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Quantitatively Understanding
Transit Behavior from the  

Rider’s Point of View
Colin Bick

Abstract

Arrival time uncertainty is a major source of negative perception by riders, yet how 
this uncertainty manifests in the rider's experience is not well-studied. While opera-
tors constantly make efforts to improve reliability, and real-time arrival predictions 
reduce uncertainty for riders in transit, it is also possible to lessen frustration by 
better informing riders of system behavior beforehand. This work introduces a new 
method for understanding transit behavior through an analysis of historical arrival 
time data from San Francisco. The results identify impacts of timeliness on rider 
experience, such as that average wait time is minimized by showing up five minutes 
early, or that a five-minute transfer window will be successful 80 percent of the time. 
Categories of rider experience also are discovered, such as between daytime and 
evening users. More importantly, it is demonstrated how operators and trip planners 
can make use of this method to improve rider experience.

Introduction
Of the many obstacles faced when using public transportation, one of the largest is 
the information barrier. Transit schedule and route information add several dimen-
sions to what is already contained in a standard road map. The agencies responsible 
for distributing the information rarely are successful at communicating what one 
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might call the intent of their system; in other words, it often is difficult to learn how 
a system is meant to be used.

Paper schedules that display route details and timetables are one of the most fun-
damental formats of transit information, yet using them to plan a trip is far from 
a simple task. Cain (2007), for example, found that 47.5 percent of sampled riders 
were unable to correctly plan a trip using only a system map and paper sched-
ules. Some studies examine ways to improve presentation of the information, but 
rarely are there efforts that find new information to present. Even after significant 
improvements in presentation, one study (Sollohub et al. 2006) was unable to 
determine if improvements were effective since the riders generally were unable 
to correctly use them.

An online trip planner is a tool that improves on a schedule by providing a rider 
with step-by-step directions from one point to another for a given day and time. 
The trip planner tries to construct optimal answers using the same information 
provided in a paper schedule and decides on a priori costs for transfers, waits, 
walks, etc., before a well-defined optimization problem is possible, not to mention 
useful (Modesti et al. 1998, Sherali et al. 2006). An especially important parameter 
is that of minimum transfer time, defining a safety margin of time between vehicles 
to ensure the feasibility of a transfer. 

What these tools do not take into account is that transit behavior is inherently 
random. The arrival times provided in a schedule are estimates only, making their 
use in trip planning much less straightforward. A rider must therefore draw heavily 
on experience and make guesses when creating and evaluating trip plans, weighing 
perceived risks against convenience. Online trip planners, similarly, must choose a 
minimum transfer time as a heuristic meant to compensate for nondeterministic 
behavior, and, consequently, the possibility of making shorter transfers is ignored.

Riders, on the other hand, are all too aware of the uncertainty involved in taking 
the bus. The uncertainty of arrival time is a major source of frustration (Caulfield 
et al. 2009), and the perception of time spent waiting or riding increases dispropor-
tionately whenever the actual time spent is longer than expected (Li 2003). Even 
the uncertainty of arrival time itself increases the perceived amount of time pass-
ing (Mishalani et al. 2006), and without any sources of information beyond sched-
ules or schedule-based tools, the rider does not know what to expect. While these 
effects on perception and frustration are understood, precisely how the events in 
using transit are impacted by timeliness (or the lack thereof) is not well-studied.



3

Quantitatively Understanding Transit Behavior from the Rider’s Point of View

The next bus predictor NextBus was developed to decrease this uncertainty. 
Approached in many manners, this tool uses real-time data to predict the time 
of arrival of the next bus of a given route, in a given direction, at a given stop. To 
make these predictions with reasonable accuracy, machine learning techniques 
are trained against historical data (see, for example, Chien et al. 2002; Jeong 2004; 
Shalaby et al. 2004; Wall et al. 1999). The value and utility of this tool has been inves-
tigated several times, due in large part to the costs involved; it is understandable 
that not every agency has invested in it.

While the next bus predictor reduces uncertainty during a trip (i.e., while at the bus 
stop), it does not help the rider anticipate behavior beforehand. This uncertainty 
—the uncertainty of transit behavior in general—has yet to be addressed. Riders 
and trip planners constantly are forced to make guesses that try to remediate the 
disagreement between scheduled and actual arrival times. Any treatment of transit 
as a discrete or deterministic process is bound to result in errors and frustration.

If transit behavior is approached mathematically and as a random process, on the 
other hand, not only can the guesswork in trip planning be removed, but the entire 
process of using public transportation can be made as exact and predictable as 
possible. The tradeoff is the added complexity of treating many aspects of riding 
the bus as probability distributions, including time spent waiting, actual arrival 
times, trip durations, and vehicle transfers. These distributions naturally all reduce 
to some combination of actual arrival times. Thus, by viewing actual arrival times 
in relation to the schedule—that is, how late the bus is—the true nature of transit 
behavior can be understood, and therefore communicated, from the rider's point 
of view.

This research introduces a new method for understanding transit behavior by mod-
eling vehicle lateness as a random variable. An analysis is performed on data from 
four weeks of system-wide arrivals from San Francisco. The data were calculated 
by matching archived GPS data provided through NextBus with the corresponding 
schedule provided in GTFS (General Transit Feed Specification) format.

A similar work was performed by Berkow et al. (2009), but from the operator’s 
perspective. They demonstrated an approach that provides far greater insight into 
a system’s performance than the generation of performance measures, applying 
statistical as well as visual tools to a year's worth of data recorded by Portland's 
TriMet. Properties of performance-related random behaviors such as those exhib-
ited by passenger boardings, lift use, overall ridership, vehicle headway, and lateness 
were investigated at several resolutions. Importantly, they noted that the large size 
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of the dataset allowed the entire analysis to be done without making estimates or 
assumptions.

This work focuses on the rider’s perspective. It identifies the quantitative impacts 
of lateness on rider experience, including waiting for the bus, making transfers, 
and overall trip time. It then discovers and explores categories of rider experience, 
showing how different groups of users are impacted by different behavior. Finally, 
it is demonstrated how the method and results can be used by operators and tools 
such as trip planners to provide the rider with better information.

Model and Data
Description of Model
Conceptually, the idea of lateness as a random variable is fairly straightforward, if 
one imagines a rider waiting for the bus with a schedule in hand. Addressing late-
ness as a property of the entire system requires a more careful definition. This study 
models lateness as measuring

lateness = tactual - tscheduled

where tactual and tscheduled are the actual and scheduled arrival (or departure) times 

for a scheduled stop chosen at random, with uniform probability, from the popula-
tion of all scheduled stops during the period of data collection. To make the results 
representative of a weekly schedule, a period of data collection was chosen such 
that its duration is precisely four weeks, without holidays.

Additionally, the study makes a distinction between lateness computed using 
arrival times and departure times. Each computation below states whether it is 
referring to arrivals or departures. When using arrival times, the first stop of each 
run is excluded from the population; similarly, when using departure times, the last 
stop of each run is excluded. This is done to make the model more meaningful.

Description of Data
San Francisco, by releasing both schedule and real-time data to the public, offers a 
valuable opportunity to explore this approach in a dense and heterogeneous tran-
sit system. San Francisco Municipal Rail (Muni) transports 200 million passengers 
per year inside an area of 47 square miles, employing bus, light rail, cable car, and 
a historic street car (San Francisco 2011). GPS tracking data collected every min-
ute from Muni for a period of four weeks starting in March 2009 was matched to 
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schedules described in a GTFS (General Transit Feed Specification) format for that 
month (see references for data sources). This match-up describes the actual arrival 
and departure times of each vehicle at each stop along its assigned route, as well 
as the scheduled arrival time. Much information about the routes is available from 
the GTFS data, including stop location, route shape, and vehicle type. The software 
written to perform the match-up has been made available online at http://cbick.
github.com/gps2gtfs.

Of the approximately 14 million rows of raw GPS data, only around 40 percent 
were qualified to survive preprocessing. While equipment errors causing this may 
have been uniform, any human influence (for example, new drivers or incorrect 
use of tracking equipment) in creating bad data cannot be assumed uniformly 
distributed. For this reason, the data collected in some areas may be much less 
populated than in others. Additionally, the match-up of GPS data may be distorted 
by geographical (or geological) influences. For example, a visualization of the data 
shows that GPS signals neighboring bodies of water are an order of magnitude 
more erroneous than those between buildings. For this reason, data may be less 
accurate for certain stops than for others.

The GTFS data are far from perfect as well. Stops in close proximity often are given 
the same scheduled time, decreasing specificity in the meaning of the schedule in 
general. In other instances, detours can cause a vehicle to shift its schedule or miss 
designated stops entirely.

Treatment of Data

Computation of Lateness
To compute the arrival and departure time estimations, the GPS data points were 
projected onto the corresponding route’s path and the times were interpolated. 
The arrival and departure of a vehicle at a stop were defined to be the points at 
which the vehicle entered and exited a 25-meter radius around the stop.

Outliers and Errors
Processing raw GPS data and matching it up to schedule data introduce many 
opportunities for error. Examining the data shows that 98 percent of the weighted 
distribution falls between 8 minutes early and 20 minutes late, but the remain-
ing 2 percent ranges from 35 minutes early to 90 minutes late. While these outer 
bounds of lateness are suspiciously large, the following steps were taken to elimi-
nate errors: 
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	Only vehicles whose signal existed for and matched a significant portion •	
(>50 percent) of their designated route paths were considered admissible. 

	All vehicles were put through a secondary processing to ensure there were •	
no better matches in the schedule. 

These steps establish confidence that there is an insignificant level of error in the 
matching process. Any errors in the GTFS data are impractical to eliminate, so its 
correctness must be assumed. Errors resulting as artifacts from abnormal events or 
incorrect GPS data cannot be eliminated using any consistent method. Therefore, 
any apparent outliers cannot be discarded and should be included in the distribu-
tion.

Sample Bias and Correction
From the nature of the data collection, it is clear that the data set is not repre-
sentative of the population in the model. The observations, therefore, have been 
weighted and normalized to provide representative estimates of the population as 
defined by the schedule. In particular, for any particular scheduled stop, its weight 
w is defined as

where fscheduled is the number of occurrences of the stop according to the model’s 

population, and fobserved is the number of actual observations that were made for 

that stop.

Independence
As the model is constructed, observations in the data are not independent. Spe-
cifically, arrival times within the same run are highly correlated. While it may be 
reasonable to assume that lateness samples from different vehicle trips are (suf-
ficiently) independent, several of the confidence interval widths shown below are 
potentially underestimated. Since calculating more accurate intervals would add 
computational complexity without contributing to the discussion, such efforts 
have not been made. 

It is necessary, however, to at least provide a reasonable estimate of the true error 
bounds. For this, the reader is directed to examine the confidence intervals in Fig-
ure 10. These represent a meaningful upper bound on width, as each population in 
that figure consists of independent samples.
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Analysis
The processing described above resulted in a little over 2 million recorded obser-
vations of lateness. With a large dataset such as this, rather than try to fit some 
analytical model, it is much more straightforward to simply compute an empirical 
cumulative distribution function (ECDF). From an ECDF, one can quickly compute 
quantiles and their confidence intervals, as well as take computationally simpler 
approaches to simulation. The ECDFs and their confidence intervals in this work 
were computed using Horvitz-Thompson estimates as described in, e.g., Diaz-
Ramos et al. (1996).

This section proceeds by examining first some overall properties of lateness as a 
random variable, then a series of comparisons of hand-picked partitionings. In each 
case, it is identified how the extracted information is useful to a bus rider.

Overall Behavior of Lateness

Overall ECDF of Lateness
The overall (weighted) ECDFs of arrival lateness and departure lateness are shown 
in Figure 1. They are nearly identical. The 95 percent confidence interval for each 
ECDF is too small to discern in the figure, each having a width of only about 0.25 
percent. The estimated means of lateness, the positions estimated by the schedule 
(i.e., that of lateness = 0), and the 5 percent quantiles have also been marked.

Figure 1. ECDF of lateness
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From this plot, it is seen that the schedule is approximately equal to the 33 percent 
quantile for lateness of departure—in other words, a rider showing up (spontane-
ously) at a bus stop at precisely the scheduled time has only a 67 percent chance of 
catching that bus. To have a 95 percent chance of catching the bus, the rider must 
arrive 267 seconds, or about 5 minutes, early.

The 95 percent confidence interval for the average lateness of arrivals is between 113 
and 114 seconds, while that for departures is between 116 and 117 seconds; that is, 
the bus is about 2 minutes late on average. The ECDFs also show that the rider can 
expect to arrive (or depart) 5 minutes or more past the scheduled arrival around 18 
percent of the time; 10 minutes or more 5 percent; and 15 minutes or more 2 percent. 
Such knowledge can help the rider not only to better plan a trip, but also to experi-
ence less frustration since the behavior is now in a sense predictable.

Average Waiting Time
An interesting metric to consider at this point is that of expected waiting time, or how 
long a rider can expect to wait on average for a vehicle given the time he or she arrives 
at a stop relative to the schedule. To compute this, a simulation was constructed with 
scheduled arrivals occurring at a constant frequency of arrival (headway). The actual 
arrivals were simulated by sampling from the empirical distribution of departure 
lateness, implicitly assuming that the distribution does not change significantly for 
different headway values. The resulting values for expected wait time are depicted 
in Figure 2, which plots the average wait time as a function of the passenger’s arrival 
time at the stop for various headways. The figure shows that the minimum average 
wait time is achieved by the rider arriving about five minutes early, with slightly earlier 
minimums for larger headways since the cost of missing the bus is higher.

 
Figure 2. Average wait time
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Figure 2 also shows a dashed line for each headway, marking the average wait time 
for a rider who arrives at the stop randomly without consulting the schedule. It 
is interesting to see that a rider arriving “on time” has approximately the same 
expected wait time as one arriving randomly. For the shorter headways, there 
is almost no practical difference between arriving randomly and consulting the 
schedule; it is clear from this why the behavior observed by Balcombe and Vance 
(1998, cited by Cain 2007) might occur, where riders arrive randomly for headways 
of 10 minutes or better, but consult the schedule for those of 15 minutes or more.

Making a Transfer
One of the critical determinations that must be made when planning a trip on pub-
lic transportation is the feasibility of a transfer between two vehicles. Riders have 
only their experience to draw on, and software trip planners simply use a threshold 
minimum transfer time. Using the lateness data, however, it is simple to construct 
a simulation of a rider transferring from one vehicle (sampling from the arrival 
distribution) to another (sampling from the departure distribution), producing the 
informative plot displayed in Figure 3. Here, the likelihood of making a transfer—
that is, the likelihood that the second vehicle will depart from the stop after the 
first vehicle arrives—is plotted against different transfer window sizes. The 90 
percent mark is not reached until there is a 7-minute window between scheduled 
arrivals, and to be 95 percent sure of making the transfer requires a window of 10 
minutes. This chart enables even a new rider to make an informed decision about 
the acceptability of a particular trip plan.

Figure 3. Overall probability of making a transfer
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An element that is missing from this model is the concept of a designated transfer 
point, where transfers can be coordinated between vehicles (meaning that the sec-
ond vehicle will wait for the first), or the transfer window is elongated by scheduling 
the departure of the bus to be some minutes later than its arrival. This element is 
missing, too, from the SF Muni GTFS data. We can hypothesize that the probability 
of making a transfer increases at these transfer points, but no empirical observa-
tions can be made.

Hour of Weekday Comparisons
This first set of comparisons examines the behavior of lateness exclusively on week-
days, partitioned according to which hour of the day an arrival is scheduled. This is 
determined strictly according to the clock hour of the scheduled arrival, meaning, 
for example, that a scheduled arrival of 7:59 a.m. belongs to the 7 a.m. category.

This kind of comparison is useful because it reveals categories of user experience. 
Riders using transit mainly to commute during rush hour will observe a different 
class of behavior than those who use transit in the evening or at night. As different 
categories of riders have different intents in their use of transit, it is important to 
understand the behavior of transit from each perspective.

Hour of Weekday ECDFs
The lateness ECDFs for the 8 a.m., 5 p.m., 8 p.m. and 1 a.m. blocks were selected for 
visual comparison as displayed in Figure 4. The overall ECDF is included as well. In 
all cases only the arrival lateness data was used.

Figure 4. Hour of weekday ECDF comparisons
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From these curves it can be seen that the 8 a.m. and 5 p.m. hours tend to be earlier 
than overall and have a lighter tail. The 8 p.m. hour shows the opposite, being con-
siderably later than the overall and having a much heavier tail. The 1 a.m. behavior 
is the most distinct of the group, being quite late and wearing a long tail. It also has 
a wider 95 percent confidence interval (not shown), ± 1.4 percent compared to ± 
0.6-0.8 percent for the others. Approximately 20 percent of the 1 a.m. data is more 
than 10 minutes late. 

These differences in behavior during different phases of the day are quite impor-
tant to the rider. Commuters are interested specifically in the rush hour behaviors. 
Late-night users should know that the behavior is significantly later and less reliable 
than during the daytime. The quantiles for late night behavior are especially useful 
when taking the last bus home. By making further analysis, it can be seen how the 
differences in behavior should influence the rider's use of the system.

Hour of Weekday Average Waiting Time
As in the overall case shown in Figure 2, Figure 5 plots average wait time as a func-
tion of the rider’s arrival time at the stop. Only the departure data was used. For 
ease of comparison, the plot shows curves for the 5 p.m. and 1 a.m. hours only, 
alongside the overall lateness, and considers only a 30-minute headway. The 5 p.m. 
data show a lower minimum average wait than the overall for a rider arriving five 
minutes early and has a higher maximum average wait as well. These are due to 
the increased timeliness of that hour. The 1 a.m. data's minimum average wait, in 
contrast, are considerably higher than the other curves and occur where the rider 
arrives only two minutes early, as expected from the increased lateness of the hour 
(this assumes another bus is coming). It is interesting that the heavier tail in the 1 
a.m. distribution actually causes the maximum average wait to be lower, since a 
rider arriving late is less likely to have missed the bus; but, of course, the variance of 
the wait time is much higher, though this is not shown in the figure.

