


Volume 10, No. 2, 2007
ISSN 1077-291X

The Journal of Public Transportation is published quarterly by

National Center for Transit Research
Center for Urban Transportation Research

University of South Florida • College of Engineering
4202 East Fowler Avenue, CUT100

Tampa, Florida  33620-5375
Phone:  813•974•3120

Fax:  813•974•5168
Email:  jpt@cutr.usf.edu

Website:  www.nctr.usf.edu/jpt/journal.htm

© 2007 Center for Urban Transportation Research 

Public
Transportation

Journal of



iii

Volume 10, No. 2, 2007
ISSN 1077-291X

CONTENTS

Comparing the Efficiency of Public Transportation Subunits Using Data 
Envelopment Analysis 
Darold T. Barnum, Sue McNeil, Jonathon Hart..............................................................................1 

Investment in Mobility by Car as an Explanatory Variable 
for Market Segmentation 
Shlomo Bekhor, Alon Elgar....................................................................................................................17

Are Printed Transit Information Materials a Significant Barrier  
to Transit Use? 
Alasdair Cain...............................................................................................................................................33 

Decision and Control Model for Promoting Public Transit  
via Lottery Incentives 
Tang-Hsien Chang, Yih-Chiun Jiang..................................................................................................53

Parcel-Level Modeling to Analyze Transit Stop Location Changes 
Peter G. Furth, Maaza C. Mekuria, Joseph L. SanClemente...................................................73

Metro Station Operating Costs: An Econometric Analysis 
Mohammed Quddus, Nigel Harris, Daniel J. Graham.............................................................93

Design of Feeder Route Network Using Combined Genetic Algorithm  
and Specialized Repair Heuristic 
Prabhat Shrivastava, Margaret O’Mahony............................................................................... 109

Our troubled planet can no longer afford the luxury of pursuits
confined to an ivory tower. Scholarship has to prove its worth,

not on its own terms, but by service to the nation and the world.
—Oscar Handlin



Comparing the Efficiency of Public Transportation

�

Comparing the Efficiency of 
Public Transportation Subunits

Using Data Envelopment Analysis 
Darold T. Barnum, University of Illinois at Chicago 

Sue McNeil, University of Delaware 
Jonathon Hart, Wilbur Smith Associates

Abstract

This article discusses the need for a performance measure that compares the effi-
ciencies of subunits within a transportation organization, reflects the diversity of 
inputs and outputs, and is objective and consistent. The study presents a method for 
developing such a performance indicator, and illustrates its use with an application 
to the park-and-ride lots of the Chicago Transit Authority. The proposed method 
applies Data Envelopment Analysis supplemented by Stochastic Frontier Analysis 
to estimate efficiency scores for each subunit. The research demonstrates how the 
scores can provide objective and valid indicators of each subunit’s efficiency, while 
accounting for key goals and values of internal and external stakeholders. The scores 
can be practically applied by a transit agency to identify subunit inefficiencies, and, 
as demonstrated by several brief case studies, this information can be used as the 
basis for changes that will improve both subunit and system performance. 

Introduction
Due to shortages of public funds and expanding societal needs, maintaining and 
improving the performance of public transportation systems are critical for future 
operations (Kittelson et al. 2003; Sulek and Lind 2000). If public transportation 



Journal of Public Transportation, Vol. 10, No. 2, 2007

�

is not as efficient as it could be, it provides less service than desirable or requires 
taxpayers and riders to pay more than necessary. 

Improving the efficiency of a transit system’s subunits is one way to increase overall 
efficiency. Of course, maximizing subunit efficiency does not necessarily maximize 
system efficiency. However, overall system efficiency can be increased by correctly 
identifying subunit inefficiencies, and then improving subunit performance with 
changes that are consistent with system structures, goals, and constraints. For 
example, the efficiency of subcontracted service providers could be compared, 
as could the efficiency of individual bus routes, different rail lines, park-and-ride 
lots, rail stations, garages, and paratransit operations. If some of the subunits per-
forming a given type of activity are identified as relatively inefficient compared 
with others performing the same activity, then management can take action to 
improve the least efficient ones, thereby improving overall system performance. 
The challenge lies in identifying and quantifying objective measures that reflect 
the multiple outputs and inputs common in public transportation.

This article describes a procedure for comparing subunit efficiency, and demon-
strates its application to the Chicago Transit Authority (CTA) park-and-ride lots. 
Park-and-ride facilities are a strategic component of urban mass transportation 
systems, effectively extending the service area and attracting riders who may not 
have otherwise used transit. However, with the high cost of construction, land 
acquisition, and maintenance of parking facilities, a misplaced or underutilitized 
lot can quickly consume significant resources with little promise for return on 
investment. The CTA has 17 park-and-ride lots, which not only provide parking 
for heavy rail passengers but also generate more than $1 million annually in net 
operating income. Similarly, the Chicago commuter rail lines (operated by Metra) 
provide 68 lots, and Metra has been significantly increasing its lots’ capacities to 
attract more riders (Ferguson 2000). Indeed, park-and-ride facilities have become 
an integral part of almost all medium and large urban transportation systems in 
North America (Turnbull et al. 2004).   

This discussion addresses problems in developing valid efficiency measures that 
(1) simultaneously incorporate all resource inputs and all desired outputs, (2) 
adjust for the influences of environmental variables, (3) are objective and can be 
rationally interpreted, and (4) provide consistent measurements with which to 
compare subunit performance. We describe an innovative solution to the prob-
lems—Data Envelopment Analysis (DEA). We identify the DEA model used, and 
the inputs and outputs that are most valued by the CTA. Using these inputs and 
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outputs for the 16 lots for which we have data, we apply DEA. We use Stochastic 
Frontier Analysis to adjust the lots’ DEA efficiency scores for environmental fac-
tors. Finally, we present several brief case studies of lots that have been identified 
as inefficient by DEA.

Problems with Measuring Efficiency of Subunits  
within a Transit Organization
In economics, efficiency (or more specifically, technical efficiency) is measured by 
the ratio of output to input (Cooper, Seiford, and Zhu 2004; Färe, Grosskopf, and 
Lovell 1994). In public transportation, multiple outputs are produced by multiple 
inputs, so different efficiency rankings may occur depending on the specific out-
put/input ratios chosen for analysis.

For example, although the primary goal of CTA management is to provide parking 
for heavy rail passengers, the profit derived from these lots also is an important 
output according to the agency. Thus, the key outputs are (1) number of parked 
cars, as a proxy for number of passenger trips and (2) parking revenues. Key inputs 
are (1) number of parking spaces and (2) operating expenses. Of course, other 
outputs and inputs could be added, but these are key to the CTA and are used to 
illustrate the process. 

Four different efficiency indicators can be constructed from these two outputs 
and two inputs: cars/expenses, revenue/expenses, revenue/capacity, and cars/
capacity. Table 1 shows the actual performance of four CTA lots on these four 
ratios. 

Table 1. Comparative Efficiency of Four CTA Park-and-Ride Lots,  
First Quarter 2005 

Lot 	 Cars/	 Revenue/	 Revenue/	 Cars/ 
	 Expenses	 Expenses	 Capacity 	 Capacity

A	 3.05	 4.25	1 .18	 0.85

B	 2.88	 5.70	1 .51	 0.77

C	 0.75	1 .80	 2.18	 0.90

D	1 .08	 2.14	 2.13	1 .08
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Note that Lot A is the best performer on the first measure, B on the second, C on 
the third, and D on the fourth. Also, A is the worst performer on the third indica-
tor; B is the worst on the fourth; C is the worst on the first; and D is the next to 
worst on the second. In short, for this actual data, there are no consistently good 
or consistently bad performers. Further, which indicators would be considered 
most important would likely depend on one’s function at a transit agency. Land 
developers would probably prefer to use the third indicator, while those most 
interested in cash flow would prefer the second. Those concerned in cost control 
would value the first most heavily, and those trying to maximize transit passenger 
trips would argue for the fourth. Moreover, at least in Chicago, interest groups for 
each lot certainly would be involved if the efficiency measures were to be used 
to make decisions about their lot’s fate. It is not hard to imagine which ratios the 
supporters of each lot would argue were key and which were biased.

Worse, this is a very simple situation: there are only 4 efficiency measures and only 4 
lots. Most transit experts could easily identify 4 significant inputs and 4 significant 
outputs, thereby increasing the potential efficiency measures from 4 to 16. If all 
CTA lots were compared with all 16 measures, it would make winners and losers 
even more difficult to identify.

As this example illustrates, even in very simple situations, it often is difficult to 
compare the overall efficiency levels of the subunits performing a given type of 
activity. What is needed is a single, comprehensive measure of performance that 
would objectively identify the poorest performers overall, and then use other 
techniques to determine the reasons for poor performance and to decide on 
appropriate actions. 

To obtain a comprehensive efficiency measure for comparing the lots, we could 
aggregate each lot’s outputs and inputs with some weighting scheme, and then 
divide the aggregated outputs by the aggregated inputs. That is, for each lot, we 
could calculate the following indicator:   

Efficiency  = 	 (1)

For example, suppose we are most interested in low costs and high revenues. For 
the outputs we decide to weight revenues at 0.8 and parked cars at 0.2. For the 
inputs, we choose to weight costs at 0.7 and capacity at 0.3. We use these weights 
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to calculate the efficiency of each lot. For instance, for Lot A, for the first quarter 
of 2005 its daily revenue (Output1) was $519, its daily operating expenses (Input1) 
were $122, its average number of parked cars (Output2) was 371, and its capacity 
(Input2) was 441 spaces:

Efficiency (Lot A)  =  	 = 2.25	 (2)

We perform calculations using the same weights for the inputs and outputs of 
each lot, and then compare the values. However, it would be difficult to defend 
definitively the preceding weighting scheme as being optimal, and it would be 
equally hard to justify assigning equal weights to each input and output (or to 
each of the four ratios presented earlier). An objective and consistent procedure 
for assigning weights is necessary to solve the problem.

Data Envelopment Analysis
Data Envelopment Analysis (DEA) offers an innovative approach to the problem 
of objectively assigning weights to compare the efficiency of the subunits of a 
transportation organization validly. Since the first papers applying DEA to public 
transportation were published in 1992, the procedure has become increasingly 
popular for comparing transit organizations with each other (Brons et al. 2005; De 
Borger, Kerstens, and Costa 2002).  However, DEA has not been used to compare 
subunits within a given transit organization. Herein, we demonstrate the use of 
DEA for comparing a set of subunits that each performs the same activity within 
their parent transportation agency. Similar analyses have been conducted to com-
pare the performance of organizational subunits such as bank branches and retail 
outlets (Cooper, Seiford, and Zhu 2004; Färe, Grosskopf, and Lovell 1994).

DEA uses linear programming to weight and aggregate outputs divided by inputs 
in a way that results in a single comprehensive efficiency measure, with efficient 
units scoring exactly 100 percent. The efficiency of a given subunit (or other unit 
of analysis), often referred to as a Decision Making Unit (DMU), is expressed as a 
percentage of the efficiency of its most efficient peers. For the case at hand, each 
park-and-ride lot is a DMU. 

A key feature of DEA is that the weighting for variable aggregation can be different 
for each DMU. For the target DMU, weights are assigned so it will obtain the high-
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est possible efficiency score when it is compared to the other DMUs, when all have 
been assigned the particular set of weights that is optimal for the target DMU. 
That is, the procedure is applied to a particular DMU. Then, the entire process is 
completed for another target DMU, with new weights being assigned to all DMUs 
that maximize the efficiency of the new target DMU. This process is completed 
once for each DMU that is in the set being compared. So, if a particular DMU’s 
score is not 100 percent, this tells us that other DMUs are still more efficient even 
when the weights are set to maximize the score of the given DMU. Once efficiency 
levels for each DMU have been identified, they can be analyzed to determine why 
certain DMUs are more efficient than others. 

Inputs, Outputs, and DEA Model
For this illustration, the inputs are (1) number of parking spaces and (2) mean daily 
operating costs. The outputs are (1) the mean number of cars parked in the lot 
during the workday and (2) mean daily revenue. Because the mean revenue per 
car that the lots receive varies from $1.39 to $3.95, the two output variables reflect 
different measures of success. All variables are daily averages for the first quarter 
of 2005. The DEA model is

 	
(3)

In our case there are j DMUs; that is, j lots, to be evaluated (j=1,…,16). Each DMU 
consumes varying amounts of n different inputs (n = 1, 2) to produce m differ-
ent outputs (m = 1, 2). Thus, for example, DMUj consumes amount xnj of input 
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n and produces ymj of output m. For all DMUs, um is the weight by which each ymj 

is multiplied, and vn is the weight by which each xnj is multiplied. The DMU that 
is the target of a given evaluation is designated DMUk’ , and it is compared to all 
j of the DMUs including itself. The program (3) maximizes the ratio of weighted 
outputs to the weighted inputs. The weights um and vn are the variables, and they 
are changed until the ratio is maximized for the target DMU when those same 
weights are applied to all DMUs. The value of the ratio, , is the efficiency score of 
DMUk’ , where 0 ≤  ≤ 1 and a fully efficient DMU receives a score of 1. Again, note 
that it is the weights that are the variables, with the outputs and inputs being the 
values actually observed for each lot. The DEAs in this study were conducted with 
the Efficiency Measurement System (EMS) software developed by Scheel (2003), 
which converts the fractional program in (3) into a linear program before solving. 

Unadjusted DEA Efficiency Scores
The initial efficiency levels of the various lots, unadjusted for any differences in 
environmental factors, are shown in Table 2. (Frequently, the efficiency score  is 
written as a percentage, so an efficient DMU will have a  = 1 or 100 percent.)

Table 2. Unadjusted DEA Efficiency Scores

	 Unadjusted 
Lot	 Efficiency (%)

A	1 00.00
B	1 00.00
C	1 00.00
D	1 00.00
E	 94.89
F	 91.85
G	 89.19
H	 85.92
I	 76.25
J	 76.25
K	 70.83
L	 62.48
M	 58.51
N	 54.87
O	 43.56
P	 20.91
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Of the 16 lots, 4 (A, B, C, and D) are efficient with scores of 100 percent; that is, no 
other lot is more efficient for each of the four lots’ optimal mixes of weights. The 
other lots show varying degrees of inefficiency. Thus, Lot E is 95 percent efficient, 
and Lot P is only 21 percent efficient. Again, note that these efficiency levels are 
relative; the most efficient lots receive efficiency scores of 100 percent. A given 
inefficient lot’s score identifies how much less efficient it is than its efficient peers 
when all lots use the weighting that maximizes the efficiency of the given lot. 

Adjusting Efficiency Scores for Environmental Factors
Before analyzing each lot to attempt to determine the reasons for its score, it is 
informative to adjust the scores for key environmental influences. As typically 
defined in DEA, environmental factors are influences that are not traditional 
inputs and outputs, and are not under the control of management (Coelli et al. 
2005). Hart ( 2005) found that the number of cars using each CTA  lot was influ-
enced by the distance of the lot from the nearest freeway and from the central 
business district (CBD). The closer the lot was to the nearest freeway, the higher 
the demand, and the further the lot was from the CBD, the higher the demand. 
Many other environment variables could be important (Hart 2005; Spillar 1997), 
but only a limited number can actually be used given the sample size, so we use 
those that Hart found optimal for the Chicago lots.

Different methods have been utilized for adjusting efficiency scores to control for 
environmental factors (Coelli et al. 2005; Ruggiero 2004). The method currently in 
favor, often called the two-stage method, involves first computing the efficiency 
scores using only true inputs and outputs, as we already have done. In the second 
stage, environmental influences can be controlled for by regressing the initial effi-
ciency scores on the environmental variables, and then adjusting the initial scores 
by dividing them by the expected scores. 

Ordinary Least Squares (OLS) regression, however, is not a valid method to use 
when the dependent variable is the DEA efficiency score for several reasons. The 
dependent variable has an upper limit of 100 percent, and therefore is a censored 
variable. Using OLS regression when the dependent variable is censored results in 
biases in parameter estimates (Breen 1996). If such censoring were the only con-
cern, then Tobit regression could be used. But, because we also have to deal with 
biases caused by inefficiency, as discussed later in this section, Tobit regression is 
not valid either (Kumbhakar and Lovell 2000). 
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Another method for dealing with the censoring of DMU efficiency scores is to use 
superefficiency scores (Andersen and Petersen 1993) as the dependent variable. 
For inefficient DMUs, efficiency and superefficiency scores are identical. For an 
efficient DMU, the superefficiency score identifies the proportion by which its 
current outputs exceed the level necessary to be efficient. Because only four DMUs 
were found to be efficient in this study, the superefficiency scores will differ from 
efficiency scores only for these four. The applicable superefficiency scores are lot 
D (101%), lot A (102%), lot B (117%), and lot C (193%). Because superefficiency 
scores are not censored, a statistical model adjusting for censored variables is not 
necessary if they are used as the dependent variable. 

However, OLS regression still is inappropriate (as is Tobit regression) because of 
the second problem. Just as most of the lots were inefficient in converting inputs 
to outputs, it is likely that many of the lots will be inefficient in converting envi-
ronmental factors to outputs. To account for this possibility, it is necessary to 
use a statistical model that estimates both normal random fluctuations in the 
error term and downward biases due to inefficiency, which neither OLS nor Tobit 
regression do. Therefore, we use Stochastic Frontier Analysis, which adjusts for 
DMU inefficiency in converting environmental conditions into outputs (Coelli 
et al. 2005; Kumbhakar and Lovell 2000). (Stochastic Frontier Analysis would be 
inappropriate if efficiency scores were used as the dependent variable instead of 
superefficiency scores because, as with OLS, a censored dependent variable will 
bias estimates.)

The dependent variable, therefore, is the superefficiency score for each parking 
lot. The environmental variables that influence outputs and thereby the efficiency 
scores are “distance of the parking lot from the central business district” (relation-
ship expected to be positive) and “distance of the parking lot from the nearest 
freeway” (relationship expected to be negative). 

For DMUj, yj is the superefficiency score; x1j is the distance of the parking lot from 
the CBD; x2j is the distance of the parking lot from the nearest freeway; vj is the 
two-sided noise component of the error term; and uj is the nonnegative technical 
inefficiency component of the error term. The noise component vj is assumed to 
be normally and independently distributed. The inefficiency component uj must 
be greater than or equal to zero, and is assumed to be exponentially and indepen-
dently distributed. The model is:

ln yj = 0 + 1ln x1j + 2 ln x2j + vj - uj 	 (4)
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We conducted the analysis with the Frontier Analysis package in Stata 9 (Stata-
Corp 2005). The results are shown in the Table 3. Note that this model is estimated 
using the maximum likelihood method, not the least squares method, so R-Square 
statistics are not available. 

Table 3. Parameter Estimates

Variable	 	 Std. Error	  P>|z|

Constant	 -0.400	 4.54E-06	 0.000

x1 (distance from CBD)	 0.195	1 .65E-06	 0.000

x2 (distance from freeway)  	 -0.108	 2.82E-07	 0.000

Log likelihood = -.102; Wald chi-square (2) = 3.19e+11; Prob > chi-square = 0.000

As expected, the greater the distance of the lot from the CBD (x1), the higher the 
efficiency, and the greater the distance of the lot from the nearest freeway (x2), the 
lower the efficiency. Thus, it is reasonable to use the expected values predicted by 
this equation to adjust the uncorrected efficiency scores. The values for adjusted 
efficiency scores are shown in Table 4. 

Table 4. Adjusted Efficiency Scores
 
	 Adjusted 
Lot	 Efficiency (%)

B	1 00.00
C	1 00.00
E	1 00.00
H	 97.50
F	 95.52
G	 93.89
D	 86.70
I	 82.10
J	 76.90
L	 66.00
M	 59.50
N	 59.37
K	 51.66
A	 47.75
O	 44.10

P	 22.04
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Interpreting the Case Study Results
Identification of lot efficiencies, with both original and adjusted scores, is the first 
step. Next the “red flag” test should be used to identify lots that should receive 
further attention (Barnum 1987). Low efficiency scores make it easy to identify 
those lots that need thorough examination. Obvious examples here are lots O and 
P, which scored at the bottom of both sets of efficiency scores; lot K, which had a 
significant decrease in efficiency between the unadjusted and adjusted efficiency 
scores; and lot A which was efficient before adjustment for environmental factors 
but significantly inefficient after taking its favorable environment into account. 

In some cases, uncorrectable factors or other justifiable reasons account for the 
low scores. In other cases, the low scores may identify lots that can and should be 
improved. To illustrate the method, we next discuss the examinations of lots A 
and P that resulted from their flagged efficiency scores. 

One of the flagged lots was lot A, whose score dropped from 100 percent to 48 
percent after being adjusted for environmental factors. Discussions with CTA per-
sonnel uncovered the reasons for this decrease. Lot A competes for business with 
lot C because they are very close to each other. However, both lots are on the same 
freeway from the suburbs, with lot C being slightly further from the city. That short 
stretch of freeway is very congested during rush hour. Hence, even though lots A’s 
and C’s environmental factors are almost identical, lot C is likely to get many more 
cars, thus decreasing the adjusted efficiency for lot A.

Of course, lot A is efficient when only the outputs and CTA resource inputs are 
considered; that is, the unadjusted efficiency. From the viewpoint of the actual 
inputs and outputs, the lot is performing well when compared to other lots. Fur-
ther, it is unlikely that the number of lot A parkers could be increased without 
adversely affecting lot C. 

It was suggested that lot A’s revenue output could be increased by raising the rate 
from $2 to $3 for the first 12 hours. The rate at lot C already is $3, so it is likely 
that if lot A’s rate were increased, its revenue would increase much more than the 
number of parkers decreased. This suggested change may be implemented by the 
CTA. 

