
University of South Florida
Scholar Commons

Graduate Theses and Dissertations Graduate School

2011

Assessment of the Dependence of Ventilation
Image Calculation from 4D-CT on Deformation
and Ventilation Algorithms
Kujtim Latifi
University of South Florida, kujtim@gmail.com

Follow this and additional works at: http://scholarcommons.usf.edu/etd

Part of the American Studies Commons, Medicine and Health Sciences Commons, and the
Physics Commons

This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in
Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact
scholarcommons@usf.edu.

Scholar Commons Citation
Latifi, Kujtim, "Assessment of the Dependence of Ventilation Image Calculation from 4D-CT on Deformation and Ventilation
Algorithms" (2011). Graduate Theses and Dissertations.
http://scholarcommons.usf.edu/etd/3197

http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F3197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F3197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu?utm_source=scholarcommons.usf.edu%2Fetd%2F3197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F3197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F3197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F3197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/439?utm_source=scholarcommons.usf.edu%2Fetd%2F3197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=scholarcommons.usf.edu%2Fetd%2F3197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=scholarcommons.usf.edu%2Fetd%2F3197&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu


 
 
 
 
 
 

Assessment of the Dependence of Ventilation Image Calculation from 4D-CT on 
Deformation and Ventilation Algorithms 

 
 

by 
 
 
 

Kujtim Latifi 
 
 
 
 
 

A dissertation submitted in partial fulfillment 
of the requirements for the degree of 

Doctor of Philosophy 
Department of Physics 

College of Arts and Sciences 
University of South Florida 

 
 
 

Co-Major Professor: Kenneth Forster, Ph.D. 
Co-Major Professor: Sagar Pandit, Ph. D. 

Geoffrey Zhang, Ph.D. 
Vladimir Feygelman, Ph.D. 

Lilia Woods, Ph.D. 
Dale Johnson, Ph.D. 

 
 

Date of Approval: 
November 7, 2011 

 
 
 

Keywords: Lung Function, Deformable Image Registration, Ventilation Imaging, 
Radiotherapy, Lung Cancer 

 
Copyright © 2011, Kujtim Latifi 



 

 

 

 

DEDICATION 

 

 

To my family. 

  



 

 
 
 
 

ACKNOWLEDGMENTS 

 

I would like to acknowledge my two advisors at Moffitt Cancer Center, Drs. 

Kenneth Forster and Geoffrey Zhang, without their help and support this work could not 

have been accomplished.  With special thanks to the entire Radiation Oncology staff at 

Moffitt whose support has been invaluable, specifically to Dr. Vladimir Feygelman for 

his advice, and for being a member of my doctoral committee.  I am also grateful to my 

friends at Moffitt, Dan and Jake, for helping me keep my sanity during this time. 

I would like to express my sincere gratitude to the Department of Physics at the 

University of South Florida, especially to Drs. Dale Johnson, Sagar Pandit, and Lilia 

Woods for being members of my doctoral committee, for their input, and accessibility. In 

particular, my appreciation is extended to Dr. Dale Johnson for his notable support and 

patience. 

Finally, and most importantly, I would like to thank my wife Erjeta. Her patience, 

support, encouragement, and unwavering love were undeniably the foundation upon 

which the past few years of my life have been built upon. My parents, Xhelal and 

Mirvete, receive my deepest gratitude for their faith in me and for allowing me to be as 

ambitious as I have ever wanted to be. It was under their watchful eye that I gained so 

much drive along with the ability to tackle challenges head on. Last but not least, I would 



 

like to thank Erjeta’s parents, Ymer and Afërdita Toska, who provided me unending 

encouragement and support throughout the completion of my graduate studies. 

 



i 
 

 
 
 
 
 

TABLE OF CONTENTS 
 
 
 
LIST OF TABLES ............................................................................................................. iii 

LIST OF FIGURES ............................................................................................................ v 

ABSTRACT ..................................................................................................................... viii 

CHAPTER 1 INTRODUCTION ................................................................................... 1 
1.1 Ventilation ............................................................................................................ 3 

1.1.1 Ventilation Imaging with SPECT ................................................................. 4 
1.1.2 Ventilation Imaging with PET ...................................................................... 6 
1.1.3 Ventilation Imaging with MRI...................................................................... 7 
1.1.4 Ventilation Imaging with CT ........................................................................ 9 

1.2 Deformable Image Registration ......................................................................... 10 

CHAPTER 2 MATERIALS AND METHODS ........................................................... 14 
2.1 Deformable Image Registration ......................................................................... 15 
2.2 Deformable Image Registration Algorithms ...................................................... 16 

2.2.1 Optical Flow................................................................................................ 17 
2.2.2 Diffeomorphic Demons .............................................................................. 18 
2.2.3 Diffeomorphic Morphons ........................................................................... 21 

2.3 Implementation of the DIR Methods ................................................................. 24 
2.4 Validation of Deformable Image Registration Algorithms ................................ 25 
2.5 Ventilation Methods ........................................................................................... 28 

2.5.1 Jacobian Ventilation.................................................................................... 28 
2.5.2 ΔV Ventilation ............................................................................................ 29 
2.5.3 HU Ventilation ............................................................................................ 31 

2.6 Cases................................................................................................................... 32 
2.7 Image Analysis ................................................................................................... 33 

2.7.1 Ventilation Dependence on the DIR ........................................................... 33 
2.7.2 Ventilation Dependence on the Ventilation Algorithm .............................. 34 
2.7.3 Retrospective Image Analysis ..................................................................... 35 
2.7.4 Dice Similarity Coefficient (DSC).............................................................. 35 
2.7.5 Ventilation Image Differences .................................................................... 37 

 
 



ii 
 

CHAPTER 3 RESULTS .............................................................................................. 38 
3.1 Validation of Deformable Image Registration Algorithms ................................ 38 
3.2 Ventilation Dependence on the DIR .................................................................. 45 
3.3 Ventilation Dependence on the VA ................................................................... 52 

CHAPTER 4 DISCUSSION ........................................................................................ 60 

CHAPTER 5 CONCLUSION ...................................................................................... 66 

CHAPTER 6 FUTURE WORK ................................................................................... 67 

CHAPTER 7 REFERENCES ...................................................................................... 68 

APPENDIX A EXTRA TABLES .................................................................................. 80 

  



iii 
 

 
 
 
 

LIST OF TABLES 
 
 
 
Table 1.   Ventilation cases. The patient data included in this study are 

summarized. ...............................................................................................33 
 

Table 2.   Summary of the magnitude of the target registration errors for the 
three deformable image registration methods, for 50%-30%,  and 
the distances between landmarks without registration (NO DIR). ............39 
 

Table 3.   Summary of the magnitude of the target registration errors for the 
three deformable image registration methods, for 50%-30%, and 
the distances between landmarks without registration (NO DIR). ............40 
 

Table 4.   Summary of the magnitude of the target registration errors for the 
three deformable image registration methods, for 50%-70%, and 
the distances between landmarks without registration (NO DIR). ............40 
 

Table 5.   Dice similarity coefficient between deformation pairs for the 
lowest (0-20)% ventilation. ........................................................................49 
 

Table 6.   Dice similarity coefficient between deformation pairs for the 
highest (81-100)% ventilation....................................................................49 
 

Table 7.   Ventilation differences for ∆V comparing deformation methods. .............51 
 

Table 8.   Dice similarity coefficient between ventilation pairs for the lowest 
(0-20)% ventilation. ...................................................................................56 
 

Table 9.   Dice similarity coefficient between ventilation pairs for the highest 
(81-100)% ventilation. ...............................................................................56 
 

Table 10.   Ventilation differences for OF comparing ventilations. ............................58 
 
Table A1.  Raw values of Dice similarity coefficient (DSC) index between 

deformations for the lowest (0-20)% ventilation for all 20 patients. ........ 80 
 



iv 
 

Table A2.   Raw values of Dice similarity coefficient (DSC) index between 
deformations for the highest (81-100)% ventilation for all 20 
patients. ..................................................................................................... 81 

 
Table A3.   Raw values of Dice similarity coefficient (DSC) index between 

ventilation algorithms for the lowest (0-20)% ventilation for all 20 
patients. ..................................................................................................... 82 

 
Table A4.   Raw values of Dice similarity coefficient (DSC) index between 

ventilation algorithms for the highest (81-100)% ventilation for all 
20 patients. ................................................................................................ 83 

 
 
 
  



v 
 

 
 
 
 

LIST OF FIGURES 
 
 
 
Figure 1.   Ventilation/perfusion image with SPECT-CT. Coloring is 

according to a relative scale for each image. CT images are in grey, 
ventilation/perfusion images are colored. Used with permission. 18 ...........5 

 
Figure 2.   Deformable Image Registration. A voxel grid in the image on the 

left undergoes deformable image registration and is deformed like 
the grid on the right. The red arrow points to the corresponding 
deformed voxel on the right image. ...........................................................15 

 
Figure 3.   Illustration of the process of calculating ventilation images. ....................16 
 
Figure 4.   Demons forces. (A) In gray is the target image (T), transparent 

blue is the moving image (M). The demons indicated by vector 
arrows warp the image by applying a force in the direction of the 
image gradient. (B) There is a better overlap between the images, 
and as a result the corresponding force is reduced, indicated by 
shorter vectors. (C) The images overlap and there is no applied 
force by the demons because there is no difference in the gradient. .........20 

 
Figure 5.   Projections of the landmarks on the three body planes. Images 

courtesy of the Léon Bérard Cancer Center & CREATIS lab, Lyon, 
France. ........................................................................................................26 

 
Figure 6.   A cuboid in image 1 that represents a voxel (x,y,x) deforms to a 

12-face polyhedron in image 2. Both images have 8 vertices, which 
define the same local volume at different respiratory phases. Used 
with permission. 38 .....................................................................................30 

 
Figure 7.   (a) A cuboid can be divided in 6 tetrahedrons. (b) The deformed 

cuboid, now a polyhedron, is composed of 6 deformed 
tetrahedrons. Used with permission. 38 ......................................................30 

 
Figure 8.   Schematic illustration representing the study of ventilation 

dependence on the DIR algorithm used. ....................................................34 
 



vi 
 

Figure 9.   Schematic illustration representing the study of ventilation 
dependence on the ventilation algorithm used. ..........................................34 

 
Figure 10.   Dice similarity coefficient..........................................................................36 
 
Figure 11.   (a) Target registration errors (TRE) of the 3 DIR methods in the 

anterior-posterior (AP) direction. The maximum TRE for all three 
DIRs was less than two voxels, marked with the dashed lines.  (b) 
The distance in AP between the landmarks without any 
registration. ................................................................................................41 

 
Figure 12.   (a) Target registration error in the lateral direction. All three DIR 

methods performed similarly and had target registration error 
within two voxels shown by the two dashed lines. (b) The distance 
in lateral between the landmarks without any registration. .......................42 

 
Figure 13.   (a) Target registration error in the superior-inferior (SI) direction. 