There are several important messages for the rider in this plot. For one, a rider can 
expect to wait a long time for the bus at 1 a.m., which may be uncomfortable and 
possibly even dangerous. Rush hour riders, on the other hand, can expect short and 
pleasant waits—provided they arrive five minutes early.
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Figure 5. Average wait time comparison for hour of weekday

Hour of Weekday Probability of Transfer
We now inspect the differences the time of day on a weekday can make in the 
feasibility of a transfer. Figure 6 compares the probability of making a transfer for 
selected hours of arrival along with the overall probability. Note that the curves 
intersect near the 50 percent point where the transfer window is 0. This is an effect 
of using near-identical distributions for each transfer (e.g., the 8 a.m. line repre-
sents transferring from an 8 a.m. arrival to an 8 a.m. departure).  As expected, the 
increased timeliness of the 8 a.m. and 5 p.m. data results in lower probability than 
the overall for negative transfer windows and in higher probability for positive win-
dows. The opposite applies to the 8 p.m. and 1 a.m. hours. In fact, the 90 percent 
point is reached with windows as small as six minutes for the 5 p.m. data and as 
large as 15 minutes for the 1 a.m. data.

It is helpful to the commuter to know that transfers are easier to make during the 
rush hours. It is even more important, however, for the timeliness-concerned rider 
to note the probabilistic behavior: given (for example) a commute with a scheduled 
transfer window of five minutes during the 8 a.m. hour, the rider will make that 
transfer approximately 85 percent of the time—that is, the transfer will be missed 3 
out of 20 times. By making this behavior predictable, the rider can expect and plan 
for its occurrence, removing much of the frustration associated with transfers.
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Figure 6. Probability of making a transfer for hour of weekday

Hourly Trend
It is instructive to look at information comparing all hours of the day, instead of just 
the four selected in the last few plots. Figure 7 compares the quartiles (25, 50, and 
75 percent quantiles) and means, along with 95 percent confidence intervals, for 
each hour of arrival on a weekday. These values were computed using the arrival 
lateness ECDFs from each hour.

Figure 7. Quartiles and means: Hour of weekday comparison
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The information here is both interesting and valuable. If “reliable” is defined as hav-
ing a small distance between the first and third quantiles, then the most reliable 
times of bus operation are at 12:00 p.m. and 5 p.m. The level of reliability is, in fact, 
fairly good and does not vary much throughout the course of the workday. Then, 
the reliability deteriorates sharply from 5 p.m. to 8 p.m., and the skew of the distri-
bution (as indicated by the distance between the mean and the median) increases. 
Between 9 p.m. and 12:00 a.m., there is a surprising increase in reliability, though 
the mean lateness stays relatively high. Finally, there is inexplicable behavior, as 
all reliability is lost between 12:00 a.m. and 1 a.m., rendering bus behavior almost 
unpredictable.

It should be noted that it is quite possible that the erratic behavior observed in 
the early hours is caused by erroneous GTFS data, leading to faulty treatment of 
the GPS data. The outlandishly large skew on the 5 a.m. data, in particular, is quite 
suspect. It is difficult to make any conclusions here, since routes run much less fre-
quently at these hours and so there is much less data to draw upon.

It is clear, however, that a rider should expect distinctly different behavior when 
using public transportation during business hours and in the evening. Again, this is 
especially relevant to the commuter, who is typically highly concerned with timeli-
ness and reliability.

Progress of Route Comparisons
This next set of comparisons splits the data according to how far along its route a 
transit vehicle has progressed at each stop. This can be done in a number of ways, 
and two were selected here: first is the stop number, which enumerates the stops 
along a route in sequence, and second is route portion, defined as the stop number 
divided by the total number of stops for the trip.

Route Portion ECDFs
Figure 8 shows the arrival lateness ECDFs for the start of the route (those stops 
having route portion between 0 and 0.25), middle of the route (0.25 to 0.75), and 
end of the route (0.75 to 1.0), as well as for overall arrival lateness. These curves are 
relatively similar, so it is difficult to make interesting conclusions offhand. They do 
demonstrate a trend of increasing lateness and a heavier tail as a route progresses, 
but whether this makes a perceptible effect is unclear.
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Figure 8. Route portion ECDF comparisons

Probability of Transfer between Route Portions
To better understand the effect of route progress on lateness behavior, the probability 
of making a transfer according to transfer window size was once more calculated. In this 
case, four scenarios were selected, representing transfers between different portions of 
the route, using the same definitions as the ECDFs plotted previously. The results are 
shown in Figure 9. The cases of making transfers from the beginning of a route or to the 
end of the route have been omitted, as they are ostensibly less useful.

Figure 9. Probability of making a transfer for route portion
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Observe that the curves no longer all intersect the 50 percent mark where the 
transfer window is zero, since the transfers are no longer symmetric. All but the 
middle-to-middle curve appear to have shifted below the overall curve in prob-
ability, suggesting that the previous results were optimistic. For some windows, 
there is as large as a 10 percent decrease in probability. Fortunately, the shift is not 
so large in the higher probabilities. To achieve 90 percent probability in the worst 
case (transferring from the end of one route to the start of another), the transfer 
window need only be 1 minute larger than in the overall case.

Trend along Route
We also can clarify the effect of route progress by looking more closely for a trend. 
Using the same type of plot that demonstrated an hourly trend, Figure 10 shows the 
quartiles and means of the arrival lateness distribution according to stop number. It 
is plain to see that lateness increases as a route progresses, and that reliability (again 
using the distance between the 1st and 3rd quartiles as an indicator) decreases. The 
lack of data in the higher stop numbers causes much larger confidence intervals, 
but the trend is still apparent, and a trip planner should account for it.

Figure 10. Quartiles and means: Stop number comparison

Trip Plan Evaluation
Taking a step further in our observations, this final analysis makes a quantitative 
evaluation of a simple trip plan. Suppose a commuter is evaluating the option of 
taking the bus to work and wishes to arrive at 8 a.m. Looking at the system map, the 
commuter finds that he must make one transfer. The schedule shows that the first 
bus is scheduled to arrive at the transfer point at 7:00 a.m., 7:30 a.m., and 8:00 a.m. 
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The second bus is scheduled to depart from the transfer point every 20 minutes 
beginning at 7:10 a.m. and to arrive at the final destination 20 minutes later.

The naïve conclusion is that there is no chance to make the transfer from the 7:30 a.m. 
arrival to the 7:30 a.m. departure, and so he must wait 20 minutes for the next bus, arriv-
ing at work at 8:15 a.m. (15 minutes late). To arrive on time, therefore, he must take the 
bus which arrives at the transfer point at 7:00 a.m., which is highly inconvenient.

Now, instead, it is possible to make a probabilistic evaluation using the knowledge 
of behavior derived thus far. Figure 11 shows the ECDF of the commuter’s arrival 
time at his destination given the schedule data above, where he takes the first bus 
scheduled to arrive at the transfer point at 7:30 a.m. and then transfers to the next 
bus that he sees. This ECDF was generated through simulation on the 7 a.m. and 8 
a.m. hour of arrival datasets, using the arrival and departure data as appropriate. 
The bimodal characteristic of this curve represents the two main outcomes of the 
trip plan: that half the time, the 7:30 a.m. transfer is successful, and half the time it 
is not. The commuter’s arrival time, on average, is only 154 seconds, or about 3 min-
utes, past 8 a.m. There are occasions where he will be more than 20 minutes early, 
and occasions where he will be more than 20 minutes late; each of these represents 
less than 2 percent of occurrences, or about 1 day every 11 weeks. This method not 
only has discovered the reality of the situation to be better than initially thought, 
but it also has formed the correct expectations for the rider.

Figure 11. ECDF of trip plan for daily commute
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Conclusions and Further Work
This work has demonstrated a new approach to the analysis of arrival data that cre-
ates an understanding of transit behavior from the rider’s point of view. Using this 
approach, operators can understand precisely how on-time performance impacts 
their users and identify sources of frustration. By releasing timeliness or tracking 
data to the public, agencies can allow the community to use these methods to 
provide better information and to improve the rider’s experience, in the same way 
that releasing schedule and arrival prediction data has seen growing success.

Online trip planners, or new tools entirely, can use the model from this research to 
provide better information to the rider. Incorporating it directly into the trip plan-
ner would make it possible to operate on explicit probabilities of transfer, instead 
of guessing a minimum transfer time. This easily could be extended to consider 
all outcomes and their probabilities, giving every trip plan an evaluation like that 
shown in Figure 11. From there, the optimization problem can be redefined in a 
very flexible and meaningful manner.

It also is desirable to communicate this knowledge in a more direct form, so that a 
rider is always equipped to form the correct expectations ahead of time. Of course, 
as is evident in the case of paper schedules, presenting information in a format that 
is easy to use and understand is a difficult problem. A small step is to provide simple 
rules of thumb that will guide expectations in a way that reduces frustration: show 
up five minutes early, give small transfer windows a (small) chance, expect poor 
behavior late at night. A more complete and utile form of communicating this 
information is worth pursuit.
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Abstract

This paper describes an approach for improving on-time performance at transit 
agencies. It takes advantage of the schedule adherence information from an AVL 
system. A methodology that can be used to update the bus timetables by using AVL 
schedule adherence data is described. Using statistical analysis, the main goal is to 
maximize the density area of the on-time performance range. From this distribution, 
the optimal value is obtained and used to update the times in the timetables. Then, 
a comparison process is used to assess the on-time performance improvements. In 
addition, a simulation process is presented to provide a different perspective than 
the statistical methodology. This approach also presents possibilities for further on-
time performance improvements. To demonstrate the applicability of this research, 
a case study using data from Miami-Dade Transit is included. The on-time perfor-
mance calculations for Routes 99 and 57 also are presented.

Introduction
To passengers, schedule adherence is a matter of service quality. From the service 
provider perspective, schedule adherence reflects the quality of the service plan 
(the schedule) and the operations control (Furth et al. 2003). Researchers have 
long noticed the importance of schedule adherence information contained in 
Automatic Vehicle Location (AVL) systems. Lee et al. (2001) studied the effect of 
an AVL system on schedule adherence and operator behavior and willingness to 
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keep on schedule. In addition, Hammerle et al. (2005) pointed out that some tran-
sit agencies would like to use Automatic Passenger Counter (APC) and AVL data 
to inform service planning and management and ultimately provide more reliable 
service. Methods for extracting information from these data were developed to 
compute service reliability indicators. Also, some schedule adherence properties 
were observed and reported in their research. These studies show a general interest 
in improving schedule adherence.

It is important to clarify the difference between schedule adherence and on-time 
performance. Schedule adherence refers to the difference between real time and 
scheduled times of arrival or departures times, usually presented in minutes. On-
time performance, on the other hand, is a percentage value used to indicate buses 
arriving or departing late, on time, or early. Depending on the AVL system and the 
transit agency, on-time performance can be calculated using arrivals, departures, 
or possibly a combination of both.  

AVL systems are computer-based vehicle tracking systems that function by mea-
suring the real-time position of each vehicle and relaying this information back to 
a central location. Many researchers also see the potential uses of analyzing AVL 
or APC data to improve service quality. A study that uses data from Tri-Met in 
Portland, Oregon, shows that scheduling can be improved through performance 
monitoring using AVL data and that very useful information has been retrieved 
(Kimpel et al. 2004). Shalaby and Farhan (2004) made efforts to use AVL and APC 
data to develop a bus travel time model capable of providing real-time information 
on bus arrival and departure times to passengers (via traveler information services) 
and to transit controllers for the application of proactive control strategies. 

One continual question asked by researchers is how to use AVL data to improve 
on-time performance. The importance of on-time performance to both the 
transit customer and the transit providers has been discussed in many research 
projects. For instance, New York City transit established a customer-oriented bus 
performance indicators program to measure on-time performance. The program 
contains two schedule adherence indicators that measure different aspects of ser-
vice performance: route on-time performance and service regularity. The purpose 
of this program is to measure the quality of service experienced by the customer 
(Nakanishi 1997).  

This research attempts to fill the gap in the understanding of AVL data and 
presents another perspective on how the data can be used to improve on-time 
performance. With the availability of AVL data, it is possible to improve on-time 
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performance by modifying the scheduled times in the timetables. Changes in the 
timetables will take effect in the following line-up period (also known as mark-up, 
shake-up, sign-up, bid, or pick). This paper makes use of the AVL schedule adher-
ence data (measured in minutes) to calculate on-time performance expressed as 
a percentage of buses arriving or departing within an acceptable window. In other 
words, it uses disaggregate information to derive the aggregate information. 

Research Methodology
This research focuses on the idea that transit agencies can maximize on-time per-
formance by adjusting their published schedule timetables. First, the data from an 
AVL system need to be studied, cleaned, and prepared for use on this on-time per-
formance methodology (OTPM). Second, the distribution of the data needs to be 
determined by using statistical analysis. Once the statistical distribution is known, 
the optimal value is calculated and used to update the times in the timetables. 
Finally, a computerized iterative validation and comparison process is provided 
to ensure that the updating takes effect and on-time performance is improved. In 
addition, an on-time performance simulation (OTPS) process is included to better 
understand the relationship between the time adjustments and their effect on 
on-time performance. 

The distribution of the schedule adherence times (the difference between actual 
and scheduled arrival or departure times at time points) is used to make sched-
ule adjustments that can maximize the on-time performance. The methodology 
assumes that the distribution is normal (which can be justified by the fact that 
normality tests fail to reject the normality assumption). The objective is to adjust 
the timetables such that the probability of on-time performance is maximized, 
where the probability of on-time performance is the area under the density func-
tion between the acceptable schedule adherence values.

The data process for the improvement of on-time performance is described in 
Figure 1. It starts with the AVL data to determine the statistical distribution of the 
schedule adherence data. Then the first adjustment, using the mean of normal 
distribution, is made, and the schedule adherence values are brought to the center 
(mean) of the on-time performance parameters. The details on how to determine 
the adjustment are described in the following sections. Since the values in the 
timetables are rounded to the nearest minute, a round function is used to change 
the adjustment values that can be tested; this is done for practical purposes. Tran-
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sit agencies present the times in the timetables in minutes. In theory, using con-
tinuous values (decimals) or smaller intervals (e.g., ½ minutes), rather than discrete 
values (integers), could improve on-time performance even further. Then, on-time 
performance is calculated, using the rounded adjustments, and it is determined if 
the modifications increased on-time performance. If yes, then the timetables will 
be updated.

Figure 1. Data flow for the on-time performance improvement process

On-Time Density Area 
As previously mentioned, the strategy is to maximize the on-time density area in 
order to improve on-time performance. Figure 2 displays two distribution curves. 
One is before the adjustments and the other is after the adjustments. The two 
shaded areas, which correspond to the on-time performance density areas, are dif-
ferent under the two curves. 

As can be seen, the shaded area on the top is smaller than the shaded area on the 
bottom. For this example, the on-time performance parameters are assumed to 
go from -5 to 2, which are the limits of the density areas. Buses arriving within 2 
minutes early to 5 minutes late are considered to be on time. To maximize on-time 
performance, the sample mean (0) of the curve on the left is shifted to [(2-5)/2 = 
-1.5], which is the center of the on-time range and depicted on the right curve.
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Figure 2. Density areas before and after adjustments
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The explanation of why the density area will be maximized when the sample mean 
is in the center of on-time range is described below for the case that the distribu-
tion is normal.

Define:

	 x1 = Lower value of the on-time parameters.

	 x2 = Upper value of the on-time parameters.

	 c: = x2 - x1 . 

	 µ = Mean of the schedule adherence (ADH) data.  

	  = Standard Deviation of the ADH data.

	 D(x) = Cumulative distribution function for the normal distribution.

		

The density area in the on-time range is

 
.

The first and second derivatives of G(x2 ) are 

 

and

,

respectively.  Letting  G '(x2 ) = 0, then  Note that

.
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This implies that G(x) reaches its maximum at
 

It means that the  
 
density area in the on-time range is maximized when x1 and x2 are symmetrically 

 
allocated about µ, and, finally, we obtain that when , the density area  
 
of the on-time range is maximized.

Another finding about the on-time density area is described in Figure 3. It is clear 
that the on-time density area is related to the data variance. We use kurtosis to 
measure the peakedness or flatness of the dataset distribution: a positive kurtosis 
indicates a relatively peaked distribution, while a negative kurtosis indicates a rela-
tively flat distribution. Higher kurtosis is an indication that more of the variance is 
due to infrequent extreme deviations. 

Figure 3. Data with different kurtoses (on-time parameters between -5 to 2)
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In Figure 3, the bottom figure shows a higher kurtosis than the top one. From this 
figure, it is clear that the dataset with higher kurtosis will have more area within the 
on-time parameters area than dataset with lower kurtosis. Thus, one approach to 
increase on-time performance is to increase the dataset kurtosis value—in other 
words, reduce its variance.

As high variances have a negative impact on on-time performance, transit agen-
cies can use different operational strategies to reduce this variability. For instance, 
the early and late arrival tails can be addressed with a combination of field and 
dispatch supervision as well as optimal timetable adjustments. Thus, improving 
on-time performance may require both better operations control and scheduling 
strategies.

