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Estimation of Bus Arrival Times
Using APC Data

Jayakrishna Patnaik, Steven Chien, and Athanassios Bladikas
New Jersey Institute of Technology

AbstractAbstractAbstractAbstractAbstract

Bus transit operations are influenced by stochastic variations in a number of factors
(e.g., traffic congestion, ridership, intersection delays, and weather conditions) that
can force buses to deviate from their predetermined schedule and headway, resulting
in deterioration of service and the lengthening of passenger waiting times for buses.
Providing passengers with accurate bus arrival information through Advanced Trav-
eler Information Systems can assist passengers’ decision-making (e.g., postpone de-
parture time from home) and reduce average waiting time. This article develops a
set of regression models that estimate arrival times for buses traveling between two
points along a route. The data applied for developing the proposed model were
collected by Automatic Passenger Counters installed on buses operated by a transit
agency in the northeast region of the United States. The results obtained are promis-
ing, and indicate that the developed models could be used to estimate bus arrival
times under various conditions.

Introduction
Public transportation planners and operators face increasing pressures to stimu-
late patronage by providing efficient and user-friendly service. Within the context
of Intelligent Transportation Systems (ITS), Advanced Public Transportation Sys-
tems (APTS) and Advanced Traveler Information Systems (ATIS) are designed to
collect, process, and disseminate real-time information to transit users via emerg-
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ing navigation and communication technologies (Federal Transit Administration
1998). One of the key elements and requirements of APTS/ATIS is the ability to
estimate transit vehicle arrival and/or departure times. With quickly expanding
APTS-related technologies (e.g., Global Position Systems [GPS], Automatic Ve-
hicle Location Systems [AVLS] and Automatic Passenger Counting [APC] sys-
tems), ATIS could provide timely vehicle arrival and/or departure information to
en-route, wayside, and pretrip passengers for managing their journeys (Kalaputapu
and Demetsky 1995; Abdelfattah and Khan 1998; Chien and Ding 1999; Dailey,
Maclean, Cathey, and Wall 2001; Lin and Padmanabhan 2002).

To estimate vehicle arrival times, dynamic models may be developed using accu-
rate data collected by new technologies (e.g., AVLS and APC). Since bus travel
times between stops depend on a number of factors (e.g., geometric conditions,
route length, number of intermediate stops and intersections, turning move-
ments, incidents, etc.), stochastic traffic conditions along the route and ridership
variation at stops further increase uncertainties. Thus, the goal of this study is the
application of quantitative and qualitative data to develop creditable models for
estimating reliable bus arrival times.

In this study, bus arrival time estimation models are developed on the basis of data
collected by APC units installed in buses. One should be surprised if a new tech-
nology works exactly as intended and generates accurate data immediately after its
deployment. APC systems should be no exception. Therefore, the purpose of this
article is not only to develop models for estimating bus arrival times, but also to
explore problems that could be encountered while processing data collected by
the APC units.

Literature Review
Bus arrivals at stops in urban networks are difficult to estimate because travel
times on links, dwell times at stops, and delays at intersections fluctuate spatially
and temporally. The joint impact of these fluctuations may cause schedule and
headway deviations as a bus moves farther from the starting terminal, thereby
lengthening the average waiting time for transit users and consequently degrad-
ing the quality of service. A sound model, which could accurately estimate vehicle
arrival times, would be capable of mitigating such impact to a large extent. How-
ever, developing such a model while considering the effects of time and space,
varying traffic, ridership, and weather conditions is a challenging task.
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AVLS, smart pager, and ATIS devices used by transit operators can provide useful
information. However, these devices fall short when it comes to estimating the
travel times between any two downstream stops and the arrival times at each
downstream stop from the point of real-time observation. An arrival time estima-
tion model at every downstream stop can be developed by establishing stop-to-
stop travel times as a function of several significant variables (e.g., distance, num-
ber of intermediate stops, total intermediate bus halting time, and time of day) to
supplement the services offered by ATIS devices (Abdelfattah and Khan 1998).

A variety of prediction models developed in previous studies were reviewed and
they can be classified into univariate and multivariate forecasting models (Chien,
Ding, and Wei 2002). Univariate forecasting models are designed to predict a
dependent variable by describing the intrinsic relationship with its historical data
mathematically. The commonly used univariate forecasting models include proba-
bilistic estimation and time series models (Okutani and Stephanedes 1984;
Stephanedes, Kwon, and Michalopoulos 1990; Delurgio 1998).

These methods usually have a short time lag while predicting in real-time. The
accuracy of time series models highly relies on the similarity between real-time and
historical traffic patterns. Variation of the historical average could cause significant
inaccuracy in prediction results (Smith and Demesky 1995). Unlike univariate
models, multivariate models can predict and explain a dependent variable on the
basis of a mathematical function of a number of independent variables. The com-
monly-used multivariate models are regression models and state-space Kalman
filtering models (Okutani and Stephanedes 1984).

Historically, regression models (both linear and nonlinear) have been popular
because they are relatively easy to use, well established, comparable with other
available procedures, and well suited for parameter estimation problems.
Abdelfattah and Khan (1998) developed linear and nonlinear regression models
with simulation data to predict bus delays and the simultaneous influence of
various factors affecting delay. They obtained relatively promising results by using
a microsimulation approach.

In this study, regression models were developed using data collected by APC units
installed in buses to estimate vehicle arrival times at all downstream stops. These
models are developed using path-based data (e.g., travel time between two stops
along the route), and the travel times are defined as a function of ridership and
other external independent factors. Nonetheless, regression is not the only pos-
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sible estimation approach and other methods, such as artificial neural networks,
have been explored (Chien, Ding, and Wei 2002).

Objective and Scope
The primary objective of this study is to develop multivariate linear regression
models for estimating bus arrival times at major stops of a route in an urban
network. The study examines the methodology for developing bus arrival time
estimating models; the processing, analyzing, and refining of collected data; and
the behavior and impact of the independent variables. The scope of this study
encompasses model development and validation; analysis of variance and covari-
ance and colinearity matrices of dependent and independent variables; and sug-
gestions for future research on APC implementation that can benefit users and
operators.

Data Collection
Previous studies (Abdelfattah and Khan 1998; Chien, Ding, and Wei 2002) indi-
cated that bus travel times might be affected by a number of factors such as route
length, ridership (which, in turn, depends on population density and major trip
generators), the number of stops and intersections, and the geometry of the
route. To develop a meaningful model, data collected from the study route should
have substantial variability in the aforementioned factors.

In this study, data was collected from APC units installed on buses operated on a
30-mile (48 km) urban bus route by a transit agency in the northeast United
States. Various data relating to trip information can be captured and recorded as
the bus heads out for a trip until it reaches the final destination. After the bus
reaches the garage/terminal, a centralized computer is engaged to transfer the trip
data recorded by the APC to the transit agency’s data center. Service along the
studied route is provided by five different patterns per each direction (e.g., in-
bound and outbound) over different time periods. Patterns differ in terms of
where the route originates/terminates, whether or not the bus visits specific loca-
tions, and the time the bus commences the trip at the origin. Because of data
availability and sufficiency, only data collected from service patterns A and B were
used for developing bus travel time estimation models. There are 105 intended
stops in the outbound direction for each pattern. Pattern A crosses 134 intersec-
tions (89 of which are signalized) and has 24 right and 23 left turns. Twelve impor-
tant stops (known as time points) have been chosen for the analysis. These time
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points serve significant trip generators and are listed on the timetables distributed
by the transit agency.

The study route operates 24 hours a day. Buses operating on different patterns
may travel different portions of the route. The 12 time points are at identical
physical locations. The scheduled run time for the route ranges from 92 to 119
minutes for the outbound trips and 78 to 113 minutes for the inbound trips. This
study was based on data recorded from January through June 2002. The data
contained a total of 311 trips (including 162 outbound and 149 inbound trips)
and most of the data were collected during weekday operations (including 108
outbound and 96 inbound trips). In general, each trip serves more than 60 in-
tended stops and 100 to 300 passengers. Data collected from outbound weekday
trips were used to develop the proposed models for estimating bus arrival times.
Table 1 illustrates the type of data collected from the APC system.

Table 1. Variables Description of APC Data
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Data Preparation for Model Development
As mentioned previously, arrival times may be influenced by traffic conditions,
ridership, number of intermediate stops, and weather condition, which, in turn,
may be different depending on time of day, day of the week, and pattern ID. If one
is to estimate travel times with regression models, sufficient observations (samples)
should be available for developing creditable models to produce meaningful re-
sults. For example, if the 108 outbound trips were grouped by different days, time
periods, and pattern IDs, the sample size in each group would not be sufficient.
Furthermore, although the actual arrival time of a bus at each time point is needed,
a bus may skip a stop due to the lack of demand in some time periods. Thus, the
size of data in each group is further limited.

An attempt was made to include as many data as possible in the analysis, as will be
described subsequently. If a door open time was available at a time point, this was
the arrival time used in the analysis for that time point. The distance between each
time point and the origin is assumed as fixed with respect to each pattern ID. This
data was provided by the transit agency separately. The original data were further
refined by generating interstop travel times, actual number of stops a bus made
and the total dwell time, and number of alighting and boarding passengers be-
tween two consecutive time points where the bus actually halted during every
single trip. Based on the departure time at the first time point, trips can be grouped
by time period based on their dispatching time, as indicated in Table 2, where the
classification and definition of the time periods and their break points were pro-
vided by the transit agency.

Table 2. Time Periods Defined by APC Data Provider
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Buses departing from the first time point during different time periods may expe-
rience varying traffic congestion and ridership along the route and therefore devi-
ate from their schedule. For example, during the midday, people are likely to use
buses to do shopping or errands; thus, the buses may serve more stops. Also,
most schools dismiss in the early afternoon, generating student ridership and
school bus traffic, causing traffic congestion. On the other hand, early morning
and late night trips are likely to experience the least traffic congestion. These facts
signify that time period is a significant factor associated with the estimation of bus
travel times.

Whenever one uses a large database, it is desirable to screen the data carefully for
erroneous entries and inconsistencies, which can be generated by equipment
malfunction, human errors, software bugs, and other causes. Corrections and
adjustments were made to the problematic data. When a correction was impos-
sible, erroneous records were excluded from the analysis. Data had to be cor-
rected/eliminated primarily because of the following reasons:

1. The Leg Time was reported as zero. In cases where both the door open
time at a subsequent stop and close time at the previous stop were avail-
able, the difference of those times was used to compute the leg time.

2. The Stop Distance was reported as zero. Since distance is fixed between
each time point and the origin, such data were replaced by actual time
point to time point distance.

3. The Open Time was blank. To get this time, the Leg Time was added to the
Close Time of the immediately preceding stop.

4. The Close Time was blank. To get this time, the Dwell Time was added to
the Open Time for that stop.

5. The Stop Sequence was reported as zero. To identify the Stop Sequence (and
hence the time point), the cumulative distance traveled up to that stop
was computed and compared with the known distance to the time points.
If a time point could be identified, the record was kept; otherwise, it was
dropped.

6. The Open Time at a subsequent stop was earlier than the Close Time at a
previous stop. These records were dropped.

7. The Cumulative Distance from the origin to a particular stop was unusually
longer than the average. These records were dropped.
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8. Occasionally, the Stop Distance would be unusually high. These records
were dropped.

9. Occasionally, the bus stops (there is Dwell Time), but there are no on or off
passengers. These records were retained (particularly since Dwell Time is
one of the independent variables used).

10.Occasionally, there is no Dwell Time, but there are boarding and alighting
passengers. The Dwell Time was calculated by taking the difference be-
tween the Door Open Time and Door Close Time at that particular stop. If
door time data were not available, the record was dropped.

11.Trip-Status (START and END) tags would show up somewhere in the middle
of the trip. The tags were moved to their appropriate places.

The data were then augmented with weather information (precipitation, visibility,
and wind speed) obtained from another source.

Selection of Independent Variables
The independent variables selected to develop path-based travel time estimation
models were distance, number of stops, dwell times, boarding and alighting pas-
sengers, and weather descriptors. Furthermore, there was the option of generat-
ing classes of separate models for each factor (i.e., time of day, day of week, pattern
ID) that can affect travel time or include that factor as an independent variable in
an overall regression.

The SAS (Version 8.02) package was used to develop a set of regression models.
The decision on whether a model was reasonable was based on the signs of the
coefficients, values of the R-squares, t-values of the coefficients, correlation factors
among the variables, and analysis of the residuals to indicate that the developed
linear models would be appropriate.

The analysis of the regression results indicated that weather variables were not
among the significant factors for estimating arrival times. This can be attributed to
the fact that the weather data were not sufficiently detailed or that during the
study period the weather variations were not significant enough to have an im-
pact on arrival times. A general linear model was developed for the difference of
actual and scheduled journey time with independent variables (e.g., week day,
time period, weather) that were categorically chosen as class factors. To identify
the statistical insignificance of these variables, Tukey’s test (Montgomery 2001)
was conducted. The p-value generated for day of the week was 0.4712, suggesting
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that trips taking place on different days of the week do not contribute any mea-
surable difference to the travel time. These results also suggest that day of the week
is not significant as an independent variable. In addition, regression models gener-
ated separately for each day of the week did not exhibit differences that could be
attributed to the day. On the contrary, time of day appeared to affect travel time
significantly, having very small p-values (< 0.0001).

Demand-related variables (number of stops, dwell times, boarding and alighting
passengers between time points) should definitely have an impact on bus travel
times. However, it is obvious that they might be highly correlated to each other.
For example, regressions were tested with different combinations of data, such as
(1) stops, dwell time, boarding passengers, and alighting passengers; (2) stops,
dwell times, and the sum of boarding and alighting passengers (i.e. number of
passengers served); and (3) stops and boarding passengers. The correlation factor
between number of passengers served and total dwell time within any pair of time
points was as high as 0.93. Therefore, only one of these two variables was selected.
Bus dwell time was chosen, as opposed to the total number of passengers served,
because the count of total passengers served could be deceptive in the sense that
two distinct activities (i.e., passengers boarding and alighting the bus) could be
taking place simultaneously. Even so, dwell times at previous stops directly impact
vehicle arrival times in further downstream stops. The regression that included all
variables produced R-square values that are smaller than the ones of the model
presented here. Besides distance and time period, number of stops and duration
of dwell times were the most appropriate and significant independent variables
with p-values of 0.15 or less. The proposed model has some independent variables
that are highly correlated (e.g., dwell time and number of stops, distance and
stops) and some of their coefficients do not have a very high statistical significance.

After reviewing the data, it was found that bus travel times exceed scheduled times
during certain periods. The difference is greater if a bus was dispatched during the
time periods of late morning, mid-day and early afternoon than during morning
peak and afternoon peak. This may be due to the prohibition of street parking in
the peak hours and the presence of construction activities during nonpeak peri-
ods. Due to these differences, variables associated with the time of day the trip
took place (as described in Table 2), are treated as independent variables. Addi-
tionally, the pattern IDs show a unique subset of stops along the route. An analysis
of numerous regression results indicated that it was best to develop separate
models for each pattern.
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Given the above, the general model used to estimate bus travel (and therefore
arrival) time for pattern “p” from time point “i” to all downstream time points “j”
is formulated as

Τi,p=b0+b1di,j+b2ti,j+b3si,j+b4Em+b5Mp+b6Lm+b7Md+b8Ea+b9Ap+b10Ev+b11Ln
for    i and i + 1 ≤ j ≤ 12

where:

Ti,p is the estimated travel time from time point “i” to all downstream time
points for bus pattern “p” (e.g., A, or B) (minutes)

di,j is the distance between TPi and TPj (miles)

t
i,j

is the average of cumulative dwell time between TP
i
 and TP

j
 (minutes)

si,j is the average of cumulative number of stops between TPi and TPj

Em is a binary variable that indicates Early Morning

M
p

is a binary variable that indicates Morning Peak

Lm is a binary variable that indicates Late Morning

M
d

is a binary variable that indicates Mid-Day

Ea is a binary variable that indicates Early Afternoon

A
p

is a binary variable that indicates Afternoon Peak

Ev is a binary variable that indicates Evening

Ln is a binary variable that indicates Late Night

b
0

is the intercept of the travel time estimation model

bk are the parameters for variables di,j, ti,j, si,j, Em, Mp, Lm, Md, Ea, Ap, Ev and Ln,
respectively, where k varies from 1 to 11

i is the index of origin time points

j is the index of destination time points

Given a pattern ID, origin time point, and time period, the proposed model can
estimate the required time to travel the path to every downstream time point and
thereby the vehicle arrival time at that time point. All time periods are assigned a
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value of 1 if present (if the trip started in that time period), and 0 otherwise.
Regressions were run both with and without intercepts. All variable notations and
their associated coefficients are the same for both types of regression models. The
only difference is that models having no intercepts would have their b0 values
equal to zero.

