
University of South Florida
Scholar Commons

Graduate Theses and Dissertations Graduate School

2005

Dissecting out the contribution of cognitive, social,
and physical activities to environmental
enrichment's ability to protect Alzheimer's mice
against cognitive impairment
Jennifer R. Cracchiolo
University of South Florida

Follow this and additional works at: http://scholarcommons.usf.edu/etd

Part of the American Studies Commons

This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate
Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact scholarcommons@usf.edu.

Scholar Commons Citation
Cracchiolo, Jennifer R., "Dissecting out the contribution of cognitive, social, and physical activities to environmental enrichment's
ability to protect Alzheimer's mice against cognitive impairment" (2005). Graduate Theses and Dissertations.
http://scholarcommons.usf.edu/etd/2838

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholar Commons | University of South Florida Research

https://core.ac.uk/display/154468405?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F2838&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F2838&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu?utm_source=scholarcommons.usf.edu%2Fetd%2F2838&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F2838&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F2838&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F2838&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/439?utm_source=scholarcommons.usf.edu%2Fetd%2F2838&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu


  

 

Dissecting Out the Contribution of Cognitive, Social, and Physical Activities to 

Environmental Enrichment’s Ability to Protect Alzheimer’s Mice Against Cognitive 

Impairment 

 

by 

 
 
 

Jennifer R. Cracchiolo 
 
 
 
 
 

A thesis submitted in partial fulfillment 
of the requirements for the degree of 

Master of Science 
Department of Arts and Sciences 

College of Biology 
University of South Florida 

 
 
 

Major Professor: Gary W. Arendash, Ph.D. 
Fredrick Essig, Ph.D. 

Huntington Potter Ph.D. 
 
 

Date of Approval: 
July 29, 2005 

 
 
 

Keywords: Memory, Radial Arm Water Maze, Behavior, Neurodegenerative Diseases, β-
Amyloid 

 
© Copyright 2005, Jennifer R. Cracchiolo 



 i 

 
 
 
 
 
 

Table of Contents 
 

List of Tables ..................................................................................................................... iii 

List of Figures.................................................................................................................... iv 

Abstract............................................................................................................................... v 

Alzheimer’s Disease Background....................................................................................... 1 

Behavior Associated with Alzheimer’s Disease ............................................................. 2 
Pathology Associated with Alzheimer’s Disease ........................................................... 5 

β-Amyloid & Neurofibrillary Tangles........................................................................ 5 
Neuronal Loss, Synaptic Loss, Brain Atrophy ......................................................... 11 

Genetics of Alzheimer’s Disease .................................................................................. 14 
Amyloid Precursor Protein ....................................................................................... 15 
The Presenilins.......................................................................................................... 16 
Apoliprotein .............................................................................................................. 17 

Risks of Alzheimer ’s Disease ...................................................................................... 17 
Diagnosis of Alzheimer’s Disease ................................................................................ 21 
Treatment of Alzheimer’s disease ................................................................................ 27 

Animal Models of Alzheimer’s Disease........................................................................... 31 

The PDAPP Mouse Model of Alzheimer’s Disease ..................................................... 32 
PDAPP Pathology..................................................................................................... 33 
Behavior of PDAPP Model....................................................................................... 37 

APP Swedish Mutation Transgenic Mouse Line .......................................................... 41 
APPsw Brain Pathology............................................................................................ 41 
APPsw Behavior ....................................................................................................... 44 

APP Swedish + PS1 Mutation Transgenic Mouse Model ............................................ 49 
APPsw +PS1 Pathology............................................................................................ 49 
Behavior of APP+PS1 Mice ..................................................................................... 53 

APP Mutant Mice: Imperfect Transgenic Model.......................................................... 58 
Environmental Enrichment ............................................................................................... 61 

Enriched Environment Protection and Treatment: Human Studies.............................. 61 
Effects of Enriched Environment in Rodents ............................................................... 65 

Cognitive Effects of Enriched Environment in Rodents........................................... 65 



 ii 

Neurohistologic and Neurochemical Effects of Environmental Enrichment in 
Rodents ..................................................................................................................... 69 
Effects of Environmental Enrichment in “Alzheimer’s” Transgenic Mice .............. 75 

Complete Environmental Enrichment versus Its Components ..................................... 82 
Specific Aims.................................................................................................................... 86 

Material and Methods ....................................................................................................... 88 

Animals & General Protocol......................................................................................... 88 
Enriched Environments................................................................................................. 89 
Behavioral Assessment ................................................................................................. 90 
Tissue and Blood Collection......................................................................................... 94 
Corticosterone Quantification....................................................................................... 95 
Extraction of Brain Protein for Sandwich Enzyme-Linked Immunosorbent Assay 
(ELISA)......................................................................................................................... 95 
Blood Cytokine Levels ................................................................................................. 97 
Golgi Cox Analysis....................................................................................................... 98 
Statistical Analysis........................................................................................................ 99 

Results............................................................................................................................. 101 

Behavioral Analysis .................................................................................................... 101 
Neuropathologic Measures ......................................................................................... 112 
Factor Analysis/ Discriminant Function Analysis ...................................................... 116 
Correlation Analysis ................................................................................................... 122 

Discussion....................................................................................................................... 126 

General Summary ....................................................................................................... 126 
Behavioral Measures................................................................................................... 131 
Neuopathologic Analysis ............................................................................................ 135 
Correlations Analyses between Neuropathology, Blood Measures and Behavior ..... 139 
Multimetric Analyses (FA and DFA) ......................................................................... 141 

Reference ........................................................................................................................ 146 



 iii 

List of Tables 

 

Table 1.  Factor loading of behavioral measures, with or without pathologic 

 measures………………………………………………………………………………..118 

Table 2.  Summary of discriminant functional analyses of behavioral measures………120 

Table 3.  For all animals, a correlation matrix of behavioral measures and plasma 

cytokine levels………………………………………………………………………….123 

Table 4.  For all animals, a correlation matrix of behavioral measures and dendritic 

length/branching………………………………………………………………………..125 

 

 



 iv 

List of Figures 

Figure 1.  General protocol time line for enrichment study………………………...…...89 

Figure 2.  Y-maze Entries and Percent Spontanous Alternations………………...…....103   

Figure 3.  Circular Platform overall escape latencies…………………………...….…..104 

Figure 4.  Morris Water Maze acquisition overall and across 5 two-day blocks…........105 

Figure 5. Morris Water Maze Memory Retention, as indexed by time spend in  

the former platform-containing quadrant, annulus crossings, and quadrant 

preference…………………………………………………………………....…….…...107 

Figure 6.  Recognition/Identification performance in Platform Recognition 

testing overall and for each of the 4 days of testing…………………………………....108 

Figure 7.  RAWM overall and final block escape latencies for Trials 1, 4 and 5….......110   

Figure 8.  RAWM escape latencies for final block Trials 4 and 5……………………..111   

Figure 9.  Plasma Corticosterone levels by treatment (housing), genotype,  

and gender………………………………………………………………………….…...113 

Figure 10. Standardized mean signal intensities for 10 plasma cytokines  

in APP+PS1 and NT mice………………………………………………….…………..114   

Figure 11. Quantification of Soluble Aβ (1-40 and 1-42) and Insoluble  

Aβ (1-40 and 1-42) in APP+PS1 mice within different housing 

environments…………………………………………………………………..………..115 

Figure 12.  Housing and transgene-dependent changes in dendritic 

 length/branching of neurons from APP+PS1 and NT mice……………………………117



 v 

 

 

 

Dissecting Out the Contribution of Cognitive, Social, and Physical Activities to 

Environmental Enrichment’s Ability to Protect Alzheimer’s (transgenic) Mice Against 

Cognitive Impairment 

Jennifer R.Cracchiolo 

Abstract 

 

Retrospective studies suggest that lifestyle activities may provide protection 

against Alzheimer s Disease (AD).  However, such studies can be inaccurate and 

prospective longitudinal studies investigating lifestyle protection against AD are both  

impractical and impossible to control for.  Transgenic (Tg+) AD mice offer a model in a 

well controlled environment for testing the potential for environmental factors to impact 

AD development.  In an initial study, Tg+ and non-transgenic (Tg-) mice were housed in 

either environmentally enriched (EE) or standard housing (SH) from 2-6 months of age, 

with a behavioral battery given during the last 5 weeks of housing. In the Morris maze, 

platform recognition, and radial arm water maze tasks, Tg+/EE mice were completely 

protected from cognitive impairment present in Tg+/SH mice and comparable to control 

Tg-/SH mice in cognitive performance.  The current study utilized the same cognitive-

based behavioral battery and multimetric statistical analysis to investigate the protective 

effects of “complete” environment enrichment (EE) versus several of its components 

(physical activity, social interactions) in AD transgenic mice.  The AD transgenic mice 
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utilized develop beta-amyloid (Aβ) deposition and cognitive impairment by 6-7 months 

of age.  Similar to our initial study, results show that “complete” EE (physical, social, and 

cognitive activities) from 2 to 8 months of age completely protected AD transgenic mice 

from cognitive impairment in tasks representing different cognitive domains − working 

memory, reference learning, and search/recognition.  In strong contrast, Tg+ mice reared 

in environments that included physical activity and social interaction, or only social 

interaction, were not protected from cognitive impairment in adulthood – enhanced 

cognitive activity was required over and above that present in these other environments.    

Through use of discriminant function analysis, EE and/or NT mice were consistently 

discriminated from the poorer performing other housing groups. The cognitive benefits 

observed in EE-housed Tg+ mice occurred without significant changes in cortical Aβ 

levels, plasma cytokine levels, or plasma corticosterone levels, suggesting involvement of 

mechanisms independent of these endpoints.  However, EE-housed Tg+ mice did have 

decreased dendritic length of neurons in the parietal cortex (but not hippocampus). 

Noteworthy is that plasma cytokine levels and hippocampal dendritic length consistently 

correlated with cognitive measures, suggesting their involvement in underlying 

mechanisms of cognitive performance.  The present work provides the first evidence that 

“complete” EE (including enhanced cognitive activity) is needed to provide cognitive 

protection against AD in a Tg+ model of the disease, while the physical and social 

activity components of EE do not alone lead to protection.  These results suggest that 

humans desiring to gain maximal environmental protection against AD should live a 

lifestyle high in cognitive, social, and physical activities together.  
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Alzheimer’s Disease Background 

  With projected life expectancy hypothesized to reach 80 by 2050, emphasis on 

health of the aging population has become a centralized area of research.  With 

achievement of such great ages comes an increase in health burdens, in particular 

neurodegenerative disorders. Of these numerous neurodegenerative disorders, 

Alzheimer’s disease (AD) has provoked immense interest in biomedical, media, and 

public health arenas. Prevalence of AD, which rises linearly with age and accounts for 

81% of dementia, effects 10% of all individuals over the age of 65 and 40% over 85 years 

of age (Evans et al., 1989).  Alzheimer’s disease has grand implications including an 

enormous monetary burden on health care systems as well as the loss of livelihood of 

patients and their family members.  Statistics suggest that cases of AD will increase 

significantly in the future, solidifying the importance of research into viable prevention 

and treatment options for the aging population. 

  The first AD patient, Auguste D., described by Alois Alzheimer, displayed what 

are now considered characteristic symptoms of AD including progressive memory loss, 

loss of social skills, and a decrease in functional language.  While Alzheimer observed 

the cognitive manifestations and basic pathological features of the disease, it was not 

until advances in microscopy that hallmark pathological features including neuritic β-

amyloid plaques and neurofibrillary tangles were described in detail.  In a time course of 

2 to 20 years patients first dwindle cognitively while motor and sensory function remain 
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relatively intact.  However, as pathological constituents ravage neuronal systems, 

phenotypic characteristics of motor diseases begin to appear in the form of irregular gaits 

and loss of coordination.  At present time only postmortem autopsy reveals absolute 

diagnosis of AD.    

The potential effects of interventions to delay the onset of AD are immense.  It is 

estimated that that there are approximately 360,000 new case of AD each year. Perhaps 

more striking is the implication of delaying onset of the disease by 5 years.  If research 

findings successfully can delay onset by 5 years, a reduction of 1.5 million cases after 10 

years and 4.04 million cases after 50 years could be witnessed (Brookmeyer et al., 1998). 

This delay could translate into billions of savings economically.   

  Enriched lifestyles may offer the medium to provide this delay of onset.  

Longitudinal studies state that engagement in mental, social, or productive activities was 

inversely related to incidences of dementia (Wang et al., 2002).  The literature would 

suggest that stimulating mental and physical activities may offer protection from 

dementia.  Research into the mechanism of these cognitive benefits still needs 

clarification.  Future investigation into the “enriched environment phenomenon” may 

offer quality of life benefits to patients and caretakers as well as a decrease in financial 

burden for health care systems.   

 

Behavior Associated with Alzheimer’s Disease  

AD is the most common form of dementia and often takes an archetypical clinical  

course which reflects the underlying expanding neuropathology.   The clinical phase of 

AD, a period of 5-10 years (Locascio et al., 1995), is characterized by short and long term 
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memory loss, paranoia, delusions, language deficit and cognitive impairment.  The 

clinical sequence of degenerative loss in AD has been described as the progression of 

functional loss of capacity.  The stages of this degeneration in many ways mirror the 

normal maturation of human development (Reisberg et al., 1999).  

Mild cognitive impairment (MCI) has been described as a transition state between 

typical aging and dementia. Ten to fifteen percent of patients diagnosed with MCI 

convert to AD annually (Petersen et al., 2001).  When diagnosing MCI, important criteria 

include the memory complaint being corroborated by an informant and second, the 

memory impairment is appropriate when age and education is considered.  MCI may be 

useful in identifying individuals functioning at normal levels who are at risk for later 

developing AD.  Such patients display normal actives of daily living and normal general 

cognitive function, however, complain of a short-term memory (Petersen et al., 1997).  

MCI has been shown to exclusivity involve short-term memory impairment (Shankle et 

al,. 2005). While many studies have shown increased rates of progression of AD with 

individuals that display MCI, there have been conflicting conclusions regarding why not 

all individuals identified with MCI progress to AD. One hypothesis suggested by 

Petersen et al. 1997 is that diagnosed MCI patient’s behavior is more heterogeneous than 

thought.  Patients diagnosed with MCI encompasses a group of individuals that may have 

a progressive form of MCI, leading to dementia, while others may not progress, simply 

remaining stagnate within the criteria for MCI.  Petersen et al. (2001) find that such 

heterogeneity requires a sub-classification. Sub-groups may include amnestic MCI, MCI 

with slight memory impairment in multiple domains, or MCI with impairment of a single 
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non-memory domain.  Subdividing MCI may result in a more reliable future diagnosis to 

patients displaying such symptoms. 

In the early stages of AD, a significant impairment of working (short-term) and 

memory is the outstanding clinical feature (Forstl & Kurz, 1999).  While memory of the 

patient’s early years and long term memory remains relatively intact, working memory 

impairments displayed in early stages of AD lead to difficulties in daily activities. The 

loss of a patient’s ability to plan, judge, and organize leads to a decrease in the patient’s 

ability to perform household chores.  Upon causal inspection language may still appear to 

be intact, however, communication begins to deteriorate due to an attenuated vocabulary.   

Other impairments may be observed in object naming and semantic memory (Chobor et 

al., 1990). Frequently early AD patients will display difficulty with driving due to the 

loss of spatial orientation.  Early, non-cognitive disturbances appear to be variable and 

mild. AD patients often show signs of depression and apathy (Forstl & Kurz, 1999).  In 

early stages of AD motor function remains relatively intact. 

     The moderate stage of AD brings a further deterioration of working memory, 

forcing the patient to “live in the past (Beatty et al., 1988).”  Language, logical reasoning, 

long term memory planning, reading and organizing significantly decline in this stage.   

Sequencing becomes impaired, leading to loss of the ability to feed and dress oneself.   

Many AD patients develop prosopagnosia making once familiar faces foreign.  

Restlessness, aggression, disorientation, and incontinence are also often found in the 

moderate stage of the illness. Psychiatric symptoms include hallucination, wandering and 

hoarding (Devanand et al., 1997).  As motor function declines at this moderate AD stage, 

risk of falls increases due to hesitant gait and stooped posture (Forstl & Kurz, 1999).   
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         Most all cognitive functions are severely impaired in the late stages of AD 

(Forstl & Kurz, 1999). Long term memory, present in mild and moderate stages of AD, 

dissipates in the final stages of the illness.  Language is reduced to single phrases or 

words.   Many patients are bedridden and enter a vegetative state.  Pneumonia followed 

by myocardial infarction and septicaemia are the most frequent cause of death in AD 

(Forstl & Kurz, 1999) 

 

Pathology Associated with Alzheimer’s Disease 

    Many major pathological processes contribute to the widespread brain 

destruction presented clinically in AD. These processes comprise the two hallmark 

pathological features of beta-amyloid plaques (Aβ) and neurofibrillary tangles (NFT), as 

well as the resultant processes of inflammation, synaptic loss, neuronal cell loss, and 

brain atrophy.  Each of these components contributes to and interrelates with each other 

in a maze of cause and effect that is still being elucidated (Rosenthal & Khotianov, 

2003).   

 

β-Amyloid & Neurofibrillary Tangles 

    The “β-amyloid hypothesis” of AD is supported by a substantial amount of 

research confirming the significance detriment Aβ plaques have on neurons as well as the 

beneficial effects seen upon prevention and clearance of these plaques (Loo et al., 1993, 

Morgan et al., 2000).  Loo et al. (1993) reported that apoptosis is induced by Aβ in 

cultured central nervous system neurons while in an animal model of AD, Morgan et al. 

(2000) found that by decreasing formation of plaques with an Aβ vaccine, memory loss is 
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prevented.  Aβ is generated from the abnormal cleavage of a much larger transmembrane 

protein called amyloid precursor protein (APP) discussed later.  The product of this 

abnormal cleavage by β- and γ-secretase results in Aβ formation within the cytoplasm 

which is taken up vesicles and released into the extracellular space (Busciglio et al., 

1993).  Once released, star-shaped compact masses of Aβ plaques begin to form (Selkoe, 

2001).  Such plaques are often associated with glia cells.  Microglia are found within and 

adjacent to the central amyloid core while the astrocytes surround the outside of the 

plaque.  The time course for the production of the detrimental, dense core Aβ plaques is 

unknown however it is assumed that the clinical phase of AD is preceded by a 15–30 year 

period of time in which continuous deposition of Aβ plaques takes place.   Plaques in the 

AD brain accumulate in the parietal, temporal cortex, and most notably in the 

hippocampus.   

    Immunohistochemical stains have revealed that the dense Aβ plaques described 

above are not the sole Aβ species found in the AD brain.  Such staining using antibodies 

show a far more extensive number of Aβ deposits than originally observed with 

congophilic stains.  Yamaguchi et al. (1988) described these diffuse type of senile 

plaques not stained by congo red in the brains of AD type dementia patients.  

Examination of the Aβ peptide revealed that the Aβ fragment either ends at amino acid 

40 or 42.  Fragments ending in Aβ42 and lacking in Aβ 40 comprise the diffuse plaques.  

In contrast, the compact variety contains primarily Aβ 40 (Iwatsubo et al., 1995).  It has 

been hypotheisisized that the diffuse, “preamyloid,” Aβ 42 plaque is a precursor to the 

compact dense plaques seen later in the AD brain (Selkoe, 2001).  Examining normal 
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aged patients as well as transgenic animal models of AD provides evidence for this 

theory. The brains of aged, cognitively normal humans often display diffuse amyloid 

deposition however often lack extensive compact barnacle like plaques found in AD 

(Wang et al., 1999).  A second support for this theory is that transgenic animals over 

expressing mutant APP first develop diffuse plaque before the later development of 

compact plaques. These observations suggest a preclinical pathology that may be a 

possible therapeutic target to alter the course of AD progression before behavioral 

symptoms appear.    

 Aβ is not confined to the neuronal extracellular space. Plaques are also found in 

the vasculature of the AD patient.  Cerebral amyloid angiopathy (CAA) is defined as 

deposition of a congophilic material in meningeal and cerebral arteries and arterioles 

within the brain. While CAA is commonly present in the aged brain, 98% of AD patient’s 

brains exhibit vascular Aβ plaques. CAA is formed when smooth muscle cells synthesize 

Aβ-40 intracellularly, which aggregates extracellularly into fibrils that then induces 

smooth muscle degeneration, making the tissues susceptible to hemorrhage. Small 

infarcts in AD patients may have limited impact on the global cognitive decline observed 

clinically in moderate to late AD.  However they may influence early stages by 

promoting an earlier development of dementia. A second concern of compromised 

vasoregulation caused by CAA is the cascade of events followed by a decrease in blood 

flow.  Vasoconstriction causing in a decrease in blood flow will result in capillary 

damage, therefore impeding glucose transport.  A decrease in the brains primary source 

of energy translates to decrease metabolism and dysfunction of neurons.  It has been 

suggested that beneficial cognitive effects observed from administration of vasodilators 
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and blood thinners such as such as ginkgo biloba and NSAIDs, respectively, may work 

through reversing this mechanism (Jellinger, 2002).   

   The presence of Aβ results in an inflammatory cascade.  In an attempt to clear the 

diffuse plaques, a robust microglia activation takes place.  Microglia cells make an effort 

to clear debris and cellular damage associated with AD.  However, in the process they 

release free radicals and cytokines, the latter of which activates astrocytes (McGeer & 

McGeer, 1995). The primary effect of microglia cells is phagocytosis and release of 

cytokines. Cytokine release attracts reactive astrocytes.  Microglia cells also release 

dangerous free radicals resulting in oxidative damage to surrounding tissue. Both the 

astrocyte’s generation of reactive oxygen species (Abramov et al., 2004) and the 

microglia release of free radicals contribute to an oxidative imbalance.  Astrocytes also 

secrete inflammatory proteins, found in plaques, such as APOE and ACT (Abraham et 

al., 1988).  These inflammatory proteins encourage the conversion of Aβ from the soluble 

to aggregated species (Ma et al., 1994). An increase in compact Aβ results in a 

mechanism of neuronal and synaptic loss (Yankner et al., 1995).  The result of this 

inflammatory cascade is a primary source of cognitive impairment observed in the 

clinical symptoms of AD behavior.   

     Braak and Braak (1991a) have described three stages in the development of 

amyloid deposition.  The first development of plaques is seen in the basal neocortex and 

the poorly myelinated temporal areas such as the perirhinal and ectorhinal cortex.  A 

second stage is reveled when the plaques begin to branch out into adjoining neocortical 

areas as well as the hippocampus.  In the final stage, dense deposits decorate all areas of 

the cortex and extend deep into the inner and outer pyramidal cell layers of the 
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hippocampal CA1 region.  Prevalence of the final stage increases with age, however 

presence of early stages can be observed in young adults.  At a late point a maximum 

density of Aβ plaques is reached, however gray matter still remains relatively free of 

plaques (Braak & Braak, 1991a).   

      Neurofibrillary tangles (NFT) are a second pathologic feature found in AD.   The 

category of NFTs encompass both the NFTs which develop within the nerve cell body as 

well as the neuropil threads (NT) which are found in the distal portions of dendritic 

processes (Braak & Braak, 1986). In the cortex, NFTs and NTs are selective for 

pyramidal cells (Braak & Braak, 1991a). These tangles result when the multifunctional 

tau protein is hyperphosphorylated.  Tau proteins are a member of the microtubule-

associated proteins (Weingarten et al., 1974).  While these proteins are found mainly in 

the brain, they are seen in trace amounts in the periphery.  The tau protein is involved in 

the assembly and stabilization of microtubules; however when this normal occurring 

protein is hyperphosphorylated, dimers of these phosphp-tau units form insoluble paired 

helical filament structures that impair axonal transport, and ultimately lead to neuronal 

death. This cascade of events leads to loss of signal across the axon and neuronal death. 

The kinase involved in the abnormal phosphorilation is unknown, however, possible 

players include Cdlk-5 and Gsk-3β which are overly active in AD (Cruz & Tsai, 2004, 

Maccioni et al., 2001). Tangle bearing neurons are found in large numbers in the frontal, 

temporal, and parietal cortex as well as in the hippocampus and amygdale (Selkoe, 2000).  

  Braak and Braak 1991a describe the evolution of NFT’s as a “gradual 

development of brain destruction which begins in a few limbic areas of the cerebral 

cortex, which then spreads in a predictable, nonrandom manner across the hippocampus, 
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the neocortex, and a number of sub cortical nuclei.”  In a pre-lesions AD brain, void of 

both Aβ plaques and NFTs, abnormally phosphorylated tau protein is observed in the 

transentornhinal cortex (Braak and Braak, 1991a).  As neurons develop NFTs in the 

transentorhinal cortex, criteria for stages I and II of AD neuropathological changes are 

meet.   It is important to note that at this stage brain changes are not significant enough to 

produce clinical behavioral symptoms.  As NFT formation progresses into stages III and 

IV, there is striking neurodegeneration with in both the entorhinal and transentorhinal 

regions.  While the neocortex remains intact there are mild changes in the hippocampus.  

It is this stage that first cognitive and personality changes are observed.  It is important to 

note that it is not the destruction of the entorhinal and transentorhinal cortices alone 

which produce the behavioral changes, but instead it is loss of communication between 

the neocortex and the hippocampus. Personality changes can be attributed to disruption of 

the limbic circuit, also seen in stages III and IV.  In end stages of AD, NFTs can be 

observed decorating virtually all subdivisions of the cerebral cortex.  Braak and Braak 

1991a make particular note of “severe destruction of neocortical association areas.”   

      The complex interaction between Aβ and NFT formation is still being 

elucidated. NFTs are not solely found in AD. Other neurodegenerative diseases lacking 

Aβ pathology have NFTs present that are indistinguishable from those found in the AD 

brain.  While these two hallmark pathological features can occur independently, Gotz et 

al., (2001) described a cause and effect interaction between the two.  Gotz et al., (2001) 

observed that injection of Aβ42 fibrils into the somatosensory cortex and hippocampus of 

5- to 6-month-old P301L tau transgenic mice caused a fivefold increases in the numbers 

of NFTs in cell bodies within the amygdale, from where neurons project to the injection 
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sites. This data would suggest that presence of Aβ induces NFT formation or at least 

accelerates its production.   Recent work by Oddo et al., (2004) showed that 

Aβ immunotherapy leads to clearance of both Aβ plaques as well as hyperphosphorylated 

tau aggregates.   The clearance of the two hallmark lesions were cleared in a hierarchal 

fashion with the clearance of Aβ plaques preceding the clearance of hyperphosphorylated 

tau.  Upon return of the lesions, the Aβ plaques returned before the tau associated 

pathology (Oddo, 2004).  This data would provide evidence in support for the “amyloid 

cascade hypotheses” stating that “accumulation of Aβ in the brain is the primary 

influence driving AD pathogenesis, and that the rest of the disease process, including 

formation of neurofibrillary tangles containing tau protein, is proposed to result from an 

imbalance between Aβ production and Aβ clearance (Hardy, 2002).” 

 

  Neuronal Loss, Synaptic Loss, Brain Atrophy 

   Neuronal loss in the entorhinal cortex, hippocampus, frontal, parietal and 

temporal cortices has been observed in AD brains.  Neurons in layer II of the entorhinal 

cortex and the CA1 region of the hippocampus are particularly vulnerable to the AD 

process (Mattson, 2004).  The pattern of neuronal death in AD is similar, to but different 

from, the pattern see in typical aging (West et al., 1994, Fukutani et al., 1995).  

Degenerative changes found in AD in the CA2, CA3, CA4 and presubiculum overlap 

changes observed in normal aging however, neuronal loss seen in  entorhinal cortex, 

CA1, and para and post subiculum, which are generally preserved in the aged 

hippocampus, die in AD (Fukutani et al., 1995).  This would suggest that AD is not 

simply an exaggerated aging process.  Neuronal death in AD is said to occur in a spatio-
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temporal pattern (Mattson, 2004).  Neuronal death occurs over a long period of time, 

suggesting that neurons drop off in small numbers over the course of the lengthy disease 

process.  The spatio-temporal pattern combined with the relatively small number of 

neurons dying at any one time would suggest that apoptosis is involved in the neuronal 

death present in AD.  In contrast to apoptosis, necrosis of neuron occurs in large number 

over a short period of time.  Due to the long pre-clinical and clinical phase and of the 

disease, death by apoptosis is a likely mechanism.  Further evidence includes altered 

expression of apoptosis-related genes such as Bcl-2 family members, prostate apoptosis 

response-4 (par-4), DNA response genes, and p53, within neurons associated with 

plaques in AD brains (Mattson, 2000) .  Other evidence for apoptosis in AD includes the 

presence of APP mutations, Aβ, and formation of NFTs are all possible trigger of the 

programmed cell death cascade (Chan et al., 2002 , Mattson, 2004).  While apoptosis 

may play a significant role in neuronal death, a combination of both necrosis and 

apoptosis most likely contributes to the profile of the AD brain.   