The target registration errors were within two voxels shown by the 
two dashed lines.  (b) The distance in SI direction between the 
landmarks without any registration. ...........................................................42 

 
Figure 14.   (a) The magnitude of target registration errors for the DIR 

methods. The maximum TRE for all three methods was within two 
voxels as denoted by the dashed line. OF mean TRE = 1.6±0.9 
mm, DM mean TRE = 1.4±0.6 mm, and DD mean TRE = 1.4±0.7 
mm. (b) The distances between the landmarks without any 
registration. The mean landmark distance with NO DIR was 
5.7±2.5 mm. ...............................................................................................43 

 
Figure 15.   Image differences between the deformed and the target images for 

(a) NO DIR, (b) Optical Flow, (c) Diffeomorphic Morphons, and 
(d) Diffeomorphic Demons. .......................................................................44 

 
Figure 16.   Histogram of the differences between the deformed and the target 

images. The histogram shows the differences in HU between the 
images as a percentage of the total number of voxels encompassed 
by the region of interest. The NO DIR shows the HU difference 
between the moving and the target images. ...............................................45 

 
Figure 17.   Coronal and axial slices of the ∆V ventilation images for a 

representative patient with (a) OF, (b) DM and (c) DD 
deformation. ...............................................................................................46 

 
Figure 18.   Coronal and axial images of Jacobian ventilation images with OF 

(a), DM (b) and DD (c) deformation. ........................................................47 



vii 
 

 
Figure 19.   Coronal and axial images of HU ventilation with OF (a), DM (b) 

and DD (c) deformation. ............................................................................48 
 
Figure 20.   Dice similarity coefficient (DSC) index. (a) Comparisons between 

OF, DM and DD deformation with ∆V, Jacobian, and HU 
ventilation for the lowest 20% ventilation, and (b) for the highest 
20% ventilation. .........................................................................................50 

 
Figure 21.   Difference histogram for the ∆V ventilation comparing 

deformations. .............................................................................................51 
 
Figure 22.   Ventilation image differences for ∆V between (a) OF-DM, (b) OF-

DD, and (c) DM-DD. .................................................................................52 
 
Figure 23.   Coronal and axial images of (a) ∆V, (b) Jacobian, and (c) HU 

ventilation with OF deformation. ...............................................................53 
 
Figure 24.   Coronal and axial images of (a) ∆V, (b) Jacobian, and (c) HU 

ventilation with DM deformation. .............................................................54 
 
Figure 25.   Coronal and axial images of (a) ∆V, (b) Jacobian, and (c) HU 

ventilation with DD deformation. ..............................................................55 
 
Figure 26.   Dice similarity coefficient (DSC) index between ventilation pairs. 

(a) DSC index for OF, DM, and DD deformation for the lowest 
20% ventilation, and (b) DSC index for OF, DM, and DD 
deformation for the highest 20% ventilation. ............................................57 

 
Figure 27.   Difference histogram for the ∆V ventilation comparing 

ventilations. ................................................................................................58 
 
Figure 28.   Ventilation image differences for OF between (a) ∆V minus 

Jacobian, (b) ∆V minus HU, and (c) Jacobian minus HU. ........................59 
 
 
  



viii 
 

 
 
 
 

ABSTRACT 
 

Ventilation imaging using 4D-CT is a convenient and cost effective functional 

imaging methodology which might be of value in radiotherapy treatment planning to 

spare functional lung volumes. To calculate ventilation imaging from 4D-CT we must 

use deformable image registration (DIR). This study validates the DIR methods and 

investigates the dependence of calculated ventilation on DIR methods and ventilation 

algorithms. 

 

The first hypothesis is if ventilation algorithms are robust then they will be 

insensitive to the precise DIR used provided the DIR is accurate.  The second hypothesis 

is that the change in Houndsfield Unit (HU) method is less dependent on the DIR used 

and depends more on the CT image quality due to the inherent noise of HUs in normal 

CT imaging.  

 

DIR of the normal end expiration and inspiration phases of the 4D-CT images 

was used to correlate the voxels between the two respiratory phases.  All DIR algorithms 

were validated using a 4D pixel-based and point-validated breathing thorax model, 

consisting of a 4D-CT image data set along with associated landmarks. Three different 

DIR algorithms, Optical Flow (OF), Diffeomorphic Demons (DD) and Diffeomorphic 

Morphons (DM), were retrospectively applied to the same group of 10 esophagus and 10 
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lung cancer cases all of which had associated 4D-CT image sets that encompassed the 

entire lung volume. Three different ventilation calculation algorithms were compared 

(Jacobian, ΔV, and HU) using the Dice similarity coefficient comparison.   

 

In the validation of the DIR algorithms, the average target registration errors with 

one standard deviation for the DIR algorithms were 1.6 ± 0.7 mm, maximum 3.1 mm for 

OF, 1.3 ± 0.6 mm, maximum 3.3 mm for DM, 1.3 ± 0.6 mm, maximum 2.8 mm for DD, 

indicating registration errors were within 2 voxels.  

 

Dependence of ventilation images on the DIR was greater for the ΔV and the 

Jacobian methods than for the HU method.  The Dice similarity coefficient for 20% of 

low ventilation volume for ΔV was 0.33 ± 0.03 between OF and DM, 0.44 ± 0.05 

between OF and DD and 0.51 ± 0.04 between DM and DD. The similarity comparisons 

for Jacobian was 0.32 ± 0.03, 0.44 ± 0.05 and 0.51 ± 0.04 respectively, and for HU 0.53 ± 

0.03, 0.56 ± 0.03 and 0.76 ± 0.04 respectively.  

 

Dependence of ventilation images on the ventilation method used showed good 

agreement between the ΔV and Jacobian methods but differences between these two and 

the HU method were significantly greater.  Dice similarity coefficient for using OF as 

DIR was 0.86 ± 0.01 between ΔV and Jacobian, 0.28 ± 0.04 between ΔV and HU and 

0.28 ± 0.04 between Jacobian and HU respectively. When using DM or DD as DIR, 

similar values were obtained when comparing the different ventilation calculation 
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methods. The similarity values for 20% of the high ventilation volume were close to 

those found for the 20% low ventilation volume. 

 

Mean target registration error for all three DIR methods was within one voxel 

suggesting that the registration done by either of the methods is quite accurate. 

Ventilation calculation from 4D-CT demonstrates some degree of dependency on the 

DIR algorithm employed.  Similarities between ΔV and Jacobian are higher than between 

ΔV and HU and Jacobian and HU.  This shows that ΔV and Jacobian are very similar, but 

HU is a very different ventilation calculation method.  
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CHAPTER 1 INTRODUCTION 
 

According to the American Cancer Society, cancer is the second-leading cause of 

death in the United States after heart disease. 1  Twenty-nine percent of these cancer 

caused deaths were lung cancer patients, making lung cancer the biggest single cancer 

killer of both men and women. 1  Lung cancer is generally diagnosed in the later stages 

when the disease has created a large tumor burden, thus diminishing the possibility for 

cure.  Treatment options typically include surgery, chemotherapy, and radiotherapy, 

whether used singly or in combination.  Radiotherapy is utilized in up to half of lung 

cancer patients at some point after their cancer diagnosis. 

 

It is well known that lung function is not uniform and there is a wide range of 

ventilation and perfusion levels throughout the lung. Previous studies evaluating the risks 

of pulmonary toxicity reported that the two best predictors were the volume of lung 

receiving 20 Gy 2, 3 and alternatively the mean radiation dose to normal lung. 4  To 

irradiate lung tumors, normal lung will also be irradiated, in addition the formation of 

clinical target volume (CTV1), internal target volume (ITV2

                                                 
1  The CTV consists of the tumor volume and any other tissue with presumed tumor. 

), and planning target volume 

2  The ITV is the volume that includes the CTV with an internal margin added to account for motion of the 
CTV. 
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(PTV3

 

) expansions all include normal lung.  This requirement to irradiate normal lung 

creates a necessary compromise between killing tumor cells while simultaneously 

limiting the dose to healthy tissues to minimize pulmonary toxicity.  Many lung patients 

have compromised health before treatment for lung cancer, and chronic obstructive 

pulmonary disease (COPD) is common in these patients.  Because they typically have 

diminished pulmonary reserve, radiation toxicities such as pneumonitis or fibrosis can be 

highly toxic and in some cases even fatal.  Radiation pneumonitis usually develops in the 

first few weeks to months after beginning radiation therapy treatments. The symptoms of 

pneumonitis are shortness of breath, cough, and fever.  Pulmonary fibrosis is the scarring 

of lung tissue and develops much later after radiation therapy, over moths to years, and 

leads to permanent impairment of oxygen transfer.  Analogously to the lung, radiation 

dose constraints are placed on other critical structures such as the spinal cord, heart, and 

esophagus.   

To help predict radiation toxicity, many researchers have tried to model the 

effects of radiation by examining how much normal tissue receives a given dose. 5 There 

has been much work presented on normal tissue complication probability (NTCP) models 

for the lung.6-10  NPTCP is based on the assumption that the probability of complications 

follows a sigmoidal dose-response relationship.  NTCP relies on mathematical models 

based on the tolerance of radiation dose to the whole organ and the steepness of the dose-

response curve to calculate the probability of damage to the lung due to radiation. 11, 12   

Emami et al 5 compiled data on tolerance dose values for  uniform radiation of 28 critical 
                                                 
3  The PTV is the volume that includes the ITV as well as a set-up margin to account for patient movement 
and set-up uncertainties.  
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structures. In another article Burman et al 13 fit the tolerance dose data to a NTCP model 

by Lyman. 12  The Lyman model is defined for uniform irradiation of organs. However, 

normal organs are usually not irradiated uniformly and as a result dose volume histogram 

(DVH) reduction algorithms were designed to convert a non uniform dose distribution to 

a uniform distribution. 14, 15  A DVH reduction algorithm based on the Lyman model was 

introduced by Kutcher and Burman 11, often referred to as the Lyman-Kutcher-Burman 

(LKB)  model. This model is used as an auxiliary tool to evaluate and compare radiation 

treatment plans.  

 

All the current models for radiation toxicity of the lung, cited above, are based on 

a uniformly functioning lung.  Although most people have redundant pulmonary reserve, 

it is well known that lung function is not uniform and there is a wide range of ventilation 

and perfusion levels throughout the lung. 16-18  In particular, lung cancer patients have 

been shown to have regions of lung with poor ventilation.  Jeraj et al suggest that imaging 

of normal tissue function may be useful in reducing normal tissue toxicity. 19 

 

1.1 Ventilation 
 

The major function of the lung is to exchange carbon dioxide for oxygen in the 

blood.  As the diaphragm depresses and the chest expands, the lung volume increases and 

a pressure gradient is created forcing air to flow into lungs.  CO2 is exchanged for O2 in 

pulmonary capillaries.  Oxygen (O2), which is delivered to alveoli by ventilation, diffuses 

into pulmonary capillary blood and is carried away by the blood flow.  Carbon dioxide 
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(CO2), which is delivered to the alveoli in the venous blood, diffuses into the alveoli 

through the pulmonary capillaries and is removed from the alveoli by ventilation.  As the 

diaphragm moves back up and the chest wall compresses the lung, the lung volume 

decreases forcing the CO2 rich air out of the lungs. 

 

Good air and blood flow are required for adequate oxygen – carbon dioxide 

exchange.  Regional ventilation can be reduced in lung cancer patients for various 

reasons, and patients with COPD are thought to have significant regions of poor 

ventilation.  Larger lung tumors can also obstruct the bronchus or bronchioles, causing 

the collapse of lung volume distal to the obstruction.  If a radiation oncologist or even a 

surgeon knew which parts of the lung functioned properly and which did not, they could 

potentially spare highly functional lung while still treating the cancer. 

 

A number of different imaging modalities can be employed to image and analyze 

lung function, including nuclear scintigraphy, 20 single photon emission computed 

tomography (SPECT), 18, 21-24 positron emission tomography (PET), 25, 26 magnetic 

resonance imaging (MRI),27, 28 and CT. 29-38 These methods are described below. 

 

1.1.1 Ventilation Imaging with SPECT 

 

The current gold standard for imaging ventilation involves the acquisition of 

single photon emission computed tomography (SPECT) image.  The image is acquired 
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after the patient breathes 99mTc-diethylene-triamine pentaacetate (DTPA) radioaerosol or 

133Xe radioactive gas.  For ventilation studies using the radioaerosol technique, patients 

breathe the DTPA for a few minutes then equilibrium and washout scans are taken 

continuously.  The average size of aerosol particles is close to 1.0 µm making them 

susceptible to deposition in central airwaves. 18, 39  Therefore, the aerosol technique is 

only good at detecting regions with low gamma ray emissions and thus low regional 

ventilation. 18, 23, 40-42  Figure 1 is an illustration of ventilation/perfusion using SPECT-

CT. Coloring is according to a relative scale with low ventilation regions in darker color.  