Analysis of Results
For each of the two patterns used here, it is possible to develop one path-based
model to estimate bus travel time for all downstream time points from a given
starting time point. It is not possible to present the results of all models in this
article. A sample of path-based models with intercepts for all possible origins of
Pattern A is shown in Table 3. Conversely, Table 4 presents all path-based models
of Table 3 but with no intercepts. Using the same methodology, all potential
models for Pattern B were also developed but are not shown here.

The models were developed using the stepwise regression method. Variables hav-
ing significance level values more than 0.15 were considered to be insignificant
and, hence, were not included in the model. As shown in Tables 3 and 4, the R-
square values obtained ranged from 0.96 to 0.99 for all models that have inter-
cepts and 0.99 for those that do not have any intercepts. The estimation of arrival
times is largely dependent upon the travel distance between a pair of time points.
This distance was provided by the transit agency and is constant for all trips.
Consequently, this results in high R-square values for all models developed. The
overall p-values obtained for all models of both Patterns A and B is <0.0001. The
parameter estimates of morning peak, evening, and late nighttime periods are
zero. This suggests that M

p
, E

v
, and L

n
 do not enter in any of the models.

Since the methodologies used to develop all models are the same, their final results
are similar. Therefore, it is redundant to discuss each one of them individually and
in detail. The plot of actual versus estimated bus travel time to all downstream
stops for Model I from Table 4 is presented in Figure 1 and the scatterplot of the
residuals in Figure 2. Both figures substantiate visually the linear relationship of the
dependent variable with all independent variables that are used in the models. In
addition, normal probability plots of the residuals (not shown here) indicate that
the normality assumption for the distribution of residuals is not violated.

The overall model statistics for the same model (I from Table 4) are shown in the
table. The stepwise selection of variables for this model was in the order of di,j, si,j,
E

a
, A

p
, E

m
, and t

i,j
. Each of these independent variables as they entered into the
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Figure 1. Estimated Versus Actual Travel Time (minutes)

Figure 2. Residual Plot of Estimated Travel Time (minutes)
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model retained their final p-values of <0.0001, 0.0914, <0.0001, 0.0084, 0.0002,
and <0.0001, respectively. The summary statistics for each model are presented in
Tables 3 and 4.

Table 3. Statistics of Bus Travel Time Estimation Models
With Intercepts

Table 4.  Statistics of Bus Travel Time Estimation Models
Without Intercepts
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As shown in Table 3, the travel time estimation model IX has a negative intercept of
-2.86. However, this does not mean that the model will generate negative travel
times. The models have positive values for the parameter estimates of variables
that are reasonably significant contributors of the travel time estimation (e.g., di,j,
ti,j, and si,j), and these variables are always positive. This suggests that the estimated
negative value of an intercept tends to act as an adjustor to the accuracy of a travel
time estimate. Therefore, under no circumstance will a travel time estimation
model generate negative travel times. Negative signs of parameter estimates for
their associated indicator variables representing a specific time period can be ex-
plained similarly.

All models have a negative sign for some parameter estimate (e.g., b4 value for
variable E

m
). This makes sense, because during early morning time periods, out-

bound buses are likely to experience less traffic congestion and, hence, shorter
travel times. On the other hand, all models contained in both Tables 3 and 4
always have positive signs for parameter estimates (e.g., b

8
 and b

9
 for variables E

a

and Ap). These results may be due to the fact that buses operating during the time
periods of early afternoon and afternoon peak are expected to experience more
traffic congestion and are more likely to be stopped at the signalized intersections,
causing longer travel times. However, another interesting observation that can be
made from these models is that some parameter estimates (e.g., b

5
 for variable M

p
)

have either zero or negative values. This suggests that the morning peak time
period either has a small or no contribution to the travel time estimation. This
may be due to the fact that routes of Patterns A and B possibly experience less
traffic congestion during the morning peak time period. This may be because
buses are facing favorable signal timings and prohibition of street parking along
the route during this time period.

A comparison of F-values of both sets of models shows that the ones that have
intercepts generate smaller values than the ones that do not have any intercepts.
This is consistent with the corresponding R-square values, which are a little smaller
for models that have intercepts.

Data splitting or a cross validation approach (Snee 1977) is chosen for developing
and then validating the models of Patterns A and B. These travel time estimation
models were developed with 80 percent of the total available data for a sample size
(N). The remaining 20 percent of the data were used to validate the model. Obser-
vations are chosen randomly for developing and validating the models.
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Figure 3 presents statistical descriptions of the model developed using the ran-
domly-selected 80 percent of the total sample data available. On the other hand,
Figure 4 illustrates how the 20 percent data best fits and validates the model
developed by using the other 80 percent of data. The presented statistics are for
the previously discussed Model I of Table 4. Means of actual versus estimated
travel times for each OD pair were plotted to determine if there are any significant
differences. Both Figures 3 and 4 point out that actual and estimated travel times
are reasonably close to each other since the observations for model development
(sample size N is equal to 313) and for model validation (sample size of 76) were
randomly picked.

Figure 3. Model Development Statistics (80% of data)

As shown in Figure 4, for the OD pair TP
1
-TP

6
, the actual standard deviation is the

highest, having a value of 12.88 minutes, while the corresponding mean actual
travel time is 51.48 minutes. This may be attributed to the fact that the available
sample size that was randomly chosen for this OD pair is very small and equal to 4.
This explains why the root mean squared error for this OD pair is the highest
(9.10) in spite of the fact that its estimated mean travel time is very close to the
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actual mean travel time. The estimated standard deviation for this OD pair is 2.45
minutes.

The OD pair TP1-TP10 has the minimum sample size of 4, as did TP1-TP6. But, its
actual standard deviation is 11.53 minutes while its actual mean travel time is
91.49. Proportionally (as a percent of mean) this standard deviation is approxi-
mately half that of OD pair TP1-TP6. This can explain the smaller mean squared
error value for TP

1
-TP

10
 OD pair in comparison with the TP

1
-TP

6
 OD pair.

The OD pair TP1-TP12 RMSE is 8.24 (the third highest in the sequence), in spite of
its highest sample size of 13, and can be attributed to the fact that the estimated
mean travel time is essentially about 5.36 minutes higher than the actual mean
travel time. The estimated standard deviations of all OD pairs vary from 1.73 to
5.93 minutes, depending upon how close the downstream stops are and also
what their overall sample size is. Sample size varies from 4 through 13 for all OD
pairs as described.

Having mentioned all these facts, it can be concluded that the results of model
validation using the 20 percent data are quite promising, suggesting that the
model can be appropriately used to estimate travel times with a new set of data
later. As indicated in the table and figures, the results generated by the models are

Figure 4. Model Validation Statistics (20% of data)
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very reasonable. The plots of the estimated versus actual values indicate linear
relationships. The coefficients have the anticipated signs and the adjusted R-squares
are almost 0.99 for both Patterns A and B.  Some models are better than others in
terms of their R-squares and the statistical significance of their co-coefficients. In
all cases, the mean travel time increases as we estimate travel times to farther down-
stream stops and so are their standard deviations. This makes sense, due to the
fact that a bus is likely to encounter more and more stochastic traffic situations,
causing delays as it moves farther away from the originating terminal.

 On the basis of all developed models, a database can be generated that would
contain parameter estimates and values of the dependent variables for the pur-
pose of estimating the travel time at downstream stops. The transit operator
would be required to input pattern ID, stop ID, and time period. Based on these
inputs, the travel time estimation engine will select the appropriate model from
the list of models developed to estimate the arrival times at each downstream
stop. This portion of the research will commence after all models are finalized.

Conclusions and Future Research
One of the major stochastic characteristics in transit operations is that vehicle
arrivals tend to deviate from the posted schedule. Poor schedule or headway
adherence is undesirable for both users and operators, since it increases passenger
wait/transfer times, discourages passengers from using the transit system, and
degrades operating efficiency and productivity. This study developed regression
models to predict bus arrival information on the basis of distance traveled, de-
mand characteristics, and time of day. Although the available data were limited,
some interpolations had to be made, and some data had to be corrected, there is
no absolute certainty that some erroneous figures were not included. The initial
results presented here appear to be reasonable and promising.

The methodology used for developing the travel time estimation model with APC
data can be used for adjusting or planning timetables for existing or new transit
routes, respectively. The developed model can be applied with ATIS to calculate
and broadcast bus arrival time information at downstream stops to transit users.
If a dynamic algorithm (e.g., Kalman filter) can be developed and integrated with
the developed model, the accuracy of predicted bus arrival times can be greatly
improved.
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Another obvious comment that can be made as a result of this exercise is that one
might not use indiscriminately data that are generated automatically, particularly
if the system that generates them is complex and new. This is not surprising. It
almost always happens, and the data quality and consistency improves rapidly
with time. A good and well-known transit practitioners’ example of this is the
Section 15 database, which had substantial problems with the quality of its data
during the first year of its release (Bladikas and Papadimitriou 1985). Therefore,
the statement made here about the data quality is not meant as a criticism but as
an illustration of the difficulties encountered when using new and large databases.

The data used for this study were relatively limited. The results and the models’
predictive ability will certainly improve in the future when data of greater quantity
and quality will be available. In the future, it may be possible to generate models
for trips grouped by day, time of day, and pattern ID. Furthermore, as the ITS
system deployment continues, the models could be expanded to include traffic
condition variables, such as congestion and incidents, that can be automatically
generated by these systems.
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AbstractAbstractAbstractAbstractAbstract

Bus dwell time data collection typically involves labor-intensive ride checks. This
paper reports an analysis of bus dwell times that use archived automatic vehicle
location (AVL)/automatic passenger counter (APC) data reported at the level of
individual bus stops. The archived data provide a large number of observations that
serve to better understand the determinants of dwells, including analysis of rare
events, such as lift operations. The analysis of bus dwell times at bus stops is appli-
cable to TriMet, the transit provider for the Portland metropolitan area, and transit
agencies in general. The determinants of dwell time include passenger activity, lift
operations, and other effects, such as low floor bus, time of day, and route type.

Introduction
Bus dwell time data collection typically involves labor-intensive ride checks. This
paper reports an analysis of bus dwell times that use archived automatic vehicle
location (AVL)/automatic passenger counter (APC) data reported at the level of
individual bus stops. The archived AVL/APC data provides a rich set of dwell time
observations to better understand the determinants of dwells. In addition, the
large quantity of data allows analysis of rare events, such as lift operations. The
analysis of bus dwell times at bus stops was originally used to estimate delay asso-
ciated with bus lift use operations for passengers with disabilities in the Tri-County
Metropolitan Transportation District of Oregon (TriMet), the transit provider for
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the Portland metropolitan area (Dueker, et al. 2001). In addition, the analysis
yielded useful information about dwell times that has applicability to transit agen-
cies in general.

The estimated models provide a system-wide baseline. Stop-level, route-level, op-
erator-specific, and passenger boarding-level analyses can follow. This paper in-
cludes examples of applying the model results to simulate dwell times for different
times of day, route types, and various levels of passenger boardings and alightings.
The effects of fare payment method and bicycle rack usage on dwell times was
unable to be incorporated, but suggest how future research could extend the
model.

Prior Work
Literature on bus dwell times is sparse, due to the cost and time required for
manual data collection. Consequently, most prior analyses tend to be route-spe-
cific, focus on analyzing various issues causing bus delay, and are based on small
samples. Previous studies on dwell time have used ordinary least squares (OLS)
regression to relate dwell time to boardings and alightings, with separate equa-
tions estimated for different operating characteristics likely to affect dwell time.
Kraft and Bergen (1974) found that passenger service time requirements for AM
and PM peaks are similar, midday requirements are greater than those in peak
periods, boarding times exceed alighting times, and rear door and front door
alighting times are the same. They also found that dwell time is equal to 2 seconds
plus 4.5 seconds per boarding passenger for cash and change fare structures, and
1.5 seconds plus 1.9 seconds for exact fare.

Levinson’s (1983) landmark study of transit travel time performance reported
that dwell time is equal to 5 seconds plus 2.75 seconds per boarding or alighting
passenger. Guenthner and Sinha (1983) found a 10-20 second penalty for each
stop plus a 3-5 second penalty for each passenger boarding or alighting. However,
dwell time models based on small samples have low explanatory power, even when
controlling for factors such as lift activity, fare structure, and number of doors.
Guenthner and Hamet (1988) looked at the relationship between dwell time and
fare structure, controlling for the amount of passenger activity. Lin and Wilson
(1992) reviewed prior work and formulated a model of dwells as a function of
boardings, alightings, and interference with standees, which was then applied to
light rail transit dwells.  Bertini and El-Geneidy (2004) modeled dwell time for a
single inbound radial route in the morning peak period in their analysis of trip
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level running time. They incorporated the results of the dwell time analysis directly
into the trip time model by estimating parameters for number of dwells and
number of boarding and alighting passengers.

Data Issues
Dwell time is defined as “the time in seconds that a transit vehicle is stopped for the
purpose of serving passengers. It includes the total passenger service time plus the
time needed to open and close doors” (HCM 1985).

In the past, dwell time data collection consisted of placing observers at highly
utilized bus stops to measure passenger service times, and by ride checks or on-
board observers for dwells at bus stops along routes. The ride check procedure as
prescribed in the Transit Capacity and Quality of Service Manual consists of the
following steps to collect field data for estimating passenger service times:

1. From a position on the transit vehicle, record the stop number or name at
each stop.

2. Record the time that the vehicle comes to a complete stop.

3. Record the time that the doors have fully opened.

4. Count and record the number of passengers alighting and the number of
passengers boarding. (The data collection form calls for front and rear
door specific counts).

5. Record the time that the major passenger flows end.

6. When passenger flows stop, count the number of passengers remaining
on board. (Note: If the seating capacity of the transit vehicle is known, the
number of passengers on board may be estimated by counting the num-
ber of vacant seats or the number of standees).

7. Record time when doors have fully closed.

8. Record time when vehicle starts to move. (Note: Waits at timepoints or at
signalized intersections where dwell is extended for cycle should be noted
but not included in the dwell time. Delays at bus stops when a driver is
responding to a passenger information request are everyday events and
should be included in the calculation of dwell time. Time lost dealing with
fare disputes, lost property or other events should not be included.)

9. Note any special circumstances. In particular, any wheelchair movement
times should be noted. Whether this is included in the mean dwell time
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depends on the system. Dwell times due to infrequent wheelchair move-
ments are often not built into the schedule but rely on the recovery time
allowance at the end of each run. The observer must use judgment in
certain cases. At nearside stops before signalized intersections the driver
may wait with doors open as a courtesy to any late-arriving passengers.
The doors will be closed prior to a green light. This additional waiting time
should not be counted as dwell time but as intersection delay time. (TCRP
1999)

Automating the collection of dwell time data through the employment of AVL
and APC technologies compromises the procedures outlined above. The dwell
time is measured as specified, but the time the bus stops and starts is not re-
corded, nor is the starting and stopping of passenger flows. Our analysis deleted
dwells of over 180 seconds (3 minutes). This censoring was done to purge the
analysis of dwells that are abnormal. Also, TriMet’s Automated Passenger Counters
(APC) record total boardings and alightings rather than door-specific counts.
Finally, there is no guarantee that operators will behave similarly in closing the
doors while awaiting for traffic to clear or traffic signals to change. These compro-
mises to the conventional measurement of dwell time are offset by the ability to
collect data on large numbers of dwells, with any “special circumstances” included
in the error term of OLS regression models.

Automating Collection of Dwell Time Data
Uses of Archived AVL/APC Data to Improve Transit Performance and Management
(Furth, et al. forthcoming), identifies the bus stop as the appropriate spatial unit
for data aggregation and integration. This integration of scheduled and actual
arrival time at the level of the individual stop is crucial for research on bus opera-
tions and control strategies. Integrating data at the bus stop level supports real
time applications, such as automated stop annunciation and next-stop arrival
time information. Importantly, if bus stop data are archived, operations perfor-
mance and monitoring analysis can also be supported (Furth, et al. forthcoming).

TriMet has automated the collection and recording of bus dwell time and passen-
ger activity at the bus stop level, and archives the data consistent with the TCRP
recommendations. TriMet operates 97 bus routes, 38 miles of light rail transit, and
5 miles of streetcar service within the tri-county Portland metropolitan region.
TriMet’s bus lines carry approximately 200,000 trips per day, serving a total popu-
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lation of 1.3 million persons within an area of 1,530 square kilometers (590 square
miles).

TriMet implemented an automated Bus Dispatch System (BDS) in 1997 as a part
of an overall operation and monitoring control system upgrade.