    Synaptic loss is established as a reliable neurobiological correlate of the 

cognitive deficits associated with AD (DeKosky & Scheff, 1990).  Synapses are 

extremely vulnerable in AD due to there high content of disease-related protein, APP and 

Presenilins, as well as their high metabolic and oxidative loads (Mattson, 2004).  

Emerging evidence suggests that synapses are not functioning optimally even before 

structural deterioration. While synaptic loss is a consequence of neuronal death, Coleman 

and Yao (2003) have shown evidence that compromised synapses are observed in living 

intact neurons in the AD brain.  Specifically the function of synapses appears to be 

compromised.  Coleman and colleagues hypothesis impaired synaptic function may be 
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due disruption in synaptic vesicle trafficking. Their recent work shows a reduced 

expression of genes related to synaptic vesicle trafficking in AD (Coleman & Yao, 2003).  

Early memory loss in AD patients has been hypothesized to be a synapse dysfunction 

caused by soluble Aβ oligomers (Lacor et al., 2004).  Aβ oligomers, present in AD brains 

as well as transgenic mouse models of AD, rapidly block LTP (Chen et al., 2000; Walsh 

et al., 2002).  The hypothesis that the AD brain contains functionally altered, however, 

structurally sound synapses offers hope that early impairment found in AD may be 

reversible with new therapeutics targeting this synapse dysfunction.   

     Calcium plays a fundamental role in learning and memory and is also involved 

in neuronal and synaptic health and function.  Disruption to calcium homeostasis in 

closely involved in the neuronal death observed in AD (Verkhratsky and Toescu, 2003). 

Bathing neurons in excess calcium induces neurotoxicity.  Improper regulation of 

intracellular calcium ions is associated with Aβ (Mattson, 1997) and NFT’s (Saito et al., 

1993).  Aβ’s oxidative stress characteristics have the ability to impair calcium pumps and 

increase influx through voltage-dependent Ca++ channels while NFT containing neurons 

show high amounts of calcium as well as hyperactivity of calcium-dependent proteases 

(Mattson, 2004).   The disruption in calcium, leading to neuronal and synaptic loss in 

AD, is the targeted mechanism by which a new class of NMDA receptor antagonist 

exploits.  

Cerebral atrophy is observed in the AD brain at autopsy as well as through 

imaging techniques.  Widening sulci and dwindling gyri comprise the gross anatomical 

features of the AD brain.  Ventricular dilation is also observed.   Annual rates of global 

brain atrophy in AD patients is about 2–3% compared with 0·2–0·5% in healthy controls 
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(Fox & Schott, 2004).  Pennanen et al. (2004) observed brain volume changes in the 

hippocampus and entorhinal cortex of patients with MCI and early stages of AD.  

“Volumes of the hippocampus and entorhinal cortex were significantly reduced in the 

following order: control > MCI > AD (Pennanen , 2004).”  In the final stages of the 

disease, Aβ and NFT’s combined with synaptic and neuronal loss can be accountable for 

a substantial loss in total brain volume.  

 

  Genetics of Alzheimer’s Disease 

       Ten percent of cases of Alzheimer’s disease suggest a familial mode of 

transmission (Selkoe, 2001).   The other 90% of cases have been described as non-

familial or sporadic cases.  Through phenotypic analysis, using identified AD related 

genes, the majority of cases appear in the absence of a genetic link.  Many investigators 

hypothesize that a lager percentage of cases will be linked to genetic predisposition as 

interrelated genes are found.  Phenotypically, familial and sporadic cases of AD are often 

indistinguishable (Selkoe, 2001).  Often the autosomal dominant form of AD will result 

in an early age of onset, however progresses as does the late onset sporadic form.   

    The genes contributing to the 10 percent of familial cases have added a great deal 

to the understanding of AD.  Mutations in 4 genes have been affirmed to increase risk of 

AD.  These include mutations in the amyloid precursor proteins (APP), presenilins 1 and 

2 genes (PS1 and PS2) as well as alteration in the apolipoprotein E alleles (ApoE).  
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Amyloid Precursor Protein 

The finding that both AD and Down Syndrome brains shared  Aβ plaques with an 

identical sequence narrowed the search for a gene involved in familial AD to 

chromosome 21 (Glenner & Wong, 1984).   These findings combined with the later 

cloning of the APP gene (Tanzi et al., 1987) set the stage for a new era in AD research.   

APP is a transmembrane polypeptide that is translated in the ER and then 

posttranslationally modified through a secretory pathway (Selkoe, 2001).  The N-terminal 

moiety of APP is projected towards the extracellular domain while the C-terminal 

projects into the cytoplasm (Neve et al., 2000).  Three major isoforms exist including 

695, 751, and 770.  APP is processed by cellular proteases known as α, β and γ 

secretases.  The benign cleavage by α-secretase at 688 results in the release of a large 

soluble fragment into the extracellular space and in turn prevents the formation of Aβ.  In 

contrast, the β-secretase cuts at residue 671 releasing an ectodomain derivative and 

exposing residue 1 of the Aβ peptide.  Previous to cleavage by β-secretase a constitute 

cleavage at 711 or 713 by  γ-secretase results in the formation of Ab40 or Ab42 

respectively. These detrimental Aβ forming cleavages increase with age and or a genetic 

mutation (discussed below).   

The missense mutations of the APP gene are rare causes of FAD.  While rare, 

these mutations represent the first findings of a genetic cause of AD.  Mutations of the 
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APP gene are strategically located near known cleavage sights indicating their effect on 

proteolytic processing of AD.  Families that carry APP missense mutations have AD 

onset before 65 and as early as 30 (Selkoe, 2001).  Mullan et al. (1992) identified a 

double mutation at codons 670 and 671 in exon 16 which co-segregated with AD in two 

large early-onset AD families from Sweden.  Base pair transversion from G to T and A to 

C results in amino acid substitutions of Lys to Asn and Met to Leu at 670 and 671 

respectively.  These mutations located at the N-terminus of the peptide increase the 

cutting of β-secretase resulting in the generation of more Aβ40 and Aβ42.  Mutations at 

the C-terminus end of APP selectively increase Ab42. The APP 717 mutation is an 

example of a single missense mutation found at the C-terminus.  This mutation replaces a 

Val for a Leu and results in the increase of γ-secretase.  An increase in γ-secretase 

increases release of Aβ peptide from the larger APP protein, resulting in an increase in 

production of Aβ 1-42.   

 

The Presenilins 

  Due to the genetically heterogeneous nature of AD, the finding of other 

autosomal dominant mutations resulting in FAD was a clear objective.   Missense 

mutations of the presenilins provide the most common cause of autosomal dominant 

cases of AD to date (Selkoe, 2001).  The presenilin mutations selectively increase γ-

secretase cleavage of C99 and C83, yielding peptides ending in Ab42.  When examining 

families harboring these mutations, an approximately two-fold increase of Ab42 was 

observed (Scheuner et al., 1996).  Currently two genes of interest make up the presenilin 

family.   The PS1 missense mutations, found on chromosome 14, have been linked to 
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families with clinical onset of AD in their 40s and 50s and as early as 30s.   A possible 75 

missense mutations have been found on the PS1 gene (Hardy, 1997).   A homologous 

PS2 gene linked to AD pathogenesis was found in a series of German families originally 

from the Volga valley in Russia (Levy-Lahad, 1995). The 3 mutations identified on the 

PS2 gene result in AD with a later and more variable age of onset than mutations in PS1 

(Hutton, 1997) 

 

Apoliprotein  

While mutations of the APP gene and the presenilins make up a small percentage 

of AD cases, the presences of the Apoliprotein E allele (ApoE) represents a major genetic 

predisposition to AD.  ApoE, located on chromosome 21, exists in three variants: ApoE2, 

ApoE3 and ApoE4.  ApoE is involved in the transport of cholesterol and is important in 

local circuits of lipids turnover (Veurink et al., 2003).  The presence of 1 or 2 copies of 

the ApoE4 species increase the risk of AD (to be discussed later) and decrease age of 

onset.  In contrast to APP and PS mutations, ApoE represents a genetic player of AD not 

inherited in an autosomal dominant fashion.  Presence of the ApoE allele is a genetic 

factor linked to late-onset AD cases.  Thus the presence of ApoE 4 precipitates the 

disorder primarily in subjects in their 60s and 70s (Selkoe, 2001).    

 

Risks of Alzheimer ’s Disease 

 There are several generally accepted risk factors of AD, while there are many 

others still under investigation. Unmodifiable risk factors include genetic mutations 

(discussed above), family history, and being a female. Head injury, diet, and education 
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levels are examples of potentially modifiable risk factors. Rising age is the principle risk 

factor in the development of AD. Of the population aged 65 years and older, the 

proportion of individuals with AD roughly doubles with each additional 10 years of age.  

By 85, over 50 % of the population has developed AD ( NIH, 1995).  This increased risk 

with age peaks at 90 and then proceeds to drop off.   First degree relatives of sporadic AD 

patients, despite no FAD association, have a lifetime risk increased by 3 or 4 fold 

(Liddell et al., 2001).  Females are also twice as likely to develop AD as males (Jorm et 

al. 1987).   

   Another major unmodifiable risk factor in the development of AD is inheritance 

of one or two copies of the ApoE4 gene.  Possession of ApoE 4 alleles increases risk of 

developing AD in a dose dependant fashion. Individuals with two copies have earlier 

onset than those possessing one allele (Corder et al., 1993). While presence of the ApoE4 

allele is not diagnostic of AD, their presence accounts for 50% of early-onset AD cases 

and 20% of late-onset cases (Rosenthal & Khotianov, 2003).  The presence of ApoE4 

alone causes increase risk in the white population while both ApoE 2 and 4 increase the 

risk in African Americans (Maestre et al., 1995).  While ApoE genotyping is 

commercially available, it offers little advantage as a prognostic indicator.  Females 

carrying  the ApoE 4 allele have a 45% probability of developing AD by age 73, while 

male have only a 25 % probability of developing AD (Breitner et al.,1999).    

      The mechanism by which presence of ApoE4 may be increasing risk of AD is still 

in need of clarification; however several hypotheses have been explored.  Gearing et al. 

(1996) showed that the extent of Aβ deposition positively correlates with the number of 

ApoE4 alleles. ApoE4 has also been shown to increase the size and density of Aβ plaques 



 19 

(Yamaguchi et al., 2001). Many suggest that theses findings are due to ApoE’s 

involvement in the clearance of soluble Aβ from the brain.  A lack of clearance may 

promote the aggregation of Aβ peptide therefore increasing insoluble Aβ form.  The 

ApoE isoforms have differential binding to Aβ (ApoE2>ApoE3>ApoE4) (Yang et al,. 

1997).  This would suggest that risk may be due to the absence of the high affinity 

binding ApoE2 form rather than the presence of the ApoE4 form.   Further evidence for 

this hypothesis is ApoE’s association with antioxidant activity.  In a step down paradigm, 

ApoE2 is the most effective antioxidant while ApoE4 is the least effective (Miyata & 

Smith, 1996). Carefully designed in vitro and in vivo experiments are still needed to 

ultimately clarify ApoE’s role in the increase risk of developing AD.   

     There are also a number of potentially modifiable risk factors of AD.  Head 

trauma has been linked to an increase risk of developing AD.  After a significant trauma 

to the human brain, both Aβ  (Roberts et al., 1994) and tau pathology (Smith et al., 2003) 

appear even in young patients (Emmerling et al., 2000).  Levels of Aβ in the CSF are also 

elevated after injury.  Repeated mild traumas have been shown to accelerate Aβ 

production and induce cognitive impairment (Geddes et al., 1999).  This correlation 

between head trauma and increase in Aβ  offers a mechanism by which head trauma 

increase risk of developing AD (Jellinger, 2004).  

Many findings support that environmental factors (including diet), are important 

variables in increasing or decreasing the risk of AD.   People of Japanese origin living in 

the United States have a 6.24% chance of developing dementia, while their counterparts 

living in the Japanese homeland have a less than 2% risk (Graves et al., 1996).  A 

possible reason for this discrepancy has been attributed to differences in diet.  Two lines 
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of research connect the high levels of total cholesterol with increase risk of AD.  The first 

direct correlation is an association between elevated midlife total cholesterol levels and 

late-life Alzheimer disease (Notkola et al., 1998).  A second point of indirect evidence is 

work showing a reduced rate of the disease in people who used statins to reduce their 

blood total cholesterol level (Jick et al., 2000). These findings combined with ApoE’s 

involvement in cholesterol transport makes for a causal web between environmental and 

genetic interaction.  Kalmijn et al. (1997) suggested that a diet high in saturated fat 

increases the risk of dementia, whereas fish consumption may decreased this risk.  Along 

with an increase in fish (omega-3 fatty acids) consumption of other dietary supplements 

have also been correlated with a decrease in risk of AD.   Reactive oxygen species are 

associated with neuronal damage in AD, making the addition of antioxidants into the diet 

a possible risk reducer.  Results from studies trying to link increase in antioxidant vitamin 

consumption and risk of developing AD are inconsistent.   A study in 5395 people age 55 

years and older found that dietary intake of vitamins E and C, but not supplement intake, 

was associated with a low risk of AD (Engelhart et al., 2002).  Morris et al. (1998) 

showed that use of  higher-dose vitamin E and vitamin C supplements may lower the risk 

of AD. In contrast, another 4 year study involving 980 individuals age 65 years and older 

did not find any associations between dietary, supplement, or total intake of carotenes, 

vitamin E, or vitamin C with a low risk of AD (Luchsinger et al., 2003).  Due to the 

relative safety of dietary and supplemental vitamins, the addition of these vitamins may 

be seen as a benign measure, not proven, in trials of primary prevention.   

       Another medical risk factor associated with AD is raised blood pressure.  

Kivipelto et al. (2001) colleagues examined midlife vascular risk factors and AD. This 
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study showed high systolic blood pressure in midlife was a significant risk for AD in later 

life.  In contrast, high diastolic pressure in midlife did not translate into an increase risk.  

While diastolic pressure, in this study appeared to be less of a risk factor, previous studies 

observed an increased risk with elevated diastolic pressure (Skoog et al., 1996; Launer et 

al., 2000).  Kivipelto et al (2001) noted “our data should not be interpreted as discounting 

the potential risk of Alzheimer's disease related to raised diastolic blood pressure but 

rather as emphasizing the importance of raised systolic blood pressure, even in people 

with normal diastolic blood pressure.”  Similar to the indirect support for decreased 

cholesterol with use of statins, discussed above, patients treated with antihypertensive 

drugs may be at decreased risk for dementia (Forette  et al., 1998).   

     A plethora of research has been conducted on education levels and risk of 

developing AD.  Several studies have reported an increased risk of dementia and 

Alzheimer’s disease among less-educated persons (Schmand et al., 1997; Evans et al., 

1997; Katzman, 1993).  Due to the intimate relationship between education and the 

cognitive component of environmental enrichment, levels of education and risk of AD 

will be discussed in detail in a later section.   

 

 Diagnosis of Alzheimer’s Disease 

   While no cure is currently available, early diagnosis allows for patients to take 

advantage of current pharmaceutical treatments as well as prepare for future care while 

the patient is still cognoscente.  A definitive diagnosis of AD can not be made until 

autopsy, however using a combination of neurological exams, laboratory and genetic 

tests and brain imaging techniques 90% accuracy of diagnosis can be reached.   
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    Neurological exams (NEs) enable clinicians to evaluate a patient’s cognitive 

status, emotional, psychological, motor and sensory function. Evaluation of these 

measures provides information about the presence and progression of the disease.  Firstly 

(NEs) offer a relatively sensitive diagnostic tool for AD.  NEs also distinguish AD from 

other neurological illnesses.  After initial diagnosis, periodical NEs offer a way in which 

to track the disease’s progression.  NEs also offers a way in which to customize 

treatments.  Due to the variability in symptoms associated with AD, NEs offer a 

systematic description of symptoms which can then be addressed on an individual basis.   

    The Mini Mental State Exam (MMSE) is a widely used NE used to identify 

dementia.  Folstein, the developer of the MMSE, described it as "practical method for 

grading the cognitive state" (Folstein et al, 1975).  The test includes questions which 

evaluate orientation, memory, attention, calculation ability, language, and writing.  There 

is a maximum score of 30 attainable, while a patient with AD will score a 26 or below.  It 

is important to note that the education of the patient should be taken into account when 

using the MMSE as an indicator of dementia.  Once a score below 26 is obtained and a 

diagnosis of dementia is given, laboratory tests (discussed below) need to be performed 

to rule out other common causes of dementia.  There are many other NEs available, 

including tests which measure cognitive symptoms such as clock draw test and the 

Blessed test.  Tests for non-cognitive symptoms include Behavioral Pathology in 

Alzheimer's Disease Rating Scale (BEHAVE-AD) and the Neuropsychiatric Inventory 

(NPI). 

Brain imaging through radiological techniques are used as diagnostic tools of AD.  

This diagnostic area can be broken up into structural radiography and functional 
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radiography.  Structural radiography implements the use of MRIs, and CT scans to 

identify gross anatomical changes due to AD or other forms of dementia.  Functional 

radiography, fMRI’s and PET scans, can detect focal metabolic changes in the brain.  

Both of these subcategories can be useful additions in the differential diagnosis of AD.    

     Magnetic resonance imaging (MRI) allows for volumetric measurements of 

anatomically relevant structure in the AD brain.  As discussed above, the entorhinal 

cortex and the hippocampus show early neuropathological changes with the onset of AD.  

Numerous studies have shown MRI-based volumetric measurements of the entorhinal 

cortex and the hippocampus to be reliable diagnostic tools of early AD (Huesgen., et al 

1993; Juottonen et al., 1998).  Pennanen et al. (2004) have found MRI imaging to be 

advantageous in the classification of patients with mild cognitive impairment (MCI), 

early AD and cognitively normal elderly subjects.  MRIs showed volumes of the 

hippocampus and entorhinal were significantly reduced in the following order: control > 

MCI > AD.  Computerized tomography (CT) scans are a second tool of structural 

radiography.  While the CT scan has less resolution than a MRI, they are readily 

available and can contribute as a component of AD diagnostics.  Like MRIs, CT scans 

give the ability to detect, in vivo, anatomical changes including cerebral atrophy and 

ventricular enlargement.  Condefer et al,. (2004) examined the CT’s impacted on 

diagnosis of dementia.  The data collected showed that the addition of a CT scan in the 

diagnostic process of AD may be expected to impact diagnosis and treatment of dementia 

in 10-15% of cases.  The MRI and CT brain imaging techniques are not sufficient alone 

to diagnose AD and continue to be a source to differentiate AD from other causes of 

dementia.   
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Functional brain imaging techniques offer the ability to indirectly measure 

neuronal activity in individual patients.  Positron Emmition Tomography (PET) and 

functional magnetic resonance imaging (fMRI) are two methods implemented in 

functional brain imaging.  The most common methodology of PET imaging used in the 

characterization of AD is the measurement of cerebral metabolic rate using glucose 

analogue 18-fluorodeoxyglucose (FDG).  After intravenous delivery, FDG is taken up by 

cells via a glucose transporter and becomes trapped after phosphorylation by hexokinase 

(Lee et al., 2003).  The resultant PET image reveals the distribution of FDG uptake, 

which is a measure of cerebral metabolic rate in regions of interest.  Individuals with a 

dementing illness other than AD often exhibit different abnormal metabolic patterns, thus 

making it possible to differentiate AD from other dementias.  Bilateral temporo-parital 

hypometabolism is a consistently found pattern reported on PET scans in the AD brain 

(Lee et al., 2003). Nestor et al. (2004) found patients suspected of having AD to show 

dysfunction in temporo-parieto-occipital cortices.    As the disease progresses, PET scans 

show metabolism in sensory and motor areas to remain relatively intact; however, severe 

AD patients often show frontal lobe hypo-metabolism (Lee et al., 2003).  Hoffman et al., 

(2000) confirmed that bilateral temporo-parietal hypo-metabloism highly correlates with 

the pathological diagnosis of AD, making PET-FDG a likely diagnostic tool. A second 

novel use of PET scanning currently being examined as a diagnostic tool of AD, is the 

imaging of Aβ plaques in vivo.  Klunk et al., (2004) implemented a tracer called 

Pittsburgh Compound-B (PIB) to visualize amyloid deposition.  The PIB is a neutral 

benzothiazole that binds to Aβ and crosses the blood brain barrier. This compound also 

readily clears from the brain.   PET scanning with PIB in AD patients decorated 
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association cortex region, a region commonly linked to high Aβ deposition in the AD 

brain.  This new technique could offer advancements in diagnosis as well as improved 

monitoring during clinical trials of new AD pharmaceuticals.    

   Like the PET scan fMRI offers a method to indirectly measure functional 

changes associated with neuronal activity.  The most common fMRI methodology used is 

termed the blood oxygen level-dependent method (BOLD) (Lee et al., 2003).  This 

method measures signal change associated with oxygenation in cerebral blood vessels.  

Changes in neuronal activity results in a decreased oxygenated to deoxygenated blood 

ratio.  The presence of oxygenated blood results in a constant signal while deoxygenated 

blood results in a loss of signal.  When a cognitive task is performed, a surplus of 

oxygenated blood results in a brighter signal.  fMRIs have several benefits in comparison 

to PET scans and therefore are the preferred method in functional radiography AD 

diagnostic techniques.  Primarily fMRI does not involve the invasive injection of 

radioactive dye.  This benefit allows for repeated procedure during the course of the 

disease with no danger to the patient. A second benefit is that fMRI may be performed on 

any clinical MRI scanner and is therefore accessible to many patients.  Numerous 

approaches using fMRI have emerged in the study of AD diagnostics.  One approach 

examines fMRIs conducted during cognitive tasks that are performed easily by non-AD 

individuals, but which are more challenging for patients at risk of developing AD.  When 

comparing fMRIs of control individuals and asymptomatic ApoE4 carriers, Brookheimer 

et al,. (2000) observed that patterns of brain activation during tasks requiring memory 

differed depending on the genetic risk (presence of ApoE4 allele).   fMRIs may help to 

identify patients with neurochemical changes in the early stages of AD  by studying 
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signal reactivity to pharmacological challenge.  The data collected showed that impaired 

cholinergic systems can be identified with fMRI (Goekoop et al., 2004), making this 

imaging technique a viable tool of early detection.   

    Many other causes of dementia can mimic AD.  A standard laboratory workup is 

conducted to rule out nutritional deficiencies, infection, metabolic disorders, and drug 

effects as possible culprits of dementia.  While these laboratory tests rule out AD there 

are other tests under investigation as diagnostic tools of AD.  Cerebrospinal fluid tests for 

the presence of proteins associated with AD pathology.  This extremely invasive 

procedure measures total tau, phosphorylated tau and Aβ42.  A patient with AD would 

show high levels of tau protein and phosphorylated tau, however a low level of Aβ42 

(Blennow & Vanmechelen, 2003). Tau protein represents neuronal damage while 

phosphorylated tau specifically reflects the phosphorylation state of tau, which correlates 

to the formation of tangles.   Aβ42 levels are decreased, due in part to trapping of brain 

Aβ into plaques, as well as other unknown reasons (Blennow & Vanmechelen, 2003).  

Serum levels of iron binding protein p97 are another possible biochemical marker 

involved in AD. Kennard et al. (1996) provided evidence that the soluble form of iron 

binding protein p97 is found in elevated amounts in the serum of AD patients.   While 

still in its infancy, this test represents the first blood test, aside from genetic testing, that 

may have potential for identifying subjects afflicted with AD.   

   A final diagnostic tool to be discussed is the controversial genetic testing option 

for patient with a possible predisposition to AD.  As discussed above many mutations of 

the APP, PS1, PS2 have been found and linked to genetic causation of AD.  Presence of 

ApoE4 has also been linked with increase prevalence of AD.  Many clinicians raise the 
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question if testing for these abnormalities meet the criteria for a diagnostic test.  van der 

Cammen et al. (2004) states “In general, a medical test should be useful in such a way 

that it raises diagnostic certainty and has positive implications for the treatment and well-

being of the individual patient.” Many have questioned if genetic testing of AD meets 

these criteria.  The test for ApoE, commercially available, is the most important genetic 

determinate for late-onset AD.  Numerous studies have constantly found ApoE 

genotyping alone does not have sufficient sensitivity in diagnosing susceptibility to 

developing AD (Mayeux et al., 1998; Slooter et al., 1996).  When causal genes such as 

APP, PS1 and PS2 were examined in early-onset AD cases, less then 10% of cases were 

linked to relevant AD genes, leaving 90% of cases with no association (van der Cammen 

et al., 2004).  While genetic testing in the research world may offer insight into the 

molecular mechanism of AD and allows for the generation of useful transgenic animal 

models, its place as a clinical diagnostic tool of AD is still in need of maturation.    

 

Treatment of Alzheimer’s disease 

 Although there is currently no cure for AD, the FDA has approved two classes of 

drugs that have shown to be safe and effective in the treatment of AD.  The first class to 

be approved include the acetylcholinesteare inhibitors Aricept, Exelon & Reminyl, 

Cognex.  These palliative treatments increase the compromised brain acetylcholine levels 

found in AD by decreasing the breakdown of acetylcholine by acetylcholinesterase in the 

synaptic cleft.  While this class of drugs does not slow the progression of AD, it does 

provide cognitive benefits for patient in the early stages of AD (Sonkusare et al., 2005).  

As the disease progresses the acetylcholinesterase inhibitors class of drugs loss 
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efficiency.   The window of effectiveness is typically 6 months to 2 years (Delagarza et 

al., 2003).  

     A second class of drugs recently approved for moderate to severe AD are 

NMDA- receptor blockers.  While intact NMDA function correlated with cognition and 

learning, over-stimulation of glutamatergic system may result in neuronal damage.  An 

over-excited glutamatergic system will result in an abundance of intracellular calcium, 

resulting in a toxic environment for neurons.  Memantine (Namenda) is an uncompetitive 

NMDA-receptor antagonist that has been show to be effective in the treatment of 

moderate to severe AD (Reisberg et al., 2003).  The blocking of NMDA-receptors leads 

to suppression of over-excited glutamatergic systems and therefore removes neuronal 

calcium overload.  Implementing this mechanism, Memantine treatment reduced clinical 

deterioration in moderate to severe AD (Reisberg et al., 2003).  In severely demented 

patients, treatment with memantine improved function, decreased care dependence and 

decreased behavioral symptoms associated with severe AD (Winblad & Poritis, 1999).  It 

has been suggested that a combination therapy including an acetylcholinesterase 

inhibiters and memantine may offer the most benefits to AD patients.   

       Many alternative non-FDA approved compounds have emerged as possible 

treatments of AD.  Nonsterodial antiflammatory drugs (NSAIDs) are the most widely 

used drugs for management of pain, fever, and inflammation (Gasparini et al., 2004).  

There mechanism of action is largely attributed to the inhibition of cyclooxgenase (COX 

1-2), leading to the suppression of prostaglandins synthesis.  Epidemiological studies 

have shown that prolonged use of NSAIDs leads to a decrease risk of developing AD 

(Zandi et al., 2002; 2004).  While NSAIDs as a prevention have shown positive results 



 29 

NSAIDs as treatments are faced with mediocre beneficial findings and controversial 

mechanisms of action.  Aisen et al. (2003) found no beneficial cognitive effects of 

treatment with a Cox-2 inhibitor (rofecoxib) or a non-selective NSAID (naproxen) in 

patients with mild to moderate AD.  Reines et al. (2004) provide further support for this 

finding by showing “Rofecoxib had no effect on Alzheimer's disease in a 1-year, 

randomized, blinded, controlled study.” Some suggest NSAIDs work by managing the 

chronic inflammation associated with AD pathogenesis, while others suggest a 

mechanism through which NSAIDs alter the activity of γ secretase and therefore alter the 

production of Aβ (Lleó et al., 2004).  Recently the National Institute on Aging halted the 

Alzheimer’s Disease Anti-inflammatory Prevention Trial (ADAPT), in part because of 

the recall of cox-2 inhibitor rofecoxib (Vioxx) due to increased risk of cardiovascular 

events and health concerns surrounding other NSAIDs including celecoxib (Celebrex), 

and naproxen (Aleve). 