Also, lot A’s operating expenses are relatively high due to the fact that personnel 
are on duty to collect parking fees. In lot C and all other lots, parkers deposit their 
own parking fees. The increase in perceived security provided by parking atten-
dants would attract more parkers to lot A, if not for the fact that even more per-
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ceived security is provided at lot C. The suburban police patrol lot C and “maintain 
an almost constant presence” (Hart 2005, p. 92). CTA resources are not used for 
this police protection, so lot C’s operating expenses remain low, thereby giving it a 
big boost in efficiency. Given the recent increase in concerns for security at transit 
facilities, perhaps the CTA could obtain similar protection for lot A (which is a 
multistory structure near the airport). This could decrease the CTA’s input costs, 
thereby increasing the lot’s efficiency.

In a somewhat similar situation, lot P competes with lot K, with not enough park-
ers to fill both lots. For the unadjusted efficiencies, lot K is the clear winner. But, 
lot K also enjoys very favorable environmental variables while lot P does not. Thus, 
it is not surprising that lot K’s efficiency decreases from 71 to 52 percent when we 
adjust for environmental factors, while lot P’s efficiency increases slightly from 21 
to 22 percent.

As seen in Table 4, lot P has the lowest efficiency of all lots for both the unadjusted 
and the adjusted efficiency scores. This is the result of a relatively large lot with 
average operating expenses, but with very low occupancy and revenues. These 
outcomes in turn are likely influenced by the nearby presence of lot K, which has 
in the past been considered a more desirable place to park. At the time these data 
were collected, lots K and P were at terminals at the western ends of two branches 
of the same rapid transit line, and these two branches merged before the line 
entered the CBD. However, the branch to lot K not only was closer to a freeway, 
but also it provided more hours of service, and the branch to lot P was impeded 
because of major upgrades to the tracks and terminals. Recently, however, the 
branches have been separated into two independent lines, and the frequency of 
service on each has been doubled. The enhanced service and the readily avail-
able parking is expected to increase passengers and parkers for both terminals. 
If demand does not increase in a reasonable time, however, it might be worth 
considering the impact of downsizing or closing lot P, since its current demand 
could be absorbed by lot K. Of course, there may well be factors other than DEA 
efficiency scores that make such a suggestion infeasible.  

Herein we have given only brief analyses of a few lots as examples of the process. 
Once a lot is flagged as the result of a low efficiency score, a thorough examination 
of the lot should be made to determine the reasons for the low score. As demon-
strated above, sometimes the factors influencing the scores are correctable, and 
other times they are not.



Comparing the Efficiency of Public Transportation

13

As was done in this case, flagged subunits should be subjected to joint examina-
tions by transit agency personnel and the DEA analysts, and not be examined 
by just one group or the other. To best identify and correct problems, both a 
deep understanding of the transit system and an understanding of the analytical 
method must be integrated. In the present case, such an examination took place as 
part of the ongoing partnership between the CTA and the Urban Transportation 
Center at the University of Illinois at Chicago. This joint analysis provided much of 
the information in this section.

Conclusions
Data Envelopment Analysis, augmented by Stochastic Frontier Analysis, is a 
methodology for identifying and comparing the efficiencies of a set of subunits 
within an organization that recognizes the diversity of inputs and outputs that 
impact and influence performance, and that provides insights into the differences 
in performance. Once management has identified the key outputs and inputs 
of a given type of subunit, then DEA can be applied to identify a comprehensive 
efficiency score for each subunit of that type. Because this score results in each 
subunit attaining the maximum reported efficiency when compared to its peers, it 
is unbiased by particular points of view about the importance of various inputs or 
outputs, and hence is a much more valid summary measure than typically utilized. 
This measure can be adjusted to account for differences in environmental factors 
affecting the subunits, if necessary. Once the original or adjusted measures of effi-
ciency are obtained, then those subunits with low scores can be carefully studied 
to develop plans of action to improve their efficiencies.

Acknowledgements

This project was partially supported by the Chicago Transit Authority under con-
tract to the Urban Transportation Center at the University of Illinois at Chicago, 
which made this research possible. We especially thank Mark Patzloff, Eric Hole-
man, and Vincent Nwokolo for generously offering much insight into the CTA’s 
park-and-ride operations as well as very quickly providing necessary data. With-
out the substantial knowledge of these three individuals and their enthusiastic 
support, the study could not have been completed. Our work with them is an 
example of the productive partnership between the CTA and UIC, in which inputs 
of industry acumen by CTA personnel and inputs of research skills by university 



Journal of Public Transportation, Vol. 10, No. 2, 2007

14

personnel are combined to produce valuable outputs that would not have been 
attained by either group alone. Of course, in this research, our ability to interpret 
correctly what we were told may be lacking, so any errors or misstatements in this 
article are entirely our own. Likewise, all identifications of lot efficiency are ours 
alone, and have not been endorsed either by the aforementioned individuals or 
by the CTA.

References

Andersen, P., and N. C. Petersen. 1993. A procedure for ranking efficient units in 
data envelopment analysis. Management Science 39 (10): 1261–1265.

Barnum, D. T. 1987. Evaluating transit: the performance tree method. In Managing 
urban transportation as a business, E. Bers, and C. Hendrickson, eds. New York: 
American Society of Civil Engineers, 216–230.

Breen, R. 1996. Regression models: censored, sample-selected, or truncated data. 
Thousand Oaks, CA: Sage Publications.

Brons, M., P. Nijkamp, E. Pels, and P. Rietveld. 2005. Efficiency of urban public tran-
sit: a meta analysis. Transportation 32 (1): 1–21.

Coelli, T. J., D. S. P. Rao, C. J. O’Donnell, and G. E. Battese. 2005. An introduction to 
efficiency and productivity analysis. New York, NY: Springer.

Cooper, W. W., L. M. Seiford, and J. Zhu. 2004. Handbook on data envelopment 
analysis, Boston, MA: Kluwer Academic Publishers.

De Borger, B., K. Kerstens, and A. Costa. 2002. Public transit performance: what 
does one learn from frontier studies? Transport Reviews 22 (1): 1–38.

Färe, R., S. Grosskopf, and C. A. K. Lovell. 1994. Production frontiers. Cambridge 
England: Cambridge University Press.

Ferguson, E. 2000. Parking management and commuter rail: the case of northeast-
ern Illinois. Journal of Public Transportation 3 (2): 99–121.

Hart, J. D. 2005. Strategies for effective design and deployment of park-and-ride 
facilities. Thesis. Chicago, IL: College of Urban Planning and Public Affairs, 
University of Illinois at Chicago.

Kittelson Associates, Urbitran Associates, LKC Consulting Services, MORPACE 
International, Queensland University of Technology, and Nakanishi, Y. 2003. A 



Comparing the Efficiency of Public Transportation

15

guidebook for developing a transit performance-measurement system. Transit 
Cooperative Research Program Report 88. Washington, DC: Transportation 
Research Board.

Kumbhakar, S., and C. A. K. Lovell. 2000. Stochastic frontier analysis, Cambridge 
England: Cambridge University Press.

Ruggiero, J. 2004. Performance evaluation in education: modeling educational 
production. In Handbook on data envelopment analysis, W.W. Cooper, L. M. 
Seifert, and J. Zhu, eds. Boston, MA: Kluwer Academic Publishers, 323–348.

Scheel, H. 2003. EMS: Efficiency Measurement System. http://www.wiso.uni-dort-
mund.de/lsfg/or/scheel/ems/.

Spillar, R. J. 1997. Park-and-ride planning and design guidelines. New York: Parsons 
Brinckerhoff.

StataCorp. 2005. Stata Statistical Software. Release 9.

Sulek, J. M., and M. R. Lind. 2000. A systems model for evaluating transit perfor-
mance. Journal of Public Transportation 3 (1): 29–47.

Turnbull, K. F., R. H. Pratt, J. E. I.Evans, and H. S. Levinson. 2004. Park-and-ride/pool. 
In Traveler Response to Transportation System Changes Handbook. Washing-
ton, DC: Transportation Research Board, 3.i–3.93.

About the Authors

Darold T. Barnum (dbarnum@uic.edu) is a professor of management and 
of information and decision sciences at the University of Illinois at Chicago. He 
formerly was an associate director at the Indiana University Institute for Urban 
Transportation, where he participated in the training of transit managers from 
across the nation. His research focuses on performance measurement, and he 
has published in Management Science, International Transactions in Operational 
Research, Interfaces, IEEE Transactions on Engineering Management, and Transpor-
tation Research Record. He is a member of the TRB Public Transportation Market-
ing and Fare Policy Committee. 

Sue McNeil (mcneil@ce.udel.edu) is a professor of civil and environmental engi-
neering at the University of Delaware. She formerly was director of the University 
Illinois at Chicago Urban Transportation Center, and professor of urban planning 
and policy. Her research and teaching interests focus on transportation infra-



Journal of Public Transportation, Vol. 10, No. 2, 2007

16

structure management with emphasis on the application of advanced technolo-
gies, economic analysis, analytical methods, and computer applications. She has 
published in the Journal of Transportation Engineering, Journal of Infrastructure 
Systems, Transportation Research Record, Journal of Public Works Management 
and Policy, and Journal of Urban Planning and Development. She is an associate edi-
tor for the Journal of Infrastructure Systems, chair of the TRB Transportation Asset 
Management Committee, and a member of the TRB Executive Committee. 

Johnathon Hart (jhart@wilbursmith.com) is a transportation analyst and 
project manager with Wilbur Smith Associates’ Transportation Finance and Tech-
nology division. Prior to his current position, Mr. Hart was a graduate student at 
the University of Illinois at Chicago. While attending UIC, Mr. Hart studied under 
Professor McNeil, then director of the Urban Transportation Center, where they 
worked to develop new methodologies in the optimal siting and sizing of park-
and-ride lots for the Chicago Transit Authority. 



Investment in Mobility by Car

17

Investment in Mobility by Car 
as an Explanatory Variable for 

Market Segmentation
Shlomo Bekhor, Technion–Israel Institute of Technology, Haifa 

Alon Elgar, Mevo-Hazait, Har Adar, Israel

Abstract

According to the traditional approach, when estimating changes in transporta-
tion policies, the household income level (in all its forms) is perceived as the proper 
explanatory variable for modeling population transportation preferences. However, 
it is acknowledged that accurate information about this variable is difficult to gather. 
In contrast, information about household car characteristics is relatively simple to 
collect. This article presents the hypothesis that a lifestyle variable, such as invest-
ment in mobility by car (IMC), is a viable parameter for estimating household 
members’ behavioral tendencies toward transportation, from both practical and 
conceptual reasons.

This research proposes a simple methodology to infer the IMC using existing data 
sources, and presents mode choice model estimation results using the IMC both as 
an explanatory variable and as a segmentation variable. The segmentation of the 
population in three IMC categories (low, middle, and high) yielded significantly dif-
ferent models of the preference systems for the three segments. These findings show 
that IMC is a viable variable for market segmentation.
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Introduction
It is generally acknowledged that market segmentation is crucial to the modeling 
process. Disaggregate mode choice models have a particularly vast literature in 
which the population is segmented in various ways. Examples of different market 
segmentation approaches in mode choice modeling can be found in Dehghani and 
Talvitie (1980), Pas and Huber (1992), and more recently Outwater et al. (2004).

This article focuses on the independent variables commonly used in the mode 
choice modeling process and on the relevance of the variables used for market seg-
mentation. In particular, we consider household variables such as income level and 
auto ownership. An example of the use of these variables for market segmentation 
in mode choice modeling can be found in Dehghani and Talvitie (1980). 

The motivation for this article is that the number of cars in a household, usu-
ally used in travel forecasting methods, is in our opinion too general for market 
segmentation. A combination of number of cars per household and income level 
could yield a better indicator. However, data on household income is acknowl-
edged in the literature as problematic to collect. In contrast, data on car charac-
teristics is relatively easy to collect. This enables us to categorize each household 
according to an estimation of its investment in car mobility. The investment in car 
mobility is defined as the total market value of the cars in each household. In this 
article, we explore the possibilities of using this variable for market segmentation.

Determining which type of parameter is preferable for market segmentation can 
be examined from a practical or from a conceptual aspect. From a practical aspect, 
we suggest that the investment in mobility by car (IMC) parameter is preferable 
to income in its different forms, while from the conceptual point of view, it is at 
least as good as income. While we would have preferred to present a quantita-
tive evaluation of the two parameters, we have to rely on secondhand databases 
(almost all transportation surveys conducted in Israel did not collect information 
about household income level), and thus limit our discussion to a qualitative 
evaluation.

Practical Considerations 
In most household travel surveys, it is customary to obtain information about 
household income. However, we found evidence in the literature about surveys 
that neither collected nor used this information. For example, Badoe and Miller 
(1998) used data collected from the very extensive 1986 Transportation Tomor-
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row Survey (TTS) for the Greater Toronto Area (GTA). This survey, documented 
in detail in Data Management Group (1990), included a telephone interview of 4 
percent of all households in the area (about 67,000 households) and contained 
information on household variables, but not household income. 

Most travel surveys conducted in Israel, including the National Travel Habits 
Survey (NTHS) of 1996/7 (Central Bureau of Statistics 1997), which also served as 
a database for this research, do not include questions about income level. In fact, 
very few household trip surveys conducted in Israel include data about the income 
level of respondents. Attempts to use the income variable in modeling estimation 
were not successful (Taskir 1995).

We believe that this absence of information is not an omission by neglect, but a 
result of the surveyors’ awareness of the unreliability of answers given by respon-
dents to questions involving income. Furthermore, some of the surveyors were 
concerned that respondents would consider questions about income an illegiti-
mate invasion of privacy, and this would have a damaging effect on the reliability 
of their answers to the entire questionnaire.

In contrast to the lack of information about income and its inherent unreliabil-
ity, available surveys in Israel include information about cars possessed by each 
household. This information enables us to estimate average household investment 
in mobility by car. Respondents do not have any particular reservations about 
providing information about the cars they use, simply because it is an obvious 
fact. The information about car characteristics is also collected in many household 
surveys found in the literature. For example, the 2001 U.S. NHTS (2004) included 
information about car make, model, and production year.

Conceptual Considerations
Income level is a physical factor that defines the envelope of the household pos-
sibilities to allocate its resources. Salomon and Ben-Akiva (1983) pointed out 
that “the concept of lifestyle is becoming a major differentiating trait between 
population groups, substituting for economic and social classes.” We do accept 
the general definition of the lifestyle suggested by the authors, namely that “the 
lifestyle is defined as a pattern of behavior under constrained resources.” The 
authors showed in their study that lifestyle groups account for taste variations 
better than other schemes.
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Badoe and Miller (1998) proposed a systematic approach to study variations in 
mode choice behavior. The methodology used was based on the Automatic Inter-
action Detector (AID) developed by Sonquist et al. (1971), the merits of which 
were emphasized by Hensher (1976). The authors found that the single most 
important variable for explaining differences in workers’ mode choice behavior 
was the number of household vehicles. The authors classified this variable as “a 
socioeconomic factor.” We are inclined to define it as a lifestyle variable, even 
though it is influenced by the socioeconomic status of the household. The num-
ber of cars is also an indicator of the household preferences for allocation of its 
resources between transportation and other uses.

We adopt the notion of lifestyle discussed by Salomon and Ben-Akiva (1983) as a 
preferable concept for selecting explanatory variables to market segmentation in 
travel demand modeling. However, we do expect that lifestyle variables that are 
directly related to transportation behavior, such as the number of vehicles and 
investment in mobility by car, would be more closely connected to the individual 
preference system than other lifestyle elements, such as household formation, 
participation in labor force, orientation toward leisure, and so on.

The assertion that the number of household vehicles is a lifestyle variable supports 
the claim by Salomon and Ben-Akiva (1983) mentioned above. In addition, the 
AID application proposed by Badoe and Miller for segmentation and classification 
is useful for a given set of variables. However, even the best classification system 
cannot identify and classify variables that are not defined as such. The number 
of cars in the household itself is not enough to identify lifestyle, as it does not 
distinguish between different levels of investment by the household in those cars. 
These levels of investment are believed to be highly correlated with the household 
preferences concerning choices of transportation alternatives. Therefore, we pro-
pose to use another lifestyle variable, complementary to the number of household 
vehicles, namely IMC.

Our hypothesis is that the behavior presented by the revealed action of IMC is 
significantly more closely related to population preferences concerning the use of 
alternative modes of transportation than income level alone. IMC is a behavioral 
phenomenon that demonstrates the outcome of the choices made by the house-
hold concerning its mobility.

The IMC variable could be formulated as a function of the following variables: 
income level, family size, age and gender composition, transit accessibility mea-
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sures, consumption patterns, working patterns, and a preference function con-
cerning the allocation of household resources among household uses.

Most of the above variables are easily observable, and data can be obtained from 
current practice surveys. However, the preference function concerning allocation 
of household resources cannot be obtained directly from existing surveys. Surveys 
generally provide information about the number cars in the household; however, 
data relating the decision to purchase a car at a given price and at a certain time 
is not collected. Therefore, at this stage, we limit the investigation to existing data 
sources, and propose a simple methodology to infer the IMC, presented in the 
next section.

Methodology
Data Preparation
The database used for model estimation is a subsample from the NTHS, carried 
out by the Israeli Central Bureau of Statistics in 1996–1997 on behalf of the Minis-
try of Transport. We confined this study to the Tel Aviv Metropolitan Area (about 
1.7 million inhabitants in 1996), since we could reasonably attach a reliable level of 
service data only for this region.

The survey is a typical revealed preferences (RP) study. About 1 percent of the 
households were surveyed (5,917 households in the Tel Aviv area). Each person 
over the age of 14 kept a three-day diary. A total of 29,506 observations, corre-
sponding to trips departing from home, were selected for the analysis. We pur-
posely avoided chained trips, since for more than 95 percent of these cases the 
chosen mode was identical to the mode used in the trip departing from home.

Travel times for car and transit modes were imported from Emme/2 networks 
used for modeling a light rail transit project in the Tel Aviv Metropolitan area 
(Perlstein-Galit Company Ltd. 2001).

The survey collected additional information about the cars in the household. 
According to information in the questionnaire about the year of production and 
engine size, we calculated average market values for each car in the household. 
Table 1 presents average car values (December 1996 prices) according to the price 
booklet used for car insurance companies (Levi-Itzhak 1996).
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Table 1. Average Car Prices for Given Engine Size and Production Year1

	 Engine Size

	 Up to 	 1001–	 1301–	 1601–	 1801–	 2001 
Production Year	 1000	 1300	 1600	 1800	 2000	 & More

	 Up to 1988	 9.5	11 .6	1 4.3	1 9.8	 26.5	 38.1

	1 989	1 7.6	1 8.5	 27.2	 40.2	 56.0	 72.1

	1 990	1 9.3	 22.6	 32.3	 43.8	 52.9	 77.3

	1 991	 21.8	 27.3	 37.8	 45.1	 54.9	 75.7

	1 992	 24.6	 28.3	 42.3	 49.2	 53.0	 88.2

	1 993	 29.1	 31.7	 45.9	 58.8	 72.7	 98.2

	1 994	 39.0	 33.9	 50.2	 67.3	 90.0	11 3.8

	1 995	 -	 38.9	 60.8	 73.1	 93.6	11 5.7

	1 996	 -	 50.8	 67.9	 84.6	1 00.2	1 36.2

	1 997	 -	 57.9	 78.6	 98.5	1 01.1	1 87.0

	1 . December 1996 prices in thousands of NIS (U.S. $1 = 3.244 NIS).

Model Estimation
This article focuses on the methodological aspects of the population segmenta-
tion, rather than model structure and calibration. For this reason, we used the 
multinomial logit model with the same utility function for all models tested in this 
study. In this way, we kept the modeling estimation procedure constant through-
out, and concentrated on different segments of the population. In addition, the 
same independent variables were used in all models.

The models were estimated according to two segmentation levels. First, the obser-
vations were separated according to car ownership and driver’s license. Three 
models were estimated at this level:

•	 Model A:	 The first model was estimated with all the available households 
(29,506 observations).

•	 Model B:	 The second model was estimated for persons with a driver’s license 
and living in households with at least one car (18,975 observations).

•	 Model C:	 The third model was estimated for the remaining observations 
(i.e., persons without a driver’s license or living in households without a car; 
10,531 observations).
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The next segmentation level was formed by further dividing the 18,975 observa-
tions related to households with car and persons with a driver’s license according 
to IMC. Three additional models were estimated:

•	 Model D:	 IMC up to 10,000 NIS (low investment; 3,094 observations); 

•	 Model E:	 IMC between 10,000 and 60,000 NIS (middle range; 8,276 observa-
tions); and

•	 Model F:	 IMC higher than 60,000 NIS (high investment; 7,605 observa-
tions).

The thresholds for low, middle, and high IMC used in these models were defined 
by looking at the IMC distribution in the household sample, as shown in Figure 1. 
Since 1,834 (31%) of households in the sample do not possess a car, the IMC for 
these cases is 0. At the value of 10,000 NIS there is a sharp difference in the slope 
of the cumulative frequency, and for this reason this value was used as a reference 
for low IMC. There are similar differences around 30,000 and 60,000 NIS, but the 
30,000 mark did not yield significant model estimation results. Figure 2 shows the 
household segmentation for the different models estimated.

Figure 1. Distribution of IMC in the Sample
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Figure 2. Segmentation Diagram

Since in this study we focus on the influence of IMC variable on mode choice, it is 
important to verify that transit service is available in all segments. For example, it 
may be possible that households with high IMC will be located in areas with poor 
transit service. At least for the data used in this analysis, no significant differences 
were found in the distribution of the main explanatory variables in each of the 
IMC groups. Table 2 shows the main statistics (mean and coefficient of variation) 
for each IMC group.

Apart from the IMC mean value, which is obviously different in each class, all other 
variables exhibit very similar mean and coefficient of variation values.

