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Toward the Synthesis of Designed Metal-Organic Materials 
 

Jacilynn A. Brant 
 

ABSTRACT 

Metal-Organic Materials (MOMs) are an emerging class of crystalline solids 

that offer the potential for utilitarian design, as one of the greatest scientific challenges 

is to design functional materials with foreordained properties and eventually synthesize 

custom designed compounds for projected applications. Polytopic organic ligands with 

accessible heteroatom donor groups coordinate to single-metal ions and/or metal 

clusters to generate networks of various dimensionality.  Advancements in synthesis of 

solid-state materials have greatly impacted many areas of research, including, but not 

limited to, communication, computing, chemical manufacturing, and transportation. 

Design approaches based on building blocks provide a means to conquer the 

challenge of constructing premeditated solid-state materials.  Single-metal ion-based 

molecular building blocks, MNx(CO2)y+x,  constructed from heterochelating ligands 

offer a new route to rigid and predictable MOMs.    Specific metal bonds are considered 

responsible for directing the geometry or topology of metal-organic assemblies; these 

bond geometries constitute the building units, MNxOy.  When these building units are 

connected through appropriate angles, nets or polyhedra can be targeted and 

synthesized, such as metal-organic cubes and Kagomé lattices.  MNx(CO2)y+x MBBs 

can result in MN2O2 building units with square planar or see-saw geometries, 

depending on the mode of chelation.  Using a 6-coordinate metal and a heterochelating 



 xi

ligand with bridging functionality, TBUs can be targeted for the synthesis of valuable 

networks, such as Zeolite-like Metal-Organic Frameworks (ZMOFs). 

Zeolitic nets, constructed from tetrahedral nodes connected through ~145° 

angles, are valuable targets in MOMs, as they inherently contain cavities and/or 

channel systems and lack interpenetration.  Other design approaches have been 

explored for the design of ZMOFs from TBUs, such as the use of 

hexamethylenetetramine (HMTA) as an organic TBU.  When this TBU coordinates to a 

2-connected metal with appropriate angles, zeolite-like nets rare to metal-organic 

crystal chemistry can be accessed.  Additionally, MNx(CO2)y MBBs have been used to 

construct metal-organic polyhedra (MOPs), used as supermolecular building blocks 

(SBBs), that can be peripherally functionalized and ultimately extended into three-

dimensional ZMOFs. 

 Rational synthesis, mainly based on building block approaches, advances 

bridging the gap between design and construction of solid-state materials.  However, 

some challenges still arise for the establishment of reaction conditions for the formation 

of intended MBBs and thus targeted frameworks.   
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Chapter 1:  Introduction to Metal-Organic Materials 

Metal-Organic Materials (MOMs), a broad class that encompasses solid-state 

coordination polymers, metal-organic frameworks (MOFs), and metal-organic polyhedra 

(MOPs), generally consist of organic and metal monomers linked through metal-organic 

bonds.1  Metal-organic interactions occur between metals and hetero-atoms, such as 

nitrogen, oxygen, sulfur and phosphorus.  Polytopic ligands with accessible heteroatom 

donor groups coordinate to single-metal ions and/or metal clusters to generate networks 

of various dimensionalities.  Commonly, MOMs are synthesized as crystalline materials; 

a crystal consists of atoms arranged in a pattern that repeats periodically in three 

dimensions.2  The crystallinity of MOMs implies homogeneity throughout the solid 

phase, which expedites the processes of purification, characterization, property analysis 

and function determination.  Crystalline materials aid understanding and development of 

design aspects for rational synthesis of solid-state materials. 3 

It has proven challenging to construct designed rigid, thermally stable MOMs that 

retain structural integrity and contain large cavities and/or channels void of 

interpenetration.  However, frameworks have been successfully created by designing 

molecular building blocks (MBBs) that direct the formation of desired structures.  Just as 

an architect must choose appropriate building material, (thatch, clay, or wood, etc.) for 

the project under construction, the MOM designer must deliberate appropriate metal and 

ligand combinations, and reaction conditions, to facilitate in situ formation and assembly 

of MBBs.  It is essential that ligands contain appropriate chemical attributes, since much 
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of the resulting physical properties and the approaches to initially designing the material 

depend on it.  Throughout the evolution of MOM research a wide range of organic linkers 

have been investigated for exploitation in design and synthesis, in conjunction with the 

inquiry of various metals.4 

1.1 Overview of History 

Early advancements in MOM development resulted mainly from serendipitous 

and fortuitous discoveries of appropriate reaction conditions for the crystallization of 

coordination polymers, and a crystalline MOM was structurally characterized as early as 

1943.5  Combinatorial processes, colloquially termed “shake and bake”, yielded 

numerous interesting metal-organic nets and polyhedra, unveiling key knowledge 

associated with reactivity trends of hetero-atom donating ligands and metal ions and/or 

clusters for exploitation in the emergence of a new class of crystalline materials.  

In the 1990’s an exceptional amount of research on coordination polymers 

focused on the development of nitrogen-donating organic compounds,6 such as pyridine- 

and cyano-derivatives, for use as monodentate, polytopic ligands.  As early as 1959, there 

were reports of using organic ligands to form coordination polymers; specifically, a 

cyano-derivative was used as a linker between copper atoms in a coordination polymer 

with diamond-like topology.8  A variety of MOMs, containing nitrogen-donating ligands 

have been synthesized and studied,8-14 and ligands such as bipyridines,15-17 

dicyanobenzenes,18-20 and cyanopyridines21 commonly facilitate the formation of  

diamondoid networks.22  An early example employs 4,4’-bipyridine (bpy) with an 

octahedral zinc metal ion to yield a square grid network.  The 2-dimensional square grid 

layers pack ABAB and are catenated by perpendicular layers of square grids that also 
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pack ABAB.  Through each of the four member rings (4MRs), a bpy ligand from a 

separate layer threads through to interweave the layers. 

 

 

 

       a) 

 

 

 

 

       b) 

Figure 1.1  (a) Reaction of 4,4’-bipyridine with zinc ions yields 2-D square grids (red=oxygen, 
blue=nitrogen, gray=carbon, green=zinc) that interpenetrate, and (b) individual layers are shown in red, 
green, blue, and yellow.13 

 
 
Early examples of MOMs constructed from N-donor ligands were inclined to collapse 

and lack structural integrity upon removal or exchange of guest molecules, rendering 

them unsuitable for many applications.23, 24   

After the initial eruption in investigations of N-donating ligands, carboxylates 

gained focus as linkers in design and synthesis of MOMs, with the anticipation of 

forming more rigid frameworks.25-28  An interesting early example involves a 

coordination network, which contains 1,3,5-benzenetricarboxylic acid and cobalt, is 

comprised of 2-dimensional layers that are held together by mutual π-stacking of the 

pyridine guests with the benzene rings of BTC, which gives the framework physical 

properties that are closely related to that of 3-dimensional frameworks.29  The compound, 
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able to selectively bind aromatic guests, is stable up to 350˚C, remains stable after 

removal of guests that can be selectively re-sorbed.  Benzene, nitrobenzene, 

cyanobenzene, and chlorobenzene can all be adsorbed, while acetonitrile, nitromethane, 

and dichloroethane cannot be included within the framework.  The selectivity of the 

framework is allegedly due to the π-stacking of the aromatic guests with the benzene 

portion of the BTC ligand.   

Extensive research on incorporation of metal clusters, such as the copper-

paddlewheel, has proven that adequate strength and inflexibility is provided through 

carboxylate coordination with metal ions for the design of MOMs.  Crystallographic 

reports of the copper-paddlewheel occurred as early as 1823 by Brooke, research by 

Schabus, Groth, and Hull continued, and by 1953 J.N. van Niekerk and F.R.L. Schoening 

published the crystallographic data and structure of the mysterious cupric acetate 

molecule.30  Dimetal, tetracarboxylate paddlewheel clusters can be employed as square 

building blocks, containing other 6-coordinate metals, such as zinc, cadmium, and nickel, 

to construct MOMs.31-32  Other examples utilize the axial positions of the paddlewheel for 

coordination by bridging ligands to result in networks with nodes of higher 

connectivities.  Figure 1.2. illustrates the use of the paddlewheel cluster as a 6-connected 

node, as 4,4’-bipyridine bridges axial positions.   

Several other carboxylate based building units have been used in the design and 

synthesis of MOMs, such as the octahedral “basic zinc acetate” cluster and the trigonal 

prismatic oxo-centered trimer.1  Many MOMs have utilized carboxylate-metal clusters as 

nodes and some possess unique applications.31-32, 34-35 
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Figure 1.2. The use of the paddlewheel cluster as a 6-connected node is illustrated, as 4,4’-bipyridine 
bridges axial positions. 31   

 

Numerous carboxylate containing coordination compounds have been produced 

and encompass high porosity and a conglomeration of novel functionalities, including, 

but not limited to magnetism and gas storage.  Networks encompassing paddlewheel and 

other chelated carboxylate building blocks have proven to be thermally stable upon 

removal of guests.25,27 

Exuberant studies have been based on applications of porous MOFs comprised of 

modifiable organic carboxylate-based linkers and metal cluster nodes, which is evident 

from the unveiling of a class of isoreticular porous materials,25, 36-37 in which every 

compound has the same framework topology of CaB6.  Sixteen different organic ligands 

were used as linkers to create the sixteen porous MOFs that constitute this class of 

compounds.  Every compound in the series has a higher percent free volume than the 

most open zeolite, faujasite, and the family of compounds is thermally stable up to 

temperatures between 300˚ and 400˚C 25.  The isoreticular family consists of frameworks 

composed of octahedral Zn-O-C clusters, [OZn4]6+, and various ditopic carboxylate 

linkers.  The utilization of ditopic ligands of differing lengths yields structures containing 

various pore sizes with varying gas storage capabilities.   
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Figure 1.3.  The basic zinc acetate cluster (left), composed of four tetrahedral metal ions coordinated by six 
carboxylates to form a 6-coordinate node, that is used to construct various IRMOFs with analogous 
topology to CaB6 (right).36 

 
 

This work embraces many possibilities and exhibits numerous opportunities that 

MOF research can offer.  This study provides evidence that a specific network can be 

extended by consistently accessing a targeted building block. It has been proven that 

utilization of different organic ligands can result in different properties and thus unique 

functionalities.   

 A plethora of diverse linkers have been utilized in the construction of various 

ionic and neutral MOFs.  Anionic MOMs are generated in the presence of cations, such 

as amines, to create charge balance,38-40  and several cationic MOFs have been 

constructed as well.41-43  In addition to the numerous ionic frameworks, there are also 

examples of neutral MOFs,44-45 and the synthesis thereof lacks the necessity for charge 

compensating ions.  Neutral, anionic, and cationic ligands can be employed in the 

directed synthesis of materials with predisposed ionic strengths, dependant mainly on the 

charge of building components and metal to ligand ratios.   
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Figure 1.4.  a) Neutral, b) cationic, and c) anionic ligands can be used in the synthesis of MOFs with 
varying ionic strengths. 

 

Anionic MOMs are of extreme interest due to the potential use as metal-organic 

platforms that can be chemically tweaked via post-synthetic and/or ship-in-bottle ion-

exchange.  In addition, the geometrics of organic and inorganic cations can be exploited 

to direct the formation of intended structures. 

1.2 Fundamentals 

MOMs can be simplified and structurally explained in terms of nodes and spacers, 

as shown by Robson in the late 1980’s and early 1990’s, 9, 46-47 in which a node is 

generally any site in the network with more than two connectivities and a linker exhibits 

two connections.  Metal-organic structures are classified as zero dimensional (discrete), 

one dimensional (chains), two dimensional (layers), and three  
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dimensional.  Discrete MOMs, not supporting or requiring the notion of continuity, 

generally exist as geometrically distinct polygons and polyhedra, such as a metal-organic 

squares and cubes.  Metal-organic chains can be comprised of linear, zig-zag and ladder-

like connectivities.  Two- and three-dimensional networks are classified in terms of 

topology, an extension of geometry.   

 

 

 

 

 

 
Figure 1.5.  0-, 1-, 2-, 3-D (left to right) metal-organic materials depicted with nodes (green) and spacers 
(blue). 

 

 Topological descriptors, such as coordination sequences and vertex symbols are 

used to identify and distinguish nets.  The notion of coordination sequence (CS) was 

formally introduced by Brunner & Laves in 197148 in order to investigate the topological 

identity of frameworks and of atomic positions within a framework.  Each node, or 

vertex, in a framework has a CS, and, in an abstract sense, the CS explains the growth of 

a network.  For example, (Figure 1.6.) the coordination sequence for the tetrahedral node 

in lta is 4, 9, 17, 28, 42, 60, 81, 105, 132, 162, which implies the first node (blue) is 

connected to 4 nodes (red), while those nodes are connected to 9 nodes (yellow), and the 

9 nodes are connected to 17 nodes (green), etc.  The coordination sequence {Nx} is a 

sequence N1, N2, N3… that shows the total number of atoms in the 1st, 2nd, 3rd …. 

coordination spheres.49  
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Figure 1.6.  The coordination sequence (4, 9, 17, 28, 42, 60, 81, 105, 132, 162) and vertex symbol 
(4.6.4.6.4.8) of the lta net are displayed. 
 