      Antioxidants have also been noted as possible treatments of AD.  As discussed 

above, the amyloid cascadesis associated with an increase in oxidative stress.  

Antioxidants such as alpha-tocopherol (vitamin E) and Ginkgo Biloba have been 

investigated as possible treatments for AD.  Vitamin E (2000 IU/day) has been shown to 

slow the progression of AD by about 7 months when taken over a two year period of time 

(Berman & Brodaty, 2004).  Ginkgo Biloba has been shown to increase α waves in AD 

patients as well as stabilize and improve cognitive function (Maurer et al., 1997).  Larger 

clinical trials are needed to provide further support for these antioxidants as treatments 

for AD. 
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      Aside from treating the cognitive symptoms of AD, psychiatric and behavioral 

disturbances associated with AD are often treated with FDA-approved anti-psychotic and 

anti-depression drugs.  Risperidone (Risperdal), a serotonin-dopamine antagonist, has 

been shown to significantly improve symptoms of psychosis and aggressive behavior in 

patients with severe dementia (Katz et al., 1999).  Selective serotonin reuptake inhibitors 

and benzodiazepines have also been used in treating depression, insomnia and anxiety in 

patients with AD.   

  New treatments for AD seeking FDA approval are on the horizon.  Research into 

developing drugs which stop progression of AD rather than treat symptoms are needed in 

the clinical arena.  Compounds that inhibit the enzymes responsible for abnormal APP 

cleavage are under heavy investigation.  Vaccinations against Aβ have been meet with 

problems during phase 2 clinical trials, however, passive rather than active Aβ 

vaccination appears promising.   A new therapeutic currently involved in phase III 

clinical trials has been show to have potential as a new therapeutic for AD.  Alzehemed is 

expected to act on two levels: firstly to prevent and stop the formation Aβ fibrils in the 

brain and secondly to inhibit the inflammatory response associated with Aβ build-up in 

AD (Geerts, 2004).  The developments of transgenic animal models have catalyzed the 

development of new therapeutics and will continue to be a medium for which novel 

treatments can be developed.   

 

 

 

 



 31 

 

 

 

Animal Models of Alzheimer’s Disease 

 Genetically altered mice offer a tool to define in vivo functions that have been 

observed in vitro.  The ability to model a disease in a transgenic mouse enables 

researchers to study mechanisms of disease progression, examine possible preventions 

and devise viable treatments.  In order for the creation of a transgenic animal to become 

feasible, genes responsible for the disease must be identified through linkage studies.  

Once identified, the generation of a transgenic mouse model can proceed.   

     Generating a transgenic mouse model begins with the selection of a transgene 

(Picciotto & Wickman, 1998).  A transgene is defined as the segment of DNA that is 

transcribed into a mouse model.   The classical transgenic construction requires a 

segment of DNA to be transcribed then subcloned down-stream of a neuron-specific 

promoter.  The promoter dictates the level of expression, tissue specificity and temporal 

pattern of the gene involved.  The gene and promoter are then excised from the plasmid, 

resulting in the isolated transgene. Multiple copies of the isolated segment are injected 

into the pronucleus of a single fertilized egg and then implanted into a foster mother.  At 

time of injection into the pronucleus, the gene is either integrated or degraded.  Those 

eggs that integrate the gene become viable offspring, and carry the transgene in their 

gametes, go on to comprise the transgenic fonder mouse.  Once the fonder line is 

screened for number of transgenes integrated, sight of integration, and the transgene’s 
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interaction with neighboring endogenous genes, the fonder line goes on to generate a 

colony of transgenic mice.   

 An important element in the creation of a transgenic mouse model is the 

background strain of the embryos chosen.  A blend of cognitive, motivational, and 

sensorimotor elements are needed to construct a transgenic animal that can be 

implemented in behavior. A strain which is cognitively superior may over shadow a 

behaviorally detrimental transgene.   When modeling the pathology of a disease, strain 

background plays an equally important role.   Mice expressing the APP gene, generated 

on a C57BL/6 background, presents with Aβ plaques and corresponding behavioral 

impairment (Picciotto &Wickman, 1998).  In contrast, when the APP transgene is 

inserted into an embryo of a mouse with a FVB background, plaques are absent (Picciotto 

&Wickman, 1998).  Transgenic mice with hybrid strain backgrounds offer a more 

practical model that demonstrates pathology and behavior which closely mimics the 

disease modeled.   

 

The PDAPP Mouse Model of Alzheimer’s Disease 

 The PDAPP mouse model of AD is one of several models implementing the 

missense mutations of the APP gene. These mutations have been linked to early onset 

familial AD. PDAPP mice were generated using the platelet-derived growth factor 

directing the human APP gene encoding the 717 mutation (Games et al., 1995).  The 

mice were derived from several hybrid backgrounds, resulting in a mixed strain of 

C57BL/6 +DBA+ Swiss-Webster.  Games et al. (1995) confirmed the successful 

insertion of the altered human APP gene and showed the PDAPP mouse had a 10 fold 
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overexpresion of APP independent of endogenous mouse APP levels.  This expression 

was observed in multiple tissues and most notably in the brain.    In contrast to previously 

generated transgenic models containing human non-mutated APP, the PDAPP model 

exhibited Aβ-production & depostion. The success in generating a transgenic model with 

substantial Aβ deposition may have been due to numerous factors.  Primarily, the higher 

levels of the human APP expression may have lead to the generation of reproducible Aβ 

pathology.  Secondly, as discussed above, the promoter drives the amount of expression 

and tissue specificity.  Implementing the platelet-derived growth factor promotor allowed 

for targeted expression preferentially in neurons of the cortex, hippocampus, 

hypothalamus and cerebellum.    

 

PDAPP Pathology 

 The Aβ peptides observed in the PDAPP model ranged from diffuse soluble 

forms to compact plaques stainable with thioflavin S, Bielschowsky silver stain and 

Congo red.  The outskirts of the plaques were intimately surrounded with reactive 

astrocytes, replicating plaques found in the brains of AD patients.  Also closely related to 

the AD brain, Aβ plaques were associated with dystrophic neurites.  A final observation 

noted by Games et al. (1995) was the reduced synaptic and dendritic density in the 

hippocampus of PDAPP mice.   

      Games et al. (1995) characterized the progression of plaque development in the 

heterozygous PDAPP mice.  At 4 months no plaques were present and transgenic animals 

were indistinguishable from nontransgenic littermates.  By 6-9 months plaques began to 

appear in the hippocampus, corpus callousm and cerebral cortex.  Animals greater than 9 
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months showed “numerous” dense deposits.  This progression closely mimics 

progression in the AD patient.  

      Masliah et al. (1996), Irizarry et al. (1997), Dodart et al. (2000a), and Chen et al 

(2000) went on to further analyze the neurodegenerative pathology in the PDAPP model.  

Using the same line discussed above by Games et al. (1995), an extensive analysis of 

pathology was done through use of electron microscopy by Masliah et al. (1996).   

Masliah et al. (1996) described the extracellular plaques observed in PDAPP mice to be 

“strikingly similar to those observed in AD brains.”  Confirming previous findings by 

Games et al. (1995), Masliah et al. (1996) described dense neuritic plaques in frontal 

cortex and hippocampus.  Associated with these plaques were dystrophic neurites and 

reactive astrocytes.  Further analysis of this same line of PDAPP mice by Irizarry et al. 

(1997) described levels of APP expression, regional pattern of deposition, and neuron 

counts in relevant regions.  Across all 3 time points investigated (4, 11 and 18 months), 

APP expression remained stagnant. Despite the absence of difference in expression 

across time, progression of Aβ deposition in a regionally specific manner was observed.  

At 8 months of age Aβ deposition was isolated to the cingulated cortex. By 12 months, 

Aβ spread into surrounding CA1 of the hippocampus and entorhinal cortex.  At 18 

months, a substantial increase in Aβ was observed in the order of 20-50%.  Implementing 

stereological techniques, neurons in the CA1, cingulated and entorhinal cortex were 

counted.  In sharp contrast to human AD brains, no neuronal loss was observed in any 

region at any time point in the PDAPP mice.   This lack of neuronal death in PDAPP 

mice strongly disputes theories that Aβ plaques directly cause neuronal death by 

neurotoxic mechanisms.  Irizarry et al. (1997) point out that absence of neural death may 
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have been due to substandard methodological protocols not identifying small 

subpopulations of neuronal death. A second hypothesis suggested that greater time of 

exposure to toxic Aβ is needed to produce neuronal death.  Later, Dodart et al. (2000a) 

provided work supporting previous findings of “age-dependent region specific” 

deposition of Aβ in heterozygous PDAPP transgenic mice.  Additional data of a direct 

comparison between homozygous and heterozygous PDAPP mice enabled the analysis of 

dose dependent expression of APP on the resulting Aβ pathology.  At a 10-12 month time 

point, a three-four fold greater total number of plaques in homozygous vs heterozygous 

animals was seen.  While this impressive distinction was observed in cortical regions, 

less separation was observed in the hippocampus.  In contrast to early work by Games et 

al. (1995), Dodart et al. (2000a) observe first mature Aβ deposits in 3-4 old month 

animals.  These plaques were exclusively located in the CA1 region of the hippocampus, 

the medial part of the cingulated cortex, and corpus callosum at the level of the dorsal 

hippocampus.  This contradiction to Games et al. (1995)’s findings of “no obvious 

pathology detected at 3-4 months,” may be due to extending pathological examination 

past “obvious” pathological changes to more obscure region specific changes.  At 6-7 

month and 10-12 month time points, while Dodart et al. (2000a) provides a more 

extensive exploration of region specific distribution of pathology, the findings closely 

mimic previous abbreviated findings by Games et al. (1995).  In behaviorally tested 

animals, Chen et al. (2000) describe relatively low levels of deposition in the 

hippocampus of 9 month old animals with an increase in density at the 16 and 22 month 

time points.  The findings at the 9 month time point are difficult to compare to previous 

work (Games et al., 1995; Maslish et al., 1996; Irizarry et al., 1997) due to the possible 
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confounding variable of behavioral testing.  However, Dodart et al. (2000a) shows 

“numerous mature deposits” at 6-7 months in similarly behaviorally tested PDAPP mice.  

This difference may be due to Dodart et al’s counting of plaques (definition of “numerous 

plaques” unknown) versus Chen et al. (2000) analysis of plaque density.  In summary of 

Aβ associated pathology in PDAPP transgenic model, these mice exhibit regional and 

age-dependent Aβ deposition, independent of a constant over expression of APP, as well 

as lack of neuronal loss associated with the AD brain. 

         The earliest change in the AD brain which correlates with cognitive function is 

synaptic loss.  Alterations in synapses in the PDAPP model have also been observed.  

Dodart et al. (2000a) observed an increase in synaptic density in young 3-4 month old 

animals, however, saw a decrease in mice older than 6 months.  The decrease in later life 

was suggested to be related to the neurotoxic effects of Aβ.  The increase early in life was 

observed in the absence of Aβ plaques and correlated with APP expression.  This would 

suggest a beneficial effect of overexpression of APP.  APP expression has been linked to 

neurite outgrowth and synaptotrophic properties (Morimoto et al., 1998; Wallace et al., 

1997).  Larson et al. (1999) studied synaptic transmission and long term potentiation in 

hippocampal slices from young (4-5 months) and old (27-29 months) PDAPP mice.  As 

discussed above, young PDAPP mice have high expression of APP but lack plaques.  

Aged animals have the same level of high APP expression; however, have a high burden 

of Aβ plaques.  In vivo electrophysioloical testing revealed that young PDAPP mice had 

enhanced paired-pulse facilitation, a significant decrease in maximal size of field EPSPs, 

and an increase in decay rate of LTPs.  These results suggest synaptic changes occur 

independent of plaque deposition.  To state synaptic changes are completely independent 
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of Aβ is misleading due to the absence of a measurement of soluble Aβ forms in this 

work.  In the old animals, the most striking difference observed was that maximal 

synaptic field potentials were greatly reduced.  In contrast to young animals, aged 

PDAPP mice showed significantly reduced paired-pulse facilitation. Despite a decrease 

in the number of functional synapses, LTP mechanisms were reported to be intact in 

these aged animals.  Larson et al. (1999) concluded PDAPP mice have altered synaptic 

communication preceding presence of plaques.  As well, disturbance in synaptic 

transmission in the presence of plaques are not linked to altered LTP.   

In 2000, Dodart et al. noted neuroanatomical abnormalities that had been 

overlooked in previous studies discussed above.  Dodart et al. (2000) described “rather 

marked hippocampal atrophy as early as 3 months of age.  A 20 to 40 percent decrease 

that did not progress with age was observed.  The early presence and lack of progression 

of this neuroanatomical abnormality suggests that overexpression of APP may effect 

neurodevelopment.  

 

Behavior of PDAPP Model 

The pathological changes found in the PDAPP mice translated into cognitively- 

based behavioral changes.   In sensorimotor tasks, PDAPP mice performed identical to 

nontransgenic mice at both early and late time points (Dodart, 1999; Nilsson, 2004).  

Dodart et al. (1999) found no motor impairments at 3, 6, or 9 months in a motor-based 

radial maze.  Motor activity in the radial maze was recorded and an increase in freezing 

behavior was noted in the PDAPP mice.  This stereotypical behavior was only observed 

when the task was novel and soon ceased after the first testing session.   Nilsson et al. 
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(2004) confirmed intact sensory-motor ability of PDAPP mice by showing no differences 

in open field task, balance beam, string agility and Y-maze entries compared to Tg- mice. 

The findings that PDAPP mice were not impaired in sensorimotor tasks provide evidence 

that any impairments in cognitive functions are not due to physical, motivational, or 

exploratory behavioral differences.    

       While the sensory-motor tasks performed at numerous time points extracted no 

differences in PDAPP mice from wild type mice at numerous time points, cognitive 

based tasks reveal impairment that in several studies correlated with the pathological 

abnormalities described above.  Both Dodart et al. (1999, 2000b) and Chen et al. (2000) 

analyzed recognition memory in PDAPP mice cross-sectionally in an object-recognition 

task.  Dodart et al. (1999) found no recognition impairment in young three month old 

animals.  However, at 6 months, homozygous animals showed impairment while 

heterozygous animals remained cognitively intact.  By 9 months both homozygous and 

heterozygous PDAPP mice had significantly less recognition index then wild type mice.  

In sharp contrast, Chen et al. (2000) found no impairment in object-recognition tasks in 

heterozygous PDAPP mice at 6-9, 13-15 and 18-21 month time points.  These different 

findings could be attributed to task protocol differences.  Chen et al. (2000) tested 

animals for 5 days with a 5 minute habituation period while Dodart et al. (1999) 

administrated a single day of testing with a single 50 minute habituation one day prior to 

testing.  Analysis of 5 days of testing may have diluted observable working memory 

impairments that may have been present in the first day of testing.   

In the same animals analyzed pathologically by Dodart et al. (2000a) (disscused 

above), the Radial Arm Maze (RAM) was implemented, as a test of working memory.  
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The RAM is a more challenging task than object-recognition, as well as includes a 

reference memory component (which was not present in the object-recognition task).  

Dodart et al. (1999) found working memory impairment in the RAM task in both 

homozygous and heterozygous mice at 3, 6 and 10 month time points.  Due to the 

hippocampal-dependent nature of this task it is hard to decipher if the early impairment 

observed at 3 months, in the absence significant plaque formation, was due to AD related 

pathologies or the contribution of the hippocampal atrophy observed in this transgenic 

line at this time.  In the reference memory component of the RAM task, homozygous and 

heterozygous mice made significantly more reference memory errors than wild type at all 

three time points.   While the defects in objection recognition task (discussed above) 

appeared to follow the Aβ deposition time course, both working memory and reference 

memory impairment observed in the RAM appear to be present, at least at the 3 month 

time point, independent of Aβ deposition.   

Chen et al (2000) later implemented at new water maze training protocol which 

forced the memory retrieval function to select for a most recently encoded platform 

location. Testing PDAPP mice at 6-9, 13-15, and 18-21 months in this new “training-to-

criterion” uncover two key findings.   The first of the findings included an age-dependent 

deficit in trials to reach criterion.  The 6-9 month old mice reached criterion in a number 

of trails that were non-significant when compared to the wild type animals.  The 13-15 

and 18-21 month old animals took significantly more trials to reach criterion when 

compared to the age matched wild type mice.  The second finding is age independent.  

Despite the age differences in the PDAPP animals, all PDAPP mice were significantly 

impaired in finding the first platform location in a series.  In comparing the age 
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dependent and independent impairments of PDAPP mice with Aβ burden using a 

correlation analysis, Chen et al. (2000) found there to be a significant, age-related, 

inverse correlation between learning capacity and plaque burden.  It is important to note 

that all animals (including the low pathology bearing young animals) were included in 

the Aβ correlation analysis, which may have elevated the relationship between pathology 

and behavior.   

      In an extensive cognitive examination of PDAPP mice as well as other transgenic 

mice lacking ApoE or overexpressing human ACT,  Nilsson et al. (2004) found no 

impairment in both Morris Water Maze (MWM) or Radial Arm Water Maze (RAWM) at 

the 2 month time point in PDAPP mice. The finding that these mice were intact in both a 

spatial memory retention task (MWM) and a working memory task (RAWM) may 

indicate that the hippocampal atrophy, which correlated with poor performance in a 

spatial discrimination task (Dodart et al. 2000), was no longer present after numerous 

generations of crossbreeding.  At a later time point, Nilsson et al. (2004) found cognitive 

impairment associated with both diffuse and compact Aβ deposition in the hippocampus.  

At 18 months, PDAPP mice were found to be impaired in spatial learning tasks including 

both a long term memory (Morris Water Maze) and working memory task (RAWM).  

The working memory impairment observed in the RAWM correlated with both diffuse 

plaques (6E10 staining) and mature compact plaques (congo red staining).  This 

correlation suggests a cause and effect relationship between extent of deposition and 

cognitive dysfunction.     
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APP Swedish Mutation Transgenic Mouse Line 

The APPsw (Tg2576) mouse model of AD represents a widely analyzed and 

implemented model of AD.  These transgenic mice overexpress the 695-amino acid 

isoform of human amyloid precursor protein (APP) with  a double missense mutation at 

670 and 671.  These mutations mimic those found in a large Swedish family which 

exhibit early onset AD.  The transgene is expressed in C57B6/SJL mice and is controlled 

by the hamster prion protein promoter.  

 

APPsw Brain Pathology 

      The Tg2576 APP mouse expresses the APP transgenic at unchanged levels 

between 2 and 14 months (Hsiao et al., 1996).  Irizarry et al.’s (1997) observations agreed 

with, as well as added, a regional specificity to APP expression.  Results from transgene 

expression revealed APP is expressed predominately in the neuronal layers of the 

hippocampal formation and in lesser amounts in cortical regions (Irizarry et al. 1997).  

   Despite constant expression of the APP transgene, formation of Aβ is observed in 

an age specific manner.  Hsiao et al.’s (1996) measurements of Aβ40 and 42 

concentrations increased drastically until 13 months of age.   Compact classic senile 

plaques were observed by 11-13 months in the frontal, temporal, entorhinal cortex, 

hippocampus, presubiculum, subiculum and cerebellum (Hsiao et al. 1996).  The 

observation of plaques in the cerebellum is incongruent with the absence of APP 
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expression in the cerebellum.  At 16 months Irizarry et al. (1997) observed age-related 

Aβ deposition in the cingulate cortex, entorhinal cortex, dentate gyrus and the CA1.   In 

very old, high burdened 23 month old mice, brain Aβ inversely correlated with levels of 

Aβ in CSF (Kawarabayashi, 2001).   

   Also associated with the Tg2576 transgenic mouse is oxidative stress and 

impaired synaptic plasticity.   Smith et al. (1998) describe a “tight association” between 

oxidative stress and Aβ.  Tissues from 13-27 month old animals exhibited a global 

increase in oxidative stress (Smith et al,. 1998).  This finding makes the Tg2576 mouse a 

valuable model in the development of antioxidant therapy for AD.  Chapman et al. (1999) 

analyzed the synaptic communication in 12-15 month old mice Tg2576 mice.  While 

short term potentiation was intact, the extremely memory dependent long term 

potentiation (LTP) was impaired (Chapman et al,. 1999).  A group of slices from young 

2-8 month old animals were also analyzed.   Chapman et al. (1999) found no impairment 

in any synaptic plasticity measures in young animals, indicating that defects observed in 

old animals were related to presence of Aβ (Chapman et al., 1999).  Ιn contradiction with 

the Chapman et al.’s (1999) work, Fitzjohn et al. (2001) found age-related impairment in 

synaptic transmission; however, they observed no impairment in LTP at both 12 and 18 

months of age.   Synaptic transmission was restored with the addition of a glutamate 

receptor antagonist, kynurenate, in slices from mice at 12 months; however, slices from 

the 18 month old time point were unable to be rescued (Fitzjohn et al. (2001).  This 

finding is of particular importance because it provides evidence for the discrepancies 

between the Chapman et al. (1999) study and the Fitzjohn et al. (2001) study.  The former 
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study used kynurenate treated slices to measure synaptic transmission and LTP, while the 

latter study showed that kynurenate rescues synaptic transmission impairment.    

 While the Tg2576 mouse mimics AD pathology in many ways, it lacks the 

neuronal loss observed in the AD brain.   Irizarry et al. (1997) assessed Aβ neurotoxicity 

by evaluating neuronal loss in the Tg2576 mouse. At 16 months Tg2576 mice showed no 

significant difference in neuron cell count in the CA1 region when compared to 

nontransgenic mice.  While neuronal loss is absent in this model, at this time point 

evidence of axonal changes and gliosis are apparent (Irizarry, et al. 1997).   This finding 

of insignificant neuronal loss indicates Aβ deposits are not acutely neurotoxic in the 

mouse brain (Irizarry, et al. 1997). 

 A subclass of the APPsw mice, the APP23 mutant mouse exhibits some 

pathologic characteristics not found in the Tg2576 mouse.  The first widely documented 

finding is presence of cerebrovascular amyloid in the APP23 mouse.  Calhoun et al. 

(1999) described a mouse, at 14-21 months of age, that in addition to having the 

commonly observed amyloid plaques also shows accumulation of Aβ in vasculature.  A 

second characteristic observed, however not as widely duplicated, is presence of neuronal 

loss.  In 1998, Calhoun et al. published work showing the 14-18 month old APP23 mouse 

exhibited neuronal loss in the CA1 region.  Neocortex was also analyzed and despite 

thinning of pyramidal cell layers, no quantitative evidence of neuronal loss was observed. 
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APPsw Behavior   

  The pathological characteristics discussed above often translate into behavioral 

impairment in the APPsw mouse.  Correlations have been made between cognition and 

Aβ deposition, synaptic plasticity and synaptophysin immunoreativity.   

 Activity levels, sensory-motor measures and anxiety levels have been measured in 

the Tg2576 mouse.  King & Arendash (2002) found the Tg2576 mice to have increased 

activity in the open field task only at the 3 month time point.  This increase in activity at 

3 months was absent at later time points suggesting an Aβ independent mechanism.  In an 

analysis of sensorimotor abilities (tested by open field task, balance beam task, string 

agility task and Y-maze entries), the Tg2576 mouse showed balance beam impairment at 

3, 14 and 19 months (King & Arendash, 2002).  This sensorimotor impairment was 

confirmed in an observation of impairment at 14 and 19 months in the string agility task 

(King & Arendash, 2002).  Despite numerous generations of Tg2576 breedings and slight 

differences in background strain, early impairment in the balance beam was also 

observed at 5 and 6.5 months in this transgenic line (Arendash et al., 2004).  In a test of 

anxiety the Tg2576 mouse showed no overt hyperanixety behaviors in the elevated plus 

maze throughout life (King &Arendash, 2002; Arendash, 2004).  In contradiction to this 

finding, Lalonde et al. (2003) describe hyperactivity in 17 month old Tg2576 mice in an 

open field “speed of movement toward center” measure.  This impairment was short 
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lived, only lasting 2 out of 3 days of testing and can not be justly compared to findings of 

the former work due to the differences in the two tasks measuring anxiety.    

 The Tg2576 transgenic mouse shows robust cognitive impairment across a broad 

range of cognitive domains. Hsiao et al. (1996) tested the Tg2576 mouse in a 

spontaneous spatial alternation task (Y-maze) at 2 and 10 months.  At 2 months both 

transgenic and non-transgenic mice tended to alternate their choices similarly; however, 

at 10 months a decrease in alternations in Tg+ mice was observed.  Impairment in Y-

maze alternation was observed as early as 3 months as well as at 5, 8.5 and 19 months of 

age in Tg2576 mice (King &Arendash, 2002; Arendash, 2004).   In the circular platform, 

a task of spatial learning/memory, transgenic Tg2576 mice exhibited no impairment at 3, 

9, 14 and 19 months (King & Arendash, 2002).  However, in 7 month old animals, when 

learned cues were placed 180 degrees from their original location (e.g. reversal learning), 

the transgenic mice were unable to adapt and were found to be significantly impaired 

(Pompl, 1999). This finding showed  that the Tg2576 mouse was not impaired in 

learning, however was impaired in the reversal learning aspect of the task.  This task 

relies on the animals innate aversion toward unlikable stimulus, however it is often 

difficult to measure each animals different aversion to the stimulus making results from 

the circular platform task somewhat challenging to interpreted.  

 n a sensitive task of spatial memory, Hsiao et al. (1996) found 9-10 month old 

Tg2576 mice to be cognitively impaired in Morris Water Maze (MWM) when compared 

to age-matched controls.  This impairment was absent in non-Aβ burdened Tg+ mice at 2 

months of age, indicating an association between Aβ burden and cognitive impairment. 

At 6 months Tg+ mice were marginally impaired, differing only in escape latency on the 
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last day of testing.  These findings show a nice progression of impairment which mirrors 

increased Aβ load.  Similar age-related impairments were demonstrated by Chapman et 

al. (1999) and Westerman et al. (2002).  Both groups observed a lack of cognitive 

impairment in young Tg2576, with emerging impairment in (MWM) later in life.  In a 

retention trial of MWM, Westerman et al. (2002) observed a total quadrant preference for 

the goal arm in a subpopulation of young (4-5) Tg2576 mice, however spatial reference 

memory deteriorated in 6-11 month old mice.  Examination of escape latencies in MWM 

acquisition showed age-related impairment in Tg2576 mice that was not observed until 

middle age (12-18 months).   Very old 20-25 month old mice were significantly impaired 

in both MWM acquisition and retention when compared to Tg- littermates, showing no 

ability to acquire or retain any spatial information.  Noteworthy is that a group of mice 

labeled “performance-incompetent mice”, were eliminated, which generated a cohort of 

mice in which sensorimotor performance deficits could be factored out of the 

interpretation of behavioral data.   King and Arendash et al. (2002) found that in 19 

month old Tg+ mice, higher levels of synaptophysin immunostaining was correlated with 

impaired spatial reference memory as tested by the MWM task.  Interestingly, 19 month 

old transgenic mice had significantly higher levels of synaptophysin immunostaining than 

age-matched Tg- mice.   King & Arendash (2002) suggest compensatory changes in 

synaptic morphology and staining of dystrophic neuritics associated with Aβ deposition.   

Taken collectively these findings would suggest that increased hippocampal 

synaptophysin levels are a manifestation of pathophysiological synaptic processing.   
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 In contradiction to the findings of Westerman et al. (2002), King & Arendash 

(2002) showed no impairment through 19 months in the MWM.  Neither MWM 

acquisition nor retention was able to separate Tg2576 mice from non-transgenics, suggest 

intact long term and spatial memory in significantly aged Tg+ mice. While these findings 

are consistent with the findings by Holcomb et al. (1999) who also showed no 

impairment in Tg2576 mice through 9 months, they are not consistent with findings by 

Hsiao et al. (1996), Chapman et al. (1999), and Westerman et al. (2002).  Procedural 

differences may account for these differences.  Other points of consideration are 

behavioral changes due to numerous generations of inbreeding, as well as the point that 

King & Arendash (2002) eliminated animals which were non-performers; if included 

such animals may have contributed to a cognitively impaired effect.  Recently Arendash 

et al. (2004) observed impairment in MWM in APPsw mice at 5, 6.5 and 8.5 months.  