 

 

Figure 1.  Ventilation/perfusion image with SPECT-CT. Coloring is according to a 

relative scale for each image. CT images are in grey, ventilation/perfusion images are 

colored. Used with permission. 18 
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Dynamic 133Xe ventilation imaging is a useful tool for accurately assessing 

ventilation defects.  An image is usually taken during or right after inhalation of 133Xe 

radioactive gas.  Then washout images are taken while the patient breathes room air. 

Regions of radioactive gas retention are indicative of ventilation defects. 24  Additionally, 

with a dynamic SPECT study a matrix of half clearance time can be calculated and yields 

relative ventilation maps.  Ventilation imaging with 133Xe is useful for studying 

abnormalities in regional ventilation in patients with obstructive pulmonary disease. 

However, the low energy of 133Xe (80 keV) results in low spatial resolution compared to 

99mTc.   

 

Other radionuclides used for imaging lung function with SPECT are 99mTc 

Technegas and 99mKr. Although those two methods have been shown to be very accurate 

in imaging ventilation, they are not commonly used in the clinic. 18, 24 Technegas is not 

approved by the Food and Drug Administration for use in the United States, and due to 

its very short half-life (13 s) the use of 99mKr in the clinic is quite difficult if not 

impossible.  A limitation of the SPECT method compared to other imaging modalities is 

the time required for image acquisition. Depending on the type of technique used, the 

time required for acquisition of images may be up to 45 minutes. 18   

 

1.1.2 Ventilation Imaging with PET 

Positron emission tomography (PET) is a nuclear medicine technique that uses a 

radioactive isotope that is a positron emitter. The isotope is bound to a metabolically 
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active molecule. After the positron (antimatter electron) is emitted, it annihilates when it 

comes in contact with an electron. The annihilation process, which typically happens 

within 3 to 6 mm of lung tissue from the emission point, yields a pair of 511 keV photons 

that are ejected in opposite direction from one another. Gamma detectors, which are 

distributed in rings around the patient, are set to identify coincident photon pairs. Various 

computer algorithms are used to reconstruct the registered events into 3D image.  

 

The most common radiopharmaceutical used for PET imaging is 18F-

fluorodeoxyglucose, more commonly known as FDG. This radiopharmaceutical 

incorporates a positron emitter (18F) into a glucose analog. Tumors show preferential 

uptake of the sugar and the amount of concentration can often give information to 

distinguish malignant tumors from nonmalignant ones.  Ventilation studies can be 

performed with intravenous fusion of 13N2. 26, 43 During this procedure, the patient holds 

his or her breath for a short time while getting the injection. The concentration of the 

compound reaches a plateau. The washout phase starts when the patient resumes 

breathing and the concentration of the 13N2 decreases with ventilation.  Ventilation can be 

assessed using the washout data of 13N2 since it is eliminated from the lung almost 

exclusively by ventilation. 

 

1.1.3 Ventilation Imaging with MRI 

Ventilation can also be quantified using magnetic resonance imaging (MRI). MRI 

is advantageous in imaging soft tissues such as brain or muscle. MRI images can be fused 
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with the images from the planning CT for radiation treatment to assist the radiation 

oncologist to better define tumor volumes. 44 MRI has two main advantages over other 

nuclear medicine ventilation imaging techniques because (1) it provides better spatial 

resolution, and (2) does not rely on ionizing radiation. There are various techniques to 

image ventilation with MRI, such as gadolinium based contrast agents, 45-47 oxygen 

enhancement, 48 and hyperpolarized 3He and 129Xe MRI. 49   

 

A common approach to MR ventilation imaging has been the use of gadolinium-

based contrast agents such as aerosolized gadolinium chelates (Gd-DTPA). The issue 

with Gd-DTPA is the aerosol particle size (1-3 µm), which makes it susceptible to 

deposition in airwaves, in addition to the low signal-to-noise ratio. 45 The use of 

hyperpolarized noble gas requires specialized RF transmitter/receiver coils and laser 

equipment. Additionally, the gas is expensive and not yet suitable for routine clinical use, 

making this method costly and impractical. 28  Oxygen enhancement is a proton-based 

MR technique used for ventilation imaging.  Despite the fact that oxygen is weakly 

paramagnetic, the effect of molecular oxygen on MRI is significant due to the large 

surface area of the lung.  This method is more economical than hyperpolarized noble gas 

MR ventilation imaging. Oxygen enhancement drawbacks are its lower signal-to-noise 

ratio compared to hyperpolarized MR ventilation and its inability to capture dynamic 

changes in ventilation. 28, 37 
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1.1.4 Ventilation Imaging with CT 

Thoracic tumors frequently move with respiration.  To account for this motion, 

many radiation oncologists order a 4D-CT scan at the time of CT simulation.  Depending 

on the manufacturer either images are rapidly acquired then binned by respiratory phase 

or the raw sonogram data itself is binned according to respiratory phase. 50  A 4D-CT 

image set is comprised of complete CT image sets, each image set representing a 

particular point in the respiratory cycle. 

 

Guerrero et al 31 suggested a pulmonary ventilation imaging algorithm, which 

would calculate the ventilation image for a 4D-CT image set.  Deformable image 

registration (DIR) provides a point-to-point deformation matrix, and in this case is 

applied to determine the deformation from normal end expiration to normal end 

inspiration.  Guerreo’s method uses DIR and quantifies the density change within a 

particular voxel between the two end points of the respiratory cycle.  The corresponding 

density changes (Hounsfield Unit changes) are used to calculate the local ventilation.   

 

An algorithm presented by Zhang et al 37, 38 calculates the ventilation from the 

volume change (ΔV).  The ΔV method is a direct geometrical calculation of the volume 

change.  A specific volume change is obtained by applying the DIR transformation to 

each of the eight vertex positions of a voxel and then calculating the volume of the 

deformed volume element. Similarly, the algorithm presented by Reinhardt et al 30, 33, 34 

derives ventilation by calculating the Jacobian of the deformation field to approximate 

the change in volume of voxels.  Local volume change of the lung is calculated using the 
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Jacobian of the transformation that maps the end expiration phase of 4D-CT image to the 

end inspiration phase.   

 

1.2 Deformable Image Registration 
 

 Image registration aligns image sets to establish correspondence between features 

in both sets. There are various forms of image registration that fall into two categories: 

rigid registration and deformable image registration. Rigid registration does not model 

changes from organ deformation due to breathing, patient weight loss, or tumor 

shrinkage, whereas deformable image registration (DIR) can take into account such 

changes.  The goal of DIR is to find a transformation from one image set to another, such 

that the differences between the deformed and the target image sets are minimized by 

providing a voxel to voxel deformation matrix.  

 

 DIR has been studied since the early 1980s. For many years, neurosciences and 

neurosurgery have been the driving force for developing various deformation techniques. 

51, 52  DIR is useful in many applications such as tumor motion estimation, 53 contour 

mapping, 54 dose mapping, 55 and more recently for calculation of ventilation. 29, 31-33, 36-38, 

56, 57 Guerrero et al 53 used the optical flow (OF) method to map a delineated tumor from 

on CT image volume to the next on a point-by-point basis. Zhang et al 55 used the OF 

method to map dose to different phases of 4D-CT image to calculate more accurately the 

dose received by target volumes and surrounding organs.  The OF method was also used 
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by Zhang et al54 to map anatomic structures and tumor contours from one phase of the 

breathing cycle in a 4D-CT image set to different phases. 

 

An application of DIR is image registration of two images from two different 

times during a breathing cycle (4D-CT).  DIR finds a mapping between a voxel in one 

phase of the image (eg. end expiration) to a corresponding voxel in the second phase (eg. 

end inspiration).  There are many deformable image registration algorithms that have 

been implemented. While the goal of these algorithms is the same, the algorithms are 

based on aligning different image features, how they measure similarity, and what type of 

deformations they allow. The algorithms described and evaluated in this paper are 

Optical Flow (OF), 54, 55, 58, 59 Diffeomorphic Demons (DD), 60-62 and Diffeomorphic 

Morphons (DM). 63  

 

Optical flow algorithm is based on two fundamental assumptions: (1) the intensity 

of a point in an image does not change with time and (2) the nearby points move in the 

same manner. This is known as the velocity smoothness constraint. It finds the voxel 

correspondence by computing a displacement field describing the apparent motion 

represented by the two images by matching the image intensity gradient. 54, 55, 59  

 

Diffeomorphic Morphons (DM) method is based on matching of edges and lines. 

64  The Morphon iteratively deforms a moving image into a target image by morphing the 

moving image. The process can be divided into three parts: estimation of displacement, 

accumulation of the deformation field, and deformation. The estimation of displacement 
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has the aim to find the ways and indications on how to deform the moving image into the 

target image. The accumulation of the deformation field uses the estimate of the 

displacement to update the deformation field. Finally, the deformation morphs the 

moving image to the target image according to the accumulated deformation field. These 

steps are done iteratively as long as the displacement estimates indicate further morphing 

to be done.  

 

The basis of the Diffeomorphic Demons (DD) method is matching of intensities. 

The main requirement is that the voxels in the moving image (M) have the same intensity 

as the corresponding voxels in the target image (T).61, 62  Demons forces are applied on 

the moving image until there is an overlap in intensities between the two. The difference 

in intensity between the two (M – T) determines the applied force and its direction. When 

the difference between the two is greater than zero, M moves in the direction of T∇


, 

however, when the difference is less than zero M moves against T∇


. The demons stop 

exerting force when the images overlap completely.  

 

For all deformable image registration algorithms, it is highly desirable to provide 

an estimate of the accuracy of their registration for the desired application. In this paper 

we have evaluated three DIR methods using an anatomical landmark based model, the 

POPI model 65, 66 and the image differences between the deformed and the target lung 

images.  The model consists of anatomical landmarks in the lung chosen by expert 

radiologists. The intention of the model is to have landmarks that are spread uniformly 

and correspond to anatomical features such as the carina, calcified nodules, division 
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branch of the pulmonary artery, and apical pulmonary vein of the upper lobe and various 

bifurcations of smaller structures that could be uniquely identified in each image set. A 

complete description of the method is given by Sarrut et al 67  The POPI model is a useful 

tool that has been made available to researchers, which can be used to estimate the 

deformation accuracy in the lung. 

 

The effect of the DIR on the ventilation algorithm is unknown, but if ventilation 

algorithms are robust then they will be insensitive to the precise DIR used provided the 

DIR is accurate. To test this hypothesis we investigated the dependence of calculated 

ventilation on the deformable image registration methods and on the ventilation 

algorithms. 

 

This dissertation validates DIR methods used then compares ventilation images 

calculated from 4D-CT using DIR and ventilation algorithms (VA).  The algorithms used 

for calculating ventilation are HU, ΔV, and the Jacobian.  A total of nine combinations of 

methods (DIR and VA) are used to calculate ventilation images  
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CHAPTER 2 MATERIALS AND METHODS 
 

We calculated lung ventilation from 4D-CT by using DIR and ventilation 

algorithms. We used three DIR algorithms (OF, DM, and DD) and three ventilation 

algorithms (HU, ΔV and Jacobian), to calculate ventilation images and then compared the 

similarities and differences between these images by using the Dice similarity coefficient 

index (DSC). In order to remove any registration errors, a 3×3×3 mm3 spatial averaging 

of all the resulting ventilation images was performed to generate the final ventilation 

image.  