Vertex symbols indicate the size of rings that occupy a node.  The symbols for 

opposite pairs of angles are grouped together and rings of the same size at a vertex are 

indicated by a subscript or superscript, depending on the notation used.  Additionally, the 

Schläfli symbol, named for the nineteenth century mathematician Ludwig Schläfli, lists 

the numbers and sizes of circuits starting from any non-equivalent atom in the net.  In the 

Schläfli symbol Aa.Bb.Cc, the length (number of nodes in a ring) of each shortest cycle is 

signified by A, B, C… and number of types of rings by a,b,c...  The extended Schläfli 

symbol lists all shortest circuits for each angle for any non-equivalent atom.  Other 

notations are also used to list such descriptors, including Wells and O’Keeffe.  For 

example, the vertex symbol of lta is 4.6.4.6.4.8 begins with 4.6 as smallest circuit is a 

4MR which is opposite to a 6MR.50 

 In crystal chemistry, the formation of regular nets is common, and sometimes 

unavoidable.  The regularity of a net is categorized in terms of transitivity, pqrs, which 

specifies the number of kinds of vertices (p), edges (q), essential rings (r), and tiles (s).  

For example, the transitivity of the dia net is 1111, therefore it is a regular net and thus 
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highly favorable for formation in crystal chemistry.  Essentially, transitivities, although 

composed of four digits, can be viewed as a single number; more regular nets have lower 

numerical transitivities and are generally more easily accessed by the metal-organic 

material designer.  The lta net has the transitivity 1343.  The three edges can be viewed 

as (1) the edge between squares and hexagons, (2) the edge between squares and 

octagons, and (3) the edge between hexagons and octagons.  There are four types of 

faces, which are determined by congruency and symmetry.  The net has three types of 

tiles, [46], [46.68], and [412.68.86]. 

 

 

 

 

 

 

Figure 1.7.  The lta net contains three types of tiles [46] (blue), [46.68] (yellow), and [412.68.86] 
(red). 
 

The lta net and others with similar attributes are targeted networks in MOMs for 

applications relying on porosity, as the tiles can be translated into metal-organic cages.  

The tiles pack in a manner to expose intersecting channels.  Such porous structures can be 

classified according to spatial dimensions of the pores or cavities, which include zero-

dimensional (dots), one-dimensional (channels), two-dimensional (layers), and three-

dimensional pore systems (intersecting channels).4  3-D pore systems are extremely useful 

due to the induced mobility of guests or solvent molecules.  Various layered MOFs, 

containing 2-D pore systems, have been reported, however most of them are unable to 
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host several guests.  Guest molecules residing in 1-D pore systems are free to move in 

one direction, while guests present in 0-D pore systems are isolated from other cavities 

and are unable to pass to other cavities.  The possible applications of a specific porous 

material are generally dependant on the type of pore system that is embedded within the 

framework.  Research involving porous materials has been developing for many years. 

Essentially, a permanently porous framework remains robust, without reversible or 

irreversible collapse, during guest loss, which results in a stable framework that contains 

a vacuum in the channels of the framework.35 

1.3 Challenges 

The most significant challenge associated with MOMs is to combine knowledge 

of chemical reactivity, crystallization techniques, and basic nets with aspects of utilitarian 

function to design and synthesize materials for specific applications.  Although some 

frameworks containing nitrogen-donating ligands are robust, thus far, the employment of 

carboxylate-containing ligands and metal-clusters have been more widely employed in 

creating irreversibly porous open frameworks.26, 65  N-donating ligands have been proven 

to act as effective linkers in MOFs, however, the typical flexibility of the M-N bond 

impedes topological design39 and monodentate N-based ligands do not commonly result 

in permanently porous nets.66,67   

1.4 Advancements/Developments  

Carboxylate-based ligands continue to be used in the synthesis of MOMs with 

some of the largest cavities exhibited in solid-state materials.  For example, an 

exceptional material, namely MIL-101, is constructed from chromium and terephthalate 

with cages about 34Å in diameter and an unprecedented free volume of about 702,000 
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Å3.52  A mesoporous MOF, made with triazine-1,3,5-tribenzoic acid and terbium, has 

been reported with two types of cages, one with 39 Å and the other 47 Å in diameter.53 

Advances in design and rational synthesis of targeted materials, with large 

cavities/channels void of interpenetration, continue to benefit applications,54 such as 

catalysis,55-57 gas storage,58-59 and sensing60. 

Recently, it has been demonstrated that imidazole-based linkers that exhibit 

monodentate coordination can successfully be used for the construction of Zeolitic 

Imidazolate Frameworks (ZIFs).  ZIFs are constructed by the coordination of imidazolate 

and imidazolate-type linkers to tetrahedral single metal ions, such as Co and Zn.  These 

examples prove that extensive exploration of reaction conditions can allow access to 

zeolite-like topologies, and thus avoidances of diamond-like networks.  ZIFs have surface 

areas up to 1,970m2/g, thermal stability and exceptional chemical stabilities.  

Additionally, these porous frameworks are suitable for gas storage and can selectively 

capture CO2 from CO/CO2 mixtures.51   
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Chapter 2: Introduction to Rational Synthesis of Metal-Organic Materials 

 
2.1 Overview  

Serendipitous discoveries have been very fruitful and will continue to yield 

valuable solid-state materials and insights to design.  Although much progress in research 

pertaining to solid-state materials has been made,3,35 the same basic synthetic approaches 

have been utilized for the majority of the twentieth century.61  Recently, synthesis of 

solid-state compounds progressively resembles rational approaches used in other fields of 

chemistry, such as organic chemistry, due to the use of building blocks.  Unlike organic 

chemistry, which involves the union of building blocks in a stepwise fashion, or by one 

functional group at a time, synthesis of solid-state materials is feasibly viewed as 

concerted processes.  The fact that all bond-making and bond-breaking is considered 

simultaneous explicates the great challenges associated with positioning chemically 

active groups in a manner to facilitate intended interactions. Perhaps, one day synthesis 

of solid-state materials will entirely entail pre-designed systematic approaches that will 

allow synthetic researchers to design made-to-order materials.  Currently, it is often 

possible to predict likely structures that result from certain building blocks,28 but the 

challenge remains to actually synthesize designed materials, while avoiding non-target 

nets that may have more favorable formation.  Approaches based on the use of molecular 

building blocks (MBBs) offer great potential. 
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2.2 Fundamentals 

 As mentioned earlier, networks with lower numerical transitivities are easier 

targets in crystal chemistry.  Transitivity classifications aid the MOM designer to 

envision and anticipate the formation of specific nets from regular vertex figures.  While 

some of these nets are exciting for some applications, other, less regular nets with 

analogous coordination figures are often targeted.  By understanding the types of nets that 

are likely to form, one can target avoiding certain structures in order to obtain those with 

higher transitivities.  

  Z Coordination Figure Name Transitivity   
        
  3 triangle srs 1111   
  4 square nbo 1111   
  4 tetrahedron dia 1111   
  6 octahedron pcu 1111   
  8 cube bcu 1111   
  12 cuboctahedron fcu 1112   
  4 rectangle lvt 1121   
  4 tetrahedron sod 1121   
  4 tetrahedon lcs 1121   
  4 tetrahedron lcv 1121   
  4 tetrahedron qtz 1121   
  6 hexagon hxg 1121   
  6 metaprism lcy 1121   
  6 octahedron crs 1122   
  6 octahedron bcs 1122   
  6 trigonal prism acs 1122   
  8 tetragonal prism reo 1122   
  8 bisdisphenoid thp 1122   
  4 rectangle rhr 1132   
  4 tetrahdedron ana 1132   
           

 

Figure 2.1.   Regular, quasi-regular, and semi-regular nets, classified by transitivity, are prime targets for 
the synthesis of pre-designed networks.61-62 

 

 Regular nets are defined to have symmetry that requires a regular polygon or 

polyhedron coordination figure, or viewed in terms of natural tiling, in which the  
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Figure 2.2.  Edge transitive, binodal nets represent a class of lucrative nets to target.63-64 

 

transitivity is equal to 1111.63 Such nets, as srs and dia, have been referred to as default 

nets for 3-D nets, for triangular and tetrahedral nodes, respectively.  These types of nets 

Z 
Coordination 
Figure Name Trans. 

4,6 tetrahedron, 
octahedron iac 2123 

4,24
octahedron, 
truncated 
octahedron 

twf 2123 

6,8 octahedron, cube ocu 2123 

6,12
hexagon,  
truncated 
tetrahedron 

mgc 2123 

3,24
triangle, 
rhombicuboctahedr
on 

rht 2123 

4,4 quadrangle, 
quadrangle ssc 2131 

4,4 rectangle, 
tetrahedron pts 2132 

4,4 rectangle, 
tetrahedron pth 2132 

4,6 rectangle,  
trigonal prism stp 2133 

4,8 rectangle,  
tetragonal prism scu 2133 

4,12 rectangle,  
hexagonal prism shp 2133 

6,12 trigonal prism, 
hexagonal prism alb 2134 

4,4 quadrangle, 
quadrangle ssa 2143 

4,4 quadrangle, 
quadrangle ssb 2143 

4,8 quadrangle,  
cube csq 2155 

Z 
Coordination 
Figure Name Trans. 

4,8 tetrahedron, 
cube flu 2111 

3,6 triangle, 
octahedron pyr 2112 

4,12 square, 
cuboctahedron ftw 2112 

4,8 quadrangle, 
cube sqc 2121 

3,4 triangle, square pto 2122 

3,4 triangle, 
tetrahedron bor 2122 

3,4 triangle, 
tetrahedron ctn 2122 

3,6 triangle, 
octahedron spn 2122 

4,6 square, 
octahedron soc 2122 

4,6 square, 
hexagon she 2122 

4,6 tetrahedron, 
octahedron toc 2122 

4,6 tetrahedron, 
octahedron gar 2122 

4.6 tetrahedron, 
octahedron ibd 2122 

4,12 tetrahedron, 
ocoshedron ith 2122 

6,6 octahedron, 
trigonal prism nia 2122 

3,4 triangle, 
rectangle tbo 2123 

3,8 
triangle,               
tetragonal 
prism 

the 2123 

3,12 
triangle, 
truncated 
tetrahedron 

ttt 2123 
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crystallize frequently, especially from building blocks that lack rigidity, and are 

commonly unavoidable.  A quasi-regular net, fcu, is vertex-, edge-, and face-transitive, 

1112 and semi-regular nets have 11rs transitivities.62  For example, semi-regular net sod 

has 1121 transitivity and is described as vertex, edge, and tile transitive.  Vertex transitive 

nets are referred to as uninodal and edge transitive as isotoxal and represent easily 

accessible networks. In addition to regular, quasi-regular, and semi-regular nets, binodal 

edge transitive nets are feasible targets for rationally constructed materials. 

Recent MOM design includes expansion of known networks selected as targets, 

which are often prevalent in nature.  An approach, coined “top-down design, bottom up 

synthesis,”39 entails the following process.  First, the target network should be 

intellectively anatomized, or deconstructed into essential building blocks of specific 

geometry, directionality, and connectivity that are required for the construction of the 

network.  Organic ligands and metals, which can be exploited to construct appropriate 

MBBs, are deliberated to essentially construct the targeted network.34  Geometrical 

information of the intended coordination figures are recreated with a linker or 

combination of linkers, single-metal ions, and/or metal clusters. Building blocks should 

be rigid in order for the geometric information to be retained during network assembly.  

Linkers that remain rigid allow more control of the binding angle between the extensions 

of the polytopic linkers.  When designing porous materials, nonflexible building blocks 

are beneficial for the creation of rigid frameworks that will remain permanently porous 

upon evacuation of guests.  When single metal nodes are utilized, ligands should be able 

to lock the metal into position, causing rigidity of the entire framework.   
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As an example of expansion, in which the distance between the vertices of the 

target framework is increased, the zeolite net rho is targeted.  It can be realized that rho 

consists of α-cages, or truncated cuboctahedra ([412.68.86]).  The cages connect through a 

double 8 member ring (d8MR), resulting in a body centered cubic arrangement, to yield a 

3-dimensional channel system of 8MRs.  The cages are composed of twelve 4MRs, eight 

6MRs and six 8MRs.  The framework can be further dissected to reveal that each of these 

rings, and ultimately the α-cage, is essentially built from 4-coordinate tetrahedral nodes.   

 

 

 

 

 

Figure 2.3. The rho net can be intellectively dismantled to an essential tetrahedral building units linked 
through an approximate 145° angle and consequently rebuilt and expanded using metal-organic molecular 
building blocks (MBBs).65   
 
 

Assembly of tetrahedral coordination figures is likely to result in regular nets, 

such as dia, sod, lcs, lcv, etc., therefore, more information must be invested in the MBBs 

to avoid such regular nets.  The 48 tetrahedral nodes are connected through an average 

angle of 145°.  Next, one must determine which metals and ligands can be exploited to 

construct a MBB that is rigid, tetrahedral and facilitates 145° angle connections.  This 

particular case demonstrates that a metal with 8-coordination sites can be combined with 

a ditopic heterochelating ligand to form 4-coordinate tetrahedral building units (TBUs).  

4,5-imidazoledicarboxlate (4,5-IMDC) has the capability to act as a ditopic N-, O-

heterochelating ligand and the metal-nitrogen bonds can be used to direct the topology, 
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while carboxylate oxygen atoms can lock the metal nodes into position. 4,5-IMDC 

contains nitrogen atoms oriented to facilitate connection of metal nodes though ~145° 

angles.   

 

 

 

 

 

Figure 2.4.  4,5-IMDC and In3+ are used to make a TBU for the assembly of anionic rho-ZMOF. 