These results are surprisingly different from their early research showing no impairment 

through 19 months.  Several factors could contribute to these discrepancies.  The most 

likely explanation is changes in background strain.  Evidence for this is provided by work 

from Savonenko et al. (2003), who showed that expression of APP at 3-fold times over 

endogenous levels was not enough to induce cognitive impairment in 24-26 month old 

transgenic mice that were on a full C57BL/6J background.  The unimpaired APPsw mice 

had a more homogenous C57 background (an excellent performing background) in King 

& Arendash (2002), while their impaired counterparts in the later study (Arendash et al. 

2004) had a mixed background.  A second possibly is that through crossbreeding over 

several generations, the Arendash APPsw transgene line became behaviorally more 

sensitive to mutant APP expression, which would result in earlier impairment.   
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 Recent work by Arendash et al. (2004) showed that APPsw mice at 6.5 months of 

age had significantly impaired working memory, as measured by the Radial Arm Water 

Maze (RAWM) task.  Compared to non-transgenic mice, APP transgenic mice made 

significantly more errors during block 2, Trial 4 (final acquisition trial), as well as made 

significantly more working memory errors on Trial 5 of the last 3 blocks of testing .  

These recent findings are not consistent with earlier work (Morgan et al. 2000) showing 

that APPsw mice were unimpaired in the RAWM at 5-7 months of age. Arendash et al., 

(2004) suggest that several years of breeding have apparently resulted in the APP line 

becoming more behaviorally sensitive to mutant APP expression and/or the process of 

Aβ deposition at an earlier age.   

      Taking 15 measures from 9 different activity, anxiety sensorimotor, and cognitive 

tasks, Arendash et al. (2004) used discriminant function analysis to separate APPsw mice 

from non-transgenic mice based on behavior.  These findings show that APP mice are 

impaired globally over multiple behavioral measures.  

       The APP23 transgenic mouse has many similarities, behaviorally, to that of the 

closely generated Tg2576.  As observed in Tg2576 mice,  APP23 mice exhibit no anxiety 

compared to the non-transgenic mice.  However, unlike the former model, APP23 mice 

were not impaired on any motor coordination task (Lalonde et al. 2002).  In  MWM, the 

APP23 mice were impaired as early as 3 months as well as at 6, and 24 months (Lalonde 

et al. 2002; Dumont et al. 2004).  
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APP Swedish + PS1 Mutation Transgenic Mouse Model 

 An apparent continuation of the of the transgenic mouse lines was the creation of 

a mouse expressing human PS1.  This model lacked impressive Aβ pathology despite an 

increase in Aβ 1-42/-1-40 ratio (Duff, 1996).  However, co-expressing human PS1and 

APPsw mutations lead to a transgenic mouse with impressive pathology observed months 

earlier than the single Tg2576.   

 

APPsw +PS1 Pathology 

 The addition of mutant PS1 through crossbreeding with the APPsw mouse has 

been shown to accelerate amyloid pathology in the brains of transgenic mice (Borchelt et 

al, 1997; Holcomb, 1998).  Borchelt et al. (1996) described a 50% increase in the ratio of 

Ab42/40 in double transgenic (APPsw + PS1) mice when compared to singles at a 2-3 

month time point.  This finding translates to an acceleration of Aβ deposition in the 

double transgenic mice.  In a direct comparison between single and double transgenic 

mice, single transgenics were plaque free until 18 months of age.  In contrast, APPsw 

+PS1 mice exhibited plaques as early as 9 months (Borchelt et al, 1997).     This finding 

that the addition of the PS1 mutation dramatically accelerates the rate of Aβ deposition 

demonstrates PS1 acting in a synergistic relationship with the mutated APP gene.  The 

Borchelt mouse line is slightly different from a more widely used APPsw+PS1 mouse, 

which exhibits plaques much earlier.  In the more widely implemented APPsw +PS1 
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mouse, Holcomb et al. (1998) showed that in 6-16 week double transgenic mice there 

was a 41% increase in transgenic human Aβ 1-42.  This was quite different from the 

unchanged Aβ 40 and 42 levels observed in the 6-16 week single APPsw mice.  In the 

double transgenic mice, levels of Aβ 40 and 42 increased in 12-16 week mice and 

showed further increase at 24-32 weeks of age. This increase was not observed for the 

most part in the single transgenic mice.  Histological analysis showed that 13-16 week 

old double transgenic mice had compact plaques, measured by thioflavin S staining, that 

were absent in single transgenic littermates.  Thioflavin S staining increased substantially 

in the doubly transgenic brains of 24-32 week old mice.  This work was continued by 

Gordon et al. (2002), whom describe a regional specificity of deposition in a time course 

manner.  At 6 months of age, doubly transgenic mice had multiple deposits particularly in 

the frontal, entorhinal cortices and hippocampus.  Through 9, 12 and 16 month, the 

number of deposits increased and began to infringe on the striatum, thalamus and brain 

stem.  

      Closely associated with the dense plaques were dystrophic neuritis, reactive 

astrocytes, and microglia activation (Borchelt et al, 1997; Gordon et al, 2002).  Gordon et 

al. (2002) observed Aβ deposits invested with dystrophic neurites as early as 6 months. 

Using GFAP immunostaining, Gordon et al. (2002) measured astrocyte reactivity.  At 3 

months, enhanced GFAP staining was restricted to the hippocampus.  This would suggest 

the hippocampus plaques were the most mature and therefore where the Aβ pathology 

had begun.  As animals aged, increased GFAP density in the striatum, and cerebral cortex 

was observed.  In a direct comparison of single and doubly transgenic mice, as would be 

intuitive, the high burden doubly transgenic mice had significantly more GFAP staining 
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than less-burdened single APPsw mice. Using MHC-II immunostaining techniques, 

Gordon et al. (2002) showed increased microgila activation with increased age in APPsw 

+ PS1 mice. Consistence with work previously reported, activated microglia and 

astrocytes increased synchronously with Aβ burden, and were closely associated with 

plaques (Matsuoka, et at. 2001)   Taken together, the time course of Aβ deposition, the 

characteristics of the Aβ plaque, and the inflammatory response which they instigate, the 

doubly transgenic APPsw + PS1 mouse closely resembles Aβ pathology found in the AD 

brain.   

    While the doubly transgenic mice develop significant Aβ burdens, no neuron loss 

was initially seen with the APP + PS1 transgenic mouse line (Takeuchi et al, 2000).  

However, a recent study by Sadowski et al., (2004) showed significant neuronal loss in 

the CA1 region of 22-23 month old APP+PS1 mice.  While there is no global neuron loss 

in this model (such as the extensive cortical and hippocampal loss seen in AD), many 

findings suggest a lack of neuronal health in the APPsw +PS1 model.  Changes in 

glucose metabolism (Sadowski, et al, 2004), dendrites, dendritic spines (Moolman et al, 

2004), reorganization of cholinergic terminals (Wong et al. 1999) and resultant 

impairments in synaptic plasticity (Dickey, et al. 2003) have all been documented.  In an 

assessment of brain metabolism, Sadowski et al. (2004) used 14C-2DG and showed no 

impairment at 2 months.  However, at 22 months the brain glucose utilization (BGU) 

index in the hippocampus of APP+PS1 mice was decrease by 26.6%.  This defect 

correlated with spatial memory deficits (Sadowski et al, 2004).  Impairment in glucose 

utilization is also observed in the human AD brain, which is associated with early 

cognitive impairment (De Santi et al, 2001).  
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 Along with impairment in neuronal metabolism, APP+PS1 mice also have 

alterations in dendrites and dendritic spines.  At 11 months, APP+PS1 had significantly 

less spines and total dendrite area in the hippocampus (Moolman et al, 2004).  Other 

characteristics observed included swollen bulbous dystrophic neurites.  Moolman et al. 

(2004) went on to characterize human AD hippocampal tissue and compare the findings 

in APP + PS1 mice.  Both quantitatively and qualitatively similarities were observed.   

Moolman et al. (2004) reported that “images of neurons from the AD brain were 

remarkably similar to those from the 11 month-old APP+PS1 mice.”  Also similar was 

the 50%  loss of dendritic spines in the AD brain and transgenic mice, when compared to 

controls.    As well, cholinergic neurons are affected by the introduced mutant APPsw 

and PS1 transgenes.  Wong et al. (1999) found there to be reorganization of cholinergic 

terminals in the cortex and hippocampus of double transgenic mice.  These mice had 

prominent cholinergic synaptic deficits, as measured by staining of vesicular 

acetylcholine transporter (VAChT) boutons (Wong et al, 1999).  As one would anticipate 

the deficits observed in synapses translated into impairment in LTP,  Trinchese et al. 

(2004) observed abnormal LTP as early as 3 months that paralleled plaque appearance.  

In 17-18 month APP+PS1 mice, Dickey et al. (2003) showed selectively reduced 

expression of synaptic plasticity-related genes including Arc, Zif268, NR2B and GluR1.   

 In summary, APP + PS1 first show Aβ deposits at 4-6 months of age, which 

increase with age.  This increase occurs despite a constant APP expression level 

throughout life.  Similar to the AD brain, plaques are associated with dystrophic neurites, 

reactive astrocytes, and microglia activation.  While there is no global neuron loss, such 
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as the extensive cortical and hippocampal loss seen in AD, neuronal loss is observed in 

the CA1 region of very old 22-23 month old APP + PS1 mice.   

      

Behavior of APP+PS1 Mice 

 Just as in the single transgenic APP (Tg2576) mice, the double transgenic mice 

have been widely behaviorally characterized.  These mice often show behavioral 

correlations with their AD- like pathology described above.  In sensorimotor tasks, 

double transgenic mice are often not significantly different from non-transgenic 

counterparts; however there are selective tasks and time points where the double 

transgenic mice show impairment.  In a task of open field activity, double transgenic 

mice were shown to have increased line crosses (activity) at 15-17 months, but not at 5-7 

months (Arendash et al., 2001b).  This increased activity at 15-17 months was not 

reproducible in a later study (Jensen et al, 2005).  In contradiction with the above work 

(Arendash et al., 2001b), decreased line crossing was observed at 4.5 to 6 months (Jensen 

et al. 2005), but not 15-16.5 months.  Liu et al. (2002) observed a decrease in activity in 

doubly transgenic mice at 7 months.  Other testing in open field has shown no significant 

differences in activity (Roach et al, 2004).  The variability in findings across there studies 

in open field activity may indicate that activity levels are extremely sensitive to 

background strains.  While all animals discussed have the addition of the APP and PS1 

transgene, multiple generations of inbreeding may cause differences in activity across 

numerous studies.   

In balance beam, double transgenic mice showed early impairment at 5-7 months 

and late impairment at 15-17 months (Arendash et al, 2001a; Arendash et al 2001b).  
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After numerous generations of breedings, impairment in balance beam was no longer 

apparent at 4.5-6 or 15-16.5 months of age, although strong trends were present (Jensen 

et al. 2005).  It could be argued that animals lacking sensory motor impairment at any 

time point are a better model to test cognition by eliminating any sensorimotor 

impairment that would potentially confound any observed cognitive effect.  However, no 

correlations between activity, balance beam and cognition were observed by the 

Arendash laboratory, indicating that changes in activity or impaired balance beam 

performance do not deleteriously affect cognition.   Arendash et al. (2001) showed no 

effects of transgenicity in the elevated plus maze (test of anxiety) at 5-7 and 15-17 

months.  In contrast, Jensen et al. (2005) describe an increase in anxiety at 15-16.5 

months.  Though this finding was observed in one of 3 measures of anxiety (% time in 

open arms), it is this measure that is most linked to anxiety (Jensen et al., 2005).  

      Similarly to single APP mice, double transgenic mice are impaired cognitively 

over a multitude of cognitive domains.  While one would anticipate the increased 

Aβ burden earlier in the double transgenic mice would translate into earlier cognitive 

impairment, this is often not observed.  In 3 month old animals, Holcomb et al. (1998) 

showed significant differences in Y- maze alternations between single and double 

transgenic mice when compared to non-transgenic. Both single and double transgenic 

were equally impaired when compared to non-transgenics.  Later, in 3 and 6 month old 

animals, Holcomb et al. (1999) showed equally significant differences in Y- maze 

alternations between single and double transgenic mice when compared to non-

transgenic.  This impairment  in Y-maze was only present in the double transgenic mice 

at the 9 month time-point. However, at no time point were the single transgenic mice 
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(lacking compact Aβ) significantly from the double transgenic mice (Holcomb et al, 

1998; Holcomb et al, 1999).   This work uncovers impairment not associated with 

compact plaque deposition because APPsw mice lack Aβ deposits at all test points 

evaluated, leading to the hypothesis that early soluble (oligomeric) forms of Aβ may be 

the primary cause of impairment in this task.  Later work showed no transgenic 

impairment in Y-maze at any time point in the doubly transgenic mouse line (Arendash et 

al., 2001a; Arendash et al., 2001b; Jensen et al., 2005).  The authors suggest that the Y-

maze task is relatively insensitive to mutant APP-transgenic associated cognitive 

impairment.   

 In an early behavioral characterization of the APP + PS1 mouse Holcomb et al. 

(1999) observed no significant impairment  at 3, 6 and 9 months in MWM, a task of 

spatial reference learning and memory.  While there was no impairment in this study, a 

substantial body of literature shows that APP+PS1 mice become impaired in MWM 

(Arendash et al., 2001; Liu et al.,2002; Trinchese et al., 2004; Jensen et al., 2005).    At 5-

7 months, double transgenic mice showed no impairment over 10 days of testing, 

however by 15-17 months spatial learning impairment was observed (Arendash et al. 

2001a).  Arendash et al. (2001a) also observed no effects of transgencity on the percent 

of time spent in the former platform-containing quadrant at either 5-7 or 15-17 months. In 

more recent work by Jensen et al. (2005) from the same lab, and using the 10 day MWM 

protocol, double transgenic mice were significantly impaired at both 4.5-6 and 15-16.5 

time points in acquisition.  Probe trial testing for reference memory indicated that 4.5-6 

and 15-16.5 month old mice non-transgenic mice showed an exclusive quadrant 

preference for the platform containing quadrant, but not APP+PS1 mice at the same ages. 
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These early acquisitional and memory retention impairments seen by Jensen et al. (2005) 

are in contradiction to previously mentioned work by the same lab (Arendash et al. 

2001a). Since both studies used the same water maze protocol, variation in protocol is a 

moot point in this comparison.  A likely reason for the observed early impairment 

involves the numerous generations of cross breeding between studies.  This resulted in 

the APP+PS1 mice becoming more behaviorally sensitive to mutant APP expression 

and/or the process of Aβ aggregation.  Thus, APPsw + PS1 mice appear to have become 

more impaired earlier as seen by Jensen et al. (2005).   Similar to Jensen et al (2005),   

Trinchese et al. (2004) noted no impairment in MWM until 6 months.  It should be noted 

that differences in water maze protocols occurred.  The Arendash protocol included 4 

trails for 10 days of acquisition while Trinchese only tested in 3 trials, for 3 days 3 times 

a day.    

 Changes in behavioral sensitivity are also observed when analyzing results of the 

platform recognition task.  In this task of recognition and identification, Arendash et al. 

(2001a) observed no differences between non-transgenic mice and APP+PS1 mice at 5-7 

or 15-17 months of age.  In contrast, Jensen et al. (2005), saw no impairment at 4.5-6 

months, but did observe impairment at the 15-16.5 month time point.  This impairment is 

further evidence of increased behavioral sensitivity after numerous generations of 

crossbreeding.  

An early symptom of AD is the loss of working memory.  Using a task of spatial 

working memory (Radial Arm Water Maze RAWM), doubly transgenic mice 15-16 

months were observed to be impaired in the final block of testing on the final memory 

retention trial (trial 5) (Gordon et al., 2001; Morgan et al., 2000; Arendash et al., 2001a).   
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Similarly to findings in formerly discussed cognitive tasks, Y-maze and Morris water 

maze, the doubly transgenic mice were not significantly more impaired than single 

transgenic mice (Morgan et al., 2000).  This observation provides more evidence that the 

higher burden found in the APP + PS1 mice does not translate into intensified 

impairment. Gordon et al, (2001) also showed that the working memory sensitive 

RAWM correlated with Aβ deposition in the frontal cortex and the hippocampus.  It is 

important to note that young mice free of Aβ burden (5-6 months) did not show 

impairment in RAWM in early studies (Arendash et al., 2001a).  In this initial work, 

APP+ PS1 mice showed impairment only in the T5 memory retention trial, with no 

impairment in T4 (Gordon et al., 2001; Arendash et al., 2001a).  In more recent work, 

Jensen et al. (2005) also describes a somewhat earlier and more profound working 

memory impairment than had been reported by the same group (Arendash, 2001a).  

Jensen et al. (2005) observed RAWM impairment not only at the later 15-16.5 time-point, 

but also months at 4.5-6 months.  At both 4.5-6 & 15-16.5 month time-points, doubly 

transgenic mice showed robust impairment on T4 and T5 across all 3 blocks.  This early 

RAWM impairment, taken collectively with earlier impairment in the MWM task, shows 

that, for the Arendash lab’s results, numerous generations of crossbreeding lead these 

transgenic mice  to become more behaviorally sensitive to mutant APP expression and/or 

the process of Aβ aggregation.   In another study from the same group, RAWM working 

memory impairments were observed during T4 in very old 18 month APPsw + PS1 

animals (Austin et al., 2003), although no impairment was observed on T5 in 18 month 

old animals.  Finally, Trinchese et al. (2004) observed another characteristic seen in AD 

patients.  At 2 months, doubly transgenic mice were not impaired in working (RAWM) or 
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long term memory (Morris water maze).  At 3-4 months, the mice still exhibited intact 

long term memory, however they showed impairment in RAWM working memory.  By 

6-7 months Trinchese et al. (2004) showed that the double transgenic mice show 

impairment in long term and working memory tasks.  While this impairment profile 

includes earlier impairment than that of former work, progression of memory impairment 

closely mimics the early impairment of working memory followed by later impairment in 

long term memory seen in AD patients.   

 In summary, the APP+PS1 transgenic mice from the Arendash colony first show 

reference memory and working memory impairment at 5-6 months. Jensen et al. (2005) 

showed this impairment in Morris Water Maze Acquisition/ Retention and RAWM.  This 

impairment is also observed in 15-16.5 month old animals. Present at 15-16.5 months, 

that was absent in young mice, is an identification/strategy switching impairment, as 

measured by platform recognition (Jensen et al., 2005).  While increased activity has 

been observed in APP+PS1 mice at 5-6 months of age, no changes in sensorimotor 

function or anxiety have been observed at this time point (Jensen et al. 2005).  

   

APP Mutant Mice: Imperfect Transgenic Model 

      While there are many characteristics of transgenic mouse models that closely 

emulate characteristics of AD, APP transgenic mice are not a perfect model of the disease 

progression, pathology or behavior.  The behavioral characteristics of AD are broad and 

often inconsistent between patients.  The complex layered behavior of the disease cannot 

be broken down into specific non-overlapping categories such as exploration, anxiety, 

long-term and short-term memory.  Despite these complications, cognitive impairment 
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involving spatial working memory and reference memory impairment is nicely 

reproduced in APP transgenic lines. Trinchese et al. (2004) showed the progression of 

typical AD-like cognitive impairment in APP+PS1 mice, first showing working memory 

impairment and later reference memory impairment.  The age-related platform 

recognition impairment observed in APP + PS1 mice by Jensen et al. (2005) nicely 

mimics the strategy switching impairment observed in AD patients.  APP transgenics also 

show the characteristic anxiety often observed in people with AD (Jensen et al., 2005). 

There are some behavioral characteristics of AD that can not be reproduced in transgenic 

mice including, hallucinations, depression, and paranoia.  While not perfect, behavioral 

testing of transgenic mice to analysis therapeutics and mechanisms is a noteworthy tool 

which has been paramount in exploring the disease.    

    As for pathology, while at first glance the APP transgenic mice do appear to 

closely mimic AD brain pathology there are some notable differences.  The first 

significant difference is the lack of overt neuron loss in the transgenic mice.  Despite high 

concentration of the neurotoxic Aβ in the mouse brain, this does not translate into the 

neuronal loss observed in AD brains.  This could be due to Aβ being less toxic in the 

mouse brain when compared to human brains or the short life-span of the mice relative to 

humans.  Lack of neuronal loss could also be due to the much decreased inflammatory 

response Aβ has in the mouse brain.  Evidence for this hypothesis was observed by 

Schwab et al. (2004) in a direct comparison of lesions in the neocortex and hippocampus 

in elderly APP23 transgenic mice and lesions from the AD brain.  Despite similar 

staining for Aβ protein, positive ApoE staining, and comparable levels of reactive 

astrocytes, a largely reduced level of microglia activation was observed in aged 
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transgenics.  In contrast to lesions of the AD brain, Tg+ mice had weakly activated 

microglia, which expressed low levels of complement receptor activation.  Schwab et al. 

suggest that this weak immune response in Tg+ mice compared to the very strong 

immune response in human AD could be why Aβ vaccination in mice was useful and 

resulted in the clearance of Aβ, whereas in AD, stimulation to an already strongly 

activated immune system had grave results.  Differences in microglia activation make it 

difficult to anticipate if immune-activating therapies that result in positive effects in 

mouse models, will result in similar effects in humans.    Another distinct difference in 

APP transgenic mice observed by Schwab et al. (2004) was the absence of NFTs in the 

Tg+ mice.  In the AD brain, Aβ deposits were surrounded with the presence of ghost 

tangles, while the neurons around the Aβ deposits in the Tg+ mice appeared to just be 

displaced (Schwab et al. 2004).  The Aβ hypothesis theorizes that presence of Aβ induces 

production of NFTs.  APP transgenic mice are free of NFTs despite high plaque burden.  

Overall, it is hard to decipher if the mechanism leading to impairment in transgenic mice 

is the same as causes of impairment in human AD.  While flaws of the APP models are 

present, the development of mice with “AD like” behavior and pathology has been 

monumental in advancing AD research.    
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Environmental Enrichment 

  

Enriched Environment Protection and Treatment: Human Studies  

 A large body of literature suggests that life experiences including education, 

occupation, physical activity and social interactions may provide protection against 

dementia later in life.   These findings would suggest environmental factors could impact 

the development of AD.   Cognitive stimulation in the forms of educational attainment, 

occupations, participation in non-occupational cognitive activities, “environmental 

complexity,” “favorable life experiences,” and leisure activities have been examined in 

association with decreased AD risk.   Much of this work is the product of retrospective 

case-control studies.  Low education attainment has been associated with an increase risk 

of AD (Stern et al., 1994, Ott et al., 1995, Letenneur et al., 1999).  Why education is 

protective against AD is not clear.  Possible explanations include that education provides 

a cognitive reserve, while others suggest that higher levels of education enables patients 

to simply preformed better on neurological tests.  Some have suggested that low 

education results in earlier onset of AD (Friedland et al., 1993).  Stern et al. (1994) found 

that low levels of education resulted in an increase risk of AD.  However, they were 

unable to decipher if lower levels of risk, associated with higher education, was due to 

“decreasing ease of clinical detection or by imparting a reserve that delays the onset of 

clinical manifestations.”   In a 5 year longitudinal study Letenneur et al. (1999) supported 
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the above work, showing low educational attainment is associated with higher risk of 

AD.  While many have found this correlation, several studies have failed to confirm this 

association.  After adjusting for age and examining subtypes of dementia, Cobb et al. 

(1995) found no association between risk of AD and education.   While education is 

participated in during early-life, work by Friedland et al. (2001) would suggest mid-life 

cognitive activity is associated with lower risk of AD.    Occupational attainment falls 

into the category of mid-life cognitive stimulation.  Both Stern et al. (1994) and Smyth et 

al. (2004) observed delay of AD development if subjects had held mentally stimulating 

occupations.   Other mid-life activities, such as social and leisure activities, physical 

activity and cognitive stimulation have also been investigated and found to be associated 

with decrease risk of AD (Scarmeas et al., 2001; Wang et al., 2002).   Verghese et al. 

(2003) showed that individuals that participated in leisure activities such as reading, 

playing board games, playing a musical instrument and dancing had a decrease risk for 

developing AD. Work by Schooler & Mulatu (2001) suggests that carrying out 

substantively complex tasks late in life still has the capacity to improve intellectual 

functioning.  Moreover, physical activity performed in mid-life has also been linked to a 

decrease in AD (Friedland et al., 2001; Churchill et al., 2002).  As a component of the 

“Nun Study,”   Wilson et al. (2002) provided evidence that cognitively stimulating 

activities participated later in life was associated with decreased risk of AD.  A large 

group of non-demented clergy was followed annually for up to 7 years.  The data 

collected showed that participation in cognitively stimulating activities was associated 

with a decrease of global cognitive impairment, working memory impairment as well as 

perceptual speed impairment (Wilson et al., 2002).  Taken together, these findings 
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suggest that lifestyle in both early and mid-life may influence the development of AD.  

More work is needed to show if each component of enriched lifestyles (social, physical, 

cognitive activity) are contributing equally to the effects observed or if one weighs more 

heavily as a protector.  Such a dissection would, however, be most difficult to achieve in 

human studies.   

      A substantial body of literature has shown EE as a protective entity. This has lead 

to the investigation of EE as a possible treatment option.   Many treatment studies focus 

on the potential of “cognitive rehabilitative intervention” as a treatment for AD.  Ball et 

al. (2002) showed that interventions conducted in small group settings lasting 60-72 

minutes over a 5-6 week period of time resulted in improvement in “targeted cognitive 

abilities” in older adults.  Quayhagen et al. (1995) extended these findings to AD patients 

by showing improved overall cognitive/memory function following cognitive 

rehabilitative intervention.  Weekly cognitive sessions were performed by caretakers.  

Those in the treatment group initially showed improvement in behavior as well as 

memory. However, this benefit declined to baseline after 9 months.  In contrast, the 

placebo group declined in cognitive test scores over the course of the clinical trial.  While 

relatively short lived, the 9 month treatment benefit observed closely competes with 

current pharmaceutical treatments that are often effective up to one year.  It is also 

important to note that intervention was only administered in a short term (5-12 week) bi-

weekly manner, suggesting an even greater potential of cognitive rehabilitative 

intervention in a chronic and more rigorous framework.  In more recent work Davis et al. 

(2001) and Farina et al. (2002) observed modest cognitive benefits from cognitive 

rehabilitative intervention.  For Davis et al. (2001), cognitive intervention included 5 
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weeks of training in face-name associations, spaced retrieval, and cognitive stimulation.  

When patients were analyzed post- cognitive intervention, there was improvement in 

tasks which were included in cognitive intervention sections (face-name associations, 

spaced retrieval). However, these benefits did not translate into improved overall 

neuropsychological testing or improved quality of life.  Similarly unimpressive cognitive 

benefits after cognitive intervention were observed by Farina et al. (2002).  Two types of 

cognitive intervention were tested in this study.  Test subjects were given “procedural 

memory intervention” or training of “partially spared cognitive functions.”  In a test of 

“functional living skills,” both groups showed improvement.  However, only the group 

given “procedural memory intervention” showed improvement on the Attentional 

Matrices and Verbal Fluency for Letters tasks.  More recent work by Loewenstein et al. 

(2004) showed that mildly impaired AD patients that were enrolled in a cognitive 

rehabilitation (CR) program maintained performance on specific cognitive and functional 

tasks.  CR training consisted of two 45-minute training sessions twice per week for 14 

weeks.  Similar to other studies, Davis et al. (2001), performed CR training in specific 

tasks (face-name association tasks, object recall training, functional tasks) and observed 

benefits within these trained tasks. As discussed above, these more recent studies also 

involved acute and sparse cognitive intervention that may not be as beneficial as a long-

term intensity therapy.  More work involving chronic administration of cognitive 

intervention is needed in order to better gauge the potential of cognitive intervention as a 

viable treatment option for AD.   
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Effects of Enriched Environment in Rodents 

 The effects of EE in rodent are often compared between standard group housed 

rodents and rodents living in larger cages containing toys, wheels and tunnels.  Most 

work is done with animals living in the augmented cage (Kempermann et al., 1997) while 

other studies have acute exposure for a few hours a day (Frick et al., 2003).  Some studies 

enhance their EE by administering intra-weekly cognitive sessions in which animals are 

taken from their cages and exposed to new environments (Arendash et al. 2004; Teather 

et al. 2002).  Many studies will add an “impoverished” test group including singly housed 

mouse in standard cages (Mohammed et al., 1990).   Do to the complexity of the enriched 

environments, it is hard to piece out if complete enrichment (cognitive, physical, and 

social stimulation) or if one or several components of EE are leading to the changes 

observed.   