Results
Table 3 shows the results obtained from the initial segmentation procedure. The 
table contains the estimated coefficients and t-values for the first three models 
described. In addition, overall fit parameters and common level of service ratios 
are presented, such as values of time (VOT) and ratio between out-of-vehicle and 
in-vehicle transit times. The third model is related to observations without car 
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available, and for this reason the IMC variable in these cases is not relevant for 
model estimation (since it is equal to 0).

Both IMC and a dummy variable that indicates households with two or more cars 
are quite significant in the first two models. Although the high t-values originate 
from the large sample size, we may infer that the IMC variable is not just a replace-
ment for the auto ownership variable.

Table 4 presents the results for the segmentation according to IMC. The format 
of the table is identical to Table 3. Recall that the total number of observations in 
the three models of Table 4 sum up to the observations for households with car 
and persons with driver’s license, as in the second model of Table 3. The car driver’s 
market share in these cases is quite high, as expected, ranging from 71 percent in 
the lower third of the IMC to 82 percent in the higher third.

For the two extreme IMC ranges (low or high) the independent variable associ-
ated with IMC is not significant. However, in the middle range, the IMC variable 
is significant, perhaps indicating that at this range the influence of IMC is most 
pronounced. 

Table 2. Basic Statistics of the Main Explanatory Variables  
for Each IMC Group

Variable 	 IMC<10,000	 10,000<IMC<	 IMC>60,000 		
Description	 NIS	 60,000 NIS	 NIS

	 Mean	 CV (%)	 Mean	 CV (%)	 Mean	 CV (%)

Number of transfers	1 .3	 39.9	1 .3	 40.8	1 .3	 40.7

Bus wait time (min)	 7.6	 66.1	 7.8	 63.9	 8.3	 64.2

Bus in-vehicle time (min)	 24.1	 76.7	 25.5	 78.1	 27.3	 75.7

Bus walk time (min)	 5.8	 88.5	 5.8	 88.3	 6.7	 89.2

Bus fare (NIS)1	 6.0	 53.8	 6.2	 55.8	 6.5	 55.6

Car in-vehicle time (min)	1 8.2	 83.7	1 9.0	 85.2	1 9.6	 81.1

Car cost (NIS)1	 7.7	 62.8	 7.9	 63.1	 8.0	 61.5

Park cost (NIS)1	 2.7	1 7.0	 2.7	1 7.3	 2.7	1 8.0

Park search time (min)	 2.5	 96.2	 2.5	 95.7	 2.5	 96.9

IMC (thousand NIS)1	 6.2	 37.0	 36.6	 34.6	1 04.0	 36.3

1. December 1996 prices in NIS (U.S. $1 = 3.244 NIS).
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Table 3. Estimation Results—Initial Segmentation

	 Model A	 Model B	 Model C
		  HH with Car	 HH without Car	
Variable		  and Persons with	 or Persons without	
Description	 All Observations	 Driver’s License	 Driver’s License

	 Coefficient  t-stat	 Coefficient  t-stat	 Coefficient  t-stat

Cd—constant	 -1.312	 -24.7	1 .156	1 2.0		

Cp—constant	 -1.487	 -27.0	 -0.607	 -5.8	 -0.706	 -11.3

Bus—number of transfers	 -0.300	 -10.1	 -0.284	 -5.5	 -0.316	 -7.6

Bus—wait time (min)	 -0.031	 -8.4	 -0.043	 -6.0	 -0.045	 -9.6

Bus—in-vehicle time (min)	 -0.016	 -7.9	 -0.016	 -5.1	 -0.024	 -8.7

Bus—walk time (min)	 -0.022	 -5.0	 -0.013	 -1.7	 -0.038	 -6.5

Bus—fare (NIS)1	 -0.169	 -22.2	 -0.131	 -9.8	 -0.205	 -2.5

Cd—in-vehicle time (min)	 -0.025	 -7.5	 -0.035	 -6.8		

Cd—cost (NIS)1	 -0.029	 -3.2	 -0.048	 -3.6		

Cd—park cost (NIS)1	 -0.003	 -0.3	 -0.030	 -1.9		

Cd—park search time (min)	 -0.012	 -1.7	 -0.031	 -3.2		

Cp—in-vehicle time (min)	 -0.030	 -8.0	 -0.030	 -5.0	 -0.008	 -1.6

Cp—cost (NIS) 1	 -0.041	 -4.2	 -0.063	 -3.9	 -0.088	 -7.4

Cd—IMC (‘000 NIS) 1	 0.018	 32.4	 0.004	 4.4		

Cp—IMC (‘000 NIS) 1	 0.013	 20.6	 0.004	 4.5		

Cd—dummy for 2+ cars in hh	 0.931	1 9.5	 0.930	1 2.8		

Cp—dummy for 2+ cars in hh	 0.447	 8.3	 0.486	 5.6 

Total number of observations	 29506		1  8975		1  0531	

Bus riders	 7932	 27%	1 826	1 0%	 6106	 58%

Car drivers	1 4784	 50%	1 4784	 78%		

Car passengers	 6790	 23%	 2365	1 2%	 4425	 42%

Likelihood (0)	 -32415.7		  -20846.2		  -7299.5	

Likelihood (Constants)	 -30612.1		  -12889.1		  -7164.8	

Likelihood (Final)	 -27034.5		  -12169.9		  -6715.4	

“Rho-Squared” w.r.t. 0	 0.17		  0.42		  0.08	

“Rho-Squared” w.r.t. Const.	 0.12		  0.06		  0.06	

1 December 1996 prices in NIS (U.S. $1 = 3.244 NIS).
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Table 4. Estimation Results—Segmentation by IMC 

Variable 	 IMC<10,000	 10,000<IMC<	 IMC>60,000 	

	 Description	 NIS	 60,000 NIS	 NIS

	 Coefficient  t-stat	 Coefficient  t-stat	 Coefficient  t-stat

Number of transfers	1 .3	 39.9	1 .3	 40.8	1 .3	 40.7

Cd—constant	1 .141	 5.1	1 .206	 7.3	 0.880	 3.8

Cp—constant	 -0.333	 -1.3	 -0.788	 -4.0	 -0.911	 -3.6

Bus—number of transfers	 -0.297	 -3.7	 -0.267	 -3.6	 -0.218	 -2.2

Bus—wait time (min)	 -0.023	 -1.7	 -0.033	 -3.2	 -0.094	 -5.6

Bus—in-vehicle time (min)	 -0.022	 -1.5	 -0.022	 -4.7	 -0.015	 -2.4

Bus—walk time (min)	 -0.046	 -2.7	 -0.011	 -1.0	 -0.017	 -1.1

Bus—fare (NIS)1	 -0.075	 -2.8	 -0.118	 -6.4	 -0.217	 -7.6

Cd—in-vehicle time (min)	 -0.025	 -2.3	 -0.038	 -5.2	 -0.043	 -4.2

Cd—cost (NIS)1	 -0.036	 -1.3	 -0.048	 -2.5	 -0.044	 -1.7

Cd—park cost (NIS)1	 0.015	 0.4	 -0.048	 -2.1	 -0.026	 -1.0

Cd—park search time (min)	 -0.090	 -3.9	 -0.013	 -0.9	 -0.024	 -1.5

Cp—in-vehicle time (min)	 -0.014	 -1.1	 -0.030	 -3.5	 -0.044	 -3.8

Cp—cost (NIS)1	 -0.086	 -2.5	 -0.065	 -2.8	 -0.040	 -1.4

Cd—IMC (‘000 NIS)1	 0.027	1 .2	 0.008	 2.8	 -0.009	 -0.6

Cp—IMC (‘000 NIS)1	 -0.004	 -0.2	 0.014	 3.8	 0.005	 0.3

Cd—dummy for 2+ cars in hh	 0.633	1 .9	 0.771	 8.0	1 .237	1 0.6

Cp—dummy for 2+ cars in hh	 0.300	 0.7	 0.392	 3.4	 0.718	 5.2

Total number of observations	 3094		  8276		  7605	

Bus riders	 467	1 5%	 905	11 %	 454	 6%

Car drivers	 2208	 71%	 6316	 76%	 6260	 82%

Car passengers	 419	1 4%	1 055	1 3%	 891	1 2%

Likelihood (0)	 -3399.1		  -9092.1		  -8354.9	

Likelihood (Constants)	 -2465.7		  -5883.1		  -4408.4	

Likelihood (Final)	 -2355.0		  -5629.7		  -4142.4	

“Rho-Squared” w.r.t. 0	 0.31		  0.38		  0.50	

“Rho-Squared” w.r.t. Const.	 0.04		  0.04		  0.06
	
1 December 1996 prices in NIS (U.S. $1 = 3.244 NIS).
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The following analysis is based on the values of time and bus penalties calculated 
for each of the models. VOT is computed respectively for each mode as the ratio 
between the in-vehicle time coefficient and the cost coefficient, and the bus pen-
alties are computed  by dividing the different out-of-vehicle time coefficients by 
the in-vehicle bus time coefficient. Table 5 presents the results.

Table 5. Values of Time* and Bus Penalties

	 Model A	 Model B	 Model C	 Model D	 Model E	 Model F

Cd—VOT (NIS/hr)	 52.9	 43.7		  40.3	 46.9	 57.6

Cp—VOT (NIS/hr)	 43.8	 28.6	 5.1	 9.9	 27.5	 64.8

Bus—VOT (NIS/hr)	 5.5	 7.5	 6.9	1 7.6	11 .0	 4.2

Bus walk time penalty	1 .4	 0.8	1 .6	 2.1	 0.5	1 .1

Bus wait time penalty	 2.0	 2.6	1 .9	1 .1	1 .5	 6.1

Bus transfer penalty	1 9.2	1 7.3	1 3.3	1 3.5	1 2.4	1 4.2

* December 1996 prices in NIS (U.S. $1 = 3.244 NIS).

As expected, car driver VOT is higher in all models than car passenger and bus 
VOT, with exception of model F, where VOT for car passenger is highest. The com-
parison across the models shows a general pattern; that is when car VOT increases 
(both for drivers and passengers), bus VOT decreases. Note also the low VOT for 
the segment without car (Model C). The last three models, corresponding to the 
segmentation according to IMC, exhibit a systematic pattern: VOT for car driver 
and car passenger increases with increasing VOT, and VOT for bus passenger 
decreases with increasing VOT.

The comparison of the bus penalties shows less consistent results. We expected 
significantly higher penalties for higher income populations. Since the walk time 
coefficients in all models segmented by IMC are not significant at the 90 percent 
level, it is not possible to draw conclusions for the walk time penalty. The wait time 
penalty can be compared, and the results show that this value is quite high for high 
IMC (model F), which is consistent with the high VOT found for this segment. 

The transfer penalty was found quite similar for each of the models. We also found 
in the literature similar values for the transfer penalty. Lin et al. (1997) estimated 
an intermodal transfer penalty of 15 minutes for New York and New Jersey com-
mute corridors, using RP and SP data for car and transit riders. In a study for work 
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trips in Boston (Central Transportation Planning Staff 1997), the transfer penalty 
ranges from 12 to 15 minutes of in-vehicle time for urban mode choice modeling. 
In Israel, the planning agencies are also currently using 12 to 15 minutes of in-
vehicle time in transit mode choice and assignment model implementations.

Summary and Conclusions
IMC as an independent variable in the logit model for estimation of the popula-
tion choice parameters for modal split modeling was proposed in this article as a 
possible replacement to the income variable for both practical reasons and quali-
tative conceptual reasons. The ultimate test to verify the most suitable variable is a 
database that contains both IMC and income; the latter variable was not available 
in our database.

In the tests presented in this study, we found that segmentation of the population 
in three categories of IMC yielded significantly different models of the preference 
systems for the three populations. These findings suggest that the IMC is a viable 
variable for market segmentation.

The IMC parameter has limitations that need to be acknowledged. First, even if 
people tend to maintain certain standards of car ownership, they usually keep 
their cars for two to three years, sometimes even for four years or more. Automo-
bile market value in Israel drops 8 to 20 percent per year (typically 15% per year). 
Thus, a typical household may be very easily classified 20 to 30 percent above or 
below the average IMC of the household; that is, the typical household might be 
classified at a lower or higher category of IMC than to which it actually belongs.

This limitation is inherent to the IMC variable and the proper way to deal with it, 
using the present data conditions, is to have the segments broad enough to allow 
the marginal crossover from one IMC category to another.

A more rigorous solution to this problem would be to estimate the average ref-
erence year for car possession in the household. This can be done in subsequent 
surveys by asking respondents how many years they kept their previous car, how 
many years they have had the present car, and how many years they intend to 
keep it. Such a procedure would enable the researcher to get a more reliable 
estimate about the true IMC of the household, and would thus allow for a more 
refined segmentation of the population.
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The second problem with the IMC variable is related to the way the variable was 
calculated. The available database provided two types of information: car produc-
tion year and vehicle engine size. This relatively limited information forced us to 
compute for each combination of these variables an average value for all vehicles 
belonging to the same category. However, there is a wide variation in the market 
value of different cars with the same production year and engine size. For example, 
for production year 1992 and engine size group of 1600 to 1800 cc, the weighted 
average of the market value for cars in this group in Israel was estimated at 49,200 
NIS in 1996 prices (about U.S. $15,166). However, prices ranged from as low as 
33,000 NIS to 80,000 NIS for the same combination of year and engine size.

This problem can be easily solved by adding a simple question in the survey about 
car make. This information is quite easy to obtain, since most drivers know the 
make of their car. For example, the 2001 U.S. NHTS (2004) included information 
about car make, which could be employed in the procedure suggested here.

Finally, the IMC parameter appears to have a rather wide variance when it is 
derived from questionnaires that have not been designed to minimize this vari-
ance. The variance can be minimized to make the IMC a much sharper tool for 
segmentation purposes.

Reduction of the variance as a result of the market cost of different car makes can 
be achieved very easily by adding a simple question. However, reduction of the 
variance due to the tendency of car owners to keep a car more than one year and 
the difference between car owners as regards the period of car possession calls for 
a more detailed inquiry. As already pointed out, it would be reasonable to add 
questions about how many years drivers kept previous cars, how long the present 
cars were in their possession, and how long they intended to keep these cars until 
the next car acquisition. 
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Are Printed Transit Information 
Materials a Significant Barrier to 

Transit Use?
Alasdair Cain, Center for Urban Transportation Research

Abstract

This study investigated the extent to which the lack of ability to use printed transit 
information materials correctly to plan transit trips is a barrier to transit use. A total 
of 180 people were asked to undertake two transit trip-planning assignments, each 
requiring the use of a system map, two route maps, and two schedules. 

The study found that only 52.5 percent of the sample, composed of both transit users 
and nonusers, was able to plan a transit trip successfully using standard printed 
information materials. The main problems existed at the latter stages of the trip-
planning process involving schedule use (55.6% success rate). Although printed infor-
mation materials were the most popular trip-planning media for transit users, more 
than half stated that they did not use this method to plan their trips. 

Additional questioning suggested that a relationship between transit trip-planning 
ability and transit use does exist. However, it was also found that while lack of infor-
mation material comprehension is a problem, it is not a primary barrier to transit 
use—none of the nontransit users cited lack of transit trip-planning ability as their 
main reason for not using transit. Furthermore, a wide range of other information 
resources is available for transit users to choose from if they are uncomfortable with 
printed media. 
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Introduction
Printed information materials, such as transit system maps, route maps, and 
schedules, are the traditional media used by transit agencies to provide service 
information to customers. Transit providers allocate significant resources in pro-
ducing such materials and in keeping them up to date with service modifications. 
There is some concern in the transit industry that public inability to plan transit 
trips may be a major barrier to transit use. However, relatively little is known about 
how transit users actually plan their trips, and the extent to which printed infor-
mation materials are actually used. 

This article presents the results of a study completed by the National Center for 
Transit Research, titled “Design Elements of Effective Transit Information Materi-
als” (Cain 2005). The first objective of the study was to isolate the different design 
elements that make up printed transit information materials, to determine which 
design options maximize public trip-planning ability. For more information in 
relation to this objective, see Cain (2005). The focus of this article is the study’s 
second objective, which was to determine the extent to which transit information 
materials are a barrier to transit use, by exploring the relationship between transit 
trip-planning ability and transit usage.  

Literature Review
The Transit Cooperative Research Program (TCRP) Report 95 is a series of indi-
vidual studies assessing how different types of transportation system changes and 
policy actions affect traveler responses and aggregate travel demand. Chapter 11 
assessed how various types of transit information and promotion activities impact 
ridership. The study stated that the primary goal of transit information and pro-
motion activities is to increase ridership or net revenues, preferably both (Turnbull 
2003). Other secondary objectives included retaining existing riders, increasing the 
frequency of use among current riders, getting nonriders to try the system, and 
increasing general public awareness of available service options. An understand-
ing of the importance of information and promotion, and the difference between 
these two terms, is key to this discussion. As noted by Turnbull (2003),

For a person to make use of transit service, and thus become a transit rider, he or 
she must know of the service and understand how to use it. Moreover, the under-
standing of how to use the service must be complete enough to overcome the bar-
rier to use posed by unfamiliarity. Transit information activities may thus attract 
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potential riders to both transit in general and to particular services by informing 
them about the options available and how to make use of them. Transit promo-
tion seeks to provide that extra nudge for potential riders to make the leap and 
actually try riding transit, and hopefully become regular users.

Only 55 percent of the U.S public claims to be familiar with transit (Wirthlin 
Worldwide and FJCandN 2000). 

The TCRP-95 report (Turnbull 2003) referenced the large variety of information 
sources available, including bus stop signage, telephone information (via call 
centers—either automated or staffed), Internet resources such as on-line transit 
trip planners, and oral instruction from transit staff or fellow passengers, as well 
as printed information materials. The report divided the different information 
and promotion options into six categories: (1) mass market information, (2) mass 
market promotions, (3) targeted information, (4) targeted promotions, (5) ongo-
ing customer information services, and (6) real-time transit information (Turnbull 
2003). Printed transit information materials appeared in two categories: mass 
market information, which included brochures, system maps, bus stop signage, 
telephone information systems, and websites; and targeted information, which 
included route- or sector-specific maps and schedules. 

The report noted that relatively few published examinations of the impacts of tran-
sit information and promotion activities on ridership are available. This was attrib-
uted to a more general problem associated with evaluating marketing impacts on 
ridership, caused by many agencies lacking a ridership tracking database. In many 
cases, rider surveys are used to provide impact assessment data, but the accuracy 
of these can be questionable as they track stated or intended behavior, not actual 
behavior, and may also suffer from self-selection bias (Turnbull 2003). 

Published research on the impact of mass market information programs, such 
as door drops of printed transit information material, showed that while such 
campaigns have proven effective in raising awareness and use of transit service 
support systems, they have little impact on attracting new riders. Results in rela-
tion to increased frequency of use by existing riders have also been mixed. Adding 
incentives to mass market information programs increases the likelihood of rider-
ship gains, at least in the short term—published results show ridership gains of 
between 4 and 35 percent (Turnbull 2003). Long-term ridership gains are much 
more difficult to achieve. 
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Targeted information programs have been shown to be much more effective 
than mass market information in generating ridership gains. These can include 
geographical targeting, such as the campaign conducted by the Niagara Frontier 
Transportation Authority in Buffalo, New York, that mailed route information 
materials to more than 20,000 resident living within  three quarters of a mile of six 
bus routes. Targeted information also includes socioeconomic targeting (Turnbull 
2003). This was featured in the above campaign, with the targeted areas selected 
on the basis of population profiles being congruent with those of transit riders. 
Farebox revenue analysis showed that revenues on these targeted routes had 
increased 1 to 3 percent on three routes and 11 to 33 percent on the other three 
routes (TTI 1999). Increases of more than 50 percent have been reported in the 
short term in relation to other targeted information programs.  

Transit information usefulness will also be affected by each potential user’s knowl-
edge of local geography, knowledge of the transit system, and ability to process 
different types of information, including maps and schedules. A study conducted 
in 1986 found that 64 percent of the U.S. population is thought to have difficulty 
reading maps of any sort (Streeter and Vitello 1986). Data from the National Adult 
Literacy Survey found that many people are unable to use a tabular bus schedule 
successfully. This survey tests adult literacy levels in three separate categories: 
prose comprehension, document literacy, and quantitative literacy. In the docu-
ment literacy section, only 37.6 of adults between 21 and 25 years old were able 
to use a bus schedule successfully to select the correct bus departure time (Kirsch 
et al. 2001). As such, using a bus schedule was rated at level 4 on a five-point scale, 
with level 1 being the easiest and level 5 the most difficult. 

Despite these difficulties, printed information materials remain the dominant 
transit trip-planning media. A study titled “Customer Preferences for Transit ATIS” 
found that “riders prefer traditional forms of paper-based information and tradi-
tional wayside signage (e.g., schedules, maps, and fares)” (Cluett et al. 2003), while 
TCRP Report 45 (Higgins and Koppa 1999) stated that both transit riders and non-
riders often mention timetables (schedules) as a potentially useful information aid, 
which some riders use regularly. The report further stated that many people find 
timetables difficult to read and understand and recommended that “rather than 
print and distribute timetables, systems provide departure times or bus headways 
on bus stops signs, packaging the schedule information into smaller, manageable 
pieces” (Higgins and Koppa 1999). However, the headway-based approach is lim-
ited to situations where service is frequent enough that transit users do not need 
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to know exactly when their bus will arrive. Research suggests that this “schedule 
use threshold” lies at around 10 to 15 minutes, with the majority of users being 
“random arrivals” at bus stops if headways are 10 minutes or less, while at head-
ways of 15 minutes or more, the majority of users are “planned arrivals” requiring 
schedules (Balcombe and Vance 1998). One study provided anecdotal evidence 
that appreciable gains in ridership have been made when schedules have been 
reorganized to a simpler “clockface” format (Webster and Bly 1980). Thus, the 
level of service complexity is also a factor, with complicated route structures and 
unstandardized departure times adding to the likelihood of rider confusion and 
affecting which information provision styles can be used. Considering the fact that 
transit users are often from low-income, low-education backgrounds, the extent 
of the challenge in providing understandable trip-planning materials is clear. 