The main components of the BDS include:

1. AVL based upon differential global positioning system (GPS) technology,
supplemented by dead reckoning sensors

2. Voice and data communication system using radio and cellular digital
packet data (CDPD) networks

3. On-board computer and control head displaying schedule adherence in-
formation to operators and showing dispatchers detection and reporting
of schedule and route adherence

4. APCs on front and rear doors of 70% of vehicles in the bus fleet

5. Computer-aided dispatch (CAD) center

The BDS reports detail operating information in real time by polling bus location
every 90 seconds, which facilitates a variety of control actions by dispatchers and
field supervisors. In addition, the BDS collects detailed stop-level data that are
downloaded from the bus at the end of each day for post-processing. The archived
data provide the agency with a permanent record of bus operations for each bus
in the system at every stop on a daily basis. These data include the actual stop time
and the scheduled time, dwell time, and the number of boarding and alighting
passengers. The BDS also logs time-at-location data for every stop in the system,
whether or not the bus stops to serve passengers. This archived data forms a rich
resource for planning and operational analysis as well as research.

The GPS-equipped buses calculate their position every second, with spatial accu-
racy of plus or minus 10 meters or better. Successive positions are weeded and
corrected by odometer input. When the bus is within 30 meters of the known
location of the next bus stop (which is stored on a data card along with the
schedule), an arrival time is recorded. When the bus is no longer within 30 meters
of the known bus stop location, a departure time is recorded. If the door opens to
serve passengers, a dwell is recorded and the arrival time is overwritten by the time
when the door opens. Dwell time (in seconds) is recorded as the total time that
the door remains open.
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When passenger activity occurs, the APCs count the number of boardings and
alightings. The APCs are installed at both front and rear doors using infrared
beams to detect passenger movements. The APCs are only activated if the door
opens. The use of a lift for assisting passengers with disabilities is also recorded.
TriMet has used on-board cameras to validate APC counts (Kimpel, et al. 2003).
The validation procedures could be extended to include dwell time and the tim-
ing of passenger flows, and perhaps even fare payment if the video clips are not too
choppy.

The archived AVL/APC data have been used in various studies of operations con-
trol and service reliability (Strathman et al. 1999; Strathman et al. 2000; Strathman
et al. 2001a; Strathman et al. 2001b), for route-level passenger demand modeling
(Kimpel 2001), for models of trip and dwell time (Bertini and El-Geneidy 2004),
and for evaluating schedule efficiency and operator performance (Strathman, et
al. 2002).

Dwell Time Data
The data are from a two-week time period in September 2001 for all of TriMet’s
regular service bus routes. For this analysis, dwell time (DWELL) is the duration in
seconds the front door is open at a bus stop where passenger activity occurs. The
data were purged of observations associated with the beginning and ending points
of routes, layover points, and unusually long dwell time (greater than 180 sec-
onds).1 Observations with vehicle passenger loads (LOAD) of over 70 persons
were also excluded, indicating the automatic passenger counter data were sus-
pect. Two weeks of data generated over 350,000 dwell observations. Even though
lift operations (LIFT) occur in less than one percent (0.7 %) of dwells, the number
of lift operations is large enough for a robust estimation of separate model (N =
2,347).

Table 1 presents descriptive statistics for variables used in the full-sample dwell
time model. The mean dwell time is 12.29 seconds, with a standard deviation of
13.47 seconds. On average, there were 1.22 boardings and 1.28 alightings per
dwell. Also, 61% of the dwells involved low floor buses. Dwells by time of day
(TOD) are 15% in morning peak period (6-9 AM) (TOD1), 41% in midday (9 AM
-3 PM) (TOD2), 17% in afternoon peak period (3-6 PM) (TOD3), 21% in evening
(6-10 PM) (TOD4), and 7% in late night and early morning (10 PM- 6 AM) (TOD5).
The mix of dwells by route type is 71% for radial, 4% feeder, and 25% cross-town.
Also, the average dwell occurs 2.36 minutes behind schedule (ONTIME).
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The analysis includes information derived from three separate but related samples:
(1) a full sample consisting of all observations; (2) a lift operation-only sub-sample;
and (3) a without lift operation only sub-sample.

Table 2 shows the effect of a lift operation on mean dwell time. Mean dwell times
for the sub-sample without lift operation average 11.84 seconds, while mean dwell
times for the sub-sample with lift operation average 80.70 seconds. The coefficient
of variation for dwell time with lift operation is 46.4%, and 100.7% for without lift
operation. An OLS model for the full sample of both lift and no lift operation had
a coefficient of 62.07 for a dummy variable for lift operation (LIFT).2  A Chow test
indicated that a separate model was needed for dwells where lift operations occur.

Table 1. Bus Dwell Time Descriptive Statistics
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Dwell Time Estimation
Table 3 presents results of the model of the sub-sample without lift operation.
Dwell time is explained by boarding passengers (ONS), alighting passengers (OFFS),
whether the bus is ahead or behind schedule (ONTIME), if the bus is a low floor
bus (LOW), passenger friction (FRICTION),1 time of day (TOD), and type of route
feeder (FEED) and cross-town (XTOWN) as compared to radial (RAD). The esti-
mation results indicate that each boarding passenger adds 3.48 seconds to the
base dwell time of 5.14 seconds (CONST) and each alighting passenger adds 1.70
seconds. Square terms of passenger activity are used to account for diminishing
marginal effects of additional boarding and alighting passengers on dwell time.
Each additional boarding passenger is estimated to take 0.04 seconds less, while
each additional alighting passenger takes 0.03 seconds less.2  The negative coeffi-
cient of ONTIME indicates that dwell times tend to be less for late buses than for
early buses3. The CONST value of 5.14 seconds reflects the basic opening and
closing door process.

The other variables have small but significant effects. Time-of-day estimates are
referenced to the morning peak period (TOD1). Midday dwells (TOD2) are 1.36
seconds longer than morning peak dwells; afternoon peak dwells (TOD3) are 0.92
seconds longer than morning peak dwells; and evening period dwells (TOD4) are
1.25 seconds longer than morning peak dwells, while late evening and early morn-
ing period dwells (TOD5) are not significantly different than morning peak dwells.
The morning peak period is the most efficient in terms of serving passengers,
perhaps due to regular riders and more directional traffic. Regular riders may tend
to board using bus passes6 and ask fewer questions. More directional traffic would
reduce the mix of boardings and alightings at the same stop.

Table 2. Bus Dwell Time Means

Dwell (seconds) Mean Time St. Dev. N

Sub-sample with lift operation 80.70 37.44 2,347

Sub-sample without lift operation 11.84 11.92 353,552

Both (full sample) 12.29 13.47 355,899
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The type of route also affects dwell times. Feeder routes have 0.15 second longer
dwells than radials, the reference route type, and cross-town routes have 0.39
second shorter dwells than buses operating on radial routes.

Table 3. Bus Dwell Time Model: Without Lift Operation

Lift Operation Effects
The estimated effect of a lift operation on dwell time in a full-sample model is
62.07 seconds. This lift operation effect is examined more closely in a separate
model of dwell times involving lift operations only.

Table 4 presents the results of the bus dwell time model for the sub-sample of lift
operation-only. The mean dwell time for lift operation-only dwells is 80.70 sec-
onds, and is explained by the same variables as the overall dwell time model, but
they differ and are less significant. For example, a low-floor bus reduces the dwell
time for lift operations by nearly 5 seconds. But the large CONST value of 68.86

Name Coeff. Std. Err. T-Ratio

ONS 3.481 0.015 231.90

ONS2 -0.040 0.001 -37.38

OFFS 1.701 0.015 113.00

OFFS2 -0.031 0.001 -29.11

ONTIME -0.144 0.005 -30.68

LOW -0.113 0.034 -3.30

FRICTION 0.069 0.005 12.92

TOD2 1.364 0.049 27.82

TOD3 0.924 0.059 15.77

TOD4 1.248 0.055 22.51

TOD5 0.069 0.076 0.91

FEED 0.145 0.086 1.70

XTOWN -0.388 0.039 -9.99

CONST. 5.136 0.051 99.96

N 353,552

ADJ. R2 0.3475
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seconds indicates that the majority of time is for the lift operation itself. Boarding
activity is estimated to extend dwells at a diminishing marginal rate, while alighting
passenger activity does not substantially affect dwell time. However, wheelchairs,
walkers, and strollers may confound APCs. There are significant effects by time of
day, but they are not easily explained. Lift operations during the morning peak
(TOD1) take longer than lift operations at other times.

Table 4. Bus Dwell Time Model: With Lift Operation

An estimate of delay associated with lift operation can be used to modify arrival
time estimates provided to transit users at downstream stops. However, we have
three choices of delay estimates for lift operation. One is 62.07 seconds, the coef-
ficient on LIFT from the full model. Another is the difference between the mean of
all dwell time with lift operations (80.70 seconds) and without lift operations
(11.84 seconds). This difference is 68.86 seconds. The third choice is the effect of a
lift operation on running time from an earlier study of route running times
(Strathman, et al. 2001a). This third choice provides an estimate of the lift effect as
59.80 seconds. This smaller value indicates that before the end of their trip, opera-
tors make up some of the time lost due to lift operations.

Name Coeff. Std. Err. T-Ratio

ONS 10.206 0.488 20.91
ONS2 -0.359 0.029 -12.31
OFFS 0.513 0.396 1.30
OFFS2 -0.022 0.017 -1.33
ONTIME -0.037 0.176 -0.21
LOW -4.741 1.388 -3.42
FRICTION -0.234 0.208 -1.13
TOD2 -4.141 2.554 -1.62
TOD3 -6.271 2.869 -2.19
TOD4 -4.588 2.925 -1.57
TOD5 -14.447 4.542 -3.18
FEED 1.036 3.354 0.31
XTOWN -1.675 1.519 -1.10
CONST. 68.861 2.706 25.45

N 2,347
ADJ. R2 0.2848
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We recommend the middle estimate of 62.07 seconds (the coefficient on the LIFT
dummy variable from the full sample estimation) be selected as the delay estimate
at the outset of the lift event and that it be updated with the actual dwell time less
the mean dwell time without lift operation as the bus departs that stop. In this
manner, next stop bus arrival time estimates could be refined when impacted by
delays associated with lift operations. This would require a message from the bus
to the dispatch center at the onset of the lift operation and another at its conclu-
sion.

Low Floor Bus Effect
TriMet was also interested in the effect of low floor buses on dwells, particularly
dwells with lift operations. The dwell time model for the without lift operation
sub-sample yields an estimated effect of a low-floor bus of -0.11 seconds (-0.93%)
per dwell. A typical TriMet route has 60 bus stops. On an average bus trip, buses
actually stop at 60% of them. Thus, the 0.11 second reduction per dwell for a low
floor bus translates into a 3.96 second savings in total running time per trip.

The low floor bus effect is examined in a model of dwell times involving lift opera-
tions only. The mean dwell time for stops where the lift is operated is 80.70 sec-
onds. A low-floor bus reduces dwell time for lift operations by nearly 5 seconds
(4.74 or 5.8 %). The impact of low floor buses on dwell time with lift operation is
more substantial.

Simulation
Models can be used to simulate dwell times. The coefficients are multiplied by
assumed values of the variables that represent operating conditions of interest.
Table 5 presents simulated dwell times for various operating conditions. Although
the simulation produces precise dwell time estimates, the results should be viewed
in relative terms, because of large coefficients of variation in dwell time and the
explanatory power of the models are low (adjusted R2 values of 0.35 for without
lift operation and 0.28 for with lift operation).

The first condition simulated is a radial route in the AM peak period. Five boardings
(ONS) are assumed to load at a stop and there are no alightings (OFFS). The bus
is operating two minutes late. This simulation yields a dwell time estimate of 21.15
seconds. The second simulation is of a radial route in the PM peak operating with
five OFFS and no ONS. It also has 10 standees. The dwell time estimate is 13.99
seconds. In comparing the two estimates, a greater time associated with boardings
as compared to alightings is quantified. The third simulation is for a cross-town
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Table 5. Simulation of Bus Dwell Times

Name Coeff. Radial AM Radial PM Cross-Town
Inbound Outbound Midday

ONS 3.481 5 17.41 0.00 2 6.96
ONS2 -0.040 25 -0.99 0.00 4 -0.16
OFFS 1.701 0.00 5 8.50 2 3.40
OFFS2 -0.031 0 0.00 25 -0.78 4 -0.12
ONTIME -0.144 2 -0.29 5 -0.72 2.5 -0.36
LOW -0.113 1 -0.11 1 -0.11 0.00
FRICTION 0.069 0 0.00 10 1.04 0.00
TOD2 1.364 0.00 0.00 1 1.36
TOD3 0.924 0.00 1 0.92 0.00
TOD4 1.248 0.00 0.00 0.00
TOD5 0.069 0.00 0.00 0.00
FEED 0.145 0.00 0.00 0.00
CTOWN 0.145 0.00 0.00 1 0.15
CONST. 5.136 1 5.14 1 5.14 1 5.14

DWELL EST. 21.15 13.99 16.37

Lift Specific Model (w/lift only) Full Model (w/lift dummy)
Name

Coeff. Midday Feeder Coeff. Midday Feeder
Service Service

ONS 10.206 2 20.41 3.551 2 7.10
ONS2 -0.359 4 -1.43 -0.042 4 -0.17
OFFS 0.513 1 0.51 1.703 1 1.70
OFFS2 -0.022 1 -0.02 -0.033 1 -0.03
ONTIME -0.037 -1 0.04 -0.145 -1 0.14
LOW -4.741 0.00 -0.143 62.07
LIFT .. .. .. 62.07 1 0.00
FRICTION -0.234 0.00 0.067 0.00
TOD2 -4.141 1 -4.14 1.352 1 1.35
TOD3 -6.271 0.00 0.902 0.00
TOD4 -4.588 0.00 1.231 0.00
TOD5 -14.447 0.00 -0.013 0.00
FEED 1.036 1 1.04 0.148 1 0.15
CTOWN -1.675 0.00 -0.390 0.00
CONST. 68.861 1 68.86 5.117 1 5.12

DWELL EST. 85.26 77.43
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route in the midday at a stop with two ONS and two OFFS and running 2.5
minutes late. This produces an estimated dwell time of 16.36 seconds.

Table 5 also contains two simulations of a lift operation with two ONS and two
OFFS on a feeder line in the midday period with a bus that is running one minute
early. This condition is estimated using the lift specific model (dwell estimate of
85.26 seconds) and using coefficients from the full-sample model with a lift dummy
variable (77.43 seconds). The difference in estimates is less than the standard de-
viations of either sample.

For a better understanding of boarding and alighting passenger activity, two addi-
tional sub-samples were drawn. Both are for radial routes with no lift operation.
One was AM peak period dwells with boardings but no alightings, and the other
was PM peak period dwells with alightings but no boardings. This allows the
estimation of parameters for boardings and alightings that are not confounded
by a mixture of boardings and alightings. Table 6 is the dwell time model for
boardings only and Table 7 the model for alightings only. The parameter for
boardings is 3.83 seconds per boarding passenger and the parameter for alightings
is 1.57 seconds per alighting passenger. Again, both parameters have a significant
square term that indicates a declining rate for each additional passenger. Simula-
tions for 1, 2, 5, 10, and 15 boarding passengers are contained in Table 8, and
simulations for alighting passengers are contained in Table 9. Both simulations
assumed an average lateness (ONTIME) value of 1.56 minutes for the boarding
passenger sub-sample and 4.46 minutes for the alighting passenger sub-sample.
Both simulations also assumed a low floor bus and a bus load of less than 85
percent of capacity. The simulations calculate dwell time in seconds for various
boarding and alighting passengers. For instance, dwell time for five boarding pas-
sengers is estimated to be 21.01 seconds (from Table 8) and is estimated to be
12.75 seconds for five alighting passengers (from Table 9). These two simulations
illustrate the benefit of working with large amounts of data that is made possible
by automated data collection. We were able to select route type, time of day, and
dwells with boardings or alightings, but not both.

Comparison of the simulation of five boarding passengers in Tables 5 and 8 yield
results that are within a second. Focusing on just the boarding passengers, param-
eters for the basic stop (CONST) is 4.05 seconds versus 5.14, 19.12 seconds versus
17.41 to board five passengers, and -1.45 versus -0.99 seconds for the diminishing
effect of the multiple of five passengers. Similarly, the comparison of five alighting
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passengers in Tables 5 and 9 yield results that are within a second when comparing
only the alighting times and the constant.

Again, the results of the simulation should be used in comparing scenarios and
not be used for precise estimates of dwells.

