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Estimation of Bus Arrival Times
Using APC Data

Jayakrishna Patnaik, Steven Chien, and Athanassios Bladikas
New Jersey Institute of Technology

Abstract

Bus transit operations are influenced by stochastic variations in a number of factors
(e.g., traffic congestion, ridership, intersection delays, and weather conditions) that
can force buses to deviate from their predetermined schedule and headway, resulting
in deterioration of service and the lengthening of passenger waiting times for buses.
Providing passengers with accurate bus arrival information through Advanced Trav-
eler Information Systems can assist passengers’ decision-making (e.g., postpone de-
parture time from home) and reduce average waiting time. This article develops a
set of regression models that estimate arrival times for buses traveling between two
points along a route. The data applied for developing the proposed model were
collected by Automatic Passenger Counters installed on buses operated by a transit
agency in the northeast region of the United States. The results obtained are promis-
ing, and indicate that the developed models could be used to estimate bus arrival
times under various conditions.

Introduction

Public transportation planners and operators face increasing pressures to stimu-
late patronage by providing efficient and user-friendly service. Within the context
of Intelligent Transportation Systems (ITS), Advanced Public Transportation Sys-
tems (APTS) and Advanced Traveler Information Systems (ATIS) are designed to
collect, process, and disseminate real-time information to transit users via emerg-
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ing navigation and communication technologies (Federal Transit Administration
1998). One of the key elements and requirements of APTS/ATIS is the ability to
estimate transit vehicle arrival and/or departure times. With quickly expanding
APTS-related technologies (e.g., Global Position Systems [GPS], Automatic Ve-
hicle Location Systems [AVLS] and Automatic Passenger Counting [APC] sys-
tems), ATIS could provide timely vehicle arrival and/or departure information to
en-route, wayside, and pretrip passengers for managing their journeys (Kalaputapu
and Demetsky 1995; Abdelfattah and Khan 1998; Chien and Ding 1999; Dailey,
Maclean, Cathey, and Wall 2001; Lin and Padmanabhan 2002).

To estimate vehicle arrival times, dynamic models may be developed using accu-
rate data collected by new technologies (e.g, AVLS and APC). Since bus travel
times between stops depend on a number of factors (e.g., geometric conditions,
route length, number of intermediate stops and intersections, turning move-
ments, incidents, etc.), stochastic traffic conditions along the route and ridership
variation at stops further increase uncertainties. Thus, the goal of this study is the
application of quantitative and qualitative data to develop creditable models for
estimating reliable bus arrival times.

In this study, bus arrival time estimation models are developed on the basis of data
collected by APC units installed in buses. One should be surprised if a new tech-
nology works exactly as intended and generates accurate dataimmediately after its
deployment. APC systems should be no exception. Therefore, the purpose of this
article is not only to develop models for estimating bus arrival times, but also to
explore problems that could be encountered while processing data collected by
the APC units.

Literature Review

Bus arrivals at stops in urban networks are difficult to estimate because travel
times on links, dwell times at stops, and delays at intersections fluctuate spatially
and temporally. The joint impact of these fluctuations may cause schedule and
headway deviations as a bus moves farther from the starting terminal, thereby
lengthening the average waiting time for transit users and consequently degrad-
ing the quality of service. A sound model, which could accurately estimate vehicle
arrival times, would be capable of mitigating such impact to a large extent. How-
ever, developing such a model while considering the effects of time and space,
varying traffic, ridership, and weather conditions is a challenging task.
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AVLS, smart pager, and ATIS devices used by transit operators can provide useful
information. However, these devices fall short when it comes to estimating the
travel times between any two downstream stops and the arrival times at each
downstream stop from the point of real-time observation. An arrival time estima-
tion model at every downstream stop can be developed by establishing stop-to-
stop travel times as a function of several significant variables (e.g.,, distance, num-
ber of intermediate stops, total intermediate bus halting time, and time of day) to
supplement the services offered by ATIS devices (Abdelfattah and Khan 1998).

A variety of prediction models developed in previous studies were reviewed and
they can be classified into univariate and multivariate forecasting models (Chien,
Ding, and Wei 2002). Univariate forecasting models are designed to predict a
dependent variable by describing the intrinsic relationship with its historical data
mathematically. The commonly used univariate forecasting models include proba-
bilistic estimation and time series models (Okutani and Stephanedes 1984;
Stephanedes, Kwon, and Michalopoulos 1990; Delurgio 1998).

These methods usually have a short time lag while predicting in real-time. The
accuracy of time series models highly relies on the similarity between real-time and
historical traffic patterns. Variation of the historical average could cause significant
inaccuracy in prediction results (Smith and Demesky 1995). Unlike univariate
models, multivariate models can predict and explain a dependent variable on the
basis of a mathematical function of a number of independent variables. The com-
monly-used multivariate models are regression models and state-space Kalman
filtering models (Okutani and Stephanedes 1984).

Historically, regression models (both linear and nonlinear) have been popular
because they are relatively easy to use, well established, comparable with other
available procedures, and well suited for parameter estimation problems.
Abdelfattah and Khan (1998) developed linear and nonlinear regression models
with simulation data to predict bus delays and the simultaneous influence of
various factors affecting delay. They obtained relatively promising results by using
a microsimulation approach.

In this study, regression models were developed using data collected by APC units
installed in buses to estimate vehicle arrival times at all downstream stops. These
models are developed using path-based data (e.g., travel time between two stops
along the route), and the travel times are defined as a function of ridership and
other external independent factors. Nonetheless, regression is not the only pos-
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sible estimation approach and other methods, such as artificial neural networks,
have been explored (Chien, Ding, and Wei 2002).

Objective and Scope

The primary objective of this study is to develop multivariate linear regression
models for estimating bus arrival times at major stops of a route in an urban
network. The study examines the methodology for developing bus arrival time
estimating models; the processing, analyzing, and refining of collected data; and
the behavior and impact of the independent variables. The scope of this study
encompasses model development and validation; analysis of variance and covari-
ance and colinearity matrices of dependent and independent variables; and sug-
gestions for future research on APC implementation that can benefit users and
operators.

Data Collection

Previous studies (Abdelfattah and Khan 1998; Chien, Ding, and Wei 2002) indi-
cated that bus travel times might be affected by a number of factors such as route
length, ridership (which, in turn, depends on population density and major trip
generators), the number of stops and intersections, and the geometry of the
route. To develop a meaningful model, data collected from the study route should
have substantial variability in the aforementioned factors.

In this study, data was collected from APC units installed on buses operated on a
30-mile (48 km) urban bus route by a transit agency in the northeast United
States. Various data relating to trip information can be captured and recorded as
the bus heads out for a trip until it reaches the final destination. After the bus
reaches the garage/terminal, a centralized computer is engaged to transfer the trip
data recorded by the APC to the transit agency’s data center. Service along the
studied route is provided by five different patterns per each direction (e.g., in-
bound and outbound) over different time periods. Patterns differ in terms of
where the route originates/terminates, whether or not the bus visits specific loca-
tions, and the time the bus commences the trip at the origin. Because of data
availability and sufficiency, only data collected from service patterns A and B were
used for developing bus travel time estimation models. There are 105 intended
stops in the outbound direction for each pattern. Pattern A crosses 134 intersec-
tions (89 of which are signalized) and has 24 right and 23 left turns. Twelve impor-
tant stops (known as time points) have been chosen for the analysis. These time
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points serve significant trip generators and are listed on the timetables distributed
by the transit agency.