Data Source and Distribution
The schedule adherence dataset used in this research comes from the Miami-Dade 
Transit (MDT) CAD/AVL system. MDT buses transmit data at a 2-minute poll inter-
val. However, at the timepoints, a record is generated at the exact time of the event. 
These records, in combination with data from the Transit Operations System 
(TOS), are used to calculate schedule adherence. The schedule adherence dataset 
includes GPS location, date, time, and operational data such as Route, Direction, 
Run Number, Employee Number, Vehicle Number, and Time Point information 
(Cevallos et al. 2008). 

Even though the schedule adherence data from an AVL system can be assumed to 
be normally distributed, the data can be skewed to the right or to the left (it most 
likely follows the log normal distribution), depending on how schedule adherence 
is calculated by the AVL system. This is dependent of the sign (i.e., + or -) used to 
represent lates or earlies. 

The normality assumption, as justified by the normality tests, is very useful for 
practical purposes. Using the normal distribution, the timetables adjustments to 
maximize on-time performance can be determined easily. The goal of this strategy 
is to maximize the density area of the schedule adherence distribution, within the 
on-time performance parameters. Therefore, adjustments to the AVL data in the 
database are made to maximize the density area. By doing this, more buses will 
arrive or depart within the density area, which improves on-time performance. This 
process also reduces the number of buses arriving or departing early, which is an 
undesirable condition for both the transit agency and the passengers. 
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QQ plot diagrams were used as a graphical tool to diagnose differences between 
the probability distribution of a statistical population from which a random sam-
ple has been taken and a comparison distribution. To demonstrate the applicability 
of this research, Route 99 was selected. This is a simple route with only one pattern 
using the same running times throughout the day. Figure 4 shows the normal QQ 
plot diagrams for the time period of 16:00 - 19:00 at the 199S47AV (NW 199 St. 
& 47 Ave) time point in Route 99. According to the shapes, with the exception of 
lower and upper end points, it can be assumed that the statistical distribution is 
approximately normal.

 
 

Figure 4. Normal QQ plot for schedule adherence for  
Route 99 at NW199 St. and 47 Ave.

In this research, the schedule adherence dataset used is considered to follow the 
normal distribution. This is supported by the shapes of the QQ plots. However, this 
may not be absolutely guaranteed for other datasets in the AVL database. Even 
though the normality assumption of the dataset plays an important role in this 
research, the key point in this paper is how to make the on-time performance area 
maximum by shifting the ADH values. In fact, even if the dataset does not follow 
normal distribution, it still is possible to find the approximate center of the sched-
ule adherence values and shift the ADH dataset to improve on-time performance. 
If the dataset is close only to the normal distribution, the on-time performance 
area also is close to the maximum area possible. In this situation, simulation can be 
used to make sure that the adjustments made maximize the on-time performance 
area. This is further discussed in the Simulation Process section.
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Depending on the AVL system, the data can be skewed to the right or to the left. 
Data generated from AVL systems that use negative numbers to represent late 
buses will tend to show data skewed to the right because it is expected that the 
majority of values be towards the left, whereas if late buses correspond to positive 
numbers and early buses to negative numbers, then the distribution is likely to 
be skewed to the left. Further, this distribution is likely to follow the log normal 
distribution (Cevallos and Zhao 2006). This is due to the fact that buses are likely 
to arrive or depart late rather than early most of the time. Early arrivals and depar-
tures is an undesirable condition, and it is controlled by most transit agencies. The 
reason for this is obvious. Transit agencies usually work hard to avoid early depar-
tures, as this can be very detrimental to passengers. 

Hypothetical Transit Route
To better understand the framework of our research, a hypothetical transit route 
to better demonstrate the process is presented. Figure 5 is used for this purpose. 
The diagram depicts a schematic of a hypothetical transit route. The route is 
divided into a number of timepoints with a bus traversing along the route. When 
the transit bus arrives at stop i+1, the actual arrival time is known from the AVL 
system, and the schedule adherence is calculated at that particular location. If 
the bus arrival time falls outside the range of the on-time parameters, which are 
defined by the transit agency, the bus will be regarded as either late or early. This 
is depicted in Figure 5 under Actual Arrival Time, which shows a bus arriving early. 
However, if the schedule time is shifted a little earlier, chances are that the number 
of early arrivals is reduced. The question is, how much should the scheduled time 
be moved to improve on-time performance?

Figure 5. Moving scheduled times in a hypothetical transit route
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Adjustment of Timetable
Before adjusting the timetables, some terminology needs to be defined first:

ADH•	 : Schedule adherence.

Before.Time•	 : The scheduled time before adjustments.

After.Time•	 : The new scheduled time after adjustments.

Adj.First•	 : First raw adjustment of the schedule adherence.  

Adj.Second•	 : The second adjustment of the schedule adherence by applying 
round function.

On-Time.Period•	 : -5≤ ADH ≤ 2. A bus is considered to be on time if it is within 
2 minutes early and 5 minutes late. These are the on-time performance 
parameters used by MDT. Different agencies may have a different definition 
for the on-time period. Other agencies may use 0 and -5 or 1 and -5. There 
appears to be no industry standards for on-time performance.  

Adj.ADH•	 : This is a constant, based on the statistical distribution and time 
period. In the normal distribution, this corresponds to the middle value 
of the on-time range. In other distributions, it should be the number that 
maximizes the density area of the on-time range.

Layover/Recovery Time•	 : 10% of the trip time. The time used at the end of a 
trip (Pine et al. 1998). 

To minimize the complexity of this methodology, some assumptions need to be 
made:

Assumption 1•	 : The schedule adherence follows the normal distribution. Since 
the schedule adherence distribution is close to the normal distribution, this 
assumption seems reasonable and it is supported by QQ plot diagrams.

Assumption 2•	 : Shifting the schedule does not change behavior. Operator 
behavior is not expected to change with the new schedule—that is, vehicle 
operators will drive as usual. 

The method used in this research is to adjust the times in the timetables by shifting 
the ADH to Adj.ADH values, so that density area for the on-time range is maxi-
mized. For this, the following formulas were developed:

Adh.First = Mean.ADH - Adj.ADH 
Adh.Second = Function Round (Changes.First) 
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After.TIME = Changes.Second + Before.TIME 
After.ADH = Changes.Second + Before.ADH

The Round function is applied to the first change from a decimal to an integer 
value, because the minimum unit is one minute. For example, in the case of time-
point NW 199 St & 47 Ave in Route 99 in Table 1, Adj.First = 4.23. After applying the 
simple round function, Adj.Second will be 4, which means that the schedule time 
should be updated from 05:23 PM to 05:19 PM.

Adj.ADH is a very important constant in this model. Though the data are consid-
ered to follow the normal distribution, other distributions can be applied (like the 
lognormal distribution). In any case, the goal should be to maximize the area of the 
statistical distribution considering the on-time performance parameters. Accord-
ing to the on-time performance parameters used in this research, the vehicle is 
on-time if and only if ADH is less than or equal to 2 or ADH is more than or equal 
to -5. Since it is assumed that the data follows the normal distribution, the center 
of the on-time performance area is -1.5, which is the adjustment value that can 
maximize the on-time performance area. Therefore, in this particular case the Adj.
ADH will be -1.5. 

Figure 6 shows the fit curve of the schedule adherence on the right, compared to 
the ideal curve that maximizes on-time performance on the left. The solid line 
display the fitted normal distribution based on a sample data in this research. The 
discrete data are approximated and treated as normal distribution. The center of 
the solid curve is the mean of the sample data. According to the methodology, 
the mean of the schedule adherence values is shifted to -1.5. This value (-1.5) is the 
center of the on-time range [-5, 2]. This is depicted in Figure 6, where the right solid 
normal distribution curve is shifted to the left dotted line. After the adjustments, 
the on-time performance area is maximized. 

After the second adjustments are calculated, the whole timetable is adjusted. The 
sample data selected consisted of seven timepoints in Route 99 in the Eastbound 
direction. Table 1 displays information of these time points. The first row shows the 
stop name of each time point, the second row shows the name of time points. The 
third row shows the schedule time before adjustments. The data collected is from 
the time period of 16:00 - 19:00. The fourth row shows the mean of the schedule 
adherence at the timepoints. The fifth row is the standard deviation of the sched-
ule adherence data. The sixth row is the first adjustment and the seventh row is the 
second adjustment. The eighth row shows the schedule time after adjustments.   
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Figure 6. Adjustment diagram

Table 1. Adjustment of Timetable in Route 99

Stop 
Name

NW 199 
St & 47 
Ave

NW 199 
St & 27 
Ave

NW 215 
St & 2 
Ave

NE 199 St
& 2 Ave

NE 199 St 
& 10 Ave

NE 203 
St & 20 
Ave

Aventura
Mall

1 Time 
Point

199S47AV 199S27AV U441215S NE2A199S 199S10AV 203S20AV AVEN-
MALL

2 Before-
Time

05:23 PM 05:29 PM 05:45 PM 05:53  PM 05:58 PM 06:06 PM 06:15 PM

3 Mean 
(adh)

2.73 -1.72 -0.05 -2.06 -0.94 -0.73 -0.67

4 SD 
(adh)

5.41 3.05 3.55 3.85 3.76 3.28 3.93

5 Adj. 
First

4.23 -0.22 1.45 -0.56 0.55 0.77 0.82

6 Adj. 
Second

4 0 1 0 1 1 1

7 After 
Time

05:19 05:29 05:44 05:53 05:57 06:05 06:14 

For instance, the mean of the schedule adherence at NE 203 St & 20 Ave is -0.73. 
This uses the -1.5 constant, which is the center of the on-time period of -5 and 2. 
The first adjustment (Adj.First) should be 0.77, which is the result of -0.73-(-1.5). 
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After applying the round function, the second adjustment (Adj.Second) equals 1. 
Therefore, the new time would be 06:05 PM (06:06 PM – 1). 

The final results, based on the adjustments implementation, are presented in 
Figure 7. By applying this methodology, the on-time performance for Route 99 in 
the Eastbound direction increased from 72.3 percent to 80.4 percent (i.e., an 8.1% 
increase) during the time period from 16:00 to 19:00.

Simulation Process
Though the timetable approach is described and the effect is proved by the on-
time performance improvement results above, these results are based on a normal 
assumption and a rounding procedure. Ideally, a better solution could be obtained 
by using the best possible statistical distribution for the schedule adherence data 
as well as using continuous or smaller time intervals, instead of discrete integer val-
ues for the timetable adjustments. Nevertheless, a good solution can be obtained 
through simulation to get all possible outcomes for on-time performance using 
different schedule adherence adjustments. This is accomplished by introducing 
different adjustments until the best on-time performance value is obtained. The 
simulation uses schedule adherence adjustments at 1-minute intervals, since this is 
the basic unit used in the timetables and schedule adherence data.  

A Structured Query Language (SQL) statement is built to perform the simulation. 
The output data contains columns that include old on-time performance, new 
on-time performance, average of ADH, variance of ADH and the changes of ADH. 
It calculates all possible on-time performance by changing the ADH values. Table 2 
presents a partial outcome of the simulation test. According to this test, the high-
est on-time performance value at timepoint SOUTMIAM from Route 57 is reached 
when the ADH_CHANGE value equals to -2 and the AVG_ADH is -1.41. As it can 
be seen, this average value is close to the constant of -1.5. 
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Table 2. Partial Dataset from Simulation Process*

TP ROUTE AVG_ADH PERF1 PERF2 ADH_CHANGE

SOUTMIAM 57 -4.41 47.85 61.21 -5

SOUTMIAM 57 -3.41 47.85 64.35 -4

SOUTMIAM 57 -2.41 47.85 64.55 -3

SOUTMIAM 57 -1.41 47.85 65.19 -2

SOUTMIAM 57 -0.41 47.85 57.48 -1

SOUTMIAM 57 0.59 47.85 47.85 0

SOUTMIAM 57 1.59 47.85 40.98 1

SOUTMIAM 57 2.59 47.85 34.55 2

SOUTMIAM 57 3.59 47.85 28.58 3

SOUTMIAM 57 4.59 47.85 23.70 4

*TP: time point; Route: route number; AVG_ADH: average of ADH values after changes; PERF1: 
on-time performance value before any changes; PERF2: on-time performance after ADH changes; 
ADH_CHANGE: changes of ADH value

Based on the methodology presented in this paper, the optimal on-time perfor-
mance is obtained when the mean of the schedule adherence values is shifted to 
-1.5. Note that using simulation, the optimal value is the same as the one obtained 
from the previous methodology. However, it is not guaranteed that the optimal 
values that are obtained from both methodologies will be always the same.

Figure 8 presents the on-time performance comparison between the solutions of 
On-Time Performance Metrology (OTPM) and On-Time Performance Simulation 
(OTPS) for a 24-hour period. The chart in Figure 8 shows that there are no differ-
ences in four of the five timepoints. However, in time point U441215S, the solution 
by using OTPS increased the on-time performance. For practical purposes, there is 
no major difference from either method. Yet, the OTPS process produced a slightly 
higher on-time performance improvement.

As depicted in Figure 8, the OTPS approach improves the on-time performance 
of timepoint U441215S approximately 2 percent; the other timepoints remain the 
same. What this means is that using the simpler OTPM approach, good results can 
be obtained without having to go through the more elaborated OTPS process. 
Usually, the OTPS process generates better results, because it tries all possible 
adjustments. However, it is a more complicated than OTPM process. The changes 
obtained by either process can be used to adjust the time in the timetables, which 
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can take effect in the next line-up period. Based on this research, it is expected that 
adjusting the timetables on-time performance can be improved.

Summary and Conclusion
This paper presents a perspective on how to improve transit on-time performance 
by using schedule adherence data. It takes advantage of data from an AVL system, 
in particular, schedule adherence information. To demonstrate the applicability of 
this research, a case study using data from MDT is included, and on-time perfor-
mance calculations for Routes 99 and 57 also are presented.

A methodology that can be used to update the times in the bus timetables by 
using schedule adherence data is described. The goal of this methodology is to 
maximize the on-time density area. The density area is maximized when the mean 
of the schedule adherence data is in the center of the on-time range. This is sup-
ported by a mathematical proof. A validation process is provided to ensure that the 
updating takes effect. Further, a comparison process is used to assess the on-time 
performance improvements, before and after the adjustments.    

Before this methodology can be applied, the AVL data need to be cleaned, manipu-
lated, and stored in a database to allow the processing of the data. Using statistical 
analysis, the distribution of the data is determined, and the mean and standard 
deviation are calculated. Once the statistical distribution is known, the main goal 
is to maximize the density area of the on-time performance range, which is based 
on the on-time performance parameters. From this distribution, the optimal value 
that can maximize on-time performance is obtained and used to update the times 
in the timetables. The updated timetable will take effect in the next line-up period, 
and the on-time performance is improved. This process also reduces the number of 
early arrivals and departures. 

There were two assumptions in this research: normal distribution and operator 
behavior. The assumption of normal distribution is supported based on QQ plots 
and normality tests. Operator behavior can be attributed to many different factors, 
and it is assumed to be unchanged after the timetable modifications.

A simulation process is presented to demonstrate additional possibilities. Simula-
tion is a good solution to obtain all possible outcomes for on-time performance 
using different schedule adherence adjustments and to finally obtain the optimal 
values. This is accomplished by introducing different adjustments until the best 
on-time performance value is achieved. 
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There are still many opportunities for improvements and optimization on this 
subject. For instance, the peakedness or flatness of the dataset distribution can 
be measured using the kurtosis statistic. This can be useful for developing strate-
gies that reduce the variance of the data. Studying the relationship between the 
standard deviation (variability of arrivals/departures) and the schedule adherence 
adjustments would be beneficial. Including the standard deviation in the method-
ology may influence the outcome of the on-time performance results. In addition, 
developing a computerized application could assist with the automation of the 
described methodology.

In particular, there is potential for generating a more accurate distribution model. 
The statistical distribution of the schedule adherence data is important to this 
research. Therefore, better statistical techniques can be applied if a more accurate 
distribution model is obtained. Different distribution models will produce different 
adjustment factors, which makes the density area of the sample data maximized.
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Abstract

Bus Rapid Transit (BRT) is an enhanced bus service that offers many of the same 
service attributes as rail transit, such as specialized vehicles, large stations, real-time 
passenger information, and more frequent and reliable operations. The Santa Clara 
Valley Transportation Authority (VTA) intends to develop an integrated BRT net-
work throughout Santa Clara County, California, to provide high quality service to 
areas not well served by the VTA Light Rail (LRT) system. Past research showed that 
many transit agencies in North America considered BRT the same as LRT in their 
demand models, and a few agencies treated BRT and local bus identically. Realistic 
BRT ridership forecasts are essential for selecting and sizing facilities, preparing ser-
vice plans, estimating capital and operating costs, and assessing cost-effectiveness. 
This study applied the results of the transit preference survey in a Market Research 
Model prepared for the VTA and built the improved mode choice model that explic-
itly included the BRT mode in the VTA demand model. Instead of considering BRT 
the same as either LRT or local bus, the improved VTA model with an explicit BRT 
mode is expected to forecast more reasonable future BRT boardings. Eleven scenarios 
in the BRT strategic plan for Santa Clara County were developed using the BRT fore-
cast results from the improved VTA model. 
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Introduction
Bus Rapid Transit (BRT) is an enhanced bus service that offers many of the same 
service attributes as rail transit, such as specialized vehicles, large stations, real-time 
passenger information, and more frequent and reliable operations. A more detailed 
definition developed by the Transit Cooperative Research Program (TCRP) as part 
of TCRP Report 90 (2003) is that “BRT is flexible, rubber-tired rapid transit mode 
that combines stations, vehicles services, running ways, and Intelligent Transporta-
tion System (ITS) elements into an integrated system with a strong positive identity 
that evokes a unique image … In brief, BRT is an integrated system of facilities, 
services, and amenities that collectively improves the speed, reliability, and identity 
of bus transit.” 