Table 6. Bus Dwell Time Model: Boardings Only - AM Peak Period

Table 7. Bus Dwell Time Model: Alightings Only - PM Peak Period

Name Coeff. Std. Err. T-Ratio

ONS 3.825 0.063 61.000
ONS2 -0.058 0.005 -11.340
FRICTION 0.040 0.014 2.845
ONTIME -0.164 0.020 -8.021
LOW -0.464 0.103 -4.483
CONST. 4.054 0.126 32.230

N 16,509
ADJ. R2 0.3819

Name Coeff. Std. Err. T-Ratio

OFFS 1.566 0.057 27.610
OFFS2 -0.016 0.006 -2.703
FRICTION 0.119 0.012 10.150
ONTIME -0.046 0.008 -5.971
LOW 0.523 0.079 6.651
CONST. 5.001 0.100 49.850

N 18,098
ADJ. R2 0.1616
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Table 9. Simulation of Bus Dwell Times by Number of Alightings
PM Peak Period

Table 8. Simulation of Bus Dwell Times by Number of Boardings
AM Peak Period

          Alightings

Name Coeff. 1 2 5 10 15

ONS 1.566 1.57 3.13 7.83 15.66 23.49
ONS2 -0.016 -0.02 -0.06 -0.39 -1.58 -3.55
FRICTION 0.119
ONTIME -0.046 -0.21 -0.21 -0.21 -0.21 -0.21
LOW 0.523 0.52 0.52 0.52 0.52 0.52
CONST. 5.001 5.00 5.00 5.00 5.00 5.00

TOTAL DWELL 6.87 8.39 12.75 19.40 25.26

        Boardings

Name Coeff. 1 2 5 10 15

ONS 3.825 3.82 7.65 19.12 38.25 57.37
ONS2 -0.058 -0.06 -0.23 -1.45 -5.80 -13.04
FRICTION 0.040
ONTIME -0.164 -0.26 -0.26 -0.26 -0.26 -0.26
LOW -0.464 -0.46 -0.46 -0.46 -0.46 -0.46
CONST. 4.054 4.05 4.05 4.05 4.05 4.05

TOTAL DWELL 7.10 10.75 21.01 35.79 47.67
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Discussion
The original purpose of this research was to identify the effects of delay that occur
at unexpected times, such excess dwell time resulting from bus lift operations.
Our research provides an estimate of delay at the time of initiation of the occur-
rence, which needs to be updated with the actual time of delay at the ending time
of the occurrence. This research provides a basis for shifting from predicting tran-
sit bus arrival times for customers based on normal operating conditions to one
that predicts transit vehicle arrival time when operating conditions are not nor-
mal (Dueker, et al. 2001).

An ancillary benefit of this research identified the general determinants of bus
dwell time. As expected, passenger activity is an important determinant. In addi-
tion, the archived AVL/APC data provided a large sample size that allowed exami-
nation of determinants, such as low floor buses, time of day, and route type
effects, and allowed estimation of a separate model for dwells with lift operation
only.

Automation of dwell time data collection results in a tradeoff of labor-intensive
direct observation but small sample data with the large samples of more consis-
tent data. While directly observing door-specific passenger activity, fare payment
method, and unproductive door opening time, as called for in the Transit Capac-
ity and Quality of Service Manual, improvements in automated data collection
may be able to deal with these issues. For example, integration of farebox and
bicycle rack with a BDS data collection system is possible in the future. This would
deal with the effect of fare payment method and use of the bicycle rack on dwell
time. In addition, validation of dwell time data is needed. TriMet has validated its
APC data by viewing on-board video camera data. This procedure could be ex-
tended to record the time of passenger activity to the door opening time from the
automated data.7  This would provide evidence to determine a better cutoff value
for maximum dwell time. The current value of 180 seconds is too arbitrary; it
needs to be replaced with a value that includes most passenger activity and re-
duces the amount of unneeded door opening time. In addition, the validation
procedure could include observation of fare payment method and bicycle rack
use prior to integration at the hardware level.
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Endnotes
1 Long dwells are likely to be associated with vehicle holding actions or operator
shift changes, and thus should be excluded from the analysis.

2 Table 5 contains coefficients of the full-sample dwell time model.

3 A passenger friction factor was constructed to account for passenger activity on
buses with standees. It was posited that heavily loaded buses have greater dwell
times. A proxy variable was constructed by adding ONS, OFFS, and STANDEES.
STANDEES are the number of passengers when LOAD minus 85% of bus capacity
is positive. LOAD is an APC calculated number that keeps a running count of ONS
and OFFS.

4 Kraft and Deutschman (1977) did not find any difference in the average service
time for each successive passenger to board.

5 Operators tend to hurry to regain schedule adherence.

6 The farebox is not integrated with the BDS, so we do not know the proportion
of cash paying boarding passengers at the stop level.

7 Kraft and Deutschman (1977) used photographic studies of passenger move-
ments through bus doors.
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AbstractAbstractAbstractAbstractAbstract

The emphasis of this research effort was on using AVL and APC dynamic data to
develop a bus travel time model capable of providing real-time information on bus
arrival and departure times to passengers (via traveler information services) and to
transit controllers for the application of proactive control strategies. The developed
model is comprised of two Kalman filter algorithms for the prediction of running
times and dwell times alternately in an integrated framework. The AVL and APC
data used were obtained for a specific bus route in Downtown Toronto. The perfor-
mance of the developed prediction model was tested using “hold out” data and other
data from a microsimulation model representing different scenarios of bus opera-
tion along the investigated route using the VISSIM microsimulation software pack-
age. The Kalman filter-based model outperformed other conventional models in
terms of accuracy, demonstrating the dynamic ability to update itself based on new
data that reflected the changing characteristics of the transit-operating environ-
ment.

A user-interactive system was developed to provide continuous information on the
expected arrival and departure times of buses at downstream stops, hence the ex-
pected deviations from schedule. The system enables the user to assess in real time
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transit stop-based control actions to avoid such deviations before their occurrence,
hence allowing for proactive control, as opposed to the traditional reactive control,
which attempts to recover the schedule after deviations occur.

Introduction
Recently, a growing interest has been developing in various Advanced Public Trans-
portation Systems (APTS) solutions that mainly aim at maximizing transit system
efficiency and productivity using emerging technologies. Examples of such ad-
vanced technologies include Automatic Vehicle Location (AVL) and Automatic
Passenger Counting (APC) systems.

Several researchers (Kalaputapu and Demetsky 1995; Lin and Zeng 1999; Wall and
Dailey 1999) have used AVL (and less often APC) data to develop models specifi-
cally for bus travel time prediction. The motivation for developing these models
was mostly for providing information to transit riders on expected bus arrival
times with virtually no sensitivity of such models to operations control strategies.
Thus, these models included very simple independent variables such as historical
link travel times, upstream schedule deviations, and headway distributions, in
addition to the current location of the next bus.

This study develops a dynamic bus arrival/departure time prediction model, using
AVL and APC information, for dynamic operations control and dissemination of
real-time transit information. The study is part of a larger project that aims at
developing an integrated system for dynamic operations control and real-time
transit information. Currently, almost all transit operators implement control
strategies, such as bus holding and expressing, after detecting schedule/headway
deviations in the system, hence reactive in nature. The proposed system (shown in
Figure 1) takes a proactive approach to operations control that would enable the
controller to implement preventive strategies before the actual occurrence of
deviations. This innovative approach requires the use of arrival/departure time
models sensitive to the considered control strategies (mainly stop-based strate-
gies). This research study focuses on developing a model of such characteristics.
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Figure 1. Integrated Operations Control and Information-
Dissemination System

Data
The data used for this study were collected from bus route Number 5 in the
Downtown Toronto area in May 2001. The route length is approximately 6.5 km,
spanning 27 bus stops in each direction, 6 of which are time-point stops located
at points of high passenger demand (e.g., major intersections). The route starts at
the Eglinton subway station stop in the north and ends at the Treasury stop in the
south during the morning peak period. At the other times of the day, the route
ends further south at the Elm stop. There are 21 signalized intersections along the
route, 10 of which are actuated SCOOT system signals. The schedule headway
during the AM and PM peak periods is 12 minutes, increasing to 30 minutes
during off peak. For the duration of the study (five weekdays in May 2001), the
Toronto Transit Commission (TTC) assigned 4 buses to the route, each fitted with
a GPS (Global Positioning System) receiver and an APC (Automatic Passenger
Counter). Each time the bus stopped, the bus location was recorded using the
GPS receiver. Also, the numbers of passengers boarding and alighting at bus stops
were recorded using the APC. The route was segmented into 5 links in each direc-
tion, with each link starting and ending at two consecutive time-point stops. The
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links range from 0.40 to 1.7 km in length, depending on the spacing between the
time-point stops, and may include 2 to 8 minor bus stops. This study focused on
modeling travel times along those links for the morning peak-hour bus opera-
tion.

Approach
As implied earlier, most of the models found in the literature (e.g., Kalaputapu and
Demetsky 1995; Lin and Zeng 1999; Wall and Dailey 1999; Farhan et al. 2002) have
included bus dwell times along any link in the travel time of that link (i.e., link travel
time includes running plus dwell times).  As such, these models cannot consider
explicitly the effect of late or early bus arrivals at bus stops on the dwell times at
those stops and vice versa. Ignoring such relationship yields these models insensi-
tive to the effects of variations at upstream bus stops, such as demand surge, bus
holding strategy, and bus expressing strategy, etc., on downstream bus arrivals
and subsequent dwell times. The approach taken in this study addresses this issue.

Conceptual Framework
The link running time and bus dwell time are modeled separately in this study but
in a consistent single modeling framework. It is assumed that real-time informa-
tion on vehicle location, numbers of boarding and alighting passengers at bus
stops, and bus arrival and departure times is known from the AVL and APC sys-
tems. The prediction modeling system consists of two separate algorithms, each
based on the Kalman filter method. To predict the bus running time along a
particular link at instant k+1, the first algorithm, Link Running Time Prediction
Algorithm, makes use of the last three-day historical data of the bus link running
time for the instant of prediction k+1, as well as the bus link running time for the
previous bus on the current day at the instant k. The study used data for the
previous three days only as this was deemed practical, given the limited historical
data available for the study. Obviously, in real-world applications, the algorithm
can make use of longer ranges of historical data. The second algorithm, Passenger
Arrival Rate Prediction Algorithm, employs similar historical data of passenger ar-
rival rate. To predict the dwell time at a particular stop, the predicted arrival rate is
simply multiplied by the predicted headway (i.e., the actual arrival time of the last
bus minus the predicted arrival time of the next bus) and by the passenger board-
ing time (assumed 2.5 seconds per passenger).
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Separating the bus dwell time prediction from bus running time prediction in this
modeling framework enhances the model’s ability to capture the effects of late-
ness or earliness of bus arrivals at stops on the bus dwell time at those stops, and
hence the bus departure from such stops. This is simply because bus dwell time at
a stop is affected by the actual arrival time of the bus at that stop, particularly for
high frequency transit routes where passengers are expected to arrive at a nearly
constant rate (i.e., the later the bus, the longer the dwell time and vice versa). In
addition, since the model treats dwell time separately, it is sensitive to stop-based
control strategies such as bus holding and expressing.

In order to better understand the prediction-modeling framework, Figure 2 shows
a schematic of a hypothetical transit route. The route is divided into a number of
links between bus stops. When the transit bus n leaves stop i, the actual departure
time is known from the AVL system. At this instant, the Kalman filter prediction
algorithm for link running times will predict the next link running time RTn (i,i+1).
Subsequently, the predicted arrival time of the bus at the downstream bus stop
i+1 can be determined.

Figure 2. Schematic of a Bus Route with Several Stops

Assuming that bus n is currently at stop i

AT
n
 

(i+1)
 = DT

n
 

(i)
  +RT 

n (i,i+1)
                (1)

Where:

AT
n
 
(i+1)

is the predicted arrival time of bus n at stop i+1

RTn (i,i+1) is the predicted running time between i and i+1 from Kalman
Filter prediction algorithm

DT
n
 

(i)
is the actual departure time of bus n from stop i
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This predicted arrival time ATn (i+1) is used to predict the dwell time for bus n at
stop i+1 based on the passenger arrival rate and the average passenger boarding
time at stop i+1.

DWT
n
 
(i+1)

 = 88888 
(i+1)

 * [AT
n
 

(i+1) 
- AT

n-1
  

(i+1)
] * DDDDDavg

 
(i+1)

                (2)

Where:

DWTn (i+1) is the predicted dwell time for bus n at stop i+1

88888 
(i+1)

represents the predicted passenger arrival rate at stop i+1 from
Kalman filter prediction algorithm

AT
n-1

 
(i+1)

is the actual arrival time of the previous bus n-1 at stop i+1

[ATn (i+1) - ATn-1 (i+1)] is the predicted headway for bus n at stop i+1

DDDDDavg (i+1) represents average passenger boarding time at stop i+1, assumed
to be 2.5 seconds/passenger.

In equation (2), the assumption is that the boarding passengers at each bus stop
have a significant effect on bus dwell time at that stop, compared with alighting
passengers. The time points used in this study, for which equation (2) applies, are
located at high demand spots (i.e., subway station and major intersections) where
stop skipping because of no passenger demand is extremely rare. If stop skipping
at a particular time point were frequent, equation (2) would need to be modified
to address this problem.

Having the arrival time and dwell time for bus n at stop i+1 predicted, it is now easy
to calculate the predicted departure time for bus n from stop i+1 by adding the
predicted arrival time to the predicted dwell time at stop i+1.

DT
n
 
(i+1)

 = AT
n
 
(i+1)  

+ DWT
n
 

(i+1)
                (3)

Where:

DTn (i+1) is the predicted departure time for bus n from stop i+1
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This departure time prediction DTn (i+1) is a function of both arrival time predic-
tion and dwell time prediction at stop i+1. Hence, the effect of any variations in
bus operation (i.e., bus early or late) could be captured in this stop and will be
reflected on all downstream bus stops.

Similarly, predictions of arrival times and departure times at all downstream stops
can be computed while the bus is still at stop i. This process is updated every time
the bus leaves or arrives at a new time-point stop.

Kalman-Filter Prediction Algorithms
As mentioned above, the prediction modeling system consists of two Kalman
flter algorithms.  In general, the Kalman flter is a linear recursive predictive update
algorithm used to estimate the parameters of a process model. Starting with initial
estimates, the Kalman flter allows the parameters of the model to be predicted
and adjusted with each new measurement. Its ability to combine the effects of
noise of both the process and measurements, in addition to its easy computa-
tional algorithms, has made it very popular in many research fields and applica-
tions, particularly in the area of autonomous and assisted navigation (for further
information on Kalman filters, see Maybeck 1979).

The main assumption used in developing the Kalman filters is that the patterns of
the link running time and passenger arrival rate at stops are cyclic for a specific
period of day. In other words, knowledge of the link travel time and number of
passengers waiting for a specific bus in a certain period of time will allow one to
predict these variables for the next bus during the same period, so long as condi-
tions remain steady. When conditions change (e.g., demand surge at a stop and/
or an incident occurred at a link), the model can update the effect of the new
conditions on the predictions, so long as the new conditions persist for a suffi-
cient length of time (at least one headway length).

The Kalman filter algorithm works conceptually as follows. The last three-day
historical data of actual running times along a particular link at the instant k+1
plus the last running time observation at the instant k on the current day are used
to predict the bus running time at the instant k+1. Similarly, passenger arrival rates
of the previous three days at the instant k+1 plus the passenger arrival rate at the
instant k on the current day are used to predict the passenger arrival rate at the
instant k+1. The historical passenger arrival rate is obtained from the APC data as
in this fashion: The number of on-passengers at a bus stop is divided by the most
recent headway (i.e., the arrival time of the previous bus minus the arrival time of
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the current bus). Below are the equations used for the Kalman filter prediction
algorithms.

Link Running Time Prediction Algorithm
Generally, a Kalman filter algorithm for bus link running time has the following
structure (Reinhoudt and Velastin 1997):

(4)

a(k + 1) = 1 – g(k + 1) (5)

e(k +1) = VAR[datain] AAAAA g(k + 1) (6)

P(k + 1) = a(k+1) AAAAA art(k) + g(k+1) AAAAA art
1
(k + 1) (7)

where:

g equals the filter gain

a is the loop gain

e represents filter error

p equals prediction

art(k) is actual running time of the previous bus at instant (k)

art
1
(k+1) is actual running time of the previous day at instant (k+1)

VAR[data out] equals the prediction variance

VAR[data 
in

] is the last three days “art3(k+1), art2(k+1) and art1(k+1)”
variance
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The input variance VAR[datain]  is calculated at each instant k + 1 using the actual
running time values for the last three days:  art1 (k + 1), art2 (k + 1) and art3 (k + 1):

VAR[datain]  = VAR[art1(k + 1),art2(k + 1),art3(k + 1)] (8)

where:

art1 (k+1) is the actual running time of the bus at instant (k+1) on
the previous day

art
2 

(k+1) is the actual running time of the bus at instant (k+1)
two days ago

art
3 

(k+1) is the actual running time of the bus at instant (k+1)
three days ago

The definition of the variance for a random variable is:

VAR[X] = E[(X – E[X])2]                                                                                          (9)

             (10)

Now the variance can be calculated as shown in equation (14):

∆1 = [art1(k+1) – avg(art)]2               (11)

∆2 = [art2(k+1) – avg(art)]2               (12)

∆
1
 = [art

3
(k+1) – avg(art)]2               (13)

             (14)
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VAR[dataout] is based on the model prediction output and the corresponding
future observation. Both pieces of data are not available, since the prediction is
not made yet and the future trip has not been made either. Ideally, VAR[data

out
]

should be equal to VAR[datain] for good prediction performance (Maybeck 1979).
Now, a new variance is introduced VAR[localdata]. It is equal to the variance of the
input and output data.