 

 Under experimentally ascertained solvothermal conditions, the indium-based 

MBBs assemble in situ and a zeolite-like MOF (ZMOF) with rho topology, namely rho-

ZMOF, is constructed.  Expansion is accomplished, and the cavities can accommodate a 

sphere with approximate diameter of 18.2 Å.  The unit cell is approximately 8 times 

larger than the aluminosilicate zeolite rho. 65  

2.3 Challenges 

A key to targeting materials is considering the plethora of possible outcomes and 

narrowing the list by introducing constrictive components.  Challenges remain in the 

selection of suitable MBBs for coordination figures of targeted nets, and ultimately metal 

and ligand combinations.  As the qualifications for metals and ligands are realized for 

construction of MBBs for targeted materials, reaction conditions must be established for 

the formation and assembly of the MBBs. Under relatively mild conditions, the polytopic 

linkers and the appropriate metal nodes must be linked, retaining rigidity and geometric 

information throughout the synthesis, to form MOMs having the desired topology.  Both 
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the linkers and nodes must have attributes that accommodate the intended coordination 

figures, and commonly more intelligence must be incorporated to avoid simple nets.  It is 

important that the MBB is rigid and geometrically inductive, as structure ductility may 

defy the intention of avoiding certain high-symmetry, simple nets.  As the MBB of 

interest is realized, reaction conditions for assembly must be discovered.  As many 

interesting nets commonly result from the same coordination figure, a MBB should be 

reproducible in the presence of slight variations, such as ligand length for expansion, 

structure directing agents (SDAs) for versatility, and functionalization for utility.  

Determination of adequate reaction conditions is the remaining challenge to catenate 

design and synthesis of the target materials. 

2.4 Advancements/Developments 

A single-metal ion-based MBB approach employs ligands that contain a nitrogen 

atom in the α-position relative to a carboxylate group, which facilitate the formation of 5-

membered rings of chelation, with metal ions capable of high coordination numbers to 

form rigid and robust frameworks.68  Generally, chelates of higher denticity will result in 

building blocks with more predictable orientations than monodentate ligands.  

Potentially, metal-nitrogen bonds will direct the topology of the resultant network, while 

oxygen atoms can be used to complete the coordination sphere of single metal vertices, 

locking the metals into position through chelation.  This approach combines the 

directionality induced by N-donating ligands and the rigidity of frameworks built from 

metal-clusters.  Incorporating rigid building blocks into MOM design will enhance 

structure prediction.  Utilizing heterochelating ligands with geometrically stringent 
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Figure 2.5. Rigid MN3(CO2)3 MBB, from a heterochelating ligand, (center) has a rigid geometry, while the 
N-based building block (left) and paddle-wheel building block (right) show the potential for bond rotations. 
 

bridging capabilities allows access to targeted, and sometime rare and unprecedented, 

framework topologies in metal-organic crystal chemistry.  In certain cases, general 

conditions for the formation of specific MBBs have been established.  Sometimes, these 

established conditions can be used for the synthesis of isoreticular networks of varied 

metals and/or ligands.  Additionally, some results imply that certain conditions are 

successful for specific ligand families and certain types of metals.  For established 

methods, such as the formation of paddlewheel building blocks from metal ions and 

carboxylate-based ligands, simple conditions containing appropriate metal-to-ligand 

ratios and N,N’-dimethylformamide solvent systems can be applied to various nodes and 

spacers.  Trends can be analyzed from results of combinatorial chemistry and employed 

in the directed synthesis of materials. 
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Chapter 3: Single-Metal Ion-based Molecular Building Block Approaches for the 

Advancement of Metal-Organic Material Design 

  

3.1  MNx(CO2)y Molecular Building Blocks Constructed from Nitrogen- and 

 Carboxylate-Based Heterochelating Ligands 

The directionality of the nitrogen-based ligands and the rigidity of carboxylate-

based MOFs are combined by incorporating heterochelating capabilities into judiciously 

designed ligands.  The strategy to design and synthesize metal-organic assemblies 

consists of the formation of rigid and directional single-metal-ion based MBBs, namely  

 

Figure 3.1.  (Left) Heterochelating ligands with bridging functionality: (a) 4-imidazolecarboxylic acid, (b) 
4,5-imidazoledicarboxylic acid, (c) 4-imidazolethanoate, (d) 2,4-pyridinedicarboxylic acid, (e) 2,5-
pyridinedicarboxylic acid, and (f) 4,6-pyrimidinedicarboxylic acid. (Right) Isomers of MNxOy single metal 
ions. 
 
 
MNx(CO2)x+y that contain x N-, O- chelating moieties, and y bridging carboxylates. Such 

ligands, which possess both the chelating and bridging functionality, are shown in Figure 

3.1.   
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Herein, 4-connected nodes, derived from MBBs based on 6-coordinate single-

metal ions, MNxOy, (x + y = 6), will be considered for the construction of robust metal-

organic assemblies.  Specifically, MBBs are targeted from cis- and trans- isomers of 

MN2O4 and MN4O2 and fac- and mer-isomers of MN3O3 using directional ligands, such 

as 2,5-PDC, 2,4-PDC, 4,5-IMDC, Et 4-IMCand 4-IMC. 

 3.1.1  MN4O2 Single Metal Ions in Molecular Building Blocks 

 MN4O2 single-metal ions can be formed by the coordination of various types of 

heterochelating ligands, including those with two nitrogen donor atoms and one 

carboxylate group, such as 4-imidazolecarboxylate.  MN4(CO2)2 MBBs yield building 

units (BUs), which direct the topology, with seesaw or square planar geometries.  In 

contrast with the geometries of MN2O2 BUs, derived from MN2(CO2)4 MBBs, which rely 

on chelation and coordination modes, the geometry of the resultant MN4 BUs from 

MN4(CO2)2 is dependant only on the mode of coordination.  Obviously, since the 

nitrogen atoms are responsible for directing network topologies, the configuration of 

coordination directs framework formation.   

 

Figure 3.2. MN4O2 single metal ions can be used to access seesaw- and square planar-like building units. 
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 3.1.2. MN2O4 Building Units derived from MN2(CO2)4 Molecular Building  

  Blocks 

Two types of configurational isomers, cis- and trans-, are accessible in the 

octahedral hetero-coordinated single metal ion MN2O4, resulting in various types of 

MBBs in which topological directors have square planar-like or see-saw-like geometries. 

The trans-MN2(CO2)4 MBB can yield a square-planar-like building unit (BU), which 

results from trans-chelation66 and a see-saw-like BU is a product of cis-chelation. Three 

possible types of MBBs can be constructed from cis-type coordination, depending on the 

sites of chelation, from which different SBUs can be derived. Configurational cis-isomers 

bear two types of see-saw-like SBUs as well as a square planar-like SBU (Fig. 3.3).  

 

Figure 3.3.  Heterochelating ligands can coordinate to single-metal ions to result in MN2(CO2)4 molecular 
building blocks that act as 4-connected square-planar- and see-saw-like building units. 
 

We have previously reported67 the congregation of single-metal-ion-based MBBs, 

with the general formula InN2(CO2)4, resulting in the assembly of two supramolecular 
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isomers, a Kagomé lattice and a M6L12 octahedron from the heterochelating ligand 2,5-

PDC. The metal-organic Kagomé lattice consists of 4-connected MBBs, exhibiting cis-

chelation, that act as square-planar BUs. The discrete M6L12 octahedron is constructed 

from an InN2(CO2)4 MBB that constitutes a see-saw-like BU. In both examples, a 

multifunctional heterochelating and bridging ligand, 2,5-pyridinedicarboxylate, connects 

the nodes through ~120° angles to configure the rationally expected networks.  The rigid, 

geometry inducing ligand, 2,5-pyridinedicarboxylate, links the single-metal ions to 

generate a discrete MOF of the M6L12 octahedron. Yet another MOF, involving the 

multifunctional 2,5-pyridinedicarboxylate ligand, includes a configurational cis-isomer of 

the single-metal-ion and thus the MNx(CO2)y MBB, namely FeN2(CO2)4. The FeN2(CO2)4 

represents the third type of MBB, in which cis-chelation affords a see-saw-like SBU. In 

this type of see-saw, two different types of atoms are present in the lever and the fulcrum, 

as opposed to the see-saw-like SBUs found in the isoreticular octahedron structures that 

have one type of atom in the lever (oxygen) and the other type (nitrogen) in the fulcrum. 

The see-saw-like MBBs assemble, through the multifunctional linkers, to yield a MOF 

related to the cubic diamond net.  This work demonstrates that by accessing different 

MBBs, and thus different BUs, with a consistent ligand (2,5-PDC), various networks can 

be formed.68 
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Figure 3.4. MN2(CO2)4 MBBs are used to construct a metal organic Kagomé lattice, an octahedron, and 
diamond-like net.68 

 

3.1.3 MN3O3 Building Units derived from MN3(CO2)3 Molecular Building 

Blocks 

The MN3O3 octahedral single-metal ion can exist as two possible geometric 

isomers, the fac-isomer and the mer-isomer (Figure 3.5). As the nitrogen atoms are 

considered to direct the topology of resultant structures, two types of BUs are accessible 

from this type of coordination, namely mer-MN3 from mer-MN3(CO2)3 and fac-MN3 

from fac-MN3(CO2)3 Examples of the mer-MN3(CO2)3 MBB exist,69-71 but to our 

knowledge, these types of MBBs involving 5-member rings of chelation are rarely 

reported as part of extended coordination polymers. However, extended structures 

involving analogous non-chelating mer-MN3O3 building blocks have been synthesized.72   

Previously, we have reported the occurrence of fac-NiN3(CO2)3, in which the facial 

metal-nitrogen bonds topologically direct the formation of a cube (Figure 3.6).73 It is 
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Figure 3.5. MN3(CO2)3 molecular building blocks can be viewed an fac- (top) or mer-MN3O3 (bottom) 
building units. 

 

apparent that the majority of the crystal structures containing tris-chelated octahedral 

nickel, NiN3(CO2)3, deposited on the Cambridge Structural Database (CSD) have facial 

geometry. The metal-nitrogen bonds of the MBB geometrically constitute the corner of a 

cube and NiN3(CO2)3 has been employed in edge-directed assembly of an anionic metal-

organic cube (MOC-1), which has Ni-Ni-Ni angles within the range of 88.28(1) to 

91.85(1)˚.   

 

Figure 3.6.  A metal-organic cube is constructed from a fac-NiN3(CO2)3 MBB.73 
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3.2  Experimental 

 All chemicals were used as received from Fisher Scientific, Sigma-Aldrich, and 

TCI America chemical companies. Fourier transform infrared (FT-IR) spectra were 

measured using an Avatar 320 FT-IR system. Absorptions are described as follows: very 

strong (vs), strong (s), medium (m), weak (w), and broad (br).  X-ray powder diffraction 

(XRPD) data were recorded on a Rigaku RU15 diffractometer at 30kV, 15mA for CuKα 

(λ = 1.5418 Å), with a scan speed of 1°/min and a step size of 0.05° in 2θ. Calculated 

XRPD patterns were produced using PowderCell 2.4 software. Single-crystal X-ray 

diffraction (SCD) data were collected on a Bruker SMART-APEX CCD diffractometer 

using MoKα radiation (λ = 0.71073 Å) operated at 2000 W power (50 kV, 40 mA). The 

frames were integrated with SAINT software package74 with a narrow frame algorithm. 

The structure was solved using direct methods and refined by full-matrix least-squares on 

|F|2. All crystallographic calculations were conducted with the SHELXTL 5.1 program 

package,75 and performed by Dr. Victor Kravtsov, Dr. Lukasz Wojtas, Dr. Derek 

Beauchamp, Dr. Rosa Walsh or Gregory J. McManus in the Department of Chemistry at 

the University of South Florida. Crystallographic tables are  included for each compound 

in Appendix I 

 Olex76 and Topos77 software was used to determine topological representations of 

the obtained MOMs, and the resulting terms compared to those in the literature and the 

RCSR database.50 Total solvent-accessible volumes were determined using PLATON78 

software by summing voxels more than 1.2 Å away from the framework.  Tiling was 

evaluated using 3dt software.79 
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Synthesis of {[Cd(4-ICA)2]}n, ME086.  Cd(NO3)2٠ 4H2O (9mg, 0.0435mmol) and 1H-

imidazole-4-carboxylic acid (4-ICA) (7.3mg, 0.0653mmol) were added to a solution of 

DMF (1mL), water (0.5mL), imidazole (1.46M in DMF, 0.1mL) and nitric acid (2.85M 

in DMF, 0.225mL) in a 20mL scintillation vial.  The reaction was heated at a rate of 

1.5°C/min to 85°C for 12h, cooled to r.t. at 1°C/min, yielding colorless faceted 

polyhedral crystals. Experimental XRPD: 14.0, 18.1, 19, 23.5, 26.2. Calculated XPRD: 

13.92, 18.18, 19.08, 23.1, 26.4, 28.06, 29.52, 31.8, 32.4, 35.0, 36.0, 37.06, 39.6   

 

Synthesis of {[Cd(4,5-IMDC)(en)]}n, ME089  Cadmium (II) acetate 

dihydrate(0.0435mmol, 11.6mg)  was added to 4,5-IMDC (0.087mmol, 13.6mg) in the 

presence of DMF (1mL), and nitric acid (350μL of 2.96 M in DMF).  The reaction was 

heated to 65°C at 1.5°C/min.  The reaction remained at 65°C for 12h and was then cooled 

to room temperature at a rate of 1°C/min.  Experimental XRPD:  9.7, 11.5, 15.5, 18.0, 

19.4, 25.1; Calculated XRPD:  7.86, 8.82, 9.66, 10.63, 11.38, 11.96, 15.4, 15.7, 17.8, 

19.4, 20.2, 20.93, 22.4, 25.3, 26.6, 27.35, 30.8, 34.1. 