Vuchic (2002) defined BRT based on combining mode performance (speed, reli-
ability, capacity, image) and investment cost per kilometer of line for three catego-
ries of transit modes—rapid transit (Metro), semi-rapid transit (light rail transit, 
LRT), and street transit (regular bus)—and expresses the definition of BRT as the 
transit mode between LRT and regular bus. Levinson et al. (2002) proposed the 
comparisons of BRT and other transit modes as follows: “1. where BRT vehicles 
(buses) operate totally on exclusive or protected rights-of-way, the level of service 
provided can be similar to that of full Metrorail rapid transit; 2. where buses oper-
ate in combinations of exclusive rights-of-way, median reservations, bus lanes, and 
street running, the level of service provided is very similar to LRT; 3. where buses 
operate mainly on city streets in mixed traffic, the level of service provided is similar 
to a limited-stop tram/streetcar system.” In general, BRT operating in combinations 
of exclusive bus lane and mixed traffic is considered to be a transit mode between 
LRT and local bus.

BRT is now a major trend in the development of public transportation systems 
worldwide. In the U.S., several BRT systems are in service, such as in Eugene 
(Oregon), Los Angeles, and Cleveland, and there are also other BRT systems under 
construction, in development, or planned. According to a Federal Transit Admin-
istration’s study (2005), in areas with new BRT systems, about 24 to 33 percent of 
BRT ridership is new to transit. BRT ridership—and transit ridership forecasting in 
general—is an integral part of transportation planning. Realistic estimates of BRT 
ridership are essential for selecting and sizing facilities, preparing service plans, 
estimating capital and operating costs, qualifying benefits, and assessing cost-
effectiveness (TCRP 2006). TCRP (2006) implemented BRT ridership surveys for 20 
transit agencies in North America to ascertain how BRT was treated in their travel 
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demand forecasting. This study found many agencies considered BRT the same as 
LRT in their demand models, and only a few agencies treated BRT and local bus 
identically. It was also found that no transit agencies had built new specific BRT 
modes in their models for analyzing BRT in the study survey. 

The Santa Clara Valley Transportation Authority (VTA) intends to develop an 
integrated BRT network throughout Santa Clara County, California, to provide 
high quality service to the areas not served by LRT. VTA has developed the Santa 
Clara County BRT Strategic Plan (2009) in which different BRT alternatives, poten-
tial corridors, operating and infrastructure strategies were proposed. Near-term 
and long-term BRT corridors integrated with the existing transit system and road 
system within the county, including Caltrain, LRT, bus, and exclusive lanes with 
signal priority, will provide the community with more comprehensive and conve-
nient transit service. Future BRT ridership forecasting is one critical element for 
BRT planning. The current VTA countywide model does not include a BRT mode 
in the mode choice model. Based on the current structure of the VTA models, if 
BRT is considered the same as LRT, the forecast ridership may be overestimated. 
Conversely, if BRT is considered the same as a local bus, the forecast ridership may 
be underestimated. Given the anticipated need for the level of detail required in 
developing future BRT plans, it was necessary for the VTA to develop a refined 
mode choice model that included the mode of BRT.

The purpose of this study was to develop an enhanced mode choice model includ-
ing the mode of BRT into the VTA model so that the model can forecast future BRT 
ridership for the planning, development, and implementation of the BRT system 
in Santa Clara County. The model proposed in this study also is used for alterna-
tives analysis, prioritizing BRT corridors, analysis of new transit trips, and examining 
impacts to background local bus services. The “previous model” used in this paper 
represents the original VTA countywide model without applying the procedures 
of the BRT mode choice model developed in this study; the “improved model” 
represents the revised model using the new BRT mode choice model.

Previous VTA Model
VTA has developed and maintained a countywide travel demand model for at least 
a decade, which has been applied to various countywide transportation planning 
and engineering projects. The VTA model initially was structured to be consistent 
with the Metropolitan Transportation Commission (MTC) regional model, BAY-
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CAST (1997). MTC is the metropolitan planning organization (MPO) for the nine-
county San Francisco Bay area. The VTA countywide model is an enhanced version 
of the MTC nine-county regional model, with the addition of more traffic analysis 
zones (TAZs) and more detailed highway and transit network coding within Santa 
Clara County.  The MTC mode choice model also was enhanced for application in 
Santa Clara County and the greater modeling region. In the original MTC model, 
trips were first split into motorized modes and bicycle and walk-only modes. 
Motorized trips were then split into drive alone, shared ride 2, shared ride 3 plus, 
and transit. Last, transit trips were split into transit walk access versus transit auto 
access. All transit modes were treated identically in the MTC mode choice model, 
and the choice as to whether the trip used heavy rail, commuter rail, light rail, or 
express or local bus was dependent on the shortest time path. The enhancements 
from the MTC model to the VTA model included the implementation of a transit 
submode nest, allowing the models to estimate ridership on the different transit 
submodes of commuter rail, express bus, local bus, BART (heavy rail), and light 
rail as distinct choices based on relative costs and travel times that occur for each 
submode. The constants of the utility functions for commuter rail, express bus, 
local bus, BART (heavy rail), and light rail were calibrated based on the transit on-
board survey data and transit boarding data. With the inclusion of distinct transit 
submodes as choices in the model structure, it was possible to calibrate mode 
specific constants in the VTA mode choice models for each submode. Typically, 
submode specific constants capture the importance of modal attributes not typi-
cally included in the mode choice utility equations, such as reliability, passenger 
comfort, and safety. During base year calibration, for home-based work trips, the 
addition of transit submode constants improved the level of validation for each 
submode. Home-based work calibration results yielded a less negative constant on 
light rail, followed by heavy rail, commuter rail, local bus, and express bus, in that 
order. This implies that, all things being equal with respect to travel times and costs, 
there is a higher probability that a trip will use rail over bus. For the non-work pur-
poses, transit submodes behave in a much more generic manner, with only slight 
biases for rail in the home-based shop/other and home-based social recreational 
models. The exception in the non-work models was with the non-home-based trip 
purposes, as both heavy rail and light rail were shown to have less negative con-
stants as compared to commuter rail or bus modes. Figure 1 without the dashed 
line box shows the mode choice structure at the previous VTA model.
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Improved VTA Model
The BRT mode was added into the VTA mode choice model for developing the BRT 
ridership forecasts to support the Santa Clara County BRT strategic plan. Figure 
1 with the dashed line box of the BRT mode shows the mode choice structure of 
the improved VTA model. The important parameters used in the improved VTA 
mode choice model, i.e., BRT constants, were derived from the Transit Market 
Research Model (2007) developed for the VTA. This section addresses how the 
BRT mode was developed by applying the Transit Market Research Model into the 
VTA demand model while BRT was still in development and planned without any 
observed BRT operating data.  

Transit Market Research Model
VTA developed a transit market research project, implemented by Cambridge Sys-
tematics, Inc., to support the Comprehensive Operational Analysis (COA), a major 
service redesign plan for the entire VTA bus system that was implemented in Janu-
ary 2008. Transit market research is used to develop market segments based on 
travelers’ attitude towards everyday transportation experiences. The VTA transit 
market research project consisted of three distinct tasks: data collection, attitudi-
nal-based market segmentation modeling, and mode choice modeling. Data col-
lection included a stated-preference survey of 819 households throughout Santa 
Clara County. The survey collected attitudinal, demographic, and travel behavior 
data. The attitudinal-based market segmentation uses cluster analysis techniques 
to group individual travelers according to their attitudes toward transportation 
to identify market segments, and then expands the survey records to the entire 
population of Santa Clara County. 

The importance of Transit Market Research Model introduced here is because a 
new mode of travel—BRT—was estimated in the market research mode choice 
models. Market research-based mode choice models were developed with the data 
collected from the market research household travel surveys, specifically from four 
customized mode choice experiments. Four experiments in the surveys have differ-
ent values of time, costs, and amenities. Three transit service amenities to address 
packages of BRT and other transit modes include an electronic sign showing 
minutes until next train, distinctive-looking buses with comfortable interior, and 
well-lit, covered stations equipped with benches, maps, and guides. Because BRT 
was not in service currently, through attitudinal and stated preference surveys, the 
ridership of BRT likely transferred from current transit systems and potential new 
ridership from auto modes could be estimated by the market research-based mode 
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choice models. The market research-based mode choice models are multinomial 
logit models for work and non-work trip purposes. The results of the mode choice 
models, including the coefficients of different variables in the utility functions and 
the bias constants for each transit mode (rail, BRT, and bus) are shown in Table 1. 

Table 1. Market Research-Based Mode Choice Models

Categories Variables
Home-Based 

Work/University Non-Work

IVTT In-Vehicle Travel Time -0.0330 -0.0091

OVTT Walk time-Access/Egress -0.0650 -0.0233

Wait time <= 7 mins -0.0650 -0.0233

Wait time > 7 mins -0.0500 -0.0179

Drive-Access Time -0.0650 -0.0233

Transfer Time -0.0650 -0.0233

Cost Cost -0.0770 -0.0718

Attitudinal Factors Pro-environment 0.5750 -

Social Perception -0.2430 -0.5512

Travel Flexibility -0.1450 -

Social-Economic 
Variable

Workers/ Household -0.0630 -

Vehicle/ Household 0.0000 -0.0670

Age 18 to 24 1.5180 1.8589

Income < $25,000 1.0360 1.4565

Income $25,000 to $50,000 0.2520 -0.2244

Female -0.6210 -0.3754

Transit Amenities Amenities -Signs 0.2140 0.5281

Amenities -Buses 0.2930 0.0187

Amenities Stations 0.4220 0.5100

Modal Constants Drive Alone - base constant 0.0000 0.0000

LRT– constant 0.0000 -1.7593

BRT – constant -0.0340 -1.8115

Bus – constant -0.7810 -1.8025

Perform Measures Value of Time $25.37 $7.64

OVTT(wait time <= 7 mins) /IVTT 2.0 2.6

OVTT(wait time> 7 mins) /IVTT 1.5 2.0

Note: OVTT: out-vehicle travel time; IVTT: in-vehicle travel time 
Source:  Santa Clara Valley Transportation Authority, 2007.
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Translation of BRT Constants
Though the purpose of the market research project was to support the transit 
comprehensive operational analysis, and the market research-based mode choice 
models were not directly applied in the VTA demand model, the bias constants 
of BRT compared to (light) rail and bus can be applied to add the new BRT mode 
in the VTA demand model. Constant coefficients can be converted into bias time 
constants by dividing constant coefficient by in-vehicle time coefficient

where bm is bias time constant for mode m; cm is constant coefficient for mode m 
and civt is in-vehicle time coefficient in Market Research Model.  Bias time constants   
present the relative waiting time among different transit modes. For home-based 
work trips, the rail, BRT, and bus constants are 0, -0.034, and -0.781. Using Eq. (1), the 
bias time constants for rail, BRT, and bus are 0, -1.03 and -23.67 minutes, respectively. 
For non-work trips, the rail, BRT, and bus constants are -1.7593, -1.8115, and -1.8025. 
The bias time constants for rail, BRT, and bus converted to equivalent minutes of 
in-vehicle travel time are -193.33, -199.07 and -198.08 minutes, respectively. Due to 
home-based work passengers having a higher value of time at $25.37 compared to 
non-work passengers’ value of time at $7.64, potential BRT passengers from home-
based work trips consider BRT more like LRT, while non-work passengers consider 
BRT more like local bus. For home-based work passengers, BRT only provides one 
less minute travel time than light rail and 23 minutes travel time over local bus; for 
non-work passengers, BRT and local bus almost have no significant difference for 
equivalent time, -199.07 and -198.08 minutes. It was, therefore, assumed that BRT 
and local bus have the same bias time constants for non-work trips. 

Bias time constants derived from Transit Market Model were used to estimate the 
BRT constants in the VTA demand model. Table 2 shows the coefficients of utility 
functions of the previous VTA mode choice model without BRT constants. Because 
the BRT mode is considered to be service between that provided by light rail and 
local bus, BRT constants are calculated by the linear interpolation method using the 
light rail constants, local bus constants, and bias time constants obtained above. 

	
(2)

where ΔBRT is BRT constant; ΔLB is local bus constant; ΔLRT is LRT constants; bBRT is 
BRT bias time constant; bLB is local bus bias time constant; and bLRT is LRT bias time 
constant. 

	
(1)
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Table 2. VTA Mode Choice Models—Transit Walk Access

Variables

Home-
Based 
Work

Home-
Based 
Shop-
ping

Home-
Based 
Social/ 
Recre-
ation

Non-
Home 
Based

Home-
Based 
School 
(Grade 
School)

Home-
Based 
School 
(High 

School)

Home-
Based 
School 

(College)

BART  
(heavy rail)

-0.86301 1.14089 2.48260 4.74364 0.59115 1.11067 0.76854

Commuter 
Rail

-0.86301 1.02982 2.22221 3.57032 0.59115 1.11067 0.76854

Light Rail -0.96318 1.02982 2.22221 4.84000 0.59115 1.11067 0.76854

Express Bus -1.84149 1.02982 2.22221 3.57032 0.59115 1.11067 0.76854

Local Bus -1.70196 1.02982 2.22221 3.57032 0.59115 1.11067 0.76854

EMPD 0.546100

Zero VHHD 0.550100 3.2910

VHH -0.3352 -0.7475

PHH^3 0.004436

Rurali 1.544

Total Time -0.05815

IVT -0.033260 -0.02745 -0.03232 -0.05855 -0.03228 -0.02731

Wait -0.052330 -0.07836

Walk -0.093050 -0.07583

Transfer -0.033260

OVTT -0.06806 -0.06384 -0.03463 -0.03923

Cost -0.002067

LnCost -0.2262 -1.1600 -0.9862 -1.9300 -2.0340 -0.6920

Corej 2.3750 0.9694

LnAreaDen 0.3217

Net ResDen 0.1442

Value of Time $9.65 $6.58 $0.78 $1.08 $0.36 $0.23 $0.67

Ratio of 
Wait/IVTT

1.57 - - 2.42 - - -

Ratio of 
Wait/IVTT

2.80 - - 2.35 - - -

Note: EMPD: employment density; Zero VHHD: zero vehicle per household; VHH: vehicle per household; PHH: 
population per household; Rurali: rural in production zone; Corej: core zone (CBD) in attraction zone; LnAeraDen: 
natual log of area density; Net ResDen: net residential density.

Source: Santa Clara Valley Transportation Authority, Valley Transportation Plan 2035, 2009; Transit Cooperative 
Research Program Report, Appendices to TCRP Report 118, 2006; VTA Model
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Table 3 shows the results of BRT constants by applying Eq. (2). Estimated BRT con-
stant for home-base work is -0.99530, close to the light rail constant -0.96318. For 
home-based shopping, home-based social/recreation, home-based grade school, 
and home-based high school, light rail constant and local bus are considered as the 
same mode in VTA model, so that the estimated BRT constants are the same as 
light rail and local bus constants. For non-home-based trips, BRT constant is equal 
to local bus constant because BRT and local bus has the same bias time constant 
for non-work trips.

Table 3. BRT Constant Calculation

Variables

Home-
Based 
Work

Home-
Based 

Shopping

Home-
Based 
Social/ 

Recreation

Non-
Home 
Based

Home-
Based 
School 
(Grade 
School)

Home-
Based 
School 
(High 

School)

Home-
Based 
School 

(College)

Light Rail  
Constant ΔLRT  

-0.96318 1.02982 2.22221 4.84000 0.59115 1.11067 0.76854

Local Bus  
Constant ΔLB

-1.70196 1.02982 2.22221 3.57032 0.59115 1.11067 0.76854

Light Rail Bias  
Time bLRT

0 193.33 193.33 193.33 193.33 193.33 193.33

BRT Bias Time bBRT
1.03 198.08 198.08 198.08 198.08 198.08 198.08

Local Bus Bias  
Time bLB

23.69 198.08 198.08 198.08 198.08 198.08 198.08

Estimated BRT  
Constant ΔBRT  

-0.99530 1.02982 2.22221 3.57032 0.59115 1.11067 0.76854

BRT Strategic Plan
BRT ridership estimates for VTA’s BRT Strategic Plan were developed based on 
the results of the improved VTA model with the added BRT mode in the mode 
choice model. Eleven different BRT alternatives and operating and infrastructure 
strategies were proposed. Six potential BRT corridors were identified by the recent 
Comprehensive Operations Analysis and from VTA’s Long-Range Countywide 
Transportation Plan (Valley Transportation Plan 2035) (VTA 2009), and these 
included the Alum Rock, El Camino, King Road, Monterey Highway, Stevens Creek, 
and Sunnyvale-Cupertino BRT corridors, all shown in Figure 2. Six lines show the 
potential BRT corridors, which are not covered by the LRT. An assessment of new 
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BRT services was conducted on three corridors within the county as the most 
promising alignments for near-term BRT implementation. The three corridors 
included: 

Alum Rock—stretching from HP Pavilion to Eastridge Mall (6.9 miles) •	
and currently served by Rapid 522 (15-minute headways), Local Route 22 
(12-minute headways), and Local Route 23 (12-minute headways).

El Camino—stretching from Palo Alto Transit Center to HP Pavilion (16.6 •	
miles) and currently served by Rapid 522 (15-minute headways) and Local 
Route 22 (12-minute headways).