VAR[local
data

] =  VAR[data
in

] = VAR[data
out

]               (15)

and equations (4) and (6) become:

              (16)

e(k + 1) = VAR[localdata] AAAAA g(k + 1)               (17)

Now it becomes easy to implement the actual Kalman filter algorithm to predict
the bus running times along the links. The order of applying the equations should
be (16), (5), (17), and (7).

Passenger Arrival Rate Prediction Algorithm
A Kalman filter algorithm was also developed to predict the passenger arrival rate
using data from the APC and AVL systems.  At the prediction instant k+1, the
historical passenger arrival rates (at instant k+1 of the previous three days and
instant k of the current day) at a particular stop are computed based on the
number of corresponding boardings divided by the actual previous headway.
Similar equations to those of the running time Kalman filter were developed and
used to predict the passenger arrival rate at instant k+1.
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Model Performance Evaluation
In order to assess the predictive performance of the Kalman filter model, it is
compared with three previously developed models for the same route. They in-
clude historical average model, regression model, and an artificial neural network
(specifically, Time Lag Recurrent Network [TLRN]). A more detailed exposition of
the models can be found elsewhere (Farhan et al. 2002). Similar to most models
found in the literature, the regression and TLRN models predict individual link
travel times, which include running plus dwell times. Another distinct feature of
those models is their static nature, in that the model parameters are not updated
with new available data. As mentioned earlier, the AVL and APC data for the study
route were available for five consecutive days. The regression and TLRN models
were developed using data of four days only, with the fifth day’s data held out for
testing.

Four testing datasets were used for the comparison; the first set includes the hold
out data of the fifth day of observations, while the remaining three sets include
artificial data collected from three different bus operation scenarios representing:
normal-condition bus operation, special-event scenario where there is a demand
surge on transit service, and lane-closure scenario where one lane on a specific link
is blocked (e.g., due to an accident or construction work). In contrast to the hold
out data and normal condition scenario, the lane closure and special event sce-
narios represent atypical conditions. Because real-world data of such conditions
are hard to obtain, the VISSIM traffic microsimulation software was used to simu-
late these scenarios. Simulation of the entire corridor, calibration results and simu-
lation of the scenarios are described elsewhere (Farhan 2002). After each simula-
tion run, all the necessary data required for model testing was extracted and ana-
lyzed. Three prediction error measurements were computed for all developed
models to test the model performance (Okutani and Stephanedes 1984). These
error indices include:

Mean relative error (gggggmean), which indicates the expected error as a fraction of the
measurement

              (18)
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Root squared relative error (gggggrs), which captures large prediction errors

(19)

Maximum relative error (gggggmax
), which captures the maximum prediction error

              (20)

where:

N is the number of samples (here N=50) X true(t) = measured value
at time t

X pred (t) is the predicted value at time t.

Table 1.  Relative Error Results of the Prediction Models
Using “Hold Out” Data
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Table 1 shows the three error measures gmean, grs, gmax for the hold out dataset,
while Figure 3 (a, b, c) summarize the performance of the three prediction models
for each simulated scenario. Obviously, the lower the error, the better the model
performance.

Figure 3. Relative Error Results of the Prediction Models
Using Artificial Data (a, b, c)

(a)

         Normal Condition Scenario

Total Historical Avg Regression Neural Network Kalman Filter
ε mean 0.330 0.124 0.111 0.097
ε rs 0.305 0.132 0.120 0.124
ε max 1.253 0.695 0.584 0.299
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(c)

        Special Event Scenario

Total Historical Avg Regression Neural Network Kalman Filter
ε mean 0.679 0.218 0.220 0.123
ε rs 0.685 0.240 0.239 0.127
ε max 1.411 0.998 0.830 0.349

(b)

         Lane Closure Scenario

Total Historical Avg Regression Neural Network Kalman Filter
ε mean 0.881 0.392 0.316 0.232
ε rs 0.933 0.428 0.442 0.349
ε max 2.362 1.324 0.830 0.547
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Discussion
The results summarized in Table 1 show that for all links, the Kalman flter model
provides the minimum value for the error measures gggggmean, gggggrs, gggggmax, pointing to the
fact that its performance was the best compared with the other prediction mod-
els, except for link #4 where the regression and TLRN models perform slightly
better than the Kalman flter model.

Table 1 and Figure 3 (a, b, c) shows there is no significant difference in the perfor-
mance of the regression and artificial neural network models for the three differ-
ent scenarios. Both models give similar performance results for each scenario;
their accuracy performance decreased for the special event and lane closure sce-
narios. But in general, the artificial neural network model always gives lower values
for the relative error indices.

The Kalman filter model shows the best prediction performance in the simulated
scenarios. In particular, it showed superior performance to the other models in
the special event and lane closure scenarios. These results show the superior per-
formance of the Kalman filter model compared with other prediction models in
terms of relative error.  The results also demonstrate how this model can capture
dynamic changes due to different bus operation characteristics.

In addition to its highly accurate performance in dynamic environments, the
model has the advantage of capturing the effects of control strategies, such as
holding and expressing at upstream bus stops.  For example, if the bus is currently
at a time point where it will be held for an additional one minute, the model
appropriately captures the effect of this extra time on the arrival time at the next
bus stop and the dwell time at the next stop (which is function of number of
passengers waiting at that bus stop when the bus is predicted to arrive) and so
forth for the prediction of arrival and dwell times at subsequent stops.

User-Interactive Decision Support System
The developed arrival/departure time prediction model was used to build a DSS
(Decision Support System) for dynamic control. This system simply uses the time-
table of the time points to develop a time profile for each scheduled trip along the
route (i.e., schedule travel time profile; see Figure 4), which is done for each bus at
the start of its journey. Another prediction travel time profile is constructed using
the Kalman filter prediction model. The prediction travel time profile is updated
dynamically every time the bus arrives and departs from a time point.
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By using these two travel-time profiles, we are able to predict if the bus is running
early or late at each time point. This is shown in Figure 4 as ∆. A positive value of ∆
means that the prediction profile is currently lying above the scheduled one (bus
will reach the downstream time points late), while a negative value of ∆ occurs
when the prediction profile lies below the schedule (bus will be ahead of sched-
ule). In these cases, implementation of a corrective proactive control strategy is
required to prevent expected schedule deviation downstream. A value of 0 refers
to the compliance of the bus to the schedule. The value of ∆ is the key factor for
deciding what type of control strategy to implement. If ∆ is positive, an expressing
type of control is required to be applied, while a negative value of ∆ indicates
implementation of some type of holding strategy.

Figure 4. Schedule Travel Time Profile
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System Design and Architecture
The proposed system, shown in Figure 5, is an interactive program developed
using the Visual Basic programming language. This program effectively utilizes
AVL and APC data for dynamic bus arrival/departure information and perfor-
mance analysis at downstream bus stops for the purpose of applying real-time,
proactive control strategies.

Figure 5. Illustration of the Interactive Decision Support System
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The program records the dynamic actual location and time of the transit vehicle
when it arrives and leaves all time points along the transit route based on the AVL
data. Also, it records the number of passengers alighting and departing the bus at
each stop.  Real time AVL and APC information is transferred instantly from the
server to the program. For a specific bus trip, at the departure instant of bus from
the terminal station, the prediction algorithms will automatically be activated to
predict arrival and departure times of the bus at all downstream time points
(prediction profile). At the same time, the associated bus departure schedule for
all time points along the route is also displayed (schedule profile). The difference
between the predicted and the schedule departure (∆ information) is automati-
cally computed for all time points. If the value of the predicted bus time deviation
∆ is within an accepted range (e.g., 0 to 2 minutes), the predicted departure times
are within the schedule, and no control strategies are required to be implemented.
In such a case, the program will display black font color with white background
for ∆ value labels. On the other hand, when ∆ values are more than 2 minutes (i.e.,
bus expected to arrive/depart late at downstream time points), the font color will
display red. The transit controller can interact with the program to assess the
effect of bus expressing at one or more downstream time points (by setting dwell
times at 0 for such time points) so as to as reduce predicted deviations. If the ∆
value is less than 0 (i.e., bus expected to be ahead of schedule), then the ∆ value
label background is displayed red and the font color is black. The controller can
assess the effect of bus holding at one or more downstream time points (by
increasing the dwell times at those time points). The interaction with the program
could be done by setting values under the “arrive” or “depart” button of the
selected current/downstream time point (as shown on the left hand side of Figure
5), then clicking on the corresponding “arrive” or “depart” button to update
model predictions.

The prediction algorithms of the system will be dynamically updated based on the
AVL and APC data. As soon as the bus arrives or departs a new time point, new
arrival and departure time predictions and new ∆ values for the remaining time
points downstream will be processed.

At the end of each trip, the system records the observed AVL arrival and departure
times as well as the real APC data regarding the number of passenger boardings
and alightings at each bus stop. These data are used to update the system histori-
cal database (link running time and passenger arrival rate at time points) to be
used for the Kalman filter predictions of future trips.
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In addition, the system computes the on-time route performance for each trip by
comparing the actual bus arrival/departure with the schedule arrival/departure
times for all time points. The average on-time performance is automatically calcu-
lated and displayed on the screen for all trips. This feature provides the transit
management with an easy tool to evaluate the route level of service in terms of on-
time performance. The information and analysis provided by this system could
possibly be used for updating and adjusting schedules.

Conclusion
An innovative model was developed for dynamic bus arrival and departure time
prediction. The model is based on two Kalman filter algorithms for the prediction
of running times and dwell times alternately in an integrated framework. As such,
the model can capture the interaction between the two variables (i.e., the effect of
one on the other). The model was shown to outperform other traditional models
(regression and neural network models) in terms of predictive ability when tested
on “hold out” real-world data.  More importantly, the superiority of the model
was even more prominent when tested on two simulated scenarios representing
passenger demand surge (e.g., because of a special event) and lane closure (e.g.,
because of an incident). This is primarily due to continuous updating of the model
parameters based on dynamic real-time data, as opposed to traditional models
which are typically calibrated using historical data, with infrequent recalibration of
the model, if any.

Because dwell time is predicted separately and its effect on bus arrival times at
downstream stops is accounted for, the model can be used for assessing transit
stop-based dynamic control actions (e.g., bus holding, bus expressing). A user-
interactive DSS was developed to provide continuous information on the ex-
pected arrival and departure times of buses at downstream stops; hence the ex-
pected deviations from schedule. The system enables the user to assess in real time
transit stop-based control actions to avoid such deviations before their occur-
rence, allowing for proactive control, as opposed to the traditional reactive con-
trol which attempts to recover the schedule after deviations occur.

The model developed here was based on data from one bus route in downtown
Toronto. However, the same modeling approach is applicable to other medium-
to low-frequency routes where schedule control and dissemination of expected
arrival times are relevant.
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Further work can improve the model developed here in several ways. For example,
better representative distributions of passenger arrivals at bus stops could be
attempted instead of the implied uniform distribution assumed here. Also, fur-
ther investigation is required to develop predictive models for overlapping routes
that serve the same bus stops. In such cases, a special consideration should be
given to dwell time prediction. Finally, the assessment of the model developed
here would be greatly enhanced if tested in the field under both normal and
atypical conditions.
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Transit Network Optimization –
Minimizing Transfers and

Optimizing Route Directness

Fang Zhao, Florida International University
Ike Ubaka, Florida Department of Transportation

AbstractAbstractAbstractAbstractAbstract

This paper presents a mathematical methodology for transit route network optimi-
zation.  The goal is to provide an effective computational tool for the optimization of
large-scale transit route networks. The objectives are to minimize transfers and
optimize route directness while maximizing service coverage. The formulation of the
methodology consists of three parts: (1) representation of transit route network
solution space; (2) representation of transit route and network constraints; and (3)
solution search schemes. The methodology has been implemented as a computer
program and has been tested using previously published results. Results of these tests
and results from the application of the methodology to a large-scale realistic net-
work optimization problem in  Miami-Dade County, Florida are presented.

Introduction
Transit route network (TRN) design is an important component in the transit
planning process, which also includes transit network schedule (TNS) design. A
TRN optimization process attempts to find the route network structure with
optimal transfer, route directness, and ridership coverage. Unfortunately, TRN
design optimization processes suffer from combinatorial intractability, and thus
far for practical transit network problems of large scales, TRN designs seem to be
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limited to the use of various heuristic approaches where the solution search
schemes are based on a collection of design guidelines, criteria established from
past experiences, and cost and feasibility constraints. A systematic mathematical
methodology applicable to large-scale transit networks for TRN optimization
design seems to be missing.

The quality of a TRN may be evaluated in terms of a number of network param-
eters, such as route directness, service coverage, network efficiency, and number of
transfers required. Route directness refers to the difference between the trip
lengths,1 if the trip is to be made by transit or by a car following the shortest path.
Service coverage refers to the percentage of the total estimated demand (mea-
sured by transit trips) that potentially can be satisfied by the transit services based
on a given transit route network. In this study, if the origin and destination of a
potential transit trip are within walking distance of a transit stop and are con-
nected by transit routes, the trip is considered served by the network or “covered.”
Network efficiency reflects the cost of providing transit services within a given
network, other things being equal. Transfers are a result of the inability of a given
network to provide direct service between all pairs of origins and destinations.
Stern (1996) conducted a survey of various transit agencies in the United States,
and about 58% of the respondents believed that transit riders were only willing to
transfer once per trip. This suggests that the ridership of a transit system may be
increased by merely reducing required transfers through the optimization of a
TRN configuration. In addition to increasing ridership, an improved TRN con-
figuration may also reduce transit operating cost and allow more services to be
provided.

For transit systems with small bus route networks, a seasoned planner may be able
to obtain near optimal bus route network results based on personal knowledge,
experience, and certain guidelines. For large transit systems, intuition, experiences,
and simple guidelines may be insufficient to produce even near-optimal transit
route network configurations, due to the problem complexity. Therefore, sys-
tematic methodologies are needed to obtain better TRN configurations. This
paper presents a methodology for TRN structure optimization based on a math-
ematical approach with the objectives of minimizing transfers, optimizing route
directness, and maximizing service coverage (Zhao 2003). The methodology has
been implemented as a computer program and has been tested using previously
published results and a large-scale realistic network optimization problem in
Miami, Florida.
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Formulation of A TRN Optimization Problem
A TRN optimization problem may be stated as the determination of a set of
transit routes, given a transit demand distribution in a transit service area and
subject to a set of feasibility constraints, to achieve objectives that optimize the
overall quality of a TRN. Mathematically, a typical network optimization process
may be stated as: optimize an objective function f(x,y,O)    x     X and y    Y, sub-
ject to certain constraints, where

  
x is a real vector, y is an integer vector (or a set of

vectors), and O is a matrix defined on the network’s node set. X is a space of real
vectors, and Y  is a set of integer vectors

Y = Y

where N is an integer set. A combinatorial optimization problem is a special case of
integer optimization problems and refers to an integer optimization problem
where the integer vector’s component set in vector y(i

1
, i

2
,…, i

s
) is an ordered

subset of a larger integer base set N{n1, n2,…, nn}, i.e., (i1, i2,…, is) d N{n1, n2, …, nn}
and n > s (in this paper, an ordered set is enclosed in parentheses while an unor-
dered set is enclosed in brackets). TRN design is a typical combinatorial optimiza-
tion problem, where the base set N{n1, n2,…, nn} is the set of all street nodes suitable
to serve as transit stops, and the combinatorial set P

N
 is the set of all paths in the

street network suitable for transit vehicle operations. The matrix O = O(oij) repre-
sents the transit demand at street nodes and is the OD matrix as oij represents the
number of transit trips between street node n

i
 and n

j
. This study deals with fixed

transit demand problems. O is assumed to be constant, representing transit de-
mand for a given period of time of day, and does not change with transit supply. It
should be recognized that, in reality, transit demand may depend on transit sup-
ply, thus TRN optimization ideally should be carried out in an iterative manner in
a cycle of demand estimation and route network design. A transit route may be
represented by an integer vector r (i

1
, i

2
,…, i

s
) with its component set (i

1
, i

2
,…, i

s
)

representing the sequence of a transit route’s stops. A transit route network con-
sisting of l routes may be represented by a set of integer vectors,

y    i
1
, i

2
,     ,i

s
      i

j
    N,  j = 1, 2,       , s
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T(l) = T(l){ r1, r2, …, rl }, rj = r (nj1, nj2, …, njs(j)), (j = 1, 2, …, l) (1)

where s(j) is the number of transit stops on transit route rj. •A transit route vector
is a member of the combinatorial space P

N 
, and a transit route network is a subset

of PN.  Based on the above definitions and notations, a fixed demand TRN design
optimization problem may be stated as follows:

Maximize/minimize:

f(x, T(1), O)    x     X and T(1) d PN (2)

Subject to:

      pi (x, T(l)) = 0, (i = 1, 2, …, ip ) and  qi (x, T(l)) < 0, (i = 1, 2, …, iq) (3)

where the real vector x represents any continuous variables in the optimization
process, O is the OD matrix, and expressions in (3) represent various constraints in
a TRN design process. Solving the TRN optimization problem, defined above,
involves the search for an optimal set of feasible transit routes with unknown
topology/geometry. It is difficult to solve problems with a large number of integer
variables, since the associated solution procedure involves discrete optimization,
which usually requires the search for optimal solutions from an intractable search
space (Garey and Johnson 1979).

