removing

unwanted irregularities. The robustness of any CAD system can be improved greatly by

appropriately dealing with irregularities that not only create unacceptable designs, but

also may crash the system. Typical irregularities that hinder numerical code from

working properly are cusps, poles, seams, zero curvatures, zero normals, large or

negative weights, collapsing derivatives, and multiple knots. For example, a numerical

process to find the distance between a point and a curve using Newton‘s method can fail

to converge if the curve has a discontinuity, for example, a cusp or the closest point

(projection) is at the point of discontinuity. The Newton method tends to jump over the

discontinuity or hovers around it, entering into an infinite loop.

KGN records all forms of irregularities that are known to cause failures or may

result in decreased system performance. The awareness of their presence in a NURBS

entity can increase the system robustness and reliably through special code segments that

account for these irregularities or initiate redesign or reparametrization processes to

remove them.

4.1.5 Geometry

Curves and surfaces in NURBS models have a lot of geometry that can be tagged

for downstream applications for robustness and reliability. For example, curves and

surface curvature can play important roles in a robotics path, NC machining, and shape

analysis. It is highly recommended to slow down the robot or the cutter of an NC

machine in high curvature areas. In shape analysis applications, the curvature can play an

89

important task in the process of sampling or discretization. High curvature areas must be

sampled with more density, whereas low curvature segments can use fewer sampling

points.

Figure 4.7. Geometry: example of open and closed NURBS surface (torus)

Important information that can be used by many processes and applications is

knowing if the curve or surface is closed or open. A curve can be either closed or open

while a surface can be open in both directions like a grid, closed in both like a torus, or

open in one and closed in the other like a tube as shown in Figure 4.7. Table 4.3 list

some of the important geometries that KGN record for NURBS entities.

Table 4.3. NURBS geometries in KGN

NURBS Geometry Components

Curve

 Length

 Curvatures (min, max)

 Openness

Surface

 Area

 Perimeter

 Curvatures (min, max, mean)

 Openness (U and V-directions)

Volume

 Volume

 Perimeter

 Openness (U, V, and W- directions)

90

4.1.6 Relationship Maps

Organizing and managing a large amounts of related but disjointed information is

a great challenge that KGN must address. Knowledge has to be structured in a way that

permits easy access for knowledge mining and design replay as well as the ability to

perform modifications that might cause full backward regression to the whole knowledge

base. There are a number of ways to represent and structure knowledge in computer and

information science. However, the most suitable form for NURBS-based modeling is a

relationship map, which is a sophisticated data structure recording important

relationships.

Figure 4.8. Bidirectional relationship map with sub-relationships

91

In order to create a structured knowledge map, it is necessary to identify specific

pieces in the designing process and use them to imply the knowledge they are

representing. During any construction operation in a NURBS system—e.g., point

sampling or interpolation—entities enter into directional, and usually two-way,

relationships. For example, the upper part of Figure 4.8 shows that when a NURBS

curve is sampled, the points and the curve enter into a Curve  Points relationship,

which may be called sampling.

On the other hand, when points are used to generate an interpolating curve, the

points and the curve enter into a Curve  Points relationship that may be called

interpolation. The direction arrow represents the sequence of the operation: e.g., first we

had points, then we generated the curve, and the name of the sub-relationship represents

the operation used to obtain the design, e.g. interpolation.

Figure 4.9. Types of sub-relationships in naming

The two-way directional relationship explained above is a good way to illustrate

how we can establish relationships between different NURBS entities if the association is

based on construction operations. However, other types of relationships can complicate

the implementation, storage, and management of the data structure. For example,

geometrical relationships, such as if two lines are parallel or perpendicular, have no sense

92

of direction. Positional relationships, such as if points are co-planer or collinear, also

lack the directional relationship. See Figure 4.9. To overcome these difficulties we use a

bidirectional approach for the relationships as: Rel = {entity  entity |

relationship: …}, as illustrated in the lower part of Figure 4.8.

Proper relationship naming, participating objects, parameters, and conditions used

to establish relationships, as outlined in Figure 4.10, are the most relevant pieces of

information that will be needed to design a relationship map for KGN. These key pieces

of the relationship maps are most crucial with design replay. They also play an important

role in elevating the system robustness and reliabilities

Figure 4.10. Factors to consider for relationship map implementation in KGN

4.1.6.1 Proper Naming

The naming of the relationship should reflect the types of the objects in relation as

well as the type of the relationship and sub-relationship. If the relationship is a

construction relationship, then the operation type and the direction of the relationship can

93

be inferred from the relationship name. For example: Rel = {curve  points

| sampling: …} indicates that a curve was sampled and the result is a set of points.

On the other hand, Rel = {curve  points | fitting: …} indicates that

a set of points was interpolated or approximated and the result is a curve.

4.1.6.2 Participating Objects

All objects that participate in the relationship should be recorded and should be

accessible. For example, a fitting operation should have access to the generated curve

and to the set of points that was used to generate the curve. Example: Rel = {curve

 points | fitting: C, P;…}. Figure 4.11 shows the general structure of

the relationship map along with curve-point relationship. It also illustrates that the IDs

can be used to access the objects from the design base to get all the needed information—

e.g., information needed for design replay.

Volume

Volume

Volume

Surface
…..

Curve

Point
…..

Conic

Point

Line

Point

Point

Point

Fitting Definition Sampling Incidence….

….

Point Array ID
Parameters

Curve ID

Functions
Alternatives

Access Design Base for Data

Bounds

Figure 4.11. General structure of relationship map. Curve-point relationship

94

4.1.6.3 Parameters

Different CAD systems can use different sets of modeling parameters, which can

cause problems when migrating a model from one system to another. To be able to

perform design replay and model editing, it is imperative to record every one of them.

An example: Rel = {curve  points | fitting: C, P; t0,…,tk;

u0,…,um; deg; tol;…}. That is, the system has access to the points and the curve

(participating objects), the parameters, the knots, degree, and the tolerance used. For this

specific example, if the tolerance is zero, then the fitting operation is interpolation to the

points; otherwise, it indicates an approximation operation. Moreover, each operation has

its own set of parameters and different bookkeeping methods and structures. For

example, if we have: Rel = {curve  points | incidence: C, P;

tol; function}, then only the access to the curve and point, the tolerance, and the

function used to test for incidence need to be recorded. A global or a master structure to

fit all types of parameters can be done but will be a waste of memory space.

4.1.6.4 Conditions

The conditions that are applied to generate relationships must be the same across

all functions and platforms. For example, the reason why two lines in two different

systems are classified differently—e.g., parallel in one and intersecting in another—is not

just because of different tolerances, but also because of different conditions [100]. For

example, one system can use the cross-product condition of two lines (vectors) to test

parallelism and use dot-product to test for perpendicularity, while another system may

use the distance conditions to test for the two cases as illustrated in Figure 4.12. The two

95

testing conditions can give different results. Therefore, when migrating models between

the two systems, KGN supplies a set of conditions that might be used to determine a

relationship.

Figure 4.12. Using distance condition. Test for parallelism (left) and

perpendicularity (right)

4.2 Knowledge Acquisition Manager

This section explains how knowledge is acquired and fed into the KGN system.

The five main sources of knowledge are construction, enforcement, reclassification and

double bookkeeping. See Figure 4.13.

Figure 4.13. Knowledge acquisitions for knowledge guided NURBS systems

96

4.2.1 Construction

The greatest amount of knowledge entered the system occurs when constructing

entities from other components: e.g., a curve from control points, and extruded surface

from a curve, etc. New pieces of knowledge are introduced with every incremental

designing step. Once the construction has been completed and all relevant relationships

with their parameters are entered into the relationship graph, the types, origins,

destinations, design intent, etc. are all saved. All this is done automatically without user

intervention. If the designer requires making any kind of change, the knowledge base is

sufficiently populated with information to learn about the design and to make the right

decision. Any kind of alterations as well as documentations and design maintenance are

possible with the knowledge acquired at this stage of the designing process.

4.2.2 Design Intent Enforcement

We have discussed design intent as a mean of enabling design replay—i.e., the

ability to support and capture intent within KGN. However, there is yet another side of

design intent that can be used in knowledge-based systems, called intent enforcement.

When a model is migrated between incompatible systems, many times there is a

discrepancy between the resultant model and the intended output—e.g., the user intended

objects to touch; however, due to the tolerance(s) incompatibility, a system might return

no touching objects. The original intent can be enforced through design replay,

modifying conditions, or sometimes doing the repair manually if the designer prefers.

The enforcements usually result in new pieces of knowledge that have to be recorded in

the knowledge base.