Stevens Creek—stretching from De Anza College to Downtown San Jose (8.6 •	
miles) and currently served by Local Route 23 (12-minute headways).

Rapid 522 has the same route alignment as Local Route 22 with less headway but 
longer stop spacing. In the previous model, all Rapid 522, Local Route 22, and Local 
Route 23 are considered as local bus mode. The operating plan in these three cor-
ridors is shown in Figure 3. 

Two new BRT services were proposed in these three corridors: BRT 522 to replace 
Rapid 522 and overlay on the Local Route 22, and BRT 523 to overlay and comple-
ment Local Route 23. Eleven operating plans were developed seeking to achieve 
enhanced transit market share in the corridor, while making transit more efficient 
and effective at serving riders. The No Project and 10 operating plans were pro-
posed based on different combinations of BRT and local bus service areas and 
headways. Note that:

(1) 	Option 6 considers BRT 522 and 523 modeled as an LRT mode using 
Option 4 as a base.

(2) 	BRT 522 in the No Project is the existing Rapid 522. The existing Rapid 522 
currently provides 15-minute headways and fewer bus stops than Local 
Route 22 and is considered as a local bus in the previous VTA model; 

(3) 	BRT would operate a premium service with 10-minute headways.

(4) 	Local Route 22 service would be fixed at 15-minutes, a slight reduction in 
service from existing 12-minute, and Local Route 23 service would have a 
variable headway (between 15-30 minutes) to be tested in various service 
scenarios to gauge its impact on demand. 
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It also was assumed that in order to claim the full BRT constant, the amount of 
capital infrastructure required to provide the travel time savings, through either 
dedicated lanes with signal priority, and vehicle and station passenger amenities 
must be accounted for in the BRT alternative definition and costs.

Table 4 shows the No Project and 11 operating plans by different operating com-
binations of BRT 522, Local Route 22, BRT 523, and Local Route 23 that were mod-
eled. Table 5 shows the 2030 boardings for the No Project and the 11 BRT operating 
plans. Option 6 has the highest boardings for the 522/523 BRT corridors at 91,769 
daily boardings, with VTA total transit system boardings of 409,859, because 
BRT was assumed to have the same constant as LRT in this option plan. Option 
4 modeled as a BRT mode results in 79,494 daily boardings for the 522/523 BRT 
corridors; this translates to a 15 percent decrease in BRT ridership if BRT is treated 
as a separate BRT mode and not the same as LRT. Option 4a with BRT modeled 
as a local bus mode results in 65,985 daily boardings for the 522/523 BRT corridor 
routes and 375,713 VTA total transit system boardings. This represents a 17 percent 
decrease in BRT ridership over the BRT constant model if BRT is treated as a local 
bus mode.

Table 4.  No Project and Eleven BRT Operating Plans

BRT Route 522 Local Route 22 BRT Route 523 Local Route 23

No Project Rapid, Palo Alto 
to Eastridge via 
Capitol (15-min 
headways)

Palo Alto to 
Eastridge via King 
Road (12-min 
headways)

N/A De Anza College 
to Alum Rock via 
Downtown (30-
min headways)

Option 1 Palo Alto to East-
ridge via Capitol 
(10-min headways)

Palo Alto to 
Eastridge via King 
Road (15-min 
headways)

Valley Fair/Santana 
Row to Eastridge via 
Downtown/Capitol 
(10-min headways)

De Anza Col-
lege to SJSU via 
Downtown (30-
min headways)

Option 2 Palo Alto to East-
ridge via Capitol 
(10-min headways)

Palo Alto to 
Eastridge via King 
Road (15-min 
headways)

Valley Fair/Santana 
Row to Eastridge via 
SJSU/Capitol (10-
min headways)

De Anza Col-
lege to SJSU via 
Downtown (30-
min headways)

Option 3a Palo Alto to SJSU 
via Downtown 
(10-min headways)

Palo Alto to 
Eastridge via King 
Road (15-min 
headways)

Valley Fair/Santana 
Row to Eastridge via 
Downtown/Capitol 
(10-min headways)

De Anza College 
to Alum Rock via 
Downtown (30-
min headways)
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Option 3b Palo Alto to SJSU 
via Downtown 
(10-min headways)

Palo Alto to 
Eastridge via King 
Road (15-min 
headways)

De Anza College 
to Eastridge via 
Downtown/Capitol 
(10-min headways)

De Anza College 
to Alum Rock via 
Downtown (30-
min headways)

Option 4 
(modeled 
as BRT)

Palo Alto to East-
ridge via Capitol 
(10-min headways)

Palo Alto to 
Eastridge via King 
Road (15-min 
headways)

De Anza College 
to Eastridge via 
Downtown/Capitol 
(10-min headways)

N/A

Option 4a* 
(modeled 
as Local 
Bus)

Palo Alto to East-
ridge via Capitol 
(10-min headways)

Palo Alto to 
Eastridge via King 
Road (15-min 
headways)

De Anza College 
to Eastridge via 
Downtown/Capitol 
(10-min headways)

N/A

Option 5 Palo Alto to East-
ridge via Capitol 
(10-min headways)

Palo Alto to 
Eastridge via King 
Road (15-min 
headways)

Valley Fair/Santana 
Row to Eastridge via 
Downtown/Capitol 
(10-min headways)

De Anza Col-
lege to SJSU via 
Downtown (30-
min headways)

Option 6** 
(modeled 
as LRT)

Palo Alto to East-
ridge via Capitol 
(10-min headways)

Palo Alto to 
Eastridge via King 
Road (15-min 
headways)

De Anza College 
to Eastridge via 
Downtown/Capitol 
(10-min headways)

N/A

Option 7 
(BRT 10-20)

Palo Alto to East-
ridge via Capitol 
(10-min headways)

Palo Alto to 
Eastridge via King 
Road (15-min 
headways)

De Anza College 
to Eastridge via 
Downtown/Capitol 
(10-min headways)

De Anza Col-
lege to SJSU via 
Downtown (20-
min headways)

Option 7a 
(BRT 10-15)

Palo Alto to East-
ridge via Capitol 
(10-min headways)

Palo Alto to 
Eastridge via King 
Road (15-min 
headways)

De Anza College 
to Eastridge via 
Downtown/Capitol 
(10-min headways)

De Anza Col-
lege to SJSU via 
Downtown (15-
min headways)

Option 7b 
(BRT 10-30)

Palo Alto to East-
ridge via Capitol 
(10-min headways)

Palo Alto to 
Eastridge via King 
Road (15-min 
headways)

De Anza College 
to Eastridge via 
Downtown/Capitol 
(10-min headways)

De Anza Col-
lege to SJSU via 
Downtown (30-
min headways)

Note:	 * Option 4a considers BRT 522 and 523 as Local Bus mode using Option 4 as the base. 
	 ** Option 6 considers BRT 522 and 523 as LRT mode using Option 4 as the base.

Table 4.  No Project and Eleven BRT Operating Plans (cont'd)
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The ultimate preferred BRT Option 7a has the second highest boardings for the 
522/523 BRT corridors at 83,577 daily boardings, with VTA total transit system 
boardings of 393,277, by using the BRT constants derived from Table 3 in the 
improved VTA model. Option 7a also would generate the second largest total new 
transit trips, including home-based work and non-work trips, as shown in Table 6. 
The potential new transit riders would be up to 36 percent of BRT ridership in the 
preferred operating plan Option 7a, which is a little higher than the 24 to 33 per-
cent from the FTA’s study of BRT systems currently in operation (Peak et al. 2005). 

The operating costs and capital costs for the 11 BRT operating plans are listed in 
Table 7. Detailed operating and capital cost analysis can be found in the VTA BRT 
Strategic Plan (2009). Without considering Option 6 (BRT treated as LRT mode), 
after demand, operating cost, and capital cost analysis, Option 7a was selected as 
the preferred BRT operating plan, which would generate the highest demand and 
the largest number of new riders, but include the highest operating costs as well. 
The operating and routing plan of Option 7a is shown in Figure 4.

Conclusions

A state-of-the-practice travel demand model with a new BRT mode included in 
the mode choice model was developed by the Santa Clara VTA and now is used 
in planning and design phases for countywide BRT projects. Instead of consider-
ing BRT the same as LRT or local bus, the BRT constants derived from the Market 
Research Model fall between LRT and local bus constants. The application of the 
BRT constants results in BRT ridership between ridership estimates prepared with 
BRT having a local bus constant and for BRT having a LRT constant, with a varia-
tion of approximately 15 percent higher or lower, depending on which constant 
BRT employed in the forecasts. The improved VTA model was expected to forecast 
more reasonable future BRT boardings, which were an important consideration in 
light of the relatively high capital and operating costs associated with BRT services. 
The potential new transit riders after BRT lines open would be up to 36 percent of 
BRT ridership in the preferred operating plan.

Future extensions of the present work might include developing a peer review of 
before-and-after BRT implementation studies and an evaluation of how actual 
ridership compares to forecasted ridership for areas implementing BRT, either 
through passenger counts or on-board surveys reflecting the situation at least 
one year after BRT lines opens. The Alum Rock segment of the BRT lines 522/523 
is currently in final design and scheduled for completion by 2013. The remainder 
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of the BRT 522 corridor along El Camino Real is scheduled for completion by 2015. 
Based on this schedule, it is expected that the VTA will be able to implement BRT 
in the county within three years, which will provide an opportunity to refine the 
BRT models in the relative near term and develop before and after studies of actual 
local experiences.

Table 7. Annual Operating and Maintenance Costs and Capital Costs  
for Eleven BRT Operating Plans

Annual Operating and 
Maintenance Cost Capital Cost

No Project - -

Option 1 $62,700,000 $412,200,000

Option 2 $62,600,000 $420,900,000

Option 3a $58,900,000 $417,900,000

Option 3b $64,600,000 $495,700,000

Option 4 $64,400,000 $490,000,000

Option 4a $64,400,000 $490,000,000

Option 5 $64,700,000 $412,200,000

Option 6 $64,400,000 $490,000,000

Option 7 (BRT 10-20) $70,400,000 $490,000,000

Option 7a (BRT 10-15) $72,300,000 $490,000,000

Option 7b (BRT 10-30) $68,400,000 $490,000,000

Option 7b (BRT 10-30) $68,400,000 $490,000,000

	 Source: VTA BRT Strategic Plan, 2009.
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Abstract

Articulated buses are being operated more frequently on popular bus routes, as they 
can handle higher passenger loads and increase rider comfort. Dwell and running 
times associated with articulated buses are expected to be different from regular 
low-floor buses. We use archived bus operation and passenger information from 
three heavily-used bus routes operated by the Société de Transport de Montréal, 
Canada, to measure these differences. Operation of articulated buses yielded to 
savings in dwell time, especially with high levels of passenger activity and the use of 
the third door in alighting. These savings were not reflected in running time, due to 
increases in the time associated with acceleration, deceleration, and merging with 
traffic. This study gives transit planners and operators important information on the 
differences in operating environments between regular and articulated buses.

Introduction
Articulated buses are being used more frequently on popular bus routes, as they 
can handle high volume passenger loads. Articulated buses can increase the speed 
of boarding and alighting at each stop, as well as reduce the number of buses 
needed on a route. Experts recommend the use of articulated buses as part of bus 
rapid transit (BRT) systems and express routes (Levinson et al. 2002). It is expected 
that the use of articulated buses in BRT systems will help attract more choice rid-
ers (Pahs et al. 2002). This is related to the expected improvements associated to 
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the use of this bus type, which include increases in the levels of comfort to exist-
ing users through more space on the bus per passenger and decreased dwell time 
(time associated to passenger activity) (Hemily and King 2008; Hemily 2008). To 
our knowledge, these benefits have not been quantified in terms of operational 
benefits to the transit agency or time savings to transit users. In Fall 2009, the 
Société de Transport de Montréal (STM), the transit provider on the Island of 
Montréal, introduced articulated buses on routes 69, 121, and 467 as a measure 
to improve bus services along these highly used routes. STM’s main goal with this 
action was to increase passenger satisfaction and attract new choice riders by 
reducing overcrowding along heavily-used routes. This study compares the effects 
of articulated buses to regular low-floor buses on dwell and running times using 
archived Automatic Vehicle Location (AVL) and Automatic Passenger Counters 
(APC) data. It gives transit planners and operators important information on the 
operating environment of articulated buses. This information can be used to adjust 
the schedules of bus transit routes where articulated buses operate.   

The paper begins with a literature review on the use of articulated buses and its 
expected effects. The next sections describe the data being used in the analysis and 
the methodology. These two sections are followed by a discussion of the model 
results and a conclusion and recommendation section.

Literature Review
Articulated buses frequently are used in BRT systems and heavily-used routes 
(Levinson et al. 2002; Jarzab et al. 2002). Articulated buses have an advantage over 
single-body low-floor buses because they can carry twice as many passengers 
during one trip (Kaneko et al. 2006). On high-capacity bus routes, articulated 
buses reduce staff and bus stock necessary to transport passengers (Smith and 
Hensher 1998). Compared to regular buses, articulated buses have higher loading 
speeds and can carry a higher passenger capacity (Levinson et al. 2002; Smith and 
Hensher 1998). In 2008, the Transit Cooperative Research Program (TCRP) pub-
lished a report on the use of high-capacity buses, including articulated buses. The 
report provided a synthesis of experiences by different transit agencies in North 
America. Most transit agencies reported that maintenance cost for high capacity 
buses was greater than regular buses. Meanwhile, fuel economy and acceleration 
performance was lower. Passengers enjoyed the additional comfort of larger buses 
due to more available seating and reductions in crowding. (Hemily and King 2008; 
Hemily 2008).
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The use of articulated buses is expected to have an effect on dwell and running 
time. The availability of archived AVL and APC data made it possible for vari-
ous transit agencies to improve scheduling, develop performance measures, and 
evaluate various operational strategies (Strathman et al. 2002; Strathman 2002; 
El-Geneidy et al. 2010; Berkow et al. 2009; Bertini and El-Geneidy 2003; El-Geneidy 
and Surprenant-Legault 2010).  These data were used by various researchers in gen-
erating statistical models to understand running time and dwell time (Bertini and 
El-Geneidy 2004; Dueker et al. 2004; Kimpel et al. 2005).  

Dwell time is the time associated to passenger activity at each stop, including door 
opening and door closing times. Most dwell time analyses attribute increased 
dwell time to increased passenger activity (Cundil and Watts 1973; Levine and 
Torng 1994; Vandebona and Richardson 1985). One study looked at the factors 
affecting dwell time using archived AVL and APC data  (Dueker et al. 2004). Dwell 
time is affected by passenger activity, which door is being used for this activity, 
the number of passengers paying with cash or change, stop sequence, and time of 
day (Kraft and Bergen 1974; Levinson 1983). Although the number of passengers 
using articulated buses is expected to be higher, due to the size of the bus and the 
nature of the routes being served by this bus type, the use of articulated buses is 
likely to have a negative effect on dwell time. The amount of time consumed per 
passenger is expected to decline with the use of articulated buses, due to the pres-
ence of a third door for alighting. However, dwells may not be significantly reduced 
if all boardings occur at the front door to pay a fare (Hemily and King 2008; Hemily 
2008). Levinson’s (1983) classical study estimated that each passenger boarding 
and alighting added 2.75 seconds to the constant dwell time of 5 seconds on any 
bus route. The height of the bus floor is expected to affect dwell time as well. Low-
floor buses can shorten dwells by 13-15 percent (Levine and Torng 1994). Dwell 
time accounts for 9 to 26 percent of total running time (Levinson 1983). Reducing 
dwells at bus stations is expected to reduce overall running time and can improve 
reliability and speed (Levine and Torng 1994). \

Reductions in running time make transit services more attractive to existing and 
potential users (Levinson 1983; Krizek and El-Geneidy 2007). Levinson (2001) 
mentions the use of articulated and low-floor buses as the vehicle design of the 
future. Different-sized buses should be used on varying bus routes; articulated 
buses should be used on high frequency routes (Levinson 2001) with high levels 
of demand. However, high frequency routes and high variations in dwell times 
at each station can also lead to bus bunching (Yabe 2005). Slack often is added 
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to improve bus on-time performance, but it adds to travel time (Daganzo 2009). 
Daganzo (2009) proposed having dynamic holding times based on AVL/APC data 
and many service points to maintain bus headways. The use of articulated buses on 
high frequency bus routes should be addressed in scheduling to avoid any decline 
in on-time performance and reliability of service.

Running time is known as the time that takes a bus to complete a trip between two 
defined points along a route (Ceder 2007). Shorter running times will make buses a 
more attractive mode choice. Running time models are used to understand exist-
ing transit performance in order to implement new operational strategies or adopt 
new technologies to improve services (Berkow et al. 2009; Bertini and El-Geneidy 
2004; Kimpel et al. 2004). Determinants of running time include trip distance, 
number of bus stops, passenger boardings and alightings, time of day, weather, 
congestion, departure delays and nonrecurring events (Abkowitz and Engelstein 
1983; Abkowitz and Tozzi 1987; Guenthner and Sinha 1983; Levinson 1983; Strath-
man et al. 2000; Tétreault and El-Geneidy 2010). The use of articulated buses is 
expected to have a mixed effect on running time. The first is a negative effect due 
to the likely decline in dwell times, and the second is a positive effect due to the 
size of the bus and the time associated to acceleration, deceleration, and merger 
with regular traffic. 