Study Objective
The literature review indicated that transit information is crucial to the overall 
success of a transit service. Although a wide variety of different information media 
are available, traditional printed information materials remain very popular. How-
ever, the review also showed that many transit users, and the public in general, are 
unable to plan their trips successfully using such materials. Therefore, this study 
was designed to investigate in more detail the extent to which the general public 
can successfully use printed information materials to plan a transit trip, and to 
isolate the aspects of the trip-planning task that cause difficulty. The study then 
assessed the extent to which transit trip-planning problems affect actual transit 
usage to determine whether transit information materials are a significant barrier 
to transit use.  

Study Design
A total of 180 people were recruited at three shopping mall sites in the Tampa 
Bay area in August 2004. Quotas were used to ensure sample variation on age, 
gender, ethnicity, income level, and transit use (35.6% of the sample used transit at 
least once a week on average). As the study did not obtain a random sample, the 
“raw” results could not be used to draw population-wide inferences. To address 
this, three different weighting factors (a demographic adjustment factor, a travel 
behavior adjustment factor, and a systematic adjustment factor) were applied 
to the data to correct for any sample bias. For more detailed information on the 
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study methodology and data weighting process, see the final project report (Cain 
2005).  

Each participant was asked to undertake two transit trip-planning assignments. 
Each assignment involved planning a bus trip that required the use of two bus 
routes to travel from a specified origin to a specified destination, arriving before 
a specified time. Thus, each assignment involved one transfer, and required the 
use of a transit system map, two route maps, and two schedules. Research staff 
timed and observed participants as they undertook the trip-planning assignments 
and interviewed them after each assignment. Following the assignments, partici-
pants were asked how confident they would be if they had to plan a transit trip 
using similar materials in “real-life” and whether their participation would have 
any impact on their future transit usage. Current transit users were also asked to 
describe the main method they used to plan their transit trips, while nonusers 
were asked to state the main reason why they did not use transit. A total of 358 
test observations resulted from the study. 

Assessment of Aggregate Transit Trip-Planning Ability
The trip-planning process was divided into five discrete stages, as shown in Table 
1. Stage 1 involved using the system map to identify the trip origin and trip desti-
nation. This was a straightforward task for most participants, and the two points 
were located either by using the street addresses provided, or simply scanning the 
system map at random until the points were found. Stage 2 involved using the sys-
tem map to determine which bus routes to use for their trip. This required locating 
different color-coded routes in close proximity to their trip origin and destination, 
following the routes through the town, and deciding where to transfer. This was 
again a simple task for most participants, and Table 1 shows a success rate of 93.6 
percent on these first two stages. 

Having identified the routes required for their trip, participants were provided 
with the route maps and schedules for each of these routes, and asked to use them 
to identify the bus stops and times for boarding and disembarking each bus (if 
they had not been able to identify the required routes correctly, this was explained 
to them before they were given the correct route maps and schedules). 

The first part of this process (Stage 3) was to identify the four time points (bus 
stops) required for the trip (first route start point, first route end point, second 
route start point, and second route end point). In most cases, the points of interest 
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(which included the specified origin and destination points) were not provided on 
the route maps, so participants had to cross-reference between the system map 
and the route maps to locate the closest bus stops and the appropriate transfer 
point. Table 1 shows a relatively high level of success at this stage, with 73.2 per-
cent of assignments successfully completed. 

Having identified the boarding and alighting bus stops, participants were then 
required to begin the task of identifying the times at which they would board and 
disembark from each bus. The first stage in this process (Stage 4) was to determine 
which section of the schedule to use. This requires an awareness of (1) the required 
direction of travel, (2) the required day of travel, and (3) whether the trip is in the 
morning or afternoon. Each issue affected the determination of which part of the 
schedule to use, and all three issues were a source of difficulty for study partici-
pants. Additional information on these issues can be found in Cain (2005). 

The final stage in the trip-planning process (Stage 5) was to use the schedule to 
identify the correct bus times for boarding and disembarking from each bus (first 
route boarding time, first route alighting time, second route boarding time, and 
second route alighting time). Table 1 shows that Stages 4 and 5 caused the most 
problems for participants, with a success rate of only 55.6 percent. Just under half 
the sample got at least one bus time wrong, while almost one fifth of the sample 

Table 1. Sample Performance at Each Transit Trip-Planning Stage
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(17.9%) was unable to get any of the times correct. Following the exercise, partici-
pants were asked which parts of the assignments were the most difficult. Using 
the schedule was identified as the most difficult aspect on 162 occasions (almost 
half of all completed assignments), adding further evidence to the conclusion that 
schedule use is by far the most difficult aspect of the transit trip-planning task.  

Overall, only 52.5 percent of assignments were successfully completed, suggest-
ing that a significant proportion of the general public is unable to successfully 
plan a bus transit trip from an origin to a destination that involves one transfer. 
However, in dividing the trip-planning task into a series of five discrete stages, this 
study suggests that most people are able to complete the first three trip-planning 
stages successfully, and that the critical problem lies at Stages 4 and 5, where they 
are required to use a schedule to determine boarding and alighting times. This is 
consistent with the findings of other research, as discussed in this article’s litera-
ture review. Therefore, the main conclusion from this part of the study was that 
there is a critical need to improve the public’s ability to understand and utilize 
the information presented in transit schedules. Having found that a significant 
portion of the public has difficulty planning a transit trip, the next question to 
consider was the extent to which this affects public confidence in using transit, 
and, in aggregate terms, how this affects transit ridership. This topic is addressed 
in the remainder of this article. 

Characteristics of Current Transit Information Material Use
Study participants were asked to indicate, in the post-test self-completion ques-
tionnaire, whether they had ever used transit schedules or maps before participat-
ing in the study. Their responses are provided in Table 2, stratified by their stated 
current frequency of transit use. 

Table 2 shows that the level of previous experience with transit schedules and 
maps is different for transit users and nonusers. The majority of transit users 
(73.2%) had previous experience with transit information materials, while only 
around half of nontransit users (49.3%) had previous experience. Interestingly, 
more than one quarter of the sampled transit users (26.8%) did not have previous 
experience, suggesting that a significant number of transit users do not use maps 
and schedules to plan their transit trips. This issue was investigated further by ask-
ing transit users in the sample to state the main method they used to plan their 
transit trips. Their responses are provided in Figure 1. 
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Table 2. Level of Previous Experience with Transit Information Materials  
by Transit User Status

Figure 1. Main Method Used by Transit Users to Plan Transit Trips

Figure 1 shows that just under half of transit users in this sample used transit 
schedules and maps to plan their transit trips. Although this was by far the most 
popular method overall, more than half of the transit users used a different 
approach. Alternatives included calling a helpline (16%) or asking the bus operator 
(9%), both of which require transit agency resources. Thus, improving transit user 
ability to plan their own trips may allow drivers to complete their routes in less 
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time, and would mean that less staff resources would be spent answering requests 
for assistance from customers.

Just over 10 percent of transit users stated that they did not need any method to 
plan their trip as they simply knew from experience where and when the transit 
services ran. A small proportion of the sample did not employ any trip planning, 
and simply stood at the bus stop until a bus came. Further analysis was conducted 
to assess whether there was any variation in trip-planning method used in relation 
to different frequencies of transit use. Table 3 provides the results of this analysis. 

Although the cross-tabulated cell sizes are relatively small, the majority of those 
who use schedules and maps to plan their transit trips are frequent transit users, 
with 38.5 percent using the bus four or more times a week and 28.8 percent using 
the bus one to three days a week. Similar results were observed for people who call 
a helpline, with again more than half using the bus at least once a week. Frequen-
cies are more evenly spread for people who ask the driver or ask a friend/relative, 
while almost all those who stated they knew the transit services from experience 
were also frequent transit users. 

Impact of Study Participation on  
Transit Trip-Planning Confidence
At the end of the exercise, participants were asked whether participation in the 
exercise had increased their confidence in planning a transit trip. Results are 
shown in Table 4, stratified by level of previous experience with transit informa-
tion materials. 

Table 4 shows that around two thirds of study participants stated that participa-
tion had improved their trip-planning confidence. Furthermore, it appears that 
whether the participant had previous experience with such materials did not have 
an effect on this—almost as many participants with previous experience stated 
a positive impact (66.1%) as those who had never used such materials before 
(70.3%). This suggests that even people who already use such materials could ben-
efit from further training or instruction. Around one quarter of the participants 
from each group stated that participation had not increased their confidence. 

Further analysis assessed how participants’ performance during the exercise var-
ied by their stated level of confidence in transit trip planning following exercise 
completion. Results of this analysis are shown in Table 5. Inferential statistics were 
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used to assess the strength of the relationship between these two variables. Eta 
is a correlation coefficient that measures the strength of bivariate relationships. 
An Eta score of 0 means there is no relationship, and the higher the Eta value is, 
toward a maximum of 1, the greater the strength of the relationship in the sample 
data. The statistical significance value (Sig.) is used to assess the probability that 
the relationship observed in the sample, as described by the Eta value, would also 
exist in the population from which the sample was drawn. A significance value 
of 0.05 indicates a 95 percent probability that the relationship observed in the 
sample will also exist in the population. 

The statistics computed in Table 5 show that no significant differences exist in the 
performance of those who were more confident following the survey, and those 
who were less confident. Indeed, in most cases, the scores of all three groups are 
very similar, suggesting that actual assignment performance is not related to how 
confident participants felt after the assignments were completed. Participants 
who had made mistakes thought they had completed the assignments success-
fully, stating that they found the assignments “easy” or “very easy.” Overall, this 
table suggests that many people are unaware of their trip-planning errors, and 
incorrectly believe that they are successfully planning their trips. This could be 
a source of customer frustration and complaints against transit services, as such 
customers would be prone to believing that their services are running late or have 
been cancelled, when in fact they have actually misread the schedule.      

Impact of Study Participation on Stated Future Transit Use
Participants were next asked whether their use of public transit would change in 
any way following their participation in the study. Table 6 compares participant’s 
current transit use frequency with their stated future transit use frequency. The 
information is presented in a matrix format with current frequency in the table 
rows and future frequency in the table columns. Numbers shown in bold indicate 
the number of participants who would not change their frequency of transit use. 

Summing the numbers in bold indicates that a total of 140 people (77.8%) stated 
that they would not change their frequency of transit use. Of the remaining 22.2 
percent who indicated that their frequency of transit use would change; 8 people 
(4.4%) stated that they would use transit with less frequency following the survey 
exercise. 
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The remaining 17.8 percent (32 people) stated that their frequency of transit use 
would increase. Of the 67 participants who currently never or almost never use 
transit, 14 stated that they would use transit in future, meaning that 20.9 percent 
of nontransit users stated they would now use transit having gained experience in 
using transit information materials. Eight of these stated that they would now use 
transit less than once a month; 3 stated they would use it between once a month 
and once a week; and 3 stated they would now use transit one to three days a 
week. Some participants who currently use transit also stated that they would 
increase their future use: of the 31 people who currently use transit one to three 
days a week, 10 stated that they would now use transit four or more times a week. 
While these results could be viewed as evidence of a relationship between study 
participation and increased future transit use, it must be noted that stated behav-
ior change does not equate to actual behavior change, and also that the sample 
size used here is too small to be considered statistically robust.

A further investigation was carried out to determine whether any link existed 
between participants’ performance on the different stages of the assignment and 
their stated future frequency of transit use. Table 7 compares the performance of 
three groups: those who stated they would use transit with less frequency than 
before; those who would not change their transit use; and those who stated they 
would use transit with greater frequency. 

Table 7 shows no significant differences in the performance of the three groups in 
terms of overall score and total time taken on the assignments. However, signifi-
cant differences were observed in terms of stated difficulty, for both Stages 1 and 
2 and Stages 3, 4, and 5. In each case, the highest stated difficulties were observed 
among those stating that they would now use transit less, and the lowest stated 
difficulty among those stating that they would now use transit more. The mean 
score for people who would now use transit more equated to a difficulty rating 
of “somewhat easy,” while the mean scores for the other two groups equated to 
a difficulty rating of “neither difficult nor easy.” Clearly, participants who found 
the assignments easier, irrespective of their actual performance, were more likely 
to state that they would use transit more in future. This suggests a relationship 
between the perceived difficulty of the transit trip-planning task and the propen-
sity to use transit. 
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Are Information Materials a Barrier to Transit Use?
Results from the previous sections have suggested that many transit users do not 
use printed transit information materials to plan their transit trips. Furthermore, 
while the majority of the sample stated that participation in the exercise had 
increased their confidence in planning a transit trip, less than one fifth thought 
that they would now use transit services more often. This suggests that the lack 
of transit trip-planning ability using transit information materials is not a primary 
barrier to transit use. To clarify this, nontransit users were asked to state the main 
reason why they did not use transit. Their responses are provided in Figure 2. 

Figure 2. Main Reason Why Nontransit Users Do Not Use Transit

Figure 2 shows that the primary reason for nontransit use among nonusers is 
that they have access to a private vehicle (70% of nonusers). Other reasons given 
were that transit services are not convenient, dependable, or quick enough (10%), 
or that there simply is not a service available for use (15%). In discussions with 
interviewers following the survey exercise, several transit users stated that while 
weekday services were adequate, often no service is available on Sundays and 
public holidays. Complete lack of service is clearly a major barrier to transit use.  
In reference to this particular investigation, none of the participants cited transit 
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trip-planning problems as their reason for not using transit. This suggests that lack 
of transit trip-planning ability is not a significant barrier to transit use. 

Conclusions
This study has found that just over half (52.5%) of a sample of transit users and 
nonusers in the Tampa Bay area was able to plan a transit trip successfully using 
printed information materials. The main problems existed at the latter stages of 
the trip-planning process, which involved the use of tabular schedules (55.6% suc-
cess rate). 

Approximately two thirds of the participants stated that their participation had 
increased their level of confidence in using printed transit information materials; 
17.8 percent stated that their frequency of transit use would also increase. Fur-
thermore, 20.9 percent of nontransit users stated that they would now use transit 
in future. However, these are only statements of future behavior, and should not 
be used to assume equivalent ridership gains. People who found the assignments 
easier, irrespective of their actual performance, were more likely to state that 
they would use transit more in future. This suggests a relationship between the 
perceived difficulty of the transit trip-planning task and the propensity to use 
transit. 

Overall, this study has shown that a significant portion of the population has dif-
ficulty using traditional printed transit information materials, particularly sched-
ules, to plan transit trips, irrespective of whether they use transit. This finding is 
corroborated by the results of other similar studies [see Streeter and Vitello (1986) 
and Kirsch et al. (2001)]. Given this fact, the next question to ask is whether these 
difficulties have an effect on transit usage. The findings of this study suggest that 
this is unlikely to be a significant problem. None of the nontransit users partici-
pating in the study cited lack of transit trip-planning ability as their main reason 
for not using transit. Also, although printed transit information materials were 
the most popular method of trip planning for transit users, a wide range of other 
resources are available, and more than half of the transit users in the study stated 
that they used these other methods to plan their trips. 

Despite difficulties the public has in using schedules, it is still a very popular 
method for obtaining transit service information. Assuming that this will continue 
to be the case, serious attention must be given to ways to improve schedule design 
such that it will be understandable to a higher proportion of the population. 
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Realistically, there will probably never be a design that every transit user can fully 
understand, but perhaps some progress can be made to raising the overall propor-
tion. A few options for approaching this include:

•	 Continue to use the traditional tabular schedule as the design template, 
but investigate ways of improving its design to raise the overall level of 
comprehension.

•	 Investigate the use of alternatives to the tabular schedule, such as the “clock-
face” template, or the headway-based approach. However, such designs tend 
to reduce the completeness of the information that can be presented, and 
the trade-off between completeness and comprehension would have to 
be assessed.

•	 Provide a simplified text-based summary of the schedule information beside 
the full schedule for people who cannot read the schedule or do not require 
such accurate information.

•	 Results from this study showed that exposing the public to trip-planning 
exercises increased their level of confidence in planning an actual transit trip. 
Perhaps providing instruction or training in the correct use of the materials 
would be an effective way to improve trip-planning confidence and overall 
comprehension. 

Another phase of the study is now being undertaken with the objective of inves-
tigating further the schedule comprehension issues outlined above. This study 
aims to develop a design guidelines document that can assist transit agencies in 
production of their printed information materials. This document will be available 
in fall 2007. 
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Abstract

This article reports on a decision model that highlights a reward-based promotional 
strategy for a bus organization to maintain its market. The market control law 
is obtained from an optimal solution in the system equations on the basis of the 
relationship among the transit operator, ticket agent, and government. The article 
presents a case study for the Taipei bus transit system. Results in this research con-
firm the effectiveness of the proposed strategy for bus operators as well as for traffic 
improvement. The proposed model reveals the optimal actions for the agent and bus 
operators under governmental policy. 

Introduction
Public transit ridership in many urban areas is declining. Passenger cars are pre-
ferred for travel, subsequently inducing traffic congestion. Although transporta-
tion authorities have implemented several encouraging policies, such as tax deduc-
tions and exclusive bus system operations, passengers lack interest in traveling by 
bus because such transportation policies do not directly benefit the customers. In 
addition, the elasticity of the price of public transportation is extremely low (Lago, 
Mayworm, and Mcenroe 1981), with an average range of -0.28 ± 0.16. Such inelas-
tic circumstances imply that reducing the fare price leads to a net loss in revenues. 
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Indeed, almost all countries have a regulated pricing scheme for public transporta-
tion. Applying various pricing strategies to affect transportation markets directly 
conflicts with such regulations. Therefore, a stimulatory strategy is expected to 
ensure the survival of bus operators and increase public transit system use.

This study presents a novel incentive system to exert control on the transporta-
tion market. The proposed system focuses on selling prepaid tickets merged with 
a lottery to satisfy the operator’s expectations, particularly in terms of ridership 
or revenue. A case study is conducted to verify that such a strategy yields a sat-
isfactory solution for bus operators while also alleviating traffic congestion. As a 
concrete measure in the proposed strategy, the government is to apply a subsidy 
policy for bus operators when total passenger loads reach a certain threshold 
within a specific period. Bus operators can also encourage their ticketing agent 
to promote the use of prepaid tickets by offering a bonus to the agent when the 
amount of ticket sales achieves a certain quantity. The agent is also offered sev-
eral reward grades measured in purchased tickets or mileage for passengers. This 
incentive strategy subsequently stimulates the market.

Control theory is the basic methodology in the analysis of marketing relationships 
within the proposed promotional system. The upper level of the strategic goal 
is to alleviate traffic congestion by encouraging individuals to travel by bus. The 
primary level is to maximize profits for the ticketing agent and the bus operational 
organization. The proposed model is constructed with the agent’s and the bus 
operators’ profits, respectively, in terms of time. The solution identifies the sensi-
tivity and optimality of the control variables.

Premises for Modeling
Incentive System Structure
Figure 1 depicts the relationships among the ticketing agent, bus operators, and 
the government in the incentive system. According to these relationships, the 
ticket sales agent attempts to obtain maximum profit through a promotional 
strategy for selling a sufficient quantity of tickets. The agent’s profit includes the 
net revenue from selling tickets and a bonus obtained from the bus operators. 
The bus operators’ profit comes from carrying more passengers and possibly 
from a government subsidy. To obtain the subsidy, the operator must meet a 
performance threshold of total passengers carried within a period, T. If more 
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people travel by bus, traffic congestion is reduced and the quality of life in the city 
improves. Passengers expect to win an incentive prize from the ticketing agent.

Passenger Incentive Types
Promotional design of the prepaid tickets should be as attractive as possible. To 
extend the bus transportation market, noncaptive passengers are the targets of 
the promotional program. According to one survey (Jiang 1998), a lottery is one 
of the most attractive activities for noncaptive passengers. In this study, a lottery 
game is designed for the purpose indicated. In the game, both instant and delayed 
rewards are considered. The quicker an individual purchases a prepaid ticket card 
the higher the probability of winning an instant reward. After spending the pre-
paid value of the ticket, the individual has the opportunity to win a grand prize. 
This strategy encourages individuals not only to purchase prepaid tickets, but also 
to travel by bus. The structure of the prize layout was arranged as a pyramid with 
multiple layers and items. The grand prize is generally awarded at the end of a 
given period, denoted as T.