 

Cognitive Effects of Enriched Environment in Rodents 

 While there is a limited amount of work involving EE and cognitive benefits in 

AD transgenic mice, a substantial body of literature offers insight into the effects of EE 

on cognition in wild type mice.  While it is unknown if the cognitive benefits often 

observed in wild type mice will translate into beneficial effects in AD transgenic mice, 

the work done in typical rodents offers an exploitable resource to predict possible effects 

of EE in AD transgenic mice.   
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    The effects of EE have been tested in young, middle and aged rodents.  

Furthermore, studies have also tested effects of enriched environment on genetically 

manipulated, dietary altered, and lesioned rodents.  Locomotor activity is among many of 

the behaviors explored in animals exposed to EE.   Van Waas and Soffie (1996) tested if 

EE changed activity levels in rats. In a y-maze task, despite age, young (4 months) and 

old mice (22 months) reared in an EE did not have increases in “arms visited.”    This 

work was corroborated by Wolfer et al. (2004), who found no significant differences in 

enriched “adult” mice versus standard housed mice in an open field task.  This absence of 

differences in activity in enriched animals suggests that differences in performance in 

exploration and cognitive tasks are not due to underlying differences in activity.  EE mice 

also show no differences in anxiety levels, as measured by the elevated plus maze (Tsai et 

al. 2003).     

 Hippocampal forms of learning and memory have been shown to be widely 

affected by EE ( Kempermann et al., 1997, 1998, 2002; Wincur et al. 1999; Teather et al. 

2002;  Frick et al. 2003; Arnaiz et al. 2004).  Kempermann et al. (1997, 1998) have 

constantly showed that mice exposed to an EE from weaning to adulthood ( 2, 6, and 18 

months) perform superior in Morris Water Maze when compared to standard housed 

mice.  Work by Teather et al. (2002) showed 6 month old rats living in an EE had 

superior performance in hippocampal dependent tasks (standard water maze  when 

compared to “restricted” housed (RC) rats.  In contrast, EE mice and RC rats were 

identical on tasks that were hippocampal independent (Teather et al. 2002).   Frick et al. 

(2003) showed that EE reduces age-related impairment in spatial memory.  In the Morris 

Water Maze (MWM) task, 18 month old mice living in an EE 25-29 days prior to testing 
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were not impaired while those in standard housing showed impairment in both 

acquisition and retention portions of the MWM.  It is important to note that no treatment 

differences were observed in the cued version of the MWM, showing that EE is not 

simply improving vision of the aged mice.  Equally noteworthy, after statistical 

separation of males and females, both benefited from EE.  This would suggest that both 

males and female could potentially benefit from age-related cognitive protection provided 

by enrichment.  Kempermann et al. (2002) showed that EE late in life benefited aged 

mice.  In this study mice entered EE at 10 months and were observed to be cognitively 

superior in MWM when compared to SH mice at 20 months.  Benefits in rats were also 

observed by Arnaiz et al. (2004).  This work showed that rats at 27 months of age (Arnaiz 

et al., 2004) benefited in MWM from life time EE.   In contrast to this work, Wolfer et al. 

(2004) observe no differences in MWM between “adult mice” living in an EE when 

compared to standard house mice.   This discrepancy could be due to the age of animals 

tested.   No definition of adult mice was given, raising the possibility that the animals 

tested were too young to have any impairment to protect against.  The work of Wolfer et 

al. (2004) would suggest that EE may not be useful for augmenting baseline cognition.  

Duration and starting time of EE on cognition was investigated by Williams et al. (2001) 

and Kobayashi et al. (2002). Williams et al. (2001) tested mice at numerous time points 

in the MWM after exposure to enrichment in early life (35 to 94 days of age) or later in 

life (100 to 159 days of age).  Three rounds of (MWM) testing were included over the 

extent of the study.  A baseline test, followed by a first and second test period was 

conducted. This extensive testing can lead to over testing and therefore mask 

impairments or cognitive benefits from EE.  While the authors suggest that EE at the 
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earlier period of time offered benefits in MWM performance, these benefits were modest 

at best.  No difference amongst any of the groups (individually housed, group housed, 

enrichment early, enrichment late) was observed at the first test point.  In the second test 

period, differences were observed only between individually housed mice and all other 

groups.  This lack of robust differences in the EE mice could be due to the 3 rounds of 5 

day MWM testing.   Kobayashi et al. (2002) tested if long-term exposure offered greater 

benefits than short-term exposure.  In the cognitive based Hebb-Williams Maze task, rats 

reared in an EE from weaning until 25 months benefited more from EE than those given 

short term (3 months) of EE right before testing (e.g. EE between 22-25 months of age) .  

However, both long term and short term EE benefited 15 month old mice equally.  The 

authors concluded that short-term enrichment has potential to improve aging animals; 

however, long-term enrichment is superior in protecting cognition in aged animals.  This 

work offers data that would suggest living an enriched life may lead to successful aging, 

as well as showing that while not as impressive as long-term EE, short-term enrichment 

later in life may also be beneficial.     

 Until this point, experiments conducted with EE as the sole variable have been 

discussed; however, EE has been explored in the presence of other variables.   Winocur 

and Greenwood (1999) showed high dietary fat translated into negative cognitive effects 

that can be overcome with EE.   Kalmijn et al (1997) showed that high fat intake leads to 

increased risk of dementia in humans.  Taken together, these studies suggest EE may 

reduce risk of AD by reversing mechanisms of cognitive impairment that fat intake 

exacerbates.   Traumatic brain injury and ischemic stroke often result in cognitive 

impairment. Wagner et al. (2002) and Dahlqvist et al. (2004) showed positive cognitive 
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effects after EE treatment in male rats after traumatic brain injury and rats after focal 

cerebral ischemia, respectively.  Neurotransmitter abnormities are associated with and 

targeted by pharmaceuticals in AD.   Degroot et al. (2005) found increased hippocampal 

acetylcholine (ACh) efflux when actively manipulating a novel object.  These effluxes 

lead to an enhancement in cognition when tested in a radial arm maze.  This would 

suggest that if EE works primarily through a mechanism of increased ACh, its therapeutic 

value for late stages of AD may not be significant due to the substantial loss of 

cholinergic neurons in the AD brain.  This possibility appears remote, however, in view 

of multiple other neurochemical, histologic, and genetic mechanisms that are impacted by 

EE, as will be discussed in the next section.  Overall, EE has been shown effective in 

healthily aging, as well as in reversing effects from non-healthy insults such as high fat 

diets and traumatic brain injury.   

 

Neurohistologic and Neurochemical Effects of Environmental Enrichment in Rodents 

 A plethora of changes in neurohistology and neurochemistry have been observed 

in rodents exposed to EE.   One widely documented change is increase neurogenesis.   

Contrary to past thought, the brain has the capacity to produce new nerve cells in 

adulthood.  Two areas have been shown to give rise to new neurons.  These areas are the 

subventricular zone of the anterior lateral ventricles (which give rise to cells that become 

neurons in the olfactory bulb) and the subgranular zone in the dentate gyrus (which 

generates new granule cell neurons in the hippocampus).  EE has been shown to induce 

hippocampal but not olfactory bulb neurogenesis in rodents (Brown et al., 2003).  This 
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selective neurogensis by EE in the hippocampus, an area incongruently destroyed in AD, 

makes it a noteworthy area of exploration in treatment of AD.    

In 1997 Kempermann et al. showed more hippocampal neurons in adult rodents 

living in an enriched environment.  This work was consistently reproduced in 

Kempermann et al., 1998a, 1998b, 1999, 2002 and Nilsson et al., 1999.  Implementing 

bromodexyuridine (BrdU) (which is incorporated into dividing cells and their progeny) 

and stereology techniques, Kempermann et al. (1997) was able to measure a 57% percent 

increase in BrdU labeled cells and a significant increase of 15% in volume of the granule 

cell layer in 3-4 month old mice that had lived in EE for 40 days.  Positive BrdU staining 

could indicate increase neuronal proliferation or simply increase survival of neurons.  To 

explore these options Kempermann et al. (1997) sacrificed mice one day after BrdU 

injections and 4 weeks after injection.  In the group sacrificed one day after injection, no 

significant differences were observed in EE mice when compared to control mice 

(Kempermann et al., 1997, 1998a).  However, in animals sacrificed 4 weeks after 

injections, a significant increase in labeled cells was observed.  Take together these 

findings show that EE alone does not increase proliferation of neurons, but rather is 

increasing their survival.  This survival may be impart due to the inhibition of 

spontaneous apoptosis observed in rats reared in EE (Young, 1999).  Young et al. (1999) 

described a 45% reduction in apoptotic death in the rat hippocampus.  This EE-induced 

prevention of apoptosis could be a mechanism by which EE is improving survival of new 

neurons.  It is important to note that increased survival with no changes in proliferation is 

background strain dependent. In contrast to work above performed on behaviorally 

superior C57BL/6 mice, 129/SvJ mice [(which have significantly less hippocampal 
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neurogensis and do not perform well in learned tasks (Kempermann et al, 1997b)] had 

increased survival and proliferation of neurons (Kempermann et al. 1998b).  This is 

different from previous studies using C57BL mice, which reported only increased 

survival, not proliferation.  Along with strain background dependence (Kempermann et 

al., 1998b), EE-induced neurogensis is also dependent on temporal variance.  

Kempermann & Gage (1999) found that animals exposed to EE and then removed from 

EE had twice as many proliferating cells in the dentate gyrus when compared to standard 

housed and long-term exposed animals.  Kempermann and Gage (1999) hypothesize that 

this increase of neurogenesis in short-term enrichment could be due to early stimulation 

preserving neurogenic potential, combined with novelty (changing environments),both of 

which contributed to the EE-induced neurogenesis.  While novelty may be contributing to 

the short –term enrichment effect, both groups had exposure to EE early in life, making 

this hypothesis that short-term enrichment effects were due to early life exposure 

somewhat weak.  

  The work discussed thus far has been done in adult animals.  However, does EE 

have the potential to induce neurogenesis in aged mice?  Kempermann et al. (2002) 

observed a five-fold induction of dentate gyrus neurons in  20 month old mice.  Animals 

were placed in enrichment or standard housing at 10 months old and then maintained for 

10 additional months.  At first analysis, no significant differences were observed in BrdU 

staining.  However, when neuronal phenotype was taken into account, it was observed 

that the control group had increased astrocytes in a compensatory manner.   When 

looking just at BrdU staining, which over lapped with NeuN staining for neurons, a 5-

fold increase in neurogensis of EE mice emerged.  This work shows that beginning EE in 
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middle age may be just as beneficial as starting early. This work also highlights the 

ability of EE’s benefits to extend into late life.   

           The work above exemplifies the power of environmental enrichment in inducing 

neurogenesis in adult and aged wild type mice, but what are the implications of EE 

induced neurogenesis in AD?  Haughey et al. (2002) showed disruption of neurogensis by 

Aβ in the dentate gyrus of AD transgenic models.  In 12-14 month old APP mice 

Haughey et al. (2002) described a reduction in neural progenitor cell when compared to 

age matched controls. Twelve days after a finial Brdu injection there was a greater 

decrease, 55%, in APP mutant mice compared to the 25% decrease in control mice 

(Haughey et al., 2002).  In contrast to what is observed in transgenic models, Jin et al. 

(2003) described an increase in neurogensis at autopsy in the dentate gyrus of AD brains 

when compared to brains of individuals without neurological disorders.  The authors 

suggest a compensatory theme which occurs without cognitive benefit.  This brings into 

question if increased neurogensis, through EE, will translate into benefits in AD patients.  

Jin et al. (2003) suggest possible reasons for the limited repair capacity of increased 

neurogenesis in AD.  Authors note the small amount of dentate gyrus region-limited 

neurogenesis is not enough to compensate for the mass destruction present in the AD 

brain.  A second point is that the microenvironment of AD brains may be too toxic for 

new neurons, thus keeping them from becoming fully functional, mature neurons that 

integrant into surviving brain circuitry.  While these obstacles are present, the evidence 

that the AD brain has the capacity to maintain neurogenesis offers the possibility that 

measures which increase neurogenesis, such as EE, may have therapeutic value in AD. 
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  While neurogenesis has been the most widely documented effect of EE, other 

pathological changes are observed after exposure to an enriched environment.  Synaptic 

loss correlates with cognitive deficits associated with AD ( DeKosky, 1990).  Mice 27-28 

months that were exposed to EE for 3 hours a day for 14 days prior to behavioral testing 

showed increase synaptophysin levels combined with cognitive benefits (Frick & 

Fernandez, 2002).  While increased synaptic area was associated with improved 

cognition, no correlation analysis was performed.  Increased synaptophysin, indicative of 

synaptic area, was increased in the frontalparietal cortex and the hippocampus.  Further 

evidenced of increased synaptic area induced by EE was observed by Saito et al. (1994).   

Saito et al. (1994) showed a decrease in synaptic content in aged mice that was prevented 

if reared in an EE.   Noteworthy for AD is the finding that mice with an ApoE4 transgene 

do not show EE-induced synaptogenesis (Levi et al, 2003).  This may suggest that 

presence of ApoE4 blocks some effects of EE exposure.  While synaptophysin is a 

measure of synaptic area, changes in dendritic morphology offer another measure of 

neuronal health and synaptic plasticity.    Using golgi-cox morphological analysis,  

Faherty et al. (2003) found increases in dendritic length in the CA1 region and the dentate 

gyrus of mice reared in an EE until 4-5 months of age.  Spine density was analyzed by 

Comery et al. (1995).  These investigators found a 30 percent increase in spine density 

within the corpus striatum of 2 month old rats exposed to EE, compared to individually 

reared littermates.  More recently in 3 month old deer mice, Turner et al. (2003) observed 

increases in average number of spines in layer V pyramidal neurons of the motor cortex 

and in medium spiny neurons of  the dorsolateral striatum.  No differences were observed 

in the granule cells of the dentate gyrus.   
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EE  has been shown to change growth factor levels in the brain ( Pham, et al., 

1999; Ickes et al., 2000).  Work by Pham et al. (1999) showed that NGF levels and NGF 

receptors are both increased in 14 month old rats housed in an EE.  These increases 

occurred in the hippocampus, visual and entorhinal cortices after 12 months of EE and 

were linked to improvement in spatial learning, although no correlation analysis was run.  

Along with increases in NGF, Ickes et al. (2000) observed regional increases in brain-

derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) levels in 14 month old 

rats that had lived in EE from weaning.   Both BDNF and NGF were increased in the 

very AD relevant hippocampal formation.  In addition to changes at the protein level, it is 

important to note that EE has been show to effect gene expression.  Genes linked to 

neuronal structure, neuronal plasticitly, and transmission have been linked to EE 

(Rampon et al., 2000, Keyvani et al. 2004, Pinaud et al. 2004).   Pinaud et al. (2001) 

showed rats exposed to EE 1 hour a day for 3 weeks had marked up-regulation of arc in 

the cerebral cortex.  This gene, associated with plasticity, was also up-regulated in the 

CA1, CA2, and CA3 hippocampal subfields.   Rampon et al. (2000) analyzed various 

time exposures to EE and changes in gene expression.  Four month old mice were 

exposed to EE for 3 hours, 6 hours, 2 days or 14 days.  Early gene expression changes 

were measured in a comparison of mice exposed to EE for 3 or 6 hours.  Seventy-seven 

percent of genes were consistently altered at both 3 and 6 hours.   Some up-regulated 

genes included DNA methyltransferase (maintenance of DNA during replication), myelin 

gene expression factor and estrogen-responsive finger protein (transcription factors).  

Genes that were down regulated included caspase-6 (pro-apoptotic) and proyl 

oligopeptidase (regulated degradation of neuropeptides).  For animals that were in EE for 
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2 and 14 days, a different late gene expression was observed.  For these time points, 

changes in genes involved in neuronal transmission and structure were the common 

theme.  X-box binding protein (involved in the cAMP pathway) and postsynaptic density 

95 (involved in NMDA receptor anchoring) are two example of up-regulated gene 

expression at the 2 and 14 day time points. 

EE  has also been shown to effect stress-related organs and hormones   Despite 

beneficial effects of EE, Moncek et al (2004)’s work would suggest EE to be a chronic 

stress environment.  Changes indicative of stress, such as increased adrenal weight and 

increased stress hormones such as corticorsterone and adrenocorticotropic hormone 

(ACTH), were observed in EE mice.  In contrast, Belz et al. (2003) showed a decrease in 

base line stress hormones and a decrease in stress hormone response after mild stress 

induction in EE mice.   The differences in these studies can be attributed to differences in 

housing protocol.  In the study that found increases in stress, 10 male rats were group 

housed in an enriched environment.  In contrast, Belz et al. (2003) measured stress 

responses in singly housed mice with toys augmenting their home cage.   The increased 

stress measurement found in the Moncek et al. (2004) paper could be the result of a 

hierarchy competition in the EE cages.  In summary, EE has been shown to effect 

measures at the gene to protein level, which often translate into morphological and 

behavior benefits.   

      

Effects of Environmental Enrichment in “Alzheimer’s” Transgenic Mice  

 While limited, some work involving the effects of EE on “Alzheimer’s” 

transgenic mice has been done.  The literature thus far is inconstant from a pathological 
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standpoint and sparse behaviorally.  The current literature can be broken down into EE as 

a protective entity and EE as a treatment.  For protective studies, mice are either exposed 

or reared in an EE from weaning while treatment studies involve putting animals together 

after behavioral impairment and pathology is present. 

 Jankowsy et al. (2003) offered the first work in preventative EE and AD.  APP/ 

PS1 females were used and emphasis was placed on EE effects on Aβ.  Mice were keep 

in an EE until 8.5 months of age at which time they were sacrificed.   The methods state 

that animals from different cages were combined midway through the study and new 

young animals were added as older animals were removed.  Despite 64 animals used, 

results were most impressive in 3 sibling pairs, which were highlighted in the results.  For 

these 3 sibling pairs, Jankowsky et al. (2003) found increases in Aβ burden.  Results were 

more profound in hippocampus than cortex in numerous measures.  In a measurement of 

aggregated Aβ by size-exclusion filter trap assay, EE mice had a 30% increase in Aβ in 

the hippocampus with only a 16 % increase in the cortex.  Total Aβ, measured by ELSIA, 

showed a 52% increase in the hippocampus verses a 31 % increase in the cortex.  These 

results came as a surprise, taking into account the numerous positive effects of EE that 

have been documented.  Rather than highlighting possible mechanisms by which EE 

exacerbates Aβ deposition, it may be more appropriate to discuses why this EE protocol 

exacerbated Aβ deposition.   The paradigm described above may have lead to a more 

stressful than enriching environment for the mice measured.  The adding and subtracting 

of animals throughout the study removed a stable social base that could be considered 

crucial to the EE effect.  This lack of a stable social environment may have also added 

stress.  While not as extreme among females, a social hierarchy is still present and an 
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always changing hierarchy may have added to this stress.  Also it is important to note that 

the majority of the results showing an increase in Aβ were seen in 6 out of 64 mice.   

      In direct contradiction to Jankowsky et al. (2003), recent work by Lazarov et al. 

(2005) showed that EE reduces Aβ pathology in transgenic mice.  Similarly to the 

protection protocol of Jankowsky et al. (2003), APP/PS1 transgenic animals entered EE 

or SH at weaning and were exposed to an EE for 5 months.  Unlike the former study 

which used females, only males were used in the latter study.   Probing with 3D6 

antibodies, EE-housed mice had significantly less amyloid burden in the hippocampus 

and the cortex.  This theme continued for abundance and size of Aβ deposits using 

thioflavine S staining.  Reduction of non-deposited Aβ levels was also measured.   SH 

mice has significantly more detergent soluble and formic acid soluble Aβ 40 and 42.   

Taken together, these result show a global decrease in Aβ pathology that spans various 

species of Aβ.   

      Lazarov et al. (2005) also included an analysis of gene expression in EE mice.  

DNA microarray analysis revealed selective upregulation in levels of transcripts encoded 

by genes associated with learning and memory, vasculogenesis, neurogenesis, cell 

survival pathways, Aβ sequestration, and prostaglandin synthesis.  The upregulation of 

these genes appear to be constant with effects observed in wild type mice.  The 11.2-

44.3-fold increase in Aβ sequestering genes may be responsible for the robust decrease of 

Aβ in many forms.  It is also important to note that the physical activity component of EE 

was dissected and analyzed in this paper.  Results of this subsection will be highlighted 

below.    Overall Lazarov et al. (2005) showed a robust decrease in brain Aβ levels 
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coupled with positive upregulation of genes that may have lead to the decreases in Aβ in 

transgenic mice.  

 Work by Jankowsky et al. (2005) is the first to show that EE has the potential to 

protect against cognitive impairment in a transgenic model of AD.   Mice expressing APP 

and/or PS1 were placed in EE at 2 months of age and tested cognitively at 8 months of 

age.  Mice were tested in standard Morris Water Maze (MWM), repeated reversal MWM, 

and radial arm water maze (RAWM).  Analysis of behavioral data demonstrated that 

mice with APP alone or in combination with PS1, which lived in a standard house, were 

impaired in hippocampal-dependent learning and memory.  In MWM acquisition, both 

the APP and APP+PS1 mice significantly benefited from enrichment when compared to 

standard housed mice. Compared with standard housed mice of the same genotype, both 

APP and APP+PS1 in enrichment housing mice swam significantly shorter distances in 

MWM acquisition. While an improvement was observed, enrichment did not enable the 

APP+PS1 transgenic mice to perform as well as the enriched non-transgenics or the PS1 

mice in MWM acquisition. MWM retention benefits were only observed in APP single 

transgenic mice. Time spend in the goal quadrant for MWM retention was significantly 

increased in APP mice living in an EE.  In contrast, an improvement in retention was not 

observed for APP+PS1 mice living in EE.  Double transgenic EE mice spent significantly 

less time in the goal quadrant than all other genotypes given EE. 

Similar results were observed in the repeated-reversal version of MWM and the 

RAWM.  APP and APP+PS1 mice given EE swam shorter distances in repeated reversal 

MWM and made fewer errors in the RAWM than standard housed mice of the same 

genotype. This was shown by their ability to decrease “average distance traveled” in the 
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MWM repeated reversal task to levels comparable to standard housed non-transgenic 

mice.  In the repeated-reversal version of the MWM, both enriched APP and enriched 

APP+PS1 did not decrease their latency as quickly as non-transgenic and PS1 enriched 

mice.  Noteworthy for both the MWM repeated reversal task and RAWM task is that, 

following EE exposure, both APP and APP+PS1 mice overcame a genotype effect and 

were not significantly different from standard housed or even enriched non-transgenic 

mice. This suggests that APP mutant mice (APP and APP+PS1) benefited more from EE 

than PS1 or non-transgenic mice.  This improvement in cognition was accompanied by 

increases in Aβ levels.  This finding is consistent with earlier work by Jankowsky et al. 

(2004) showing EE leads to increased levels of Aβ.  Ιn contrast to the earlier protocol 

used by Jankowsky et al. (2004), mice were maintained in a consistent social 

environment throughout the study. While not clear, Jankowsky et al. (2005) suggest 

increased synaptic activity leading to increases in Aβ production as a mechanism by 

which Aβ levels are elevated with EE.  Taking together, the review by van Praag (2000) 

showing enhanced synaptic strength and connectivity in EE mice and the findings by 

Kamenetz et al. (2003) that increased synaptic activity enhances APP processing by 

BACE1, the mechanism offered by Jankowsky et al (2005) appears reasonable. Their 

results would suggest that EE can strongly modulate Aβ's impact on the brain and make it 

a less relevant impairing factor.   

 While there has been some work showing pathological changes in AD Tg+ mice 

reared in EE, there is limited literature showing if the pathological changes translate into 

cognitive protection. Costa et al. (2005) found that PDAPP+PS1 mice placed in a 

“complete” EE (including social, physical and cognitive stimulation) from weaning are 
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protected from the cognitive deficits observed at 7.5 months in PDAPP+PS1 transgenic 

mice.  In the platform recognition task, a measurement of object recognition and 

identification, EE mice were identical to the non-transgenic mice and were completely 

protected from the cognitive impairment observed in their standard housed (SH) litter 

mates.  Equally impressive was the protection in working memory impairment, measured 

by the RAWM task.  For overall latency on trial 4 and trial 5 of the RAWM, SH Tg+ 

mice were significantly impaired.  In contrast the Tg+ mice that had lived in an EE were 

indistinguishable from non-transgenic mice and significantly better than Tg+ SH mice.  

 In order to decipher a mechanism through which cognitive protection was 

achieved, AD pathology and gene micro-array was done by Costa et al. (2005).  In order 

to separate out any effects that could have been due to the intensive behavioral test 

battery used, a second cohort of mice that did not undergo behavioral testing was also 

analyzed.  Two measures of Aβ pathology was performed, including measurement of 

both diffuse and compact Aβ deposition.  Diffuse Aβ immunoreactivity, using the 6E10 

monoclonal antibody, revealed that there was no difference in total Aβ load between 

Tg+/EE and Tg+/SH mice in either cerebral cortex or hippocampus for the “non-

behaviorally tested” group. Though not significant, a trend towards decreases in 

Aβ deposition was observed.  This same trend was seen for compact plaque deposits, as 

measured by Thioflavin S staining.  Importantly, Costa et al. (2005) did observe that 

“behaviorally-tested” EE mice had significantly lower Aβ deposition than those mice that 

underwent only EE.  This shows the EE alone was not enough to decrease Aβ;  however 

EE and behavioral testing (itself a form of EE) did significantly decrease Aβ levels, 

suggesting an additive effect.   
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In a micro-array analysis performed in Costa et al. (2005), roughly 70 genes 

showed statistically significant changes by a factor of 2.0 or more, in response to EE.  

Some of the more robust changes that have implications in the AD process included up-

regulation of Aβ sequestering genes, and neuroprotective genes, as well as down-

regulation of genes involved in memory impairment.   For example, insulin-like growth 

factor (IGF-2), which has been shown to play a neuroprotective role against Aβ, was up-

regulated in EE mice by 2.5 fold.  A 10-fold increase in transthyretin (TTR), an Aβ-

binding protein shown to sequester Aβ and inhibit amyloid formation, was also observed 

in the EE mice.  Furthermore, phosphodiesterase 4β was down-regulated 2.2 fold and the 

cholecystokinin β receptor was down-regulated 3.2 fold, both of which when 

experimentally inhibited, are known to improve memory.  Overall Costa et al. 

(submitted) have shown that “complete” EE  has the potential to protect PDAPP + PS1 

mice from cognitive impairment through mechanisms involving  reductions in Aβ 

deposition and beneficial changes in gene expression. 

 EE as a treatment in transgenic mice has not been widely researched.  However in 

a single study, Arendash et al. (2004) showed improved cognition in aged transgenic 

mice despite stable levels of Aβ.  Moderately Aβ-burdened APPsw mice entered EE at 

16 months of age and lived in EE until 22 months at sacrifice.  At 20 months, animals 

were taken through multiple behavioral tasks, testing a wide range of cognitive domains.  

In Morris Water Maze (MWM) acquisition and retention EE mice outperformed SH 

mice.  In platform recognition task, which requires mice to switch from a reference 

learning/memory strategy to an identify/recognize strategy, EE mice easily transitioned 
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while the SH mice lagged behind in their effort to convert.  Discriminant function 

analysis using 8 behavioral measures was able to separate the EE mice from the SH mice 

revealing significantly better overall performance.   

 Despite these behavioral benefits observed in the EE treated mice, no differences 

in Aβ were observed.  In both the parietal cortex and hippocampus no differences were 

seen in diffuse or compact plaques measured by 6E10 staining and Thioflavin S, 

respectively.   A cognitive benefit without a large decrease in brain Aβ deposition lead 

the authors to the possibility that an Aβ-independent mechanism is driving the positive 

treatment effects of EE.  