 

We validated the DIR algorithms using the datasets from the POPI model, which 

is a landmark based model used for validation of registration algorithms. 66  The DIR 

algorithms were then retrospectively applied to 20 patients, 10 esophageal and 10 lung 

cancer cases, all of which had associated 4D-CT image sets that encompassed the entire 

lung volume. We used the DSC index to quantify the similarities between the images 

generated with each method and to study the dependence of the ventilation images on the 

DIR and VA used.  A total of 180 ventilation images, 9 for each case, were analyzed.  
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2.1 Deformable Image Registration  
 

Deformable image registration (DIR) is a method for finding the mapping 

between each voxel in one phase of the image (eg. end exhale) and its corresponding 

deformed voxel (dvoxel) in another phase of the image (eg. end inhale) as illustrated in 

Figure 2. For example, in deforming a lung from end expiration to the corresponding lung 

at end inspiration the dvoxel will have a different volume from the original voxel. This is 

because the number of dvoxels in the inflated lung will be the same as the number of the 

original voxels in the un-inflated lung while the lung volume has increased. 

 

 

Figure 2.  Deformable Image Registration. A voxel grid in the image on the left 

undergoes deformable image registration and is deformed like the grid on the right. The 

red arrow points to the corresponding deformed voxel on the right image. 

 

During the deformable image registration process end expiration phase (moving 

image) is registered to the end inspiration phase (target image) and the result produces a 

deformation field. This deformation field is then entered into a ventilation algorithm that 

produces an image estimate of the ventilation, as illustrated in Figure 3.   
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Figure 3.  Illustration of the process of calculating ventilation images.  
 

2.2 Deformable Image Registration Algorithms 
 

Deformable image registration is used to find a point to point correspondence 

between two images. This maps the vertices of the original voxel to the vertices of the 

dvoxel. This correspondence describes the location of each voxel in one image relative to 



17 
 

the dvoxel in the second image. Three different registration algorithms, Optical Flow 

(OF), 53, 54, 58, 59 Diffeomorphic Morphons (DM) 64, 68, and Diffeomorphic Demons (DM), 

62, 64, 69 were used to deform the end-expiration image (50%) to the end-inspiration (0%), 

mid-expiration (30%), and mid-inspiration image (70%). 

 

2.2.1 Optical Flow 
 

Optical flow finds the voxel correspondence by computing a displacement field 

describing the apparent motion represented by the two images by matching the image 

intensity gradient 54, 55, 59. OF assumes that image intensity remains constant, intensity at 

time t is equal to the intensity at a later time t+δt, that is 

),,(),( ttxxItxI δδ ++≈


 (1) 
 
where ),( txI   is the image intensity at time t. Taylor series expansion of the terms 

on the right-hand side of equation (1) yields: 
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Substitution of equation (2) into equation (1)yields: 
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Ignoring the higher order terms in equation (3), and dividing by tδ , we obtain the 

optical flow constraint equation: 
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where 
t
xv
∂
∂

=


 is the velocity and it consists of the displacement between a point in 

the first image, ),( txI  , and the corresponding point in the second image ),( ttxxI δδ ++
  

divided by the time between the two images, δt. For a single image pair the velocity 

matrix equals the displacement between the image volume pair. A velocity matrix is a 

complete collection of displacement vectors that relates every voxel from the source to 

the target image. A velocity constraint, which requires that nearby points move in a 

similar manner to each point, is introduced in order to obtain a single solution from 

equation (4) for each voxel. Finally, after allowing for small intensity variations and 

applying variational calculus the equation for the displacement field is obtained 53:  
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(5) 

 

where v  is the displacement vector field, ),( txI   is the intensity of the image, and the 

parameter α=1.4.  

 

2.2.2 Diffeomorphic Demons 

 

The basis of the Diffeomorphic Demons (DD) method is matching of gray levels. 

The Demons method is based on the thought experiment devised by Maxwell. In the 

experiment, a container is divided into two equal compartments, by an insulated wall in 

between, with a door that can be opened and closed by what came to be known as the 

“Maxwell’s Demon.” This demon opens the door to let only the high speed (hot) 
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molecules of gas to go through to one side of the compartment and closes the door 

otherwise. As a result, the temperature of one side gradually rises while the other side 

cools down, which violates the Second Law of Thermodynamics.  

 

Maxwell’s demon was adapted to a diffusion based method for deformable image 

registration by Thirion 61. The main requirement, similar to the Optical Flow method, is 

that the voxels in the moving image have the same intensity as the corresponding voxels 

in the target image. Figure 4 is an illustration of the demons forces that are applied on the 

moving image until there is an overlap in intensities between the two. The gray image is 

the target (T) and the blue image is the moving image (M). The difference in intensity 

between the two (M – T) determines the applied force and its direction. When the 

difference between the two is greater than zero, M moves in the direction of T∇


, 

however, when the difference is less than zero M moves against T∇


. The demons stop 

exerting force when the images overlap completely. The force applied by the demons was 

inspired by the optical flow method but is renormalized because of the effects of small 

image intensity gradients.  
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Figure 4.  Demons forces. (A) In gray is the target image (T), transparent blue is the 

moving image (M). The demons indicated by vector arrows warp the image by applying a 

force in the direction of the image gradient. (B) There is a better overlap between the 

images, and as a result the corresponding force is reduced, indicated by shorter vectors. 

(C) The images overlap and there is no applied force by the demons because there is no 

difference in the gradient.  

 

The resulting equation for the demons deformation field, as given by Thirion 61 is: 

,
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(6) 

 

where i
UpdateM


 is the update deformation field from the iteration i.    
 

It was demonstrated by Vercauteren et al 60 that the deformation field given by 

equation (6) resembles an optimization of a second order gradient descent of the sum of 

the squared intensity differences (SSD). This indicates that Demons would function well 

in single modality registration, where SSD gradient descent is also appropriate, but it 

would not work well in multimodality registration where SSD is not appropriate. With 

this understanding, equation (6) is optimized in the form of symmetrical update rule: 
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This optimization makes Demons more efficient and is the method that is 

implemented for our Demons registrations. Additionally, the Demons algorithm is 

updated to make it diffeomorphic. A diffeomorphism is a map between manifolds which 

is differentiable, and its inverse is differentiable as well. An advantage of diffeomorphic 

solutions is to prevent folding in the transformation. 62 As a result the Demons equation 

(7) is updated to:  
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(8) 

 

 

This adaptation for accumulating the update field gives smoother deformation 

field when compared to the Demons method.  The deformation field produced by the 

Diffeomorphic Demons (DD) is smoothed by a Gaussian, and iteratively used to 

transform the moving image, and register on to the static image. The DD uses a diffusion 

like Gaussian regularization of the displacement field which leads to smooth fields. 

Regularization is applied to reduce the influence of extreme values in a deformation field. 

 

2.2.3 Diffeomorphic Morphons 

 
Diffeomorphic Morphons (DM) method is based on matching of edges and lines. 

64 The Morphon iteratively deforms a moving image into a target image by morphing the 
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moving image. The process can be divided into three parts: estimation of displacement, 

accumulation of the deformation field, and deformation.  

 

The estimation of displacement has the aim to find the ways and indications on 

how to deform the moving image into the target image. Estimation of displacement is 

based on quadrature phase difference. The accumulation of the deformation field uses the 

estimate of the displacement to update the deformation field. This process is done in two 

steps: the first step is the update of the deformation field and then regularization of the 

estimates of the accumulated field in order to fit the observed deformation to a 

deformation model. Finally, the deformation morphs the moving image to the target 

image according to the accumulated deformation field. These steps are done iteratively as 

long as the displacement estimates indicate further morphing to be done.  

 

Quadrature phase difference is a method used to estimate local displacement 

between two images. The advantage of this method over other methods, such as the ones 

based on gradient and polynomial expansion, is its invariance to image intensity and 

weak gradients. 63 Quadrature phase is a measure of local structure. Edges between bright 

and dark areas have one phase, dark lines have one phase, and lines on dark background 

have a phase as well as bright patches. The transition as we move from one phase to 

another is continuous. Therefore, the difference in local phase between the moving and 

target images is a good measure of how much the moving image has to move to fit the 

target image. The local displacement is a function of the local phase along its associated 

direction. To estimate the local displacement a least square estimate is used. 
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where v  is the displacement field estimate, iv  is the displacement field associated to the 

filter direction i, iw  is a measure of certainty and it is derived from the magnitude of the 

phase difference, and in̂  is the direction of the filter i.  

 

The displacement field of the current iteration is given by equation (9) , which is 

used to interpolate a deformed version of the moving image. The moving image is 

deformed based on the accumulated field and then it is compared to the target image in 

order to estimate a displacement field for the current iteration being performed. The 

updated field ( '
ad ) is formed by combining the accumulated field ( ad ) and the 

displacement field from the current iteration ( kd ).  
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where ac and kc are the uncertainties in the accumulated field and the temporary field 

respectively. After acquiring the update field in equation (10) as well as the certainty 

from the field, a weighted accumulation is used to determine the accumulated 

displacement field: 
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where Uc is the uncertainty in the update field.  
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Similar to the Demons method, the Morphons method is optimized to become 

diffeomorphic. As a result, equation (11) becomes:  
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As in the DD method, the deformation field produced by the DM is smoothed by 

a Gaussian, and iteratively used to transform the moving image, and register on to the 

static image. The DM uses a diffusion like Gaussian regularization of the displacement 

field which leads to smooth fields. Regularization is applied to reduce the influence of 

extreme values in a deformation field. 

 

All three DIR methods are implemented in an iterative and multiscale scheme. A 

lower resolution deformation is first approximated then used for the next level of 

deformations with a higher resolution of the images to be registered. This process 

continues until the deformation has been approximated at the highest resolution. 

 

Four scales of resolution were used when using OF, with 98 iterations at each 

scale. DD and DM were applied using the settings described in Janssens et al, that is 

using eight scales, with a maximum of 20 iterations at each scale and a smoothing 

standard deviation of 2. 64 

2.3 Implementation of the DIR Methods 
 

All three DIR methods are implemented in an iterative and multi-scale scheme. A 

lower resolution deformation is first approximated then used for the next level of 
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deformations with a higher resolution of the images to be registered. This process 

continues until the deformation has been approximated at the highest resolution.  OF is 

implemented using C++ with four scales of resolution, and 98 iterations at each scale, 

which was determined to be the optimal number of iterations for OF.  DD and DM were 

implemented using MATLAB4

 

.  The settings were the same as the ones described in 

Janssens et al. that is using eight scales, with a minimum of 10 and a maximum of 20 

iterations at each scale and a smoothing standard deviation of 2. The iterative process was 

stopped if the changes measured in terms of the sum of the squared differenceses (SSD) 

were less than 0.01%. 64 

2.4 Validation of Deformable Image Registration Algorithms 
 

All three DIR algorithms were evaluated using the POPI model.  The POPI model 

consists of a 4D-CT image data set of a lung with the images binned into 10 phases along 

with 41 associated anatomical landmarks. The landmarks are anatomically homologous 

points that were manually delineated by radiologists at all 10 phases of the original 4D-

CT image sets. 66  A projection of the points on the CT planes is shown in Figure 5.  They 

are based on anatomical features that correspond to various locations in the lung, such as 

the carina, calcified nodules, culmen-lingula junction, division branch of pulmonary 

artery, and apical pulmonary vein of the upper lobe. 67  the CT image sets consisted of 

512×512×141 voxels with voxel dimensions of 0.97×0.97×2mm3 (2 mm slice thickness).  

                                                 
4 MATLAB® is a registered trademark of The MathWorks, Inc. 3 Apple Hill Drive Natick, MA 01760 

USA. (www.mathworks.com) 
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Figure 5.  Projections of the landmarks on the three body planes. Images courtesy of the 

Léon Bérard Cancer Center & CREATIS lab, Lyon, France. 