Literature on TRN Optimization
A great deal of research has been conducted in the area of transit network optimi-
zation. The methods in the literature may be roughly grouped into two catego-
ries: mathematical approaches and heuristic approaches. However, there are no
clear boundaries between these approaches. We consider an approach to be math-
ematical if the problem is formulated as an optimization problem over a relatively
complete solution search space. Generic solution search methods are then em-
ployed to obtain solutions. Examples of such algorithms include various greedy
type algorithms, hill climbing algorithms, simulated annealing approaches, etc.
References and descriptions of various mathematical search algorithms may be
found (e.g., Bertsekas 1998). We consider an approach to be heuristic if domain
specific heuristics, guidelines, or criteria are first introduced to establish a solution
strategy framework. Mathematical programming or other techniques are then
employed to obtain the best results. The main difference between these two ap-
proaches is that the mathematical approach formulates a problem on a solution
space with certain completeness that, theoretically, should include optimal solu-
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tions. In contrast, the heuristic approach formulates a problem directly on solu-
tion sub-spaces defined based on domain specified heuristic guidelines.

Table 1 provides the main features of some of the approaches reported in the
literature, where MATH represents mathematical optimization, and H&M (heu-
ristic and mathematical) means that the author(s) established a solution based on
a heuristic framework, but employed certain mathematical optimization meth-
ods at some solution stages. Most of the studies introduced some heuristics or
certain simplifying assumptions to limit the solution search space or to reduce
optimization objectives to a particular network structure or a few design param-
eters, e.g., route spacing, route length, stop spacing, bus size, or service frequency.
(Detailed information and reviews of various mathematical optimization ap-
proaches may be found in Zhao 2003, among others.)

The advantage of heuristic approaches is that they are always able to provide
feasible solutions to problems of any size while the main disadvantage is that their
results are almost certainly do not provide global or even local optimal solutions.
This may be because heuristic search schemes are usually ad hoc procedures based
on computer simulations of human design processes guided by heuristic rules.
The corresponding search spaces are usually not clearly defined and search results
are likely to be biased toward existing systems or any systems on which the set of
design heuristics are based.

Table 1. Main Features of Some Approaches Used
in Transit Network Design
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Compared with other methods in transit network design, mathematical ap-
proaches usually have more rigorous problem statements. A major disadvantage
of mathematical approaches in TRN design is the computational intractability
due to the need to search for optimal solutions in a large search space made up of
all possible solutions. The resultant mathematical optimization systems derived
from realistic combinatorial TRN problems are usually NP-hard, which refers to
problems for which the number of elementary numerical operations is not likely
to be expressed or bounded by a function of polynomial form (Garey and Johnson
1979). For this reason, existing mathematical optimization solution approaches
to TRN problems are usually applied to relatively small and idealized networks for
small urban areas or medium-sized urban areas with coarse networks. The route
network structures may also be limited to certain particular configurations.

Solution Methodology
Methodology was developed based on the following considerations: (a) the
method should be generally applicable to the design and optimization of a wide
range of TRN problems in practice; (b) the solution method should be as generic
as possible and should not favor particular transit network configurations; and
(c) solutions obtained from this method should give fairly good results in a rea-
sonable amount of time, as permitted by the current computer power affordable
to most transit agencies. Reliability of results should improve as the computer
resource or power increases, and should approach the global optimum when
there is no computer resource limitation.

Representation of Transit Service Area, Routes, and Route Network
A transit service area is represented by a street network, which consists of a set of
street nodes that are connected to each other by a set of street segments. A street
segment, a(n1, n2), may be defined by its two end nodes n1 and n2. In a directed
network, segments a(n

1
, n

2
) and a(n

2
, n

1
) may be different as in the case of one-way

streets or when travel impedance on the same link is different in the two opposite
directions. In this study, only undirected network is considered (i.e., a(n1, n2) and
a(n

2
, n

1
) are considered the same), but the methodology can be easily extended to

directed networks. It is also assumed that the street network is connected; thus,
any two nodes in the street network are connected by at lease one path.

The following is the mathematical representation of a street network.  Denote N(n)

= N(n){n1, n2, …, nn} as the set of n street nodes in a transit service area, then a street
network consisting of m street segments may be written as A(m) = {a1, a2, … am},



Transit Network Optimization—Minimizing Transfers and Optimizing Route Directness

6 9

where ai = ai(ni1,ni2) and ni1, ni2     N
(n) (i = 1, 2, …, m). A path/route between any two

nodes is defined as a sequence of non-reoccurring nodes, or p = p(n1, n2, …, nk),
and there is one street segment, i.e.,  a(n

j
, n

j+1
)    A(m) (j = 1, 2, …, k-1), that connects

any two neighboring nodes. A street network may also be represented through
an adjacency list of street nodes. For a given node, called the master node of the
list, its associated nodal adjacency list consists of all the neighboring nodes that
can be connected to the master node with one street segment. The set of all nodal
adjacency lists of a street network may be expressed as

L(k) = L(k){k
1
, k

2
, …, k

m(k)
}, k=1, 2,..., n (4)

where:

L(k) is the nodal adjacency list of the street node k

kj is the street node number of the jth neighboring node in the list

m(k) is the number of nodes in the list

The TRN T(l) in (2) may also be expressed as a TRN matrix.

T = T [t
ij
], t

ij
 = (5)

In this study, for the purpose of representation uniqueness, it is assumed that the
transit route stop set and the corresponding street node subset are the same.

Representation of Search Spaces for Transit Routes and Route Network
The solution search spaces in this study are locally and iteratively defined, and the
size of a local search space may be flexible based on available computing resources.
A local path space consists of three components: (1) a master path; (2) a key-node
representation of the master path; and (3) a set of paths that are in the neighbor-
hood of the master path. A master path is a path from which a local path space will
be generated. Key nodes are a set of nodes on a master path selected to defined
paths in the local path space. A local path space is derived from the local node
spaces of the key nodes on the master path. An ith order local node space, denoted
as N(i)(k), of a master node k is defined as the set of nodes that can be connected
to the master node with i or fewer street segments. The order of a local node space
provides a measurement of the degree of localization. Figure 1 illustrates a three-
key-node (nodes n1, n2, and n3) representation of a master path (solid line) and the

9
1, if node j is on route i, i=1,2,...,l
0, if node j is not on route i, j=1,2,...,n
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three first order local node spaces, N(1)(n1) = {n1, n11, n12, n13, n14}, N(1)(n2)
= {n2, n21, n22, n23, n24}, and N(1)(n3) = {n3, n31, n32, n33, n34}.

Denote the (i-1)th order local node space of a master node k as N(i-1)(k) = •{k1, k2, …,
k

q(k)
}, where q(k) is the number of nodes in this local node space, then

N(i)(k) = {k1, k2, ..., kq(k)} c L(k1) c L(k2) c ... c L(kq(k)) (6)

where L (kj) is the nodal adjacency list of node kj. A local node space is a subspace
of the street node space N 

(i) 
(k) f N(n). As the order i increases, it will approach to

the original street node space N(n). The procedure to generate a local path space
from a master path has three steps: (1) Select s key-nodes from the node set of the
master path p = p(n

1
, n

2
, …, n

r
), i.e., {m

1
, m

2
, … , m

s
} f {n

1
, n

2
, …, n

r
};

(2) Generate a sequence of local node spaces from these key-nodes,
(N(i)(m1), N(i)(m2),...,N(i)(ms)); and (3) Define the local path space as the set of
paths consisting of piecewise shortest path segments that start from nodes in the
first local node space N(i)(m1), sequentially pass the nodes in each of the interme-
diate local node space N(i)(mj) (j = 2, 3, …, s-1), and end at nodes in the last local
node space N

(i)
(m

s
).  The shortest path segments used to connect nodes in neigh-

boring local node spaces are from a k-level shortest path space PS
(k) that consists of

all the first k shortest paths between any two nodes in the street node space N(n).
(References on algorithms of finding a k-level shortest path space may be found in
Zhao 2003.) The resultant path space, denoted as, P(i)

(k) (p(s)), will be referred to as
the local path space based on the s-nodes representation of the master path p, or
simply the local path space of path p.
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The local network search spaces of a transit network T(l) = {r1, r2, …, rl} is defined as

(7)

where     is a local path space of sj-node representation for master path
rj. It may be seen that as the two numbers i and k increase, a local path space of any
master path will approach to the combinatorial path space P

N
.

    will be the path search space of the corresponding transit route rj. In
general, routes derived from smaller numbers of key nodes will result in better
route directness and smaller local path search space, but their flexibility is also
limited. Routes with larger numbers of key nodes are relatively more flexible to
reach more neighboring nodes, thus may cover more trips. However, this will also
result in larger local path search spaces,  requiring more computing resources.

Integer Constraints for Transit Route Network
Integer constraints in this study include the following: (a) fixed route constraints
prescribing fixed guideway lines or bus routes that are specified by transit planners
to meet certain planning goals, which will remain unchanged during the optimi-
zation process; (b) constraints prescribing starting, ending, or in-between areas
through which transit routes must pass, which may include major activity centers
or transfer points; (c) route length constraints for individual transit lines or for the
entire system; and (d) constraints on the number of transit stops on individual
routes.

Route Directness Constraints
Route directness used in this study is defined as follows:

(8)

where:

s is the number of nodes on route r = r(n1, n2, …, ns)

d
ij

(r) is the distance between nodes n
i
 and n

j
 measured along the transit

route
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dij
(S) is the shortest network distance between nodes ni and nj

 wij are weighting factors

For geometry based route directness, wij = wij
G ≡ 2/(s2 - s), and for ridership based

route directness,

where o
ij
 and o

ji
 are coefficients of the OD matrix. The geometry based route

directness, denoted as dG(r), reflects the average ratio of the two travel distances,
d

ij
(r) and d

ij
(S), between each node pair on route r. A value of dG(r) = 1 indicates that,

on average, transit vehicles on route r travel along the shortest paths between
route stops. The ridership based route directness, dR(r),  represents the average
ratio of the distance a person travels between OD points along transit route r to
the distance traveled along the shortest path. A value of dR(r) = 1 indicates that, on
average, passengers on transit route r travel along the shortest paths between OD
points. Route directness constraints used in this study may be expressed as

         or       (i =1, 2,…,l), where dr
G and dr

R are the two travel di-
rectness constraint parameters. In general, smaller dr

G and dr
R imply better ser-

vices, but may result in higher transit operating cost. Large d
r
G and d

r
R mean that

some potential transit riders may be turned away and that existing transit riders
may be forced to look for other alternatives, thus leading to loss of ridership and,
eventually, higher operation cost.

Network Directness Constraints
Transit network directness has a physical meaning similar to that of the route
directness, except that the directness measurement is based on geometry or rider-
ship characteristics of the entire route network, instead of individual transit routes.

Out-of-Direction (OOD) Constraints
The OOD constraint used in this study is derived from the formulation given by
Welch et al. (1991).  Denote d

ij
(O)(r) as the OOD impact index for travel between

nodes i and j on transit route r, then

d
ij

(O)(r) =  r
ij

(1)(r)[l
ij
(r)-d

ij
]/r

ij
(2)(r)

w
ij 

= w
ij
R ≡
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where:

rij
(1)(r) is the through ridership, or the number of trips on route r that

pass through nodes i and j without boarding or alighting in
between

r
ij

(2)(r) is the OOD ridership, which is the number of trips on route r
that involve either boarding or alighting or both at nodes be-
tween nodes i and j

l
ij
(r) is the distance between nodes i and j along route r

dij is the distance along the shortest path between these two nodes
in the street network

d
ij

(O)(r) represents the extra travel distance that incurs to each through
passenger in order to serve an OOD passenger.

Optimization Objective Functions
Objective functions considered in this study are various trip coverage functions or
their combinations. The goal is to obtain a TRN structure with minimum trans-
fers, while optimizing service coverage. If a trip between an OD pair requires no
transfers, the trip is called a zero-transfer trip, while a trip between an OD pair that
requires k or fewer transfers will be called a k-or-less transfer trip. A k-or-less trans-
fer trip coverage function, or simply a k-or-less transfer function, is defined as the
total number of OD trips that can be accomplished with k or fewer transfers in a
transit network service area. The following is a description of various transfer
coverage functions used in this study. Denote f

k
 as a k-or-less transfer function,

then

      , k = 0, 1, 2, (9)

where

T is the TRN matrix defined in (5)

O  is the OD matrix

h  is a step function that has the property:

h(x) = 1 for x > 0, and h(x) = 0 for x < 0
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Coefficients α ij
(k) in (9) are defined as α ij

(0) =  , α ij
(1) = ,

α ij
(2) =  , αkm =  , and βββββkm =  , where tki, tkj, and tmj

are coefficients of matrix T.  It may be seen that calculation of transfer objective
function, f2, is computational intensive, compared with functions f0 and f1, due to
the great number of arithmetic operations involved to obtain all the required
coefficients.

The use of any of the transfer functions alone as the objective function may result
in the optimization of one TRN parameter at the cost of others. The following are
two objective functions that combine multiple coverage functions, thus giving
more balanced results.

(10)

 , (11)

where

α is a weighting coefficient to penalize uncovered trips during the optimi-
zation process of the TRN system

f
T

is the total number of trips in the transit network service area

The physical meaning of the objective function t2 is the average number of vehicle
boardings that a transit rider has to make to accomplish an OD trip. The optimal
value of t

2
 is 1.0, indicating that all trips are zero-transfer trips. Uncovered trips (f

T

– f2) are penalized by α . The value of α needs to be determined by transit planners.
For example, by setting α = 4, each of the uncovered trips is considered as four
vehicle boardings. In general, the larger the value of α , the greater relative impor-
tance is given to service coverage. The physical meaning of t1 is similar to that of t2.

Algorithm 1—Basic Greedy Search Method
The basic assumption of  Basic Greedy Search (BGS) is that the demand distribu-
tion in a TRN service area has certain continuity. In other words, nodes with
certain transit demands are probably close to nodes with similar demands. In such
cases, it will be more effective in searching for a better solution by evaluating paths
that are near nodes or areas with higher trip distributions. (Detailed description of
various search algorithms used in this study can be found in Zhao 2003.) Assume
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that during a solution search process, an intermediate TRN result T(l) = {r1, r2, … rl}
has been obtained. The solution search procedure for the next stage of BGS method
involves the following steps:

1. Select key nodes from route rj.  For illustration, assume the three-node
representation of route rj is used (see Figure 1), which is denoted as rj

(3).

2. From the three key nodes n
1
, n

2
, and n

3
, generate three first order local

node spaces

N
(1)

(n
1
) = {n

1
, n

11
, n

12
, n

13
, n

14
}

N(1)(n2) = {n2, n21, n22, n23, n24}

N(1)(n3) = {n3, n31, n32, n33, n34}

There are five nodes in each of the three local node spaces.

3. Connect nodes in node spaces N(1)(n1) and N(1)(n3) with the shortest
paths in space P

S
(1), to obtain 5 × 5 = 25 shortest path segments. These

shortest path segments are then extended with shortest paths to nodes
in node space N(1)(n2) to obtain 25 × 5 = 125 paths. These 125 paths form
the local path space of route r

j
, based on three-node representation

.

4. Replace route r
j
 in the existing TRN T(l) with a path r

jk
0  to obtain

T(l) = {r1, …, rj-1, rjk, rj+1,  …, rl}, and perform function evaluation for k = 1,
2, …, 125. If a better result is obtained, replace r

j
 with r

jk
, and go to Step 1

to start a new search. If no better result is found from all the 125 paths rjk0

, go to Step 5.

5. Select the next route from the transit route network, e.g., route r
(j+1)

 and
go to Step 1 to start a new local search for route r(j+1).

6. The search process will be considered converged if no better results can
be found from the local path search spaces of all the individual routes.