97

In some cases, the discrepancy between the intended design and the resultant

design is subtle, and changing the offending part may cause more damage to subsequent

processes, such as manufacturing. In such cases, the offending part may be left as is;

however, the designer might enter new pieces of knowledge, such as by flagging them

with the intended outcome.

4.2.3 Reclassification

When entities enter the supply chain of companies that use different incompatible

CAD systems, and the resultant model is not the intended model, the first approach to

rectify the discrepancies is to enforce the design intent, as stated above. However, it

could be the case that enforcing the intent is not the best choice. For example, the change

can propagate to other relationships causing more serious contradictions. Figure 4.14 (a)

shows that System A can have two lines that are perpendicular and one is tangent to a

circle based on its local tolerances; Figure 4.14 (b) demonstrates that System B finds the

two lines are not perpendicular anymore based on its local (tighter) tolerances; Figure

4.14 (c) explains that if we enforce the perpendicularity on System B, the tangency

relationship might not hold any more, causing contradictions. In a worst case scenario,

the system can have a regression that affects the entire knowledge base. In such cases, a

second option is to re-classified objects relationships upon entering the receiving system.

See Figure 4.14 (d). However, how can reclassification participate in knowledge

acquisition?

98

Figure 4.14. Contradictions caused by enforcing intent

Reclassification can cause the old stored knowledge to be erased or modified and

may generate a new piece of knowledge. In both cases—either modification or

generation of new knowledge—the system acquires a new form of information and must

record it. The relationship graph has to be updated with the new acquired ―non-parallel‖

relationship as well as the local tolerance used to test for parallel cases. This change

must also be reflected in the history file so that the designer at the next system is aware of

the situation and can make proper decision based on the new circumstances.

Tagging objects as non-parallel while they are almost parallel is a bit extreme, and

many designers might get reluctant to change or re-classify the relationships. KGN

introduces intermediate cases such as nearly-parallel, nearly-perpendicular, etc. in order

for the designer to re-classify relationships more appropriately for different situations.

99

4.2.4 Design Augmentation

At the receiving end of a CAD design chain, inconsistencies must be removed by

either design intent enforcement or reclassification. If both intent enforcement and re-

classifications are not preferable choices by designers, KGN provides design

augmentation as a third choice. Augmentation, as anther knowledge acquisitions

capability, introduces new pieces of knowledge that will be recorded in the knowledge

base.

If we take the same example used above, in which two lines that are parallel in

one system and non-parallel in another due to differences in tolerances, it is sometimes

the case that the receiving system finds neither a need to enforce the parallelism intent

nor a need to re-classify the relationship. The geometries of the lines can be taken as they

are and be used without drastic effects on subsequent operations. In this case, the

receiving system will augment the knowledge base with: ―lines are parallel in the sending

system‖, e.g., System A, ―but not on this system‖, e.g., System B, ―and the results are

obtained by taking the geometries as they are‖ without altering the old relationship graph

and the databases. When the design goes to a third system, e.g., System C, it should

understand that the geometries are those generated on a system other than the sending

system (i.e., System A); however, numerical results were used to make the decision.

System C can acknowledge this fact and act accordingly since System B augmented the

knowledge base with the decisions taking at the time.

100

4.2.5 Bookkeeping

A final form of knowledge acquisition is due to the fact that most operations can

produce more than one relationship. This is because of inquiries about all entities

involved in creating them. For example, when two curves intersect, the curves generate

a curve-curve-intersection relationship. However, NURBS generates an intersection

point that is incident on both curves. It is clear that the system should record the original

relationship (curve-curve-intersection) but what about the generated extra piece of

knowledge (curve-point-incident): is it of any benefit? KGN finds this extra knowledge

to be important and can aid with many operations; therefore, it keeps record of these new

pieces of knowledge by double bookkeeping. For example, if another system (System B)

finds that the intersection point is not positioned on either of the two curves because of

different tolerance requirements, the reason can be identified quickly by realizing that an

intersection routine generated the point; and the tolerance used on this system (System B)

is not tight enough. If the systems do not keep record of this extra piece of knowledge

and do not link the point to any of these curves, the point will be considered a floating or

general entity, and there is no means by which we can rectify the intersection

appropriately on System B.

4.3 Knowledge Mining

Once the knowledge and design bases are populated with design data and

information, a knowledge guided system has to be able to mine them in order to make

good uses of this wealth of information. This section explains how the acquired

101

knowledge can be mined to assist with a range of activities as well as the capabilities that

a knowledge-mining manager supports. The section starts by discussing the benefits of

knowledge mining and later details the ways by which knowledge can be mined.

4.3.1 General Usage of Knowledge Mining

Knowledge mining in KGN can assist as a minimum with the activities outlined

in Figure 4.15.

Figure 4.15. Knowledge mining usages

4.3.1.1 Design Replay

A very important application of knowledge guided NURBS systems is to

overcome issues stemming from cross-platform incompatibility, such as the flawed

model migration between systems. This is the duty of the design replay manager,

explained in the next section of this chapter. However, it cannot achieve its task without

102

the critical support of knowledge mining. When a design or part of it has to be

reconstructed—e.g., the intersection curve between two surfaces is found to not lie on the

surfaces—having as much knowledge about the participating entities is a must, and this

knowledge must be retrievable.

4.3.1.2 Computations

When many operations are performed in KGN, the knowledge base is mined to

find useful information that leads to more robust and reliable computations. A simple

example is to find the distance between set of points and a NURBS entity. The type of

the entity—e.g., line or circular arc—and the awareness of the presence of any

irregularities—e.g., loops and cusps—are used to speed up and increase the reliability of

computations. Point-distance computation routines treat lines and circular arcs

differently than a curve with irregularities. Another example is offsetting a curve. The

computation routines can be more accurate if the system distinguishes that we are dealing

with a circular arc. The awareness of irregularities assists in avoiding the Newton‘s type

computations pitfall and leads to a faster convergence. Blind computation should not be

the case with the available knowledge that KGN provides and the knowledge mining is a

key player in achieving that.

4.3.1.3 Design Documentation

Although the knowledge base is the main form of documentation in KGN,

participating companies may want a different form of documentation. The designing

process is documented at the generating system: e.g., types, destination, design intent,

103

decisions, etc. The receiving system can use knowledge mining manager to gain access

to information such as entities, relationships, and parameters to form extra

documentations for the design.

4.3.1.4 Design Maintenance

Designing systems and models need to be updated as time goes on. Certain

parameters and measures—e.g., tolerances—that were sufficient at the initial designing

process may go out of date, and maintenance (or update) may be required. Knowledge

mining provides the ability to browse the knowledge base to find all entities and the

parameters that can be affected by such updates, that is before the system applies the

changes to the model via design replay.

4.3.1.5 Learning

Mining the design and knowledge base to learn about a design can be done for

many reasons. Example-based design is a powerful method of accomplishing great new

designs and can be achieved easily in KGN by mining a similar model to learn how it

was created. Mining the knowledge base to find information on design alternatives,

functions, decisions, and history is a way to educate designers about past designs and

why it was design the way it is. Moreover, the structure of the knowledge base can be

mined sequentially allowing the simulation of the designing process as a learning tool

about a design.

104

4.3.2 Knowledge Mining Manager

A knowledge base is usually structured in such a way that it allows for

information access and retrieval. Theoretically, every piece of stored data and

information in the knowledge and data bases can be browsed, and in many different

ways. However, it would be confusing, misleading, and overwhelming if a knowledge

guided system allows users access to about everything in the bases. It is the mining

manager‘s responsibility to present the information in the right order and form for each

design task. Figure 4.16 outlines the types of mining/browsing capabilities that are

supported.

Figure 4.16. Knowledge mining for knowledge guided NURBS systems

4.3.2.1 Specific Entity Queries

This type of mining gathers information about specific entities and their

relationships. The queries are submitted in a question form and the response can be

saved in the relationships map if the designer chooses to. The following are some

examples referring to line and plane entities:

105

Are line and plane parallel? The response could be one of the following:

 line and plane are parallel (parallel relationship)

 line is on the plane (coplanar relationship)

 line is in a general position (general relationship)

 line is degenerate case (degenerate relationship)

Are the line and plane perpendicular? The response could be one of the following:

 line and plane are perpendicular (perpendicular relationship)

 line is in a general position (general relationship)

 line is degenerate case (degenerate relationship)

4.3.2.2 Part Interrogation

This type of mining reveals all the stored knowledge about one specific entity. It

starts with brief information about the entity. If the designer requires more information

or ―interrogation‖ of the object in question, the system mines deeper and deeper until all

relevant information is displayed. An example: given an offset curve, what do we know

about this curve? After a quick response on identification, date of creation, and

classification (type, origin, and destination), more mining may be needed to find all

relevant information, such as the base curve, the offset distance, and the tolerance was

used to approximate the offset, alternatives, decisions, etc.