The study route operates 24 hours a day. Buses operating on different patterns
may travel different portions of the route. The 12 time points are at identical
physical locations. The scheduled run time for the route ranges from 92 to 119
minutes for the outbound trips and 78 to 113 minutes for the inbound trips. This
study was based on data recorded from January through June 2002. The data
contained a total of 311 trips (including 162 outbound and 149 inbound trips)
and most of the data were collected during weekday operations (including 108
outbound and 96 inbound trips). In general, each trip serves more than 60 in-
tended stops and 100 to 300 passengers. Data collected from outbound weekday
trips were used to develop the proposed models for estimating bus arrival times.
Table 1 illustrates the type of data collected from the APC system.

Table 1. Variables Description of APC Data

Variable Duescription
[Hrecrion Service direction (inkbound or authound]}
Open Time Recorded bus door opening time
Clogir Thma Recorded bus door closing dma
Leg Time Travel time between a pair of stops
Crevall Time
On Murnber af passengers boarding at a stop
Off Mumber of passengers alightng at a stop
Srogr CHsLamnoe Trawel distance berween any DWo conseculive sLops
Distance Cumulative distance from the origin
Pamerm 10 A code assoclated with each pacvern of the roue
Stop Sequence A, unigjee number attached to each stop along the rowte
Trarsit Day Dare of the service
‘Werk Day Dray aof the week
Time of Diay Sraming time of the trip
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Data Preparation for Model Development

As mentioned previously, arrival times may be influenced by traffic conditions,
ridership, number of intermediate stops, and weather condition, which, in turn,
may be different depending on time of day, day of the week, and pattern ID. If one
is to estimate travel times with regression models, sufficient observations (samples)
should be available for developing creditable models to produce meaningful re-
sults. For example, if the 108 outbound trips were grouped by different days, time
periods, and pattern IDs, the sample size in each group would not be sufficient.
Furthermore, although the actual arrival time of a bus at each time point is needed,
a bus may skip a stop due to the lack of demand in some time periods. Thus, the
size of data in each group is further limited.

An attempt was made to include as many data as possible in the analysis, as will be
described subsequently. If a door open time was available at a time point, this was
the arrival time used in the analysis for that time point. The distance between each
time point and the origin is assumed as fixed with respect to each pattern ID. This
data was provided by the transit agency separately. The original data were further
refined by generating interstop travel times, actual number of stops a bus made
and the total dwell time, and number of alighting and boarding passengers be-
tween two consecutive time points where the bus actually halted during every
single trip. Based on the departure time at the first time point, trips can be grouped
by time period based on their dispatching time, as indicated in Table 2, where the
classification and definition of the time periods and their break points were pro-
vided by the transit agency.

Table 2. Time Periods Defined by APC Data Provider

Time Period Symbal Descripeion
Early Murming Em Trips rake place bepsesn 400 AN - 6:55 AM
Morning Peak Mp Trips take place between 700 AM - 929 AM
Late Morning Lm Trips rake place bepsesn %30 AM - 11:59 AR
Mid-Day Md Trips take place between 12:00 Moon - 1259 PM
Early Afvernoan Ea Trips rake place bepween 1:00 PM - 379 PM
Afternoon Peak Ap Trips take place between 130 PM - 529 PM
Evening Ew Trips rake place bepween 5:30 PM - 758 PM
Late Might Ln Trips take place after 8:00 PM or lager
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Buses departing from the first time point during different time periods may expe-
rience varying traffic congestion and ridership along the route and therefore devi-
ate from their schedule. For example, during the midday, people are likely to use
buses to do shopping or errands; thus, the buses may serve more stops. Also,
most schools dismiss in the early afternoon, generating student ridership and
school bus traffic, causing traffic congestion. On the other hand, early morning
and late night trips are likely to experience the least traffic congestion. These facts
signify that time period is a significant factor associated with the estimation of bus
travel times.

Whenever one uses a large database, it is desirable to screen the data carefully for
erroneous entries and inconsistencies, which can be generated by equipment
malfunction, human errors, software bugs, and other causes. Corrections and
adjustments were made to the problematic data. When a correction was impos-
sible, erroneous records were excluded from the analysis. Data had to be cor-
rected/eliminated primarily because of the following reasons:

1. The Leg Time was reported as zero. In cases where both the door open
time at a subsequent stop and close time at the previous stop were avail-
able, the difference of those times was used to compute the leg time.

2. The Stop Distance was reported as zero. Since distance is fixed between
each time point and the origin, such data were replaced by actual time
point to time point distance.

3. The Open Time was blank. To get this time, the Leg Time was added to the
Close Time of the immediately preceding stop.

4. The Close Time was blank. To get this time, the Dwell Time was added to
the Open Time for that stop.

5. The Stop Sequence was reported as zero. To identify the Stop Sequence (and
hence the time point), the cumulative distance traveled up to that stop
was computed and compared with the known distance to the time points.
If a time point could be identified, the record was kept; otherwise, it was
dropped.

6. The Open Time at a subsequent stop was earlier than the Close Time at a
previous stop. These records were dropped.

7. The Cumulative Distance from the origin to a particular stop was unusually
longer than the average. These records were dropped.
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8. Occasionally, the Stop Distance would be unusually high. These records
were dropped.

9. Occasionally, the bus stops (there is Dwell Time), but there are no on or off
passengers. These records were retained (particularly since Dwell Time is
one of the independent variables used).

10.Occasionally, there is no Dwell Time, but there are boarding and alighting
passengers. The Dwell Time was calculated by taking the difference be-
tween the Door Open Time and Door Close Time at that particular stop. If
door time data were not available, the record was dropped.

11.Trip-Status (START and END) tags would show up somewhere in the middle
of the trip. The tags were moved to their appropriate places.

The data were then augmented with weather information (precipitation, visibility,
and wind speed) obtained from another source.

Selection of Independent Variables

The independent variables selected to develop path-based travel time estimation
models were distance, number of stops, dwell times, boarding and alighting pas-
sengers, and weather descriptors. Furthermore, there was the option of generat-
ing classes of separate models for each factor (i.e., time of day, day of week, pattern
ID) that can affect travel time or include that factor as an independent variable in
an overall regression.

The SAS (Version 8.02) package was used to develop a set of regression models.
The decision on whether a model was reasonable was based on the signs of the
coefficients, values of the R-squares, t-values of the coefficients, correlation factors
among the variables, and analysis of the residuals to indicate that the developed
linear models would be appropriate.

The analysis of the regression results indicated that weather variables were not
among the significant factors for estimating arrival times. This can be attributed to
the fact that the weather data were not sufficiently detailed or that during the
study period the weather variations were not significant enough to have an im-
pact on arrival times. A general linear model was developed for the difference of
actual and scheduled journey time with independent variables (e.g.,, week day,
time period, weather) that were categorically chosen as class factors. To identify
the statistical insignificance of these variables, Tukey’s test (Montgomery 2001)
was conducted. The p-value generated for day of the week was 0.4712, suggesting
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that trips taking place on different days of the week do not contribute any mea-
surable difference to the travel time. These results also suggest that day of the week
is not significant as an independent variable. In addition, regression models gener-
ated separately for each day of the week did not exhibit differences that could be
attributed to the day. On the contrary, time of day appeared to affect travel time
significantly, having very small p-values (< 0.0001).