Algorithm 2—Fast Hill Climb Search Method
Conceptually, the Fast Hill Climb (FHC) method is similar to the deepest decent
method in continuous research fields. First, l new solutions are formed by replac-
ing one route at a time in the network, with the best route from its local search
space. These l best routes from the local search spaces also make up a new solu-
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tion. These l + 1 solutions are compared and the best one is chosen as the current
solution. Note that the computation process to obtain the l best routes is inde-
pendent to each other, making it suitable for parallel computing.

Numerical Experiments
The first test experiment was based on a real network in Switzerland (Mandl 1979).
This problem was also used by Shih and Mahmassani (1994) and Baaj and
Mahmassani (1991) as a benchmark problem to test their approaches to TRN and
TNS design optimization. Mandl  problem consisted of a street network of 15
nodes with a total demand of 15,570 trips per day. For this particular problem, the
length of a street segment was defined in terms of in-vehicle travel time in minutes.
In Table 2, the first row identifies the source of the solutions to the benchmark
problem. The second row indicates solutions to the benchmark problem with
different numbers of routes, total route length, and/or search methods. The meth-
ods used to obtain the results are indicated in the third row. For each solution, the
unshaded column provides the statistics for the layout produced in the original
studies, and the shaded column gives the statistics for the results produced from
the FHC method developed in this study.

It may seem that the percentages of zero transfer trips were higher for all solutions
produced in this study. Except for Mandl’s original results, all solutions provided
100% trip coverage with zero or one (one-or-less) transfer involved in each trip.

The second experiment involved a large-scale TRN optimization problem based
on the service area of the Miami-Dade Transit Agency (MDTA), encompassing a

Figure 1. Three-Key-Node Representation of Transit Route
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region of about 300 square miles with a population of about 2.3 million. MDTA is
ranked the 16th largest transit agency in the United States. At the time of this
research, MDTA operated 83 transit routes, including a rail rapid transit system of
22.5 route miles (Metrorail), a 4.5-mile downtown automated circulation system
(Metromover), and 81 bus routes with about 4,500 transit stops. The street net-
work used in this experiment consisted of 4,300 street segments and 2,804 street
nodes. In the optimization process, Metrorail and Metromover alignments were
fixed and the longest and shortest bus routes were about 32 miles and 4 miles,
respectively. The total length of the transit system was about 1,300 route miles,
omitting some small loops at the ends of some routes or in shopping centers. The
OD matrix was generated from the 1999 validated Miami-Dade travel demand
model, which provided the daily number of passenger trips between each pair of
traffic analysis zone centroids.  These were manually distributed to the surround-
ing street network nodes with considerations given to land use patterns and
street network connectivity. The total demand was 161,944 daily transit trips.  All
the numerical results were obtained on a personal computer with a 2.8GHz CPU
and 1GB RAM memory. Table 3 presents the results from the BGS and FHC meth-
ods. There were two sets of results produced by each method, one based on an
initial guess network that was the existing route network and the other based on
a program generated initial guess network. The constraints were that the total

Table 2. Comparison of Results from Different Methods
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route length of the network should not exceed that of the existing system by
more than 10%, and that the total number of transit lines remained the same as
the existing system. Two objective functions were used, one maximizing zero-
transfer trips (f0) and the other maximizing one-or-less transfer trips (f1). The
values of the objective functions are given in the shaded cells.

Compared to the existing network, the FHC method with objective function f
0

gave the best zero-transfer trip coverage, with an improvement of 85% (from14.28%
to 26.41%), while the BGS search method yielded an improvement of 84%.  For
objective function f

1
, the FHC method again gave the best one-or-less transfer trip

coverage, with a 48% improvement (from 55.13% to 81.57%). These improve-
ments were achieved with a small increase of 5% in total network route mileage.
Assuming most transit riders may be only willing to transfer once per trip (Stern
1996), the one-or-less trip coverage shown in the fourth row would be the actual
total trip coverage of the corresponding route networks. The remaining trip de-
mand either required two or more transfers or were not satisfied.

Table 3. Comparison of Results with the Existing Network
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The number of covered trips per route mile shown in Table 3 was defined as

 = 

where

f
2

was the number of trips accomplished with two-or-less transfers

lT was the total length of the TRN

As a network efficiency indicator, the best  value was given by the BGS
method with f1 as the objective function. The average transfers were defined as
[f0 + 2(f1 - f0) + 3(f2 – f1)]/f2, which was the average number of boardings per transit
rider who could complete a trip with two or fewer transfers. For the same objec-
tive function, the FHC method produced slightly better results than the BGS
method. It may be seen that the differences in results produced by the BGS and
FHC search methods were insignificant, but the BGS method was significantly
faster than the FHC method.

Table 4 presents results obtained from composite trip coverage functions t
1 
and t

2

described in (10) and (11), with the shaded cells indicating the objective function
values. The penalty a was set at 4 in both functions t1 and t2. It may be seen that
improvements in various trip coverage functions were consistent instead of being
achieved at the cost of each other, as in the case of single trip coverage function
shown in Table 2. Overall, FHC produced slightly better results than those from
method BGS, but at a higher computational cost.

Conclusion
The methodology developed from this work has a systematic mathematical state-
ment of TRN problems, including the definition of various objective functions,
solution search spaces, and constraint conditions commonly used in transit plan-
ning fields, and a systematic scheme that flexibly defines solution search spaces
based on available computing resources and/or optimization problem sizes. Two
local search schemes have been developed to obtain results for large-scale practical
problems in a reasonable amount of time.

The feasibility of the proposed method has been tested through practical TRN
optimization problems of realistic sizes. Numerical results showed that the meth-
odology developed in this work was capable of tackling large-scale transit network
design optimization problems. Further improvements may include development
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of TRN optimization methods that consider dynamic transit demand, demand
and travel time in different time period of a day, and waiting and transfer penalties.
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Endnote
1Depending on particular applications, length/distance may refer to either geo-
metric length/distance or travel time.

Table 4. Comparison of Results with Existing Networks
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Issues and Options
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AbstractAbstractAbstractAbstractAbstract

Bus rapid transit (BRT) is a flexible, high performance rapid transit mode that com-
bines facilities, equipment, service and intelligent transportation system (ITS) ele-
ments into a permanently integrated system with a quality image and unique iden-
tity. Vehicles are an extremely important component of BRT systems, because they
not only contribute significantly to BRT’s image and identity, but also play a strong
role in achieving measurable performance success.

Vehicle-related planning and design issues confront BRT planners in seven basic areas:

1. Capacity, External Dimensions

2. Internal Layout

3. Doors

4. Floor Height

5. Propulsion Systems

6. Vehicle Guidance

7. Aesthetics, Identity and Branding

This paper draws heavily on 26 case studies documented in TCRP Project A-23
(Levinson, Zimmerman, et al. 2003).  It also reflects experience from newer BRT
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systems and concludes with a series of general principles and guidelines for vehicle
design, selection, and use in BRT applications.

Introduction
BRT is a flexible, high performance, rapid transit mode that combines facility,
equipment, service and ITS elements into a permanently integrated system with a
quality image and unique identity. Its constituent elements include:

1. Running ways

2. Stops, stations and terminals

3. Vehicles

4. Services

5. Intelligent transportation systems

6. Fare collection

BRT must be planned as an integrated system ideally suited for the markets served
and the application’s physical environment. Having a quality image and a unique
identity distinct from the rest of the transit (i.e., local bus) system are also impor-
tant BRT attributes.

Vehicles may be the most important element to user and non-user perceptions of
a BRT system’s quality. Vehicles also play a strong role in determining real perfor-
mance in terms of speed, reliability, and cost. They are critical from the perspective
of customers, the community as a whole, and the operating entity for a number
of reasons. First, vehicles have a strong effect on every aspect of measurable system
performance.

• Propulsion systems impact revenue service times (thus, ridership and rev-
enue), emissions (air pollutant and noise) and operating and maintenance
(OM) costs.

• Seating, floor height, floor plan, and door configurations impact stop
dwell times, hence, revenue service times and reliability.

• Physical size, aisle width, number of doors and their width and position,
and seating numbers and configuration are important determinants of
BRT system capacity.
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Second, since potential new transit customers as well as existing ones are exposed
to BRT vehicles, their design impacts community and customer perceptions of
the quality of the entire system. This perception is primarily visual and aesthetic,
but it also relates to impacts such as noise and air emissions.  Although not as
important as time and cost in effecting mode choice, image and brand influence
the willingness of new customers to try BRT. This willingness to ride transit trans-
lates into additional ridership, revenue and other related benefits, as do perfor-
mance factors such as travel time and reliability.

One of the major products of TCRP Project A-23 (Levinson, Zimmerman, et al.
2003) was the documentation of 26 case studies of BRT systems around the world
and the results of their assessments into a number of summary observations.  The
synthesis showed that the proliferation of BRT systems has accelerated the trend
toward more rubber-tired transit vehicle specialization, away from the one-size-
fits-all (i.e., 40-foot [12 meter]) bus to perform all surface transit functions.  More
attention is being paid to the nature of the markets being served, service offered,
and customer and non-customer perception of vehicle quality.

The discussion below provides planners with information that can help them
make better vehicle choices. It summarizes observations relating to BRT vehicles
from the case studies and other, more recent BRT applications, as well as the TCRP
BRT guidelines.  It is organized around seven basic themes:

1. Capacity, External Dimensions

2. Internal Layout

3. Doors

4. Floor Height

5. Propulsion Systems

6. Guidance

7. Aesthetics, Identity and Branding

Capacity and External Dimensions
In nearly all of the 26 case studies, demand was heavy, ranging up to 20,000 or
more passengers per hour.  That utilization of high capacity (e.g., articulated buses)
vehicles with a total capacity (standing + seated) of at least 65 places was essential
for either system capacity and/or OM cost reasons. In the case of Los Angeles
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MTA’s MetroRapidBus and Boston MBTA’s Silver Line, BRT services were initiated
with 40-foot (12 meter) vehicles, because long procurement times for larger (60-
foot [18 meter]) vehicles would have delayed the start of service.    Both the LA and
Boston systems planned to have 60-foot vehicles.  Eaarly on, demand had nearly
outstripped the capacity of the 40-foot vehicles.

Less than one year after opening, some of the originally planned 60-foot (18 meter),
low-floor (Neoplan CNG) vehicles are in operation on the Silver Line.  In LA, 60-
foot low-floor (NABI CNG) vehicles are on order after approximately three years
of operation.   Several BRT applications in South America and Europe, such as
Curitiba and Sao Paulo, Brazil; Nancy, Nice and Caen, France; and Utrecht, Nether-
lands, operate double articulated vehicles of up to 83 feet (25 meters) in length,
having a capacity of over 120 total places (at North American loading standards).

Given the high demand nature of many BRT routes and services, transit operators
are increasingly using large (over 40-foot) vehicles. The use of unusually large (for
the given community) rolling stock adds to BRT’s distinct identity, while the extra
capacity is helpful for financial, service, and operational efficiencies.

Table 1 shows the external dimensions and capacities (computed for a standee
density of 3 standees per square meter) for typical vehicles used in BRT applica-
tions.

Table 1. Dimensions and Capacities of Typical U.S. and Canadian
BRT Vehicles

Length Width Floor Height No. of No. of Maximum
(Feet) (Inches) Door Seats Capacity*

Channels (including seated plus
seats in standing

wheelchair
tiedown

areas)

40 (12.2 m) 96-102 13-36 2-5 35-44 50-60
(2.45-2.6m) (33-92 Cm)

45 (13.8 m) 96-102 13-36 2-5 35-52 60-70
(2.45-2.6m) (33-92 Cm)

60 (18 m) 98-102 13-36 4-7 31-65 80-90
(2.5-2.6m) (33-92 Cm)

80 (24 m) 98-102 13-36 7-9 40-70 110-130
(2.5-2.6m) (33-92 Cm)

* Computed at Standee density of 3/mtr2
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Interior Configuration
The interior configuration of BRT vehicles influences both passenger capacity and
comfort. As noted, the overall capacity of transit systems is influenced by a num-
ber of vehicle-related factors, and the interior configuration is one of the more
important factors. Easy and rapid passenger boarding, alighting and internal cir-
culation can minimize dwell times. BRT vehicle interior layouts usually include
large standing/circulation areas around doors. These aid boarding, alighting, and
circulation and can also function as storage areas for baby carriages, bicycles, and
wheelchairs, explicitly supporting the mobility needs of the entire community.

Aisle width also influences vehicle capacity. Most conventional low-floor vehicles,
even those with a step-up to the rear portion of the vehicle, have a minimum aisle
width between the rear wheel wells (second and third axle on articulated vehicles)
of about 24 inches (60 cm).  The constraint on aisle width here is the need to
accommodate tires and mechanical components; however, some specialized BRT
vehicles have independently-suspended single, extra-wide, extra-strength tires with
electric motor and gearboxes inside. This allows a wider aisle (maximum width of
about 34 inches (87 cm), permitting easier in-vehicle circulation, lower passenger
service and stop dwell times. Irrespective of the running gear utilized, where there
is 2+2 perpendicular seating, the required width of seat banks and the wall of the
vehicles will constrain aisle widths to no greater than approximately 24 inches (60
cm).

In rapid turnover markets with relatively short trip lengths (e.g., various European
applications, Las Vegas Blvd., Denver Mall), planners have elected to maximize
capacity and ease of circulation rather than maximizing the number of seats.  Be-
cause many transit operators have policies that no customer should have to stand
in excess of 20-30 minutes, for longer average trip length markets (e.g., suburb to
urban corridors like Pittsburgh’s busways and Ottawa’s Transitways), interiors are
usually configured to maximize seating.

The interior of the Irisbus Civis, used on the Rouen, France TEOR system (Figure
1), illustrates the trade-off between the number of seats, standee area, and aisle
width when serving a dense urban corridor with significant passenger turnover.
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Doors
Number, Width
Irrespective of how fares are collected, a large number of wide doors will lower
passenger service/stop dwell times.  Wider doors provide lower friction than nar-
row doors and if wide enough, can support either multiple stream boarding or
alighting, or simultaneous boarding and alighting. Multiple doors can also result
in a better distribution of passengers within the vehicle, thus taking full advantage
of available capacity.  However, a given vehicle cannot have the maximum number
of double stream doors (e.g., up to three on a 40-foot [12 meter] vehicle and up
to four on a 60-foot [18 meter] vehicle) and still have the maximum number of
seats, since seats are always tied to the outside wall of a vehicle.

Figure 1. Interior, Irisbus Civis Specialized BRT Vehicle, TEOR,
Rouen, France
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A commonly used rule of thumb for the number of boarding and alighting chan-
nels in the U.S. is to have at least one channel per 10 feet of BRT vehicle length for
typical radial, suburb - CBD corridors, assuming off-board fare collection.   For
dense corridors where significant, simultaneous boarding and alighting take place,
an even larger number of passenger service streams in the same vehicle length may
be warranted. For an express operation where virtually all customers alight in the
AM peaks and board in the PM peaks at a limited number of all boarding or all
alighting stops, fewer channels may be appropriate.

The Van Hool A300 60-foot (18 meter) articulated bus (Figure 2) operated by RTL
from the south shore of the St. Lawrence River to Montreal, illustrates door num-
ber and placement for a conventional articulated bus used in a BRT-like service.
Note the three double stream doors compared to the two narrower doors nor-
mally found on buses of the same size used for local service in the U.S.

Figure 2. Door Arrangement, Van Hool A300 60-Foot Low Floor
Articulated Bus, RTL, Longueuil (Montreal), Quebec
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Placement
The major objective affecting door placement is the need to ensure even passen-
ger loading and unloading across the length of the respective vehicles. Accord-
ingly, doors should be positioned to divide BRT vehicles into sections of roughly
equal capacity and circulation distances. A number of recent BRT applications
(e.g., Las Vegas and various European and South American systems) have an even
distribution of doors and entry/exit streams across vehicle length.

Both conventional buses and specialized vehicles are also available with doors on
either the left side (e.g., the Volvo and Mercedes vehicles in Bogota, Colombia and
Curitiba, Brazil) or both sides. For years, trolley buses using the tunnel to access
Harvard Square Station on the MBTA Red Line had doors on both sides.  This is
done to allow vehicles to use center platforms exclusively, as for the South Ameri-
can systems, or both the center and side platforms, as planned for a number of
U.S. systems such as Cleveland.

Floor Height
BRT vehicles can have one of three basic floor heights: (1) 100% low floor; (2)
partial low floor (usually about 70%); and (3) high floor.  Low floors (or the low
floor portion of partially low-floor vehicles) are typically 11-13 inches from the
pavement, while high-floor vehicles are typically from 25 inches to as much as 35
inches above the pavement.