Passenger Demand Function
During this analysis the passenger demand function is formulated first. Based on 
the formulated demand function, profits for the ticketing agent and bus operators 
can then be estimated. Demand is affected by fare and level of transport services 
such as route, frequency, vehicle-quality (seat, air-conditioned), driver behaviors, 
and so forth. All routes are assumed to have already been allocated and cannot 
be changed; the number of existing vehicles is sufficient for any frequency exten-
sion (i.e., bus transport capability is far from exhausted and in a depressed period); 
vehicles are all in the range of usage; and employed drivers are experienced. All 
people know the fare, route network, schedules, and traffic conditions. The ana-
lytical change in price, even through a lottery activity, is relatively small compared 
to the basic transportation price from the regulated fare. Under these conditions, 

Figure 1. Relations among Sales Agent, Bus Operators, and Government
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the two factors of ticket price and incentive prize are sufficient to determine the 
demand variation for most road users. Thus, the demand function is assumed to 
be linear (McConnell and Brue 1993) in terms of the price and the expectation of 
winning a prize in the incentives:

q(t)=ap(t)+bE(M)+c	 (1)

where:

q(t) 		  denotes the volume of bus trips at time t

p(t) 		  represents the price of a bus ticket in a unit sale at time t,  
		  t ∈[0,T]

E(M) 		 is the expectation of winning a prize M

a, b and c 	 are parameters; a must be negative and b be positive

The expectation of winning a prize, of the given incentives, is defined by

E(M)= 	 (2)

where:

M
j	 	

expresses the prize of jth item of the rewards

f (M
j
)

 		
is the probability of winning the reward M

j 
, 0 ≤ f (M

j
) ≤1

Profit Model for a Ticket Sales Agent
Based on the three premises above, the ticketing agent’s profit can be clarified. The 
ticket agent’s profit is calculated as the sum of the net profit from selling tickets 
and the bonus, with the cost of the prizes issued to lottery winners deducted 
according to the promotional policy. Assume that the basic price of a ticket is C, 
which the bus consortium (organized by the bus operators in Taipei city) con-
tracts to the agent. The agent sells a unit ticket to a passenger with the price p(t). 
Thus, the agent’s profit at time t is [p(t)-C] q(t), p(t)>C. Obtaining p(t) in Equation 
(1), the profit can be derived as follows: 

[p(t)-C] q(t) = [(q(t) - bE(M) - c) - C]q(t)	 (3)
1
a
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The gross gain from ticketing in period [0,T] is

∫
0

T  	 [(q(t) - bE(M) - c) - C]q(t)(1+i)T-tdt	 (4)

where:

i		  denotes the interest rate

In addition, supposing that the bus consortium sets the threshold for tickets sold 
at level H for paying a bonus, and the agent gains the bonus B(·) if the tickets are 
sold out to the amount of Q(T) in period T: 

B(Q(T)) 	 (5)

Equation (5) indicates that the agent’s bonus vanishes if ticket sales do not reach 
the volume H. The agent will have a bonus of B(·) if the H volume is sold out. In 
general, B(·) is designed as a linear function with a marginal bonus while the sold 
quantity is beyond H. However, the expenditure of the agent for the lottery is

E(M)=Σ m
j 
l

j
 = M

1 
L

1
 + M

2 
L

2
 	 (6)

where:

L
j
 represents the quantity of the reward j

The first item (j=1) is the expenditure for the instant reward and the second item 
(j=2) denotes the prize bestowed at the end of the given period of T. In consider-
ing the instant reward, the right-hand term in Equation (6) could be replaced by

∫
0

T  	 [m
1
(t)l

1
(t)(1+i)T-tdt + M

2 
L

2
	 (7)

where:

m
1
(t)		  denotes the price of an instant reward

l
1
(t)		  represents the quantity of the instant reward

In brief, Equation (7) is used instead of the following form:

∫
0

T  	 	 (8)

1
a
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By incorporating Equations (4), (5), and (8), the total gain of the agent yields the 
following:

G = ∫
0

T  	 	 (9)

With the maximum profit objective, the extreme value from Equation (9) is obtained:

G* = max ∫
0

T  	 	 (10)

While considering the agent’s attitude in referring to Equation (5), three possible 
types of actions are dealt as follows:

1. The agent may discard obtaining the bonus if the threshold of the sold ticket 
volume is too high to afford. The proposition is written as

 
	 (11)

2. For Type II, the agent decides that his task is to reach the threshold for getting a 
bonus. He is not willing to put forth further sales effort due to the low margin for 
a bonus. The proposition is written as

 
	 (12)
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3. For Type III, based on the bonus condition in Equation (5) issued by the bus 
operators, the agent realizes that more profit can be earned by selling more tickets. 
The proposition is as 

	 (13)

Next, an attempt is made to identify the agent’s final decision from the above 
three propositions. To do so, Equations (11), (12), and (13) must be solved with 
respect to variable q(t). Since the propositions are dynamic problems depend-
ing on time t, the optimal control theory is applied (Chiang, 1992; Kamien and 
Schwartz 1991). Let x=x(t)=q(t) and 

	 (14)

 
According to the Euler equation (Kamien and Schwartz 1991), to find the extreme 
value from Equations (11), (12), and (13), the following function holds:

	 (15)

 
Substituting Equation (14) into the differential Equation (15) yields, at time t, 

	 (16)

 
This is a general solution form. Different constraints in each type lead to different 
results. Based on the constraint and boundary conditions in Type I, we obtain the 
following result:

	 (17)

 
By integration,

	 (18)

· ·
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Substitute Equations (17) and (18) into (10) yields

	  
	 (19)

as well as from Equation (1),

	 (20)

 

Similarly, for Type II, we have

	 (21)

	 (22)

 

	 (23)

 

	 (24)

For Type III, the bonus function, described in previous, could be replaced by

	 (25)
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and this implies

	 (26)

 
where:

 x(tf )	 denotes the total quantity of sales until the termination, tf  = T

K 	 is the marginal bonus, the incentive for an extra sale 

Consequently,

	 (27)

 
	 (28)

 
 
Then, we obtain the following result:

		
	 (29)

and corresponding to

 
	 (30) 

The optimal action of the agent should be the most profitable one based on the 
description of the three types under given conditions:

	 (31)
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Profit Model of Bus Operators
Bus operators are concerned with the profit they will earn so their goal is also 
maximum profit. The bus operators’ profit function is comprised of the net rev-
enue from their service, the amount of the bonus awarded to their agent, and the 
governmental subsidy due to their contribution to traffic congestion relief. The 
governmental subsidy is provided only if the total number of busloads during 
the fiscal period surpasses the regulated threshold. Net revenue in service is the 
income from the ticketing agent after deduction of the operating costs shared in 
the processing of the electronic readers on buses.

While assuming that the operating cost shared in processing one ticket is f and 
the net revenue per ticket is (C - f ), during the period [0,T ], the operators’ total 
profit W is calculated by

	 (32) 

in which, GP ( Nb ) represents the governmental subsidy:

	   

 
where:

  Nb 	 denotes the total number of loads carried by the bus operators

  	 is the unit of subsidy with respect to a load 

D 	 is the threshold for the subsidy 

Both  and D are regulated by the government. Therefore, the object function of 
the bus companies is set to be maximum profit as follows:

	 (33)

 
Since three types of agent attitudes have been described, the bus operators also 
have three respected treatments. Substituting Equations (17) and (18), or (21) and 
(22), or (27) and (28) into Equation (33) subsequently yields

	 (34)

^

^
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where: 

k indicates the three types , k=1,2,3, respectively

As previous shown in Equation (25), the bonus can be expressed using the follow-
ing general form:

B(Q(T)) = B(H) + K[Q(T) - H]	 (35)

The bus operators’ profit can then be obtained

	 (36) 

If the ticket agent has made his decision, the bus operators’ profit can clearly be 
confirmed.

Calibration of the Demand Function
A case study is presented for bus operation in Taipei City, where the Taipei Bus 
Consortium consists of eight bus companies. Passengers pay for bus fare with 
a prepaid magnetic card. The prepaid ticket cards are sold through a wholesale 
agent. The agent sells the prepaid ticket cards from ticketing windows distributed 
throughout Taipei City in convenience stores. To understand the feasibility of 
implementing the previous model in Taipei City, consumer opinions were investi-
gated using a questionnaire survey. The survey focused largely on understanding 
demand from and incentives to passengers. The questionnaire was designed to 
allow travelers to easily state their preferences.

The contents of the questionnaire are: (1) vehicle ownership—motorcycle, pas-
senger car; (2) trip purpose with transportation modal choice and frequencies in 
the current run; (3) frequency change of riding the bus if the fare varies a ∆p; (4) 
level of preferences if a lottery is involved in the bus ticketing; and (5) frequency 
variations of riding the bus corresponding to different prize structures in a ticket-
ing lottery game.

With a 5 percent level of significance in a random sampling of 1,320 Taipei citizens 
from the phone directory, the statistical results show the following implications:

•	 The transportation mode distribution for Taipei citizens is one-fifth for buses, 
and four-fifths for other modes such as motorcycles, passenger vehicles, and 
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taxis. This indicates that approximately one-fifth of the citizens are classified 
as captive bus passengers and four-fifths are noncaptive bus passengers.

•	 On average, the mean and standard deviation for bus use frequency for 
captive bus passengers are 13.90 and 5.133 trips per week, respectively. The 
mean and standard deviation for noncaptive bus passengers are 1.31 and 
0.58 trips per week, respectively.

•	 Approximately 70 percent of all citizens consider purchasing promotional 
tickets merged with a lottery game. Compared to the current one-fifth of the 
population that travels by bus, the lottery promotion can enhance public 
transportation ridership.

•	 For the original captive passengers, if the ticket fare increases a unit, they will 
reduce their bus usage by an average of 1.16 trips per week. In the noncap-
tive group, if the ticket fare decreases a unit, these passengers may expand 
their bus usage by an average of 0.35 trips per week.

•	 The likelihood of traveling by bus increases as the expectation of winning a 
prize increases. The analysis of variance shows that with a 5 percent level of 
significance with our promotional alternatives, there is nearly no difference 
between captive and noncaptive passengers in terms of bus use frequency. 
When the total reward ($5,000,000) is distributed over the structured pyra-
mid proposed for alternative 1, the mean increase in bus use frequency is 6.39 
trips per week and the standard deviation is 7.050. If the double incentive in 
alternative 2 is used, the mean increase in bus use frequencies is 7.43 trips 
per week. If the expectation value increases a unit, the increase in frequency 
for all samples is 0.013 trips per week.

Based on the survey, the demand function is calibrated as follows:

For captive passengers

(37)

 

 

(*  the t-value, ** the coefficient of determination, *** the F-value)
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For noncaptive bus passengers

	 (38)

 

For all samples

	 (39)

 

where:

∆q
b
	 denotes the quantity variation corresponding to price variation 	 

per trip for taking a bus

∆p
b
	 represents the price variation per trip 

∆E (M)	 is the expectation variation for winning a prize

 
Obviously, from Equations (37) and (38), in light of the price variation, captive 
passengers are more sensitive than noncaptive passengers. Conversely, in consid-
ering expectation variation, noncaptive passengers are more sensitive than captive 
passengers.

To understand the market tendency under the promotional strategy, the demand 
function in terms of price and the expectation of winning a prize should be clari-
fied. This demand function can be derived from the difference in Equation (39). 
Next, Equation (39) is transformed into a step function

	 (40)

where:

a0 = -1.24

b0 = 0.454
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In considering the current mean frequencies for taking the bus transit by captive 
and noncaptive bus passengers, 13.90 and 1.31 trips per week, weighting with one-
fifth of the total trips for captive and four-fifths for noncaptive, the population 
mean frequency for taking the bus is estimated to be 3.828 trips per week. In Taipei 
City, the current bus price is uniformly $15 per trip without promotion. Thus, the 
boundary state values can be set as qb = 3.828, pb = 15, and E0 (M) = 0. By math-
ematical inductive method (Saber 1996), Equation (40) implies

qb(t) = -1.24pb(t) + 0.454E(M) + 22.428	 (41)

Letting qb(t) be deducted qb
0, the induced quantity for taking the bus at time t,  

qb
+ (t), due to the promotion, is calculated as

qb
+ (t) = -1.24pb(t) + 0.454E(M) + 18.6	 (42)

 
Furthermore, if the quantity is expressed by the number of prepaid ticket cards in 
terms of card price and expectation value, Equation (42) yields

	 (43)

 
where:

N 	 denotes the number of trips paid using a card

 
In Taipei City, a ticket card with $600 can pay for 40 trips (independent of trip 
distance). By doing so, the demand function is finally realized as follows:

qc
+ (t) = -7.75x10-4 pc(t) + 113.5x10-4 E(M) + 0.465	 (44)

Equation (44) represents a person’s extra demand trend in unit of card quantity.

Market Analysis
The market effect is primarily evaluated in terms of the sensitivities and tenden-
cies of the bus consortium and the ticketing agent, as well as efficiency in public 
transportation. As stated in previous sections, obviously the government controls 
the period length T, subsidy premium GP( Nb ), and threshold D for subsidy. The 

00
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bus consortium determines basic ticket price C, operating cost f, bonus B(H), 
threshold loads H for receiving bonus, and its margin K. Game bucks M1 and M2 
distributed over the structured pyramid layer L1 and L2 are provided by the ticket 
agent. These parameters definitely influence the variations in p*, Q*, G*, W*, and  
Nb. These are clarified as follows: 

•	 Governmental Policy and Domination. Assuming that the government 
approves and supports the implementation strategy, how much GP(Nb), 
D, and T should be initially announced by the promotional policy? In the 
following case study, the periodic activity cycle is normally assumed to 
encompass one year due to the fiscal system. Based on the records for the 
past two years, the city government sponsored the city bus consortium with 
$300 million annually and with total busloads averaging 650 million trips 
annually. Therefore, the load subsidy is assumed to be about $0.5 per trip. 
In a moderate case, the government can hopefully increase busloads by 36 
million trips a year with the proposed incentive strategy. The threshold D 
can then be set at 686 million loads (= 650 million + 36 million) for pay-
ing the extra subsidy. This means that if the annual busloads, Nb , exceed 
the threshold of 686 million, the bus consortium can obtain an extra $0.5 
subsidy per load, i.e. GP+ (Nb

+ ) =0.5  Nb
+  .  Nb

+  = Nb
 -650 million. Restated,  

GP+ (Nb
+ ) denotes the total extra subsidy based on the extra loads Nb

+  over 
the increased volume D’=36 million.

•	 Bus Consortium’s Proposition. According to the data from the Taipei City 
Bus Consortium, their ticketing agent currently receives 4.063 percent of 
revenue from the selling price. The basic price C issued from the consortium 
is $575.62 per ticket card on account of the selling price of $600. Because the 
government is to pay an extra subsidy at level of threshold D, the consortium 
accordingly decides what threshold H’ of the extra cards sold for the bonus 
provision proposed to the agent will maximize their own profit under the 
consideration of slope K ($/card sold). H’ =(H-650 million)/40 in that each 
card can pay for 40 trips. However, H’  must be equal to or larger than D’ 
/40, which is dominated by the government. Based on Equation (36), the 
bonus is herein designated by B(Q(T)) = K · Q(T), if Q(T)>=H; otherwise, 
B(Q(T)) = 0.  f  is counted at $0.76 per card for processing expenditures.

•	 Ticketing Agent’s Plan. In the case of a promotion for bus passengers, a reward 
of $5 million is provided for the game. Of this total, $2 million is for instant 
rewards uniformly distributed over the whole year, and $3 million is for the 

^



Journal of Public Transportation, Vol. 10, No. 1, 2007

68

delayed prize, the final lottery reward. Referring to Equation (6)~(8), M2(t) 
is estimated about $38,462 per week.  M1(t) = $3 million.

•	 Others. Six percent is taken as a default for the annual interest rate in the fol-
lowing analysis. The expectation E(M) based on M1 and M2 and proportional 
to the market volume is calculated iteratively and finalized by the amount 
of ticket sold Q(T). Refer to Equation (2),  f (Mj) = Lj  /Q(T), for all j.

According to official estimates by Taipei, the market has 600,000 attendants. 
Replacing the personal extra card demand qc

+ (t) with the market volume in Equa-
tion (44) and substituting into q(t) of the model described in section 2, the optimal 
card price p*

c  , the total extra quantity of cards sold Q*
c 
+
 (T), total extra gain of the 

agent G*+, and total extra net revenue of the bus consortium W*+ will then be cal-
culated for each type under previous parameters, consciousness, and assumptions. 
Figure 2(a) illustrates the agent’s maximal extra gain curves G*+ with respect to the 
threshold H’ under the condition of marginal bonus K=$6 per card sold. Figure 
2(b), (c), and (d) display the relevant plots related to the optimal card price, total 
extra profit for the bus consortium, and total extra quantity of passengers loaded 
(Nb

+   = 40 · Q*
c 
+
 (T)), respectively. According to Figure 2(a), the agent’s reaction is 

obviously based on what H’ was provided by the consortium when calculating the 
maximal gain from one of three actions: Types I, II, or III.

When the threshold of extra cards sold for receiving the bonus from the bus 
consortium is less than 1.07 million (i.e., H’<1.07 million), the agent’s best action 
is type III, selling more ticket cards earns him more money. If the threshold is pro-
vided between 1.07 million and 1.46 million, the best action is type II, in which the 
agent’s policy is to sell the ticket cards just to hit the threshold. Otherwise, H’>1.46 
million, the best action is type I, not having interest in the bonus provided. There-
fore, the decision curve must be the bold envelope line—the linked line that each 
segment meets along the shapes or tangents to the spheres—indicated in Figure 
2(a). Under this circumstance, the corresponding curve in Figure 2(c) for the bus 
consortium’s profit is also bold.

From the bus consortium’s perspective, however, the maximal profit point occurs 
at H’=1.46 million and the agent’s action should be type II. Because H’=1.46 mil-
lion is the turning point of an agent’s decision for type I or II, the bus consortium 
should lower the threshold slightly from 1.46 million to ensure the agent’s locking 
at type II. The final equilibrium point between the bus consortium and the agent 
leads to the optimal ticket card price of $598 (Figure 2(b)), with total extra loads 
being 58.4 million (Figure 2(d)). The extra profit for the bus consortium would be 

^

^
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Figure 2.  Solution of the Presented Case
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$885,299,000 (Figure 2(c)), which includes the subsidy of $29.2 million from the 
government, supposing that the threshold of extra loads D’ for subsidy receipt is 
announced at 36 million by the government. The maximal extra gain by the agent 
at this equilibrium point is $37,707,100 (Figure 2(a)).

Table 1 summarizes the equilibrium results of the cases: D’=36 million, 54 million 
and 72 million with respect to K= 0, 2, 4, 6, 8, and 10. The table reveals that if the 
government sets the load threshold at 36 million for bus consortium subsidiza-
tion, the agent can easily achieve the target only via lottery strategy ( Nb

+   >36 mil-
lion), despite any bus consortium bonus incentive, even K=0 (no incentive). 

Table 1. Equilibrium Results of the Taipei Case in Presented Model
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Obviously, the agent will raise the ticket price to earn more profit if K is below $4. 
If the government sets the load threshold at 54 million for bus consortium subsi-
dization, the agent meets the target merely on the condition that K is greater than 
$4. In addition, if the government sets the load threshold at 72 million, the agent 
cannot achieve the target if K<=$10. However, the agent hopes that K is as large 
as possible while the bus consortium prefers a lower D’. According to Table 1, 
from the perspectives of the agent and bus consortium, D’=54 million through 36 
million is acceptable. Meanwhile, K=$10 is the best solution for their profits, with 
$37,828,400 extra gain for the agent and $975,819,000 for the consortium. Finally, 
bus trips would be increased by about 64.8 million annually.

Conclusions
This article presented a novel promotion strategy for public transit, with particular 
emphasis on strategy efficiency through an incentive system between passengers 
and ticketing agents, ticket agents and bus operators, and bus operators and 
the government. The mathematical model is formulated with a methodology of 
optimal control description of the market for this incentive system. This model 
focuses largely on maximizing the public transit market. Both the ticket agent and 
bus companies receive their maximal profits in an equilibrium market. Results 
obtained from this strategy can successfully enhance public transportation.

According to this study, a lottery game for bus passengers is very attractive to the 
people in Taipei City. Although the captive bus passengers are sensitive to changes 
in ticket price, both captive and noncaptive passengers reflect the same concerns 
about rewarding expectations. With the analysis in a previous model, clearly the 
proposed incentive strategy reveals the efficiency of traffic improvement. While 
public transport patronage is gradually decreasing, this study’s considerations are 
a useful contribution.
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Abstract

Because of how important walk access is for transit travel, service changes that affect 
walking distance, such as route or stop relocation, call for modeling at a fine enough 
level to accurately reflect the often arbitrary aspects of the access network and of 
demand distribution within a zone. Case studies of stop relocation in Boston and 
Albany demonstrate the feasibility of parcel-level modeling on the unabridged street 
network using an assessor’s database. Parcel-level demand is estimated by allocating 
observed on/off counts as a function of a parcel’s land-use type, size (e.g., gross floor 
area), and location factors. With actual land-use and street network data, we show 
how stop service areas can deviate substantially from the simple geometric shapes 
that follow from assuming airline or rectilinear travel, and demand distribution can 
be far from uniform within a zone. These factors can significantly favor particular 
transit stop locations. 

Introduction
Travel demand is typically modeled at the level of a traffic analysis zone. With 
improvements in computing power, zones have been getting smaller over the 
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years. For automobile travel, zones are generally small enough that errors resulting 
from aggregating demand to the zonal level are insubstantial. However, for travel 
by transit, for which the access mode is usually walking, errors from represent-
ing an entire zone as having the same walking time can substantially distort an 
analysis.

We describe a new approach to modeling transit demand using individual land 
parcels, with walk access along the unabridged street network. This approach, 
which is roughly synonymous with assigning transit demand to every address, 
has become possible due to the growing local government use of geographic 
parcel-level databases for taxation and land-use planning, and the development 
of geographic information systems (GIS), GIS-based street maps, and GIS program 
utilities. We demonstrate this approach in stop-spacing case studies in Boston 
and Albany. Parcel-level modeling should also offer improved analysis for other 
applications sensitive to walk distance, including mode choice and transit route 
choice.

Modeling demand at the zone level forces one to assume either that demand is con-
centrated at a single point (zone centroid), or better yet, is distributed uniformly 
across the zone. The former is clearly unrealistic, and in many cases, demand is 
also far from uniform within a zone. Hospitals generate more transit demand than 
cemeteries, and apartment buildings more than single-family homes. Knowing 
each parcel’s land use and size (not in land area, but in floor area or similar measure 
related to development intensity) allows one to distribute demand in a zone that 
naturally recognizes each parcel’s trip generation and attraction potential. 

GIS-based planning methods that account for land use have been developed for 
predicting demand along new transit routes (Gan, Liu, and Ubaka 2005) and along 
existing routes, using on-off count information (Bunner 2005). These approaches 
use block-level census data, greatly reducing aggregation error. However, they do 
not use the street network to determine walking paths or stop service areas. 