Demand-related variables (number of stops, dwell times, boarding and alighting
passengers between time points) should definitely have an impact on bus travel
times. However, it is obvious that they might be highly correlated to each other.
For example, regressions were tested with different combinations of data, such as
(1) stops, dwell time, boarding passengers, and alighting passengers; (2) stops,
dwell times, and the sum of boarding and alighting passengers (i.e. number of
passengers served); and (3) stops and boarding passengers. The correlation factor
between number of passengers served and total dwell time within any pair of time
points was as high as 0.93. Therefore, only one of these two variables was selected.
Bus dwell time was chosen, as opposed to the total number of passengers served,
because the count of total passengers served could be deceptive in the sense that
two distinct activities (i.e., passengers boarding and alighting the bus) could be
taking place simultaneously. Even so, dwell times at previous stops directly impact
vehicle arrival times in further downstream stops. The regression that included all
variables produced R-square values that are smaller than the ones of the model
presented here. Besides distance and time period, number of stops and duration
of dwell times were the most appropriate and significant independent variables
with p-values of 0.15 or less. The proposed model has some independent variables
that are highly correlated (e.g., dwell time and number of stops, distance and
stops) and some of their coefficients do not have a very high statistical significance.

After reviewing the data, it was found that bus travel times exceed scheduled times
during certain periods. The difference is greater if a bus was dispatched during the
time periods of late morning, mid-day and early afternoon than during morning
peak and afternoon peak. This may be due to the prohibition of street parking in
the peak hours and the presence of construction activities during nonpeak peri-
ods. Due to these differences, variables associated with the time of day the trip
took place (as described in Table 2), are treated as independent variables. Addi-
tionally, the pattern IDs show a unique subset of stops along the route. An analysis
of numerous regression results indicated that it was best to develop separate
models for each pattern.
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Given the above, the general model used to estimate bus travel (and therefore
arrival) time for pattern “p” from time point “i”
is formulated as

T =b+bd +bt +bs +bEm+bM +b L +b M +bE +bA +b E +b L
Lp L] L] L) p m a p v n
forViandi+1<j<12

“y

to all downstream time points “j

where:
i is the estimated travel time from time point “i” to all downstream time
points for bus pattern “p” (e.g, A, or B) (minutes)
. is the distance between TP and TP, (miles)
’ is the average of cumulative dwell time between TP and TP, (minutes)
S, is the average of cumulative number of stops between TP, and P,
E, is a binary variable that indicates Early Morning
M, is a binary variable that indicates Morning Peak
L is a binary variable that indicates Late Morning
M, is a binary variable that indicates Mid-Day
E, is a binary variable that indicates Early Afternoon
A, is a binary variable that indicates Afternoon Peak
E, is a binary variable that indicates Evening
L, is a binary variable that indicates Late Night
. is the intercept of the travel time estimation model
b, are the parameters for variables di,j' t;s, E.M L ME AE and L,
respectively, where k varies from 1 to 11
i is the index of origin time points
j is the index of destination time points

Given a pattern ID, origin time point, and time period, the proposed model can
estimate the required time to travel the path to every downstream time point and
thereby the vehicle arrival time at that time point. All time periods are assigned a

10
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value of 1 if present (if the trip started in that time period), and 0 otherwise.
Regressions were run both with and without intercepts. All variable notations and
their associated coefficients are the same for both types of regression models. The
only difference is that models having no intercepts would have their b, values
equal to zero.

Analysis of Results

For each of the two patterns used here, it is possible to develop one path-based
model to estimate bus travel time for all downstream time points from a given
starting time point. It is not possible to present the results of all models in this
article. A sample of path-based models with intercepts for all possible origins of
Pattern A is shown in Table 3. Conversely, Table 4 presents all path-based models
of Table 3 but with no intercepts. Using the same methodology, all potential
models for Pattern B were also developed but are not shown here.

The models were developed using the stepwise regression method. Variables hav-
ing significance level values more than 0.15 were considered to be insignificant
and, hence, were not included in the model. As shown in Tables 3 and 4, the R-
square values obtained ranged from 0.96 to 0.99 for all models that have inter-
cepts and 0.99 for those that do not have any intercepts. The estimation of arrival
times is largely dependent upon the travel distance between a pair of time points.
This distance was provided by the transit agency and is constant for all trips.
Consequently, this results in high R-square values for all models developed. The
overall p-values obtained for all models of both Patterns A and B is <0.0001. The
parameter estimates of morning peak, evening, and late nighttime periods are
zero. This suggests that M, E, and L do not enter in any of the models.

Since the methodologies used to develop all models are the same, their final results
are similar. Therefore, it is redundant to discuss each one of them individually and
in detail. The plot of actual versus estimated bus travel time to all downstream
stops for Model | from Table 4 is presented in Figure 1 and the scatterplot of the
residuals in Figure 2. Both figures substantiate visually the linear relationship of the
dependent variable with all independent variables that are used in the models. In
addition, normal probability plots of the residuals (not shown here) indicate that
the normality assumption for the distribution of residuals is not violated.

The overall model statistics for the same model (I from Table 4) are shown in the
table. The stepwise selection of variables for this model was in the order of dij’ S,
E, A E, and t; Each of these independent variables as they entered into the

11
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Figure 1. Estimated Versus Actual Travel Time (minutes)
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model retained their final p-values of <0.0001, 0.0914, <0.0001, 0.0084, 0.0002,
and <0.0001, respectively. The summary statistics for each model are presented in
Tables 3 and 4.

Table 3. Statistics of Bus Travel Time Estimation Models
With Intercepts

Models| | 1] [T v [ Wi Wil Wil I
i TP TP TPy TR TPS TPG TP TP TPY
[ p A A A A A A A A A
2] 111 Aoz 12 008 411 .55 177 162 | 386
d LT 318 3 273 1713 LAz 153 saz 243
b 021 055 0.4 ] [ T3 047 077 5.4
3 057 1] 027 .55 053 028 016 0 0
s 257 39| -aee| -3me| G| -a e 206 274 0
5 i 1] n 0 [ [ 1] 1] 0
béi ol anl 237 o] 363 [ [1EEE 0
b7 [ 0 n 734 [ o] o s 0
b 1.55 [0 o 5.61 [ 161 [ o 190
b9 634 435 o 0 [ [ 1 o 0o
b1 a il i} 0 ia ia a 1 o
b1l [ [ 7] ] [ ] [ i 7]
R-5g .58 [TH 056 0.8 056 7] fL5d 5] 047
Fvalue | 201687 | 157250 | 1309.25 | 123032 | BI04 | 143545 | 1125.77 | B%841 | 3076
RMSE 528 EFE] 5.14 iz 4.58 247 186 16 311
M HI| 30| 54 07 154|160 [ [T )
" p-value| <0.0001 ] <0.0001 | <0.0001 | 00001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001
Table 4. Statistics of Bus Travel Time Estimation Models
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As shown in Table 3, the travel time estimation model IX has a negative intercept of
-2.86. However, this does not mean that the model will generate negative travel
times. The models have positive values for the parameter estimates of variables
that are reasonably significant contributors of the travel time estimation (e.g,, di,j'
t and Si,j)’ and these variables are always positive. This suggests that the estimated
negative value of an intercept tends to act as an adjustor to the accuracy of a travel
time estimate. Therefore, under no circumstance will a travel time estimation
model generate negative travel times. Negative signs of parameter estimates for
their associated indicator variables representing a specific time period can be ex-
plained similarly.