High-floor vehicles have an advantage in BRT applications where absolute maxi-
mum carrying and/or seated capacity is necessary, because little or no interior
space is consumed by wheel wells, under-floor mechanical equipment, fuel tanks,
etc. However, they may have inordinately high boarding and alighting times, un-
less used in conjunction with some way of assuring no-gap, no-step boarding and
alighting. Rapidly deployed door bridges or door flaps have been used for this
purpose in high volume BRT applications in South America (Quito, Curitiba, and
Bogota).   The major disadvantage of high-floor vehicles is that they can usually be
used only at stations with high platforms, thereby limiting operating/service flex-
ibility. This issue could be overcome, as has been done on some light rail transit
(LRT) systems, by having no-step high platform boarding on one side of the
vehicle and stairs to permit boarding from low platform stations on the other
side.

One hundred percent low-floor vehicles have the great advantage of low board-
ing and alighting times and the ability to place a door behind the rear axle. How-
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ever, 100% low floor designs also typically lose between 4 and 8 seats to wheel well
intrusion, even where relatively small wheel and tire sizes are used. Another disad-
vantage of 100% low floor designs is that mechanical and electrical equipment and
fuel tanks must either be stored inside the vehicle, where they take up space, or
put on the roof, where they are difficult to service.

Low profile tires and minimum wheel travel of low floor vehicles may also contrib-
ute to poor ride quality. A final disadvantage of 100% low floor vehicles is the
difficulty of packaging conventional mechanical drive trains consisting of an en-
gine, hydraulic-mechanical transmission, connecting drive shafts, a differential,
and an axle. One hundred percent low floor designs with this type of drive train
can also lose up to four seats or the equivalent standing area merely due to the
engine and drive train’s intrusion into the vehicle  (see Van Hool’s A300 series of
vehicles).   The reason that many low floor specialized BRT vehicles have electric
drive trains utilizing hub-electric motors and a single wheel on each side bogies
with special wide, high-load limit tires is to avoid propulsion and suspension
system packaging difficulties.  These features contribute to acquisition cost, weight,
and maintenance complexity.

Propulsion Systems
Low air and noise emission vehicles are extremely desirable for BRT, especially in
situations where frequent services converge, such as near or in central business
districts (like Pittsburgh, Miami, Brisbane, and Ottawa). With busway volumes
often exceeding 100 or more per hour in two directions, community acceptance
may depend on use of low air and noise emission vehicles. Low on-board noise
levels are also desirable from a customer perspective. Three basic types have been
used in BRT applications in North America.

1. Internal combustion, hydraulic-mechanical transmission

2. Dual mode, diesel-electric

3. Internal combustion/electric hybrid

Internal Combustion Engines, Hydraulic-Mechanical Transmissions
The most common propulsion plant, and the one most likely to be used if a
conventional bus is selected for a BRT application, is the internal combustion
engine (i.e., clean diesel, CNG spark ignition) driving an automatic hydraulic-me-
chanical transmission. There have been significant improvements to this type of
drive train over the last two decades in response to the need to reduce emissions.
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Electronically controlled, drive-by-wire clean diesel engines will have significantly
reduced particulate, hydrocarbon, and CO emissions from pre-emissions control
level by orders of magnitude. Exhaust gas recirculation promises to do the same
for NOx emissions.

Available electronically controlled, clean diesel engines and self-cleaning (regener-
ating) catalytic converters enabled by ultra low-sulphur fuel can have even lower
particulate and hydrocarbon emissions than CNG spark ignition engines (but
with slightly higher NOx emissions). The catalytic converter/ultra low sulphur fuel
combination also contributes to reductions in noxious-smelling hydrogen sul-
phide gas emissions.

Contemporary spark ignition CNG engine systems have low particulate emissions
and can be quieter than current diesel engines, but suffer from higher total system
weight, have relatively high operating and maintenance costs, and higher initial
capital costs of about $50,000 per vehicle. They also have additional fuelling infra-
structure costs compared to clean diesel vehicles. Advances in CNG engine and
fuel storage technologies may lower CNG vehicle weight and operating costs in
the future.

Dual Mode/Dual Power
Dual mode vehicles essentially combine a full performance electric trolley bus with
an internal combustion engine (e.g., diesel, CNG) that is also capable of providing
full, stand-alone performance. Dual mode vehicles, therefore, have the advantages
of both trolleys and conventional buses with internal combustion engines.   Elec-
tricity is obtained from overhead contact wires for part of a given route’s trajec-
tory, typically in an environmentally sensitive city center or tunnel (like Seattle and
Boston).  Where an overhead contact system cannot be installed or used, (e.g., a
freeway) or is not economical, these vehicles have full performance capabilities
using an internal combustion engine.

Dual mode vehicles are attractive for BRT because they can combine the perfor-
mance, environmental, and permanence advantages of trolleybuses, with the flex-
ibility of conventional buses. The main disadvantages of dual mode vehicles are
their greater weight and both initial and ongoing increased costs. Rather than
needing to maintain a single internal combustion engine/hydraulic-mechanical
transmission, dual mode vehicles usually require more maintenance effort and
cost, because they have more components.
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Hybrid Internal Combustion Engine/Electric
Hybrid vehicles combine an internal combustion engine (e.g., clean diesel, gaso-
line, CNG-fueled spark ignition, or gas turbine) with a drive system incorporating
an electric motor/generator or motor/alternator and an on-board energy storage
medium.  Contemporary hybrid vehicles can perform significantly better than
other vehicles in terms of noise, emissions, fuel consumption and acceleration.
While hybrid vehicles are cruising, coasting, braking, or stopped at idle, the inter-
nal combustion engine can produce energy for storage, and using the electric
motor as a generator/alternator during braking also reduces brake wear and tear.
Peak noise levels are reduced, since high engine speeds are not required to provide
power for acceleration or to climb hills.  Peak requirements are met by stored
energy being dumped into the system’s motor/generator. The internal combus-
tion engines used in hybrids are also smaller and lighter for the same reason. Air
pollution and fuel consumption advantages stem from the more constant load
on the internal combustion engine and the ability to tune the engine for peak fuel
economy.

M.J. Bradley, Inc. and the University of West Virginia (2001) reported that hybrid
vehicles using clean diesel engines with low sulphur fuel have better emissions
characteristics than pure CNG engines.  Revenue service experience in Seattle with
a prototype of the hybrid diesel-electric vehicles they recently purchased also sug-
gests significantly better fuel economy and better acceleration than standard die-
sel equipment.

Guidance
Guided vehicles, used in conjunction with stations having platforms at the same
height as vehicle floors, can be expected to have boarding and alighting times
similar to those on heavy rail and some LRT systems, or approximately 2-3 seconds
per person per channel (25-35% savings), compared to passenger service times for
conventional buses or streetcars with steps of 4 or more seconds per passenger
per channel.

No-step, no-gap boarding and alighting can also significantly reduce the time it
takes for customers carrying packages, having disabilities, and/or with children in
strollers to board and alight from BRT vehicles. This, combined with wide aisles,
can significantly reduce passenger service times for these customers, thereby im-
proving schedule reliability. Guided vehicles also have advantages in terms of riding
comfort and right-of-way width for dedicated transitways. (As previously noted,
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another way to provide no-step boarding is through the use of vehicles with a
ramp or bridge deployable at stations). The use of guided vehicles with narrow
transitway lane widths has also been cited as a transit-only enforcement tool.

There are two basic types of vehicle guidance systems: mechanical and electronic.
The first mechanical guidance system for buses was originally developed for the O-
Bahn by Mercedes-Benz (now Evo-Bus). This guidance approach, similar to that
utilized on the rubber-tired automated people mover systems found at airports,
has been proven in service for many years in Essen, Germany and Adelaide, Austra-
lia and in newer, non-O-Bahn applications in a number of British cites, such as
Leeds.  These systems utilize a pre-cast, concrete track with low vertical side rails or
curbs that are contacted by laterally mounted guide wheels that, in turn, are
connected to the vehicle steering system’s idler arm. More recent guidance sys-
tems (as seen in Bombardier’s GST and the Translohr BRT vehicles) use a light-
duty track embedded in the pavement to provide guidance and to serve as an
electric return for the vehicle’s electric power system.

O-Bahn type mechanical guidance systems add about $10-20,000 USD to the cost
of each vehicle (depending on the numbers involved) along with some weight
and complexity, while the incremental cost of the curbs necessary to guide the
vehicles will depend on whether there are already curbs on the respective running
ways. The mechanical systems using curbs provide positive guidance and are safe
at relatively high operating speeds (in the case of the O-Bahn, over 60 mph [100
kph]).

One important new development in BRT vehicles is the use of advanced electronic
technologies (ITS) to provide lateral and even longitudinal vehicle guidance. These
systems, as distinct from mechanical guidance technologies, replace physical infra-
structure with inexpensive-to-implement magnetic or optical markers on or in
the running way. Because of their ease of driver-steered vehicle entry and extrac-
tion, the operator can take over at any time and they are compatible with operat-
ing plans that feature mixed local and express operations on a single guideway.

There are two types of electronic guidance systems currently in BRT operation: (1)
optical, in which a video camera detects the position of a vehicle relative to painted
lines on the pavement and steers via a servo motor in the steering mechanism,
developed by Siemens and implemented on the Irisbus Civis vehicle; and (2) mag-
netic, that works essentially the same way as optical, but uses magnets buried in
the pavement.  The FROG system was implemented on the VL/APTS Phileus.
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Figure 3 illustrates the docking accuracy possible with electronic guidance sys-
tems. Customers easily board and alight from electronically-guided Iris bus Agora
and Civis vehicles used on the TEOR System in Rouen, France.

The current incremental costs of the electronics and steering servos necessary to
make the ITS- driven guidance systems work are currently in the neighborhood of
$75-100,000 USD per vehicle.  This cost is expected to come down after manufac-
turers recover research and development costs.   Infrastructure costs associated
with the systems are modest, since no infrastructure beyond embedded magnets
or painted stripes on running way pavements are necessary.  A downside of these
systems is that they lack the high-speed safety of positive, mechanical guidance.

Aesthetics, Identity and Branding
A unique vehicle identity for a particular BRT service, achieved through livery
(paint schemes, colors, icons) and/or design, not only positions the system vis-à-

Figure 3. Boarding and Alighting Electronically Guided Irisbus Agora
and Civis Vehicles, TEOR, Rouen, France
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vis the rest of the transit system, emphasizing functional differences, but also tells
the large number of infrequent customers (as high as 35-40% of overall ridership
on many rail-based rapid transit systems) where they can board. System branding
and identity convey important customer information such as routing and sta-
tions served.  Vehicle design can complement maps, signs, and other information
sources, further enhancing transit ridership.

Compare the exterior look of a specialized BRT Vehicle, the 60-foot articulated
Irisbus Civis, to be used for Las Vegas’ MAX line (Figure 4), with the conventional
bus, an Orion 5, operated by Fairfax County, Virginia in the Dulles Corridor (Fig-
ure 5). Both vehicles are attractive and popular in their respective markets. The
Fairfax County Connector bus, however, is essentially the same as vehicles serving
other routes terminating at the same intermodal transfer facility (West Falls Church
MetroRail Station).

Figure 4. Exterior Design, 60-Foot Irisbus Civis Specialized BRT Vehicle,
Vegas Blvd. MAX, Las Vegas, Nevada

The uniquely styled Civis, on the other hand, is only used in places where it oper-
ates for specialized BRT services, sending a visual cue as to stopping locations and
routes for the respective rapid services and advertising the BRT system as provid-
ing a distinct service.
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The low floor CNG Neoplan articulated vehicle used on MBTA’s Silver Line in
Boston (Figure 6) illustrates the creative use of color and livery on conventional
equipment to provide a distinct image and identity, matching the color, route
name, and map color. Contrast that with the livery of the 40-foot Nova Bus RTS
used in regular MBTA local bus service (Figure 7).   Such a branded appearance can
distinguish a bus in BRT operation from one in local bus service. The vehicle livery
and icon or flag should be different from other buses, but match that of BRT
stops, stations, and terminals, information signs, graphics, and all printed matter.
In this way, it emphasizes that BRT is an integrated system.

Figure 5. Exterior Livery and Design, Orion 5 40-Foot Bus, Fairfax County
Connector Dulles Corridor Express Services, Fairfax, County, Virginia
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As of 2003, at least five European bus manufacturers (Irisbus, Bombardier, Neoplan,
APTS/VDL, and Translohr) have designed and built specialized BRT vehicles with
an LRV-like exterior appearance, interior, and other features such as guidance. In
Europe and South America, Volvo has BRT vehicle projects under way, while in
North America, both New Flyer (Invero) and North American Bus Industries

Figure 6. Exterior Livery, Neoplan 60-Foot CNG Articulated Bus,
Silver Line, MBTA, Boston, Massachusetts

Figure 7. Exterior Livery, Nova Bus RTS 40-Foot Bus, Local Bus Service,
MBTA, Boston, Massachusetts
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(Compobus) have BRT vehicle projects either in production or close to the pro-
duction of prototypes. Examples of their features include large sizes and distinct
shapes (lengths from 45-83 feet [13.8 to 25 meters]), large, panoramic passenger
windows, dramatically curved front windscreens, multiple doors, lateral guid-
ance/precision docking, quiet, internal combustion-electric hybrid propulsion,
and the option for the driver position to be in the center of the vehicle.

Conclusion
The importance of vehicles to the overall success of BRT systems cannot be over-
stated. Vehicle design affects every aspect of system performance and cost, and
their appearance, both external and internal, is a key contributor to the system’s
image, identity and position in the transportation marketplace.

Based on documented experience to date, the following general guidelines should
be considered in BRT system planning and project development:

• Vehicles should be planned and ultimately specified as a function of the
type of services offered (e.g., local versus express, mixed) and the nature of
the markets served (e.g., short non-work non-home related trips versus
long home to work trips).

• Vehicles should provide sufficient passenger capacity at comfortable load-
ing standards (i.e., 3 standees per square meter in North America) for
anticipated ridership levels and planned service structure and frequencies.
Lengths ranging from 40-45 feet (12.2 - 13.75 meters) for single unit ve-
hicles through double articulated  (82-foot [25 meters]) vehicles are in
successful revenue service and can be considered.

• Vehicles should have high passenger appeal, be environmentally friendly,
easy and   convenient to use, and comfortable. Desirable features include
air conditioning, bright lighting, panoramic windows, and real-time pas-
senger information.

• Vehicles should be easy and rapid to board and alight. Low floor heights
(i.e., less than 15 inches [38 cm]) above pavement level) are desirable unless
technologies permitting safe and reliable level boarding and alighting (e.g.,
rapidly deployed ramps/bridges, some type of precision docking mecha-
nism) can be used.

• A sufficient number of doors having sufficient width should be provided,
especially where off-board fare collection is provided. Generally, one door
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channel should be provided for each ten feet of vehicle length.  Vehicles
with doors on either or both sides are available and can enable use of side
and/or center platform stations.

• The mix of space devoted to standees and seating will depend on the type
of service and nature of the market served (e.g., express versus local). Be-
cause a seated passenger occupies more space than a standee, total capac-
ity is higher where the number of seats is lower, all else being equal.

• Wide aisles and sufficient circulation space can lower dwell times and allow
for better distribution of passengers, especially to the rear of articulated
vehicles.

• Cost-effective bus propulsion systems are available for revenue service that,
compared to conventional diesel engine/hydraulic mechanical systems:

- virtually eliminate particulate emissions

- are environmentally friendly in terms of CO, HC and NOx emissions

- are relatively quiet

- get improved fuel economy

- accelerate faster.

• There are mechanical and electronic guidance systems in revenue service
that can enable rail-like passenger boarding and alighting convenience
and service times at stations, reduce right-of-way requirements, and pro-
vide a more comfortable ride than conventional buses.

• Vehicles should be well proven in revenue service before being introduced
in large numbers for intense BRT operations. Controlling risk is extremely
important in the operation of highly visible services.

• BRT operations with standard vehicles in use on other parts of the respec-
tive system are acceptable, as long as distinct livery (color schemes), graph-
ics, icons, and other means are employed to provide a unique identity and
image.  No special features are required to provide acceptable capacity,
levels of service, and passenger attractiveness.

• Even where standard buses are used for BRT operations, consideration
should be given to internal layouts and door numbers and configurations
consistent with the markets served and service provided.
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• Use of specialized BRT vehicles is often desirable for high volume trunk
routes where the operational benefits of the specialized vehicles will offset
their incremental costs.

• Cost should be considered on a life cycle basis, as some of the features that
add to initial acquisition costs (e.g., guidance, hybrid drives, stainless steel
frames, and composite bodies) have the potential to reduce ongoing op-
erating and maintenance costs, increase passenger revenue, and add to
vehicle service life.

• It is critical that vehicle planning and design be fully integrated with plan-
ning and design for other BRT elements such as running ways, stations,
fare collection, and service plans, if the overall system is to achieve its maxi-
mum effectiveness and efficiency.
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