 

The phases used for the evaluation of the DIR algorithms were normal end-

inspiration (0% phase), mid-expiration (30% phase, the phase that lies between the end-

inspiration and end-expiration) normal end-expiration (50% phase), and the 70% phase 

which is mid inspiration or the phase that lies between the end-expiration and end-

inspiration5

 

 For all the methods, the original data sets were used for this validation 

without any resampling.  

Using deformable registration one phase is registered to the second phase (eg. 

end-expiration to end-inspiration phase). This generates deformation vector fields (DVFs) 

that approximate the anatomical displacements voxel-by-voxel. The vector fields point 

from the target positions to the where the displaced new positions of the anatomical 

features. For this study the 0%, 30% and 70% phases were each registered to the 50% 

phase.  

                                                 
5 The model and landmarks were provided for use by the group at Léon Bérard Cancer Center & CREATIS 

lab, Lyon, France. 
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The resulting deformation fields were used to calculate the new location of the 

landmarks on the end expiration phase. Then the positions of the calculated landmarks 

were compared to the inspiration phase landmarks as determined by the radiologists. 

Target registration error (TRE) was calculated by calculating the displacement between 

the calculated and the anatomically determined landmarks for each of the radiologist 

identified points.  This displacement was used as the metric to assess the accuracy of the 

registration algorithms.  

 

Additionally, the DIR algorithms were evaluated on a voxel-to-voxel basis by 

calculating the differences between the deformed image and the target image. The image 

calculator feature of ImageJ 1.44n (National Institutes of Health) was used to calculate 

the differences in Houndsfield Units (HU) between the two images. The difference in HU 

between the deformed and target images is used as an indicator of the accuracy of the 

registration.  A region of interest (ROI) was drawn to only include the voxels inside the 

lung and exclude the rest of the image.  For comparison, the differences between the 

moving and the target images were calculated without using any deformable registration 

(NO DIR).  
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2.5 Ventilation Methods 
 

2.5.1 Jacobian Ventilation 
 

The Jacobian method is a mathematical representation of volume change that uses 

the first derivative of the deformation field to approximate the change in volume of 

voxels. 29, 30, 33, 34  Local volume change of the lung is calculated using the Jacobian of the 

transformation that maps the end expiration phase of 4D-CT image to the end inspiration 

phase.  Consider a function that represents a vector displacement D(x,y,z) that transforms 

a voxel from its end expiration image to its corresponding location in the end inspiration 

image, so that the voxel at (x,y,z) in the end expiration image is displaced by a vector 

D(x,y,z) to map it to its corresponding location in the end inspiration image. The Jacobian 

J of this transformation is:   
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(13) 
 

where I is the identity matrix, Dx(x,y,z) is the x component of D(x,y,z), Dy(x,y,z) is the y 

component of D(x,y,z), and Dz(x,y,z) is the z component of D(x,y,z). The Jacobian 

operator is used to extract volume changes on a voxel level directly from the deformation 

field. The determinant of the Jacobian is calculated at each voxel position according to 

equation (13). If the determinant of the Jacobian is unity then no expansion or contraction 
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in the function D(x,y,z). If the determinant is greater than one, there is local tissue 

expansion, if less than one, there is local tissue contraction.  

 

2.5.2 ΔV Ventilation 
 

The ΔV method is a direct geometrical calculation of the volume change 70. Each 

cuboid volume in a CT is composed by 8 neighboring voxels as vertices. This cuboid can 

be used to represent the volume of the voxel. These vertices, as seen in image 1 of Figure 

6, are changed to create a 12-face polyhedron in image 2. The polyhedron is still 

comprised by the 8 vertices, however, it is now deformed and the correspondence 

between the deformed vertices and the original ones is established by deformable image 

registration. The cuboid and the polyhedron are comprised of 6 tetrahedrons, as seen in 

Figure 7(A) and (B). The volumes of the cuboid and the deformed polyhedron are the 

sums of the volumes of their corresponding tetrahedrons. During the local volume change 

calculation, the volume of each voxel is calculated using the corresponding vertices of 

each respective polyhedron.  
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Figure 6.  A cuboid in image 1 that represents a voxel (x,y,x) deforms to a 12-face 

polyhedron in image 2. Both images have 8 vertices, which define the same local volume 

at different respiratory phases. Used with permission. 38 

 

 

 

Figure 7.  (a) A cuboid can be divided in 6 tetrahedrons. (b) The deformed cuboid, now a 

polyhedron, is composed of 6 deformed tetrahedrons. Used with permission. 38 
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The fundamental volume calculation derives from calculating the volume of each 

tetrahedron. The volume of tetrahedron is calculated by using the coordinates of its 4 

vertices: 

,6/)]()[()( adacabV 
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where dcba
 ,,,  are the vertices of the tetrahedron as vectors. The volume of a given 

polyhedron is calculated by summing the volumes of the six tetrahedrons. The 

coordinates of the deformed tetrahedron are given by the deformation matrix, which is 

derived from the DIR of the original voxel. 

 

 

2.5.3 HU Ventilation 
 

The HU method uses deformable image registration to correlate voxels from the 

expiration image set to the anatomically corresponding dvoxels in the inspiration image.  

Then the change in density is calculated by direct comparison of Houndsfield Units 

(HUs) 32, 35.   

1000
HUFair −=  

 
(15) 

 

)1( 21

12

FF
FF

V
V

ex −
−

=
∆

 
 

(16) 
 

Let 1F  be the fraction of air in the exhale CT volume, and 2F the fraction of air in the 

inhale CT volume:  
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Substitute equation (15) in to equation (17): 
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Simplifying further we get to the final equation: 
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2.6 Cases 
 

Twenty patients, ten lung and ten esophageal cancer patients, treated using 

external beam radiotherapy were selected for the retrospective study. The patients and 

4D-CT image characteristics of the 20 cases utilized in this study are given in Table 1. 

Free breathing 4D-CT image sets were collected on a Philips Large Bore Brilliance 16 

slice scanner (Philips Oncology Systems, Cleveland Ohio).  The CT sinogram data were 

binned into 10 phases based on bellows on the abdomen using the method described by 

Keall et al. 71  
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Table 1.  Ventilation cases. The patient data included in this study are summarized. 
 

Case 
number  

 
Malignancy 

4D-CT image  
dimension 

4D-CT voxel  
dimension (mm) 

1 Eso ca. 512×512×137 0.976×0.976×3 
2 Eso ca. 512×512×128 0.976×0.976×3 
3 Eso ca. 512×512×107 0.976×0.976×3 
4 Eso ca. 512×512×130 1.17×1.17×3 
5 Eso ca. 512×512×114 1.17×1.17×3 
6 Eso ca. 512×512×129 1.17×1.17×3 
7 Eso ca. 512×512×130 1.17×1.17×3 
8 Eso ca. 512×512×106 1.17×1.17×3 
9 Eso ca. 512×512×115 1.17×1.17×3 

10 Eso ca. 512×512×123 1.17×1.17×3 
11 NSCLC 512×512×145 1.17×1.17×3 
12 SCLC 512×512×125 0.976×0.976×3 
13 NSCLC 512×512×107 0.976×0.976×3 
14 NSCLC 512×512×110 0.976×0.976×3 
15 SCLC 512×512×145 1.17×1.17×3 
16 SCLC 512×512×118 1.17×1.17×3 
17 NSCLC 512×512×145 1.17×1.17×3 
18 NSCLC 512×512×128 0.976×0.976×3 
19 SCLC 512×512×127 1.17×1.17×3 
20 SCLC 512×512×122 1.17×1.17×3 

Abbreviations: Eso ca. = esophagus cancer; NSCLC = non-small cell lung cancer;                                                             
SCLC = small cell lung cancer. 
 

2.7 Image Analysis 
 

2.7.1 Ventilation Dependence on the DIR  
 

We compared ventilation images calculated with the three DIR methods by 

calculating the DSC index between images that were calculated with the same ventilation 

algorithm but different DIR method, as illustrated in Figure 8. The process was repeated 

for images calculated with the second, and then the third ventilation algorithm. This 

analysis was done for all 20 cases.  
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Figure 8.  Schematic illustration representing the study of ventilation 

dependence on the DIR algorithm used. 

 

2.7.2 Ventilation Dependence on the Ventilation Algorithm 
 

To calculate ventilation dependence on the ventilation algorithm (VA), images 

calculated with the three different VAs, but same DIR, were compared to each other via 

the DSC index then repeating the process for images calculated with the second and third 

DIR method. The process is illustrated with a schematic shown in Figure 9. 

 
 

Figure 9.  Schematic illustration representing the study of ventilation 

dependence on the ventilation algorithm used. 
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2.7.3 Retrospective Image Analysis 
 

4D-CT sets from twenty patients, ten lung and ten esophageal cancer patients, 

treated with external beam radiotherapy were selected for the retrospective study. 4D-CT 

image sets were collected on a Philips Large Bore Brilliance 16 slice scanner (Philips 

Oncology Systems, Cleveland Ohio).  The CT sinogram data were binned into 10 phases 

based on bellows on the abdomen using the method described by Keall et al. 71  The pixel 

size of the 4D-CT images, for thirteen cases, was approximately 1.17×1.17×3 mm3 (3 

mm slice thickness). Seven had a pixel size of 0.976×0.976×3 mm3 in the transaxial slice 

of the 4D-CT images.    

 

2.7.4 Dice Similarity Coefficient (DSC) 
 

Dice similarity coefficient analysis was performed on the ventilation images 72, 73. 

Overlap between the two volumes was assessed with the Dice similarity coefficient 

index. DSC index is a measure of the degree of overlap between two areas or volumes. 

For a reference volume A and a volume B to be compared to the reference Dice similarity 

coefficient is:  

BA
BA

DSC(A,B)
+

×
=

2

 
 

(20) 
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DSC is defined as twice the shared information (intersection) over the sum of the 

two volumes. The DSC index is a measure of the amount of association between two 

methods compared. The values of DSC index range from 1.0 and 0.0. A DSC index of 

1.0 indicates a complete overlap of the two methods examined whereas a DSC index of 

0.0 indicates no overlap between the methods examined, and intermediate values give 

proportional amount of overlap. 

 

 

Figure 10.  Dice similarity coefficient.  
 

A threshold of lower and upper 20% ventilation was used to compare images to 

eachother. Thresholded volumes with their respective ventilation values were created for 

each image and then compared to each other.  That is the lower 20% ventilation in one 

image was compared to the lower 20% ventilation in the second image. The overlap, or 

the similarity between the two volumes was calculated using the DSC index. 

Additionally, the images that were thresholded with the upper 20% ventilation were 

compared using the DSC index.    

Volume A Volume B 

Intersection 
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2.7.5 Ventilation Image Differences 
 

Differences between the ventilation images generated by the ΔV method using 

OF, DM and DD registration were examined using image to image differences.  

Additionally, differences between the ventilation images generated by the Jacobian, ΔV, 

and HU methods using OF registration were examined using image to image differences. 