Case Study and Data
Montréal, Québec, is the second most populous metropolitan area in Canada, with 
3.7 million inhabitants. STM operates bus and subway services on the Island of 
Montréal, which is the home to about half of the region’s population. Four subway 
lines served by 759 cars and 192 bus routes served by 1,600 vehicles comprise the 
STM network, allowing for over a million trips per weekday. In 2008, STM started 
a series of improvements to its existing service as part of an overall plan targeting 
an increase of transit ridership by eight percent in five years. These improvements 
included increasing service hours along several routes, implementing express (lim-
ited stop) service, offering new bus routes, and purchasing low-floor buses with 
wide doors as well as articulated buses. In fall 2009, the new articulated buses were 
delivered and operating along three heavily-used bus transit routes on the Island of 
Montréal (Routes 69, 121, and 467). These routes are shown in Figure 1. The routes 
had both articulated and regular buses serving them. STM noticed a mixed effect 
from implementing articulated buses along these routes. These effects included 
increases in running time along some of the trips operated by articulated buses. 
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Accordingly, a comprehensive study was needed to understand the effects of 
articulated buses on transit operations, especially running time, to introduce some 
modifications to the existing schedules. 

Route 69 runs east-west along Boulevard Gouin and Boul. Henri Bourassa; it passes 
by one métro (subway) station at its midway point, as well as a commuter rail line. 
Route 121 runs east-west as well, along rue Côte-Vertu and rue Sauvé; and it con-
nects to two métro stations and two commuter rail lines. Route 467 is a limited 
stop service that runs north-south along Boul. St. Michel parallel to route 67. Both 
routes have a combined daily ridership of 42,000 passengers, and 20,000 of them 
board route 467.  Route 467 connects to two métro stations, one at its southern 
terminus and another at its midway point. The built form around these routes is 
mostly three-story triplexes mixed with some commercial buildings near major 
intersections. Table 1 includes a summary of route characteristics. The daily board-
ing figures are derived from APC sampling between January and March 2010.

Table 1. Physical characteristics of Routes 69, 121, and 467

Route 69 R121 Route 467

Direction E W E W N S

Length (km) 15.56 15.5 11.21 11.56 9.13 9.97

Number of stops 72 70 49 52 15 16

Daily boardings 28,000 36,000 20,000

Type of service Regular Regular Limited stop

Methodology
AVL and APC data use is widespread in transit research when changes in a service 
need to be measured or evaluated (Dueker et al. 2004; El-Geneidy et al. 2006; 
Kimpel et al. 2004; El-Geneidy and Surprenant-Legault 2010). As only 18 percent of 
STM’s buses are outfitted with AVL and APC systems, STM samples its routes at 
different moments to obtain a complete picture of its network. The data recorded 
at both the stop and the trip levels then can be used to adjust schedules or to 
generate performance measures. AVL and APC data were collected for a sample 
of trips serving the three bus routes between January 4 and March 15, 2010. The 
entries from AVL and APC systems include bus arrival and departure times at each 
stop along the route, as well as passenger activity. A total of 487,588 individual stop 
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records was obtained from this sample. These records were cleaned in order to 
remove incomplete trips, recording errors and layover times.

The objective of this paper is to measure the effects of operating articulated buses 
on dwell and running times along three bus routes operated by STM. The analysis is 
conducted at two levels of analysis; the first is the stop level (to measure the effects 
on dwell time), and the second is the trip level (to measure the effects on running 
time). Two datasets were generated after the data cleaning process was completed. 
The first dataset includes every stop with recorded passenger activity and a dwell 
time greater than five seconds. This dataset contains 253,260 records and will be 
used in the dwell time analysis. The second dataset is a trip-level data for routes 
69, 121, and 467. This dataset includes 9,235 records; 4,350 trips were made using 
articulated buses, and 4,885 trips were made using regular low-floor buses. 

The analysis includes two statistical models. Each model is concerned with a differ-
ent level of analysis. The first is a dwell time model, while the second is a running 
time model. Table 2 includes a list of variables included in the dwell time model. It 
is important to note that the first, last and second to last stops along every route 
were omitted, due to the presence of longer dwells. This can be related to layovers 
or early layovers that were observed along certain routes.

The dwell time model measures the effects of a number of variables, including 
boardings and alighting at each door, stop sequence, and passenger load on dwell 
time. Dummies are included to control for time of day and route. Weather condi-
tions are represented by the amount of snow cover in centimeters. The main policy 
variable, which is articulated bus, is included in the statistical model. In addition, 
an interaction variable is included, which is the total number of people alighting 
from a bus at a stop multiplied by the articulated dummy. This variable captures 
the effects of alightings from articulated buses on the dwell time. All the regular 
and articulated buses used are low-floor buses; accordingly, a low-floor dummy was 
excluded from this model.

In this model, it is expected that passenger activity will have a positive effect on 
dwell time. The square term is expected to be negative and statistically signifi-
cant. This negative sign associated with positive sign from the passenger activity 
variables indicates that the amount of time used by each additional passenger 
will be less than the time associated with passenger alighting or boarding before 
him (Berkow et al. 2009). The passenger activity is separated by a door to enable 
isolation of the effects of the third door. Alighting along door 3 is expected to be 
statistically significant with the lowest coefficients compared to the other two 
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Table 2. Stop-Level Analysis Variables

Variable Name Description

Dwell Time The time in seconds from when a bus arrives at a bus stop and leaves a 
bus stop.

Board1 Total number of passengers that boarded at door 1 at a single bus stop.

Board1^2 The square of the total number of passengers that board at door 1 at a 
single bus stop.

Alight1 Total number of passengers that alighted at door 1 at a single bus stop.

Alight1^2 The square of the total number of passengers that alighted at door 1 at a 
single bus stop.

Board2 Total number of passengers that boarded at door 2 during a single trip.

Board2^2 The square of the total number of passengers that boarded at door 2 dur-
ing a single trip.

Alight2 Total number of passengers that alighted at door 2 during a single trip.

Alight2^2 The square of the total number of passengers that alighted at door 2 dur-
ing a single trip.

Board3 Total number of passengers that boarded at door 3 during a single trip.

Board3^2 The square of the total number of passengers that board at door 3 during 
a single trip.

Alight3 Total number of passengers that alighted at door 3 during a single trip.

Alight3^2 The square of the total number of passengers that alighted at door 3 dur-
ing a single trip.

AM Peak A dummy variable that is equal to 1 if the trip took place between 6:30am 
and 9:30am.

PM Peak A dummy variable that is equal to 1 if the trip took place between 3:30pm 
and 6:30pm.

Midday A dummy variable that is equal to 1 if the trip took place between 9:30am 
and 3:30 pm.

Articulated A dummy variable that is equal to 1 if the bus is articulated.

R121 A dummy variable equal to one if the trip was made on bus route 121.

R467 A dummy variable equal to one if the trip was made on bus route 467.

Passenger Load The total number of passengers on a bus.

Snow Cover The amount of snow on the ground in centimeters on the day of the trip.

Alight Interaction The total number of passengers alighting at a single station on an articu-
lated bus.

Board Interaction The total number of passengers boarding at a single station on an articu-
lated bus.
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doors. Meanwhile, boardings from door 1 are expected to increase dwell time the 
most compared to the other doors. This is due to fare-box transactions. STM uses 
a smart card system that requires every passenger to attach his monthly pass or 
tickets to a reader for a couple of seconds. Boardings from the second and third 
doors are rare and occur only when buses are full and do not require fare collection. 
Since passengers normally board from door 1, boardings on articulated buses are 
not expected to decrease dwell times; however, alighting from articulated buses 
should be statistically significant and shorten dwell time. The interaction variable 
will show the influence of each passenger alighting from an articulated bus on dwell 
time. It is expected that this variable will have a statistically significant negative 
effect on dwell time. The articulated bus variable is expected to shorten dwell time; 
however, since we do control for the alightings through the interaction dummy, 
this effect might change in the model. Route 467 is expected to be slower in terms 
of dwell time since each stop along this route is a time point (the route is a limited 
stop service) and the schedule of this route was not adjusted after the implementa-
tion of the service. So buses are generally holding at stops when they arrive early. 
Doors usually are closed if a bus is holding at a stop, thus the hold is not included 
in the dwell time analysis so as not to skew the results. Regarding passenger loads, 
it is expected that higher loads will lead to shorter dwells. This expectation is 
derived from previous research concentrating on dwell time (Dueker et al. 2004). 
Finally, the amount of snow on the ground is expected to increase the amount of 
time associated to dwell time. This is due to the presence of slippery sidewalks that 
requires more caution from passengers. 

The second part of the analysis includes a run time model. This model is generated 
at the trip level. The trip-level analysis excludes data from the first and last stops 
in both directions to avoid the effects of layover time (Berkow et al. 2009). It was 
noticed through a detailed analysis of the studied routes that some drivers take 
their layovers at the stop before the last. Consequently, the trip is defined as depar-
ture from the first stop to departure from the third stop before the last. Passenger 
activity from the first and last stop and before the last stop were excluded because 
of higher risk of error for this variable due to a layover. 

A number of factors have an influence on running time. These can be divided into 
factors that do not fall under the control of the transit agency, such as congestion 
or weather, and those that can be controlled by the agency, such as route design 
and the driver behavior (Strathman and Hopper 1993). Nevertheless, operators 
still can account for uncontrollable factors through scheduling and “real-time cor-
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rective actions” (Strathman and Hopper 1993). The factors affecting running time 
include trip distance, passenger activity, number of stops made, period of the day, 
driver characteristics, delay at the beginning of a trip, weather conditions, bus type 
(articulated or low-floor) and congestion (Abkowitz and Engelstein 1983; Abkowitz 
and Tozzi 1987; Guenthner and Sinha 1983; Strathman et al. 2000; Levinson 1983; 
Strathman and Hopper 1993; El-Geneidy and Surprenant-Legault 2010).  Table 3 
lists the variables used in this analysis. 

In this model, running time is expected to increase with distance, passenger activ-
ity, peak hour trips, delay at the beginning at the trip, and adverse weather condi-
tions, which is measured by the amount of snow on the ground. Trips running along 
Route 467 are expected to be faster than the other routes since this is a limited stop 
service route. Attributes of articulated buses are expected to have mixed effects 
on running times. The third door that allows the passenger activity to be faster will 
reduce running time. Acceleration, deceleration, and merger time are expected to 
consume more time for articulated buses relative to regular buses, thus contribut-
ing to a longer running time (Hemily and King 2008; Hemily 2008). Accordingly, 
an interaction variable is added to the model. This variable is expected to show 
that articulated buses decrease overall running time. Meanwhile, the articulated 
dummy is expected to increase running time due to the effects of acceleration and 
deceleration. During the AM peak and the PM peak, Route 467 is operated along 
an exclusive bus way. Accordingly, isolating the effect of the exclusive bus way is 
a must, which is done through two dummy variables. In previous research, snow 
cover has shown to be a variable that lengthens running time (Tétreault and El-
Geneidy 2010). This variable is included to the model to control for adverse weather 
conditions and its effects on the operating environment.

Analysis
Table 4 includes summary statistics for the stop level data used in the dwell time 
model. The average dwells were 24.44 seconds for articulated buses and 24.41 sec-
onds for regular buses. This shows a minor difference in terms of the amount of 
time associated to dwells. The articulated buses have a lower standard deviation, 
indicating less variance when compared to the regular buses. This is a key reliability 
factor, making the predictability of dwell time for articulated buses higher than 
regular buses. The average loads and passenger activity on an articulated bus were 
higher; the average load on an articulated bus was 24.89 passengers, while the 
average load on a regular bus was 22.48 passengers. It is clear that the difference 
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Table 3.  Running Time Analysis Variables

Variables Descriptions

Running time The running time per trip in seconds, from the departure of the first stop 
before the designated trip to the departure from the last stop of the 
designated trip or segment.

Distance The length of the studied route in kilometers.

Articulated A dummy variable that equals to one if the trip observed is recorded uses 
an articulated bus.

Total Boardings The sum of boardings for each trip.

Total Alightings The sum of alightings for each trip.

R121 Dummy variable that equals to 1 if the trip observed is serving Route 121.

R467 Dummy variable that equals to 1 if the trip observed is serving Route 121.

Actual stops 
made

The number of actual stops that was actually made by the bus.

Delay Start The delay at the start of the route in seconds (leave time – scheduled 
time).

AM Peak A dummy variable for trips that took place between 6:30am to 9:30am.

PM Peak A dummy variable for trips that took place between 3:30pm and 6:30pm.

Midday A dummy variable for trips that took place between 9:30am and 3:30pm

AM Peak R467 A dummy variable for trips along Route 467 that used the exclusive bus 
way in AM peak.

PM Peak R467 A dummy variable for trips along route 467 that used the exclusive bus 
way in PM peak. 

Alight Interaction The total number of alightings on an articulated bus during a trip.

Board Interaction The total number of boarding on an articulated bus during a trip.

Snow Cover The amount of snow on the ground in centimeters.

A dummy variable equal to one if the trip was made on bus route 121.

R467 A dummy variable equal to one if the trip was made on bus route 467.

Passenger Load The total number of passengers on a bus.

Snow Cover The amount of snow on the ground in centimeters on the day of the trip.

Alight Interaction The total number of passengers alighting at a single station on an articu-
lated bus.

Board Interaction The total number of passengers boarding at a single station on an articu-
lated bus.
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in the number of boardings is minor between articulated and regular buses. The 
main advantage of using articulated buses is highlighted in the mean and standard 
deviation values associated to number of people alighting the bus from door 1 
and door 2. This value was 1.29 for alighting from door 1 and 1.61 from door 2 for 
regular buses and 1.05 and 1.02 for articulated buses. Alighting on articulated buses 
is split between 3 doors, instead of just two, which interferes less with boarding 
from door 1.

Table 4. Summary Statistics at the Stop Level

Articulated Buses Regular Buses

Mean Std. Deviation Mean Std. Deviation

Dwell Time 24.44 27.24 24.41 29.23

Board1 2.84 4.98 2.82 4.97

Alight1 1.05 1.63 1.29 2.06

Board2 0.002 0.08 0.01 0.15

Alight2 1.02 2.15 1.61 3.22

Board3 0.002 0.07 --- ---

Alight3 0.82 2.02 --- ---

Passenger Load 24.89 14.92 22.48 13.48

Number of Observations 123,859 129,401

 
For the running time, Table 5 includes a summary statistics of the key variables aggre-
gated at the trip level of analysis. The mean running time for trips using articulated 
buses was around 45.2 minutes, while for the regular buses it was around 43 min-
utes. This average leads to a difference of 2.2 minutes per trip. Observing the mean 
values, we can say that articulated buses are slower by around 2.2 minutes, on aver-
age, compared to regular buses. In addition, the standard deviation of running time 
for articulated buses is much higher than standard deviation of regular buses. The 
observation noticed in the decline in dwells is not reflected in the running time. This 
confirms the increase in running time that STM noticed along some trips operated 
by the articulated buses, but not for all trips. Total boardings and total alightings have 
increased along articulated buses, which were expected due to the added capacity. 
The increase was accompanied with increase in variation as well. Another variable 
that explains the increase in the variation of running time is the increase in the num-
ber of actual stops made. Finally, delay at start for articulated buses was much higher 
11.53 seconds compared to 6.2 seconds for regular buses.    
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Table 5.  Summary Statistics at the Trip Level

Articulated Buses Regular Buses

Mean Std. Deviation Mean Std. Deviation

Running Time in Seconds 2,712.43 647.88 2,580.85 592.28

Total Boardings 85.24 39.90 79.83 37.58

Total Alightings 85.95 38.92 80.77 37.11

Actual Stops Made 32.49 13.32 30.54 12.05

Delay Start 11.53 71.68 6.20 60.35

Number of Observations 4,350 4,885

 
To better understand the findings from Tables 4 and 5, a more detailed analysis 
of dwell and running times can help identifying determinants of time savings and 
observed changes. The following section includes dwell time as well as running 
time models. 

Dwells and Running Time Models
A linear regression model is developed using dwell time in seconds as the depen-
dent variable. Table 6 presents the results of the model. The t-statistics and the 
statistical significance are reported in the table along with the coefficients. This 
model explains 51 percent of the variation in dwell time. 

For the first person that boards at door 1, 4.6 seconds is added dwell time, but each 
additional person boarding at the first door will take 0.027 seconds less time. The 
more people that board a bus, the less time it takes per passenger to board. Board-
ing at the second and third doors only adds 2.19 and 2.33 seconds, respectively, to 
the model. It takes far less time to board at the second and third doors, because 
passengers do not need to scan their cards.  Alighting at the first door adds 2.74 
seconds, alighting at the second door adds 1.65 seconds, and alighting at the third 
door adds 1.01 seconds to dwell time. It is clear that the use of the third door leads 
to a decline in the contribution of each passenger alighting to the total dwell time. 
Policies encouraging the use of a third door for alighting should be emphasized 
to increase the benefits of using articulated buses. For all the squared values for 
boarding and alighting, each additional passenger adds less time to overall dwell 
time compared to the passenger ahead of him. 
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Table 6. Dwell Time Model

Variable Name Coefficient t-stat Stat. Sig.