 

Synthesis of [In6(2,5-PDC)12], ME694. In(OAc)3٠H2O (0.0435mmol) and 2,5-

pyridinedicarboxylic acid (0.087mmol) were added to a solution of DMA (1mL) and 

0.1mL 0.058 M piperazine/DMF in a 20mL scintillation vial.  The reaction was heated at 

a rate of 1.5°C/min to 85°C for 12h, cooled to r.t. at 1°C/min Colorless block-like crystals 

resulted IR: 3156.7 (br), 1667 (m), 1566 (s), 1482.2 (w), 1395(s), 1350.9 (s), 1266 (w), 

1104 (w), 1018.8 (m), 942.4 (w), 834 (s), 756.9 (s), 694.7 (w), 648.6 (w). Experimental 
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XRPD: 5.17, 6.16, 6.41, 7.029, 8.14, 8.89, 9.75, 10.62, 11.61, 11.98.  Calculated XRPD: 

5.1, 6.02, 6.45, 6.8, 7.0, 7.45, 7.95, 8.85, 9.75, 9.9, 10.61, 11.04, 11.2, 11.64, 12.02, 13.1, 

13.3, 13.66, 13.96, 14.25, 15.77, 15.9, 16.33, 16.9, 17.5, 18.1, 20.3, 21.83.  

. 

Synthesis of {[Cd(4-ICA)2]}n, ME207.  Cd(NO3)2٠ 4H2O (9mg, 0.0435mmol) and 1H-

imidazole-4-carboxylic acid (4-ICA) (7.3mg, 0.0653mmol) were added to a solution of 

DMF (1mL), water (0.5mL), imidazole (1.46M in DMF, 0.1mL) and nitric acid (2.85M 

in DMF, 0.225mL) in a 20mL scintillation vial.  The reaction was heated at a rate of 

1.5°C/min to 85°C for 12h, cooled to r.t. at 1°C/min, yielding colorless faceted 

polyhedral crystals. Experimental XRPD: 13.2, 14.304, 19.71. Calculated XPRD: 7.16, 

9.27, 10.19, 12.07, 13.08, 14.35, 14.96, 16.62, 16.6, 20.45, 21.25, 21.97, 22.56, 23.13, 

23.69, 24.44, 25.22, 25.66, 30.19, 30.75, 36.35 

 

Synthesis of {[Cd(4-IMC)(H2O)]}n, ME096.  Cd(NO3)2٠ 4H2O (7.5mg, 0.0217mmol) 

and 4-ICA (4.9mg, 0.0435mmol) were added to a solution of DMF (0.5mL), water 

(0.125mL), 4,4’-trimethylenedipiperidine (0.95M in DMF, 0.05mL) and nitric acid 

(2.85M in DMF, 0.1mL) in a 20mL scintillation vial.  The reaction was heated at a rate of 

1.5°C/min to 85°C for 12h, cooled to r.t. at 1°C.  Colorless block-like crystals resulted 

Experimental XRPD: 7.7, 15.4, 21.9, 23.6, 26.6; Calculated XRPD: 7.7, 15.5, 22, 23.5, 

26.7 

 

Synthesis of [Cd8(4,5-IMDC)12], ME299.  Cd(OAc)2٠ 2H2O (232mg, 0.87mmol) and 

2,5-PDC) (340mg, 2.18mmol) were added to a solution of N,N’-diethylformamide (DEF) 
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(20mL), ethanol (EtOH) (10mL) and HMTA (1.42M in H2O, 2mL) in a 20mL 

scintillation vial.  The reaction was heated at a rate of 1.5°C/min to 85°C for 12h, cooled 

to r.t. at 1°C/min, heated to 105°C and cooled to r.t. yielding colorless octahedral-like 

crystals. Experimental XRPD: 12.1, 15.9, 17.5, 19.9, 20.6, 26.2, 28.1, 29.8, 32.9, 35.2; 

Calculated XRPD: 10.2, 12.1, 12.7, 14.6, 15.9, 16.3, 17.9, 19, 20.7, 21.6, 22, 23.4, 24, 

24.4, 25.5, 26.2, 27.5, 28.3, 33, 36.3, 37 

  

Synthesis of [Cd(4,5-IMDC)(en)]n, ME511.  Cd(OAc)2٠ 2H2O (11.6mg, 0.0435mmol) 

and ethyl 4,5-IMDC (13.6mg, 0.087mmol) were added to a solution of DMA (0.75mL), 

En (2.96M in DMF, 0.325mL) and EtOH (0.5mL) in a 20mL scintillation vial.  The 

reaction was heated at a rate of 1.5°C/min to 85°C for 12h, cooled to r.t. at 1°C/min, 

yielding colorless octahedron-like crystals.  Experimental XRPD:  13.5, 14.0, 16.3, 18.9, 

20.0, 26.0.  Calculated XRPD: 11.95, 13.3, 14.1, 15.6, 16.14, 18.7, 19.4, 19.96, 23.3, 

25.8, 28.3, 30.2, 27.05. 

 

Synthesis of [Cd(4-EIC)2]n, ME184.  Cd(NO3)2٠ 4H2O (13mg, 0.0435mmol) and ethyl 

1H-imidazole-4-carboxylate (4-EIC) (12mg, 0.087mmol) were added to a solution of 

DMF (2mL), and EtOH (1mL) in a 20mL scintillation vial.  The reaction was heated at a 

rate of 1.5°C/min to 85°C for 12h, cooled to r.t. at 1°C/min, yielding colorless faceted 

polyhedral-like crystals. IR: 1727(s), 1685 (w), 1604 (w), 1505 (s), 1392 (m), 1266 (w), 

1193(s), 11.76 (s), 1138 (s), 1024 (m), 966 (s), 896 (s), 852 (s), 677 (s). Experimental 

XRPD: 10.663, 15.184, 21.436, 28.588; Calculated XRPD: 10.67, 13.14, 15.05, 15.18, 

16.9, 18.55, 21.44, 22.79, 23.92, 25.15, 25.3, 27.39, 28.54, 30.37, 30.95, 31.5, 37.6. 
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Synthesis of Formula, [Cd3(4,5-IMDC)4·DMF]n, JB9545. Cd(OAc)2٠ 2H2O (11.6mg, 

0.0435mmol) and 4,5-IMDC (13.6mg, 0.087mmol) were added to a solution of DMA 

(0.75 mL), and EtOH (0.5mL) and en (0.325mL 2.96M in DMF) in a 20mL scintillation 

vial.  The reaction was heated at a rate of 1.5°C/min to 85°C for 12h, cooled to r.t. at 

1°C/min, heated to 105°C for 23h, cooled to r.t., heated to 105°C for 23h and cooled to 

r.t. yielding colorless hexagonal plate-like crystals. XRPD: 6.26, 7.18, 7.83, 8.51, 9.89, 

10.43, 13.11, 15.14, 18.56; Calculated XRPD: 6.27, 7.19, 8.51, 9.7, 10.25, 10.4, 11.25, 

13.2, 18.88, 24.2 

 

Synthesis of [Cd6(4,5-IMDC)10]n, ME688.  Cd(OAc)2٠ 2H2O (11.6mg, 0.0435mmol) 

and 4,5-IMDC (13.6mg, 0.087mmol) were added to a solution of DMA (0.75 mL), DEF 

(1.25mL) and 1,3-DAP (0.1mL).  The reaction was heated at a rate of 1.5°C/min to 85°C 

for 12h, cooled to r.t. at 1°C/min, yielded colorless faceted polyhedral crystals.  

Experimental XRPD:  3.7, 4.7, 6.3, 8.4, 9.1, 11.7, 14.7; Calculated XRPD: 3.87, 4.67, 

6.2, 8.35, 9.04, 11.15, 11.65, 14.63, 14.92, 18.13 

3.3 Results & Discussion 

 3.3.1   MOMs resulting from MN4O2 Single-metal ion-based Building   

  Blocks 

 
A reaction between a 1:2 ratio of cadmium nitrate and 4,5-IMDC in the presence 

of ethylenediamine yielded a metal-organic zig-zag chain, {[Cd(4,5-IMDC)(en)]}n 

(ME089)  The ditopic ligand chelates to the cadmium in a bidentate fashion.  However, 

two of the binding sites on the metal are occupied by ethylenediamine, which acts as a 
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terminal ligand.  Due to the unintended coordination of ethylenediamine, 2-connected 

building units, CdN2, result from the assembly of CdN4(CO2)2 MBBs.  

 

 

 

 

 

 

 

 

 

Figure 3.7.  Two types of 2-connected MBBs combine to form zig-zag chains in ME089. 

 

 Another reaction condition containing 4,5-IMDC, cadmium, and ethylenediamine 

yielded interpenetrated 3-D nets, ME511, {[Cd(4,5-IMDC)(en)]}n.  The single-metal ion 

is coordinated by two monodentate ethylenediamine bridges and two heterchelating 4,5-

IMDC ligands in a trans-coordination and trans-chelation mode, to result in a neutral 

MOM.  Each net is vertex transitive, with a Schlafi symbol of 4(2).8(4) and coordination 

sequence: 4, 10, 24, 44, 68, 98, 132, 172, 218, 266, which are identical to the chiral uoc 

net.  The uoc net is isohedral, and the tile consists of 4- and 8MRs.  The double 

interpenetration obstructs the 4- and 8MRs resulting in a densely packed framework.  

Once again, the unintentional coordination of ethylenediamine impedes structure 
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prediction.  However, this serendipity allowed access to a framework previously 

uncommon in MOMs. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. Doubly Interpenetrated uoc nets are constructed from a MN4O2 single-metal ion-based MBB, 
consisting of cadmium, 4,5-imidazolecarboxylate, and ethylenediamine. 

 

Ethyl 4-imidazolecarboxylate (4-EIC) was reacted with cadmium in a solution of 

DEF and EtOH targeting an CdN4(CO2)2 MBB, however an CdN4 MBB resulted.  The 

single-cadmium ion is coordinated by the nitrogen atom neighboring the carboxylate 

(Cd..N 2.25Å) in 4-EIC, while the 4-position nitrogen atom (Cd..N  2.19Å) further 

extends the neutral structure.  When simplified into spacers and 4-connected nodes,  
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Figure 3.9.  ME184, of dia topology,  is constructed from a tetrahedral CdN4 building block. 

 

ME184 has dia topology, as exhibited by the 6(2).6(2).6(2).6(2).6(2).6(2) vertex symbol 

and 4, 12, 24, 42, 64, 92, 124, 162, 204, 252, 981 coordination sequence.  Recent studies 

have proven that the MOF is stable in water, common organic solvents, and sodium 

hydroxide solutions at elevated and room temperatures.   

3.3.2 MOMs from MN2O4 Single-Metal Ion-based MBBs 

Reaction of 2,5-PDC and indium, in a 1:2 ratio, yielded a discrete metal-organic 

octahedron, [In6(2,5-PDC)12], ME694.  The ditopic 2,5-PDC ligand heterochelates to the 

indium ion, while the 5-position carboxylate bridges resulting InN2(CO2)4 MBBs, through  

monodentate coordination.  As the nitrogen atoms, participating in heterochelation, and 

carboxylate oxygen atoms, coordinated in a monodentate fashion, direct the topology, the 

BU can be described as a distorted seesaw, in which the nitrogen atoms that constitute the 

fulcrum of the seesaw are have an approximate N-In-N bond angle of 154.5°.  When the 

≡ 
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distorted BU is combined with a ligand of ~120° angle, a MOP with octahedral geometry 

results.   
        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. [In6(2,5-PDC)12] consists of 4-connected MBBs with the formula MN2(CO2)4. 

  

Overall, six indium atoms and twelve ligand molecules are present in each of the 

discrete structures, encompassing an inner cavity with an approximate volume of 261Å3, 

and a charge of -6 per octahedron.  Each anionic polyhedron is accommodated by three 

piperazine guests, which bridge the structure, through hydrogen bonding, into three 

dimensions to result in small channels. 

4-Imidazolecarboxylic acid (4-ICA) is used as a ditopic asymmetric ligand with 

one site of possible hetero-chelation and an additional nitrogen donor available for 

coordination to a metal ion.  The angle between coordination sites in this ligand is 145° 

and used to target MN4(CO2)2 MBBs.  

≡ 
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A reaction of cadmium and 4-ICA, under solvothermal conditions, results in the 

generation of a 1-D zig-zag polymer, (ME096). This polymer contains MBBs which have 

a general formula CdN2(CO2)4.  The coordination spheres of 

 

 

 

 

 

 

 
Figure 3.11.  ME096 consists of zig-zag chains that are built from one type of MBB, composed of 
cadmium and 4-imidazolecarboxylic acid. 

 

the cadmium metals are occupied by two ditopic linkers, one through chelation and the 

other through monodentate coordination, a water molecule and a chelating terminal 4-

ICA ligand.  Two coordinated donor atoms, the heterochelating nitrogen and the 

monodentate oxygen, are responsible for the topological outcome, resulting in a one 

dimensional chain.  In contrast to what was targeted, the nitrogen in the 1 position of 4-

ICA was not deprotonated and the ditopic linker was not coordinated through both 

nitrogen atoms of the ligand.  Instead, only the 3-position nitrogen and the 4-position 

carboxylate oxygen atoms of 4-ICA coordinate to the cadmium center.  Additionally, the 

neutral chains pack ABAB in a head to tail manner, to form layers.  The layers pack 

ABAB and DMF guests reside between the layers.   

  Another solvothermally synthesized crystal, containing cadmium and 4-ICA, 

{[Cd(4-IMC)2]}n (ME086), is constructed from a CdN2(CO2)4 MBB.  Each metal center 
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is coordinated by four ligands, two of which are monodentate oxygen atoms while the 

other two heterochelate through nitrogen and oxygen atoms the metal node, which results 

in a MBB with the formula MN2(CO2)4.  Once again, the 1-position nitrogen of 4-ICA 

was not deprotonated under these conditions, so the linker did not act as the 145° ditopic 

linker as expected, instead the bridging carboxylate further extend the structure into a 3-D 

MOM with dia-like topology.  As mentioned earlier, the dia net is a regular net and thus 

highly expected when structure directing building blocks lack rigidity. 

 

 Figure 3.12.  4-IMC and cadmium ions are used to form a dia  net from MN2(CO2)4 MBBs. 