106

4.3.2.3 Relationship Query

This type of mining is concerned with the relationship and can come in the

following three subtypes:

 Find all the entities that are in immediate relationships. It returns the objects

participate in the creation of the entity in question, and all the objects use it in

their creation—i.e., created-from and used-in objects. This is useful for finding

the actual origin and destinations (the entities themselves, not a general origin and

destination).

 The designer can recursively find all distance relationships in a similar way by

finding the connected components in an undirected graph. It will return all the

entities that could have any type of connection with the object in question,

immediate, as in the first type mentioned above, or through other entities. This

type of relationship query is very useful on many levels. It can be used to judge

the ripple effect or magnitude of any change or update to the design. In other

words, how much of the whole design can be affected if the designer replays the

entity in question. It can also be used to show breaking points of the model if the

model needs to be broken into smaller sub-models without breaking a chain of

relationships.

 Find all entities under one type of relationship. For example, find all overlapping

entities in a part or in the entire design. Parameters and participating entities are

sought along with historical updates.

107

4.3.2.4 Time Stamp Browsing

Mining based on time is a way of finding out what has been changed since a

certain date. The system tags every entity with its creation date. If the designer performs

some changes, the system will update the knowledge base with the new date by either

changing the creation date to the new date (default) or by reflecting the modification date

in the history file. When browsing the design based on the date, the designer can see all

the changes, updates, or new designs that have been introduced since the date in question.

4.3.2.5 Hierarchical Browsing

This form of mining is for learning about the design as well as for design replay.

It can aid with design animation to learn about the whole designing process of a model

once a model is complete. The designer can step through the designing stages one at a

time with the ability to pause, play back, and fast forward animation. It starts with the

complete design and traverses the database in the order the various elements were

generated.

An internal use of this type of mining is by the design replay manager. As with

the animation, it mines part of the whole model in the order the entities were generated.

The design replay, however, applies changes to the mined model by regenerating the

entities—e.g., with different tolerances—as if they are designed on the current system the

model is on.

108

4.4 Design Replay

One of the main objectives of knowledge guided systems is to deal with cross-

platform incompatibility. This is the main task of the design replay manager. The idea is

simple: regenerate the model from all the components that created it in the first place but

perhaps with some different parameters and tolerances. Even though this sounds very

simple, the process is very complicated and only is made possible by what knowledge

acquisition and mining managers have provided. Figure 4.17 illustrates the interaction of

the three managers and how design replay is the core of the editable system.

Figure 4.17. Design replay interaction with other managers

Successful design replay requires the following capabilities.

 Hierarchical knowledge base browsing; this is a part of the knowledge mining

manager that we discussed in Section 4.3.2. It returns data, information, and all

parameters in the same order the design occurred.

 Retrieve design functions and alternatives as well as previous decisions to

redesign the model but avoid repeating past mistakes. The mining manager will

handle this task too.

109

 Access to a compatible modeling kernel and the design user interface. That is, the

receiving end must have the same capabilities as the sending end. This is when

the entities‘ proper naming with version control can be utilized to overcome

upward and downward compatibilities.

 Update of knowledge and design bases. This is a very involved process and needs

well-structured databases to allow for changes that can cause ripple effects

(regression update) requiring a lot of updates of several entities and relationships.

Moreover, it is sometimes the case that these updates may produce

inconsistencies, as discussed in design intent enforcement as part of knowledge

acquisition manager. In the worst case (if the inconsistencies cannot be removed)

the entire design may have to be redone with a new set of requirements. A process

can be performed with a very simple button click that hides all involved

complexities form the designer.

An example is generating a ruled surface by the following steps: first, two curves

interpolated two set of points; and second the curves are used to create the surface. If the

ruled surface is not acceptable in the receiving system, any or all of the steps can be

repeated with new parameters. Whether individual step or the entire process is repeated

is the decision of the application engineer who may consider all available knowledge.

The design replay invokes hierarchal browsing to find all the data and information

involved in the initial constructions of the curves and the ruled surface. It also requests

the mining manager to supply it with the functions, alternatives, and previous decisions

taken. Finally, it accesses the modeling kernel (KGN) and invokes the designing

110

functions or alternative functions with new parameters which are suitable for the current

system. The process is done in such a way that the intended design will be recreated with

almost no user interventions.

4.5 Export/Import Managers

Data structure, memory management, and input/output files processing are the

main tasks of this manager. The export part converts the data structure (in-memory

database) for both the model and relationship map into a KGN file, while the import

manager‘s task is to take a KGN file, and then allocate and populate a dynamic data

structure with the data and information it contains. The cycle of the the process is

illustrated in Figure 4.18.

Figure 4.18. General view of import/export managers’ functionality

111

…..

Point

Line

Conic

Plane

Quadric

Curve

Surface

Volume

Points

Array 1
Curve 1 Curve 2 Surface 1 Curve 3 …..

Graphics

data-block

Surface

Data and

Information

in

KGN

Entities class or structure for

graphics

(Platform dependant)

Entities in KGN and

relationship map

(Platform independent)

Ruled Lofted Iso Swung….

….

Curve2 ID

Parameters ID

Curve1 ID

Functions

Alternatives

Direction

Surface ID

Volume

Volume

Volume

Surface
…..

Surface

Curve
…..

Conic

Point

Line

Point

Point

Point

Figure 4.19. Import/export manager accounts for three types of information:

system specific (upper); KGN entities information(lower, left), and knowledge tree

(lower, right)

When exporting or importing, the system accounts for three types of information

that are placed in disjointed locations (structures), illustrated in Figure 8.19. First, the

system specific data that is common to all entities is accounted for. It consists of a set of

flags and variables as well as some references to the objects in relation with particular

shape. They are dependent on the system implementation and the type of graphic engine.

In other words, it is the data that is targeted to support the interface. Second, KGN

specific data and information, such as control points, knot vectors, classification (type,

origin, and destination), representation, etc., is accounted for. The export and import

112

managers account for every type in the KGN system differently. Third, the knowledge

tree that holds all recorded relationships in a stack like structure is accounted for. We

have recognized 84 sub-relationships. As with the KGN specific data, the export and

import managers have to account for every sub-relationship data in a different manner.

4.5.1 Data Structure and Memory Management

KGN system on the surface is similar to all CAD systems, highly interactive and

has to deal with a lot of graphic objects that might be translated, edited, and deleted. The

frequent data structure access is highly coupled with two processes: (1) numerical and

geometrical operations performed by the KGN routines and (2) the frequent repaint of the

model on the screen performed by a graphics engine such as OpenGL.

The data structure for both the design base and knowledge base along with

memory management for the NURBS routines are integrated in KGN as part of the

kernel. KGN deals with the fact that all memory allocation is dynamic, which is much

harder to manage since the system has to deal with unfulfilled memory requests, memory

leaks, etc. Improper allocation, using, or deallocation can cause serious errors and cause

the system to crash. Therefore, KGN employs very strict memory rules through a set of

memory routines. The export manager does not allocate any memory directly. It utilizes

these special memory routines.

The data structure that is targeted for the graphic engine is separated and is part of

the interface design. A poorly designed data structure can play significant roles in

degrading the application performance, and hence must be considered with great

attention. Most CAD systems are multi-threaded with four viewing ports, memory

113

management routines have to deal with concurrency issues. For example, one viewing

port might try to access the data structure for the repainting purpose, while another active

port might want to update the data structure with some new values. The protection of

memory manipulation has to account for any critical sections.

4.5.2 KGN Files Structure

The export manager organizes a KGN file as a heap file where records are

inserted and stored in their chronological sequence. The file starts with a header holding

some global information about the model and the file itself. Each record starts with a

header tag bearing the type of the entity in order to prepare a node for it in the data

structure, followed by some system specific data for that particular shape, and finally all

the data and information about the entity. The record is then terminated with a tag

showing the end of the record. Breaking a file into individual records assists with fault

tolerance importing by isolating and ignoring bad records in case there were errors

(corrupted data) in the file. KGN outputs the design data and information in two formats:

ASCII and XML as shown in Figure 4.20.

114

(a)

(b)

Figure 4.20. Output-file formats generated by export manager

115

Chapter 5 --- Prototype System and Case Studies

To validate the theoretical aspects of this research, we developed a prototype

knowledge guided NURBS system. This prototype system is intended to support our

objectives of seamless data exchange, robustness, and reliability. Moreover, it is meant

to eliminate any uncertainty as to whether the proposed methods are actually

implementable and can accomplish the objectives we claim to achieve.