With parcel-level modeling, the issue is not just “stop spacing” but “stop location.” 
With demand distributed over the service area in a way that reflects development 
intensity, one can readily see the walking distance benefits of locating stops close 
to major generators and pockets of more intense development.

Zone-level modeling requires assumption of an ideal street network for walk 
access, which is estimated by such methods as airline distance multiplied by a 
circuity factor. However, street networks often have arbitrary barriers and discon-
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tinuities, diagonals, curves, and other features that affect walking distance. Mod-
eling demand at the parcel level, using the actual street network for walk access, 
allows one to determine walk distance without making idealistic assumptions.

With idealistic assumptions about the street network, a transit stop’s service area 
has simple boundaries—each stop’s service area borders only those of its neigh-
boring stops, with nice straight shed lines. We show that with realistic networks, 
service area boundaries can be far more complex, making some stop locations 
have much larger service areas than others, even if stops are equally spaced. This 
can affect optimal stop location; for example, adding a stop may have little benefit 
if that stop has a small service area.

In our application, parcel-level demand estimates are not synthesized directly 
from parcel attributes; rather, demand estimation begins with on-off counts, 
with parcel attributes used to distribute demand, mediated by a network analysis 
that determines which parcels lie in each stop’s service area. Naturally, this logic 
can only be applied along existing routes, and for service changes that are not 
expected to change demand considerably—which is exactly the case for stop 
spacing. For such applications, basing demand on historic on-off counts makes 
the model self-calibrating, a great advantage. For applications to areas currently 
unserved by transit, or for which service changes are expected to result in large 
demand changes, parcel-leveling modeling would require the development of 
parcel-level transit-trip generation models. 

Walking Paths and Bus Stop Shed Lines
As a simplification, walking distance to bus stops is often estimated based on airline 
distance, sometimes multiplied by a circuity factor. When the access network is a grid, 
a better assumption is rectilinear travel, meaning the access path consists of segments 
that are either parallel to or perpendicular to the bus route. In continuum models 
used in theoretical stop-spacing analyses, the rectilinear approach requires assuming 
an infinitely dense rectilinear access grid (Wirasinghe and Ghoneim 1981). When stop 
locations are given, one need not assume an infinitely dense grid; however, one must 
assume that (1) the route follows a straight line; (2) the streets in the access network 
form a rectilinear grid; (3) streets perpendicular to the bus route run without inter-
ruption across the full width of the service area; and (4) bus stops are all located at 
four-way intersections. This “ideal” urban layout was the justification for assuming 
rectilinear travel in our earlier work on stop spacing (Furth and Rahbee 2000).
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With idealized access paths, the shed line or service area boundary between 
adjacent stops is simply the perpendicular bisector of the segment joining the 
stops. Where the route is straight, or little enough curved so that adjacent shed 
lines do not intersect within the route’s service area, a corollary of using perpen-
dicular bisectors is that a stop’s service area will border only that of its immediate 
upstream and downstream stops. 

A more sophisticated way of determining shed lines, presented in Furth and Rah-
bee (2000), is based on minimizing not just walking time, but a weighted sum of 
walking and riding time. With this logic a traveler located halfway between two 
stops will not be indifferent, but will prefer the downstream stop. That shifts 
shed lines slightly upstream for boardings, and downstream for alightings, by an 
amount that depends on the ratio of the walking and riding speeds and the ratio 
of the walking and riding disutilties. Shed lines also vary by direction of travel, as 
travelers living midway between two stops will walk toward one stop when travel-
ing in one direction, and toward the other when traveling in the other direction.

In practice, streets grids surrounding a bus route often deviate from the ideal con-
ditions described before, and routes can curve or turn. As a result, shed lines are 
not as simple as (possibly shifted) perpendicular bisectors, and stop service areas 
can be considerably smaller or larger than one would otherwise expect. These con-
siderations point to the value of using the street network, not simple geometric 
shapes, to determine stop service areas.

Assigning Parcels to Stops
With parcel-level modeling, a shortest path algorithm is applied on the street net-
work to find the closest stop to each parcel. Shed lines are simply a result of this 
assignment. To account for the more sophisticated approach of minimizing a sum 
of walking and riding time, the assignment of parcel k to a stop is found by first find-
ing shortest path walking distances from parcel k to every stop. (In practice, this step 
can be limited to stops within a certain practical distance of parcel k.) Then, for trips 
beginning at parcel k, the stop chosen is the one that minimizes, over all stops i, 

cwalk * dki / uwalk + runTimei•	 (1)

where:

dki	 equals (walking) distance from parcel k to stop i

cwalk 	 is the cost of a minute of walking time relative to a minute of riding 		
time (commonly given a value between 1 and 2.5)
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uwalk	 is walking speed

runTimei•	 equals running time from stop i to the downstream end of the 	
		  line

For trips ending at parcel k, the stop chosen is the one that minimizes

cwalk * dki / uwalk + runTimei•	 (2)

where:

runTimei• 	 equals running time from the upstream end of the line to stop i

In general, a parcel has four different assignments to stops, one each for inbound-
boarding, inbound-alighting, outbound-boarding, and outbound-alighting; simi-
larly, stops have different service areas for those four combinations. (If inbound 
and outbound stops are colocated, and if running times in opposite directions are 
symmetric, the inbound-boarding and outbound-alighting service areas will be 
identical, as will the opposite pair.)

Service Area Boundaries
To illustrate how in a real network shed lines can differ from the simple shapes one 
would expect with straight-line travel, observe in Figure 1 the assignment of parcels to 
stops (stars) on a small section of Boston’s B-line, a branch of the Green line light rail, 
for boarding passengers traveling inbound (in the figure, upward and to the right). The 
symbol of a parcel centroid is unique to the stop to which it is assigned, allowing one 
to see stop service areas. Shortest path trees are also shown, which allow one to verify 
the walking paths determined by the GIS “closest facility” utility used. The service area 
of Mt. Hood Road (identified as 9 in the figure) is quite unusual—it includes only two 
parcels on the north side of the transit line, largely because of the absence of an inter-
secting street on that side of the line. On the south side of Mt. Hood’s service area, the 
shed line is shifted upstream toward Sutherland Road (identified as 10 in the figure). 

In Figure 2, applying to outbound (leftward) travel in the same corridor, the dif-
ference in a stop’s service area for boarding versus alighting can be seen. Stops 
are shown as stars. Parcel centroids are shown with different symbols according 
to their outbound alighting stop, while the manually drawn shed lines indicate 
service areas for outbound boardings. The boarding shed lines are all shifted 
upstream (toward the right), and alightings shed lines shifted downstream. This 
analysis emphasizes the need to determine separate service areas for a stop’s ons 
and offs, as well as for each direction of travel. 
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Figure 2 indicates how common it is for a stop’s service area to border more than 
just those of its upstream and downstream neighbors. Due to curves in the transit 
line as well as irregularities in the access network, 9 of the 16 stops have service 
areas that border those of at least three other stops. The Summit Ave. and Griggs 
St. stops, located shortly before and after an S-curve, have outbound alightings 
service areas that border those of 4 other stops. It is also rather startling to see how 
many shed lines have segments that are more parallel than perpendicular to the 
transit line, due to discontinuities in the access network.

As this example shows, stop service areas can be influenced considerably by arbi-
trary aspects of the street network, pointing to the value of modeling demand on 
a scale smaller than a city block—ideally, a parcel—and modeling walking along 
the street network itself. 

Determining Parcel-Level Demand 
The initial goal in parcel-level transit demand modeling is to estimate the current 
number of trips originating and ending at each parcel. The most reliable approach 
skips traditional trip-generation and mode split steps, and instead directly uses 
on/off counts, which, after adjusting for possible passenger transfers, specify the 
trip generation within the stop’s service area. All that remains then is to distribute 
the demand observed at the stops over each of the parcels in each stop’s service 
area. 

Distributing Demand Over Parcels
Reflecting the demand counted at a stop back to the parcels within its service 
area is a many-to-one trip distribution problem. Productions (trip origins, corre-
sponding to “on” counts at a stop) are distributed separately from attractions (trip 
destinations, corresponding to “offs”). For productions, the general procedure 
is to determine for each parcel k in a stop’s service area a production strength 
onStrengthk, and to distribute demand in proportion to onStrength. A parcel’s 
onStrength depends on two inherent characteristics, its land-use type and a mea-
sure of its size, called its size attribute, as well as two location characteristics: 

onStrengthk = xOn(LUCk, k) * onCoef(LUCk) * propensityk * compFactork	   (3)

where:

LUCk		  equals parcel k’s land-use code or land-use type
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xOn(LUCk, k) 	 is the value of parcel k’s size attribute (a size attribute is  
		  specified for each land-use code)

onCoef(LUCk)	 is the coefficient that applies to a particular land-use code’s  
		  size attribute

The variables propensityk and compFactork are associated with parcel k’s location; 
they will be explained later.

The size attribute and coefficient are best explained with examples. For each land-
use type, a single size attribute is chosen from among the attributes found in the 
land-use database. For the land-use type “single-family home,” the size attribute 
used in the Boston case study was “living area,” and so if LUCk was “single-family 
residential,” xOn(LUCk, k) was that parcel’s living area, in thousands of square feet. 
In the Albany case study, however, the land-use database included the population 
in each residential parcel; therefore, for residential parcels in Albany, xOn(LUCk, 
k) was parcel k’s population. For most nonresidential land-uses, xOn(LUCk, k) was 
“gross floor area” in the Boston case study, and “number of employees” in the 
Albany study. Other size attributes could be used if available such as “number of 
seats” for restaurant parcels. 

A parallel procedure applies to distributing off counts. The resulting demand at each 
parcel may be tiny (a parcel may be allocated 0.06 trip origins and 0.09 trip destina-
tions), but that is entirely appropriate for determining aggregate results such as 
change in demand or walking impact in response to relocating a stop or a route.

The demand that is distributed over parcels should exclude any transferring pas-
sengers, and requires that on-off counts distinguish transferring from nontrans-
ferring passengers. Walking impacts to demand arising from transfers is readily 
calculated based on the distance between the transfer stops.

Estimating Trip-Generation Coefficients
The coefficients onCoef(LUC) and offCoef(LUC) are trip-generation coefficients, 
reflecting the power of a land-use type to produce and attract transit trips per 
unit of the size attribute. One of the challenges in proving the practicality of this 
modeling approach was determining coefficients for different land-use types and 
size attributes. The Institute of Transportation Engineers (ITE) publication Trip 
Generation (1997) offers a wealth of trip-generation coefficients, mostly based on 
suburban developments with little or no transit access. ITE trip rates are available 
by time of day. In general, we used as coefficients the closest possible ITE coef-
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ficient, multiplied by “fraction entering” for on coefficients and “fraction exiting” 
for off coefficients, and by a factor indicating the likely transit share for a land-use 
type. Transit share data, in the form of mode share by trip purpose and time of 
day, was obtained from Boston’s regional planning agency. The Boston mode 
share data showed that in the morning peak, the transit share for trips originat-
ing at homes was almost double that of trips originating elsewhere. Therefore, for 
the morning peak, ITE trip rates for residential parcel types were doubled relative 
to nonresidential parcel types. Some expert judgment was also used to estimate 
transit shares; for example, we assigned a high transit share to high schools and a 
low transit share to elementary schools. 

Where land-use codes in a the parcel database encompass several ITE categories, 
ITE rates in the constituent categories were averaged, weighted by a (subjective) 
estimate of the relative presence of each category in the area. Where ITE rates used 
a different size attribute than the parcel data, they were adjusted by the ratio of the 
means of the size attributes, with mean values found in various demographic or 
land-use databases. The coefficients used in the Boston study are given in Table 1.

While this method of determining trip-generation coefficients is admittedly 
crude, we believe that they are adequate for most transit planning applications. 
Even crude rates accomplish the objective: assigning a stop’s demand to the part 
of its service area where development is most intense, and away from where there 
is little development. Incorrect rates might mean, for example, that one block is 
assigned too much demand and another block in the same stop’s service area is 
assigned too little. Because the rates are used for trip distribution, not trip genera-
tion, they should be transferable to other cities. 

Propensity and Competition Factors
A few studies, summarized in Kittleson & Associates et al. (2003), have shown that 
transit demand decreases at greater distance from a stop. Equation 3 includes the 
term propensityk, which can be used to indicate a greater or smaller propensity to 
make a transit trip based on distance from the closest stop. A simple propensity 
function, often used in gravity models, is exponential:

propensityk = exp(-bdk)

where:

dk	 equals distance from parcel k to the nearest stop

b 	 is a calibration parameter
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A value of b = 0 means propensity does not fall with distance. In our case studies, 
we arbitrarily used b = 0.0037/m, for which transit-use propensity is three times 
greater for a parcel 100 m from a stop than for an otherwise equivalent parcel that 
is 400 m from a stop. 

Traditionally, the phenomenon of decreasing demand with distance is treated as 
a simple step function: propensity is 1 out to a certain distance from the route 
(often 0.25 miles in bus route studies), and 0 after that. An exponentially decreas-
ing propensity certainly seems logically superior to such an abrupt change. Of 
course, as distance from a route increases, one often arrives in the service area of 
another route, bringing up the issue of route competition.

Table 1. Trip Generation Coefficients

1 LA = living area; GFA = gross floor area.
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Competition from other transit routes in part of a stop’s service area should logi-
cally lead to less demand than otherwise expected for the route of interest com-
ing from that part of the service area. Ideally, the parcel level approach should be 
extended to include route choice models that account for walking distance as well 
as other route attributes such as waiting time and speed. For our application, we 
used a much simpler way of accounting for route competition: simply including 
in equation 3 a competition factor whose default value is 1, and that can be set to 
a smaller value in parts of the route’s service area to reflect the fraction of transit 
demand in that part of the service area that is drawn away to other transit lines, 
based on expert judgment.

Another possible extension would be to assign to each parcel a specific walking 
speed or unit walking cost. Special values could then be given to elderly housing 
and hospitals that would have the effect of making such parcels more sensitive to 
walking distance, giving them more weight in an optimal stop location problem.

An Example
Trip-generation results on a section of Boston’s B-line are shown in Figure 3. Sym-
bol size reflects the demand attracted by a parcel for outbound afternoon peak 
travel. Several items are evident. First, the results are consistent with on/off counts, 
showing heavy demand around stops with high off counts such as Harvard Ave. 
and Warren St. Second, they reflect development density. For example, Harvard 
Ave. has more intense development (apartment buildings) than other nearby 
streets, and so its parcels are assigned heavy demand relative to other nearby par-
cels. Third, one can see the effect of the exponential propensity function used, with 
parcel demand declining as one moves farther from the route.

Application Results
An example application to Boston’s B-line is presented in Tables 2 and 3. Table 
2 shows impacts by stop and overall for the base case (historical set of stops) for 
the section of the B-line between Packard’s Corner (halfway to downtown) and 
Boston College (outer end of the line). Table 3 shows the change in impacts when 
one stop, Mt. Hood, is eliminated. The stop elimination affects only the neighbor-
ing stops; overall, walking time went up while riding time and operating cost went 
down. For the unit costs we used, the net impact was a savings of $35 per hour, or 
$26,500 per year for a three-hour weekday period. 
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An interesting graphic produced in the study is shown in Figure 4, which illumi-
nates the impact of eliminating the Mt. Hood stop. It shows walking paths to the 
nearest stop for parcels that formerly used Mt. Hood, and indicates how much 
each parcel’s walking time has increased. One can see how small the impact is: 
eight parcels see their walking time increase by two to three minutes; all others 
have smaller increases.

Practical Issues
Implementing this new approach to transit demand modeling involves several 
practical issues.

Parcel-level databases are often restricted to a particular political jurisdiction. 
When a service area touches more than one jurisdiction, problems in securing and 
coordinating multiple databases arise. Also, some jurisdictions are less willing than 
others to share parcel data.

We found it necessary to edit street networks manually to ensure that they yielded 
reasonable walking paths. We had to add a few links to permit pedestrian crossings 
to some median stations where there are crosswalks that do not appear on the 
street map. We also deleted some alleys because their inclusion was forcing some 
parcels to make circuitous walking paths. The latter problem arose because the 
software utility that connects parcel centroids to the nearest link sometimes con-
nected a parcel to the alleys at its rear rather than to the street at its front. Ideally, 
centroid connectors should be provided to both the street and the alley, allowing 
the shortest path routine to choose the better path.

The concept of passengers’ walking “cost” can be expanded. Grade could be 
accounted for if the relevant data is included in the base map file. Other enhance-
ments include accounting for streets segments that lack sidewalks or present 
safety challenges, and including pedestrian delay at street crossings.

Finally, the automation process was quite complex, involving numerous steps and 
intermediate databases. As is commonly known, GIS is a data-intensive process 
and hence processing large amounts of data in an efficient manner is required. Our 
work was greatly aided by two utilities available on the GIS platform we used: cen-
troid creation and connection (used to convert parcels from polygons to points), 
and nearest facility (used to find walking paths from parcels to stops).
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Conclusions
Modeling transit demand at the parcel level offers an improved way of accounting 
for walk access, one of the major user costs involved in transit travel. Using avail-
able parcel-level databases and street network data, it is possible to determine 
walking distance from each parcel to its closest stop in a way that accounts for 
irregularities and discontinuities in the street network. Using parcel-level data 
available from tax assessors and regional planning agencies, it is possible to distrib-
ute measured demand over the parcels in a stop’s service area in a way that reflects 
differences in land use and intensity. With demand thus assigned to individual 
parcels, impacts of changing stop location can be determined, as demonstrated 
in two case studies. We believe that parcel-level modeling also offers promise for 
other transit planning applications in which walking distance plays an important 
role. 
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Abstract

This article develops an econometric analysis of metro station operating cost to 
identify factors that create variation in cost efficiency. Stations operating costs can 
be classified amongst the semifixed costs that a metro faces in the sense that they 
do not vary proportionately with metro output. They may therefore be important 
in determining the degree of returns to density. This article seeks to provide an 
improved understanding of some of the major factors driving these costs. Empirical 
results show that strong system-specific influences impact costs but over and above 
these we detect positive associations from a range of station characteristics, includ-
ing the length of passageways, number of platforms, peak-level service frequency, 
interchange demand, and the provision of toilet facilities. In addition, we find that 
the presence of air-conditioning has a substantial effect in increasing expected station 
operating cost by as much as 40 percent.

Introduction
The cost structure of the mainline railway industry has received a great deal of 
attention in the academic literature (e.g., Caves et al. 1980; Caves et al. 1981a, 
1981b; Freeman et al. 1985;  Caves et al. 1985; Dodgson 1985; McGeehan 1993; 
Bookbinder and Qu 1993; Oum and Yu 1994; Cowie and Riddington 1996; Wun-
sch 1996; Tretheway et al. 1997; Oum et al. 1999; Cantos et al. 1999; Cantos et al. 
2002). Research has demonstrated the very large variance in cost efficiency, or 
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productivity, that is often present within a sample of rail firms and has developed 
cost and production function approaches to analyze the factors underpinning this 
variance.

A prominent theme in the rail efficiency literature is whether cost structures 
are subject to returns to scale (RTS) or returns to density (RTD). RTS describe 
the relationship between all inputs and the overall scale of operations, including 
both output and network size. RTD describe the relationship between inputs and 
outputs with the rail network held fixed. Evidence in the literature indicates that 
RTD are due to the prevalence of fixed costs in the rail industry and to a range of 
semifixed costs that do not vary proportionally with output. Less consistent evi-
dence is available on the existence of scale economies, though the majority view 
is that railways operate under constant returns to scale. Few studies have been 
conducted on the costs structure of urban metros, though Graham et al. (2003) 
estimates increasing RTD and constant RTS. 

Station operations may provide an important source of increasing RTD in metro 
operations. Stations must remain staffed and functioning, with all the energy and 
other resources required, throughout the duration of the metro operating hours. 
Moreover, costs may differ quite substantially from one station to another due 
to the nature of engineering, the depth of station, its size and dimensions, the 
technology employed, and so on. So we can conceive of station operating costs 
as semifixed costs that do not vary proportionately with system throughput and 
therefore may be instrumental in giving rise to increasing RTD. 

In this study we develop an econometric model to analyze variance in station 
operating costs. An econometric model is essential to determine the effect of a 
particular characteristic of a metro station on its operating costs while control-
ling for all other factors affecting the metro station operating cost. The analysis of 
historical data fails to control for the effects of other factors while estimating the 
effect of a particular factor. We use data on 83 stations from 13 metro systems 
from around the world to estimate the main drivers of cost. Model specifications 
and the data used for estimation are discussed and results are presented. 

Model Specification and Data 
The data available for our analysis describe the total operating cost of each station 
and a range of station characteristics collected from a total of 13 metros (Buenos 
Aires, Dublin, Glasgow, Hong Kong KCR, Hong Kong MTR, Lisbon, London, Mon-
treal, Naples, Sao Paulo, Singapore, Taipei, and Toronto). The analysis we develop 
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below regresses the total operating costs against these station characteristics to 
determine their role in influencing variance in costs. 

It is important to stress that we do not adopt a conventional cost function 
approach. We do not have data on factor prices and therefore cannot estimate 
the cost function. However, another important consideration in this respect is 
that since the operating costs of any one particular station represents only a small 
fraction of total metro operating costs, individual stations cannot be regarded as 
the appropriate units over which cost decisions are made. For instance, metro 
operators do not demand factor inputs at the station level in accordance with 
prices but make rational decisions relating to costs and operations for the system 
as a whole. Furthermore, it would be wrong to ascribe any particular behavioral 
assumptions to individual stations (e.g., cost minimizing behavior). A metro may 
not seek to sustain a set level of station efficiency across the system but rather 
allow for disparities in efficiency to achieve some broader objectives relating to the 
appropriate level of system output given overall costs. 