Image B was subtracted from image A which resulted in image C. A histogram, as well 

as the mean and standard deviation of the image C were calculated  
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CHAPTER 3 RESULTS 
 

3.1 Validation of Deformable Image Registration Algorithms 
 

Only 39 of 41 landmarks in the POPI model were used.  Two of the landmarks 

were intentionally not used for the evaluation because one of them was outside the area 

of interest and the other one corresponded to a 4D-CT artifact.  Table 1, Table 2, and 

Table 3 show a summary of the statistics of target registration errors for the OF, DM, and 

DD algorithms. Without DIR, the average landmark distance between the end-expiration 

and end-inspiration (50% and 0%) phases was 5.7±2.5 mm, with a range of 0.6 to 12.0 

mm. The average TRE for the DIR algorithms for the 50% to 0% registration were 

1.6±0.9 mm, with a range of 0.2 to 3.7 mm for OF, 1.4±0.6 mm, with a range of 0.2 to 

3.3 mm for DM, 1.4±0.7 mm, with a range of 0.3 to 3.3 mm for DD, indicating 

registration errors were within 2 voxels. The average TRE for the 50% to 30% 

deformable registration were 1.9±1.7 mm, with a range of 0.4 to 6.3 mm for OF, 1.3±0.7 

mm, with a range of 0.2 to 3.8 mm for DM, 1.3±0.7 mm, with a range of 0.2 to 3.1 mm 

for DD, indicating registration errors were within 2 voxels.  The average landmark 

distance between the 50% and 30% phases was 3.8±2.2 mm, with a range of 0.3 to 10.0 

mm.   
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The average TRE for the 50% to 70% deformable registration were 0.9±0.7 mm, 

with a range of 0.1 to 3.3 mm for OF, 1.2±0.5 mm, with a range of 0.1 to 2.7 mm for 

DM, 0.7±0.4 mm, with a range of 0.1 to 2.1 mm for DD, indicating registration errors 

were within 2 voxels.  The average landmark difference between the 50% and 70% 

phases without any registration was 1.8±1.1 mm, with a range of 0.3 to 4.3 mm.  One 

way analysis of variance (ANOVA) was used to assess the differences between the three 

DIR methods. The differences between the TREs using OF, DM, and DD were not 

significant, p-value of 0.37.   

 

Table 2.  Summary of the magnitude of the target registration errors for the three 

deformable image registration methods, for 50%-30%, and the distances 

between landmarks without registration (NO DIR). 

phases 50%-30% 
 OF  DM DD NO 

DIR 
Mean 
(mm)  

1.9 1.3 1.3 3.8 

SD (mm)  1.7 0.7 0.7 2.2 
Max 
(mm) 

6.3 3.8 3.1 10 

Min (mm) 0.4 0.2 0.2 0.3 
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Table 3.  Summary of the magnitude of the target registration errors for the three 

deformable image registration methods, for 50%-30%, and the distances 

between landmarks without registration (NO DIR). 

phases 50%-30% 
 OF  DM DD NO 

DIR 
Mean 
(mm)  

1.9 1.3 1.3 3.8 

SD (mm)  1.7 0.7 0.7 2.2 
Max 
(mm) 

6.3 3.8 3.1 10 

Min (mm) 0.4 0.2 0.2 0.3 
 

 

Table 4.  Summary of the magnitude of the target registration errors for the three 

deformable image registration methods, for 50%-70%, and the distances 

between landmarks without registration (NO DIR). 

phases 50%-70% 
 OF DM DD NO 

DIR 
Mean 
(mm)  

0.9 1.2 0.7 1.8 

SD (mm)  0.7 0.5 0.4 1.1 
Max 
(mm) 

3.3 2.7 2.1 4.3 

Min 
(mm) 

0.1 0.1 0.1 0.3 
 

 

 
Figures 11−14 show TRE plots of the 0%-50 % registration for each point, and 

the dashed lines in these figures represent a +/- two voxel error.  Figure 11 (a) shows a 

plot of TRE in the anterior-posterior (AP) direction for the three DIR algorithms (OF, 

DM, and DD), and Figure 11 (b) shows the distance between the phases of landmarks in 
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the AP without any registration (NO DIR).  Figure 12 (a) shows a plot of TRE in the 

lateral (LAT) direction for the three DIR algorithms, and Figure 12 (b) shows the 

distance between the phases of landmarks in the LAT without any registration. Figure 13 

(a) shows a plot of TRE in the superior-inferior (SI) direction for the three DIR 

algorithms, and Figure 13 (b), shows the distance between the phases of landmarks in the 

SI without any registration. Figure 14 (a) shows the magnitude of the TRE for DIR and 

Figure 14 (b) shows the magnitude of landmark distance without DIR.   

  
 
Figure 11.  (a) Target registration errors (TRE) of the 3 DIR methods in the anterior-

posterior (AP) direction. The maximum TRE for all three DIRs was less than two voxels, 

marked with the dashed lines.  (b) The distance in AP between the landmarks without any 

registration.  
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Figure 12.  (a) Target registration error in the lateral direction. All three DIR methods 

performed similarly and had target registration error within two voxels shown by the two 

dashed lines. (b) The distance in lateral between the landmarks without any registration. 

 

  

 
Figure 13.  (a) Target registration error in the superior-inferior (SI) direction. The target 

registration errors were within two voxels shown by the two dashed lines.  (b) The 

distance in SI direction between the landmarks without any registration. 
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Figure 14.  (a) The magnitude of target registration errors for the DIR methods. The 

maximum TRE for all three methods was within two voxels as denoted by the dashed 

line. OF mean TRE = 1.6±0.9 mm, DM mean TRE = 1.4±0.6 mm, and DD mean TRE = 

1.4±0.7 mm. (b) The distances between the landmarks without any registration. The mean 

landmark distance with NO DIR was 5.7±2.5 mm. 

 

Image difference is another validation method for the DIR algorithms to 

determine the degree of accuracy of deformable registration.  Figure 15 shows a 

representative slice of the image difference for the three DIR methods and the differences 

between the two image phases without any registration (NO DIR). For the OF algorithm 

81% of voxels were within a difference of 50 HU, and 93% of the voxels were within 100 

HU. For the DM algorithm 69% of voxels were within 50 HU, and 87% within 100 HU. 

For the DD algorithm 71% of the voxels were within 50 HU, and 87% within a difference 

of 100 HU. The image differences without deformable image registration (NO DIR) 

between the moving and the target images were 50% within 50 HU, and 69% within 100 

HU. Figure 16 displays a histogram of the differences between the target and the 

deformed images as a percentage of the total voxels for all the algorithms as well as the 
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difference between the target and the moving images without a DIR to set a baseline. 

Overall differences between the DIR methods are small. 

 

Figure 15.  Image differences between the deformed and the target images for (a) NO 

DIR, (b) Optical Flow, (c) Diffeomorphic Morphons, and (d) Diffeomorphic Demons. 
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Figure 16.  Histogram of the differences between the deformed and the target images. 

The histogram shows the differences in HU between the images as a percentage of the 

total number of voxels encompassed by the region of interest. The NO DIR shows the 

HU difference between the moving and the target images. 

 

3.2 Ventilation Dependence on the DIR 
 

Figure 17 (a), (b), and (c) show coronal and axial images of the calculated 

ventilation using the ∆V ventilation method with the OF, DM, and DD deformable image 

registration algorithms.  Bright colors in the images show high ventilation and dark colors 

show low ventilation regions.  The high ventilation areas seem to correspond between the 

different methods, but the overall images are quite different from each other.   
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Figure 17.  Coronal and axial slices of the ∆V ventilation images for a representative 

patient with (a) OF, (b) DM and (c) DD deformation. 

 

Figure 18 (a), (b), and (c) show coronal and axial images of the calculated 

ventilation using the Jacobian ventilation method with the OF, DM, and DD deformable 

image registration algorithms.  A visual inspection shows that the images in A and C 

have a good correspondence between the high and low ventilation areas; however, the 

image in B seems to be quite different from the other two.  
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Figure 18.  Coronal and axial images of Jacobian ventilation images with OF (a), DM (b) 

and DD (c) deformation. 

 
 

Figure 19 (a), (b), and (c) show coronal and axial images of the calculated 

ventilation using the HU ventilation method with the OF, DM, and DD deformable image 

registration algorithms.   
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Figure 19.  Coronal and axial images of HU ventilation with OF (a), DM (b) and DD (c) 

deformation. 

 

Table 5 shows a statistical summary of the DSC index in the (0-20)% percentile 

range for all 20 patients comparing the ∆V, Jacobian, and HU ventilation calculated using 

the OF, DM, and DD deformation algorithms. DSC for 20% of low ventilation volume 

for ΔV was 0.33 ± 0.03 between OF and DM, 0.44 ± 0.05 between OF and DD and 0.51 

± 0.04 between DM and DD. The similarity comparisons for Jacobian was 0.32 ± 0.03, 

0.44 ± 0.05 and 0.51 ± 0.04 respectively, and for HU 0.53 ± 0.03, 0.56 ± 0.03 and 0.76 ± 

0.04 respectively. As presented in Table 6, DSC for the (80-100)% percentile ventilation 

showed trends similar to the lower ventilation.  
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Table 5.  Dice similarity coefficient between deformation pairs for the lowest (0-20)% 

ventilation. 

Vent. ∆V Jacobian HU 
 
DIR 

OF 
DM 

OF 
DD 

DM 
DD 

OF 
DM 

OF 
DD 

DM 
DD 

OF 
DM 

OF 
DD 

DM 
DD 

Mean 0.33 0.44 0.51 0.32 0.44 0.51 0.53 0.56 0.76 
SD 0.03 0.05 0.04 0.03 0.05 0.04 0.03 0.03 0.04 
MIN 0.28 0.28 0.41 0.28 0.31 0.43 0.47 0.52 0.66 
MAX 0.39 0.51 0.58 0.37 0.51 0.57 0.56 0.60 0.82 
 

Table 6.  Dice similarity coefficient between deformation pairs for the highest (81-100)% 

ventilation. 

Vent. ∆V Jacobian HU 
DIR OF 

DM 
OF 
DD 

DM 
DD 

OF 
DM 

OF 
DD 

DM 
DD 

OF 
DM 

OF 
DD 

DM 
DD 

Mean 0.33 0.50 0.42 0.32 0.50 0.42 0.41 0.43 0.65 
SD 0.03 0.07 0.04 0.03 0.06 0.04 0.03 0.02 0.07 
MIN 0.25 0.26 0.36 0.25 0.31 0.36 0.36 0.40 0.52 
MAX 0.39 0.58 0.50 0.37 0.58 0.51 0.45 0.46 0.77 
 

Figure 20 (a) and (b) are plots of the DSC for the lowest and highest 20% 

ventilation for all 20 patients, respectively, for the ∆V, Jacobian, and HU methods 

calculated using the OF, DM, and DD DIR algorithms. This figure shows the dice 

comparisons between each DIR method.  
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Figure 20.  Dice similarity coefficient (DSC) index. (a) Comparisons between OF, DM 

and DD deformation with V, Jacobian, and HU ventilation for the low est 20% 

ventilation, and (b) for the highest 20% ventilation. 

 

Table 7 shows the mean and SD values for ventilation image differences 

calculated with the ∆V method using OF, DM and DD for DIR. Figure 21 shows a 

histogram of the differences between ventilations calculated with ∆V and the three DIR 

methods. Note that the standard deviation between OF-DM and OF-DD is much larger 

than that of DM-DD indicating a smaller difference between ventilation calculated with 

DM and DD. The histogram representing DM minus DD is nearer zero compared to the 

ones for OF minus DM and OF minus DD.  
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Table 7.  Ventilation differences for ∆V comparing deformation methods. 

 ∆V 

 OF-DM OF-DD DM-DD 

Mean -0.011 -0.012 -0.011 

SD 0.27 0.25 0.16 

 

 
Figure 21.  Difference histogram for the ∆V ventilation comparing deformations. 

 

Figure 22 is a graphical display of the ventilation differences between the 

methods discussed. Note that Figure 22 (c) is generally a darker image, indicating smaller 

differences between the methods, compared to either of Figure 22 (a) or (b). 
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Figure 22.  Ventilation image differences for ∆V between (a) OF-DM, (b) OF-DD, and 

(c) DM-DD. 