Chapter 4 presented the tasks of knowledge acquisition, knowledge mining,

design replay, and export/import managers. This chapter illustrates how these tasks can

be realized in a real CAD system, a prototype system in this case. Some of the system‘s

internal functionalities are highlighted and presented in visible forms to show their

advantages. For example, the relationships map is made visible as a hierarchical tree to

represent the internal structure.

Section 5.1 addresses the general design requirements along with the developing

environments used in coding the prototype. This section also touches on some of the

system interface issues that developers have to account for. Sections 5.2 and 5.3 discuss

the implementations and support of both knowledge acquisition and mining managers.

We introduce some examples to illustrate the functionalities of the managers in a real

software setting.

116

The last section, Section 5.4, gives case studies to verify the suitability of our approach as

an alternative to the currently used flawed migration process of CAD models. It gives

different testing scenarios and mainly evaluates the design replay manager.

5.1 KGN Software Architecture

The system is developed on Microsoft Visual Studio 2005. KGN kernel and the

four managers are all written in ANSI C to ensure portability of the code. The interface

is written using C++, Windows API (Win32), and OpenGL 3.0. Figure 5.1 shows a

screenshot of the system in its current state along with a camera model, which was used

as a test model. It consists of four viewports: three orthogonal viewports (top, front, and

right ports) and one perspective (top-right corner). They are OpenGL viewports that

serve as a painting and modeling canvases. The frame, buttons, menu, and status bar are

implemented with Windows API. The left window, also implemented with Windows

API, holds references to the entities in a knowledge tree. It represents the relationships as

parents and the related NURBS entities as children and grandchildren. Note that the

screenshots are in color. This is because the system is intended to be a test bed, and the

color coding in some situations is used to demonstrate the internal functionalities of the

system. If the snapshots are reproduced (printed) in black and white, it can be difficult to

distinguish between the colors since they will just be different shades of black.

117

Figure 5.1. KGN prototype system

5.1.1 User Interface

 Although developing a user interface is not an objective of this dissertation, a

considerable amount of time had to be invested in its design and implementation in order

to expose the benefits of our proposed approach in a practical setting. The KGN interface

as we would like it to be resembles most CAD systems. It is primarily a graphical user

interface (GUI) that is based on the use of pointing devices, a mouse in this case. It has

to be rapid and provide reversible actions, informative feedback, simple error handling,

ease of use, and consistency. Like any modeling system, the central idea of the KGN

118

prototype is visibility of the objects and actions. Therefore, the GUI should support

functionalities present in basic CAD systems such as the following:

 Construction of objects, such as points, curves, surfaces, volume, etc. However,

the backend functionality—e.g., computing the control points and knot vector for

interpolating a set of points—must be performed using the KGN kernel.

 Rendering of created objects through a graphical package. OpenGL was used

because of the following: it provides good support for NURBS; it is an open

standard API; and it is available on most modern operating systems, including but

not limited to Windows, Mac OS X, and GNU/Linux.

 Picking, translating, rotating, and scaling of objects. Picking is performed mainly

on the GUI. Translating, rotating, and scaling of NURBS objects are operations

that are performed at the backend by the KGN kernel.

 Navigation of the modeling space: i.e., camera rotation, zooming, and panning.

These functions are all independent of the kernel and primarily supported by the

interface.

5.1.2 User Interface Issues

Since the four viewports and knowledge tree window all need to be active at the

same time, the system needs to be multithreaded. For example, if we are to translate a

NURBS curve, all viewports have to reflect the change simultaneously. This brings to

the fore some issues that the system has to address: for example, updating the data

119

structure for both the knowledge base and design base, which are shared among the four

threads and the repeated repaint processes of the four viewports.

The system has to protect the critical sections in almost every activity that can

result in a data structure update. For instance, when a user translates a NURBS curve, the

system computes new control points and updates the data structure accordingly. If the

system does not protect the critical sections (the control points array in this case), one

viewport (i.e., thread) might access previous coordinates while another might access the

updated position. This can result in different positions of the curve on two different

viewports. A more severe situation arises if one thread triggers a delete to a curve with

all its allocated memory while another thread tries to access the deallocated memory

assuming it is still available. The system will cause memory access violation and force

the operating system to halt it.

The repaint of the viewports is another concern. With a big model that consists of

hundreds of surfaces and curves, every repaint of the four viewports will be

computationally intensive and can degrade the system‘s performance. For example, if we

rotate the scene in one viewport, the other three viewports should not be repainted. Since

the system is multithreaded, it is not difficult to keep track of the active viewport and it

only triggers a repaint command when it is most necessary.

Implementation details of the GUI (such as mapping between OpenGL

coordinates and window‘s (screen) coordinates), the use of double buffering to eliminate

any flickering, the coupling of the viewports and the window frames when resizing the

frame, and the release of all memory and resources that are used by the GUI during a

designing session were considered and tested thoroughly.

120

5.1.3 Knowledge Base Edit and Update

The amount of information contained in the knowledge and design bases can be

overwhelming. Although every piece of stored data and information has its purpose and

contributes to the KGN system proposed objectives, it is necessary not to confuse the

users, especially beginners, with what to modify and what to keep unchanged. At the

same time, updating the knowledge base is a very delicate issue. Several related portions

of the knowledge base might have to be changed in order to maintain its coherence and

integrity. Therefore, KGN permits only high level functionalities to the user while hiding

all the low level details.

Figure 5.2. Knowledge edit for NURBS curve in KGN

121

Figure 5.2 and Figure 5.3 show a curve and a surface knowledge pieces that can

be modified in KGN. Some fields are not intended to be changeable and only can be

updated by the system such as the entities‘ names. As previously stated, the names have

to be unique. Authorizing the user to modify the names might create unexpected results.

Note that the changes caused by the two popup windows (Figure 5.2 and Figure 5.3) do

not cause all participating objects in a relationship to be updated. These types of changes

that might cause a series of changes are usually caused by, for example, a change of

tolerance and usually are implemented through design replay manager.

Figure 5.3. Knowledge edit for NURBS surface in KGN

5.2 Knowledge Acquisition Manager

This manager is responsible for gathering information about the entities and

populating the design base and knowledge base with the relevant information.

122

Construction is by far the most involved implementation process in knowledge

acquisition. Both the interface and the KGN kernel need to support various NURBS

entities to illustrate the diverse knowledge that is acquired with different NURBS entities.

For example, knowledge gathered for curves are different than those for surfaces.

Knowledge acquisition by enforcing design intent, reclassification, augmentation, and

bookkeeping are all supported as part of this prototype.

5.2.1 Construction

A great amount of information enters the system at the initial construction of

NURBS entities. Figure 5.4 shows some of the provided construction capabilities that

KGN prototype currently support. Although these supported construction techniques are

sufficient to illustrate how knowledge can be acquired through construction, a full blown

KGN system should provide much more construction techniques. The KGN prototype

system automatically updates the relationship map and tags the entities with

identification, classification, definition, representation, and geometry, as appropriate.

Some of the supported construction capabilities include the following:

 Points. A single point and a set of points can be constructed in KGN. A single

point can be considered as a degenerate NURBS curve where the curve and the

point can enter into a definition relationship.

 Lines. Given two points, a NURBS curve of degree one (line) is constructed.

The system records a line-curve definition relationship that also stores the two

points coordinates.

123

 Curves. Given three data points or more, an approximating or interpolating curve

is constructed. The system records points-curve fitting relationship. Providing

the control points and knot vector through a file is also supported as an imported

curve.

 Iso-curves. Given a surface, an iso-curve can be extracted. The system records

surface-curve iso-curve relationships.

 Surfaces. Given a curve, two curves, or a set of curves, the prototype creates an

extruded surface, ruled surface, or lofted surface respectively. The system will

update the relationship map with the appropriate type of relationship.

Figure 5.4. Object constructions in KGN prototype system

124

As an acquisition method, the constructions create new pieces of knowledge

without user intervention. All relevant relationships with their parameters are entered

into the relationship graph. The types, origins, destinations, and design intent are all

saved once an entity is constructed.

5.2.2 Reclassification and Augmentation

Figure 5.5 shows an example of reclassifying the relationship between two lines.