 

Complete Environmental Enrichment versus Its Components 

 As discussed, the effects of EE are wide ranging and are in some case quite 

robust.  However, are these effects due to the complete EE experience or are there 

components of enrichment (social, physical, cognitive) that contribute more than others. 

While challenging to separate out the components of EE, some have attempted to and 

have observed EE component dependent results.    

 Recent work observed that walking alone was associated with a reduced risk of 

dementia (Abbott, et al., 2004).  This prospective cohort study assessed the distance 

walked per day for 2 years of 2257 men aged 71-93.  Men that walked the least had a 1.8 

fold increase of dementia.    This work would suggest that physical activity as modest as 

walking 2 miles a day could be enough physical activity and enrichment to decrease the 

risk of dementia.  It is important to note that prospective studies such as these are often 

challenging to control.  It is also a potential confound that those who walk more probably 



 83 

also lead healthy lives in other domains of life such as diet.   Exercise has been tested as a 

treatment for AD (Mahendra &Arkin, 2003; Teri et al. 2003).  Patients that were enrolled 

in an exercise and caregiver training program had improved neurological exams (Teri et 

al. 2003).  These improvements lead to a decrease in institutionalizing combined with 

less behavioral disturbances.  Improvement with physical activity was also observed by 

Mahendra & Arkin (2003) whom described a comprehensive cognitive-linguistic 

intervention program for mild to moderate AD.   Patients that participated in the 4 year 

program maintained or improved performance on numerous measures.  While these 

studies offer some evidence of increased physical activity being beneficial as a 

prevention and treatment of AD, these studies did not look at the physical effects 

independently - they were paired with other activities such as supervised volunteer work 

and behavioral management techniques.    

 In rodent studies, physical activity has been show to enhance genes involved in 

brain health (metabolic, anti-aging, immunity genes) and plasticity (neurotrophic factor 

trafficking and vesicle recycling) (Cotman &Berchtold, 2002).  Increase BDNF levels 

(Johnson & Mitchell, 2003), and enhance neurogenesis (van Praag et al., 1999; Kitamura 

et al, 2003; Ehninger & Kempermann, 2003) were also observed.  Recent work by 

Lazarov et al. (2005) found that EE mice with the highest physical activity had the 

greatest reduction in Aβ.  It is hard to decipher if the animals with less Aβ were more 

active due to less impairment or if the physical activity lead to the decrease in Aβ.  In a 

transgenic model (TgCRND8) of AD, Adlard et al. (2005) showed that physical activity 

decreased amyloid load.  Five month old transgenic mice reared in an EE had a 38% 

decrease in Aβ in the frontal cortex and a 40% decrease in Aβ in the hippocampus when 
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compared to transgenic standard-housed mice.  This change in Aβ was not associated 

with differences in APP expression, or α, β, γ−secretase expression.   Overall, physical 

activity appears to have positive effects on brain health and could be a leading contributor 

to EE effects observed in humans and rodents.  

    Social activity is another component of EE that has been explored.  An 

epidemiological study in humans showed that socially-oriented activities may protect 

against dementia (Wang et al., 2002).  While social activity appeared to decrease risk, a 

connection between physical activities and decreased risk of dementia was not observed.  

However, mentally stimulating activities did appear to correlate with decreased risk of 

AD.  Work in rodents has not shown social interaction alone as a benefit variable. Early 

work by Rosenzeig et al. (1978) showed that social grouping alone could not account for 

cerebral effects of EE.  Male rats were exposed to several types of environments, some 

including social interaction and others lacking social interaction.  After living 30 days in 

their designated environments, animals with social interaction were not different in brain 

region weight, RNA and DNA contents, or acetylcholinesterase activity from singly 

housed rats.   Social interaction alone has been shown to not be effective in improving 

MWM performance in adult mice (Williams et al., 2001).  This contradiction between 

humans and rodents could be due the hierarchy stress present in mice that is absent in 

human social activities; alternatively other unknown variables may have contributed to 

the benefit against dementia seen with social activity in humans. 

 van Praag et al. (2000) states that voluntary exercise and EE have “notably similar 

results” while social interactions alone cannot elicit the effects observed in EE.  At this 

point it appears that no single variable can account for the changes observed in EE mice.   



 85 

Ehninger et al. (2003) showed that EE increased proliferation of astrocytes in layer 1 of 

the motor cortex, while voluntary wheel running caused an induction in proliferation of 

microglia in superficial cortical layers.  This would suggest that different components of 

EE could be eliciting different anatomical and electrophysiological changes resulting in a 

global behavioral benefit.  van Praag et al. (1999) showed that both complete EE and 

voluntary wheel running enhanced the survival of newborn neurons in the dentate gyrus.  

Taking into account this work, it is not unreasonable to suggest that isolated elements of 

EE may result in similar anatomical and physiological changes by a common pathway 

(van Praag et al., 2000).  Direct comparisons of several morphological and biochemical 

measures, as well as comparisons in a wide spectrum of behavioral tasks are needed to 

draw definite conclusions regarding the contributions that individual components of EE 

have.    
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Specific Aims 

 Costa et al. (2005) has shown that “complete” environmental enrichment protects 

against behavioral impairment in PDAPP+PS1 transgenic mice, however it is unknown 

which component(s) of complete EE are responsible for that protection and what 

mechanisms are involved therein.  Therefore, the specific aims of this thesis are:  

 

Specific Aim 1:  To identify the contribution of each component (cognitive, social, 

physical) of “complete” environmental enrichment that lead to protective effects on 

cognitive performance in AD transgenic mice.  This will be achieved through 

implementation of our AD Tg+ mice in a controled longitudinal investigation of the 

components of environmental enrichment.  

 
Specific Aim 2: To elucidate the mechanisms through which environmental 

enrichment, and its various components, protect against cognitive impairment in 

AD transgenic mice. Brain β-Amyloid levels, plasma cytokines levels, dendritic 

branching and spine density (all implicated to be involved with the protective ability of 

environmental enrichment) will be analyzed in order to provide a mechanisms by which 

enrichment (and its component activities) may be providing cognitive protection in AD 

Tg+ mice. 
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Specific Aim 3:  To clarify the stress associated with living in a “complete” enriched 

environment as well as living in variable housing environments that contribute to 

“complete” enrichment.  With stress levels potentially confounding behavioral and 

pathological effects of enrichment (and its component activities), corticosterone levels 

will be measured.   

 

Specific Aim 4: To determine the inter-relationships between behavioral, 

neurohistologic, and biochemical measures taken from the same animals.  This 

unique, controlled study enables the analysis of interactions between behavioral and 

pathological findings within the same animal. Through correlation analysis, identification 

of these interactions could aid in the clarification of the mechanisms whereby enrichment 

benefits cognitive performance in AD transgenic mice.   
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Material and Methods 
 

Animals & General Protocol 

All mice contained a mixed background of 56.25% C57B6, 12.5% B6D2F1, 

18.75 % SJL, and 12.5% SW.  Mice were generated from a cross between male mice, 

heterozygous for the mutant APPK670N, M671L gene, and mutant PS1 (6.2 line) 

females.  Mice were initially genotyped at the time of weaning and then had a 

confirmatory genotyping at 4 months of age. A total of 38 mice were used in three 

genotypic categories: non-transgenics, APP/PS1 double transgenic mice, and APP single 

transgenic mice.  Mice were randomly divided into the various housing groups, where 

they lived through testing.  Ad libitum access to rodent chow & water was provided, with 

mice maintained on a 14/10 light/dark cycle. 

 Figure 1 presents a timeline for this study’s procedures.  Beginning at 6 weeks of 

age, transgenic mice and non-transgenic litter mates were moved from standard social 

cages to one of the following housing environments: an impoverished environment (n= 

8), a social housed environment (n=9), a physical activity environment (n=5), or into a 

“complete” enrichment environment (n=6).  At 6 months into their respective housing 

conditions (and at 7.5-8.5 months of age), all mice were tested in a 5-week behavioral 

battery, while still living in their designated housing.   Following completion of the 

behavioral battery at 8.5-9.5 months of age, all animals were euthanized and brains of the 

APP+PS1 mice and non-transgenic controls were removed for histopathology and 
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neurochemistry.  All procedures used were reviewed and approved by the USF 

Institutional Animal Care and Use Committee (IACUC).   

 

 

Enriched Environments  

 At 6 weeks of age, transgenic mice were placed into one of five test 

environments.  In a step-wise ascension towards the “complete” enrichment paradigm, 

transgenic mice were put into an impoverished environment (n= 8; 6 APP+PS1 and 2 

APP), a social housed environment (n=8; 4 APP+PS1 and 4 APP ), a physical activity 

environment (n=5; 5 APP+PS1), or into a “complete” enrichment environment (n=6; 6 

APP+PS1).  Animals of the same gender, however of different genotypes, were housed 

together.  Both groups of transgenic mice (APP+PS1 and APP) in all conditions 

performed identically, so their behavioral data were combined for statistical analysis.  

However, because APP+PS1 and APP mice were significantly different pathologically at 

euthanasia (e.g., no Aβ plaques burdens in APP mice) the APP mice were eliminated 

from neuropathological and neurochemical analysis.  A group of socially housed non-

1 43 7 65 2 8 9 0 

Animals  
Born 

Entered Housing 
Environment 

Behavioral Testing

Animals  
Euthanatized

Months

Figure 1.  General protocol time line for enrichment study. 
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transgenic mice were included as a standard housed control (n=12).  Animals living in an 

“impoverished environment” were housed individually and had access to only food and 

water within their standard mouse cage (6.5”wide, 10.5 ” long, 5.5 ”high).  Socially 

housed mice lived in standard mouse cages with other mice (2 - 4 mice/cage) of the same 

gender, thus constituting a “social activity” group.  Another group of socially housed 

mice had both a larger rat cage and access to running wheels.  This “physical activity” 

group had cages that were 7” wide, 11” long, and 5” high, with each cage equipped with 

2 running wheels.   “Complete” enrichment mice had social, physical and cognitive 

stimulation. A 110 liter Sterilite container (19”wide, 32 ” long, 13.5 ”high), with an inner 

“CritterTrailTWO” rodent house, was used as housing for the “Complete” enrichment 

group.  Housing for this group (5-7 mice/ cage) also contained running wheels and toys in 

the courtyard surrounding the rodent house; these items were changed weekly for 

novelty.  “Complete” enrichment mice were also placed in novel, complex environments 

for at least 1 hour 3 times a week over the course of the study.  Mice lived in their 

designated environment from 6 weeks of age until euthanasia at about 9 months of age.  

All cages contained an igloo and neslets.  

 

Behavioral Assessment 

 While still living in their selected housing environment, mice were tested in Y-

maze, standard water maze, circular platform, platform recognition, and radial arm water 

maze tasks, in that order.   All behavioral testing was conducted during the light cycle. 

 Y-maze. In this single day task, each animal was placed in a walled Y-maze for a 

single 5 minute trial to test both general activity (entries) and basic mnemonic processing 
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(percent alternations).  Each of the 3 Y-maze arms was 21 by 4 cms with 40 cm high 

walls.   The total number of arm entries and the sequence of arm choices were recorded.  

Basic mnemonic function was measured as percentage of spontaneous alternation (ratio 

of arm choices differing from the previous two choices divided by the total number of 

entries). For example, the sequence of arm entries (2,3,1,3,2,1,2,3) has six alternation 

opportunities (total entries-2) and the percent alternation would be 67%.       

 Standard Water Maze. A 100-cm circular pool was divided into 4 equal quadrants 

by drawing lines on the bottom of the pool.   Quadrant 2 (goal quadrant) contained a 

clear, 9-cm diameter submerged platform, 1.5 cms below the water.  Surrounding the 

pool were visual cues, which were placed proximal and distal to the pools edge.  

Visual/spatial cues consisted of large, brightly colored 2D and 3D objects, including a 

beach ball, poster, and inflatable pool toys. During testing, the pool water was maintained 

at 23-27 ˚C.    For each of the 10 days of acquisition, mice were given 4 trials.  For each 

of the four successive 60-sec trials per day, mice were started from a different quadrant; 

the same quadrant start pattern was used across all 10 days of acquisition.  Latency to 

find the platform (maximum of 60s) was recorded, and the average latency of the 4 trials 

was calculated for use in statistical evaluation.  Once the mouse found the platform, it 

was allowed to stay for 30s.  If after 60s the mouse did not find the platform, it was 

gently lead to the platform and given a 30s stay.  After 10 days of acquisition testing, 

memory retention was evaluated in a single 60s probe trial the following day.  For this 

trial, the submerged platform was removed and animals were released from the quadrant 

directly opposite the goal quadrant.  This single trial was video recorded and the percent 

time spent in each quadrant, as well as the number of annulus crossings, was analyzed.   
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 Circular Platform Task. The circular platform maze consisted of a 69-cm circular 

platform with 16 holes equally placed around the periphery of the walled maze.  

Surrounding the maze were two different colored shower curtains that had 2-dimensional 

visual cues attached to them for use by the mice in navigating the maze.  One of the holes 

contained an escape box that remanded in the same location for all 8 days of testing.  

Animals were encouraged to find the escape by adding aversive stimuli of bright lights 

and fan wind to the maze.  The aversive stimuli included two 150-W flood lamps hung 

76cm above the platform and one high-speed fan 15 cm above the platform.   During a 

single 5 minute daily trial, both the number of errors (head pokes into non-escape holes) 

and latency to find the escape hole (up to 300 sec.) were recorded.  Although the escape 

hole remained the same for any given animal over 8 days of testing, the escape box was 

relocated after each animal’s trial to one of 3 other hole locations to control for olfactory 

cues.  The maze surface was cleaned with dilute vinegar after each animal for added 

olfactory cue control.   

 Platform Recognition.  The platform recognition task measures the ability to 

search for and identify/recognize a variably-placed elevated platform.  It requires animals 

to switch strategies and ignore the spatial cues present around a circular pool, which was 

the same pool used in earlier Morris water maze testing.  A visible platform, 9-cm in 

diameter with an attached 10 x 40 cm ensign, was placed into the same 100-cm pool in 

which standard water maze was conducted.  The visible platform was elevated 0.8 cm 

above the water’s surface.  For 4 days of testing, animals were placed in the pool at the 

same start position for each of 4 trials, with the platform being moved to a different one 

of the 4 quadrants for each trial.  The latency to ascend the platform was recorded (60s 
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maximum) and the daily 4 trials were averaged.  A 30s stay was given when the mice 

found the platform.  Mice that did not find the platform within the 60s were gently guided 

to the platform by the experimenter and allowed to stay for 30s.   

 Radial Arm Water Maze. Spatial working memory was assessed in a “win-stay” 

version of the radial arm water maze (RAWM) task. In the same 100-cm pool utilized for 

Morris Water Maze and Platform Recognition testing, an aluminum insert was introduced 

in order to divide the pool into 6 equally spaced swim arms (30.5 cm length x 19 cm 

width) radiating from a central circular swim area (40 cm diameter).  The insert extended 

5 cm above the surface of the water, allowing the mice to easily view surrounding visual 

cues, which were generously placed outside of the pool. Visual/spatial cues consisted of 

large brightly colored 2D and 3D objects, including a beach ball, poster, and inflatable 

pool toys.  During testing, the pool water was maintained at 23-27 ˚C.  In one of the arms, 

a transparent 9cm submerged escape platform was placed 1.5cm below the water near the 

wall end.  Each mouse was given five 1 minute trials per day for nine days.  The last of 

the four consecutive acquisition  trials (Trial 4, T4) and a 30 minute delayed retention 

trial (Trial 5, T5) are indices of working memory.  On any given day, the escape platform 

location was placed at the end of one of the 6 arms, with the platform moved to a 

different arm in a semi-random fashion for each day of testing. In contrast to the 

stationary platform of standard water maze, moving the escape platform forced the 

animal to learn a new platform location daily, therefore evaluating working memory. On 

each day, different start arms for each of the five daily trials were selected from the 

remaining five swim arms in a semi-random sequence that involved all five arms.  For 

any given trial, the mouse was placed into that trial’s start arm, facing the center swim 
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area, and given 60s to find the platform.   When the mouse made an incorrect choice, it 

was gently pulled back to that trial’s start arm and an error was recorded.  An error was 

also recorded if the mouse failed to make a choice in 20s (in which case it was returned to 

that trails start arm), or if the animal entered the platform-containing arm, but failed to 

locate the platform. A 30s stay was given once the mouse had found the platform. If the 

mouse did not find the platform within a 60s trial, it was guided by the experimenter to 

the platform, allowed to stay for 30s, and was assigned a latency of 60s.  For animals that 

did not make at least 3 choices an error value of 5.6 was assigned as a penalty.  This 

number was calculated by averaging errors for all animals that did not locate the platform 

for Block 1 (day1-day3) on Trial 1 (T1).  Both errors (incorrect arm choices) and escape 

latency were recorded for each daily trial.   

 

Tissue and Blood Collection 

Following the final day of behavioral testing, a blood sample (.5 mL) was taken 

from the submandibular vein, plasma was separated, and stored at -80˚C for later analysis 

of corticosterone levels.  Two days after plasma collection, animals were deeply 

anesthetized with pentobarbital and a second blood sample was collected intra-cardially, 

and stored at -80˚C for later analysis of cytokines.  Animals were then perfused with 

100ml of 0.9% saline.   Post mortem brains were immediately removed and bisected 

sagitally.   The left hemisphere was placed in 4% paraformaldehyde over night and then 

transferred to a graded series of sucrose solutions (10%, 20%, and finally 30%) wherein 

tissues remained until histologic sectioning.  The right hemisphere was chilled in cold 

saline and then dissected into 4 major areas: 1) a 2-3mm thick coronal slice through the 
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posterior cortex/hippocampus, 2) striatum, 3) anterior cortex, and 4) cerebellum.  The 

posterior cortex/hippocampus slice was drop fixed in 10% neutral buffered formalin for 

later Golgi Cox staining.  The remaining brain regions were transferred into individual 

1.5 ml Eppendorf tubes, immediately frozen on dry ice, and stored at -80˚C for later 

neurochemical analysis.  

 

Corticosterone Quantification  

 Corticosterone (CS) levels were measured using a radioimmunoassay (RIA).  

Serum levels of CS were determined using a double-antibody RIA kit purchased from 

ICN Biomedicals (Costa Mesa, CA).  Samples from all mice were assayed in duplicate.  

Approximately 5ng/ml was the minimum detectable concentration.  

 

Extraction of Brain Protein for Sandwich Enzyme-Linked Immunosorbent Assay (ELISA) 

 A 5% sucrose homogenate (wet weight of tissue/ volume) from frozen mouse 

anterior cortex was prepared and extracted as described by Schmidt et al. (2004).  This 

procedure began with the weighing of each tissue in an empty microcentrifuge tube.   

Once weighed, 2mls of tissue homogenization buffer (THB) per 100 mg of tissue was 

added to the sample.  Immediately prior to homogenization, a protease inhibitor cocktail 

(20% of wet tissue weight to volume ratio) was added to prevent degradation of proteins.  

While the sample was on ice, the calculated amount of THB + inhibitors was added to the 

sample and fully homogenized. After homogenization, samples were frozen and kept at -

80˚C until Diethyl Amine (DEA) and Formic Acid (FA) extraction was done.   
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 DEA extraction was used to separate soluble Aβ from the brain homogenate.  

First, 100 µL of 5 % homogenate was mixed with 0.4% DEA (diluted in 100mM NaCl) 

on ice. The mixture was then transferred into a thick-walled polycarbonate tube and 

centrifuged at 100,000 x g for 1 hour at 4˚C.  After centrifuging, 170µl of supernatant 

was removed and added to a second tube containing 17 µl of 0.5M Tris Base, pH 6.8 (1 

µl per 10µl of supernatant). After briefly vortexing, samples were frozen on dry ice and 

stored at -80˚C.  For the FA extraction of insoluble Aβ, 100µl of THB was added to the 

pellet from the DEA extraction to return the mixture to the original volume.  Following 

the addition of 220µl of 95% FA, pellets were sonicated for 1 minute on ice.  The mixture 

was centrifuged at 100,000 x g for 1 hour at 4˚C.  After centrifugation, 52.5 µl of the 

intermediate phase of the FA extracted mixture was added to 1 ml of FA neutralization 

solution.  Samples were vortexed, immediately frozen on dry ice, and stored at -80˚C.   

Aβ Sandwich ELSIA 

 Sandwich ELSIA kits for Aβ 1-40 and 1-42 analysis were purchased from Signet 

Laboratories and the instructions provided were followed.  Briefly, for the 1-40 kit, a 

standard curve was generated with the highest point set at 2000 ng/ml and the lowest 

point set at 0 ng/ml.  Before loading the 96 well plate, tissue samples were diluted in 

provided wash/sample diluent (FA 1:500, DEA 1:200).  Either diluted tissue or standard 

curve samples were loaded in duplicate onto the 96 well plate.  The sample and the 

standard curve wells were allowed to incubate overnight at 4-8˚C.  After incubation, 

plates were washed, diluted primary antibody was added, and incubated for 2 hours. The 

plates were then washed again and the secondary antibody- HRP complex was added for 
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2 hours.  Wells were again washed, orthophenylenediamine dihydrochloride (OPD) 

substrate solution was added, and incubated in a dark room for 45 minutes.  Stop solution 

was added and the optical density was read at 490nm.  For the Aβ 1-42 ELISA, all steps 

were the same as for Aβ 1-40, except that samples were diluted to 1:100 for DEA 

extracted samples. To account for background, the average optical densities of the 0 

ng/ml wells on the standard curve were subtracted across all 96 wells. After generation of 

the standard curve, optical densities were corrected to reflect protein to wet brain 

concentration.   

 

Blood Cytokine Levels 

      Relative cytokine levels were determined through the use of a custom Mouse 

Cytokine Antibody Array purchased from RayBiotech Incorporated.  Ten separate anti-

mouse-cytokine antibodies were provided on membranes.  Cytokines analyzed included; 

IL1-α, IL1β. IL-2, IL-4, IL-6, IL-10, IL-12, IL-12 (p70), TFNα, IFNγ, and GMCSF.  

Membranes were first treated with blocking buffer and then incubated with 1 ml of 

diluted (1:10) plasma for 1 hour.  Sample were decanted and 1x secondary biotinylated 

antibodies were added and incubated for one hour.  A second two hour incubation was 

conducted with diluted (1:1000) labeled-strepavidin, completing the conjugated 

secondary antibody complex.  The final detection step involved incubation for 1 min. 

with provided detection buffers.  Using Fujifilm AR x-ray film, signals from membranes 

were detected and developed using back-lit photography. For duplicated samples, 

analysis of signal mean intensities  minus background signal intensity were determined 

using Kodak 1D Image Analysis Software.  In order to account for the large variability in 
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signal intensities among the various cytokines, signals were standardized on a zero to one 

scale based on minimum and maximum mean intensity readings for each cytokine.  

Standardized values were then used to compare cytokine levels between animals.   

 

Golgi Cox Analysis 

      The 2-3 mm thick hippocampus/posterior cortex slices that had been stored in 10% 

neutral buffered formalin were stained en bloc using the Rapid Golgi Method (Valverde, 

1993).  Briefly, blocks of tissue were immersed in a mixture of osmium tetroxide and 

potassium dichromate for 5-6 days.  After 5-6 days, tissues was then subsequently 

immersed in a silver nitrate solution for 36-38 hours.  Tissue blocks were then dehydrated 

and embedded in nitrocellulose.   Stained blocks were cut on a sliding microtome at 

120µm, cleared in alpha-terpineol, rinsed in xylene, and cover-slipped under Permount.   

For analysis of dendritic branching, camera lucida drawings of basilar dendritic arbors 

from randomly selected neurons were generated.  For both parietal cortex Layer V and 

hippocampus CA1 region, six neurons were drawn per animal and were then 

subsequently quantified for the amount and distribution of dendritic arbors.  

Quantification of dendritic distribution was accomplished by the using Sholl analysis, 

Method of Concentric Circles (Sholl, 1953).   

    Neuronal dendritic spine densities were also analyzed.  Dendritic spines were 

counted directly on a Zeiss research microscope using 100x long-working distance oil-

immersion objectives.  Both the terminal tips of layer V pyramidal cells and hippocampal 

CA1 pyramidal cells were used for the spine analysis.  Spines were counted on 3-5 
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terminal tip segments per neuron, 30 microns in length, from 6 neurons per brain 

(neurons were different from the 6 used in dendritic branching analysis).   

   

Statistical Analysis 

 Behavioral Analysis.  Behavioral performance was statistically evaluated to 

determine any group difference based on housing condition or transgenicity.   For both of 

the single day tasks ( Y-maze and water maze retention) one-way ANOVAs were used.  

For multi-day tasks (standard water maze acquisition, circular platform, platform 

recognition and RAWM) both one-way ANOVAs and two-way repeated measure 

ANOVAs were performed.  Prior to  analysis, MWM data was broken down into five-2 

day blocks and the RAWM data was divided into three-3 day blocks, to aid in data 

presentation and analysis.  After ANOVA analysis, post hoc pair-by-pair differences 

between groups (planned comparisons) were resolved using the Fisher LSD test.  All 

group comparisons were considered significant at P<0.05.  While few in number, any 

outliers or non-performers (e.g. repeated circulars, consistent floaters) were eliminated 

from behavioral statistical analysis.   

 Histological/Biochemical Analysis. Pathological data analysis including both 

histological and biochemical portions of the experiment were performed using ANOVA.  

Statistical analysis of the spine counts and dendrictic branching were carried out using 

ANOVA with a post-hoc tukey test. In order to test if relationships were present between 

pathologic, biochemical, and behavioral measures, correlation analysis was performed 

using the Systat analytical software package.   Correlation values shown are the results of 

a pair, uncorrected correlation anlysis.  
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 FA and DFAs: To group behavioral, biochemical, and histologic measures by 

common factors,  Factor Analyses (FA) were performed using Systat software.  

Regardless of genotype or housing, FA used all collected data to relate measures into 

individual factors.  In an initial FA, all 15 behavioral measures were included.  This 

enabled the determination of how different behavioral tasks related to one another, as 

well as how performance of one task might predict performance in other tasks. Follow-up 

FA’s included not only the 15 behavioral measures, but also the histologic and 

biochemical measures as well.  These FA’s extracted inter-relations within behavioral, 

histologic and biochemical data.  To determine if the 5 experimental groups (NT, IMP, 

SH, PA, and EE) were distinguishable from one another based on the behavioral 

measures set,  DFA was performed using Systat software.  DFA was performed using all 

15 measures as well as with only the behavioral measures that loaded in factor 1.   Both a 

direct entry and stepwise-forward DFA was conducted in each case.  The direct entry 

method uses all measures available, while the step-wise forward method selects measures 

based on their variance contribution and adds them in a step-wise fashion to best 

discriminate between groups.  All of the above DFA’s were then repeated with inclusion 

of histologic and biochemical measures.   
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Results 

Behavioral Analysis 

Of the five cognitive-based tasks evaluated, the Y-maze and circular platform 

tasks revealed no impairment in control Tg+/SH mice when compared to NT mice, and 

thus no protective effect of environmental enrichment (EE) could be present.  In Y-maze 

testing for spontaneous alternations behavior, no group differences in percent alternation 

or arm entries were evident (Fig. 2).  As well, no group differences were evident in 

escape latencies over 8 days of circular platform testing for spatial reference memory 

(Fig. 3). Animals in all groups collectively improved their performance during circular 

platform testing, as shown by overall reduced escape latencies across days [F(7, 238) = 

2.50, p<0.02].   