Board1 4.05 206.20 0.00

Board1^2 -0.02 -47.60 0.00

Alight1 2.73 59.97 0.00

Alight1^2 -0.07 -15.82 0.00

Board2 2.19 5.17 0.00

Board2^2 -0.11 -2.35 0.01

Alight2 1.65 47.78 0.00

Alight2^2 -0.05 -30.96 0.00

Board3 2.33 1.81 0.07

Board3^2 -0.21 -1.34 0.18

Alight3 1.00 13.03 0.00

Alight3^2 -0.06 -15.68 0.00

AM Peak -1.37 -10.56 0.00

PM Peak -0.47 -3.71 0.00

Midday 0.24 2.15 0.03

Articulated 1.22 11.31 0.00

R121 0.61 6.01 0.00

R467 6.85 46.96 0.00

Passenger Load -0.12 -40.60 0.00

Snow Cover 0.02 1.78 0.07

*Alight Interaction -0.16 -5.54 0.00

**Board Interaction 0.28 14.87 0.00

Constant 10.89 69.72 0.00

R Square 0.51

N 253,260

Dependent Variable Dwell Time in Seconds

* Alight Interaction = Total Alightings * Articulated dummy 
** Board Interaction = Total Boardings * Articulated dummy

Dwells taking place during the morning and afternoon peak hours are gener-
ally faster compared to late evening and early morning dwells. A trip during the 
morning peak takes 1.31 seconds less, while trips during the evening peak take 
0.4 seconds less compared to late evening and early morning dwells. These lower 
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dwells have been attributed to more routine passengers and directional traffic 
during morning routes (Dueker et al. 2004). A bus serving Route 121 consumes 0.6 
seconds more per dwell compared to Route 69. However, dwell time is 6.8 seconds 
more on Route 467, compared to Route 69. This is because Route 467 is an express 
route and has 15 stops, but the schedule has not been changed since Route 467 was 
implemented and an exclusive bus-way was introduced. Drivers have excess time 
in the schedules, leaving more time at every stop. Moreover, the drivers have pres-
sure to stay on schedule, compared to the other routes. An interesting finding is 
that increasing passenger loads lead to decreases in dwell times. This can be related 
to riders’ behavior and their reaction to overcrowded buses. Previous research 
indicated a similar relationship with higher loads (Dueker et al. 2004). Snow on the 
ground showed statistical significance, but added only 0.02 seconds to dwells.

An articulated bus adds 1.22 seconds to the dwell time. However, the interaction 
variable, which looks at passenger alighting on an articulated bus, reveals that 
increased alighting on an articulated bus, compared to a regular bus, actually 
reduces dwell time by 0.15 seconds per passenger. Finally, the boarding interaction 
variable shows a positive and statistically significant effect on dwell time, which 
means that boarding on articulated buses increases dwell time. Accordingly, the 
articulated buses cause both increases and decreases in running time, which was 
hypothesized earlier. It is necessary to have a more precise estimate of the addi-
tional time required by articulated buses to run a complete route. This estimate 
should be used to adjust schedules in order to address the net effect of using 
articulated buses. Table 7 shows the output of a linear regression model using run-
ning time as the dependent variable.

This model explains 92 percent of the variation in running time. This high value 
is attributed mainly to the inclusion of the distance variable.  For every meter in 
the route length, running time is expected to increase by 0.14 seconds, keeping all 
other variables at their mean values. This coefficient indicates an average speed of 
25 km/h. 

An articulated bus adds an additional 27.2 seconds to the total running time. This 
addition will require modification to the existing schedules to avoid delays and on-
time performance problems. Each boarding adds 1.91 seconds and each alighting 
adds 1.04 seconds to the total running time while keeping all other variables at their 
mean values.  Boarding on an articulated bus, which is represented by the Board 
Interaction variable, adds 0.81 seconds to running time. The Alight Interaction 
variable, which shows alighting activity on articulated buses, demonstrates that 
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Table 7. Running Time Model

Variable Name Coefficient t-stat Stat. Sig.

Distance 0.14 15.69 0.00

Articulated 27.22 3.09 0.00

Total Boardings 1.91 8.45 0.00

Total Alightings 1.04 4.42 0.00

R121 70.81 1.89 0.06

R467 -305.34 -5.60 0.00

Actual Stops Made 8.30 19.13 0.00

Delay Start -0.36 -13.18 0.00

AM Peak 142.34 22.15 0.00

PM Peak 307.69 46.92 0.00

Midday 202.57 36.43 0.00

Alight Interaction -0.58 -2.03 0.04

Board Interaction 0.81 2.91 0.00

AM Peak R467 160.03 13.02 0.00

PM Peak R467 -66.69 -6.24 0.00

Snow Cover 2.90 4.94 0.00

Constant 217.25 1.55 0.12

R square 0.92

N 9,235

* Alight Interaction = Total Alightings * Articulated dummy 
** Board Interaction = Total Boardings * Articulated dummy	

running time is reduced by 0.81 seconds for every passenger that alights from an 
articulated bus. Route 121 is faster than route 69 by 70 seconds per trip. Meanwhile, 
Route 467 is faster by 306 seconds relative to route 67. This is due to the nature of 
Route 467 as an express route. During the morning peak, Route 467 has its own 
exclusive bus-way, yet buses operating along this route during this period of time 
are slower by 160 seconds. On the other hand, the exclusive bus-way decreases 
running time by 66 seconds. This can be due to the difference in the levels of con-
gestion during both periods. In addition, for every stop made along the studied 
routes, 8.30 seconds are added to the running time, which can be attributed to 
accelerating and decelerating at each stop. For every second of delay at the begin-
ning of a trip running time is expected to decrease by 0.36 seconds. This indicates a 
recovery of 36 percent of delay by drivers during the trip. This finding is consistent 
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with previous studies (El-Geneidy and Surprenant-Legault 2010; Tétreault and El-
Geneidy 2010). In addition, morning peak trips are longer by 142 seconds, evening 
trips are longer by 307 seconds, while midday trips are slower by 202 seconds rela-
tive to early am and late evening trips. Finally, for every centimeter of snow on the 
ground, running time is expected to increase by 2.9 seconds per trip.

It is clear that the effects of operating an articulated bus on dwell and running times 
are complicated and cannot be isolated using a single variable. In order to under-
stand these effects, a sensitivity analysis is introduced in the following section. This 
sensitivity analysis depends on multiplying the coefficients by the mean values to 
obtain the dwell and running times under various scenarios and conditions. 

Sensitivity Analysis
The dwells for each scenario is estimated based on the model presented in Table 6. 
The scenarios for the dwell time estimates are presented in Table 8. Each simulation 
has a constant passenger load of 30 passengers. The estimate also is constructed for 
morning peak on Route 69. In the first scenario, the total passenger activity equals 
20 passengers. These passengers are distributed as 5 boarding and 15 alighting. Dis-
tributing the 15 alighting among the three doors in articulated buses compared to 
two doors in the regular bus leads to 1.9 percent time saving. Meanwhile, passenger 
activity of 30 passengers at a stop leads to 4.5 percent of savings in dwell time when 
utilizing an articulated bus relative to a regular low-floor bus. 

Table 8.  Simulation of Dwell Gime at a Stop on Route 67  
during AM Peak Hours

Variable Name

20 Passengers 30 Passengers

Articulated Regular Articulated Regular

Boarding Door 1 5 5 5 5

Alighting Door 1 8 8 10 15

Boarding Door 2

Alighting Door 2 3 7 10 10

Boarding Door 3

Alighting Door 3 4 5

Passenger Load 30 30 30 30

Dwell Time in Seconds 50.55 51.53 58.6 61.37

Percentage of Savings 1.9 4.5
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For each simulation, the number of passenger boarding and alighting at each door, 
boarding and alighting squared, the passenger load and stop sequence are multi-
plied by the coefficients from Table 6 to calculate the total dwell time per trip. The 
results indicate that articulated buses save more time per stop, especially with high 
levels of passenger activity. 

The running time simulation uses the model presented in Table 7 to estimate the 
total travel time for one trip along Route 121 during the morning peak. The pas-
senger load, actual stops, and passenger activity remain constant for each example. 
Meanwhile, the distance traveled is 11.21 km, which is the actual length of Route 
121. The simulation results are presented in Table 9. It takes an articulated bus 39.3 
seconds longer to complete a trip with 120 passengers boarding and alighting, 
compared to a regular bus. This is while having 30 passengers on board on average, 
serving 30 stops along the route, and starting 8 seconds late.

Table 9.  Simulation of Running Time on Route 121 during AM Peak Hours

Variable Name

120 Passengers 80 Passengers

Articulated Regular Articulated Regular

Total Boarding 120 120 60 60

Total Alighting 120 120 60 60

Mean Passenger Load 25 25 25 25

Number of Actual Stops 30 30 30 30

Delay at Start 8 8 8 8

Total Travel Time in Minutes 44.7 43.82 41.56 40.87

Difference in Seconds 39.00 41.2

The second scenario uses 60 passengers as the input for passenger activity. Again, 
the articulated bus is slower by 41.26 seconds. Observing Tables 8 and 9 clearly 
indicates that articulated buses do save time at the stop level of analysis, yet the 
savings vanish when measured at the trip level. This can be attributed mainly to 
acceleration and deceleration time associated to articulated buses. Also, it can be 
related to the time an articulated bus consumes to merge back with traffic. This 
difference decreases with the increase in the total number of passengers using the 
articulated buses. In conclusion, adopting the use of articulated buses requires 
modifications in the existing schedules to address the additional time needed for 
operation to avoid delays and on-time performance issues, especially if the articu-
lated buses are introduced along routes with medium levels of passenger activity 
per trip. The estimated numbers in this scenario are developed at the mean value. 
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Since schedules are written to accommodate 95 percent of all trips, adjustments 
need to be made to these estimations. 

Building the relationship between the 95th percentile of running time and the 
estimated running time in the above scenario, it is estimated that two additional 
minutes need to be added to the scheduled running time. These two minutes need 
to be added to each trip serving the above route, if STM chose to keep operating 
articulated buses along this route at the same level of service. The TCRP report 
cited that one of the agencies in their study needed to a lot more time for articu-
lated buses due to their slower acceleration (Hemily and King 2008; Hemily 2008).  
An addition of two minutes per trip will require major modifications in schedules 
as well as addition of new trips. Using Vuchic’s (2005) model for estimating fleet 
size for a bus transit route with a uniform headway (5 minutes) and a constant 
travel cycle (120 minutes), it is estimated that 24 buses will be needed to operate 
this route, while an additional bus is needed if articulated buses will be operated 
along this route to maintain the same level of service. This calculation can be done 
for different time periods with varying headways to determine the added opera-
tional costs of using articulated buses. A different option is to adjust the schedules 
through increasing the existing headways and using fewer buses. This solution is 
expected to have an increase in passenger waiting time. TCRP reports on transit 
agencies implementing measures improve dwell times of articulated buses. These 
measures include operating articulated buses exclusively on a route to simplify 
scheduling and developing new fare collection procedures. The fare collection 
procedures included allowing passengers to use all three doors for boarding in 
order to take full advantage of increased passenger flow that articulated buses can 
facilitate(Hemily and King 2008; Hemily 2008). 

Finally, another alternative is work on the mechanics of the articulated buses to 
decrease acceleration and deceleration time through adjustment in transmission 
systems of articulated buses. STM currently is conducting mechanical studies to 
measure the differences in acceleration and deceleration time between articulated 
and regular buses. Various mechanical changes are being tested to the transmission 
of both types of buses to account for some of these differences in travel time. 
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Conclusion 
The objective of this research was to measure the effects of operating articulated 
buses along three bus routes operated by STM in Montréal Canada. The effects 
of using articulated buses was measured at two levels:  the stop level and the trip 
level. The stop level analysis concentrated mainly on dwell time saving. It was clear 
that articulated buses do have a mixed effect on dwell time, yet overall, articulated 
buses decrease the amount of time associated per passenger alighting leading to 
major time saving at the stop level. These savings are maximized with higher levels 
of passenger activity (4.5% savings for 30 passengers). Meanwhile, articulated buses 
do cause delays at the trip level. So the amount of savings associated to passen-
ger activity is offset by the loss in acceleration, deceleration, and time consumed 
to merge back in the regular traffic. Articulated buses impose an additional two 
minutes of delay on the existing schedule of the studied routes.  To maintain the 
existing headway, these two minutes need to be added to the schedules. Accord-
ingly, more buses are needed to operate the existing system with articulated buses 
while keeping the same level of service. STM has achieved one of its main targets 
through operating the articulated buses. The increase in the number of boardings 
on articulated buses compared to regular buses was around 5 passengers per trip. 
Although this number is small, the studied routes suffered from overcrowding. 
The use of articulated buses has lead to an increase in the level of comfort and has 
helped in attracting five new passengers per trip.

STM currently is implementing some tests for mechanical modifications in the 
transmission system of articulated buses. These modifications are expected to 
improve the speed of articulated buses. Driver experience plays a big role in run-
ning time and bus operations. A detailed study concentrating on differences in 
driver behavior is recommended to measure to what extent driver fear of collision 
or comfort in operating articulated buses is recommended. Such study will require 
simulator systems and on-board driver behavior monitoring systems.      

Since the data obtained from the STM was collected from a sample of trips, it was 
not possible to measure the effects of using articulated service on either the reli-
ability of service or on headways. It was clear that variation in dwell time declined 
while variation in running time increased. The use of articulated buses is expected 
to increase the level of bus bunching, which is noticed from the increase in the 
level of variation in running time. A headway variability analysis is recommended 
using actual headwaysTo do so, the entire fleet serving these routes will need to 
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have AVL and APC systems, which is something that STM is trying to achieve in 
the next few years. 
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Abstract

The National Transit Database (NTD) includes comprehensive data on transit orga-
nization characteristics, vehicle fleet characteristics, revenues and subsidies, operat-
ing and maintenance costs, vehicle fleet reliability and inventory, services consumed 
and supplied, and safety and security. Some of these data have been used extensively 
to derive values for transit performance measures and have become the sole source 
of standardized and comprehensive data for use by all constituencies of the U.S. 
transit industry. An important application of NTD data has been in trend analysis, 
which requires multiple years of data. However, accessing NTD data, especially for 
multiple years, has not been an easy process. One reason is because the data were 
collected and distributed annually in separate files. This paper introduces a web-
based system that integrates over 20 years of NTD data and provides user-friendly 
tools designed to facilitate the access and analysis of transit performance data.

Introduction
Performance analysis can help transit agencies to more objectively evaluate the 
performance of their systems, thus allowing them to better identify and prioritize 
problem areas for management actions (Gan et al. 2004). Whether a system is to 
be analyzed by looking at its performance trends over the years or by comparing 
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its performances with those of other peer systems, a pre-requisite to these analy-
ses is that the required data be available. In the United States, the National Transit 
Database (NTD) is increasingly being used for this performance analysis. Collected 
and distributed by the Federal Transit Administration (FTA), NTD has become the 
sole source of standardized and comprehensive data for use by all constituencies of 
the U.S. transit industry (Lyons and Fleischman 1991). NTD includes data on transit 
organization characteristics, vehicle fleet characteristics, revenues and subsidies, 
operating and maintenance costs, vehicle fleet reliability and inventory, services 
consumed and supplied, and safety and security. These data not only provide 
direct information on the transit systems, but can also be used to derive values for 
many useful performance measures such as farebox recovery, operating expense 
per passenger trip served, average speed, etc.

While the majority of the NTD data collected are made available by FTA to the 
public, access to these data was not easy. This can be attributed to four limita-
tions:

NTD data are collected and distributed annually in separate files. To perform 1.	
a trend analysis for a specific performance measure, one must learn about 
the file structures, which can vary from one year to another, identify the 
correct variables from the long list of NTD variables, and manually extract 
the corresponding data values from the specific files for each of the selected 
transit systems. For a 10-year trend analysis, for example, this process must 
be repeated 9 times. The process not only is time-consuming, but also is 
prone to human errors. 

NTD data are reported and provided in the most original form while many 2.	
performance measures must be calculated from the origin data. For example, 
average speed can be estimated by dividing the total actual revenue miles 
by the total actual revenue hours. The calculation will become more com-
plicated and time-consuming with when a performance measure involves 
more than two variables, especially when these variables come from differ-
ent NTD forms and thus, different files. In addition, the burden is also on 
the users to be knowledgeable about the correct formula to use and the 
correct variables to select from the files (Gan et al. 2002).

Many NTD variables are reported for individual transit modes and service 3.	
types (i.e., directly operated or purchased transportation), making it difficult 
to compare transit performance for the entire agency or state. For example, 
an analyst may want to know the performance of a transit system without 
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differentiating between transit vehicles operated directly by the agency 
itself or by a subcontractor. Similarly, a state official may be interested in 
statewide transit performance in addition to those of individual transit 
agencies. Aggregating data is a very time-consuming process, and the user 
is burdened with using the correct methods of aggregation and selecting 
the correct variables to use.

There was no system that could provide the tools necessary to quickly select 4.	
the input data and to perform analysis using these data.

This paper describes a web-based system designed to overcome these limitations. 
It allows the user to focus on the analysis rather than the data preparation and data 
access. The system is known as the Integrated National Transit Database Analysis 
System (INTDAS) and is a component program of the Florida Transit Information 
System (FTIS). The specific development efforts of the INTDAS system involve (1) 
integrating the NTD data from multiple years to form a single database that allows 
single access to multiple-year data, (2) developing a set of major performance 
measures from NTD, (3) aggregating agency-wide and statewide NTD performance 
data, and (4) developing a user-friendly interface and analysis tools for easy data 
access and analysis. The remainder of this paper elaborates each of these efforts.