All models have a negative sign for some parameter estimate (e.g, b, value for
variable E_). This makes sense, because during early morning time periods, out-
bound buses are likely to experience less traffic congestion and, hence, shorter
travel times. On the other hand, all models contained in both Tables 3 and 4
always have positive signs for parameter estimates (e.g, b, and b, for variables E_
and Ap). These results may be due to the fact that buses operating during the time
periods of early afternoon and afternoon peak are expected to experience more
traffic congestion and are more likely to be stopped at the signalized intersections,
causing longer travel times. However, another interesting observation that can be
made from these models is that some parameter estimates (e.g, b, for variable Mp)
have either zero or negative values. This suggests that the morning peak time
period either has a small or no contribution to the travel time estimation. This
may be due to the fact that routes of Patterns A and B possibly experience less
traffic congestion during the morning peak time period. This may be because
buses are facing favorable signal timings and prohibition of street parking along
the route during this time period.

A comparison of F-values of both sets of models shows that the ones that have
intercepts generate smaller values than the ones that do not have any intercepts.
This is consistent with the corresponding R-square values, which are a little smaller
for models that have intercepts.

Data splitting or a cross validation approach (Snee 1977) is chosen for developing
and then validating the models of Patterns A and B. These travel time estimation
models were developed with 80 percent of the total available data for a sample size
(N). The remaining 20 percent of the data were used to validate the model. Obser-
vations are chosen randomly for developing and validating the models.
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Figure 3 presents statistical descriptions of the model developed using the ran-
domly-selected 80 percent of the total sample data available. On the other hand,
Figure 4 illustrates how the 20 percent data best fits and validates the model
developed by using the other 80 percent of data. The presented statistics are for
the previously discussed Model | of Table 4. Means of actual versus estimated
travel times for each OD pair were plotted to determine if there are any significant
differences. Both Figures 3 and 4 point out that actual and estimated travel times
are reasonably close to each other since the observations for model development
(sample size N is equal to 313) and for model validation (sample size of 76) were
randomly picked.

Figure 3. Model Development Statistics (80% of data)
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As shown in Figure 4, for the OD pair TP -TP,, the actual standard deviation is the
highest, having a value of 12.88 minutes, while the corresponding mean actual
travel time is 51.48 minutes. This may be attributed to the fact that the available
sample size that was randomly chosen for this OD pair is very small and equal to 4.
This explains why the root mean squared error for this OD pair is the highest
(9.10) in spite of the fact that its estimated mean travel time is very close to the
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Figure 4. Model Validation Statistics (20% of data)
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actual mean travel time. The estimated standard deviation for this OD pair is 2.45
minutes.

The OD pair TP -TP,  has the minimum sample size of 4, as did TP -TP,. But, its
actual standard deviation is 11.53 minutes while its actual mean travel time is
91.49. Proportionally (as a percent of mean) this standard deviation is approxi-
mately half that of OD pair TP -TP. This can explain the smaller mean squared
error value for TP -TP, OD pair in comparison with the TP -TP_ OD pair.

The OD pair TP -TP_ RMSE is 8.24 (the third highest in the sequence), in spite of
its highest sample size of 13, and can be attributed to the fact that the estimated
mean travel time is essentially about 5.36 minutes higher than the actual mean
travel time. The estimated standard deviations of all OD pairs vary from 1.73 to
5.93 minutes, depending upon how close the downstream stops are and also
what their overall sample size is. Sample size varies from 4 through 13 for all OD

pairs as described.
Having mentioned all these facts, it can be concluded that the results of model
validation using the 20 percent data are quite promising, suggesting that the

model can be appropriately used to estimate travel times with a new set of data
later. As indicated in the table and figures, the results generated by the models are

16



Estimation of Bus Arrival Times Using APC Data

very reasonable. The plots of the estimated versus actual values indicate linear
relationships. The coefficients have the anticipated signs and the adjusted R-squares
are almost 0.99 for both Patterns A and B. Some models are better than others in
terms of their R-squares and the statistical significance of their co-coefficients. In
all cases, the mean travel time increases as we estimate travel times to farther down-
stream stops and so are their standard deviations. This makes sense, due to the
fact that a bus is likely to encounter more and more stochastic traffic situations,
causing delays as it moves farther away from the originating terminal.

On the basis of all developed models, a database can be generated that would
contain parameter estimates and values of the dependent variables for the pur-
pose of estimating the travel time at downstream stops. The transit operator
would be required to input pattern ID, stop ID, and time period. Based on these
inputs, the travel time estimation engine will select the appropriate model from
the list of models developed to estimate the arrival times at each downstream
stop. This portion of the research will commence after all models are finalized.

Conclusions and Future Research

One of the major stochastic characteristics in transit operations is that vehicle
arrivals tend to deviate from the posted schedule. Poor schedule or headway
adherence is undesirable for both users and operators, since it increases passenger
wait/transfer times, discourages passengers from using the transit system, and
degrades operating efficiency and productivity. This study developed regression
models to predict bus arrival information on the basis of distance traveled, de-
mand characteristics, and time of day. Although the available data were limited,
some interpolations had to be made, and some data had to be corrected, there is
no absolute certainty that some erroneous figures were not included. The initial
results presented here appear to be reasonable and promising.

The methodology used for developing the travel time estimation model with APC
data can be used for adjusting or planning timetables for existing or new transit
routes, respectively. The developed model can be applied with ATIS to calculate
and broadcast bus arrival time information at downstream stops to transit users.
If a dynamic algorithm (e.g., Kalman filter) can be developed and integrated with
the developed model, the accuracy of predicted bus arrival times can be greatly
improved.
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Another obvious comment that can be made as a result of this exercise is that one
might not use indiscriminately data that are generated automatically, particularly
if the system that generates them is complex and new. This is not surprising. It
almost always happens, and the data quality and consistency improves rapidly
with time. A good and well-known transit practitioners’ example of this is the
Section 15 database, which had substantial problems with the quality of its data
during the first year of its release (Bladikas and Papadimitriou 1985). Therefore,
the statement made here about the data quality is not meant as a criticism but as
an illustration of the difficulties encountered when using new and large databases.

The data used for this study were relatively limited. The results and the models’
predictive ability will certainly improve in the future when data of greater quantity
and quality will be available. In the future, it may be possible to generate models
for trips grouped by day, time of day, and pattern ID. Furthermore, as the ITS
system deployment continues, the models could be expanded to include traffic
condition variables, such as congestion and incidents, that can be automatically
generated by these systems.
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Abstract

Bus dwell time data collection typically involves labor-intensive ride checks. This
paper reports an analysis of bus dwell times that use archived automatic vehicle
location (AVL)/automatic passenger counter (APC) data reported at the level of
individual bus stops. The archived data provide a large number of observations that
serve to better understand the determinants of dwells, including analysis of rare
events, such as lift operations. The analysis of bus dwell times at bus stops is appli-
cable to TriMet, the transit provider for the Portland metropolitan area, and transit
agencies in general. The determinants of dwell time include passenger activity, lift
operations, and other effects, such as low floor bus, time of day, and route type.