The window also gives the user the choice to augment the knowledge base with new

information. The system allows either reclassification or augmentation through the

utilization of radio buttons. This is because augmentation is only a second option when it

is not preferable to reclassify the relationships

Figure 5.5. Reclassification of lines’ relationships or augmentation

125

5.2.3 Bookkeeping

Figure 5.6 and Figure 5.7 give an example of bookkeeping that is performed by

the prototype system as a means of acquiring new knowledge. There are two coincident

curves in Figure 5.6: one is selected (yellow) while the other is exhibiting a z-buffer

fighting
1
. The relationships map tree does not show any relationship between the two

curves. Figure 5.7 shows a lofted surface that is created from the four curves. The

construction of the lofted surface creates a surface-curve-lofting relationship, which is

expected. Bookkeeping detects that there are two curves that are in a coincident

relationship that create yet another relationship: curve-curve-coincident. The relationship

map in Figure 5.7 is marked to indicate the new piece of knowledge that was captured

with this type of acquisition.

Figure 5.6. Two coincident curves (yellow and black fragments)

1
 Z-buffer fighting is a rendering phenomenon when two entities occupy essentially the same space with

neither in front, resulting in rendering overlapping fragments from each curve. The fragments‘ visibility is

dependent on the camera position

126

Figure 5.7. Bookkeeping creates coincident relationship (marked with a box)

5.3 Knowledge Mining Manager

Once the knowledge and design bases are populated with design data and

information through the knowledge acquisition manager, the system can trigger mining

activities to assist with a range of tasks. The following subsections explain the supported

capabilities by this manager in the implemented KGN prototype system.

5.3.1 Part Interrogation

In this form of mining, the prototype system allows for finding all recorded

information about a particular entity. Figure 5.8 shows the interrogation process of the

NURBS curve KGN_V2.0_2010_CUR_2. At first, the system presents the most basic

information about the entity in question. For a curve, it displays the identification

information (name and date of construction) and the classification (type, origin, and

destination). The destination in the example curve is still unknown and will be updated

127

when the curve is used in further modeling. The time of creation is recorded and is used

for time stamp browsing.

Figure 5.8. Specific part interrogation, NURBS curve (circle degree 2)

The interrogation process can continue until all recorded information about the

entity in question is revealed. The parametrization factor, continuity, top five

irregularities, and other representation‘s constituents are presented at the second stage of

the interrogation. Finally, the system displays the definition components such as the

control points and knot vector along with their highest indexes. The figure shows the

interrogation process at its final stage by displaying all associated information to the

curve in question.

128

5.3.2 Relationship Query

This type of mining is performed on the relationship map and is illustrated in two

ways. Figure 5.9 uses color coding to visually illustrate the backend of the system. This

simple example shows that the curve in question (yellow) is generated from an array of

data points (blue) and is used in the construction of the two surfaces (red). Although it is

useful to visually identify the entity in relationship, the main focus of this mining is

targeted for the system‘s internal operations, such as supplying design replay manager

with the appropriate sequence of relationships as a requirement to reconstruct a model

from its components and relationships

Figure 5.9. Relationships map in KGN: curve in question (yellow) created from

points (blue) and is used in construction of 2 surfaces (red boundary)

The knowledge tree (relationship map) in Figure 5.10 is another example of how

relationships can be mined and viewed. A user can click on any of the tree‘s nodes

(entities‘ names) and the system will color code the actual entities in the relationship

129

Figure 5.10. Relationships map in KGN represented as a tree

5.3.3 Hierarchical Browsing

An important task of this type of mining is to provide support for design replay

manager. The system can internally mine part or the whole of the model in the order to

ensure that the entities were generated. It also used for educating a new user about the

design through an animated traversal or browsing of the generated model. Figures 5.11

through Figure 5.15 show how the system can hierarchically browse the design base. The

white curves shown in Figure 5.11 are the hidden curves used in constructions of

surfaces. It is essential to keep a record of them in the database for design replay, as

illustrated in Section 5.4. The pause, back play, and fast forward buttons are used to

browse the design base. Note that the knowledge trees in the figures indicate that this is

actual browsing, not construction where the tree gets updated with new relationships.

130

Figure 5.11. Hierarchal browsing (a): the completed model. White indicates the

entity is not part of the final model but is kept in the design base for design replay

Figure 5.12. Hierarchal browsing (b): after three hierarchal steps,

a surface of revolution (yellow boundary) is last displayed.

131

Figure 5.13. Hierarchal browsing (c): after 17 hierarchal steps

Figure 5.14. Hierarchal browsing (d): after 37 hierarchal steps.

132

Figure 5.15. Hierarchal browsing (e): no more entities to browse and draw.

5.4 Design Replay and Case Studies

For design replay, we designed a camera as our testing model. See Figure 5.16.

The model was chosen so that we can show different NURBS curves and surfaces and the

effects of migrating them. For instance, the model consists of the following types of

surfaces: extruded, ruled, lofted, and surface of revolution. It also contains circles, free-

form curves, and polylines. The model is constructed on our system as close replica of a

camera model that is available on Rhino examples folder. This way we can compare the

two models after migration between systems using IGES and STEP for the Rhino model

and using design replay via the KGN prototype system. To test design replay on a KGN

system, we introduce gaps, intersections, and flaying edges manually, and then use the

design replay manager to regenerate the model. Different circle degrees are also

133

presented to illustrate how KGN can be used to regenerate the design as if we had three

systems that use dissimilar circle representations. To augment the undesirable effects

caused by traditional model‘s migration, surfaces are distorted excessively in some of the

testing scenarios, a case that can be irreparable on non-knowledge driven systems.

Figure 5.16. Camera model by KGN prototype system (left) and by Rhino (right)

5.4.1 Case Study 1: Model Exchange by Standards

Figure 5.17 shows two very extreme cases of unacceptable migrations of the

camera model. In the right side of the figure, the Rhino IGES model was imported to

HOOPS default settings. The model seems as if it was constructed from large polygons

rather than smooth NURBS surfaces. The model at the lower part of the figure is due to

the fact that IGES flavoring can result in ignoring trimmed surfaces. In both cases, the

model is beyond repair and a user who needs this model for further applications such as

machining, must get a better converted version.

134

Figure 5.17. Extreme cases of data-driven migration

With better luck, a migrated model can seem acceptable when compared to the

extreme cases above. Figure 5.18 shows the original Rhino model (top-left) and three

snapshots of the camera after being exchanged using SolidWorks‘ flavor of IGES.

Although it looks flawless, a closer look shows that the model suffers from some cracks,

gaps, and boundaries intersections, indicated by red arrows in the figure.

To patch the gaps, a designer needs to create boundary curves around the crack

and then fits a tiny surface between them. Generating the boundary curves is not always

a straightforward process as can be seen in Figure 5.19 (a). The designer needs to extract

boundary curves of neighboring surfaces (yellow) and then split those curves at the

135

appropriate parameters in order to get the desired curves‘ lengths. Using the extracted

boundary curves, Figure 5.19 (b) shows a generated patch that fills the gap.

Figure 5.18. Original model (top left), gaps and

intersections (indicated with arrows)

(a)

(b)

Figure 5.19. Patching the gaps manually

136

5.4.2 Case Study 2: Flawed Model in KGN Prototype

Figure 5.20 shows the camera with some severe cracks (pointed out with red

dashed boxes). The prototype system can reconstruct a flawed design in two ways, a

designer can replay a single entity in order to fix it or select to replay (reconstruct) the

whole design with a single command, i.e. one button‘s click. In both cases, the

knowledge mining manager will be utilized to provide all required relationships and

needed parameters. The knowledge acquisition manager might also bring into play the

gathering of new knowledge pieces through design intent enforcement that was discussed

in Section 4.2.2.

Figure 5.21 and Figure 5.22 show how a designer can fix faulted entities one at a

time. The prototype system use red color to point out to the user what entities have been

reconstructed at a design replay session. Figure 5.21 shows the lens as a picked entity to

be fixed while Figure 5.22 shows another choice. The two figures are intended to

illustrate the possibility of fixing individual entities without having to redesign the whole

model. Figure 5.23 shows the model after fixing only the five damaged surfaces one by

one, leaving the rest of the model unchanged.

137

Figure 5.20. Camera on KGN prototype (a): five damaged surfaces

Figure 5.21. Camera on KGN prototype (b): lens individually replayed

138

Figure 5.22. Camera on KGN prototype (c): indicated surface individually replayed

Figure 5.23. Camera on KGN prototype (d): five surfaces individually replayed

139

Figure 5.24 show an example of using the second way where the design replay

reconstructs the whole model.

Figure 5.24. Camera on KGN prototype: all model replayed

A third capability can be added easily to incorporate the ―what-if‖ scenarios. For

example, a designer can inquire ―what will happen to the model if we alter the lens‘s

profile?‖ The design replay manager can reconstruct the model based on the new

introduced modified situation. Depending on the relationship map, a whole design can be

fixed with minimal user intervention or the designers might end up doing extensive

manual reconstructions of the model. The what-if capability can give a designer an idea

beforehand of whether a model can be reconstructed automatically or requires some

manually adjusting.