In this respect, it is mainly how the station characteristics serve to influence total 
cost that is of interest in the present analysis. One important issue, however, 
relates to the absence of factor price data, because this will certainly be important 
in determining station costs. To control for these omitted variables, which we can-
not observe, we estimate the station operating costs model with a set of dummy 
variables for the 13 metro systems. We assume that these dummies will capture 
unobserved system-specific effects including factor prices. 

A log linear model is used to identify the factors that influence the operating cost 
of a metro station. The model can be written as:

	1 n yi = +1nXi+Di+i	 (1)

where:

yi 	 is the total operating cost of a metro station i

Xi	 represents a kx1 vector of continuous explanatory variables  
	 describing the characteristics of station i

Di	 denotes a mx1 vector of dummy explanatory variables relating to 		
	 metro systems

i	 is white noise

	 represents kx1 vector of parameters to be estimated

	 is a mx1 vector of parameters to be estimated
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The log linear model is used because it reduces the potential for multicollinearity 
and provides direct parameter estimates of the elasticities. 

The dependent variable is the total cost of operating the station per year. This 
includes the costs associated with staff, utilities (e.g., electricity, gas, and water), 
the maintenance of lifts and escalators, and the maintenance of other systems 
such as CCTV, air-conditioning, ticketing equipment, and building. Two econo-
metric models will be estimated using equation (1). The first model will be esti-
mated without metro-specific dummy variables and the second model will be 
estimated with metro-specific dummies to control country-specific effects on 
metro stations’ operating cost. 

The explanatory variables, which describe the station characteristics, and the 
hypotheses we seek to test with each variable are described below.

Age of the station. Age of the station is taken as the number of years since the 
station opened. This figure is averaged if the station was opened in stages. Our 
hypothesis is that older stations will incur higher maintenance costs than new 
stations. 

Lifts and escalators. The number of lifts and escalators within a station may influ-
ence the operating cost because this equipment needs to be in operation on a 
daily basis and frequently maintained. 

Number of ticket machines/ticket offices/ticket sales windows/entry and exit gates. 
The number of ticket machines includes only those machines used by the public 
to purchase or validate tickets. The number of ticket offices is the number of areas 
in the station where ticket-selling takes place. The number of ticket sales windows 
relates to the number of potentially staffed positions used by the metro staff to 
sell tickets to passengers. We hypothesis that these factors will influence the staff 
costs of the station.

Number of opening hours per day. This variable is taken as the average number 
of metro station opening hours per day. The hypothesis is, of course, that longer 
operating hours induce higher costs.

Service frequency. Two service frequency variables—peak frequency and off-peak 
frequency— are considered. Frequency is calculated as the average number of 
trains per hour (each way) during peak periods (peak frequency) or off-peak 
periods (off-peak frequency). The inclusion of these variables will allow us to test 
whether costs are associated with frequency. 
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Length of trains. This is calculated as the total number of carriages of a train using 
the station. At stations with multiple lines averages are used.

Platform dimensions. Variables for width, length, and elevation of the platform are used 
to determine if these factors are important for maintenance and cleaning costs. 

Roof length of platforms. For underground stations, this is clearly the same as 
platform length, but for at-grade and elevated stations only part of platforms 
may be covered by a canopy, shelter, or overall roof. This variable is included to 
understand if variation in the maintenance associated with roof lengths affects 
total station costs.

Length of passageways. This is measured as the total length of passageways, includ-
ing escalator shafts, estimated by metros as an indicative proxy for the amount 
of cleaning and building repair that may need to be done. No account is taken of 
possible variations in passageway width. A better measure might have been the 
total floor area, but this would not have directly reflected the amount of walls and 
ceilings that need maintenance and cleaning; this is also discarded as a measure 
because it is more difficult for metros to estimate easily.

Station demand variables. The two main demand variables considered are entry 
demand and interchange demand. Station entry demand is the total number 
of passengers entering the station per year. This includes passengers changing 
modes at the station, and entering from mainline rail or bus stations, as well as 
those starting their journeys locally and entering the station on foot. Interchange 
demand relates only to those passengers changing metro lines at the station 
concerned. Two secondary variables—peak entry demand and peak interchange 
demand—are also considered. Peak entry (interchange) demand is calculated as 
the total number of entry (interchange) passengers for the busiest hour during a 
standard week, and is designed to test whether peak demand (entry/interchange) 
drives station capacity and hence costs, or total demand drives staffing levels and 
hence cost.

Types of metro stations. Dummy variables are used to reflect the overall type of 
metros in terms of being at-grade, elevated, subsurface (typically constructed by 
cut and cover, and 5–6m below ground), or deep tube. At-grade and subsurface 
stations can be managed without lifts or escalators for passengers to travel verti-
cally, whereas elevated and deep tube stations normally need this equipment, 
which adds significantly to costs (e.g., electricity).
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Other variables. Presence of air-conditioning, toilets for public use, platform screen 
doors, and shops are all included in modeling through a dummy variables. Each is 
thought to generate costs (electricity, cleaning, maintenance, and management 
time).

Results 
Prior to model fitting, a number of statistical tests were performed to determine the 
nature of the data. For example, it is possible that the explanatory variables may be 
correlated with each other (the effect of multicollinearity) or that the data exhibits 
heteroskedasticity (the effect of nonconstant variance). 

Although imperfect multicollinearity does not violate the assumptions of the classical 
model, if its presence is sufficiently acute, it can lead to biased, inefficient, and even 
wrongly signed estimates. If the overall goodness of fit, R2, is relatively high (say more 
than 0.8) but only few explanatory variables are significantly different from 0 or there 
are high pair-wise correlations among the regressors, then it is possible that multicol-
linearity may be present. Here, we use the variance inflation factor (VIF) proposed by 
Chatterjee et al. (2000) to determine the presence of multicollinearity. The number of 
ticket gates at a station, for example, is found to be highly correlated with the entry 
demand at the station, and the length of the platform at a station is correlated with 
the length of the longest train passing the station. Based on the VIF test, the highly cor-
related variables are excluded from the explanatory variables used in the final model. 
The problem of Omitted Variable Bias (OVB) is addressed in the conventional way by 
the use of proxy variables and fixed effects to control for unobserved metro-specific 
variables. We have no evidence that multicollinearity affects the parameter estimates.

Data from London metro stations are not included in the model as operating costs 
are not obtainable at the station level for the categories which are consistent with the 
other metros. This reduces the total number of observations to 83. However, we still 
have to estimate more than 30 parameters which are found to be uncorrelated with 
each other. Some of the explanatory variables such as entry and interchange demand, 
lifts, and escalators are then combined to minimize the number of parameters to be 
estimated. A dummy variable is used to represent the presence of lifts or escalators 
within a station in the model. This variable takes on a value of 1 if there are any lifts or 
escalators in a metro station and a value of 0 otherwise. Summary statistics (observa-
tions, mean, standard deviation, minimum, and maximum) of the final explanatory 
variables used in the model are shown in Table 1. 
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Table 1. Summary Statistics of Explanatory Variables Used in the Model
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Another important assumption of the classical linear regression model is that 
the disturbances  appearing in the regression function are homoskedastic. The 
problem of heteroskedasticity is common in cross-sectional analysis because the 
data usually involves observations from heterogeneous units (i.e., stations from 
different metros), and therefore heteroskedasticity may be expected if data from 
small, medium, and large stations are sampled together. In conducting the Park 
Test (Park 1966), we find that our data are not characterized by heteroskedasticity. 
This may be due to the use of the log linear model, which reduces the variances 
among the variables. 

Table 2 presents our results. Two models are considered: one without metro 
dummies and one with metro dummies. The second model includes the metro-
specific effects to control for heterogeneous environments. Ramsey’s RESET test 
(an F-test) is used to select the better model (Ramsey 1969) and this shows that 
the addition of metro station dummies significantly increases the goodness of fit 
of the model. Therefore, the model with the metro station dummies is used for the 
interpretation of the results. 

The model goodness of fit, the adjusted R2, is 0.88, which shows a good degree 
of explanatory power for a cross-sectional model. The comparison between the 
observed cost and the predicted cost is shown in Figure 1. The mean prediction 
error is found to be only 2.3 percent. Note that the names of the metros are omit-
ted to preserve confidentiality.

Figure 1. Observed and Predicted Costs 
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Table 2. Model Estimation Results for the Operating Cost of a Metro Station
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Table 2 shows a number of statistically significant effects on metro station operat-
ing cost that arise having controlled for unobservable system-specific effects.

The age of the station is found to be negatively associated with the operating cost 
of a metro station at the 90 percent confidence level. This is surprising as we would 
expect an older station to require more maintenance and hence be associated 
with higher costs. The explanation of this counterintuitive finding may be due to 
the fact that more recent stations (e.g., KCR, Hong Kong) tend to be larger and 
to have higher quality facilities, which also require a relatively high maintenance 
treatment. 

Length of passageways, total number of platforms, peak-hour service frequency, 
and entry and interchange demand are found to be statistically significant at the 
95 percent confidence level and positively associated with the operating cost. 
These results confirm our hypotheses. The elasticity associated with the peak-
period service frequency is higher compared to others. The result suggests that a 
10 percent increase in peak-period service frequency (each way, per hour) is asso-
ciated with a 4.8 percent increase in the operating cost, and a 10 percent increase 
in the number of platforms leads to a 2.7 percent increase in the operating cost. 
The length of the roof is also found to be positively associated with the cost but 
only at the 90 percent confidence interval. 

The effect of air-conditioning is captured by a dummy variable. This variable is 
found to be positively associated with the operating cost and is statistically sig-
nificantly different from 0 at the 95 percent confidence level. This is an indication 
that average operating cost is high in a station with air-conditioning if all other 
factors remain constant. The coefficient () of the effect of the air-conditioning 
is 0.35, indicating that the relative effect on the average operating cost due to 
the presence of air-conditioning is 100*{exp()-1}, or 41 percent. In other words, 
air-conditioning has an extremely large impact on costs, increasing the expected 
operating cost by 41 percent, holding all other factors included in the model con-
stant. 

The presence of toilets within a station is also found to be positively associated 
with the operating cost. This is expected as some costs are associated with the 
maintenance and staffing of toilets. However, the coefficient of this variable is 
unexpectedly high, perhaps because this variable represents the effects of some 
other factors that are not included in the model. 
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Interestingly, the type of metro station has little effect on operating cost. As 
explained previously, a categorical variable (grade, subsurface, elevated, and tube) 
is used to reflect the overall type of metro station. None of the coefficient esti-
mates are statistically significant at the 95 percent confidence level. The tube-type 
metro station shows a positive coefficient relative to the at-grade-type station but 
only at the 87 percent confidence level. 

The system-specific dummy variables are expressed relative to and intercept for 
Metro-1. The result suggests that Metro-3, Metro-5, Metro-6, and Metro-7 are 
costlier compared to Metro-1. The operating cost associated with Metro-5, for 
instance, is about 93 percent higher relative to Metro-1 if all other factors included 
in the model remain constant. 

The number of ticket offices in a station, total number of entrances, operating 
hours per day, presence of lifts or escalators, width of platforms, and length of the 
longest train are found to be statistically insignificant. This is perhaps because the 
metro-specific dummies included in the model pick up the effects hypothesized 
from these factors. 

The models are reestimated without the statistically insignificant variables (below 
90% confidence level) of the models presented in Table 2 (with metro dummies). 
The results are shown in Table 3. Interestingly, the model goodness of fit remains 
the same after excluding five insignificant explanatory variables. The age of the 
station now becomes insignificant. As expected, the metro dummies now pick 
up most of these effects. The operating cost of Metro-2, Metro-8, Metro-9, and 
Metro-10 are now lower relative to Metro-1. The effects of all other factors remain 
invariable. 

A limitation of the analysis is that not all of the characteristics associated with cost 
are readily alterable. For instance, the length of a metro station’s roof plays a major 
role in increasing the station’s operating cost.

The standard errors associated with the parameter estimates give us a guide as to 
how confident we can be in the magnitudes indicated by our results. Of course, 
econometric models can be revised given better data or new hypotheses to test, 
but an econometric model should be assessed based on both the “significance” of 
a variable and “the estimated magnitude of the effects” of the variable as this is one 
of the fundamental objectives of estimating an econometric model.
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Table 3. Reestimated Models with Significant Variables  
of the Models Shown in Table 2

Conclusions
We have developed an econometric model to investigate variance in metro sta-
tion operating costs. The model regresses total metro station operating costs 
on a series of station characteristics and a set of metro systems’ specific dummy 
variables. The results show strong unobserved system-specific effects, confirming 
the need to differentiate the data in this way. Over and above the system-specific 
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effects, we have identified some factors that appear to have an important influ-
ence on the levels of station costs. These include length of passageways, number 
of platforms, peak-level service frequency, interchange demand, and the provision 
of toilet facilities. In addition, we find a very strong effect from the existence of 
air-conditioning, which raises the expected station operating cost by as much as 
40 percent. 

Stations operating costs can be classified amongst those semifixed costs that do 
not vary proportionately with metro output. For this reason, they may be very 
important in determining the magnitude of RTD on the costs structure and pro-
ductive efficiency of the firms. This article has provided an improved understand-
ing of some of the major factors driving these costs. 
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Abstract 

In metropolitan cities an efficient integrated public transportation system is unavoid-
able to restrict unsustainable growth of private and intermediate transport modes. 
Well-designed feeder routes and coordinated schedules to minimize transfer time 
from the main transit to feeder buses play an important role. Past literature reveals 
that a heuristic approach had been popular for design of routes and had been 
applied successfully in a variety of network design problems. Nontraditional optimi-
zation techniques, especially genetic algorithms, are also found to be very effective in 
the generation of optimized feeder routes and schedules. In this research the genetic 
algorithm first develops feeder routes and then a specialized heuristic algorithm 
works as a repair algorithm to satisfy the demand of all the nodes. Thus, the advan-
tages of both genetic algorithms and specialized heuristic algorithms are obtained in 
this method. The developed feeder route structure is found to be better in terms of 
load factors in buses, satisfaction of demand, and waiting time for feeder buses as 
compared to existing scenarios and earlier approaches adopted for the same study 
area. 
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Introduction 
In metropolitan cities of developed and developing countries, suburban railway 
and public buses are the most common public transport carriers. Commuter dis-
satisfaction toward public transport stems from increased travel time, poor levels 
of comfort, uneconomical operations, and higher out-of-vehicle time, especially 
at transfer points. These problems can be solved by appropriate coordination 
between major public transport modes. Successful coordination implies 

•	 the traveller’s ability to transfer freely and conveniently between modes;

•	 distinct service areas between each modes, thereby minimizing duplication 
of services;

•	 adjustment and interrelationship of schedules; and 

•	 joint fare structure.

A poorly coordinated transfer can require long, irregular waiting for infrequent 
connecting services. The point of balance between travellers’ demand for a direct 
service and the transit operator’s need for economy often lies in the level of atten-
tion given to the details of the transfer. Thus, well-designed feeder routes satisfying 
maximum demand with acceptable travel times are of prime concern. To mini-
mize transfer time, coordinated schedules have to be optimized.  

Literature Review and Objective of Study
Many research studies have been conducted of bus route network design problems 
involving development of routes and schedules. Lampkin and Saalmans (1967), Sil-
man et al. (1974), Dubois et al. (1979), Mandl (1980),  and Baaj and Mahmassani 
(1995) developed bus routes using a heuristic approach. Shrivastava and Dhingra 
(2001) successfully implemented a heuristic approach for the design of feeder 
routes for feeder public buses at suburban railway stations. Heuristic algorithms 
are not theoretically rigorous but have been used successfully for real networks 
and are capable of providing suboptimal values. Genetic algorithms (GAs), which 
are robust optimization techniques, have been used successfully for routing and 
scheduling problems. Pattnaik et al. (1998), Gundaliya et al. (2000), and Tom and 
Mohan (2003) used GAs for the design of bus route networks. Shrivastava and 
Dhingra (2002) successfully generated coordinated schedules of public buses for 
existing schedules of suburban trains on the developed feeder route network using 
GAs. Chien et al. (2003) presented a model for optimizing service headway and 
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a bus route serving an area with a commuter (many-to-one) travel pattern. The 
bus route is optimized by minimizing total system cost, including operator and 
user costs, while considering diagonal links in the study network. Zhao and Ubaka 
(2004) presented a mathematical methodology for transit route network optimi-
zation. The goal was to develop an effective computational tool for the optimiza-
tion of large-scale transit route networks. The objectives were to minimize trans-
fers and optimize route directness while maximizing service coverage. Agrawal 
and Mathew (2004) proposed two parallel genetic algorithm (PGA) models. The 
first was a global parallel virtual machine (PVM) parallel GA model. The second 
was a global message passing interface (MPI) parallel GA model. The global PVM 
model appeared to perform better than the other. Fan and Machemehl (2004) 
formulated a multiobjective nonlinear mixed integer model for a transit route 
network design problem (TRNDP). The proposed solution framework consisted 
of three main components: an Initial Candidate Route Set Generation Procedure 
(ICRSGP); a network analysis procedure; and a Heuristic Search Procedure (HSP). 
Five heuristic algorithms—including the GA, local search, simulated annealing, 
random search, and tabu search—are solution methods for finding an optimal set 
of routes from the huge solution space. Sensitivity analysis for each algorithm was 
conducted and model comparisons were performed. 

Studies on the development of feeder routes for the same study area using dif-
ferent approaches have been presented. In one study, Shrivastava and O’Mahony 
(2005) developed feeder routes using a heuristic algorithm that was found to be 
very effective and the demand at all nodes was satisfied by the developed set of 
routes. Using a heuristic approach, a set of the routes cannot be guaranteed to be 
at optimal level; it may yield suboptimal results also. In other research, Shrivastava 
and O’Mahony (2006) developed feeder routes and schedules simultaneously 
using GAs for the same study area. While the developed routes and schedules 
were optimum, the entire demand was not satisfied because in a typical study area 
some of the nodes did not have good connectivity with other nodes. In view of 
this, instead of 17 nodes only 16 were selected; the remotest node in the study area 
was not included. In this article, both approaches are combined and the benefits 
of both are obtained. The optimal set of feeder routes are first developed by GAs 
and if any demand remains unsatisfied, it is inserted and/or attached to the best 
possible route by the specialized heuristic approach, which works as a repair algo-
rithm. Thus, the advantages of both approaches are achieved in this research. 
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The objective of the proposed research is development of a feeder bus route 
network and coordinated   schedules for public buses for the existing schedules 
of main transit (suburban train) at the given Dublin (Ireland) Area Rapid Transit 
(DART) station. To satisfy the entire demand, the routes developed by GAs were 
modified by a well-designed heuristic approach. The modified routes were used 
for determination of coordinated schedules. The Dun Laoghaire DART station was 
selected as the case study. Dun Laoghaire is a rapidly growing suburb of Dublin. 
Coordination between DART services and Dublin public buses for this DART sta-
tion is attempted.   

Data Collection 
DART is a suburban railway system in Dublin running along the coastline of 
Dublin Bay from Greystones to Howth and Malahide. The existing DART line has 
32 stations. Lack of coordination between public buses and DART services has 
been observed even during peak hours at many stations. Dun Laoghaire is one of 
the prominent DART stations from where large numbers of trips originate. Dun 
Laoghaire was selected as the study area due to its land-use pattern, which allows 
greater scope of feeder bus services from the station. Considerable movement of 
commuters takes place to many areas from the DART station. 

Typical traffic surveys were conducted during the morning peak period (i.e., 
7–9AM) on April 28, 2004. Since the maximum number of commuters travel from 
8–9AM, this time period is identified as the peak hour. It was confirmed during 
the surveys that after 9AM commuter traffic starts decreasing and becomes much 
less after 9.30AM. During the surveys, commuters exiting the DART station were 
counted manually. Traffic surveyors conducted sample interviews with commut-
ers leaving the DART station. Commuters were asked about their destinations, 
mode of transport, and travel time to their destinations from the DART station. 
Commuters not opting for public buses for their further journeys were also asked 
about their willingness to shift to public buses if buses were coordinated with 
DART services in future. Of those surveyed, 40 percent work very near the DART 
station and they only have to walk about 5 minutes. These commuters were not 
interested in shifting to public buses even if they are well coordinated with DART 
services. The percentage of commuters willing to move to public buses was added 
to those who use public buses and a potential demand matrix for public buses 
was developed. There are 16 destinations (nodes) for which demand exists from 
the DART station. Table 1 indicates potential demands to various destinations. It 
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was also observed during the surveys that in the morning peak period the trains 
toward the city center (northbound trains) contribute about 30 percent of the 
passengers; the remaining 70 percent were by trains from the city center (south-
bound trains). There were nine northbound and eight southbound trains during 
the peak hour of 8–9AM. The schedule coordination for feeder buses is attempted 
for theses trains during the indicated peak hour.

Table 1. Potential Demand to Various Destinations

Proposed Methodology  
The overall methodology for development of feeder routes and coordinated 
schedules is presented in Figure 1. The methodology is explained in the following 
steps.



Journal of Public Transportation, Vol. 10, No. 2, 2007

114

Figure 1. Methodology for Development of Feeder Routes and  
Coodinated Schedules
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Step 1
A potential demand matrix is developed with its origin at a DART station and with 
destinations as identified in traffic surveys. 

Step 2
A travel distance matrix and connectivity details between various nodes were 
obtained from the Dublin Street Map (2000). The travel distance matrix was con-
verted into a travel time matrix in “minutes,” using an average speed of 15 Km/hr 
to address the existing congestion level and road geometrics of the influence area 
(Wilson 2000).

Step 3
Other parameters like capacity of buses, minimum and maximum load factors, 
maximum fleet size, minimum frequency per hour, minimum and maximum 
lengths of routes, and  multiplying constants, which have been used to convert 
objective function into monetary values of “euro,” were decided as per practical 
realities and existing conditions.