 

It should be noted that ME096 and the ME086 can be assembled under the same 

reaction conditions under different temperatuers.  When identical amounts of reagents are 

added to two different vials and one is heated at 85°C for 12 hours and the other is heated 

at 105°C for 23 hours ME096 and the ME086 are formed respectively.  If the first vial 

containing ME096 is heated to 105°C the zig-zag chains are converted into the cubic 

diamond-like topology, ME086.   

≡ 
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Previously, it has been proven feasible to synthesize assemblies that are 

isoreticular with indium-based assemblies, constructed from single-metal ion-based 

MBBs MN2(CO2)4, using cadmium ions as the single-metal nodes in an instance where 

isoreticular metal-organic octahedra were produced with both metals.  A 2-D cadmium-

based framework (ME207) has been synthesized, using cadmium nitrate and 2,5-

pyridinedicarboxylic acid, that is isoreticular with an indium-based Kagomé-like MOF.2  

In both cases, the MN2(CO2)4 MBB results from nitrogen atoms coordinating in a cis 

fashion with rings of chelation that are 90° apart, which coincides with a MN2O2 BU. 

 

 

 

 

 

 

 

 

 

Figure 3.13.  2,5-PDC and cadmium ions can be used to construct a kag net from MN2O2 BUs resulting 
from MN2(CO2)4 MBBs 
 
 
 
 The crystal structure of ME207 contains large disordered guest molecules, which 

are likely imidazole and dimethylammonium cations to balance the anionic network, 

induced by from the 2:1 ratio of deprotonated [2,5-PDC]2- to Cd2+ ions.  The 2-D 

≡
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Kagomé-like sheets stack relatively densely in an abcabc fashion, with no apparent 

channels. 

3.3.3 MOMs Containing MN3O3 Building Units 

 

 

 

 

 

 

 

 

 

Figure 3.14.  4,5-IMDC and cadmium ions have been used to create a metal-organic cube from a 
fac-MN3(CO2)3 MBB. 
 
 
As mentioned earlier, the metal-nitrogen bonds of the fac-MN3(CO2)3 MBB, the 

MN3 BU, constitute the corner of a cube and can be employed in the edge-directed 

assembly of an anionic metal-organic cube.73  It has since been proven that other single-

indium metal ion-based MBBs can be synthesized with cadmium ions, and can be applied 

to recreate other single-metal ion-based MBBs, specifically using 4,5-IMDC as the 

heterchelating linker. A preliminary crystal structure of ME299 indicates that a nickel-

based MOC has been recreated with cadmium nodes.  As the versatile packing of MOCs 

can result in open or dense tertiary structures, this cadmium-based MOC exhibits cubic 

closest packing in an ABCABC fashion.  Such packing results in a dense structure devoid 

of channels and cavities. 

≡
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3.3.4 Heterocoordinated Metal-Organic Frameworks from MBBs 

Nets based on one type of MBB are commonly crystallized, however, MOMs 

constructed from multiple types of MBBs can also be accessed.  As the structures were 

unexpected, since the metals and ligands used are generally intended for the formation of 

predictable nets from one type of MBB, there is much to be learned from these examples.  

Such reaction conditions allowed the avoidance of envisioned nets via crystallization in 

topologies of higher transitivities. The focus will be nets containing 3- and 4-coordinate 

vertices. 

Reaction of cadium acetate and 4,5-IMDC yields a 3-D MOF, JB9545, that is 

built from two 3- and one 4-connected MBBs.  A tritopic 4,5-IMDC ligand, that 

coordinates through a monodentate nitrogen, N-, and O- heterochelation, and a 

monodentate oxygen connection.  The other two MBBs are single-metal ion-based and  

 

Figure 3.15.  JB9545 is constructed from three types of MBBs yielding a net with unprecedented toplogy, 
which contains [62.74.84.94] tiles. 

≡ 

≡ 

≡ 
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related to previous examples.  The 4-connected single-metal ion-based CdN2(CO2)4 

MBB, from a trans-CdN2O4 ion, exhibits cis-chelation and thus a see-saw-like BU, with 

nitrogen atoms in the fulcrum positions and oxygen atoms on the lever postions.  The 3-

connected MN2(CO2)3 MBB consists of a single metal ion coordinated by three 4,5-

IMDC ligands, two through N-, O-heterchelation and one through a monodentate oxygen 

connection, resulting in a trigonal planar BU.  The sphere of coordination is completed by 

a terminal DMF or DMA molecule coordinated through a carboxylate oxygen atom.

 Topologically, there are five different types of nodes, a metal-based 4-connected 

node (vertex symbol: 6.7.7.8.12(2)) and four different types of 3-connected nodes (vertex 

symbols: 6.7.8; 7(2).8.9(2); 7.7.8; 6.8.9(2)), of which two are ligand-based and two are 

metal-based, which composes an unprecedented topology, to the best of our knowledge.  

The net is tile transitive and is constructed two 6MRs, four 7MRs, four 8MRs, and four 

9MRs.  The networks consists of a two dimensional channel system from 6MRs, 

however, coordinated terminal ligands block access to the channels. 

 In another reaction between cadmium acetate and 4,5-IMDC an anionic, 3-D 

MOF with extra-large unidimensional channels was crystallized, namely, ME688.  Two 

types of molecular building blocks.  The CdN3(CO2)3 MBB consists of three 4,5-IMDC 

ligands that heterochelate through N and O donor atoms, and the N atoms, in a facial 

arrangement, constitute and 3-connected BU.  The CdN4 MBB is formed through the 

coordination of four 4,5-IMDC ligands through nitrogen atoms, which can be viewed as a  
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Figure 3.16.  4,5-IMDC and Cd are used to construct a (3,4)-net with unprecedented topology from two 
types of MBBs.  The binodal network is built from four types of tiles. 

 

tetrahedral BU.  The 3-coordinate node has a coordination sequence of 3, 7, 11, 17, 28, 

38, 52, 78, 92, 104, short (Schlafli) vertex symbol: 4.6.8, and long topological (O'Keeffe) 

vertex symbol: 4.6.10(4).  The 4-coordinate node has a coordination sequence 4, 6, 11, 

20, 26, 40, 60, 70, 91, 116, short (Schlafli) vertex symbol: 4(2).6.8(2).10, and long 

topological (O'Keeffe) vertex symbol: 4.4.6.10(4).10(2).10(2).  In this unprecedented net, 

the 3- and 4-coordinate nodes facilitate the formation of 4-, 6-, and 10-MRs with 
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accessible windows of approximately 2.75, 7.7, and 6.5 x 18.6Å, respectively.  The 4-, 6-, 

and 10MRs constitute the walls of unidimensional channels with an approximate 

diameter of 15 Ǻ along the z-axis, while smaller channels are accessible through the x- 

and y-axes.  This open anionic material is capable of ion-exchange of large organic 

molecules, such as acridine yellow (Appendix III).   

These examples show that MBBs based on heterochelating ligands can be used to 

access MOFs with heterocoordination, or mixed types of nodes.  Although these types of 

nets are challenging to predict and/or construct from design, these occurrences allow 

insights to capabilities and further design advancements. 

 3.4 Summary & Conclusions 

This class of compounds illustrates that varied modes of heterochelation 

combined with ligand angularity directs the formation of numerous nets. Overall, 

 

Figure 3.17.  Molecular building blocks, constructed from MNxOy (x + y = 6) single-metal ions can 
facilitate the formation of various metal-organic materials.  
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combining the approaches of nitrogen-based and carboxylate-based ligands, which 

exploit hetero-chelation involving nitrogen and oxygen, in the deliberate synthesis of 

MOFs from single-metal-ion-based MBBs, is an effective method of synthesizing 

discrete and extended metal-organic assemblies. Thus far, certain MBBs, and 

consequential BUs, predominate and dictate the formation of certain structures. 

Exploration of advancing this approach to other metal coordination modes, MNx(CO2)y, 

and discovering common conditions to formulate projected frameworks will continue to 

advance the design of such materials. 
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Chapter 4: Design of Zeolite-like Metal-Organic Frameworks 

Zeolites are currently the largest class of commercially available functional 

porous materials.  Zeolites are classically defined as exclusively aluminosilicate, three-

dimensional, open frameworks consisting of corner-sharing [AlO4]5- and [SiO4]4- 

tetrahedra with the general formula Mn+
x/n[(AlO2)x(SiO2)y]x-

• w H2O, capable of ion 

exchange and reversible dehydration.80  Naturally occurring zeolites have been studied 

for over 200 years, while research of the synthesis of zeolites has been progressing for 

over 140 years.81  Zeolites, which have high thermal stabilities, can contain 

multidimensional as well as unidimensional pore systems, or channels.  The pores have 

molecular dimensions and are able to accommodate small guest molecules.  Although 

unidimensional pore systems are appropriate for some applications, the bulk of zeolitic 

research is focused on frameworks consisting of multidimensional pore systems. 

Zeolite research is captivating due to a variety of applications, including catalysis, 

ion exchange, gas storage, purification and separation, etc.82 mainly resulting from 

permanent porosity and intrinsic declination of interpenetration. Specific applications 

include recovery of radioactive ions from waste solutions,83 separating hydrogen isotopes, 

solubilizing enzymes, carrying active catalysts in the curing of plastics and rubber, 

transporting soil nutrients in fertilizers, hydrocarbon conversion catalysis,84-85 and silicon 

nanowire synthesis.86 Zeolites have proven futile for some applications, such as methane 

storage, separation/catalysis of large molecules, molecular magnetism, and hydrogen 

storage.   
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Figure 4.1. A few zeolite frameworks are illustrated to display the porous nature of the naturally occurring 
aluminosilicate compounds.  left: faujasite (fau) center: Linde Type A (lta) right: AlPO4-5 (afi) 

 

Zeolites are commercially used for ion exchange.82,84,87  The presence of 

aluminum in the silicate lattice induces a negative charge within the framework.  The 

anionic framework is compensated by cationic guests that are present within the pores or 

channels.  These intrinsic anionic properties allow ion-exchange to occur, which highly 

impacts possible commercial applications.  The capacity for reversible cation-exchange is 

very important in zeolites because it allows manipulation of the electronic atmosphere 

inside pores.  Sorption properties are dependant on the cations present within the cavities.  

For example, when the sodium cations present in the pore system of the zeolite Linde 

Type A (lta) are replaced with potassium cations the sorption capacity for oxygen is 

essentially eliminated.  It is also apparent that propane is not sorbed by the lta zeolite that 

contains sodium, however, when the sodium ions are exchanged with calcium, lta is 

capable of propane sorption.  Cation-exchange in zeolites is also influential on catalytic 

properties and separation capabilities.84  

An arduous objective is to increase pore sizes of multidimensional channel 

systems of zeolite-like materials and design frameworks that possess tunable properties 

and novel functionalities that exceed the boundaries of currently available porous 
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materials.  The potential for design of MOMs offers a means to expand zeolitic 

frameworks and thus further develop applications based on solid-state materials.  

4.1 Zeolite-like Metal-Organic Frameworks from Supermolecular Building 

 Blocks  

The ability to control coordination number, and thus geometry, around metal 

nodes through metal-ligand directed assembly affords the synthesis of pre-designed finite 

and rigid metal-organic polyhedra (MOPs).4,23,67,73,88 MOPs with peripheral 

functionalities can be employed further as supermolecular building blocks (SBBs) in the 

construction of extended metal-organic frameworks (MOFs).89-90 This approach is 

illustrated in the construction of rht-MOF, in which a metal-organic nanoball 

(cubohemioctahedron) is peripherally functionalized with tetrazole groups that form a 

trimeric metal cluster. Essentially, the network is synthesized using 5-

tetrazolylisophthalic acid and copper nitrate.  Just as the cubohemioctahedron can be 

functionalized and, thus, extended, various other MOPs with appropriately placed points 

of extension can be used as augmented versions of defined nodes with high connectivity.  

Programming such building blocks with a hierarchy of appropriate information to 

promote the synthesis of targeted structures, while simultaneously avoiding other easily 

attainable nets,91 represents a significant advancement in framework design.28 

In crystal chemistry edge transitive nets are suitable targets for such processes, 

since they are simple networks composed from only one kind of edge. Our pre-designed 

finite metal-organic cube MOC73 can be employed as a rigid and directional SBB for the 

directed assembly and deliberate construction of extended MOFs based on 8-connected 

edge transitive nets. According to the RCSR,50 only five 8-connected nets are edge 



 48

transitive, bcu, bcu-b, lcx, reo, and thp.  Of these basic nets, bcu and reo are closely 

related to zeolite nets, specifically, the augmentation of the 8-connected nodes result in 

zeolite nets aco and lta.  

A particular subset of zeolite nets share a common secondary building unit (SBU) 

composed of eight tetrahedra bridged through oxide ions in a cube-like arrangement, 

commonly referred to as a double 4-ring, d4R.81 The analogy of this SBU to a cube (and, 

by default, a MOC) suggests that MOCs could be used as SBBs to target zeolite nets 

based on d4Rs. 

 

 

 

 

 

 

 

 

 

Figure 4.2.  ast, aco, asv, and lta are zeolitic nets closely related to basic 8-connected nets, and thus 
exceptionally interesting to metal-orgaic crystal chemistry. 

 

Our approach encompasses using MOCs as 8-connected building blocks, which can be 

regarded as d4Rs to construct ZMOFs related to 8-connected edge-transitive nets.  The 

d4Rs can be connected through linear linkers to construct zeolite-like nets.  

As previously described, a metal-organic molecular cube can be assembled 

through hetero-chelation of octahedral single-metal ions by ditopic bis-bidentate linkers 

in a fac-MN3(CO2)3 manner,. The molecular cube itself consists of eight vertices 
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occupied by tri-connected nodes bridged through twelve 4,5-imidazoledicarboxylate 

(HnImDC, n = 0-1) linkers. By the coordination of such vertices, interconnected 

tetrahedra similar to the D4R units in zeolites can be attained. The MOCs possess 

peripheral carboxylate oxygen atoms that can potentially coordinate additional metal ions 

and/or participate in hydrogen bonding to construct ZMOFs.  