140

5.4.3 Case Study 3: Different Circle Representations with KGN

Figure 5.25, Figure 5.26, and Figure 5.27 show design replay reconstructing the

surfaces and curves based on how each system might represent a circle. The control

points are made visible for the camera lens to show the differences after design replay,

although other entities that are in relationships with the lens‘s curves and surfaces are

reconstructed as well. In the three figures, we assume that the model is generated on a

system that uses a degree 2 circle (Figure 5.25). Figure 5.26 shows a camera model that

is migrated to another system that is using a degree 4 circle. The surfaces and curves that

are colored in red are altered based on the conversion to degree 4.

The system has gathered enough information in the knowledge base and design

base about the model, allowing it to be regenerated with specifications that are required

on the second system. In other words, the surfaces and curves are not approximations but

are regenerated entities as if they were not migrated but rather modeled on the second

system. The designer‘s intent is preserved and the model is flawlessly replayed. Figure

5.27 shows a second migration to a system that might be using a degree 5 circle. The

view was zoomed out so that the control points will be visible for proper illustration.

141

Figure 5.25. Design replay: systems using degree 2 circle

(assume original designing system)

Figure 5.26. Design replay: systems using degree 4 circle

(assume migrated model)

142

Figure 5.27. Design replay: systems using degree 5 circle

(assume migrated model)

143

Chapter 6 --- Conclusions and Future Work

6.1 Conclusions

In this dissertation we introduced knowledge guided NURBS along with

theoretical and practical foundations for supporting design intent capturing, retrieval, and

exchange among dissimilar CAD systems. For many years, CAx systems have been

exchanging raw numerical data, a process that most often results in countless wasted

hours, money, and manpower to correct and repair CAD models that do not migrate as

intended. We have shown that preserving the design intent along with endowing NURBS

entities with sufficient knowledge are the keys to achieving seamless data exchange,

increased robustness, and reliable computations in CAD environments that are based on

NURBS.

We defined design intent within NURBS environments as the designing

functions, alternatives, decisions, reasons for considering one decision over another, as

well as including consideration of the designing history. Chapter 3 showed how this

definition of design intent can be structured and incorporated into a knowledge guided

NURBS system so that it can be captured and exchanged without user intervention.

Chapter 4 details what and how much information needs to be generated and retained,

beside design intent, in order to achieve our objectives of seamless model migration as

well as more robust and reliable computations. We have established that every NURBS

144

entity should maintain, at a minimum, basic information on identification, classification,

definition, representation, and geometry. Moreover, the chapter details how NURBS

entities are usually not created in isolation. For example, curves are created from points,

and surfaces are created from curves. These relationships are most important in

reconstructing models that are not migrated as intended. A relationship map, referred to

as knowledge tree, is used to chain NURBS entities together, based on origins and

destinations along with specific information for different types of relationships.

After identifying all necessary information, the chapter discussed four knowledge

managers that make a system truly a knowledge guided system. A knowledge acquisition

manager exhibits the various ways information can enter the system. A knowledge

mining manager describes how the acquired knowledge can be browsed to aid with many

tasks. It can be used to aid with knowledge traversal for internal processes, such as

design replay or it can be used by the users to learn about a model. Export/import

managers will interface between two KGN systems. An export manager writes the

knowledge and design bases to a file while the import manager will read a KGN file into

a running system. The design replay manager makes use of the gathered information and

the mining capabilities provided by other managers to regenerate models based on new

local requirements, such as tolerance.

All the theoretical aspects discussed in chapter 3 and 4 are supported through a

prototype system in Chapter 5. The chapter gives many examples to illustrate the

benefits of the system. For model migration we presented a NURBS camera model as a

case study. The model was tested on different migration scenarios that resemble what it

would go through when exchanged between dissimilar CAD systems. The prototype

145

system and the evaluation results showed that there is no doubt that our methods are

implementable and workable as proposed. The prototype KGN system shows that a click

of a button can regenerate a migrated model instead of repairing it, avoiding delay and

corrective processes that only limit the effective use of such models.

6.2 Future Work

Exploring the potential of knowledge presence should not stop at the stage of

merely utilizing it to achieve seamless migration of CAD models and aid their

robustness; rather, it should be extended to investigate other possibilities for future usage.

An immediate extension to the system is that it can incorporate knowledge farming. An

extra manager, namely knowledge farming manager as seen in Figure 6.1, can be added

to add additional potency of the knowledge. The process involved with this manager can

be very challenging, that is, when compared to the other managers we detailed in Chapter

4. First, the process requires adding two additional difficult capabilities to the knowledge

mining manager. It needs to systematically browse for various forms of patterns of

behavior and presents pieces of knowledge that may be used in a logical inference. The

relationship query in the mining manager has to be augmented with a new capability that

determines if sets of objects satisfy a certain relationship.

146

Figure 6.1. Augmenting the system with knowledge farming manager

The knowledge farming manager can then perform two basic operations:

knowledge seeding and knowledge harvesting. See Figure 6.2.

6.2.1 Knowledge Seeding

Knowledge farming can use two kinds of seeds: one for the design base and one

for the knowledge base. Design base seeds can be made of relationship definitions, e.g.

incidence, whereas knowledge base seeds can be existing relationships, e.g., several

entities are parallel. These seeds are planted into the data and knowledge bases to see

what new knowledge they produce when harvested with the right kind of tools.

147

Figure 6.2. Proposed knowledge farming in KGN

6.2.2 Knowledge Harvesting

The design and knowledge bases are in fact full of useful knowledge when

harvested with the right kind of tools. KGN can harvest knowledge in two ways: (1)

logical inference or (2) relationship query.

Using logical inference with laws of geometric algebra, new pieces of knowledge

can be harvested from existing knowledge. For example, if line 1 and line 2 are

perpendicular, and line 2 and line 3 are perpendicular, then line 1 and line 3 should be

parallel. Once this information is harvested, it can become most useful when line 1 and

line 3 are used as edges in a new design model. Before accepting a new knowledge

candidate, the system verifies it against a set of conditions and requirements. If the

verification process accepts the new knowledge, it enters the knowledge base, otherwise,

it gets discarded.

148

Relationship query, as a harvesting tool, can prevent many serious numerical

failures that are caused by all sorts of relationships unbeknownst to the designer. For

example, point sets can be collinear, lines can be parallel, two surfaces can be

overlapping, etc. The countless unknown relationships between entities can be harvested

using proper definitions as seeds. The core of this type of harvesting is the spatial

relationship. Similar to results from the logical inference tool, the new knowledge

candidate must be verified before it enters the knowledge base.

Although knowledge farming seems to be a straightforward task, there are

numerous theoretical and algorithmic challenges, such as the following:

 Proper spatial data structure for fast relationship query.

 Efficient algorithms for searching for candidates in relationship query—e.g.,

avoiding a brute-force pair-wise search for overlapping entities.

 Efficient relationship conditions—e.g., what is a stable and efficient method

to check if a point cloud is co-planar or co-cylindrical.

 Identifying patterns of relationships—e.g., perpendicular + parallel →

perpendicular.

149

References

1. Tassey, G.: Interoperability Cost Analysis of the U.S. Automotive Supply Chain,

Technical report, National Institute of Standards and Technology, March 1999.

2. CAD Doctor: http://www.elysiuminc.com/, Elysium Inc., (Last accessed in May,

2011).

3. CADFix: http://www.transcendata.com/products/cadfix/, International

TechneGroup, Inc., (Last accessed in May, 2011).

4. Piegl, L. A.; Rajab, K.; Smarodzinava, V.; Valavanis, K. P.: Fault-tolerant

Computing in a Knowledge-guided NURBS Environment, Computer-Aided Design

and Applications, 6(6), 2009, 809-823.

5. Piegl, L. A.; Tiller, W.: The NURBS Book, Springer-Verlag, NY, 1997.

6. Bass, L.; Clements, P.; Kazman, R.: Software Architecture in Practice, Addison-

Wesley, Boston, 2003.

7. Tyree, J.; Akerman, A.: Architecture decisions: demystifying architecture, IEEE

Software 22 (2), 2005, 19–27.

8. Tang, A.; Babar, M.; Gorton, I.; Han, J.: A Survey on Architecture Design Rationale,

Journal of Systems and Software, 79(12), December, 2006, 1792-1804.

9. Conklin, E.J.; Yakemovic, K.C.B., A process-oriented approach to design rationale,

Human-Computer Interactions, 6(3-4), 1991, 357-391.

10. Grudin, J.: Evaluating Opportunities for Design Capture, in Design Rationale

Concepts, Techniques, and Use, T. Moran and J. Carroll, (Eds.), Lawrence Erlbaum

Associates, Mahwah, NJ, 1995, 453-470.