Introduction

Bus dwell time data collection typically involves labor-intensive ride checks. This
paper reports an analysis of bus dwell times that use archived automatic vehicle
location (AVL)/automatic passenger counter (APC) data reported at the level of
individual bus stops. The archived AVL/APC data provides a rich set of dwell time
observations to better understand the determinants of dwells. In addition, the
large quantity of data allows analysis of rare events, such as lift operations. The
analysis of bus dwell times at bus stops was originally used to estimate delay asso-
ciated with bus lift use operations for passengers with disabilities in the Tri-County
Metropolitan Transportation District of Oregon (TriMet), the transit provider for
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the Portland metropolitan area (Dueker, et al. 2001). In addition, the analysis
yielded useful information about dwell times that has applicability to transit agen-
cies in general.

The estimated models provide a system-wide baseline. Stop-level, route-level, op-
erator-specific, and passenger boarding-level analyses can follow. This paper in-
cludes examples of applying the model results to simulate dwell times for different
times of day, route types, and various levels of passenger boardings and alightings.
The effects of fare payment method and bicycle rack usage on dwell times was
unable to be incorporated, but suggest how future research could extend the
model.

Prior Work

Literature on bus dwell times is sparse, due to the cost and time required for
manual data collection. Consequently, most prior analyses tend to be route-spe-
cific, focus on analyzing various issues causing bus delay, and are based on small
samples. Previous studies on dwell time have used ordinary least squares (OLS)
regression to relate dwell time to boardings and alightings, with separate equa-
tions estimated for different operating characteristics likely to affect dwell time.
Kraft and Bergen (1974) found that passenger service time requirements for AM
and PM peaks are similar, midday requirements are greater than those in peak
periods, boarding times exceed alighting times, and rear door and front door
alighting times are the same. They also found that dwell time is equal to 2 seconds
plus 4.5 seconds per boarding passenger for cash and change fare structures, and
1.5 seconds plus 1.9 seconds for exact fare.

Levinson’s (1983) landmark study of transit travel time performance reported
that dwell time is equal to 5 seconds plus 2.75 seconds per boarding or alighting
passenger. Guenthner and Sinha (1983) found a 10-20 second penalty for each
stop plus a 3-5 second penalty for each passenger boarding or alighting. However,
dwell time models based on small samples have low explanatory power, even when
controlling for factors such as lift activity, fare structure, and number of doors.
Guenthner and Hamet (1988) looked at the relationship between dwell time and
fare structure, controlling for the amount of passenger activity. Lin and Wilson
(1992) reviewed prior work and formulated a model of dwells as a function of
boardings, alightings, and interference with standees, which was then applied to
light rail transit dwells. Bertini and El-Geneidy (2004) modeled dwell time for a
single inbound radial route in the morning peak period in their analysis of trip
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level running time. They incorporated the results of the dwell time analysis directly
into the trip time model by estimating parameters for number of dwells and
number of boarding and alighting passengers.

Data Issues

Dwell time is defined as “the time in seconds that a transit vehicle is stopped for the
purpose of serving passengers. It includes the total passenger service time plus the
time needed to open and close doors” (HCM 1985).

In the past, dwell time data collection consisted of placing observers at highly
utilized bus stops to measure passenger service times, and by ride checks or on-
board observers for dwells at bus stops along routes. The ride check procedure as
prescribed in the Transit Capacity and Quality of Service Manual consists of the
following steps to collect field data for estimating passenger service times:

1. From a position on the transit vehicle, record the stop number or name at
each stop.

2. Record the time that the vehicle comes to a complete stop.
3. Record the time that the doors have fully opened.

4. Count and record the number of passengers alighting and the number of
passengers boarding. (The data collection form calls for front and rear
door specific counts).

5. Record the time that the major passenger flows end.

6. When passenger flows stop, count the number of passengers remaining
on board. (Note: If the seating capacity of the transit vehicle is known, the
number of passengers on board may be estimated by counting the num-
ber of vacant seats or the number of standees).

7. Record time when doors have fully closed.

8. Record time when vehicle starts to move. (Note: Waits at timepoints or at
signalized intersections where dwell is extended for cycle should be noted
but not included in the dwell time. Delays at bus stops when a driver is
responding to a passenger information request are everyday events and
should be included in the calculation of dwell time. Time lost dealing with
fare disputes, lost property or other events should not be included.)

9. Note any special circumstances. In particular, any wheelchair movement
times should be noted. Whether this is included in the mean dwell time
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depends on the system. Dwell times due to infrequent wheelchair move-
ments are often not built into the schedule but rely on the recovery time
allowance at the end of each run. The observer must use judgment in
certain cases. At nearside stops before signalized intersections the driver
may wait with doors open as a courtesy to any late-arriving passengers.
The doors will be closed prior to a green light. This additional waiting time
should not be counted as dwell time but as intersection delay time. (TCRP
1999)

Automating the collection of dwell time data through the employment of AVL
and APC technologies compromises the procedures outlined above. The dwell
time is measured as specified, but the time the bus stops and starts is not re-
corded, nor is the starting and stopping of passenger flows. Our analysis deleted
dwells of over 180 seconds (3 minutes). This censoring was done to purge the
analysis of dwells that are abnormal. Also, TriMet’s Automated Passenger Counters
(APC) record total boardings and alightings rather than door-specific counts.
Finally, there is no guarantee that operators will behave similarly in closing the
doors while awaiting for traffic to clear or traffic signals to change. These compro-
mises to the conventional measurement of dwell time are offset by the ability to
collect data on large numbers of dwells, with any “special circumstances” included
in the error term of OLS regression models.

Automating Collection of Dwell Time Data

Uses of Archived AVL/APC Data to Improve Transit Performance and Management
(Furth, et al. forthcoming), identifies the bus stop as the appropriate spatial unit
for data aggregation and integration. This integration of scheduled and actual
arrival time at the level of the individual stop is crucial for research on bus opera-
tions and control strategies. Integrating data at the bus stop level supports real
time applications, such as automated stop annunciation and next-stop arrival
time information. Importantly, if bus stop data are archived, operations perfor-
mance and monitoring analysis can also be supported (Furth, et al. forthcoming).

TriMet has automated the collection and recording of bus dwell time and passen-
ger activity at the bus stop level, and archives the data consistent with the TCRP
recommendations. TriMet operates 97 bus routes, 38 miles of light rail transit, and
5 miles of streetcar service within the tri-county Portland metropolitan region.
TriMet’s bus lines carry approximately 200,000 trips per day, serving a total popu-
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lation of 1.3 million persons within an area of 1,530 square kilometers (590 square
miles).

TriMet implemented an automated Bus Dispatch System (BDS) in 1997 as a part
of an overall operation and monitoring control system upgrade.

The main components of the BDS include:

1. AVL based upon differential global positioning system (GPS) technology,
supplemented by dead reckoning sensors

2. Voice and data communication system using radio and cellular digital
packet data (CDPD) networks

3. On-board computer and control head displaying schedule adherence in-
formation to operators and showing dispatchers detection and reporting
of schedule and route adherence

4. APCs on front and rear doors of 70% of vehicles in the bus fleet
5. Computer-aided dispatch (CAD) center

The BDS reports detail operating information in real time by polling bus location
every 90 seconds, which facilitates a variety of control actions by dispatchers and
field supervisors. In addition, the BDS collects detailed stop-level data that are
downloaded from the bus at the end of each day for post-processing. The archived
data provide the agency with a permanent record of bus operations for each bus
in the system at every stop on a daily basis. These data include the actual stop time
and the scheduled time, dwell time, and the number of boarding and alighting
passengers. The BDS also logs time-at-location data for every stop in the system,
whether or not the bus stops to serve passengers. This archived data forms a rich
resource for planning and operational analysis as well as research.