 

3.3 Ventilation Dependence on the VA 

 

Figure 23 (a), (b), and (c) show coronal and axial images of the calculated 

ventilation using the ∆V, Jacobian, and HU ventilation methods with the OF deformable 

image registration algorithm.  By visual observation of Figure 23 we can see that there is 

a higher degree of overlap between the ∆V and the Jacobian ventilation images.  
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Figure 23.  Coronal and axial images of (a) ∆V, (b) Jacobian, and (c) HU ventilation with 

OF deformation. 

 
Figure 24 (a), (b), and (c) show coronal and axial images of the calculated 

ventilation using the ∆V, Jacobian, and HU ventilation methods with the DM deformable 

image registration algorithm.   
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Figure 24.  Coronal and axial images of (a) ∆V, (b) Jacobian, and (c) HU ventilation with 

DM deformation. 

 

Figure 25 (a), (b), and (c) show coronal and axial images of the calculated 

ventilation using the ∆V, Jacobian, and HU ventilation methods with the DD deformable 

image registration algorithm.   
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Figure 25.  Coronal and axial images of (a) ∆V, (b) Jacobian, and (c) HU ventilation with 

DD deformation. 

 

The DSC index for using OF as DIR, as shown in Figure 26 and Table 8, was 0.86 

± 0.01 between ΔV and Jacobian, 0.28± 0.04 between ΔV and HU, and 0.28 ± 0.04 

between Jacobian and HU respectively. The DSC index for using DM as DIR was 0.88 ± 

0.01 between ΔV and Jacobian, 0.34± 0.04 between ΔV and HU, and 0.35 ± 0.04 

between Jacobian and HU respectively, and for DD 0.88 ± 0.01, 0.36 ± 0.04 and 0.37 ± 

0.04 respectively. The DSC index values for the highest 20% ventilation were close to the 

ones for the lowest 20% ventilation as shown in Table 9. Detailed DSC values for all 

twenty patients are given in Tables A1, A2, A3, and A4 in the appendix section.  
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Table 8.  Dice similarity coefficient between ventilation pairs for the lowest (0-20)% 

ventilation. 

 
DIR Optical Flow Diffeomorphic Morphons Diffeomorphic Demons 
Vent. ∆V&J ∆V &HU J&HU ∆V &J ∆V &HU J&HU ∆V &J ∆V &HU J&HU 
Mean 0.86 0.28 0.28 0.88 0.34 0.35 0.88 0.36 0.37 
SD 0.01 0.04 0.04 0.01 0.04 0.04 0.01 0.04 0.04 
MIN 0.80 0.21 0.21 0.86 0.28 0.28 0.86 0.29 0.29 
MAX 0.88 0.35 0.35 0.89 0.41 0.43 0.90 0.41 0.43 
 

Table 9.  Dice similarity coefficient between ventilation pairs for the highest (81-100)% 

ventilation. 

 
DIR  Optical Flow Diffeomorphic Morphons Diffeomorphic Demons 
Vent. ∆V&J ∆V &HU J&HU ∆V &J ∆V &HU J&HU ∆V &J ∆V &HU J&HU 
Mean 0.83 0.23 0.24 0.84 0.27 0.27 0.86 0.30 0.28 
SD 0.01 0.03 0.03 0.01 0.05 0.04 0.02 0.03 0.03 
MIN 0.81 0.18 0.18 0.82 0.21 0.21 0.83 0.26 0.23 
MAX 0.85 0.31 0.32 0.87 0.41 0.40 0.89 0.36 0.35 
 

 

Figure 26 (a) and (b) are plots of the DSC index for the lowest and highest 20% 

ventilation for all 20 patients, respectively, comparing the similarities between the images 

calculated with ∆V, Jacobian, and HU ventilation algorithms.  
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Figure 26.  Dice similarity coefficient (DSC) index between ventilation pairs. (a) DSC 

index for OF, DM, and DD deformation for the lowest 20% ventilation, and (b) DSC 

index for OF, DM, and DD deformation for the highest 20% ventilation. 

 

Table 10 shows the mean and SD values for ventilation image differences 

between the ∆V, Jacobian, and HU methods with OF as the DIR method. Figure 27 

shows a histogram of the differences between these methods. Note that the differences 

between the ∆V and HU, and Jacobian and HU are much larger than the differences 

between the ∆V and Jacobian indicated by the SD in the table and their histograms in the 

figure. Figure 28 (a) is generally a darker image, indicating smaller differences between 

the methods, compared to either of Figure 28 (b) or (c). 
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Table 10.  Ventilation differences for OF comparing ventilations. 

 
 OF 

 ∆V-J ∆V-HU J-HU 

Mean -0.10 0.015 0.014 

SD 0.10 0.29 0.29 

 

 

Figure 27.  Difference histogram for the ∆V ventilation comparing ventilations. 

 

 

Difference Histogram

-0.4 -0.2 -0.0 0.2 0.4

50000

100000

150000

200000 ∆V minus J
∆V minus HU
J minus HU

Ventilation Difference

F
re

qu
en

cy



59 
 

 

Figure 28.  Ventilation image differences for OF between (a) ∆V minus Jacobian, (b) ∆V 

minus HU, and (c) Jacobian minus HU. 
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CHAPTER 4 DISCUSSION 
 

Various groups have used different models to validate image registration 

algorithms. Janssens et al used metallic fiducial markers implanted inside a homogeneous 

phantom to evaluate deformable image registration with Morphons and Demons. 64 There 

are several issues with using phantoms for evaluating DIR methods. Phantoms in general 

are not deformed in the same manner as a normal patient’s anatomy; they also deform 

reproducibly, thus producing superior 4D-CT image sets without the variability of actual 

patient breathing. The deformations of the phantom may also be more predictable and 

smoothly varying. Phantoms are a good method for testing DIR, but results may not be 

directly related to 4D-CT imaging of patients.  

 

In a different study, Janssens et al reported similar results to ours when validating 

Diffeomorphic Morphons and Diffeomorphic Demons using the POPI model. 74 They 

found that the mean target registration error for Diffeomorphic Morphons was 0.9±0.5 

mm, and a maximum of 2.8 mm, the mean target registration error for Diffeomorphic 

Morphons was 1.0±0.5 mm and a maximum of 2.8 mm. The reason for the differences 

between our results may be due to the differences in image resolution as the voxel size 

for their study was 2×2×2 mm3. 
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Wang et al tested the Demons method on three different cases using a model 

based on real patient data. 75 In the first case they used CT images from a prostate patient, 

and then mathematically deformed the images in a well defined manner. In the second 

case they used CT images from a head-and-neck patient, and then mathematically 

deformed the images, and in the third case they used a deformable pelvis phantom. They 

found that the mean error for the first case was 0.5±1.5 mm, for the second case 0.2±0.6 

mm, and 0.8±0.5 mm for the third case. Although this is a more advanced model than 

phantom measurements to test the accuracy of the deformation method this method also 

lacks patient variability and consequently may overestimate the accuracy of the 

technique.  

 

Castillo et al evaluated the OF method using a large number of landmarks 76. 

They tested image registration with voxel size 5×5×5 mm3 and found that the mean 

registration error for this method was 6.9±0.1 mm.  This method is similar to the model 

we used for our validation because it is based on anatomical landmarks.  The voxel size 

used for this study is quite large and may not reflect the clinical situation; the CT voxel 

size of the POPI model used in our validation was 0.97×0.97×2 mm3.  Additionally, they 

tested a landmark based deformable image registration method and found that it 

performed better than the OF method (error of 2.05±0.02 mm).  As one would expect, 

using landmarks to evaluate a landmark based algorithm may yield too optimistic results. 

Additionally, Castillo et al found the error in OF was greater than using no DIR at all for 

4 out of the 5 cases they reported.  
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Voxel size also has an influence on the accuracy of the DIR.  In all these 

validation studies the voxel size will directly determine a lower limit of accuracy that can 

be reached using DIR.  For example the slice thickness is the limiting factor on the 

accuracy of the landmark points in the superior–inferior direction because a point may lie 

in between two slices which would make it hard to identify by the radiologist on the two 

image sets.  In addition the image sets used are from a 4D-CT, which may make the 

identification of landmarks less clear than identifying landmarks on a breath-hold CT.  

Therefore, we consider the registration accuracy in validation study for the three DIR 

algorithms to be acceptable as the mean target registration errors are below the slice 

thickness. This is comparable to the validation study for Demon’s algorithm reported by 

Vandemeulebroucke et al.  

 

The POPI model is published and used by many groups for validation studies. 66, 

67, 74, 77 The task of manually selecting landmarks is difficult, tedious, and time 

consuming. In addition, selecting landmarks in the end-expiration phase is more difficult 

because of the change of density of the lung. 67  Given the difficulties of manual 

landmark selection, only one set of 4D-CT data is available in the model. Thus in this 

study, one set of data with 39 points was used in the validation.  

 

DIR algorithms are also evaluated by studying the image difference between the 

deformed image and the target image. The smaller the difference between the deformed 

and the target images the better the DIR algorithm. HU values in the lung for the CT sets 

used ranged from -922 to near 0. This large range in values can potentially lead to large 
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differences when comparing two images if they are not perfectly aligned. In the case of 

the differences between the deformed image and the target image, large differences in 

HU are due to the variations at interfaces within the lung. The interfaces between the 

blood vessels and other parts of the lung may lead to large differences in HU between 

image sets. 

 

While the validation results show that all three DIR methods perform well, we 

speculate that how DIR methods address the imperfection of the 4D-CT images may 

contribute to some of the inaccuracies observed.78  Each method has its own strengths 

and weaknesses.  The DM method is based on matching edges and lines in a voxel and if 

an image has an artifact then that artifact would propagate throughout the process of 

image deformation.  On the other hand, the OF and DD methods are intensity based 

registration methods, and they may deal differently with an image artifact.  Additionally, 

the DM and DD methods have smoothing filters applied to their deformation fields which 

may lead to additional differences in image deformation. 

 

When compared to the HU method, ∆V and Jacobian are very different. DSC 

index shows only about 30% similarity between these methods and the HU method [see 

Figure 26]. The HU method is a density based ventilation calculation method. DSC 

index, shown in Figure 20, suggests that the HU method is less dependent on the DIR 

used and depends more on the CT image quality due to the inherent noise of HUs in 

normal CT imaging. 
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The dependence on the DIR used appears to be smaller for the HU ventilation 

algorithm.  If most of the lung is similar in density, i.e. a mixture of blood vessels and 

alveolar, then the effects of any misregistrations will be small because of the similar 

densities.  However, if there is a misregistration between lung and much denser tissue, 

such as chest wall or large artery, then the change in HU is quite significant.  The HU 

algorithm screens for these voxels with very large change in HUs and then excludes these 

voxels in the ventilation image.  However HUs for low density objects tend to be quite 

noisy.  To overcome this issue Castillo et al 29 smoothed the DIR using a cube of 5×5×5 

voxels then also smoothed the ventilation image using a box filter of 9×9×3 voxels.   

 

The dependence of the ventilation image on the DIR seems to be more significant 

for the ∆V and Jacobian methods.  With these algorithms a large misregistrations will 

result in a significant over or under estimation of the local ventilation. While smoothing 

does mitigate this effect somewhat, the benefit of smoothing has a smaller effect for these 

algorithms than for the HU algorithm.  However, the benefits of high resolution 

ventilation imaging degrade with smoothing.   

 

The need for smoothing for the ∆V and Jacobian methods comes from these 

misregistrations of the end expiration and inspiration image sets. The source of the 

misregistration issues comes directly from the 4D-CT itself.  Currently there are two 

commercially available techniques for 4D-CT imaging.  The first uses a cine acquisition 

(GE medical systems), which bins rapidly axial images based on a breathing trace.  This 

method produces slab artifacts that are clearly visualized on sagital and coronal 
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reconstructions with the width of each slab corresponding to the transaxial collimation 

used in the 4D-CT acquisition.  The second acquisition technique bins the sinogram data 

itself then reconstructs each phase on this binned sinogram data (Philips and Siemens).   