11. Product Data Exchange Technologies Success Story Booklet, IPO Winter Meeting,

1997.

12. Iyer, G. R.; Mills, J. J.: Design intent in 2D CAD: definition and survey, Computer-

Aided Design and Applications, 3(1-4), 2006, 259-267.

http://www.elysiuminc.com/
http://www.transcendata.com/products/cadfix/

150

13. Gruber, T. R.; Russell, D. M.: Design Knowledge and Design Rationale: Framework

for Representing, Capture, and Use. Technical Report, Knowledge Systems

Laboratory, Stanford University, California, USA, 1991.

14. Garcia, A.; Howard, H.; Stefik; M.: Active Design Documents: A New Approach for

Supporting Documentation in Preliminary Routine Design, Tech. Report 82,

Stanford University, Center for Integrated Facility Engineering, Stanford, CA, 1993.

15. Sim, S.; Dufy, A.: A new perspective to design intent and design rationale, In

Artificial Intelligence in Design Workshop Notes for Representing and Using Design

Rationale, 15-18 August, 1994, 4-12.

16. Ullman, D. G.; Issues Critical to the Development of Design History, Design

Rationale, and Design Intent Systems, Proceedings of Design Theory and

Methodology - DTM ‗94, DE, 68, 1994, 249-258.

17. Louridas, P.; Loucopoulos, P.: A Generic Model for Reflective Design, ACM

Transactions on Software Engineering and Methodology, 9(2), April 2000, 199-237.

18. Kunz, W.; Rittel, H. W. J.: Issues as Elements of Information Systems, Technical

Report, Institute of Urban and Regional Development, University of California,

1970.

19. Conklin, J.; Begeman, M.: gIBIS: a hypertext tool for exploratory policy discussion,

Proceedings of the ACM Conference on Computer-Supported Cooperative Work,

1988, 140–152.

20. McCall, R. J.: PHI: A conceptual foundation for design hypermedia, Design

Studies, 12(1), 1991, 30–41.

21. Potts, C.; Burns, G.: Recording the reasons for design decisions, 10th International

Conference on Software Engineering (ICSE '1988), 1988, 418-427.

22. Lee, J.: Extending the Potts and Bruns model for recording design rationale,

Proceedings of the 13th International Conference on Software Engineering (ICSE

'13), IEEE Computer Society Press, Los Alamitos, CA, 1991, 114-125.

23. Ramesh, B.; Dhar, V.: Supporting systems development by capturing deliberations

during requirements engineering, IEEE Trans Software Engineering, 18(6), 1992,

498– 510

24. Potts, C.; Bruns, G.: Recording the Reasons for Design Decisions, Proceedings

International Conference on Software Engineering, IEEE CS Press, 1988, 418-427.

25. Lubars M. D.: Representing design dependencies in an issue-based style, IEEE

Software, 6(4), 1991, 81–89

151

26. Banares-Alcantara, R.; King, J. M. P.: Design support systems for process

engineering III – design rationale as a requirement for effective support, Computers

and Chemical Engineering, 21(3), 1997, 263–276

27. Brice, A.; Johns, B.: Improving process design by improving the design process,

QSL-9002A-WP-001, QuantiSci, October 1998.

28. Fischer, G.; McCall, R.; Morch, A.: Design environments for constructive and

argumentative design, In Proceedings of the SIGCHI conference on Human factors

in computing systems: Wings for the mind (CHI '89), K. Bice and C. Lewis (Eds.),

ACM, New York, NY, USA, 1998, 269-275

29. Fischer, G.; McCall, R.: JANUS: Integrating hypertext with a knowledge-based

design environment, Proceedings of the second annual ACM conference on

Hypertext (HYPERTEXT '89), ACM, New York, NY, USA, 1989, 105–117

30. Shipman III, F. M.; McCall, R. J.: Integrating different perspectives on design

rationale: Supporting the emergence of design rationale from design communication,

Artificial Intelligent for Engineering Design, Analysis, and Manufacturing, 11(2),

1997, 141–154.

31. Compendium, http://compendium.open.ac.uk/institute/index.htm (Last accessed in

May, 2011).

32. MacLean, A.; Young, R.; Belloti, V.; Moran, T.: Questions, options, and criteria:

Elements of design space analysis, Human-Computer Interaction, 6(3–4), 1991,

201–250

33. Chen, A.; McGinnis, B.; Ullman, D.; Dietterich, T.: Design History Knowledge

Representation and Its Basic Computer Implementation, The 2nd International

Conference on Design Theory and Methodology, ASME, Chicago, IL, 1990, 175-

185.

34. Thompson, J.; Lu, S.: Design Evolution Management: A Methodology for

Representing and Utilizing Design Rationale, The 2nd International Conference on

Design Theory and Methodology, ASME, Chicago, IL, 1990, 185-191.

35. de la Garza, J. M.; Ramakrishnan, S.: A tool for designers to record design rationale

of a constructed project. 10th International Conference on Applications of Artificial

Intelligence in Engineering, Southampton, U.K. Computational Mechanics

Publications, 1995, 533–540

36. Chandrasekaran B.; Goel, A. K.; Iwasaki, Y.: Functional representation as design

rationale, IEEE Computer, 26(1), January 1993, 48–56.

http://compendium.open.ac.uk/institute/index.htm

152

37. Gruber, T. R.; Russell, D. M.: Derivation and use of design rationale information as

expressed by designers. Technical Report, KSL-92-64, Knowledge Systems

Laboratory, Stanford University, Stanford, CA, July 1992.

38. Garcia, A. C. B.; Howard, H. C.: Acquiring design knowledge through design

decision justification. Artificial Intelligent Engineering, Design, Analysis, and

Manufacturing, 6(1) January 1992, 59–71.

39. Garcia, A. C. B.; Vivacqua, A. S.: MultiADD: Multiagent Active Design

Documents, Artificial Intelligence & Knowledge Management, Papers from the

1997 AAAI Workshop - Bradley Whitehall, Chair - Providence, RI, USA, July 1997.

40. Clements, P.; Bachmann, F.; Bass, L.; Garlan, D.; Ivers, J.; Little, R.; Nord, R.;

Stafford, J.: Documenting Software Architectures: Views and Beyond, first ed.

Addison Wesley, 2002.

41. Tang, A.; Han, J.: Architecture rationalization: a methodology for architecture

verifiability, traceability and completeness, Proceedings of the 12th Annual IEEE

International Conference and Workshop on the Engineering of Computer Based

Systems (ECBS ‘05), IEEE, USA, 2005, 135–144.

42. Tyree, J.; Akerman, A.: Architecture decisions: demystifying architecture, IEEE

Software 22 (2), 2005, 19–27.

43. Burge, J.: Software engineering using design RATionale, Ph.D. thesis, Worcester

Polytechnic Institute, 2005.

44. IEEE, 2000. IEEE Recommended Practice for Architecture Description of Software-

Intensive System (IEEE Std 1471-2000).

45. Jeongsam, Y.; Han, S.: Repairing CAD model errors based on the design history,

Computer Aided Design, 38(6),2006, 627–640.

46. ISO 10303-203. Industrial automation systems and integration Product data

representation and exchange: Application protocol: Configuration controlled design

of mechanical parts and assemblies. Geneva (Switzerland): International

Organization for Standardization; 1994.

47. Hoffman, C. M.; Robert, J. A.: CAD and the product master model. Computer Aided

Design, 30(11), 1998, 905–918.

48. Gu, H.; Chase, T.R.; Cheney, D.C.; Bailey, T.; Johnson, D.: Identifying, correcting,

and avoiding errors in computer-aided design models which affect interoperability,

Journal of Computing and Information Science in Engineering , 1(2), 2001, 156-166.

153

49. Rock, S. J.; Wozny, M. J.: Generating topological information from a ‘bucket of

facets‘, presented in Solid Freeform Fabrication Symposium, Austin, Texas USA,

August 1992, 251–259.

50. Makela, I.; Dolenc, A.: Some efficient procedures for correcting triangulated

models, presented in Solid Freeform Fabrication Symposium, Austin, Texas USA,

August 1993, 126–134.

51. Turk, G.; Levoy, M.: Zippered polygon meshes from range images, In Proceedings

of ACM SIGGRAPH, 1994, 311–318.

52. Barequet, G.; Sharir, M.: Filling gaps in the boundary of a polyhedron, Computer

Aided Geometric Design, 12(2) , 1995, 207–229.

53. Barequet G.: Using geometric hashing to repair CAD objects, IEEE Computer

Science Engineering 1997, 22–28.