The GPS-equipped buses calculate their position every second, with spatial accu-
racy of plus or minus 10 meters or better. Successive positions are weeded and
corrected by odometer input. When the bus is within 30 meters of the known
location of the next bus stop (which is stored on a data card along with the
schedule), an arrival time is recorded. When the bus is no longer within 30 meters
of the known bus stop location, a departure time is recorded. If the door opens to
serve passengers, a dwell is recorded and the arrival time is overwritten by the time
when the door opens. Dwell time (in seconds) is recorded as the total time that
the door remains open.
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When passenger activity occurs, the APCs count the number of boardings and
alightings. The APCs are installed at both front and rear doors using infrared
beams to detect passenger movements. The APCs are only activated if the door
opens. The use of a lift for assisting passengers with disabilities is also recorded.
TriMet has used on-board cameras to validate APC counts (Kimpel, et al. 2003).
The validation procedures could be extended to include dwell time and the tim-
ing of passenger flows, and perhaps even fare payment if the video clips are not too

choppy.

The archived AVL/APC data have been used in various studies of operations con-
trol and service reliability (Strathman et al. 1999; Strathman et al. 2000; Strathman
et al. 2001a; Strathman et al. 2001b), for route-level passenger demand modeling
(Kimpel 2001), for models of trip and dwell time (Bertini and El-Geneidy 2004),
and for evaluating schedule efficiency and operator performance (Strathman, et
al. 2002).

Dwell Time Data

The data are from a two-week time period in September 2001 for all of TriMet’s
regular service bus routes. For this analysis, dwell time (DWELL) is the duration in
seconds the front door is open at a bus stop where passenger activity occurs. The
data were purged of observations associated with the beginning and ending points
of routes, layover points, and unusually long dwell time (greater than 180 sec-
onds)." Observations with vehicle passenger loads (LOAD) of over 70 persons
were also excluded, indicating the automatic passenger counter data were sus-
pect. Two weeks of data generated over 350,000 dwell observations. Even though
lift operations (LIFT) occur in less than one percent (0.7 %) of dwells, the number
of lift operations is large enough for a robust estimation of separate model (N =
2,347).

Table 1 presents descriptive statistics for variables used in the full-sample dwell
time model. The mean dwell time is 12.29 seconds, with a standard deviation of
13.47 seconds. On average, there were 1.22 boardings and 1.28 alightings per
dwell. Also, 61% of the dwells involved low floor buses. Dwells by time of day
(TOD) are 15% in morning peak period (6-9 AM) (TOD1), 41% in midday (9 AM
-3 PM) (TOD2), 17% in afternoon peak period (3-6 PM) (TOD3), 21% in evening
(6-10 PM) (TOD4), and 7% in late night and early morning (10 PM- 6 AM) (TODS5).
The mix of dwells by route type is 71% for radial, 4% feeder, and 25% cross-town.
Also, the average dwell occurs 2.36 minutes behind schedule (ONTIME).
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Table 1. Bus Dwell Time Descriptive Statistics

Determinants of Bus Dwell Time

Name Mean 5i. D, War. Min. Max.
DWELL 12,29 1347 187,42 200 1RO
QNS 132 1.99 394 Q.00 4,00
QM52 5.43 2579 B54.92 000 193600
OFFS 124 1.50 163 000 &7,00
OFF52 526 1522 T 000 2009.00
OMNTIME 2136 1.56 1270 a0 57.50
LIFT QL7 0081 azy a 1
LOw A1 [LEL 0.24 a 1
TN 15 035 .13 a 1
TR LS 049 024 a 1
T3 w7 037 0,14 a 1
TOHD 0 .44 0,16 i 1
TS oy s [illi’ a 1
RAD [y (L5 .21 i] 1
FEED O (1N} 0.0 i} 1
KTOWMN 025 i3 .19 a 1
FRICTION 1.719 4.5 1946 a 73

The analysis includes information derived from three separate but related samples:
(1) a full sample consisting of all observations; (2) a lift operation-only sub-sample;
and (3) a without lift operation only sub-sample.

Table 2 shows the effect of a lift operation on mean dwell time. Mean dwell times
for the sub-sample without lift operation average 11.84 seconds, while mean dwell
times for the sub-sample with lift operation average 80.70 seconds. The coefficient
of variation for dwell time with lift operation is 46.4%, and 100.7% for without lift
operation. An OLS model for the full sample of both lift and no lift operation had
a coefficient of 62.07 for a dummy variable for lift operation (LIFT).2 A Chow test
indicated that a separate model was needed for dwells where lift operations occur.
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Table 2. Bus Dwell Time Means

Dwell (seconds) Mean Time St. Dev. N

Sub-sample with lift operation 80.70 37.44 2,347
Sub-sample without lift operation 11.84 11.92 353,552
Both (full sample) 12.29 13.47 355,899

Dwell Time Estimation

Table 3 presents results of the model of the sub-sample without lift operation.
Dwell time is explained by boarding passengers (ONS), alighting passengers (OFFS),
whether the bus is ahead or behind schedule (ONTIME), if the bus is a low floor
bus (LOW), passenger friction (FRICTION)," time of day (TOD), and type of route
feeder (FEED) and cross-town (XTOWN) as compared to radial (RAD). The esti-
mation results indicate that each boarding passenger adds 3.48 seconds to the
base dwell time of 5.14 seconds (CONST) and each alighting passenger adds 1.70
seconds. Square terms of passenger activity are used to account for diminishing
marginal effects of additional boarding and alighting passengers on dwell time.
Each additional boarding passenger is estimated to take 0.04 seconds less, while
each additional alighting passenger takes 0.03 seconds less.> The negative coeffi-
cient of ONTIME indicates that dwell times tend to be less for late buses than for
early buses®. The CONST value of 5.14 seconds reflects the basic opening and
closing door process.

The other variables have small but significant effects. Time-of-day estimates are
referenced to the morning peak period (TOD1). Midday dwells (TOD2) are 1.36
seconds longer than morning peak dwells; afternoon peak dwells (TOD3) are 0.92
seconds longer than morning peak dwells; and evening period dwells (TOD4) are
1.25 seconds longer than morning peak dwells, while late evening and early morn-
ing period dwells (TODS5) are not significantly different than morning peak dwells.
The morning peak period is the most efficient in terms of serving passengers,
perhaps due to regular riders and more directional traffic. Regular riders may tend
to board using bus passes® and ask fewer questions. More directional traffic would
reduce the mix of boardings and alightings at the same stop.
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The type of route also affects dwell times. Feeder routes have 0.15 second longer
dwells than radials, the reference route type, and cross-town routes have 0.39
second shorter dwells than buses operating on radial routes.