In Morris water maze (MWM) acquisition, escape latency data was divided into 

five 2 day blocks to facilitate statistical analysis and presentation (Fig. 4).  Over all 5 

blocks of testing, EE mice exhibited significantly lower escape latencies in comparison to 

both IMP and PA mice (Fig. 4A), although no effect of transgenicity was evident 

between NT and control SH mice.  Evaluating acquisition across individual blocks 

revealed that EE mice had significantly lower escape latencies on Block 2 compared to 

all other groups (Fig. 4B), indicating an ability of EE mice to improve their learning of 

this task faster than other groups.  For all animals collectively across the 5 blocks of 

testing, there was an overall learning effect [F(4,32) = 16.80; p< 0.0001]. As well, a 
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blocks by treatment interaction was present [F(4,128) = 1.92; P< 0.025], apparently due 

to the worsened performance of NT mice during the last two blocks of testing (Fig. 4B).  
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Figure 2.  Y-maze Entries and Percent Spontanous Alternations.  No group 
differences were noted for either entries or percent alternation in Y-maze performance.  
Abbreviations: NT = non-transgenic socially housed mice, IMP = transgenic impoverish 
housed mice, SH= transgenic socially housed mice, PA= transgenic physical activity 
mice, EE= transgenic “complete” environment enrichment.  
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Figure 3.  Circular Platform overall escape latencies.  No group differences were 
evident over 8 days of testing.  Abbreviations: as in Figure 2.  
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Figure 4.  Morris Water Maze acquisition overall (A) and across 5 two-day blocks 
(B).  EE mice showed better spatial learning than several other Tg+ groups overall and 
were able to improve their performance sooner than all other groups.  * = EE mice 
significantly lower latencies vs. all other groups (p<0.05 or higher level of significance). 
‡= EE and NT significantly lower latencies from IMP(p<0.05). † = EE mice significantly 
lower latencies than NT (p<0.02). ** =   EE significantly lower latencies than IMP and 
PA (p≤0.05). Abbreviations: as in Figure 2. 
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Results from the MWM probe trial are presented in Fig. 5.  No housing group 

spent significantly more time searching in the quadrant formerly containing the 

submerged platform (Q2) than any other group (Fig 5A). As well, there were no group 

differences in annulus crossings (Fig 5B).  While none of the 5 groups showed an 

exclusive quadrant preference for the former platform-containing quadrant (Q2), both NT 

and SH groups exhibited a partial quadrant preference for Q2 (Fig. 5C).  In contrast, PA, 

IMP and EE mice showed no quadrant preference (e.g., only one or no quadrants 

significantly less in % time vs. Q2).  Thus, across 3 indices of reference memory in 

Morris maze testing, EE mice did not perform significantly better than other Tg+ groups.   

In platform recognition testing, an overall groups effects was present across all 4 

days of testing [F(4,28) = 5.04; p<0.005].  Post hoc planned comparisons of overall 

escape latencies revealed that IMP, SH, and PA groups were impaired overall vs. NT 

controls, whereas EE mice performed identical to NT controls (Fig. 6A).  Analysis of 

performance on individual days indicated that both NT and EE groups quickly reduced 

their escape latencies across the 4 days of testing (Fig. 6B).  This rapid reduction in 

escape latency was not observe for IMP, SH and PA mice, indicating that EE mice were 

much better at changing from the spatial (cued) strategy of the MWM to the 

recognition/identification strategy of platform recognition.  By Day 4, however, there 

were no group differences in escape latency, indicating that all housing groups were able 

to eventually reduce their escape latencies to levels comparable to NT controls.  Indeed, 

all animals collectively improved their performance across the 4 days of testing, as 

evidenced by a strong overall effect of training [P(3,84)=25.91; p<0.00001].   
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Figure 5. Morris Water Maze Memory Retention, as indexed by time spend in the 
former platform-containing quadrant (A), annulus crossings (B), and quadrant 
preference (C).  No group differences were observed for percent time spent in the former 
platform-containing quadrant (Q2) or annulus crossings.  For percent time spent in 
individual quadrants, NT and SH groups showed a partial quadrant preference.  * = 
significantly percent time compared to Q2 (p<0.05).  Abbreviations: as in Figure 2. 
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Figure 6.  Recognition/Identification performance in Platform Recognition testing 
overall (A) and for each of the 4 days of testing (B).  Over all 4 days of testing (A), all 
Tg+ groups except EE mice were significantly poorer in performance compared to NT 
controls.  For individual test days, NT mice and EE mice rapidly reduce their escape 
latency, while IMP, SH, and PA mice have a slowed reduction in latency.  *= 
significantly higher escape latencies than NT (p<0.05 or higher level of significance).  
Abbreviations: as in Figure 2. 
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These results show that “complete” enrichment is needed to protect Tg+ mice 

against impaired ability to switch from a spatial to a recognition/identification strategy 

and that physical activity or social interaction are not enough to provide this protection.   

Figures 7 and 8 present escape latencies in RAWM testing. Data were evaluated 

across three 3-day blocks for T1 (randomized initial trial), T4 (final acquisition trial) and 

T5 (delayed retention trial); T4 and T5 are indices of working memory.  An overall 

groups effect was present for both T4 [F(4,28)=4.91; p<0.005] and T5 [F(4,28)=4.89; 

p<0.005].  Post hoc analysis of overall T4 and T5 latencies revealed that IMP, SH, and 

PA groups were significantly impaired vs. NT controls, whereas performance of EE mice 

was not different from NT controls and significantly better than the SH transgenic control 

group (Fig. 7A).  By the final block of testing, complete separation of  EE and NT mice 

from all other groups was observed (Fig. 7B).  On T5 of this final block, NT control mice 

had significantly lower escape latencies than IMP, SH, and PA mice (P< 0.01).  In sharp 

contrast, EE mice were identical to NT mice and significantly better than all other Tg+ 

groups (P<0.025).  Figure 8 echoes the final block findings shown in Figure 7, 

highlighting the indistinguishable escape latencies between NT and EE mice for T4 of the 

final block, as well as the complete separation of NT and EE mice from all other Tg+ 

groups (IMP, SH, PA) in T5.  These RAWM data underscore findings from platform 

recognition in showing that “complete” EE protects against cognitive (working memory) 

impairment while physical activity and social housing alone are not protective.      
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Figure 7.  RAWM overall and final block escape latencies for Trials 1, 4 and 5.  In 
overall working memory performance (A), NT mice had significantly lower escape 
latencies than IMP, PA, and SH on both overall T4 and T5.  In contrast, EE mice were 
indistinguishable from the NT group.  On the final block of testing (B), NT mice and EE 
mice had significantly lower escape latencies than all other groups (IMP, SH, PA) for T5.  
* = significant difference between NT and IMP, SH, and PA (p<0.02 or higher level of 
significance).  †= NT significantly difference from PA and SH (p<0.02).  **= Both NT 
and EE significantly different from IMP, SH and PA (p<0.025 or higher level of 
significance).  Abbreviations: as in Figure 2.  
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Figure 8.  RAWM escape latencies for final block Trials 4 and 5.  During T4, NT 
mice achieved significantly lower escape latencies when compared to SH and PA mice, 
while EE mice were no different from NT controls.  During T5, both NT and EE groups 
had significantly lower latencies then all other groups (IMP, SH, PA).  *= significantly 
different from NT group at p<0.02.  **= significantly different from both NT and EE at 
p<0.025 or higher level of significance.  Abbreviations: as in Figure 2. 
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Neuropathologic Measures 

On the day following completion of behavioral testing, a blood sample was 

collected to measure plasma corticosterone levels of mice living in different housing 

environments.  Statistical analysis revealed no differences in corticosterone levels among 

animals in the different housing environments (Fig. 9A) and no overall genotype effect 

(Fig. 9B).  The finding that different housing of the four transgenic groups did not effect 

corticosterone levels suggests that stress did not play a role in the differences in cognitive 

performance observed among these groups.  In contrast, male mice collectively had 

significantly lower levels of corticosterone levels when compared to females 

[P(1,37)=8.44; p< 0.01].  Levels were almost 3-fold lower in male mice vs. females (Fig. 

9C).  

At euthanasia, 3 days following behavioral testing (and approximately 6.5 months 

into enrichment), a second blood sample was collected from APP+PS1 and NT mice for 

measurement of plasma cytokine levels.  As shown in Fig. 10, no significant differences 

were observed among the housing groups for any of the 10 pro- and anti-inflammatory 

cytokines measured.  Analysis by genotype revealed no differences in any of these 

cytokines between APP+PS1 mice collectively and NT mice (data not shown).  

For APP+PS1 in each housing environment, Aβ analysis by ELISA was 

performed on anterior cortex tissues.  As shown in Fig.11, no significant group 

differences were observed in Aβ 1-40 or 1-42 levels for either soluble or insoluble 

species.   

    Housing and transgene-dependent changes in dendritic length/branching of 

neurons from APP+PS1 and NT mice were analyzed by Golgi staining.  For neurons in  
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Plasma Corticosterone Levels 

 
              
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.  Plasma Corticosterone levels by A) treatment (housing), B) genotype, and 
C) gender.  No treatment or transgenic differences were observed for corticosterone 
levels.  In contrast,saa male mice had significantly lower levels of corticosterone than 
female mice. *= significantly lower levels of corticosterone (p<0.01). Abbreviations: as 
in Fig. 2 
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Figure 10. Standardized mean signal intensities for 10 plasma cytokines in 
APP+PS1 and NT mice.  No group (housing) differences were observed for any 
cytokine measured. Abbreviations: as in Fig. 2  
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Figure 11. Quantification of Soluble Aβ (1-40 and 1-42) and Insoluble Aβ (1-40 and 
1-42) in APP+PS1 mice within different housing environments.  No group differences 
between housing groups were noted for either soluble or insoluble 1-40 or 1-42 species.  
Abbreviations: as in Fig. 2 
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both the hippocampal CA 1 region and overlying parietal cortex, there were no  

differences in total dendritic length or dendritic branching between NT and transgenic SH 

control groups (Fig. 12).  Thus, APP+PS1 control mice had a dendritic arbor similar to 

NT mice.  There also was no effect of housing on total dendritic length of neurons in the 

CA1 region or parietal cortex (Fig. 12, upper), as well as for dendritic branching in the 

CA1 region (Fig. 12, lower).  Although there also was generally no effect of housing on 

dendritic branching in the parietal cortex, EE mice did have significantly less dendritic 

branching of neurons in parietal cortex compared to both NT and IMP groups (Fig. 12, 

lower).   

 

Factor Analysis/ Discriminant Function Analysis 

 FA of behavioral measures with and without neuropathology/neurochemistry 

measures was performed to determine the underlying relationships between behavioral 

tasks and pathology (Table 1).  Including all NT and Tg+ mice, FA involving all 15 

behavioral measures resulted in 12 of those measures loading on four principle factors.  

Collectively, these four factors accounted for over 65% of the total variance.  A measure 

was considered “significant” for loading on a factor if its component loading value 

exceeded 0.600 for that factor.  All measures for RAWM and platform recognition loaded 

heavily under factor 1, which provided more variance (32.5%) than any of the other three 

factors.  An activity measure, Y-maze entries, loaded under Factor 2 along with circular 

platform final latency.  The remaining measures (two circular platform measures, Morris 

water maze retention, and Y-maze alternations) were distributed between the remaining 

two factors (Table 1).   
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Figure 12.  Housing and transgene-dependent changes in dendritic length/branching 
of neurons from APP+PS1 and NT mice.  No group differences were observed for 
either the hippocampal CA 1 region and overlying parietal cortex for dendritic length or 
dendritic branching between NT and transgenic SH control groups. EE mice did have 
significantly less dendritic branching of neurons in parietal cortex compared to both NT 
and IMP groups. *= significantly less dendritic branching vs. NT and IMP (p<0.05). 
Abbreviations: as in Fig. 2 
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SOL-40, soluble Aβ 1−40; INSOL-40, insoluble Aβ 1−40; SOL-42, soluble Aβ 1−42; 
CORT, levels of corticosterone;  CA1-DL, total dendritic length within CA1 region; 
CA1-TBP, total branching points within the CA1; PC-DL, total dendritic length within 
parietal cortex; PC-TBP, total branching points within parietal cortex; YM-Ent, Y-maze 
entries; YM-Alt, Y-Maze % alternations; WM-Fin, water maze latency on last day; 
WM-Avg, water maze latency over all days; WM-Ret, water maze % time spent in Q2 
during probe trial; CPE-Fin, circular platform errors on last day; CPE-Avg, circular 
platform errors over all days; CPL-Fin, circular platform latency on last day; CPL-Fin, 
circular platform latency over all days; PR-Fin, platform recognition latency on final 
day; PR-Avg, platform recognition latency over all days; RM-T4-Fin, RAWM latency 
for trial 4 of final block; RM-T5-Fin, RAWM latency for trial 5 of final block; RM-T4-
Avg, RAWM latency over all blocks for trial 4; RM-T5-Avg, RAWM latency over all 
blocks for trial 5. 

Behavioral Behavioral and
Factor Measures Pathological Measures

(Only  Tg+)

1 (32.55) (29.94)
RM-T5-Fin RM-T4
RM-T5 RM-T5
RM-T4-Fin RM-T5-Fin
RM-T4 WM-Ret
PR-Fin PCTBP
PR-Avg RM-T4-Fin

CA1TBP
CA1DL
PR-Avg
PCDL

2 (15.47) (16.85)
YM-Ent YM-Ent
CPL-Fin CPE-Avg

CPL-Avg
INSOL-40

3 (10.51) (14.10)
No Significant YM-Alt

CORT
CPE-Fin

4 (9.85) (13.71)
CPE-Fin SOL-40
WM-Ret SOL-42

CPL-Fin

5 (8.26) (9.51)
CPE-Fin CORT
YM-Alt

6 (7.02)
INSOL-42

aPercent of total variance explained by a given factor is indicated in bold type
 within parentheses.

Table 1. Factor loadings of behavioral measures, with and without pathologic measuresa

Loadings

(Both Tg+ and NT)
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When the 8 pathological measures (4 Aβ deposition measures, 4 dendritic 

measures) and corticosterone levels were included in FA involving only Tg+ mice, all 

four measures of dendritic length/dendritic branching loaded in factor 1 (Table 1).  

Similar to the FA without pathologic measures, RAWM and platform recognition 

measures also loaded in factor 1.  In addition, SWM retention also loaded on factor 1.  

The loading of neuro-morphologic and behavioral measures together indicates an 

underlying relationship between the two, which will be further elucidated in the 

Correlation Analysis section below. The 4 Aβ deposition measures loaded either alone or 

in factors somewhat independent of behavioral measures.  Plasma corticosterone levels 

loaded alone in factor 5, as well as with one circular platform measure and Y-maze 

alternations in factor 3.  In a final FA that involved behavioral measures and plasma 

cytokine levels in all APP+PS1 mice, 4 factors results (data not shown).  Interestingly, 

factor 1 loaded all 10 cytokines and both Morris maze acquisition measures, while factor 

2 contained all RAWM and PR measures 

 DFA was utilized to determine if behavioral performance of the five housing 

groups (NT, IMP, SH, PA and EE) or the three main housing groups (NT, SH, and EE) 

could be distinguished from one another (Table 2).  Two DFA methods were utilized: the 

“direct entry” method (which includes all behavioral measures evaluated) and the 

“stepwise-forward” method (which selects behavioral measures from the total group of 

measures based on their contribution to the variance).  For both the 5 and the 3 group 

analyses, direct entry DFAs could not discriminate between the housing groups based on 

their behavioral performance.  In sharp contrast, a stepwise-forward DFA could  
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p- values are from Wilks’s λ. N.S, not significant; all other abbreviations defined in 
Table 1.  
 

 

 

 

 

 

 

 

 

Direct Entry 
Measures  # of Groups Method Signigicance

All 15 5 N.S. p<0.005
NT vs IMP, SH, PA

All 15 3 N.S. p<0.01
NT, EE vs SH

Factor 1 5 N.S. p<0.05 
EE vs IMP, SH, PA

Factor 1 3 N.S. p= 0.07
EE vs SH

RM-T5-Fin

RM-T5-Fin

Table 2. Summary of discriminant functional analyses of behavioral measures.

Stepwise-forward Method
Measures Reatained

RM-T5
WM-Avg
WM-Fin
WM-Ret

WM-Fin

RM-T5-Fin
(6 cognitive measures)

(6 cognitive measures)
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effectively discriminate NT from IMP, SH, and PA groups (p<0.005), but not the NT and  

EE groups.  Four behavioral measures (including RAWM overall T5 latency and all 3 

Morris water maze measures) were retained as providing maximal discrimination.     

When only 3 groups were included, stepwise-forward DFA distinguished NT and EE 

from the SH group (p<0.01).   Two measures (one from RAWM and one from MWM) 

provided maximal discrimination.    

 Additional DFAs were performed utilizing only behavioral measures that had 

loaded on factor 1 in FA (see Table 1).  For all five groups or the main three groups, the 

direct entry method was again unsuccessful in discriminating between groups (Table 2).  

In contrast, stepwise-forward DFA’s nicely discriminated between housing groups.  With 

all five groups included, the stepwise-forward method separated EE mice from IMP, SH 

and PA groups (p<0.01), but could not distinguish EE from NT mice (Table 2).  When 

stepwise-forward DFA was repeated using only the three main groups, EE and SH groups 

were nearly separated (p=0.07), but not EE and SH groups. Trial 5 latency on the final 

block of RAWM testing was the sole measure retained for of these stepwise-forward 

DFAs. 

 Thus, for all behavioral measures included, or with inclusion of the cognitive 

measures in factor 1, the four stepwise-forward DFA’s were able to discriminate the 

comparably-performing NT and EE groups from the poorer performing IMP, SH, and PA 

groups.   
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Correlation Analysis 

 Behavior vs. Plasma Cytokine Levels. Table 3 shows a correlation matrix 

between plasma levels of the 10 cytokines measured and the 15 behavior measures for all 

Tg+ mice collectively.  A total of 18 correlations were present, 14 of which involved the 

three Morris water maze measures.  Three correlations were evident between plasma 

cytokines levels and Y-maze alternation percentage.  Correlations between behavior and 

plasma levels of both TNF-α and IFNγ were most prevalent.  For all 18 correlations, 

higher plasma cytokine levels were associated with better cognitive performance.   A 

very similar pattern of correlations was present when all animals (NT and Tg+) were 

included in the correlation analysis.   

 Behavior vs. Plasma Corticosterone Levels.  With all animals (NT and Tg+) 

included, no correlations were present between any of the 15 behavioral measures and 

plasma corticosterone levels.  Similarly, for all Tg+ mice or individual Tg+ mouse 

housing groups, no correlations were evident. 

 Behavior vs. Cortical Aβ Levels. Correlation analyses were performed between 

the 15 behavioral measures and the 4 cortical Aβ measures (Aβ1-40 and Aβ1-42, both 

soluble and insoluble forms) for all APP+PS1 mice collectively.  Only one correlations 

was significant: higher Y-maze alternations (better performance) was inversely correlated 

with soluble Aβ(1-40) levels [r = -517; p<0.05].  Even when correlation analysis was 

performed for each housing group separately, few and inconsistent correlations were 

present between behavioral measures and cortical Aβ levels.  These correlations involved  
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     Table 3.  For all animals, a correlation matrix of behavioral measures and plasma cytokine levels. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      Positive correlations ( shaded boxes) were noted between many cytokines and both Y-maze and Morris water maze performance.                        
      r= Pearson product-moment correlation coefficient. p= probability.  All behavioral measure abbreviations are defined in Table 1.   
 
 
 

YM-Alt YM-E WM-Fin WM-OA WM-Ret CPE-Fin CPE-Avg CPL-Fin CPL-Avg PR-Fin PR-OA RM-T4-Fin RM-T5-Fin RM-T4-Avg RM-T5-Avg
TNF-α r 0.408 -0.143 -0.548 -0.564 0.520 0.110 -0.301 0.270 0.219 -0.404 -0.037 -0.231 -0.315 -0.356 -0.191

p 0.583 0.583 0.015 0.012 0.047 0.652 0.210 0.263 0.368 0.087 0.116 0.342 0.189 0.134 0.434
IFN-γ r    0.589 -0.288 -0.469 -0.394 0.704 0.108 -0.273 0.384 0.379 -0.383 -0.345 -0.226 -0.366 -0.344 -0.247

p 0.013 0.262 0.043 0.095 0.003 0.660 0.258 0.105 0.110 0.105 0.149 0.352 0.159 0.149 0.307
IL-1α r    0.422 -0.256 -0.542 -0.521 0.460 0.165 -0.162 0.241 0.253 -0.383 -0.269 -0.274 -0.378 -0.485 -0.272

p 0.091 0.321 0.017 0.022 0.085 0.501 0.507 0.319 0.296 0.106 0.266 0.256 0.111 0.035 0.261
IL-1β r    0.385 -0.008 -0.362 -0.453 0.417 -0.078 -0.423 0.216 0.096 -0.193 -0.002 -0.288 -0.414 -0.397 -0.197

p 0.975 0.975 0.128 0.051 0.122 0.751 0.071 0.375 0.697 0.428 0.993 0.233 0.078 0.092 0.419
IL-2 r    -0.027 -0.082 -0.424 -0.633 0.076 0.199 -0.177 0.077 -0.029 -0.368 -0.147 -0.248 -0.352 -0.402 -0.173

p 0.755 0.755 0.070 0.004 0.882 0.414 0.469 0.753 0.905 0.122 0.548 0.305 0.139 0.088 0.478
IL-4 r    0.328 -0.180 -0.404 -0.439 0.471 -0.102 -0.204 0.201 0.321 -0.395 -0.199 -0.241 -0.266 -0.414 -0.289

p 0.489 0.489 0.086 0.060 0.076 0.678 0.402 0.409 0.180 0.094 0.413 0.319 0.271 0.078 0.230
IL-6 r 0.325 -0.086 -0.494 -0.561 0.416 0.044 -0.330 0.305 0.238 -0.364 -0.261 -0.111 -0.222 -0.333 -0.183

p 0.744 0.744 0.032 0.013 0.123 0.859 0.168 0.205 0.327 0.126 0.280 0.650 0.362 0.163 0.454
IL-10 r    0.448 -0.106 -0.500 -0.543 0.498 -0.007 -0.198 0.385 0.349 -0.249 -0.174 -0.187 -0.312 -0.327 -0.249

p 0.072 0.685 0.029 0.016 0.059 0.977 0.416 0.103 0.143 0.305 0.477 0.443 0.193 0.172 0.303
IL-12 r    0.503 -0.185 -0.421 -0.434 0.603 0.103 -0.323 0.414 0.355 -0.355 -0.272 -0.152 -0.380 -0.388 -0.336

p 0.040 0.478 0.073 0.064 0.017 0.673 0.177 0.078 0.135 0.136 0.259 0.534 0.108 0.101 0.160
GM-CSF r    0.632 -0.329 -0.273 -0.286 0.503 0.200 -0.086 0.366 0.342 -0.520 -0.421 -0.109 -0.294 -0.195 -0.273

p 0.007 0.197 0.257 0.236 0.056 0.411 0.726 0.123 0.151 0.022 0.073 0.657 0.222 0.423 0.258
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soluble and insoluble Aβ levels to the same extent.  For all APP+PS1 mice collectively or 

for individual housing groups, surprisingly few correlations involved RAWM measures. 

Behavior vs. Dendritric Morphology. For all APP+PS1 and NT mice combined, 

correlation analysis between behavior and dendritic morphology revealed strong and 

consistent correlations between total dendritic length of neurons in the hippocampal CA1 

region and both platform recognition and RAWM measures (Table 4).  Both platform 

recognition final day and overall latency, as well as RAWM Trial 4 (final block and over 

all) and Trial 5 (final block) correlated positively with dendritic length in the CA1 region.  

Therefore, lesser dendritic length of CA1 neurons was associated with better performance 

in these tasks.  Importantly, 4 of these five correlations were present when only 

APP+PS1 mice were analyzed, while only one was present when NT mice were analyzed 

separately.  Thus, APP+PS1 mice were driving these correlations involving dendritic 

morphology in the hippocampal CA1 region.  No correlations were evident between 

behavior and dendritic morphology in the parietal cortex (Table 4).  

 Brain Aβ Levels vs. Dendritic Morphology.  For all Tg+ mice collectively, there 

were no correlations present between brain Aβ levels and dendritic length/branching in 

either hippocampus or parietal cortex.   
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Table 4.  For all animals, a correlation matrix of behavioral measures and dendritic length/branching. 
 
 
 
 
 
 
 
 
 
 
 
Positive correlations (bold font in shaded boxes) were noted between dendritic length of neurons in the CA1 region and both platform 
recognition and RAWM measures.  r= Pearson product-moment correlation coefficient. p= probability.  Abbreviations: CA1-DL, total 
dendritic length within CA1 region; CA1-TBP, total branching points within the CA1; PC-DL, total dendritic length within parietal 
cortex; PC-TBP, total branching points within parietal cortex; All behavioral measure abbreviations are defined in Table 1. 
 

YM-Alt YM-E WM-Fin WM-OA WM-Ret CPE-Fin CPE-Avg CPL-Fin CPL-Avg PR-Fin PR-OA RM-T4-Fin RM-T5-Fin RM-T4-Avg RM-T5-Avg
CA1-DL r   0.059  0.015 0.099 0.243 -0.157 0.217 0.008 0.122 0.246 0.448 0.475 0.395 0.361 0.362 0.317

p  0.771  0.942 0.603 0.187 0.445 0.24 0.965 0.513 0.183 0.012 0.007 0.028 0.046 0.045 0.083
CA1-TBP r   -0.102 0.167   -0.096 -0.206 0.001 0.233 -0.073 -0.012 -0.235 0.032 0.123 0.063 -0.004 -0.016 -0.022

p    0.614 0.406 0.613 0.266 0.997 0.206 0.695 0.951 0.202 0.865 0.51 0.737 0.982 0.932 0.908
CP-DL r   -0.237 -0.263 0.059 0.062 0.111 0.256 0.017 0.361 0.246 0.064 0.075 0.011 0.199 0.059 0.083

p   0.243  0.195 0.761 0.743 0.598 0.172 0.929 0.050 0.190 0.735 0.695 0.953 0.293 0.757 0.663
CP-TBP r   -0.230 -0.168 0.027 0.111 0.162 0.294 -0.157 0.321 0.172 0.141 0.104 -0.011 0.154 -0.092 -0.044

p 0.259 0.411 0.891 0.56 0.439 0.115 0.408 0.084 0.364 0.457 0.586 0.953 0.416 0.629 0.816
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Discussion 

General Summary 

The present study utilized an elaborate cognitive-based behavioral battery and 

multimetric statistical analysis to investigate the protective effects of “complete” 

environment enrichment (EE) versus several of its components (physical activity, social 

interactions) in AD transgenic mice.  Our results show that “complete” EE (physical, 

social, and cognitive activities) entirely protected AD transgenic mice from cognitive 

impairment in tasks representing different cognitive domains  − working memory, 

reference learning, and search/recognition.  In strong contrast, transgenic (Tg+) mice 

reared in environments that included physical activity and social interaction, or only the 

addition of social interaction, were not protected from cognitive impairment in adulthood.  

Noteworthy is that there were never any differences between IMP and SH transgenic  

groups in any task, indicating that individually-housed mice are not at a disadvantage for 

cognitive performance and that either IMP OR SH housing is a suitable Tg control.  

Through use of discriminant function analysis to determine if housing groups could be 

distinguished from one another based on multiple behavioral measures, EE and/or NT 

mice were consistently discriminated from the poorer performing other housing groups.  

Thus, the importance of “complete” EE as the protective paradigm is again underscored.  

Importantly, EE mice were protected from cognitive impairment through 8.5 months of 

age, suggesting its potential to prevent or at least delay onset of AD.   



 127 

The cognitive benefits observed in EE-housed APP+PS1 mutant mice occurred 

without significant changes in cortical Aβ levels, plasma cytokine levels, or plasma 

corticosterone levels,  suggesting involvement of mechanisms independent of these 

endpoints.  However, the EE-housed mice did have decreased dendritic length of neurons 

in the parietal cortex (but not hippocampus), suggesting that some extent of dendritic 

“pruning” may be involved in the cognitive benefits observed.  Despite the lack of robust 

changes in pathologic measures, correlation analysis offered possible underlining 

mechanisms involved in superior cognitive performance.  Although the lack of 

correlations between behavioral measures and cortical Aβ measures in APP+PS1 mice 

offers additional evidence of an Aβ-independent mechanism involved in EE’s protective 

effects, it is important to note that only anterior cortex was analysed.  It is possible that 

measurement of Aβ levels in hippocampal tissue would have elucidated EE-associated 

changes and more numerous correlations with cognitive performance.  As well, plasma 

cytokine levels and hippocampal dendritic length constantly correlated with cognitive 

measures, suggesting their involvement in underlying mechanisms of cognitive 

performance.  In factor analysis, moreover, all four dendritic length/branching measures 

loaded in factor 1, along side key cognitive measures.  This finding emphasizes dendritic 

morphology’s underlying involvement in cognitive performance.  