4.1.1 Experimental 

 All chemicals were used as received from Fisher Scientific, Sigma-Aldrich, and 

TCI America chemical companies. Fourier transform infrared (FT-IR) spectra were 

measured using an Avatar 320 FT-IR system. Absorptions are described as follows: very 

strong (vs), strong (s), medium (m), weak (w), shoulder (sh), and broad (br).  X-ray 

powder diffraction (XRPD) data were recorded on a Rigaku RU15 diffractometer at 

30kV, 15mA for CuKα (λ = 1.5418 Å), with a scan speed of 1°/min and a step size of 

0.05° in 2θ. Calculated XRPD patterns were produced using PowderCell 2.4 software. 

Single-crystal X-ray diffraction (SCD) data were collected on a Bruker SMART-APEX 

CCD diffractometer using MoKα radiation (λ = 0.71073 Å) operated at 2000 W power (50 

kV, 40 mA). The frames were integrated with SAINT software package74 with a narrow 

frame algorithm. The structure was solved using direct methods and refined by full-

matrix least-squares on |F|2. All crystallographic calculations were conducted with the 

SHELXTL 5.1 program package,75 and performed by Dr. Victor Kravtsov, Dr. Lukasz 

Wojtas, Dr. Derek Beauchamp, Dr. Rosa Walsh or Gregory J. McManus in the 

Department of Chemistry at the University of South Florida. Crystallographic tables are 

included for each compound in Appendix I 
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 Olex76 and Topos77 software was used to determine topological representations of 

the obtained MOMs, and the resulting terms compared to those in the literature and the 

RCSR database.50 All total solvent-accessible volumes were determined using 

PLATON78 software by summing voxels more than 1.2 Å away from the framework.  

Tiling was evaluated using 3dt software.79 

 

Synthesis of C634H414N234O807Cd72Na72, ME500.  H3ImDC (0.087 mmol, 13.6 mg), 

Cd(NO3)2⋅4H2O (0.0435 mmol, 13.4 mg), N,N’-diethylformamide (1 ml), ethanol (0.25 

ml), piperazine (0.1 ml, 0.58 M in DMF), sodium hydroxide (0.1 ml, 0.174 M in ethanol), 

and 2,4-pentanedione (0.1 ml, 0.174 M in ethanol) were added to a 25 ml scintillation 

vial, which was then sealed, heated to 85˚C and cooled to room temperature at a rate of 

1˚C/min to produce colorless, hexagonal prism-like crystals formulated as 

C634H414N234O807Cd72Na72 with a 67% (0.0137 g) yield based on ?. FT-IR (4000–600 cm-

1): 1650.25 (w), 1622.59 (w), 1548.82 (s), 1484.49 (vs), 1437.5 (s), 1379.16 (s), 1298.34 

(m), 1253.75 (m), 1217.09 (w), 1110.98 (m), 997.18 (w), 975.02 (w), 846.39 (w), 786.95 

(s), 667.49 (vs), 655.87 (vs), 613.00 (s)  

 4.1.2 Results & Discussion 

Reaction of Cd(NO3)2.4H2O and H3ImDC in the presence of Na+ ions results in 

lta-ZMOF, formulated as {[Cd8(HImDC)8(ImDC)4](H2Pip)2Na8(EtOH)5(H2O)37} 

(Pip=Piperazine, EtOH=Ethanol). In the crystal structure of lta-ZMOF, each MOC is 

linked to eight other cubes through linear vertex-to-vertex connections.  Half are 

connected through hydrogen bonded water molecules and the other four vertices are 

connected through a series of four sodium atoms, Figure 4.3. The framework consists of 
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two types of cages, namely an α-cage encapsulated by 12 cubes and an elliptical β-cage 

enclosed by 6 cubes. The largest sphere that can fit into these cages without touching the 

van der Waals surface of the framework is ~32 Å for the α-cage and ~8.5 Å for the β- 

 

Figure 4.3. In lta-ZMOF, twelve MOCs are connected through a series of sodium ions (top left) to generate 
an α-cage (tile shown in green) that can accommodate a sphere with diameter of ~32 Å and 6 MOCs 
assemble a β-cage (tile shown in yellow) that can fit a sphere of ~8.5 Å in diameter. 
 

cage. Topologically, the framework can be viewed as lta or an augmented version of reo 

when the hydrogen bonded and sodium bridged vertex-vertex connections are considered.  

However, the structure can be interpreted as nbo if only connections through sodium ions 

are considered. 

This work demonstrates that utilization of MOPs as SBBs represents an 

interesting approach towards rational design and synthesis of nanostructures. MOCs, the 
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MOPs of significance, offer the potential to target and build zeolitic frameworks 

containing d4Rs. The aforementioned SBBs contain a hierarchy of information regarding 

the evolution of single metal ions, with anticipated coordination geometries, deemed as 

rigid and directional vertices, via heterochelation, into MOPs that can be used as defined 

high-connected building blocks to yield zeolitic frameworks.   

4.2 Zeolite-like Metal-Organic Frameworks from MNx(CO2)y Molecular Building 

Blocks 

To date, MN4O4, MN4O2,
65, 92

 and MN4
51 MBBs have been observed in metal-

organic zeolite-like materials constructed from imidazole- or pyrimidine-based linkers.  

Consistently, in all cases the TBUs are of the general formula MN4 in which the nitrogen 

atoms direct the topology.  It is conceivable that the points of extension in the tetrahedron 

can be interchanged with atoms, other than nitrogen, in an aim to target nets uncommon 

in metal-organic crystal chemistry.  MN4O2 and MN4O4 MBBs, which correspond to 

MN4 TBUs, have been built from 8- and 6-coordinate metal nodes, respectively, and 

ligands that form 5MR of heterochelation to the metal center through nitrogen and 

carboxylate-oxygen atoms.  Additionally, MN2O4 MBBs, from 6-coordinate metals, 

predictably form MN2O2 TBUs in which two nitrogen atoms (participating in 

heterchelation) and two monodentate oxygen atoms direct the topology.  To facilitate the 

formation of such TBUs, it is desirable to avoid MBBs that solely consist of 

heterochelation and/or monodentate nitrogen coordination.  Therefore, when scheming 

the heterochelating ligand that forms MN2O2 building units, an assymetric ditopic ligand 

with a site appropriate for N-, O-heterchelation and a bridging carboxylate group is 

appropriate.  When the MN2O2 TBUs are intended to be used to construct ZMOFs, the 
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angle through which they are connected will ideally correspond to the optimal T-O-T 

bonding angles exhibited in traditional zeolites, as is 2,4-Pyridinedicarboxylic acid (2,4-

H2PDCA).    

 4.2.1 Experimental 

All chemicals were used as received from Fisher Scientific, Sigma-Aldrich, and TCI 

America chemical companies. Fourier transform infrared (FT-IR) spectra were measured 

using an Avatar 320 FT-IR system. Absorptions are described as follows: very strong 

(vs), strong (s), medium (m), weak (w), shoulder (sh), and broad (br).  X-ray powder 

diffraction (XRPD) data were recorded on a Rigaku RU15 diffractometer at 30kV, 15mA 

for CuKα (λ = 1.5418 Å), with a scan speed of 1°/min and a step size of 0.05° in 2θ. 

Calculated XRPD patterns were produced using PowderCell 2.4 software. Single-crystal 

X-ray diffraction (SCD) data were collected on a Bruker SMART-APEX CCD 

diffractometer using MoKα radiation (λ = 0.71073 Å) operated at 2000 W power (50 kV, 

40 mA). The frames were integrated with SAINT software package74 with a narrow 

frame algorithm. The structure was solved using direct methods and refined by full-

matrix least-squares on |F|2. All crystallographic calculations were conducted with the 

SHELXTL 5.1 program package,75 and performed by Dr. Victor Kravtsov, Dr. Lukasz 

Wojtas, Dr. Derek Beauchamp, Dr. Rosa Walsh or Gregory J. McManus in the 

Department of Chemistry at the University of South Florida. Crystallographic tables are  

included for each compound in Appendix I 

 Olex76 and Topos77 software was used to determine topological representations of 

the obtained MOMs, and the resulting terms compared to those in the literature and the 

RCSR database.50 All total solvent-accessible volumes were determined using 
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PLATON78 software by summing voxels more than 1.2 Å away from the framework.  

Tiling was evaluated using 3dt software.79 

 

Synthesis of {In(2,4-PDC)2]}n, ME654: A solution of In(ac)3H2O (0.0435 mmol) and 

2,4-PDC (0.087 mmol) in 1 mL of DEF, 0.5mL of ethanol, and 0.1mL of 1M 

tetrabutylammonium sulfate in water  was prepared. The solution was then heated to 

85°C for 12 h, pure colorless crystals were obtained. FT-IR (4000-600 cm-1): 3386(br), 

3109(br), 2350(m), 1653(s), 1600(m), 1485(m), 1431(s), 1380(vs), 1248(s), 1100(s), 

1057(s), 785(s), 754(s), 727(vs), 657(s), 614(s).  

 

Synthesis of {In(2,4-PDC)2]}n, ME658: A solution of In(ac)3H2O (0.0435 mmol) and 

2,4-PDC (0.087 mmol) in 1 mL of DMA, 0.5mL of ethanol, and 0.1mL 1.6M 

diethylamine in DMF  was prepared. The solution was then heated to 85°C for 12 h, pure 

colorless crystals were obtained. FT-IR (4000-600 cm-1): 3386(br), 3109(br), 2350(m), 

1653(s), 1600(m), 1485(m), 1431(s), 1380(vs), 1248(s), 1100(s), 1057(s), 785(s), 754(s), 

727(vs), 657(s), 614(s).  

 

 4.2.2 Results & Discussion 

Overall, combining the approaches of nitrogen-based and carboxylate-based 

ligands, in the deliberate synthesis of MOFs, into single-metal-ion-based MBBs, which 

exploit heterochelation involving nitrogen and oxygen, is an effective method of 

synthesizing discrete and extended metal-organic assemblies. Thus far, certain MBBs, 

and consequential SBUs, predominate and dictate the formation of certain structures. 

Exploration of advancing this approach to other metal coordination modes, MNx(CO2)y, 
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and discovering common conditions to formulate projected frameworks from specific 

MBBs is currently under development.  Herein, two novel ZMOFs constructed from 2,4-

PDC and Indium, namely ana-ZMOF and sod-ZMOF-1 are presented. 

 

 

 

 

 

 

 
Figure 4.4.  An MN2(CO2)4 molecular building block can be exploited as an MN2O2 tetrahedral building 
unit. 
 

In crystal design, the formation of regular nets is common, and sometimes 

unavoidable.  Furthermore, of zeolite nets, those with higher regularity are reasonable 

targets.  While there are no regular or quasiregular zeolite nets, sodalite and analcime are 

the only two examples of zeolitic nets that are semiregular.  Sodalite and analcime have 

transitivities of 1121 and 1132, respectively.  Both structures consist of one type of vertex 

(vertex transitive) and one type of edge (edge transitive).   Additionally, these nets are the 

only edge transitive zeolite nets.  Such regularity deems sod- and ana- nets as suitable 

targets in crystal chemistry, and due to the tile-transitivity of sod, it is especially 

plausible. 

≡ 

InN2O4 MBB InN2O2 TBU 
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The ana net consists of irregular 3-dimensional channels formed by highly 

distorted 8MRs, and is composed of two types of tiles, one with two hexagonal and three 

 

Figure 4.5. Tiles of ana net are constructured from two hexagons, three octagons (yellow), and two 
quadrangles and two octagons (green). 
 

 

octagonal faces and the other from two tetragonal and two octagonal faces.  In ana-

ZMOF, InN2O2 BUs replace tetrahedral atoms of inorganic analcime, and are linked 

through the doubly deprotonated bridging ligand, 2,4-pyridinedicarboxylate (2,4-PDC), 

which is an expansion of the oxygen bridges of T-O-T in zeolites.  The resulting anionic 

structure has dimensions appropriate for ion-exchange of large organic cations, such as 

acridine yellow (Appendix III). 

   [62.83]                   [42.82]  
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Figure 4.6. 2,4-PDC and indium ions can be used to construct ZMOFs related to ana and sod nets. 

 

In the structure of sod-ZMOF(1) the sodalite net is assembled from highly 

distorted β-cages built from 4MRs and planar and chair-like 6MRs, and the distortions 

allow for the encapsulation of larger molecules than analogues with regular cages.  For  

example, a sod-ZMOF constructed from In3+ and 4,6-pyrimidinedicarboxylate,92 with 

regular cages, has proven capable of exchanging small inorganic cations, however, is 

resistant to the adsorption of larger acridine molecules.  This comparison provides 

evidence that by altering just one atom of a ligand, the atoms/points of extension of the 

building unit can be controlled, and the properties of the resultant material can be 

delicately tuned.   
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     a) 

 

 

    b) 

 

 

 

Figure 4.7. a) optical images of ion-exchange in ana-ZMOF with acridine orange.  b) optical images of 
ion-exchange in sod-ZMOF.  

 

4.3 Zeolite-like Metal-Organic Frameworks Organic Tetrahedral Nodes 

 Metal-organic tetrahedral building units (TBUs) can be connected through 

appropiate angles to faciliate the expansion of the Si/Al nodes and oxide atom (O2-) 

bridges of zeolites and, ultimately lead to non-interpenetrated, enlarged, 

multidimensional pore systems and/or cavities.  Our group, among others, has 

demonstrated that metal-organic TBUs can be designed and exploited in the 

construction of various ZMOFs.65,92  In an effort to extend this innovation to other 

unprecendented ZMOFs, we deliberate the use of purely organic TBUs.  Previously, 

HMTA, containing accessible N-donor atoms in a tetrahedral arrangement, has been 

deemed as an appropriate TBU.  The remaining resulting challenge is to utilize metal 

coordination to bridge the TBUs at an angle analogous to the bonding angle of O2- 

found in zeolites.   