54. Klein, R.; Liebich, G.; Strasser, W.: Mesh reduction with error control, Visualization

96 Proceedings. Oct-Nov. 1996, 311-318.

55. Kalvin, A. D.; Taylor, R. H.: Superfaces: polygonal mesh simplification with

bounded error, Computer Graphics and Applications, IEEE, 16(3), May 1996, 64-77.

56. Steinbrenner, J. P.; Wynman, N. J.; Chawner, J. R.: Procedural CAD model edge

tolerance negotiation for surface meshing. Engineering with Computer, 17(3), 2001,

315–325.

57. TransMagic: http://www.transmagic.com, (Last accessed in May, 2011).

58. Hoffmann, C. M.; Juan, R.: Erep: an editable, high-level representation for

geometric design and analysis, Working Conference on Geometric and Product

Modeling, North Holland, 1993, 129-164.

59. Chen, X.; Hoffmann, C. M.: On editability of feature-based design, Computer-Aided

Design, 27(12), December 1995, 905-914.

60. Shih, C-H.; Anderson, W. D.: A design/constraint model to capture design intent,

Proceedings of the fourth ACM symposium on Solid modeling and applications,

1997 ACM solid modeling symposium. NewYork: ACM Press, 1997, 255-264.

61. Stiteler, M.: Construction History and Parametrics: Improving affordability through

intelligent CAD data exchange: CHAPS program final report, Advanced

Technology Institute, USA, 2004.

http://www.transmagic.com/

154

62. Seo, T-S.; Lee, Y.; Cheon, S-U.; Han, S.; Patil, L.; Dutta, D.: Sharing CAD models

based on feature ontology of commands history, International Journal of CAD/CAM,

5(1) , 2005, 38-47.

63. Bettig, B.; Shah, J. J.: Derivation of a standard set of geometric constraints for

parametric modeling and data exchange, Computer Aided Design, 33, 2001, 17-33.

64. ISO 10303-42. Industrial automation systems and integration — Product data

representation and exchange: Integrated generic resource: Geometric and topological

representation. 3rd ed. Geneva (Switzerland): International Organization for

Standardization; 2003.

65. Rappoport A.: architecture for universal CAD data exchange. In., Proc. 2003 ACM

solid modeling symposium, New York, ACM Press, 2003, 266–269.

66. Kim, J.; Michael J.; Pratt, R. G.; Iyer; Ram D. S.: Standardized data exchange of

CAD models with design intent, Computer-Aided Design, 40(7), July 2008, 760-

777.

67. ISO 10303-55. Industrial automation systems and integration — Product data

representation and exchange: Integrated generic resource: Procedural and hybrid

representation. Geneva (Switzerland): International Organization for

Standardization; 2005.

68. ISO 10303-108. Industrial automation systems and integration—Product data

representation and exchange: Integrated application resource: Parameterization and

constraints for explicit geometric product models. Geneva (Switzerland):

International Organization for Standardization; 2005.

69. ISO 10303-111. Industrial automation systems and integration—Product data

representation and exchange: Integrated application resource: Elements for the

procedural modeling of solid shapes. Geneva (Switzerland): International

Organization for Standardization; 2007.

70. Pratt, M.J.: Extension of ISO 10303, the STEP standard, for the exchange of

procedural shape models, Paper presented in the Proceedings of International

Conference on Shape Modeling and Applications 2004, Genoa, Italy, June 7–9,

2004, 317-326.

71. Pratt, M.J.; Anderson, B. D.; Ranger, T.: Towards the standardized exchange of

parameterized feature-based CAD models, Computer-Aided Design, 37, 2005,

1251–1265.

72. Anderl, R.; Schmitt, M.: State Of The Art of Interfaces for the Exchange of Product

Model Data in Industrial Applications, Institut fur Rechneranwendung in Planung

und Konstruktion (RPK, Uni Karlsruhe), December 1989.

155

73. Mayer, R. J.; Painter, Michael K.; deWitte, Paula S.: IDEF Family of Methods for

Concurrent Engineering and Business Re-Engineering Applications, Knowledge

Based Systems, Inc., 1993.

74. Goldstein, B. L.; Kemmerer, S. J.; Parks, C.H.: A brief history of early product data

exchange standards-NISTIR 6221, 1998.

75. ISO 10303-11: Industrial automation systems and integration - Product data

representation and exchange - Description methods: The EXPRESS language

reference manual, 1994.

76. ISO TC 184/SC4 N4, Contribution of the United Kingdom, AECMA: Report of

Geometry Data Exchange Study Group, June 6, 1984.

77. ISO TC 184/SC4 N3, ―Contribution of West Germany, VDAFS,‖, June 8, 1984.

78. ISO TC 184/SC4 N10: Contribution of France, SET: Standard for Exchange and

Transfer, September 25, 1984.

79. Smith, B. K.; Nagel, R. N.; Wellington, J.: IGES-Initial Graphics Exchange

Specification, delivered at Autofact, 1981.

80. Bloor, M. S.; Owen, J.: CAD/CAM product-data exchange: the next step,

Computer-Aided Design, 23(4), May 1991, 237-243.

81. Wilson, P. R.: A View of PDES, General Electric Company, January 7, 1987.

82. ISO 10303-1:1994 Industrial automation systems and integration Product data

representation and exchange - Overview and Fundamental Principles, International

Standard, ISO TC184/SC4, 1994.

83. Piegl, L. A.: Knowledge-Guided Computation for Robust CAD, Computer-Aided

Design and Applications, 2(5), 2005, 685-695.

84. Piegl, L. A.: Knowledge-Guided NURBS: Principles and Architecture, Computer-

Aided Design and Applications, 3(6), 2006, 719-729.

85. Samuelcik M.: Visualization of Trivariate NURBS Volumes, In Journal of Applied

Mathematics, 2(1), 2009,143-150.

86. Rogers, D. F.: An Introduction to NURBS: With Historical Perspective, Academic

Press, 2001.

87. Piegl, L. A.: On NURBS: A Survey, IEEE Computer Graphics and Applications,

11(1), Jan 01, 1991, 55-71

156

88. Hicks, J.: Management information systems: A user perspective, MN, USA, West

Publishing Company, 1993.

89. Miller, L. L.; Honavar, V.; Barta, T.: Warehousing structured and unstructured data

for data mining, The American Society for Information Science, presented at Annual

ASIS Meeting, Washington, DC, November 1-6, 1997.

90. Hicks B. J.; Culley S. J.; Allen R. D.; Mullineux G.: A framework for the

requirements of capturing, storing and reusing information and knowledge in

engineering design, International Journal of Information Management, 22(4), August

2002, 263-280.

91. Lee, J.: Design Rationale Systems: Understanding the Issues, IEEE Expert, 12(3),

1997, 78-85.

92. Wall, R. A.: Finding and Using Product Information: From Trade Catalogues to

Computer Systems, Gower, UK, 1986.

93. Kripac J.: A mechanism for persistently naming topological entities in history-based

parametric solid models, Computer Aided Design, 29(2), 1997, 113–122.

94. Wu J.; Zhang T.; Zhang X.; Zbou J.: A face based mechanism for naming, recording

and retrieving topological entities. Computer Aided Design, (33) 2001, 687–698.

95 Mun D. H., Han S. H.: An approach to persistent naming and naming mapping based

on OSI and IGM for parametric CAD model exchange, Proceedings of the fifth

Japan–Korea CAD/CAM workshop on digital engineering workshop (DEWS),

February 2005, 24–25.

96. Capoyleas, V., Chen, X., Hoffmann, CM.: Generic naming in generative, constraint-

based design, Computer Aided Design, (28) 1996,17–26.

97. Rappoport A.: An architecture for universal CAD data exchange, Proceedings of the

solid modeling 03, June 2003, Seattle, Washington, 2003, 266-269.

98. Marcheix, D.; Pierra G.: A survey of the persistent naming problem, Proceedings of

the seventh ACM symposium on solid modeling and applications, June 17–21,

Saarbrucken, Germany, 2002, 13-22.

99. Piegl, L. A.; Rajab, K.; Smarodzinava, V.; Valavanis, K. P.: Point-distance

computations: a knowledge-guided approach, Computer-Aided Design and

Applications, 5(6), 2008, 855-866.

100. Piegl, L A.: Knowledge-guided Computation for Robust CAD, Computer-Aided

Design and Applications, 2(5), 2005,685-695.

	University of South Florida
	Scholar Commons
	2011

	Knowledge Guided Non-Uniform Rational B-Spline (NURBS) for Supporting Design Intent in Computer Aided Design (CAD) Modeling
	Khairan Rajab
	Scholar Commons Citation

	Dissertation