Table 3. Bus Dwell Time Model: Without Lift Operation

Name Coeff. Std. Err. T-Ratio
ONS 3.481 0.015 231.90
ONS2 -0.040 0.001 -37.38
OFFS 1.701 0.015 113.00
OFFS2 -0.031 0.001 -29.11
ONTIME -0.144 0.005 -30.68
LOW -0.113 0.034 -3.30
FRICTION 0.069 0.005 12.92
TOD2 1.364 0.049 27.82
TOD3 0.924 0.059 15.77
TOD4 1.248 0.055 22.51
TODS5 0.069 0.076 0.91
FEED 0.145 0.086 1.70
XTOWN -0.388 0.039 -9.99
CONST. 5.136 0.051 99.96
N 353,552

AD). R2 0.3475

Lift Operation Effects

The estimated effect of a lift operation on dwell time in a full-sample model is
62.07 seconds. This lift operation effect is examined more closely in a separate
model of dwell times involving lift operations only.

Table 4 presents the results of the bus dwell time model for the sub-sample of lift
operation-only. The mean dwell time for lift operation-only dwells is 80.70 sec-
onds, and is explained by the same variables as the overall dwell time model, but
they differ and are less significant. For example, a low-floor bus reduces the dwell
time for lift operations by nearly 5 seconds. But the large CONST value of 68.86
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seconds indicates that the majority of time is for the lift operation itself. Boarding
activity is estimated to extend dwells at a diminishing marginal rate, while alighting
passenger activity does not substantially affect dwell time. However, wheelchairs,
walkers, and strollers may confound APCs. There are significant effects by time of
day, but they are not easily explained. Lift operations during the morning peak
(TOD1) take longer than lift operations at other times.

Table 4. Bus Dwell Time Model: With Lift Operation

Name Coeff. Std. Err. T-Ratio
ONS 10.206 0.488 20.91
ONS2 -0.359 0.029 -12.31
OFFS 0.513 0.396 1.30
OFFS2 -0.022 0.017 -1.33
ONTIME -0.037 0.176 -0.21
LOW -4.741 1.388 -3.42
FRICTION -0.234 0.208 -1.13
TOD2 -4.141 2.554 -1.62
TOD3 -6.271 2.869 -2.19
TOD4 -4,588 2.925 -1.57
TODS5 -14.447 4,542 -3.18
FEED 1.036 3.354 0.31
XTOWN -1.675 1.519 -1.10
CONST. 68.861 2.706 25.45
N 2,347

ADJ. R2 0.2848

An estimate of delay associated with lift operation can be used to modify arrival
time estimates provided to transit users at downstream stops. However, we have
three choices of delay estimates for lift operation. One is 62.07 seconds, the coef-
ficient on LIFT from the full model. Another is the difference between the mean of
all dwell time with lift operations (80.70 seconds) and without lift operations
(11.84 seconds). This difference is 68.86 seconds. The third choice is the effect of a
lift operation on running time from an earlier study of route running times
(Strathman, et al. 2001a). This third choice provides an estimate of the lift effect as
59.80 seconds. This smaller value indicates that before the end of their trip, opera-
tors make up some of the time lost due to lift operations.
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We recommend the middle estimate of 62.07 seconds (the coefficient on the LIFT
dummy variable from the full sample estimation) be selected as the delay estimate
at the outset of the lift event and that it be updated with the actual dwell time less
the mean dwell time without lift operation as the bus departs that stop. In this
manner, next stop bus arrival time estimates could be refined when impacted by
delays associated with lift operations. This would require a message from the bus
to the dispatch center at the onset of the lift operation and another at its conclu-
sion.

Low Floor Bus Effect

TriMet was also interested in the effect of low floor buses on dwells, particularly
dwells with lift operations. The dwell time model for the without lift operation
sub-sample yields an estimated effect of a low-floor bus of -0.11 seconds (-0.93%)
per dwell. A typical TriMet route has 60 bus stops. On an average bus trip, buses
actually stop at 60% of them. Thus, the 0.11 second reduction per dwell for a low
floor bus translates into a 3.96 second savings in total running time per trip.

The low floor bus effect is examined in a model of dwell times involving lift opera-
tions only. The mean dwell time for stops where the lift is operated is 80.70 sec-
onds. A low-floor bus reduces dwell time for lift operations by nearly 5 seconds
(4.74 or 5.8 %). The impact of low floor buses on dwell time with lift operation is
more substantial.

Simulation

Models can be used to simulate dwell times. The coefficients are multiplied by
assumed values of the variables that represent operating conditions of interest.
Table 5 presents simulated dwell times for various operating conditions. Although
the simulation produces precise dwell time estimates, the results should be viewed
in relative terms, because of large coefficients of variation in dwell time and the
explanatory power of the models are low (adjusted R2 values of 0.35 for without
lift operation and 0.28 for with lift operation).

The first condition simulated is a radial route in the AM peak period. Five boardings
(ONS) are assumed to load at a stop and there are no alightings (OFFS). The bus
is operating two minutes late. This simulation yields a dwell time estimate of 21.15
seconds. The second simulation is of a radial route in the PM peak operating with
five OFFS and no ONS. It also has 10 standees. The dwell time estimate is 13.99
seconds. In comparing the two estimates, a greater time associated with boardings
as compared to alightings is quantified. The third simulation is for a cross-town
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Table 5. Simulation of Bus Dwell Times

Name Coeff. Radial AM Radial PM Cross-Town
Inbound Outbound Midday
ONS 3.481 5 17.41 0.00 2 6.96
ONS2 -0.040 25 -0.99 0.00 4 -0.16
OFFS 1.701 0.00 5 8.50 2 3.40
OFFS2 -0.031 0 0.00 25 -0.78 4 -0.12
ONTIME -0.144 2 -0.29 5 -0.72 2.5 -0.36
LOW -0.113 1 -0.11 1 -0.11 0.00
FRICTION 0.069 0 0.00 10 1.04 0.00
TOD2 1.364 0.00 0.00 1 1.36
TOD3 0.924 0.00 1 0.92 0.00
TOD4 1.248 0.00 0.00 0.00
TODS5 0.069 0.00 0.00 0.00
FEED 0.145 0.00 0.00 0.00
CTOWN 0.145 0.00 0.00 1 0.15
CONST. 5.136 1 5.14 1 5.14 1 5.14
DWELLEST. 21.15 13.99 16.37
Lift Specific Model (w/lift only) Full Model (w/lift dummy)
Name Coeff. Midday Feeder Coeff. Midday Feeder
Service Service

ONS 10.206 2 20.41 3.551 2 7.10
ONS2 -0.359 4 -1.43 -0.042 4 -0.17
OFFS 0.513 1 0.51 1.703 1 1.70
OFFS2 -0.022 1 -0.02 -0.033 1 -0.03
ONTIME -0.037 -1 0.04 -0.145 -1 0.14
LOW -4.741 0.00 -0.143 62.07
LIFT . . . 62.07 1 0.00
FRICTION -0.234 0.00 0.067 0.00
TOD2 -4.141 1 -4.14 1.352 1 1.35
TOD3 -6.271 0.00 0.902 0.00
TOD4 -4.588 0.00 1.231 0.00
TODS5 -14.447 0.00 -0.013 0.00
FEED 1.036 1 1.04 0.148 1 0.15
CTOWN -1.675 0.00 -0.390 0.00
CONST. 68.861 1 68.86 5.117 1 5.12
DWELLEST. 85.26 77.43
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route in the midday at a stop with two ONS and two OFFS and running 2.5
minutes late. This produces an estimated dwell time of 16.36 seconds.