NN N

Acridine orange NH2N NH2

Acridine yellow 

N

Br

9-(methylbromo)-acridine 

NN N
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Organic ligands can be selected to induce directionality in framework design.  For 

instance, hexamethylenetetramine (HMTA) contains nitrogen atoms in a tetrahedral 

arrangement that can be utilized to position coordinated metals at approximate 109.5° 

angles.  Additionally, metals of high coordination can be employed as 2-connected 

linkers while small terminal ligands, such as acetate and water, can complete the sphere 

of coordination.  Exploration of reaction conditions involving such variables can lead to 

the realization of networks, constructed from organic tetrahedral nodes, with tunable 

ionic strength and interesting topologies.  Previously,   hexamethylenetetramine 

(HMTA), containing N-donor atoms in a tetrahedral arrangement, has been deemed as a 

suitable TBU.  The remaining challenge is to utilize metal coordination, as a function of 

auxiliary ligands, to bridge the TBUs at an angle analogous to the bonding angle of O2- 

found in zeolites.   

Cadmium (Cd2+) has previously exhibited the desired bond angle, when 

coordinated by HMTA, to assemble a net with mtn-like topology.93  In this example, 

HMTA ligands coordinate to the axial postions of each cadmium ion and three equatorial 

positions are occupied by water molecules, resulting in a cationic network.  It is feasible 

that replacement of the water molecules with other small, terminal ligands assists in slight 

variations of appropriate N-Cd-N bond angles to achieve an assortment of zeolite-like 

topologies.  Additionally, the charge of the framework can be controlled by varying the 

ionic nature of the selected auxiliary ligands.  Whereas three auxiliary water ligands 

yielded a cationic framework, systematic replacement with anionic ligands can produce 

cationic, neutral or anionic frameworks.  As the ionic nature of the framework can be 

controlled, ionic structure directing agents can be varied to access unprecedented 
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ZMOFs.  Herein, a rare coordination sphere of cadmium is occupied by three equatorial 

acetate ions and two nitrogen atoms in the axial positions, from HMTA ligands, to 

construct three anionic ZMOFs.  The acetate anions simultaneously complete the 

coordination sphere of the cadmium linker, allow the formation of suitable N-Cd-N bond 

angles, and contribute to the ionic nature of the framework, which may be exploited in 

ZMOF design.  Reaction conditions for the synthesis of anionic mep-ZMOF, using 

HMTA as an organic TBU and a cadmium ion as an angular linker, was fortuitously 

discovered.  Consequently, it was determined that varying cationic structure directing 

agents (SDAs), under similar conditions, allowed consistant access to appropriate N-Cd-

N angles, and ultimately unprecedented ZMOFs related to sod and mtn topologies.   

 

 

 

 

 

 

 

Figure 4.8. The nitrogen atoms (blue) of hexamethylenetetramine, situated in a tetrahedral arrangement, 
can coordinate to metal ions to act as a tetrahedral building unit, and, when connected through appropriate 
angles (as shown in green), can facilitate the formation of zeolite-like metal-organic frameworks.  

 

 4.1.1 Experimental 

All chemicals were used as received from Fisher Scientific, Sigma-Aldrich, and TCI 

America chemical companies. Fourier transform infrared (FT-IR) spectra were measured 

using an Avatar 320 FT-IR system. Absorptions are described as follows: very strong 

≡ 

≡ 
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(vs), strong (s), medium (m), weak (w), shoulder (sh), and broad (br).  X-ray powder 

diffraction (XRPD) data were recorded on a Rigaku RU15 diffractometer at 30kV, 15mA 

for CuKα (λ = 1.5418 Å), with a scan speed of 1°/min and a step size of 0.05° in 2θ. 

Calculated XRPD patterns were produced using PowderCell 2.4 software. Single-crystal 

X-ray diffraction (SCD) data were collected on a Bruker SMART-APEX CCD 

diffractometer using MoKα radiation (λ = 0.71073 Å) operated at 2000 W power (50 kV, 

40 mA). The frames were integrated with SAINT software package74 with a narrow 

frame algorithm. The structure was solved using direct methods and refined by full-

matrix least-squares on |F|2. All crystallographic calculations were conducted with the 

SHELXTL 5.1 program package,75 and performed by Dr. Victor Kravtsov, Dr. Lukasz 

Wojtas, Dr. Derek Beauchamp, Dr. Rosa Walsh or Gregory J. McManus in the 

Department of Chemistry at the University of South Florida. Crystallographic tables are  

included for each compound in Appendix I 

 Olex76 and Topos77 software was used to determine topological representations of 

the obtained MOMs, and the resulting terms compared to those in the literature and the 

RCSR database.50 All total solvent-accessible volumes were determined using 

PLATON78 software by summing voxels more than 1.2 Å away from the framework.  

Tiling was evaluated using 3dt software.79 

 

Synthesis of mep-ZMOF: Cd(Ac)2
•H2O (0.104g, 0.3915mmol), hexamethylenetetramine 

(0.100 g, 0.713mmol), DEF (2.25mL), ethanol (0.50mL) were combined in a 20-mL vial, 

which was sealed and heated to 85˚C for 12h, 105˚C for 23h and then cooled to room 

temperature.  Colorless polyhedral crystals were collected and air dried, yielding 0.0657g  
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FT-IR: 3308.92 (br), 2970.32 (m), 1657.01 (w), 1558.4 (s), 1417.75 (s), 1380.15 (s), 

1232.11 (s), 1161.98 (w), 1130.1 (w), 1049.8 (w), 1001.39 (vs), 951.89 (m), 815.3 (s), 

671.29 (s), 620.41 (s)  

 

Synthesis of sod-ZMOF(2): Cd(Ac)2
●H2O (0.052g, 0.19575mmol), 

hexamethylenetetramine (0.050 g, 0.357mmol), DMA (1.125mL), ethanol (0.125mL), 

water (0.25mL) tetramethylammonium nitrate (0.05mL, 1M in H2O) were combined in a 

20-mL vial, which was sealed and heated to115˚C for 23h and cooled to room 

temperature.  Colorless polyhedral crystals were collected and air dried, yielding 

0.0798g.  FT-IR (4000–600 cm-2): 3247.2 (br), 1562.73 (m), 1491.43 (w), 1417.59 (m), 

1369.87 (w), 1345.83 (m), 1233.85 (m), 1222.91 (w), 1049.1 (w), 1019.47 (m), 1000.59 

(s), 947.3 (w), 833.17 (w), 811.06 (m), 799.99 (m), 778.81 (w), 706.98 (m), 670.69 (vs), 

681.12 (s), 636.35 (w), 622.93 (m) 

 

Synthesis of mtn-ZMOF: Cd(Ac)2
•H2O (0.052g, 0.19575mmol), 

hexamethylenetetramine (0.050 g, 0.357mmol), water (0.25mL), DEF (1.125mL), H2O 

(0.25mL), sodium acetylacetonate (0.25mL, 0.174M in ethanol) tetrabutylammonium 

bromide (0.05mL, 1M in H2O) were combined in a 20-mL vial, which was sealed and 

heated to105˚C for 23h and cooled to room temperature.  Colorless polyhedral crystals 

were collected and air dried, yielding 0.0295g. FT-IR (4000–600 cm-2): 3420.34 (br), 

2968.2 (w), 2872.15 (w), 1660.03 (w), 1559.44 (m), 1418.31 (m), 1232.29 (m), 1111.4 

(w), 1050.78 (w), 1001.01 (vs), 941.16 (w), 812.16 (m), 787.19 (w), 670.4 (s), 617.31 (s) 
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 4.1.2 Results & Discussion 

 Reaction of cadmium acetate and HMTA in the presence of N,N’-diethylformamide 

and ethanol results in the formation of a mixture of mep-ZMOF and sod-ZMOF 

crystalline phases.  Cadmium and diethylammonium cations are available for charge 

balance, and modification of such cation availability can direct the synthesis of 

different structures.  Reaction of cadmium acetate and HMTA in an N,N’-

dimethylacetamide/ethanol/water solution containing tetramethylammonium nitrate 

generates a pure crystalline phase of sod-ZMOF, in which cadmium and 

tetramethylammonium act to balance the charge of the framework.  Additionally, 

reaction of cadmium acetate and HMTA in the presence of N,N’-diethylformamide, 

water, sodium acetylacetonate and tetrabutylammonium bromide produces a pure 

crystalline phase of mtn-ZMOF via the influence of sodium and tetrabutylammonium 

ions.   This work demonstrates that, under specific conditions, varying SDAs can 

result in different ZMOFs built from HMTA-based TBUs connected through Cd-

based linkers.    

 The mep topology, named for the natural silica-based mineral melanophlogite, 

is composed of  pentagondodecahedral ([512]) and tetrakaidecahedral ([51262]) cages.  

The [51262] cages, are fused though a common 6MR.  The fusing 6MR and 

accompanying 12 5MRs constitute 12-ring double cups, 30 tetrahedral units, 

characteristic of the clathrasil family. In this anionic mep-ZMOF, HMTA coordinates 

to four Cd ions with N-Cd bond distances of 2.38-2.57 Å and N-Cd-N bond angles of 

173.543-180.0°.  It contains a [512] cage with a van der Waals surface that allows the 

accomodation of a sphere with an approximate diameter of 8Å.  The [512] cage is built 
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from 20 HMTA nodes and 30 Cd2+ linkers and has a -30 charge.  The [51262] cage is 

large enough to fit a sphere, within the van der Waals surface, approximately 8.4Å in 

diameter.  This cage consists of 24 HMTA-based TBUs and 36 Cd2+ linkers, each 

coordinated by 3 acetate anions, to yield a charge of -36.  Cadmium linkers are  

 

Figure 4.9. mep-ZMOF is constructed from [512] (yellow) and [51262] (green) cages. 

 

coordinated by bidentate acetate ions, while, in some cases, one acetate ion exhibits 

monodentate coordination and the remaining oxygen atom assists to hold two 

cadmium ions within 5MRs.  The distance from the centroid of one TBU to the next is 

approximately 8.1 Å, while the distance between tetrahedral atoms in the inorganic 

mep zeolite is approximately 3.1Å, demonstrating an expansion of approximately 2.6 

times.  The mep net has a transitivity of 3432, or 3,4,3, and 2 types of vertices, edges, 

faces, and tiles, respectively.  The three types of vertices correspond to coordination 

sequences: v1=4, 12, 26, 44, 64, 98, 144, 172, 222, 272; v2=4, 12, 24, 42, 67, 95, 133, 
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177, 219, 277; v3=4, 12, 25, 42, 69, 100, 129, 176, 229, 277.  

 The mtn net, also part of the clathrasil family, consists of  [51264] and [512] 

tiles, with the 12-ring double cup arrangement.  The mtn and mep nets both have 

transisitivties of 3432, three types of nodes, 4 kinds of edges, three faces, and two 

tiles. The three types of vertices correspond to the following coordination sequences: 

v1=4, 12, 24, 36, 64, 112, 132, 156, 222, 264; v2=4, 12, 24, 39, 66, 103, 130, 168, 

216, 274; v3=4, 12, 25, 43, 68, 95, 133, 177, 223, 274.  The mtn-ZMOF is constructed 

from HMTA tetrahedral nodes and cadmium linkers, coordinated by three bidentate 

acetate ions, and each 5MR contains three sodium ions.  The [51264] cage is composed 

of 28 HMTA nodes and 24 Cd linkers.  N-Cd bond distances are within the range of 

2.36378 and 2.45615Å and N-Cd-N bond angles of 173.815-180.0°. 

 

 

 

 
Figure 4.10. mtn-ZMOF  a) ball and stick representation (guests and acetate ions are omitted for 
clarity), b) view of net, and c) [512] (yellow) and [51264] (red) tiles.  d) Ball and stick representation of 
sod-ZMOF, e) view of net and f) packing of [46.68] tiles. 
 

 The sod-ZMOF reported herein is constructred from HMTA linked through 

cadmium ions with N-Cd bond distances of 2.43540Å and N-Cd-N bond angles of 

160.202˚.  The distance between the centroid of one TBU to the next is 7.738Å, while 

the tetrahedral nodes in the aluminosilicate zeolite are about 3.143Å apart, thus this 

sod-ZMOF is over twice as large as the purely inorganic analogue.  The framework 

consists of β-cages with adequate space to encapsulate a sphere of ~10Å in diameter.  

Each β-cage is constructed from 24 HMTA nodes and 36 cadmium 
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linkers, resulting in a -36 charge that is balanced by Cd2+ ions in the 4MR windows 

and six tetramethylammonium ions in each cage.  As in mep-ZMOF, acetate ions 

exhibit bidentate coordinate to the cadmium linkers, while some display monodentate 

coordination and the remaining oxygen atom assists in stabilizing Cd2+ ion guests.  

 

Figure 4.11. sod-ZMOF, constructed from cadmium and HMTA.   
 
This work demonstrates that cadmium ions can be coordinated by three acetate ions 

and two axial nitrogen atoms to link HMTA-based TBUs, resulting in anionic 

ZMOFs. Various zeolite-like topologies can be accessed by altering the types of 

cations that are present as SDAs in these metal-organic materials.  

  

4.4 Conclusions 

Various organic ligands and single-metal ions can be used for the design of 

ZMOFs, however knowledge and access to appropriate synthetic conditions is limited.  