A large body of literature in epidemiological research suggests enriching life 

experiences (including education, occupation, physical activity and social interactions) 

may provide protection against dementia later in life (Scarmeas et al., 2001; Friedland et 

al. 2001; Verghese et al. 2003.)  Many such retrospective studies suggest cognitive 

protection from an enriched life style.  In addition, cognitive benefit, as well as a plethora 



 128 

of neurochemical/neurohistologic changes have also been noted in wild type rodents 

exposed to an enriched environment (van Praag et al., 2000).  Both young adult and aged 

rodents show cognitive benefit following several months of environment enrichment 

(Kemperman et al., 1997; 1998; 2002; Teather et al., 2002; Frick and Fernandez, 2003).  

Morris water maze learning has been the task most used to demonstrate improved 

cognitive performance in enriched mice and rats, although delayed alternation, visual 

discrimination, and food preference tasks have also been utilized (Winocur and 

Greenwood, 1999; Teather et al. 2002; Need et al. 2003).  As for 

neurochemical/neurohistologic changes, neurogenesis within the hippocampal dentate 

gyrus is increased by environmental enrichment in both young adult and aged mice 

(Kempermann et al., 1997; 1998; 2002; Van Praag et al., 1999).  Additionally, there is 

evidence that synaptogenesis occurs following enrichment in rodents, as evidence by 

studies showing 1): greater synaptophysin levels  in hippocampus and neocortex (Frick 

and Fernandez, 2003), 2) an increased number of Golgi-stained dendritic branches and 

dendritic spines in neocortex/neostriatum (Comery et al., 1995; Turner et al., 2003), and 

3) greater length of Golgi-stained dendrites in hippocampus (Faherty et al., 2003).  In 

addition, brain levels of NGF, BDNF, NT-3, and GDNF have been shown to be increased 

by environmental enrichment in rodents (Young et al., 1999; Ickes et al., 2000;Johnson et 

al., 2003).  Moreover, gene microarray analysis indicates that genes involving 

synaptogenesis, NMDA receptor function, and neuronal growth are all up-regulated in 

the brain following environmental enrichment (Rampon et al., 2000).   It has been 

proposed that the interaction between cognitive, social, and physical activities in the 

“complete” enriched environment may be essential for cognitive benefit as well as the 
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neurochemical/neurohistologic changes and that no single one of these activities alone 

leads to these beneficial alterations (van Praag et al., 2000).  However, no direct evidence 

for this premise has appeared in the scientific literature.   

In our initial report, we found that compete EE (e.g., physical, social, and 

cognitive activity combined) improves cognition in aged Alzheimer's transgenic 

(Tg2576) mice despite stable beta-amyloid deposition (Arendash et al. 2004), suggesting 

a therapeutic value of cognitive stimulation for AD patients that is independent of Aβ 

deposition.  In our more recent submitted work (Costa, 2005), we have shown extensive 

cognitive protection from “complete” EE in another APP mouse model of AD. This 

improvement was observed without changes in Aβ deposition in non-behaviorally-tested 

PDAPP+PS1 transgenic mice; however, extensive changes in gene expression were 

evident. Specifically, while PDAPP+PS1 mice exposed to EE alone showed no 

significant decreases in Aβ, mice given both EE and behavioral testing showed a 50% 

reduction in brain Aβ.  Microarray analysis using hippocampal tissue revealed large EE-

induced changes in the expression of genes/proteins related to memory, neuroprotection, 

and Aβ sequestration (Costa, 2005).      

The robust cognitive protection provided by “complete” EE calls into question if 

the components of EE (physical, social, and cognitive activity) contribute equally to the 

behavioral benefits observed through such an “enriched” lifestyle.  Recent 

epidemiologic/retrospective studies have tried to separate these components of 

enrichment and have reported that enhanced physical activity (Friedland et al., 2001; 

Churchill et al., 2002), and social activity (Wang et al., 2002) are associated with 

decreased incidence of AD.   This has led to the conclusion that physical or social activity 
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alone can provide substantive protection against AD.  However, in the present closely 

controlled animal model study, no such protection of physical activity or social activity 

alone was observed in APP mutant transgenic mice.  Retrospective human data can be 

challenging to decipher and/or misleading, due to the many confounding variables 

inherently present and the inaccuracies associated with recall of life experiences over 

decades.  Indeed, the complete separation of physical or social activity in either a 

retrospective or longitudinal prospective human study would be impossible to accomplish 

in that varying degrees of all three components are always present.  For example, those 

individuals that lead a lifestyle involving high physical activity or high social activity 

may also lead cognitively stimulating lives.  In any event, the present work shows the 

first evidence in an AD transgenic model that “complete” EE is needed to provide 

cognitive protection against AD, while the physical and social activity components of EE 

do not alone lead to protection.  Thus, it appears that cognitive activity is central to the 

protection observed.     

Our results are in contrast to several animal studies that investigated effects of 

physical activity and social activity on cognitive function.  In both wild type and AD 

transgenic mice there is literature that suggests physical activity alone can result in 

cognitive benefit and/or neurochemical/neurohistologic  changes.  Physical activity has 

been show to enhance genes involved in brain health (metabolic, anti-aging, immunity 

genes) and plasticity (neurotrophic factor trafficking and vesicle recycling) (Cotman 

&Berchtold, 2002).  Increase BDNF levels (Johnson & Mitchell, 2003), and enhance 

neurogenesis (van Praag et al., 1999; Kitamura et al, 2003; Ehninger & Kempermann, 

2003) were also observed in rodents through increased physical activity.  Several studies 
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indicate that physical activity alone can improve Morris water maze performance 

(Fordyce and Farrar, 1991; Fordyce et al., 1993).   Recent work, directly relevant to the 

current study involved APP mutant mice and found that physical activity was associated 

with decreases in brain Aβ .deposition (?) (Lazarov et al., 2005; Adlard et al., 2005).  In 

both studies,  however, the extent of wheel running (physical activity) associated with 

reduced Aβ and/or cognitive benefit was at the level of a marathon runner, a level of 

physical activity rarely attainable in humans.  The contribution of social activity to EE 

benefits has not been investigated in controlled studies involving wild-type rodents, much 

less in transgenic mice.  Through it’s step-wise design of housing conditions, the present 

study is the first to dissect out the contribution of each of EE’s 3 components to the 

protection afforded against cognitive impairment in AD transgenic mice.  

 

Behavioral Measures   

Our past work has shown the RAWM task to be an extremely sensitive test of 

working memory (Arendash et al., 2001a; Austin et al., 2003; Nilsson et al., 2004; Jensen 

et al., 2005), one of the earliest and most prominent symptoms of AD.  In our laboratory, 

APP+PS1 mice are impaired in this task by 5-6 months of age (Jensen et al., 2005), but 

not at 3 months of age (unpublished observations).  Consistent with that premise, Tg+ SH 

control mice in the present study showed impaired RAWM working memory at 8.5 

months of age, most notable in the last block and in overall performance across all 

blocks.  EE-housed Tg+ mice, by contrast, were able to reduce their latencies to levels 

equivalent to NT mice for both working memory Trials 4 and 5 on the final block, as well 

as over all blocks. This protection is consistent with our earlier work showing protection 
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of RAWM performance in APP transgenic mice through “complete” EE housing (Costa 

et al., 2005).   Importantly, this working memory protection was not observed in IMP, PA 

or SH groups.  In fact, complete separation between EE and NT groups versus all other 

groups was observed on Trial 5 of the final block.  Our complete EE results are consistent 

with findings from Jankowsky et al. (2005), who reported superior RAWM performance 

of Tg+ mice reared in a complete EE versus SH Tg+ mice. Also noteworthy in the 

present study is that Tg+ mice living in an impoverished environment appear to not be at 

risk for enhanced cognitive impairment during aging, as shown by their identical RAWM 

performance to the SH transgenic group. Our RAWM results suggest that “complete” EE 

may have significant protective potential against the working-memory impairment 

associated with AD.   

Despite the lack of a transgenic effect on Morris maze acquisition when Tg+ SH 

control mice were compared to NT mice, “complete” EE mice showed superior 

performance when compared to other transgenic housing groups on both individual block 

data and overall acquisition.  The absence of a transgenic effect may be attributed to the 

relatively poor performance of NT mice, rather than the superior performance of the 

transgenic SH mice.  We have previously reported acquisitional  impairment in the 

Morris maze as early as 4.5-6 months of age (Jensen et al., 2005).  In contrast, the 

transgenic SH mice in the present study were not significantly different from NT mice at 

8.5 months of age.  During the last several blocks of testing, escape latencies of NT mice 

reported in Jensen et al. (2005) were around 15 seconds versus around  40 seconds for 

NT mice in the current study.  These differences could be the result of different strains 

between colonies used or different F generations between the two colonies.  In any event, 
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EE mice were able to improve their learning acquisition at a faster rate than other groups 

in the present study.  A congruent effect was observed in recent work by Jankowsky et al. 

(2005), whom showed significantly decreased escape distances in APP+PS1 mice reared 

in “complete” EE when compared to Tg+ control mice.  

 In Morris maze reference memory retention, a transgenic effect was absent in all 

three measures (platform quadrant preference, annulus crossings, and quadrant 

preference).  As well, no group differences were present for zone 2 preference or annulus 

crossings. NT and SH mice showed partial quadrant preference for the goal quadrant 

while the other groups did not.  Although there was no effect of transgenicity in Morris 

maze retention, complete EE did not provide benefit to transgenic mice relevant to the 

other transgenic housing groups (IMP, SH, PA).  Similarity, Jankowsky et al. (2005) 

found that APP+PS1 mice did not benefit from EE during memory retention testing 

compared to transgenic SH controls. 

By performing the platform recognition task after the Morris maze task, mice 

must switch from the spatial strategy of the Morris maze to a recognition/identification 

strategy.  (Arendash et al. 2001a; Austin et al., 2003; Jensen et al. 2005).  Over 4 days of 

testing, the NT mice and EE mice quickly reduced their escape latencies.  In contrast, the 

IMP, SH, and PA transgenic groups lagged in their effort to convert from a spatial to a 

recognition strategy.  Despite all groups being identical by day 4, the strategy switching 

ability of NT and EE Tg+ mice was clearly superior to the other groups.  In this regard, 

overall latencies revealed IMP, SH and PA mice to be significantly impaired in 

comparison to NT mice; however, EE mice were identical to the NT group.  It should be 

noted that EE protected against an “age-related” impairment in platform recognition since 
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our prior work showed that APP+PS1 transgenic mice are not impaired in this task at 5-6 

months of age (Jensen et al., 2005). 

The above platform recognition results showing complete  strategy-switching 

protection in EE mice is consistent with our earlier EE study, wherein a different APP 

transgenic line was used (Costa et al. (2005).  Results from both studies again underscore 

the unprotective nature of the individual enrichment components.   Similar to RAWM 

findings, deleterious cognitive effects were not observed in transgenic mice living in an 

impoverished environment (IMP) versus SH mice, again showing that either housing 

condition is an appropriate control for intervention strategies.  Widely documented in AD 

patients is impairment in a variety of attention-related tasks, resulting in an inability to 

“search” or to shift attention from one item to another (Tales et al., 2004).  Our platform 

recognition results involving such strategy switching could thus be of considerable 

clinical significance.  EE could offer significant prophylactic value for 

search/identification if introduced early and if all components of enrichment (social, 

physical and cognitive) are included.    

SH transgenic control mice were not impaired in either Y-maze spontaneous 

alternation or circular platform tasks, negating any potential for EE or it’s components to 

provide protection.  This work is consistent with our previous findings, which showed 

limited sensitivity of APP+PS1 transgenic mice to Y-maze basic mnemonic function and 

circular platform reference memory impairment (Arendash et al., 2001a; Jensen et al., 

2005).  As anticipated, measures from Y-maze and circular platform did not load with 

measures in the prime cognitive factor in factor analysis.  This finding offers further 

evidence that measures from these two tasks do not relate well to, and are measuring 
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something different from, the three water-based tasks (Morris maze, platform 

recognition, and RAWM).  

   

Neuopathologic Analysis 

 Aβ Neurochemistry.  The robust cognitive benefits observed from environmental 

enrichment occurred without a significant decrease in soluble or insoluble levels of Aβ in 

anterior cortex; indeed, there were no differences in cortical Aβ deposition among any of 

the 4 transgenic housing groups.  Thus it appears that cognitive benefits from EE occur in 

the presence of high levels of brain Aβ.  It should be noted, however, that technical 

problems prevented analysis of Aβ levels in the hippocampus, wherein EE-induced 

changes may have been more likely to occur.  Past literature regarding the effects of 

protection-based EE on brain Aβ levels are inconsistent.  Early work by Jankowsky et al. 

(2003) showed that EE exacerbated Aβ levels in APP+PS1 mice. This was observed in 

the hippocampus and/or cortex as measured by histological staining, and Aβ ELISA.   

These results are consistent with recent work from the same laboratory showing 

improved cognitive performance  with EE is associated with increases in hippocampal 

Aβ levels, as measured by histologic staining and Aβ ELISA (Jankowsky et al., 2005).  

By contrast, Lazarov et al. (2005) showed significant decreases in cortex and 

hippocampal  Aβ deposition after housing APP+PS1 mice in EE.  Additionally, decreases 

in brain Aβ levels, measured by Aβ ELISA, were observed in EE mice. In our submitted 

work (Costa et al.; 2005), no change in Aβ deposition resulted from housing 

PDAPP+PS1 mice in EE; however, when EE was combined with extensive behavioral 
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testing (a form of EE itself), decreases in Aβ deposition occurred in both hippocampus 

and cortex.  These differences in findings between the three laboratories may be the result 

of different strain backgrounds and/or different EE protocols.  Interestingly, Lazarov et 

al. (2005) found that enriched mice exhibiting high wheel running activity had 

significantly less brain Aβ deposition than those with low activity.  Several events, other 

than wheel running-induced decreases in brain Aβ, may have lead to these findings.  

Firstly, mice were not randomly selected to test for physical activity, leading to the 

question if animals with less Aβ deposition were simply more active than those with 

higher Aβ burdens.  A second possible explanation is that the wheel to mouse ratio was 1 

to 2, leading to establishment of a hierarchy for wheel use.  Mice that gained more access 

to wheels may have been the “bully” animals while those that did not have wheel access 

were lower in the hierarchy, translating into more stressful living.  Despite the 

incongruent findings in APP transgenic models regarding EE’s effects on brain Aβ, the 

current work and past studies (Costa et al., 2005; Jankowsky, et al., 2005) show cognitive 

protection despite steady state and even increases in Aβ, suggesting possible Aβ-

independent mechanisms contributing to the EE effect.   

 Golgi Analysis of Dendritic Morphology.  The finding that dendritic branching in 

hippocampus of wild-type mice was increased by complete EE but not physical activity 

alone (Faherty et al. 2003) offered a possible mechanism by which EE mice in the present 

study were cognitively protect, while PA mice were not. However, no group differences 

in dendritic branching or dendritic length were seen, both in terms of a transgenic effect 

or a housing effect.  Thus, EE did not affect dendritic morphology in either hippocampus 

or parietal cortex of APP+PS1 mice.  Dissimilarly,  Moolman et al. (2004) have shown 
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APP+PS1 mice to have significantly less total dendrite area in hippocampus than NT 

mice.  One major difference between Moolman et al. (2004) and the current study is the 

confounding variable of behavioral testing.  Our extensive behavioral testing over 5 

weeks may have standardized all groups and therefore disguised any effects on dendritic 

morphology due to trangenicity or housing.  In our prior study (Costa et al., 2005), which 

used the same behavioral battery, we observed a genotype effect in that EE induced a 

decrease in dendritic branching in the cortex;  however, no effect of complete EE was on 

dendritic branching was evident.  It is important to note that our prior study involved a 

different AD transgenic model (PDAPP+PS1 mice) rather than the APP +PS1 mice used 

in the current study.   In any event, no group differences were observed at the dendritic 

level in the present work.  Exanimation of dendritic spines in hippocampus and cortex 

may reveal group differences among the 5 groups of the present study, and such an 

examination is in progress.  Along this line, recent work by Leggio et al. (2005) in wild-

type mice showed an EE-induced increase in dendritic spines in the parietal cortex, with 

cognitive benefits in both the Morris water maze and RAWM.  Whether or not such 

dendritic changes can be induced by EE in APP transgenic lines, generating high brain 

levels of Aβ, will be important to determine.  Further work at the synaptic (spine) level 

may offer a mechanism by which “complete” environmental is providing cognitive 

protection to AD transgenic mice.   

 

Blood Measurements  

 Cytokine Analysis.  Across all 10 plasma cytokines measured, there were no 

effects of housing condition or of APP+PS1 transgenicity.  These results suggest that 
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neither housing environment nor the APP transgene induce a global, sustained change in 

the immune system.  Thus, cognitive deficits observed in APP transgenics and the 

cognitive protection seen in EE mice occurred independently of a change in the systemic 

immune profile.  These findings are consistent with work by Marashi et al. (2004) 

showing no significant differences in spleen cytokine levels (IL-2, IL-4, IL-10, and IFN-

γ) of mice raised in EE.  Despite the absence of significant changes in cytokine levels, 

strong correlations were evident between plasma cytokines and cognitive performance 

(see next section on correlations).  For the present study, it should be noted that cytokine 

measurements were for plasma only, and may not be indicative of regional brain cytokine 

profiles.  In work submitted for publication, we found no differences in brain cytokine 

levels between NT and APP+PS1 mice of the same age as animals in the present study, 

suggesting no overt immunological response in the brain to the mutant APP transgene 

would be expected in this study’s Tg+ mice.  The absence of brain cytokine differences in 

Tg+ mice suggests that these mice may be “immune tolerant” to the presence of human 

Aβ.  This response would be expected for any peptide produced endogenously at high 

levels throughout life.  Future studies must be conducted to analyze brain cytokine levels 

following EE in Tg+ mice to determine if immunologic changes occurring in the CNS 

could be contributing to the cognitive protection provided by EE.   

 Corticosterone Levels.  A stressful environment has the potential to mask or 

exacerbate effects independent of the variables tested.  In order to control for this 

variable, plasma corticorsterone levels were measured for the different housing groups 

following completion of behavioral testing.  No group differences were observed, based 

on either housing or transgenicity.  Thus, it is unlikely that different levels of stress were 
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associated with the four housing environments, therefore eliminating the possibility that 

stress may have contributed to the differences in cognitive performance between housing 

groups.  In contrast to our findings, Belz et al. (2003) has shown that wild-type mice 

housed in EE had increased adrenal weight and increased blood stress hormones (such as 

corticosterone and ACTH), suggesting that EE can be a stressful environment in wild-

type mice.  Despite no housing differences in corticosterone levels in the present study, 

gender differences were observed, with male mice having almost 3-fold lower plasma 

corticosterone levels compared to females.  This is consistent with work showing female 

wild-type mice have significantly higher basal levels of corticosterone than male mice 

(Finn et al., 2004, Galea et al., 1997).   

  

Correlations Analyses between Neuropathology, Blood Measures and Behavior 

The cognitive benefits of 6 months of “complete” EE occurred in APP transgenic 

mice without significant decreases in soluble or insoluble levels of brain Aβ, changes in 

blood cytokines, or changes in dendritric morphology.  However, correlation analysis 

between 15 behavioral measures and pathologic/blood measures revealed some consistent 

associations, possibly linking the later to the former measures.   

 Surprisingly, correlation analyses performed between cognitive measures and 

brain levels of both soluble and insoluble Aβ revealed limited and inconsistent 

correlations.  This is in sharp contrast to the strong correlations we have generally found 

between cognition and various brain Aβ measures in our earlier work (Arendash et al., 

2001a; Gordon et al., 2001; Leighty et al., 2004).  This apparent discrepancy may be 

explained by the measurement of Aβ levels by ELISA in the current study, while our 
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prior studies involved histologic staining for Aβ burdens.  As well, the anterior cortex 

was analyzed in the present study (due to unavailability of the hippocampus), while 

hippocampus was most often utilized in our prior studies.  Since the hippocampus is 

critical to working memory- and spatial learning-based tasks such as the RAWM and 

Morris maze tasks, respectively, closer associations between hippocampal Aβ levels and 

cognitive performance would have been anticipated.  Finally, the various housing 

conditions themselves (particularly EE) may have neutralized the association between 

brain Aβ and cognition.  The lack of association between Aβ and behavior in the present 

study adds evidence to the findings of Jankowsky et al. (2005) wherein EE-induced 

cognitive protection occurred despite increases in brain Aβ, suggesting that EE mitigates 

cognitive impairment in the presence of amyloid burden.   

 In contrast to the absence of correlations between Aβ and cognition, consistent 

correlations were observed for both dendritic morphology and cytokines levels versus 

cognition.   Higher plasma cytokine levels correlated with better cognitive performance.  

These correlations were limited to Morris water maze and Y-maze alternation measures. 

Interestingly these tasks were not among those which highlighted the beneficial effects of 

“complete” EE and the non-protective nature of social and physical interaction.  In a prior 

study involving APP+PS1 mice given adoptively-transferred T cells, we also observed 

the same positive association between higher levels of plasma cytokines and cognitive 

performance (unpublished observations).  Together, results from these two studies 

suggest that higher levels of individual cytokines may play a role, or are at least 

indicative of, improved cognitive performance.  Regarding correlations involving 

dendritic morphology and cognitive performance, dendritic length in the hippocampus 
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CA1 region (but not parietal cortex) consistently correlated with RAWM and platform 

recognition measures. Decreased dendritic length was associationed with better cognitive 

performance suggesting a “pruning back” of extraneous branching as a possible 

mechanism for enhanced cognitive performance.   Also noteworthy is that the two 

strongly correlated tasks (RAWM and platform recognition) were also the tasks in which 

“complete” EE was most protective. Despite the lack of any significant group differences 

in any of the dendritic morphology measures, the presence of strong correlations between 

CA1 dendritic length and key cognitive tasks suggests hippocampal dendritic 

morphology as an underlying determinant of cognitive performance.  It will be important 

to follow these findings with analysis of dendritic spines from the same animals.  Such a 

study is now ongoing.     

 

Multimetric Analyses (FA and DFA) 

A benefit to utilizing an extensive behavioral battery which tests multiple 

cognitive domains is the ability to employ higher level statistical analysis to characterize 

and distinguish between genotype or treatment groups.  Using this novel approach in the 

present study, we were able to determine underlying relationships between behavioral 

and pathologic measures (via factor analysis; FA), as well as to compare experimental 

groups across multiple behavioral tasks/measures (via discriminant function analysis; 

DFA).  In past studies we have utilized these advanced statistics to discriminate between 

the behavioral performance of: 1) mutant APP transgenic lines that vary in their extent of 

Aβ deposition (Leighty et al., 2004; Nilsson et al., 2004), 2) mutant APPsw vs. mutant 

Tau trangenic lines (Arendash et al. 2004), 3) Aβ vaccinated mice vs. controls (Jensen et 
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al. 2005), and 4) environmentally enriched vs. non-enriched APPsw transgenic mice 

(Arendash et al., 2004).  In the present study, we used these sensitive multi-metric 

statistics to try to distinguish between “complete” enrichment and several of its 

components.   

 Factor analysis performed on both behavioral measures alone revealed one 

primary factor (factor 1) which was comprised of all measures from the RAWM and 

platform recognition tasks.  Other behavioral measures loaded under three lower factors.  

Noteworthy is that factor 1 was comprised of measures from the two tasks wherein EE’s 

effects on cognitive performance were most evident.  This inclusion of all RAWM and 

platform recognition measures into the primary factor is very consistent with our prior 

studies, in which the same loading occurred (Leighty et al., 2004; Jensen et al., 2005).  

When pathologic measures were included with behavioral measures in FA, all 4 dendritic 

length/branching measures loaded in factor 1 along with all RAWM and platform 

recognition measures.  This suggests an intimate relationship between dendritic 

morphology and cognitive performance.  These findings underscore the need for further 

analysis of dendritic structure in the same brains, specifically dendritic spine analysis 

(which is in progress).   

In contrast to the loading of dendritic morphology measures in factor 1 along side 

key cognitive measures, brain Aβ levels and blood levels of both corticosterone and  

cytokines loaded in other factors.  It is not surprising that Aβ levels did not load in factor 

1 since there were few correlations between cognitive performance and brain Aβ levels.  

In our prior studies wherein strong correlations were present between cognition and brain 

Aβ deposition, Aβ deposition measures loaded in factor 1 along with key cognitive 



 143 

measures (Leighty et al., 2004; Jensen et al., 2005).  Interestingly, in the FA involving 

behavioral measures and plasma cytokine levels, factor 1 contained all 10 cytokines 

along side both Morris maze acquisition measures.  In that acquisitional performance in 

Morris maze was highly correlated with plasma cytokine levels, there clearly is some 

underlying relationship between performance in this task and blood cytokine levels. 

 DFA was used to determine if behavioral performance alone could distinguish 

between the 5 experimental groups of this study.  In addition to the DFA on all 5 groups, 

further DFA analysis involving 3 groups  (NT, EE, SH) was performed to clarify any 

“complete” EE effects that may have been confounded by interactions between all 5 

experimental groups.  Although the “direct entry” DFA method of using all behavioral 

measures was largely unsuccessful in discriminating between groups, the “stepwise-

forward” DFA method was consistently able to discriminant between groups in either the 

5- or the 3-group analysis, irrespectively of whether all behavioral measures were 

included or whether only fact 1 behavioral measures were included.  NT and/or EE 

groups were always discriminated from all other groups (IMP, SH, PA).  For example, 

utilizing factor 1 measures with all 5 groups included, EE mice were clearly 

discriminated from IMP, SH, and PA transgenic groups.  This was consistent with our 

analysis of individual measures wherein the EE mice were identical to NT mice in having 

excellent cognitive performance, while the IMP, SH, and PA groups were impaired in 

RAWM and platform recognition.  The one cognitive measure consistently retained for 

providing this discrimination was RAWM performance in Trial 5 during the final block 

of testing.  Thus, this measure alone provided maximal discrimination between the 

groups of this study, although multiple measures and several cognitive domains were 
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involved in the discrimination when the DFA was initiated with all 15 behavioral 

measures.  Importantly, our stepwise-forward DFA results extend and complement 

traditional single-measure assessments by indicating that the beneficial effects of  

“complete” EE occurred across multiple cognitive measures from multiple tasks 

evaluated as a group.  Much like the indexing of multiple behavioral measures/domains 

of elderly humans or AD patients (Altepeter et al., 1990, Whelihan et al., 1997), DFA of 

AD transgenic models provides a valuable tool in assessing cognitive performance across 

various cognitive domains.   

In summary, this study clearly shows the effectiveness of “complete” 

environmental enrichment in protecting cognition AD transgenic mice.  In contrast, the 

physical and social components of enrichment alone did not provide protection, 

suggesting it is the cognitive or the additive effect of all components that leads to the 

protective effects of EE.  Despite robust behavioral changes, limited changes were 

observed in the pathologic variables measured.  Taken together, Aβ quantification, FA 

and correlations strongly suggest an Aβ independent mechanism in the current study. 

However, morphological changes do correlate with behavior and offer a potential 

underlying mechanism.   Although the exact mechanisms whereby “complete 

enrichment” offers protection while enrichment components do not are unclear, other 

possible mechanism are under consideration.   Firstly, changes in neuronal morphology at 

the dendritic spine level, resulting in enhanced cognition, have been observed in EE-

raised mice (Leggio et al., 2005). This increase in synaptic material, potentially leading to 

enhanced synaptic transmission, may offer a mechanism by which “complete” EE mice 

are protected from cognitive impairment.  The finding in the present study that decreased 
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dendritic length correlated with cognitive performance underscores the potential of a 

morphological dendritic pruning-based mechanism of action.    A second prospective 

mechanism is that “complete” EE is rendering Aβ irrelevant as an impairing factor 

through increasing neuronal health by enhancing neurotrophic factors and/or enhancing 

neuro-protective genes (Lazarov et al. 2005; Costa et al., 2005). This mechanism nicely 

fits with the findings of Jankowsky’s group, who showed that despite increases in Aβ 

deposition, cognitive protection was present.  Over all increases in neuronal health which 

renders neurons less susceptible to the toxic effects of Aβ as well as enhanced synaptic 

matter leading to a reserve of synaptic transmission may be working in concert to provide 

the protective effects of EE.    In any event the results of the current study suggest that 

environment may be a powerful, modifiable variable in the development of AD later in 

life.  
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