The artifacts are generally less pronounced in this imaging technique; however, both 

methods produce significant artifacts when patients breathe irregularly.  Due to 

limitations of CT scanners and the ability of a patient to breathe reproducibly most 4D 

image sets present with imaging artifacts that are unique to 4D acquisitions.      
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CHAPTER 5 CONCLUSION 

 

We validated all three DIR methods (intensity based and structure based methods) 

using the POPI model, which is a landmark based model. We also used image differences 

to evaluate the accuracy of DIR methods. For normal end-expiration to end-inspiration 

registration all three methods show a maximum target registration error of less than 4 

mm, or two voxels, with insignificant differences between them (P=0.37).  The mean 

target registration error for each of the registration algorithms was less than the slice 

thickness of the 3D CT volumes, which suggests that the deformable registrations done 

be either of the methods are quite accurate. Additionally, image differences between the 

target and the deformed images did not show much variation between the DIR methods.  

 

Ventilation calculation from 4D-CT demonstrates some degree of dependency on 

the DIR algorithm employed.  HU shows a smaller dependence on the choice of DIR, 

however, its weakness lies with its dependence on the image quality due to the effects of 

noise in the CT image intensities.  Similarities between ΔV and Jacobian are higher than 

between ΔV and HU and between Jacobian and HU.  This shows that ΔV and Jacobian 

are very similar, but HU is a very different ventilation calculation method.  
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CHAPTER 6 FUTURE WORK 

 

There are two projects that have been planned to continue the study on high 

resolution ventilation imaging based on 4D-CT. The first is to compare calculated 

ventilation images based on 4D-CT to the ones acquired with SPECT. We hypothesize 

that high resolution ventilation image based on 4D-CT correlates with the current state-

of-the-art ventilation image using SPECT. We plan to test this hypothesis by comparing 

regions of poor ventilation on SPECT images to ventilation images based on 4D-CT 

using the DSC index.  

 

The second project is to do a before and after study on patients to determine the 

effects of radiation on ventilation.  Lung toxicity is one of the biggest concerns in 

thoracic radiation treatment planning.  It would be ideal to assess lung ventilation in order 

to derive structures that could be avoided during treatment and therefore to minimize 

dose to the part of the lung that functions better.   
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APPENDIX A  EXTRA TABLES 
 
 
Table A1. Raw values of Dice similarity coefficient (DSC) index between deformations 

for the lowest (0-20)% ventilation for all 20 patients. 

 
  ∆V J HU 

Case 
number 

OF 
DM 

OF 
DD 

DM 
DD 

OF 
DM 

OF 
DD 

DM 
DD 

OF 
DM 

OF 
DD 

DM 
DD 

1 0.33 0.45 0.52 0.31 0.45 0.52 0.53 0.59 0.77 
2 0.28 0.39 0.50 0.28 0.35 0.51 0.47 0.52 0.76 
3 0.33 0.44 0.54 0.32 0.43 0.54 0.51 0.55 0.77 
4 0.37 0.47 0.55 0.37 0.46 0.56 0.53 0.57 0.81 
5 0.32 0.47 0.53 0.33 0.47 0.53 0.53 0.56 0.76 
6 0.31 0.41 0.53 0.31 0.41 0.53 0.53 0.57 0.76 
7 0.32 0.44 0.55 0.31 0.44 0.55 0.55 0.58 0.80 
8 0.39 0.46 0.58 0.37 0.45 0.57 0.55 0.60 0.80 
9 0.33 0.48 0.51 0.33 0.47 0.51 0.55 0.60 0.78 

10 0.28 0.28 0.51 0.28 0.31 0.52 0.52 0.52 0.76 
11 0.29 0.41 0.41 0.31 0.43 0.43 0.50 0.55 0.71 
12 0.29 0.45 0.51 0.29 0.44 0.51 0.53 0.56 0.77 
13 0.33 0.46 0.48 0.33 0.46 0.48 0.50 0.53 0.71 
14 0.35 0.46 0.53 0.35 0.44 0.53 0.51 0.54 0.82 
15 0.29 0.44 0.43 0.29 0.44 0.44 0.55 0.59 0.69 
16 0.39 0.50 0.53 0.37 0.50 0.53 0.56 0.60 0.77 
17 0.31 0.44 0.44 0.32 0.45 0.44 0.55 0.55 0.71 
18 0.35 0.51 0.51 0.35 0.51 0.51 0.50 0.56 0.66 
19 0.33 0.43 0.53 0.32 0.43 0.53 0.50 0.55 0.77 
20 0.36 0.51 0.54 0.36 0.50 0.54 0.55 0.59 0.77 
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Table A2.  Raw values of Dice similarity coefficient (DSC) index between deformations 

for the highest (81-100)% ventilation for all 20 patients. 

  ∆V J HU 
Case 

number 
OF 
DM 

OF 
DD 

DM 
DD 

OF 
DM 

OF 
DD 

DM 
DD 

OF 
DM 

OF 
DD 

DM 
DD 

1 0.33 0.58 0.43 0.32 0.58 0.43 0.43 0.45 0.70 
2 0.29 0.40 0.40 0.29 0.40 0.40 0.40 0.40 0.68 
3 0.33 0.50 0.43 0.32 0.51 0.43 0.39 0.40 0.67 
4 0.39 0.54 0.48 0.37 0.52 0.48 0.44 0.43 0.73 
5 0.33 0.55 0.41 0.32 0.54 0.41 0.40 0.45 0.62 
6 0.36 0.48 0.44 0.36 0.48 0.44 0.40 0.43 0.63 
7 0.35 0.52 0.45 0.33 0.53 0.45 0.39 0.43 0.68 
8 0.35 0.54 0.43 0.35 0.54 0.44 0.37 0.40 0.68 
9 0.31 0.51 0.39 0.29 0.51 0.40 0.40 0.45 0.69 

10 0.25 0.26 0.40 0.25 0.31 0.39 0.45 0.40 0.73 
11 0.32 0.45 0.44 0.31 0.45 0.43 0.45 0.45 0.62 
12 0.33 0.51 0.41 0.32 0.50 0.41 0.44 0.44 0.71 
13 0.32 0.46 0.36 0.32 0.45 0.36 0.43 0.44 0.60 
14 0.36 0.50 0.50 0.33 0.47 0.51 0.43 0.44 0.77 
15 0.31 0.53 0.36 0.32 0.53 0.36 0.36 0.46 0.53 
16 0.32 0.54 0.37 0.32 0.55 0.37 0.39 0.45 0.61 
17 0.32 0.47 0.37 0.31 0.48 0.37 0.44 0.46 0.52 
18 0.35 0.56 0.40 0.36 0.55 0.40 0.43 0.43 0.57 
19 0.33 0.47 0.44 0.33 0.46 0.44 0.43 0.46 0.67 
20 0.35 0.57 0.43 0.33 0.56 0.43 0.40 0.44 0.70 
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Table A3.  Raw values of Dice similarity coefficient (DSC) index between ventilation 

algorithms for the lowest (0-20)% ventilation for all 20 patients. 

  OF  DM  DD  
Case 

number 
∆V 
& J 

∆V & 
HU 

J & 
HU 

∆V & 
J 

∆V & 
HU 

J & 
HU 

∆V & 
J 

∆V & 
HU 

J 
&HU 

1 0.86 0.31 0.32 0.87 0.36 0.36 0.88 0.41 0.43 
2 0.80 0.25 0.21 0.86 0.28 0.31 0.88 0.35 0.36 
3 0.85 0.28 0.28 0.89 0.35 0.36 0.87 0.36 0.36 
4 0.88 0.35 0.35 0.88 0.35 0.35 0.86 0.40 0.40 
5 0.86 0.25 0.26 0.88 0.33 0.33 0.89 0.37 0.39 
6 0.86 0.26 0.26 0.89 0.39 0.39 0.89 0.39 0.39 
7 0.86 0.28 0.28 0.88 0.41 0.43 0.88 0.40 0.41 
8 0.86 0.29 0.31 0.89 0.39 0.39 0.88 0.40 0.40 
9 0.87 0.31 0.31 0.88 0.33 0.33 0.88 0.39 0.39 

10 0.86 0.21 0.21 0.88 0.28 0.28 0.87 0.29 0.29 
11 0.86 0.21 0.23 0.89 0.29 0.29 0.90 0.29 0.31 
12 0.86 0.26 0.25 0.87 0.35 0.36 0.90 0.31 0.31 
13 0.86 0.28 0.28 0.89 0.32 0.32 0.89 0.33 0.33 
14 0.86 0.31 0.31 0.88 0.32 0.32 0.86 0.39 0.37 
15 0.86 0.23 0.23 0.89 0.35 0.36 0.90 0.29 0.31 
16 0.85 0.32 0.32 0.88 0.40 0.41 0.90 0.39 0.40 
17 0.84 0.26 0.26 0.88 0.32 0.33 0.90 0.32 0.33 
18 0.86 0.31 0.32 0.88 0.35 0.35 0.90 0.39 0.39 
19 0.86 0.28 0.28 0.88 0.35 0.36 0.88 0.41 0.41 
20 0.87 0.32 0.32 0.89 0.37 0.37 0.89 0.39 0.39 
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Table A4.  Raw values of Dice similarity coefficient (DSC) index between ventilation 

algorithms for the highest (81-100)% ventilation for all 20 patients. 

  OF  DM  DD  
Case 

number 
∆V 
& J 

∆V & 
HU 

J & 
HU 

∆V & 
J 

∆V & 
HU 

J & 
HU 

∆V & 
J 

∆V & 
HU 

J 
&HU 

1 0.81 0.21 0.25 0.83 0.21 0.21 0.83 0.31 0.28 
2 0.82 0.21 0.21 0.84 0.23 0.23 0.85 0.31 0.31 
3 0.83 0.23 0.25 0.83 0.21 0.21 0.85 0.29 0.26 
4 0.83 0.21 0.25 0.84 0.26 0.25 0.83 0.26 0.23 
5 0.83 0.26 0.28 0.84 0.26 0.26 0.86 0.33 0.32 
6 0.83 0.25 0.26 0.84 0.29 0.28 0.87 0.33 0.31 
7 0.83 0.23 0.23 0.84 0.25 0.25 0.84 0.31 0.28 
8 0.82 0.18 0.20 0.83 0.25 0.23 0.84 0.28 0.26 
9 0.82 0.23 0.25 0.83 0.25 0.25 0.84 0.29 0.29 

10 0.83 0.18 0.18 0.84 0.25 0.26 0.84 0.29 0.31 
11 0.85 0.21 0.23 0.87 0.28 0.25 0.89 0.29 0.28 
12 0.83 0.26 0.28 0.83 0.29 0.28 0.87 0.32 0.28 
13 0.82 0.21 0.23 0.84 0.28 0.26 0.86 0.28 0.25 
14 0.82 0.23 0.25 0.85 0.25 0.25 0.83 0.31 0.28 
15 0.84 0.20 0.21 0.85 0.32 0.31 0.89 0.26 0.25 
16 0.82 0.23 0.26 0.82 0.32 0.31 0.86 0.32 0.29 
17 0.83 0.31 0.32 0.83 0.29 0.28 0.88 0.36 0.35 
18 0.83 0.25 0.28 0.86 0.41 0.40 0.87 0.31 0.28 
19 0.83 0.25 0.26 0.84 0.32 0.32 0.86 0.33 0.32 
20 0.82 0.20 0.23 0.84 0.26 0.25 0.85 0.29 0.26 
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