Table 5 also contains two simulations of a lift operation with two ONS and two
OFFS on a feeder line in the midday period with a bus that is running one minute
early. This condition is estimated using the lift specific model (dwell estimate of
85.26 seconds) and using coefficients from the full-sample model with a lift dummy
variable (77.43 seconds). The difference in estimates is less than the standard de-
viations of either sample.

For a better understanding of boarding and alighting passenger activity, two addi-
tional sub-samples were drawn. Both are for radial routes with no lift operation.
One was AM peak period dwells with boardings but no alightings, and the other
was PM peak period dwells with alightings but no boardings. This allows the
estimation of parameters for boardings and alightings that are not confounded
by a mixture of boardings and alightings. Table 6 is the dwell time model for
boardings only and Table 7 the model for alightings only. The parameter for
boardings is 3.83 seconds per boarding passenger and the parameter for alightings
is 1.57 seconds per alighting passenger. Again, both parameters have a significant
square term that indicates a declining rate for each additional passenger. Simula-
tions for 1, 2, 5, 10, and 15 boarding passengers are contained in Table 8, and
simulations for alighting passengers are contained in Table 9. Both simulations
assumed an average lateness (ONTIME) value of 1.56 minutes for the boarding
passenger sub-sample and 4.46 minutes for the alighting passenger sub-sample.
Both simulations also assumed a low floor bus and a bus load of less than 85
percent of capacity. The simulations calculate dwell time in seconds for various
boarding and alighting passengers. For instance, dwell time for five boarding pas-
sengers is estimated to be 21.01 seconds (from Table 8) and is estimated to be
12.75 seconds for five alighting passengers (from Table 9). These two simulations
illustrate the benefit of working with large amounts of data that is made possible
by automated data collection. We were able to select route type, time of day, and
dwells with boardings or alightings, but not both.

Comparison of the simulation of five boarding passengers in Tables 5 and 8 yield
results that are within a second. Focusing on just the boarding passengers, param-
eters for the basic stop (CONST) is 4.05 seconds versus 5.14, 19.12 seconds versus
17.41 to board five passengers, and -1.45 versus -0.99 seconds for the diminishing
effect of the multiple of five passengers. Similarly, the comparison of five alighting
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passengers in Tables 5 and 9 yield results that are within a second when comparing
only the alighting times and the constant.

Again, the results of the simulation should be used in comparing scenarios and
not be used for precise estimates of dwells.

Table 6. Bus Dwell Time Model: Boardings Only - AM Peak Period

Name Coeff. Std. Err. T-Ratio
ONS 3.825 0.063 61.000
ONS2 -0.058 0.005 -11.340
FRICTION 0.040 0.014 2.845
ONTIME -0.164 0.020 -8.021
LOW -0.464 0.103 -4.483
CONST. 4.054 0.126 32.230
N 16,509

AD). R2 0.3819

Table 7. Bus Dwell Time Model: Alightings Only - PM Peak Period

Name Coeff. Std. Err. T-Ratio
OFFS 1.566 0.057 27.610
OFFS2 -0.016 0.006 -2.703
FRICTION 0.119 0.012 10.150
ONTIME -0.046 0.008 -5.971
LOW 0.523 0.079 6.651
CONST. 5.001 0.100 49.850
N 18,098

ADJ. R2 0.1616
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Table 8. Simulation of Bus Dwell Times by Number of Boardings
AM Peak Period

Boardings

Name Coeff. 1 2 5 10 15
ONS 3.825 3.82 7.65 19.12 38.25 57.37
ONS2 -0.058 -0.06 -0.23 -1.45 -5.80 -13.04
FRICTION 0.040

ONTIME -0.164 -0.26 -0.26 -0.26 -0.26 -0.26
LOW -0.464 -0.46 -0.46 -0.46 -0.46 -0.46
CONST. 4.054 4.05 4.05 4.05 4.05 4.05
TOTAL DWELL 7.10 10.75 21.01 35.79 47.67

Table 9. Simulation of Bus Dwell Times by Number of Alightings
PM Peak Period

Alightings

Name Coeff. 1 2 5 10 15
ONS 1.566 1.57 3.13 7.83 15.66 23.49
ONS2 -0.016 -0.02 -0.06 -0.39 -1.58 -3.55
FRICTION 0.119

ONTIME -0.046 -0.21 -0.21 -0.21 -0.21 -0.21
LOW 0.523 0.52 0.52 0.52 0.52 0.52
CONST. 5.001 5.00 5.00 5.00 5.00 5.00
TOTAL DWELL 6.87 8.39 12.75 19.40 25.26
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Discussion

The original purpose of this research was to identify the effects of delay that occur
at unexpected times, such excess dwell time resulting from bus lift operations.
Our research provides an estimate of delay at the time of initiation of the occur-
rence, which needs to be updated with the actual time of delay at the ending time
of the occurrence. This research provides a basis for shifting from predicting tran-
sit bus arrival times for customers based on normal operating conditions to one
that predicts transit vehicle arrival time when operating conditions are not nor-
mal (Dueker, et al. 2001).

An ancillary benefit of this research identified the general determinants of bus
dwell time. As expected, passenger activity is an important determinant. In addi-
tion, the archived AVL/APC data provided a large sample size that allowed exami-
nation of determinants, such as low floor buses, time of day, and route type
effects, and allowed estimation of a separate model for dwells with lift operation
only.

Automation of dwell time data collection results in a tradeoff of labor-intensive
direct observation but small sample data with the large samples of more consis-
tent data. While directly observing door-specific passenger activity, fare payment
method, and unproductive door opening time, as called for in the Transit Capac-
ity and Quality of Service Manual, improvements in automated data collection
may be able to deal with these issues. For example, integration of farebox and
bicycle rack with a BDS data collection system is possible in the future. This would
deal with the effect of fare payment method and use of the bicycle rack on dwell
time. In addition, validation of dwell time data is needed. TriMet has validated its
APC data by viewing on-board video camera data. This procedure could be ex-
tended to record the time of passenger activity to the door opening time from the
automated data.” This would provide evidence to determine a better cutoff value
for maximum dwell time. The current value of 180 seconds is too arbitrary; it
needs to be replaced with a value that includes most passenger activity and re-
duces the amount of unneeded door opening time. In addition, the validation
procedure could include observation of fare payment method and bicycle rack
use prior to integration at the hardware level.
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Endnotes

' Long dwells are likely to be associated with vehicle holding actions or operator
shift changes, and thus should be excluded from the analysis.

2 Table 5 contains coefficients of the full-sample dwell time model.

3 A passenger friction factor was constructed to account for passenger activity on
buses with standees. It was posited that heavily loaded buses have greater dwell
times. A proxy variable was constructed by adding ONS, OFFS, and STANDEES.
STANDEES are the number of passengers when LOAD minus 85% of bus capacity
is positive. LOAD is an APC calculated number that keeps a running count of ONS
and OFFS.

“ Kraft and Deutschman (1977) did not find any difference in the average service
time for each successive passenger to board.

> Operators tend to hurry to regain schedule adherence.

¢ The farebox is not integrated with the BDS, so we do not know the proportion
of cash paying boarding passengers at the stop level.

7 Kraft and Deutschman (1977) used photographic studies of passenger move-
ments through bus doors.
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