Three approaches utilizing (1) metal-organic cube-based SBBs, (2) single-metal ion-

based MN2(CO2)4 MBBs, and (3) organic TBUs represent advancements in the design 

and synthesis of ZMOFs.  Experimentation with appropriate metal-organic monomers 

resulted in intentional formation of building blocks and, ultimately, established reaction 

conditions for numerous zeolite-like networks.   
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Chapter 5: Conclusions and Future Outlook 

 As approaches for MOM design converge with building block ideals, the ability 

to ultimately impose utilitarian design becomes feasible for construction of materials for 

intended functions.  The research presented in this thesis is primarily concerned with 

advancing strategies for the construction of pre-designed metal-organic materials, and in 

summary, the following notions have been demonstrated.   

 Single-metal ion-based molecular building blocks, MNx(CO2)y, can indeed be 

successfully employed in the rational construction of 0-, 1-, 2-, and 3-dimensional 

MOMs.  N-,O-Heterochelating ligands can unify aspects of nitrogen based ligands and 

carboxylate based ligands to induce rigidity and directionality.  Differences in 

orientations of chelation and coordination in MBBs, which can be influenced by reaction 

conditions, have structure directing effects on networks.  The metal sources and/or 

ligands in MBBs can be changed to create isoreticular nets.  MN2O2 tetrahedral BUs can 

be derived from MN2(CO2)4 MBBs and employed in the synthesis of ZMOFs, which are 

highly valuable targets.  Additionally, metal-organic cubes, assembled from MN3(CO2)3 

MBBs, can be used as SBBs in the construction of ZMOFs.  Suitable zeolite targets in 

metal-organic crystal chemistry, for such SBBs, can be revealed by relationships with 

augmented edge transitive 8-connected nets.   

 In addition, a rare coordination of cadmium has been accessed by coordination of 

organic-based tetrahedral nodes to create MN4(CO2)3 based MBBs for the directed  
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Figure 5.1.  Summary of structured from MNx(CO2)y Molecular Building Blocks. 

 

synthesis of ZMOFs.  Anionic auxiliary ligands, specifically acetate, can be exploited for 

the synthesis of charged networks, and ultimately charge-balancing structure directing 

agents can be used to access various ZMOFs. 

 This work demonstrates that highly valuable target nets can be reconstructed with 

metal-organic MBBs on expanded scales, crystallized as pure phases, and employed in 

ion-exchange applications.  Ion-exchange capabilities manifest opportunities to tune 

properties of crystalline materials for specific applications.  As construction of designed 

materials is advanced, with approaches based on building blocks, materials with tunable 

cavities and channel sizes can be obtained.  Ideally reaction conditions can be established 

and used in future syntheses of specifically intended building blocks.  Additionally, linker 

angularity can be adjusted to compensate for the geometrical attributes of commonly 

formed BUs.  Such MOMs can be used as platforms for innumerable guests, resulting in 

materials with tunable properties.   
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 With the continuation of developments in design and synthesis correlations, 

MOMs offer a means to tailor-make functional solid state materials for specific 

applications.  Such materials are highly beneficial to areas including, but not limited to, 

transportation, environmental technologies, space exploration, microelectronics, 

catalysis, chiral separations, and biomedical and pharmaceutical applications.  As aspects 

of design mature, correlations between specific MOMs and desired applications are 

becoming stronger. 
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Appendix I: Crystallography Tables 

Compound ME086 ME089 ME096 

Chemical Formula Cd(C4N2O2H3)2  Cd2(C5N2O4H)2 
(C2N2H4)2.5 
C3NOH7 

Cd2(C4N2O2H3)2 
(H2O)2(C3NOH7)2 

Formula Weight 334.58 768.26 867.38 
Temperature, K 100 100 100 
Crystal System Orthorhombic  Monoclinic Monoclinic 
Space Group Fdd2 P21/n C2/c 
a, Å 11.2859(18)     11.5625(8) 24.483(5) 
b, Å 19.388(3)   15.0527(10) 10.929(2) 
c, Å  8.3726(14) 17.0502(11) 12.810(3) 
α, deg 90 90 90 
β, deg 90 95.9080(10) 113.619(4) 
γ, deg 90 90 90 
V, Å3 1832.0(5) 2951.8(3) 3140.5(11)  
Z 8 4 4 
ρ, g·cm-3 2.426 1.729 1.834 
µ, mm-1 2.395 1.504 1.433 
F(000) 1296 1504 1728 
Crystal Size, mm 0.09 x  0.11 x  0.12 0.1x0.1x0.1 0.1x0.1x0.1 
θ range for data 
collection, deg 

3.2 to  24.9 2.2 to 28.4 3.2 to 28.3 

Limiting indices -7<=h<=13                  
-22<=k<=22                
-9<=l<= 9 

-14<=h<=15        
-19<=k<=16        
-22<=l<= 15 

-20<=h<=30           
-12<=k<=14           
-16<=l<= 13 

Reflections collected 1788 18457 7391 
Unique Reflections 775 6833 3454 
R(int) 0.033 0.06 0.056 
Goodness-of-fit on F2 1.06 1.04 1.01 
Final R indices R1=0.0213, 

wR2=0.0499    
R1=0.0603, 
wR2=0.1525 

R1=0.0522, 
wR2=0.1105 

Max. and Min. Resd. 
Dens., e·Ǻ-3 

 0.36 and -0.39 2.55 and -1.17 1.43 and -1.22 
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Appendix I (continued) 
 
Compound ME184 ME207 ME299 
Chemical Formula Cd(C6N2O2H7)2  (Cd(C7O4NH3)2)3 Cd12(C5N2O4)18  
Formula Weight 390.6 1327.9 4086.1 
Temperature, K 298 100 298 
Crystal System Orthorhombic Trigonal Trigonal 
Space Group P212121 R-3c  R-3 
a, Å 11.549(4) 16.178(3)  17.1507 
b, Å 11.666(3) 16.178(3)  17.1507 
c, Å 11.762(4) 52.30(2) 42.0808 
α, deg 90 90 90 
β, deg 90 90 90 
γ, deg 90 120 120 
V, Å3 1584.7(9) 11855(5) 10719.59 
Z 4 6 2 
ρ, g·cm-3 1.638 1.501 1.379 
µ, mm-1 1.397 0.879 1.248 
F(000) 776 5261 4254 
Crystal Size, mm 0.07x0.08x0.1 0.1x0.1x0.02 0.1x0.1x0.1 
θ range for data 
collection, deg 

2.5 to 25.1 1.6 to 22.0  

Limiting indices -13<=h<=12           
-12<=k<=12           
-14<=l<= 10 

-16<=h<=16             
-16<=k<=17             
-55<=l<= 34 

 

Reflections collected 6550 12031  
Unique Reflections 2704 1621  
R(int) 0.106 0.166  
Goodness-of-fit on F2 0.84 1.02  
Final R indices R1=0.0558, 

wR2=0.1193 
R1=0.0577, 
wR2=0.1107 

 

Max. and Min. Resd. 
Dens., e·Ǻ-3 

0.6 and -0.59 0.52 and -0.44  
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Appendix I (continued) 
 
Compound ME511 ME694 

Chemical Formula Cd(C5N2O4H2)(C2N2H4) In3(C7O4NH3)6 
(C4N2H12)O12 

Formula Weight 325.58 1664.12 
Temperature, K 100(2) 293(2) 
Crystal System Tetragonal Hexagonal 
Space Group I41/acd R-3c 
a, Å 12.5699(12) 26.64(3) 
b, Å 12.5699(12) 26.64(3) 
c, Å 26.676(5) 40.83(6) 
α, deg 90 90 
β, deg 90 90 
γ, deg 90 120 
V, Å3 4214.9(9) 25094(52) 
Z 16 12 
ρ, g·cm-3 2.052 1.321 
µ, mm-1 2.078 0.9 
F(000) 2544 9893 
Crystal Size, mm 0.15x0.1x0.1 0.10 x 0.10 x 0.10 
θ range for data 
collection, deg 

1.8 to 25.2 2.14 to 15.86 

Limiting indices -15<=h<=7                       
-15<=k<=15                     
-32<=l<=31 

-11<=h<=20                   
-20<=k<=1                     
-31<=l<=12 

Reflections collected 9724 3269 
Unique Reflections 968 1316 
R(int) 0.023 0.1538 
Goodness-of-fit on F2 1.494 1.148 
Final R indices R1 = 0.0596,  

wR2 = 0.1436 
R1 = 0.1283,  
wR2 = 0.3284 

Max. and Min. Resd. 
Dens., e·Ǻ-3 

0.970 and -1.164 0.872 and -0.726  
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Appendix I (continued) 
 
Compound JB9545 ME688 

Chemical Formula Cd0.75(C5N2O4H) 
(C3NOH7)0.75 

Cd0.6(C5N2O4H)(C4N2) 
 

Formula Weight 300.4 298.71 
Temperature, K 100 100 
Crystal System Monoclinic Trigonal 
Space Group P21/c R-3m 
a, Å 14.725(6) 37.907(18) 
b, Å 14.664(5) 37.907(18) 
c, Å 23.550(9) 31.72 
α, deg 90 90 
β, deg 106.678(6) 90 
γ, deg 90 120 
V, Å3 4871(3) 39473(36) 
Z 16 90 
ρ, g·cm-3 1.639 1.131 
µ, mm-1 1.379 0.780 
F(000) 2348 13038 
Crystal Size, mm 0.09x0.12x0.15 0.06x0.06x0.06 
θ range for data 
collection, deg 

1.8 to 25.14 2.21 to 21.5 

Limiting indices -17 to 17                           
-9 to 17                                  
-27 to 26 

-20 to 37                                
-38 to 38                                
-24 to 32 

Reflections collected 24232 23271 
Unique Reflections 8611 5329 
R(int) 0.15 0.175 
 Goodness-of-fit on F2 
  

S=1.011 S=1.102 

Final R indices 
 

R1=0.1100, wR2=0.2659 R1=0.1310, wR2=0.3159 

Max. and Min. Resd. 
Dens., e·Ǻ-3 

1.642 and -1.145 1.141 and -1.658 
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Appendix I (continued) 
 
Compound ana-ZMOF (ME654) sod-ZMOF(2) (ME658) 

Chemical Formula In0.5(C7NO4H3)  In0.5(C7NO4H3)(C)(O) 

Formula Weight 327.68 262.14 
Temperature, K 187 293(2) 
Crystal System Cubic Hexagonal 
Space Group Ia-3d R-3 
a, Å 37.469(16) 35.305(5) 
b, Å 37.469(16) 35.305(5) 
c, Å 37.469(16) 35.305(5) 
α, deg 90 90 
β, deg 90 90 
γ, deg 90 120 
V, Å3 52604(39) 17300 
Z 96 36 
ρ, g·cm-3 0.978 0.906 
µ, mm-1 0.577 0.647 
F(000) 15462 4619 
Crystal Size, mm 0.1x0.1x0.1 0.1x0.1x0.1 
θ range for data 
collection, deg 

1.53 to 17.08 1.99 to 20.82 

Limiting indices -18 to 21                        
 -7 to 32                         
 -13 to 32 

-75 to 35                             
-35 to 32                             
-15 to 15 

Reflections collected 9218 19560 
Unique Reflections 1324 4021 
R(int) 0.1391 0.1043 
Goodness-of-fit on F2 
  

1.240 1.161 

Final R indices R1=0.1186, 
wR2=0.3150 

R1=0.1415,  
wR2=0.3438 

Max. and Min. Resd. 
Dens., e·Ǻ-3 

0.483 and -0.538 1.049 and -1.124 
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Appendix I (continued) 
 
Compound mep-ZMOF 

(ME474) 
sod-ZMOF 
(ME312) 

lta-ZMOF (ME500) 

Chemical 
Formula 

CdC4.14N4O0.53H8 Cd2.50 C21.04 N5 
O17.19 H43.084 

Cd4(C5O4N2H2)4 
(C5O4N2H)(C4N2H12)0.5 
Na4(C2H5OH)1.25 
(H2O)9.25 

Formula Weight 234.52 917.77 943.69 
Temperature, K 163(2) 100(2)  100(2) 
Crystal System Cubic Cubic Trigonal 
Space Group Pm-3n Im-3m R-3m 
a, Å 34.0147 21.8867(14) 40.637(5) 
b, Å 34.0147 21.8867(14) 40.637(5) 
c, Å 34.0147 21.8867(14) 39.063(7) 
α, deg 90 90 90 
β, deg 90 90 90 
γ, deg 90 90 120 
V, Å3 39355.01 10484.3(12) 55865(13) 
Z 188 12 36 
ρ, g·cm-3 1.860 1.744 1.01 
µ, mm-1 2.545 1.588 0.751 
F(000) 21242 5491 16561 
Crystal Size, 
mm 

0.10 x 0.10 x 0.10 0.10 x 0.10 x 0.10 0.10 x 0.10 x 0.10 

θ range for data 
collection, deg 

2.54 to 19.19 2.28 to 23.23 1.74 to 20.05 

Limiting indices -29<=h<=28, 
-11<=k<=31, 
-29<=l<=31 

-23<=h<=24            
-18<=k<=24            
-24<=l<=16 

-39<=h<=36                   
-37<=k<=37                    
-11<=l<=37 

Reflections 
collected 

46794 19464 27467 

Unique 
Reflections 

2681 776 5997 

R(int) 0.1163 0.0658 0.0955 
Goodness-of-fit 
on F2 
  

0.963 1.101 S=1.01 

Final R indices R1=0.1334,  
wR2=0.2845 

R1=0.0501,  
wR2 = 0.1439 

R1 = 0.0973,  
wR2 = 0.2266 

Max. and Min. 
Resd. Dens., 
e·Ǻ-3 

0.956 and -0.946 0.602 and -0.758 0.643 and -0.607 
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Appendix II: Thermal Gravimetric Analysis 
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Appendix II (continued) 
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Appendix III: UV-Visible Spectroscopy 
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Appendix III (continued) 
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