Step 4
Using the k-path algorithm (Eppstein 1994), k-shortest paths were developed 
between the DART station and a set of destinations, which are well scattered and 
cover the entire influence area. The value of K is adopted as 5 for the case study. 

In this research, destinations were based on their locations so that a larger portion 
of the feeder route network is optimized by GA and the repair heuristic is used 
only for a few nodes. In view of this, various sets of destinations that were located 
away from origin and well scattered in the influence area were selected. The set of 
destinations was selected for which maximum demand is satisfied with the least 
number of k-paths using GA and few node/nodes are left for the repair heuristic. 

With the help of traffic surveys, various locations (nodes) to which demand 
existed were identified. The selected set of nodes, based on the above criteria for 
which k-paths were developed, is identified as potential destinations. 

K indicates the number of short paths that can be developed between a given 
origin (DART station) and potential destination. These short paths are developed 
in the increasing order of their lengths. In this research, the value of k is selected as 
5 (i.e., between each origin—DART Station) and potential destination. Five short 
paths are developed, of which the first is the smallest and the last is largest. Out of 
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these k-paths the best one is selected after application of GA (corresponding to 
optimized penalized objective function).    

Step 5
The program to calculate a penalized objective function (summation of objec-
tive function and penalties due to violation of constraints) is developed in C++ 
environment. The set of k-paths (5 in the case study for each origin and potential 
destination) are used with the GA. The coding of a path and its corresponding fre-
quencies are done together in one string only. The binary digit coding to represent 
routes and schedules together has been adopted. The set of k-paths and frequen-
cies for which the objective function along with penalties is minimum is selected 
as optimized routes and frequencies. These routes are used for application of 
specialized heuristics discussed in further steps. The frequencies are used to derive 
coordinated schedules for the existing DART schedules. Details of the objective 
function, penalties, and application of GAs are discussed below.

Details of Objective Function, Penalties and Use of GAs. The objective function is 
adopted as minimization of user and operator costs. User cost is the summation 
of in-vehicle time cost and transfer time cost between DARTs and buses. Opera-
tor cost is associated with vehicle operation cost. Constraints are related to load 
factor, fleet size, and unsatisfied demand. Mathematically, the objective function 
and various constraints are as follows:

Objective Function.

Minimize total cost, Z = {Transfer time cost between DARTs and coordinating 
buses + travel time cost in buses on selected routes 
(in-vehicle time cost in buses) + vehicle operation cost 
(VOC) of Dublin buses} 

Mathematically it can be expressed as

Minimize                                    	
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		  (1)

 
Constraints.

1. 	 Maximum load factor constraint 	 (2)            

 
2.	  Minimum load factor constraint 	 (3) 

3. 	 Fleet size constraint 	 (4)

 
4. 	 Unsatisfied demand  constraint 	 (5)

Where:

j 	 is the number of routes available at each station (as per number of 
potential selected destinations)

l	 equals the number of buses available for uth northbound DART and vth 
southbound DART 

VOC 	 represents vehicle operating cost for Dublin buses

C
1
 	 is the cost of transfer time in Euro per minute, 11.32 cents/minute for 

the case study (Steer Davies 1994) 

C
2
 	 equals the cost of in-vehicle time in Dublin buses, 0.076 cents/minute 

for the case study (Steer Davies 1994) 

C
3
 	 denotes the cost of operation of Dublin bus per Km., € 3.66 for Dublin 

buses for the case study (Wilson 2000) 

pass
j
u	 indicates passengers transferring from uth northbound DART to jth 

route   

pass
j
v 	 represents passengers transferring from vth southbound DART to jth 

route 
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pass
j 
  	 is the total number of passengers transferring to jth route 

bus
j
l  	 is the departure of lth bus on jth route 

dartu 	 represents arrival of uth northbound DART 

dartv 	 represents arrival of vth southbound DART 


j
u.l 	 shows whether transfer of passengers is possible. It attains a value of 1 if 

transfer from uth northbound DART to lth bus on jth route at DART sta-
tion is feasible; otherwise it attains a value of 0


j
v.l 	 shows whether transfer of passengers is possible. It attains a value of 1 if 

transfer from vth southbound DART to lth bus on jth route at DART sta-
tion is feasible; otherwise it attains a value of 0

t
inv_j

 	 denotes in-vehicle time in bus on jth  route

f
j
  	 is the frequency of buses on jth route in terms of number of bus trips per 

hour

l
j 
 	 represents length of jth  route in kilometers

T 	 is time period in hours

Q
j.max

	 is the maximum number of passengers on jth route for the given time 
period

CAP 	 indicates bus seating capacity; for Dublin buses it is 74  (Wilson 2000) 

L
max

 	 equals the maximum load factor; it is 1.2 for the case study (Wilson 
2000)  

L
min

 	 equals the minimum load factor; it is 1 for the case study

d
unsat

	 represents unsatisfied demand 

SR 	 equals set of routes

NB
j
 	 is the number of buses required in any route j

(RT)j	 is the round-trip time of the bus on jth route in minutes = 2 t
j
 (in min-

utes) + layover time (5 minutes for the case study)
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t
j
 	 represents total travel time on the route in minutes, including stopping 

times (journey time)

TP	 equals time period in minutes

N
j
 	 is the number of trips per hour times the time period in hours under 

consideration ( f
j
 * T)

W 	 denotes the maximum number of available buses

The first two terms of the objective function indicate user cost; the third term 
denotes operator cost. User cost is the summation of costs associated in transfer-
ring from DART services (both north and southbound) to coordinating buses (first 
term) and the cost of traveling time in the buses (second term). Operator cost is in 
terms of vehicle operating cost, which is proportional to the distance traveled by 
buses (third term). Constants C

1
, C

2
, and C

3
 are used to convert each term of the 

objective function in monetary unit of Euro (€). The first and second constraints 
ensure that the load factor lies within a maximum and a minimum value. If the 
load factor is less than a maximum value, then the crowding level will be less and 
a better level of service will prevail. The level of service should not be less than a 
minimum value so as to ascertain availability of a certain minimum number of pas-
sengers for economical operations. The maximum load factor is the ratio of crush 
capacity and normal capacity of Dublin buses. The crush capacity is 88 and normal 
capacity is 74; thus, the maximum load factor (the ratio of the two capacities) is 
1.2 (Wilson 2000). The minimum load factor is 1. The third constraint is associ-
ated with fleet size. This constraint puts an upper limit on the maximum number 
of available buses for operation. The fourth constraint ensures that maximum 
demand is satisfied and the maximum number of commuters get coordinating 
buses during the period of analysis. The aim of schedule coordination is to provide 
coordinating buses to all commuters who transfer from trains to buses. If a large 
number of commuters are not able to get coordinating buses, the penalty should 
be higher and it is added to the objective function so that subsequently the GA 
search for optimal or near optimal values is directed. The penalty corresponding 
to the fourth constraint is proportional to the ratio of demand unsatisfied to 
the capacity of buses. This penalty would have played a more realistic role if data 
collection was done for the whole day (i.e., until the last DART and last available 
bus). 
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Because the objective function and constraints in the study pose a constraint 
optimization problem, the penalty method is adopted for optimization (Deb 
1995). Using GAs, the minimum value of the penalized objective function is deter-
mined (best fit). Routes and frequencies corresponding to this minimum value 
are optimal feeder routes and frequencies. These optimal frequencies are used to 
determine coordinated schedules of feeder buses. 

Fitness function = Minimize (Objective Function + Penalties 1 to 4)

Penalty 1:  If load factor is more than a maximum value (1.2 for the case study)

Penalty 2:  If load factor is less than minimum value (1 for the case study)

Penalty 3: If fleet size exceeds a minimum value (25 for the case study)

Penalty 4: If some demand remains unsatisfied 

It is also observed in our typical traffic surveys that it takes about 5 minutes for 
commuters to reach bus stops located outside the station after arriving from 
DARTs. Thus, transfer from DART to a bus is feasible if the bus departs only after 
5 minutes of scheduled arrival of the DART. 

Step 6
Find out the percentage of demand satisfied by increasing/decreasing/changing 
the destinations as discussed in steps 4 and 5. Initially a few nodes (destinations 
identified in traffic surveys) that are well scattered and away from the origin are 
selected. K-paths are developed and it is determined how much the percentage 
of demand remains unsatisfied after application of GAs. The additional destina-
tion is added and again any improvement in satisfaction of percentage demand 
is determined. The number of destinations for which the maximum demand is 
satisfied is selected. By gradually augmenting the number of destinations, the 
maximum possible demand satisfaction is achieved. The minimum number of 
destinations leading to the maximum satisfaction of demand is selected as poten-
tial destinations. If the entire demand is satisfied for a particular combination of 
potential destinations, then the corresponding feeder routes and frequencies (for 
determination of coordinated schedules) are optimum. If the entire demand is not 
satisfied, go to step 7. 

Step7
Find the nodes leading to unsatisfied demand and insert them in the developed 
feeder routes by a heuristic node selection and insertion process. The node selec-
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tion and insertion process acts as repair heuristics by modifying routes. [For a 
detailed discussion on node selection and insertion process/strategies, see Shriv-
astava and Dhingra (2001).] Using these repair heuristics, the following innovative 
ways can be employed for development of feeder routes:  

•	 Determination of the best path among others in which an identified node 
(destination) can be inserted. The path is selected based on savings in pas-
senger walk time and an increase in bus passenger time due to insertion of 
a node.  

•	 After selecting the best path, the best way of insertion of node is identified. 
The best way is the one that gives least delay to destinations following the 
inserted node.   

Step 8
Once all the nodes are inserted, the developed routes are used for determination 
of frequencies using GAs leading to optimum coordinated schedules for the exist-
ing DART schedules. 

The objective function for this stage is simpler than the one discussed in step 5. In 
step 5 both routes and frequencies are determined using GA, whereas in this step 
only frequencies are determined. Therefore, the objective function involves only 
the first term (transfer time between DARTs and buses) and third term (vehicle 
operating cost) along with all the constraints of step 5. In step 5 the routes and 
frequencies were coded together, whereas in this step only frequencies are coded. 
Thus, the analysis at this stage is simpler than the one discussed in step 5. In view of 
this, the details of application of GA are not discussed here. [For a detailed discus-
sion on determination of coordinated schedules on fully developed feeder route 
network, see Shrivastava and Dhingra (2002)].

Use of GAs for Objective Function and Constraints. GAs are based on exhaustive and 
random search techniques that are found to be robust for optimizing nonlinear 
and nonconvex functions (Holland 1992). In this research generational GAs with 
reproduction, crossover, and mutation operators are used (Goldberg 1989). The 
penalty method of constrained optimization is adopted (Deb 1995).

The proposed objective function is used with LibGA software of GAs in Linux 
environments to determine optimal frequencies on the developed feeder route 
network (Chambers 1995). GA parameters are tuned for the objective function 
and this type of process and best values of operators are decided. Roulette selec-
tion, simple random mutation, and uniform crossover are adopted. With seed 
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value as 1, pool size 30, crossover probability 0.85, and mutation probability 0.005, 
the lowest value of penalized objective function (objective function plus penalties) 
is provided. These values are used for the analysis. A set of frequencies on various 
routes corresponding to the minimum value of the penalized objective function is 
used for determining coordinated schedules on various routes. 

The decision variables are routes and frequencies of buses during the applica-
tion of GA. Routes and frequencies are coded together in the same string. The 
most common coding method is to transform the variables to a binary string. GA 
performs best when binary coding is adopted (Goldberg 1989). The length of the 
string is determined as per the desired solution accuracy. In this study, routes and 
coordinating frequencies of each pair are coded into a single string. Figure 2 indi-
cates typical binary digits coding for routes 5 and 3 with frequencies 6 and 21 per 
hour. The first four bits show the route and the last six bits show the correspond-
ing frequency in a string.  

Figure 2. Binary Digit Coding

The search space depends on the pool size and smaller pool sizes take less com-
putational time. The case study discussed in this article requires much lower 
computational time because the size of matrix is very small. In the case of a large 
network and matrix, the pool size can be appropriately chosen based on conver-
gence criterion. If a smaller pool size is taken, computational time will be lower 
and values closer to optimal can be obtained. Such values are practically accept-
able for this type of problem. However, such smaller pool sizes should be tested 
with other operators and parameters for a given problem. The heuristic part of the 
algorithm does not take much computational time because only a few nodes are 
to be inserted on a fully developed network. 
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Results and Discussion
As discussed in the methodology, well-scattered minimum destinations satisfying 
maximum demand are selected as potential destinations. Maximum demand is 
satisfied when nodes 11, 12, 13, 15, and 16 are selected as potential destinations. 
Only 2.95 percent of demand remains unsatisfied for which the heuristic node 
selection and insertion strategy is applied. Table 2 lists the routes developed along 
with frequencies (for schedules) after application of GAs.

Table 2.  Routes and Frequencies after Application of GAs

S. No. 	 Nodes in Feeder Routes	 Length (in km)

	1	1   – 3 – 11	 4.5

	 2	1  – 2 – 3 – 17 – 12	 6.75

	 3	1  – 4 – 6 – 7 – 13	 8.00

	 4	1  – 6 – 7 – 8 – 15	1 0.25

	 5	1  – 2 – 5 – 10 – 9 – 16	 9.00

Since the developed feeder route network does not satisfy 100 percent demand 
due to the absence of destination node 14 in the structure of feeder routes, the 
next stage of further modification of feeder routes using node selection and 
insertion strategies is adopted. Nodes are inserted/attached to developed feeder 
routes. Frequencies associated with feeder routes in the earlier stage are discarded 
since fresh frequencies are required to be determined due to modification of 
routes. After applying a heuristic node selection and insertion process, node 14 is 
attached with the third route and the length of the third route increases from 8 
km to 9.68 km. Figure 3 shows the finally developed five-feeder route. Routes 3 and 
4 partially overlap; also node 3 is common to routes 1 and 2. Thus, the overlapping 
aspects of routes are also successfully attempted in this research. The connectiv-
ity between 13 and 14 could be established by repair heuristic. Node 14 was not 
included in the approach of Shrivastava and O’Mahony (2006) as its demand was 
not satisfied by the approach adopted and was omitted.   

In the development of routes, the origin (DART station) remains the same for all 
destinations. Therefore, all feeder routes originate from the DART station only. It 
looks very similar to the spanning tree rooted at DART station (Figure 3). However, 
the best alternative path out of the selected k-paths for each origin and destina-
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tion set is developed by a combination of the GA and heuristic approach. In some 
of the earlier approaches, links on the spanning tree are added/removed to achieve 
the best network. The approach adopted in this research is quite different.      

Table 3 indicates coordinated schedules of feeder buses for the existing sched-
ules of DART and the average load factors on each route. As shown in the table, 
the load factor varies in the range of 0.33 to 0.83. These load factors will further 
improve due to local demands at en-route stops. Local demand is not considered 
because the routes are designed for feeder buses from the DART station. Hence, 
demand satisfaction generating from the DART station is of prime concern. 

The overall load factor attains a value of 0.58—a much improved value against 
the present scenario in which the load factor remains in the range of 0.2 to 0.3 
even during peak hours. Feeder routes and coordinated schedules for the same 
study area were developed by decomposing the problem in two stages: one for 
development of feeder routes using the heuristic approach only and another for 
schedule coordination with GAs (Shrivastava and O’Mahony 2005). Load factors 
for different routes were in the range of 0.16 to 0.45 with an overall load factor of 
0.36. Thus, load factors and the overall load factor by the proposed model have 
improved values. A comparison between the existing scenario and improvements 
due to the proposed model is given in Table 4. If all the routes are viewed together, 
then 42 percent of demand is satisfied within 5 minutes of effective waiting and 
29 percent is satisfied between 6 to 10 minutes of waiting. More than 70 percent 
of demand is satisfied within 10 minutes of effective waiting. The entire demand is 
satisfied within 20 minutes of effective waiting. In the present scenario, the major-
ity of commuters wait 20 minutes or more for buses and the load factor is also 
less than 0.3 most of the time even during peak hours. Route details show that on 
route 2, 62 percent of demand is satisfied within 5 minutes and the entire demand 
is satisfied within 10 minutes of effective waiting. Route 2 carries about 31 percent 
of the total trips, making it the maximum trip carrier. 

On all routes more than 50 percent of demand is satisfied within 10 minutes 
of effective waiting. In the developed feeder route structure, route lengths vary 
between 4.5 km to 10.25 km and 100 percent demand is satisfied without any 
transfer. If a similar exercise is carried out by identifying influence areas of all sta-
tions, shorter feeder routes with better schedules will be developed (Shrivastava 
and Dhingra 2001). This is due to the fact that one node may be connected to 
more than one DART station and its connectivity will certainly be better with 
shorter connecting lengths from one particular station only. As shown in Figure 3, 
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destinations like Stillorgan (code 8), Mount Merrion (code 13), University College 
Dublin (code 14), and Dundrum (code 15) are closer to Blackrock DART station as 
compared to Dun Laoghaire. Feeder routes for these destinations from Blackrock 
will be shorter. 

The modelling exercise was carried out only for the morning peak hour. The fre-
quency of buses will change during  other hours of the day as per the demand. In 
fact traffic surveys should be conducted for the whole day, covering both peak 
and off-peak hours. The same methodology can be implemented to determine 
coordinated schedules of public buses during different periods of the day. A whole 
day travel pattern will provide more realistic demand to different destinations 
for development of feeder routes, schedules, and optimum fleet size for different 
periods of the day.

Conclusions  
In the proposed model, well-scattered destinations from the DART station sat-
isfying maximum demand were selected as potential destinations. Feeder routes 
and frequencies leading to coordinated schedules were developed simultaneously 
from the DART station to selected potential destinations using GAs. As a low 
number of potential destinations is found with maximum demand satisfied, the 
number of generated routes are less. The selection of minimum destinations leads 
to a low number of routes. If demand at some destinations remains unsatisfied, 
then with the help of the heuristic algorithm, which works as a repair algorithm, 
such destinations are inserted/added to the developed feeder route structure. 
After modification of the route structure, GAs are again applied to determine 

Table 4. Comparison between Existing and Proposed Route Network
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modified coordinated schedules. The following conclusions can be derived from 
the proposed modelling exercise: 

1.	 In the proposed modelling exercise the optimized feeder routes and coor-
dinated schedules are developed together in the first phase. Most of the 
routes are developed along with the coordinated schedules in this phase 
only. The coordinated schedules are further checked with a second applica-
tion of GAs. In the proposed modelling approach, most of the schedules 
and routes are complementary to each other. 

2.	 The model strikes a balance between user needs and operator require-
ments. The objective function incorporates user costs in terms of time 
spent in buses and transfer time between DARTs and buses; operator cost 
is vehicle operation cost, which is directly proportional to distance travelled 
by buses. Similarly, constraints are also applied to cover the requirements 
of users and operators. The load factor constraint is kept within minimum 
and maximum values so as to maintain a better level of service for users 
and economic operation to satisfy operators. The fleet size constraint is 
also a realistic constraint from the operators’ point of view. The constraint 
for unsatisfied demand increases the probability of availability of seats to 
commuters though it is not very important when the load factor remains 
less than a minimum value as has been experienced in the study area. 

3.	 The selection of nodes as potential destinations plays a very important role 
for successful development of feeder routes for typical destinations in the 
study area network. The network considered for analysis has nodes well 
scattered in the influence area and destinations having higher demands 
are closer to the origin (DART station). Some of the destinations away from 
the DART station have limited connectivity with other nodes. Selection of 
potential destinations away from the origin and well dispersed in the influ-
ence area develops feeder route structures, which satisfy the maximum 
demand without any transfer. 

4.	 The influence area of each station can be identified and the modelling exer-
cise can be repeated with large-scale data collection for an entire day. Thus, 
a fully integrated system can be developed in which DARTs can work as a 
main line haul facility and buses can feed the local areas. The coordinated 
schedules of buses can be found for each period of the day and hence their 
requirement can be determined for peak and off-peak periods. The proposed 
methodology designs feeder routes without any further transfers and the 
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entire demand is satisfied directly from the DART station. The model takes 
into account the overlapping aspect of different routes successfully.

5.	 On average, the developed model satisfies more than 50 percent of demand 
within 10 minutes of waiting time and the entire demand is satisfied within 
20 minutes of waiting time with an overall load factor of more than 50 
percent. On some routes, 80 to 90 percent of demand is satisfied within 10 
minutes of waiting and many routes have load factors even more than 0.7. In 
the present scenario (not optimized), the load factor hardly attains a value 
more than 0.3 and the average waiting time is in the range of 20 minutes 
or more. Thus, the proposed model judiciously balances waiting time and 
load factors for feeder buses.

6.	 The research problem attempted is solely on the development of feeder 
routes and not a usual network design problem. GA has been successfully 
implemented for the more usual network design problems where transfer 
from one route to another is permitted (i.e., passengers are assumed to 
transfer from one bus to another). In the design of feeder routes, it is not 
appropriate to incorporate additional transfers on routes because passengers 
are already subjected to a transfer from train to bus. Therefore, additional 
transfers will lead to inferior design of the feeder route network. The appli-
cation of repair heuristics adds to development of feeder routes without 
additional transfers. 

The proposed model can be implemented for the development of feeder routes 
and coordinated schedules to any other study area if demands to various destina-
tions and network connectivity details are known. Fully optimized feeder routes 
would be developed if higher demand nodes are well scattered and away from the 
DART/railway station by the GA itself, otherwise repair heuristics will modify the 
feeder routes developed by GA. Moreover, feeder routes without additional trans-
fers are desired by planners. Other factors like transfer time, load factors in buses, 
fleet size, vehicle operating cost, and availability of buses to all commuters are duly 
taken care both from the users’ and operators’ point of view. The developed model 
can be of specific use to service planners working for coordinated operations of 
public transport modes.
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