Data Integration
As listed in Table 1, the latest NTD data are reported on a set of 21 standard forms 
covering 7 different reporting areas, referred to as modules in NTD. Among these 
forms, Forms B-10, B-20, B-30, F-10, F-20, and F-40 are reported for the entire transit 
agencies, while the other forms are reported for individual transit modes (motor-
bus, heavy rail, etc.) and/or service types. A service type can be either DO (directly 
operated), if the service is operated in-house by the transit agency itself, or PT (pur-
chased transportation), if the service is subcontracted out to a service provider(s). 
When a service is subcontracted out, the NTD data may be reported either by the 
transit agency or by the subcontractor(s).
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Table 1. NTD Reporting Forms

Module Name Form Name Form Title Description

Basic Information B-10 Transit Agency Identification

B-20 Transit Agency Contacts

B-30 Contractual Relationship

Financial F-10 Sources of Funds—Funds Expended and Funds Earned

F-20 Uses of Capital

F-30 Operating Expenses

F-40 Operating Expenses Summary

Asset A-10 Stations and Maintenance Facilities

A-20 Transit Way Mileage

A-30 Revenue Vehicle Inventory

Service S-10 Transit Agency Service

S-20 Fixed Guideway Segments

Resource R-10 Employees

R-20 Maintenance Performance

R-30 Energy Consumption

Federal Funding 
Allocation Statistics 

FFA-10 Federal Funding Allocation Statistics 

Safety and Security SS-10 Safety and Security Setup

SS-20 Ridership Activity

SS-30 Safety Configuration

SS-40 Major Incident Reporting

Non-Major Incident Reporting

From the perspective of database structure, NTD variables generally can be divided 
into two categories. The first involves variables that are used to identify the transit 
agencies and the transit systems (or modes) that they operate. These are herein 
referred to as the system variables. They include a unique four-digit ID that is used 
to identify a transit agency, a mode code, and a service type. The second category 
of variables consists of over 1,000 data attributes that are used to describe the vari-
ous characteristics associated with each transit agency. They include such variables 
as service area population, unlinked passenger trips, operating expenses, etc.

Because NTD data are stored and distributed annually on different data files, the 
first step in the database development process was to combine these data files 
from different years for each form. Because multiple years of NTD data were inte-
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grated into a single data table, a fourth system variable must be added to every 
data record to identify the corresponding NTD data year. Combining data from dif-
ferent years was a major undertaking mainly because the NTD data have continued 
to evolve over the years, resulting in inconsistent data variables and file structures 
from year to year. These data must be reconciled before they could be combined. 

Changes to the NTD data over the years have included NTD reporting forms that 
were added, dropped, combined, or restructured. In general, data were reconciled 
to match the latest version of the NTD forms. The reconciliation process included 
rearranging variables from different years, combining variables from multiple 
forms, moving variable from one form to another, standardizing inconsistent mode 
codes used in various years, standardizing measurement units, etc. Once the data 
from different years were reconciled and integrated, they were imported into a 
SQL Server database. The current database includes NTD data from 1984 through 
2009 for most of the NTD forms and represents the most comprehensive database 
available for NTD data.

Performance Measure Development
After the NTD data were integrated, performance measures could be developed 
from these data. Below is a list of 20 commonly-used performance measures that 
are included in INTDAS (CUTR 2000): 

Average Age of Fleet. This is a service quality measure based on the age of 1.	
the vehicle fleet. It is derived by first multiplying the total number of active 
vehicles of each fleet of the same mode code and service type with their years 
in service (i.e., NTD reporting year subtracted by the year of manufacture), 
then summing up the totals from all fleets. The final number is then obtained 
by dividing this sum by the number of total active vehicles in all fleets. All 
of the variables involved in the calculations come from Form A-30.

Average Fare. This is an indicator of the average level of fare charged to tran-2.	
sit riders and is calculated as the passenger fare revenues from Form F-10 
divided by the total number of unlinked passenger trips from Form S-10.

Average Speed. This is the average speed of vehicles in revenue service opera-3.	
tion (i.e., not including travel to and from the garage or any other deadhead) 
and is calculated by dividing the total actual vehicle (for non-rail modes) or 
train (for rail modes) revenue miles by the total actual vehicle/train revenue 
hours. Both of the variables come from Form S-10.
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Average Headway (in minutes). This is an important measure of service 4.	
frequency. It is computed by first dividing the total directional route mile-
age from Form S-10 by the system’s calculated average speed, as defined 
above, to obtain an estimate of the number of hours it takes to traverse 
the entire system's total route miles. This time (in hours) is then divided by 
the system's average weekday total vehicles from Form S-10 to determine 
the amount of time in hours it takes for a vehicle to complete its portion 
of the total route miles, one time. The resulting time is then multiplied by 
60 for conversion from hours to minutes.

Average Trip Length. This is the average trip length for all passenger boardings 5.	
and is calculated as the total passenger miles divided by the total unlinked 
passenger trips. Both variables come from Form S-10.

Farebox Recovery. This is an indicator of the share of the total operating 6.	
costs that is covered by the passenger fares. It is calculated by dividing the 
passenger fare revenues from Form F-10 by the total modal (operating) 
expenses from Form F-30. The resulting number is multiplied by 100 to 
express the share as a percent.

Operating Expense per Peak Vehicle. This is a measure of the resources 7.	
required per vehicle to have one vehicle in operation for a year. It is calcu-
lated as the total modal expenses from Form F-30 divided by the number of 
vehicles operated in maximum service (i.e., peak vehicle) from Form S-10.

Operating Expense per Passenger Trip. This is a key indicator of the cost 8.	
efficiency of transporting riders and is calculated as the total modal expenses 
from Form F-30 divided by the total unlinked passenger trips from Form 
S-10.

Operating Expense per Revenue Hour. This is a measure of the cost efficiency 9.	
with which service is delivered. It is calculated as the total modal expenses 
from Form F-30 divided by the total actual vehicle or train revenue hours 
from Form S-10.

Operating Revenue per Operating Expense. This is a measure of how much 10.	
the total operating expenses are covered by the total operating revenues, 
which include both directly generated fare and non-fare revenues. It is 
calculated as the ratio of the total operating revenue (including passenger 
fares, special transit fares, school bus service revenues, freight tariffs, char-
ter service revenues, auxiliary transportation revenues, subsidy from other 
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sectors of operations, and non transportation revenues) reported in Form 
F-10 and the total modal expenses from Form F-30.

Passenger Trips Per Service Area Capita. This is a measure of the extent to 11.	
which the public utilizes transit in a given service area and is calculated by 
dividing the unlinked passenger trips from Form S-10 with the total popula-
tion living in the transit service area from Form B-10. The total service area 
population is usually taken as the sum of all population living within 0.75 
mile of transit routes. However, because the number is reported for all modes 
operated by an agency, agencies that operate a demand response mode in a 
county may report the entire county population, making the measure dif-
ficult to compare across different modes and/or agencies. Accordingly, this 
measure should only be applied within an agency for comparisons across 
different years, i.e., trend analysis.

Passenger Trips per Revenue Hour. This is a key indicator of service effective-12.	
ness that is influenced by the levels of demand and the supply of service 
provided and is calculated by dividing the total unlinked passenger trips 
from Form S-10 with the total actual vehicle or train revenue hours, also 
from Form S-10.

Revenue Miles per Vehicle Mile. This is a measure that reflects how much 13.	
of the total vehicle operation is in passenger service. It is calculated as the 
total actual revenue in vehicle/train miles divided by the total actual vehicle 
or train miles. All variables come from Form S-10.

Revenue Miles between Failures. This is an indicator of the average frequency 14.	
of delays due to a problem with the equipment and is calculated as the total 
actual vehicle or train revenue miles from Form S-10 divided by the total 
revenue vehicle system failures from Form R-20.

Revenue Miles per (Total) Vehicle. This is measure of the level of vehicle 15.	
utilization in terms of total revenue miles driven. It is calculated as the total 
actual vehicle or train revenue miles divided by the total vehicles available 
for maximum service. All variables come from Form S-10.

Revenue House per (Total) Vehicle. This is a measure of the level of vehicle 16.	
utilization in terms of total revenue hours driven. It is calculated as the total 
actual vehicle or train revenue hours divided by the total vehicles available 
for maximum service. All variables come from Form S-10.
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Revenue Hours per Employee. This is a measure of the overall labor produc-17.	
tivity and is calculated as the ratio of the total actual vehicle/train revenue 
hours of service from Form S-10 and the total full-time employees from 
Form R-10.

Spare Ratio. This is an indicator of the level of spare vehicles available for 18.	
service. It is calculated as the difference between vehicles operated in maxi-
mum service and vehicles available for maximum service, divided by vehicles 
operated in maximum service. Both variables come from Form S-10.

Vehicle Miles per Gallon or Kilowatt-Hour. This is an efficiency measure of 19.	
energy utilization and is calculated as the total actual vehicle or train miles 
from Form S-10 divided by the total gallons or kilowatt-hour consumed 
from Form R-30.

Weekday Span of Service. This measure reports the number of hours that 20.	
transit service is provided on a representative weekday. It is determined by 
calculating the number of hours between the average weekday time service 
begins and time service ends reported on Form S-10.

The values for these performance measures are pre-calculated and stored in the 
system, and can be quickly retrieved by the users for performance analysis.

Aggregated Performance Measures
Performance analysis does not necessarily have to be performed at the transit 
system level. Measures also can be compared at the state, regional, national, or any 
other geographic level of interest. For example, a state Department of Transporta-
tion (DOT) may be interested in comparing its statewide performance with the 
other peer states. For such comparisons, data collected at the transit system level 
must be aggregated to the specific level of interest. The system currently provides 
the aggregated performance measures for: (1) both service types combined, (2) all 
modes combined, (3) all rail modes combined, (4) all non-rail modes combined, (5) 
all fixed-route modes combined, (6) all transit systems within a state combined (i.e., 
statewide), and (6) all combinations of the above aggregates.

For illustration purposes, assume that a transit agency operates two modes, A and 
B. If a performance measure involves two variables, V1 and V2, and the formula 
for the performance measure calculation is V1/ V2, the aggregated value for both 
modes will be calculated as (V1A + V1B) / (V2A + V2B). It is obvious that one major 
issue with such aggregation has to do with the treatment for missing and incorrect 
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values. A missing or incorrect value for one of the transit systems involved in the 
aggregation will have a direct impact on the final aggregated value. 

In the case of a missing value, no aggregated values will be calculated when there 
is a missing value. This rule is applied on the basis that it is better to provide no 
data than to provide inaccurate or wrong data. A missing value simply could be 
because the number was not reported by the agency, or the agency is not required 
to report for a specific mode or service type. For example, for Revenue Hours per 
Employee, the measure is not calculated for the combined service types (i.e., DO 
+ PT) because reporting of employee information is not required for purchased 
transportation.

In the case of potentially incorrect data, the detection is more difficult, as it is gen-
erally more difficult to look at a value and be able to tell if it is incorrect. However, 
an incorrect value is likely to be identified more easily after it is used in a formula. 
For example, an incorrect low value reported for the total actual revenue hours will 
cause the average speed to fall outside the normal speed range, e.g., a bus system 
with an average speed of over 80 mph. To further detect incorrect data, a major 
effort was taken to examine each calculated value by visually identifying sudden 
changes in the annual data trend. For example, it will be quite unlikely for a system 
to have its average speed jump by 10 mph from one year to another. Fortunately, 
INTDAS provides an interactive charting function (described in the next section) 
that can greatly facilitate this task. All calculated values that were deemed suspi-
cious were subsequently removed from the database.

User Interface and Functionalities
This section introduces the functionalities of INTDAS via three case applications. 
The system is freely accessible at http://www.ftis.org/intdas.html upon user regis-
tration. The use of the web platform for the system not only facilitates user access, 
but also allows the developers to update the system quickly and as frequently as 
needed.

Case Application 1: Quick Information Lookup for Known Agencies
In this case application, the user would simply like to look up information for two 
major bus systems, the Miami-Dade Transit (MDT) and Metropolitan Atlanta 
Rapid Transit Authority (MARTA), located in the Southeast region of the United 
States. The user has registered to access the system, so she can quickly log on to 
the system using her assigned password. Upon entering the system, the user is 
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first shown the main screen in Figure 1. On this screen, INTDAS selects the latest 
six years of NTD data, by default, for all individual transit modes, and all individual 
service types. The user can, however, choose to retrieve any years of data between 
1984 and 2009 for any specific modes and service types.

Figure 1. Screen for selecting transit systems

To select the two transit systems, the user clicks to select Florida and Georgia on 
the Select States list box to quickly shortlist the number of transit systems to only 
those in Florida and Georgia. The shortlisted systems are displayed in the Select 
Systems list box. The user then can identify the desired systems from the shortlist 
simply by clicking on the agency names. Selected transit systems are listed in the 
Selected Systems list box. Once the transit systems of interest are selected, data 
can be retrieved and displayed either on the NTD forms or on some pre-defined 
standard reports by clicking the Forms and Reports buttons, respectively, at the 
bottom right of the screen. Figure 2 displays some service related data on the top 
portion of the S-10 form. Figure 3 shows a standard report that includes six years 
of trend data for MDT for a set of efficiency measures. The user can click on any 
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of the list boxes to get the same trend table for other system combinations, e.g., a 
directly operated heavy rail system for MARTA.

Figure 2. Retrived data displayed on an emulated NTD form

Figure 3. Retrived data displayed on a standard report
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Case Application 2: Quick Information Lookup for Unknown Agencies
Unlike the previous application, the user in this application is not looking for informa-
tion for some specific systems in mind, but any systems that meet a specific profile. In 
this case, the user would apply the query capability of the system by clicking the Queries 
tab on the main screen to open the screen shown in Figure 4. This screen provides the 
user with a user-friendly query editor to quickly construct SQL (Structured Query Lan-
guage) queries. The top half of the query screen allows the user to specify the data years, 
states, mode codes, and service types. The bottom half of the screen allows the user to 
construct SQL query conditions that help to narrow down the system selection. 

Figure 4. System selection by query

To add a query condition, the user first enters a keyword to narrow down the list 
of data variables. The user then clicks to select a variable from the variable list box 
and send it to the Query Editor box. A set of buttons are provided for selecting 
such common operators as “=” or “>=”. Using a combination of the variable list, the 
math operator buttons, and the keyboard, the user can construct a series of SQL 
conditions. For example, the query shown in the Query Editor box in Figure 4 is to 
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retrieve all directly operated (i.e., “DO”) bus transit systems (i.e., “MB”) in 2009 that 
operate a fleet size between 50 and 100 motorbus vehicles. 

Once a query is constructed, the user clicks on the Run Query button to run the 
query to find transit systems that meet the query conditions. The output transit 
systems are listed in the Selected Systems list box. The user then looks up the infor-
mation for these systems, as in the previous application, by clicking on the Forms 
or Reports button.

Case Application 3: Peer Selection and Comparisons
In this case application, the user is a transit planner from MDT who is interested in 
comparing the performances of MDT’s bus system with those of its peer systems. 
As a first step of the analysis, the user needs to identify peer systems that are 
deemed comparable to MDT. To do so, the user first clicks the Peers tab on the 
main screen to open the screen shown in Figure 5. The screen allows the user to 
choose between two peer selection methods: TCRP or FTIS. The FTIS method was 
implemented prior to the development of the new TCRP method and is expected 
to be phased out. By default, the TCRP method, developed as part of the Transit 
Cooperation Research Program (TCRP) Project G-11 (Ryus et al. 2010), is selected.

Figure 5. Peer selection input screen
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The input screen for the TCRP method allows the user to first select Florida to 
shortlist the transit systems and then selects “Miami-Dade Transit” from the 
shortlist. The user can then choose to select peer systems based on agency-wide 
or mode-specific mode statistics for peer variables. In this application, the mode-
specific option based on bus transit system (MB) is selected. The user then selects 
the data year for pear selection variables and the data source for the population 
size of the urban area in which the MDT is located. Next, the user selects the data 
year. As of the writing of this paper, only the 2006 data are available in the system 
for this peer selection method. Lastly, the user selects the data source for urban 
population. By default, the urbanized area (UZA) population from the American 
Community Survey (ACS) is used. However, the user may enter another population 
size. This allows the user to test different “what if” population scenarios. Once all of 
these inputs are specified, the user clicks the Find Peers button to search for peer 
systems based on their likeness scores, which are calculated from 3 screening fac-
tors and up to 14 peer grouping factors. 

The three screening factors are whether an agency operates a rail system, only 
a rail system(s), and/or a heavy rail system. These variables ensure that potential 
peers operate a similar mix of modes as MDT. The peer grouping factors are used 
to determine which potential peer agencies are most similar to MDT in terms of 
service characteristics (e.g., vehicle miles operated, annual operating budget) and 
urban area characteristics (e.g., population density, percent low income). Based on 
these factors, a total likeness score is calculated for each potential peer system, as 
follows (Ryus et al. 2010):

Based on this equation, the lower the score of a potential peer system, the more 
similar it is to MDT. Figure 6 shows the output screen, which lists all potential 
agencies from the lowest to the highest scores. In general, a total likeness score 
under 0.50 indicates a good match, between 0.50 and 0.74 represents a satisfactory 
match, and between 0.75 and 0.99 represents a potential match that may be used 
with additional investigation to determine major differences that may make them 
unsuitable. Scores beyond 0.99 are considered undesirable. Readers are referred to 
TCRP Report 141 for details on the peer selection process implemented in INTDAS 
(Ryus et al. 2010). 
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Figure 6. Peer output screen

Figure 6 also shows that the user can select the desired peer systems and then click 
the Save Peers button to save the peer systems for later use as a peer group. By 
default, the five most similar systems are selected. The user may, however, select 
any number of desired peer systems by checking the box in front of each listed 
system. The user then enters a group name for the set of peer systems selected to 
save. After the systems are saved, the user clicks on the Select Groups button to 
open the screen shown in Figure 7. This screen can also be opened by clicking the 
Groups tab on the main screen directly. On this screen, the user selects the peer 
systems she just saved by clicking on the group name. The saved peer systems in 
the group are displayed in the Select Systems window. The user can then select the 
peer systems by clicking the All buttons or clicking on the specific systems. The user 
then clicks on the Tables button to select the calculated performance variables as 
described above. This opens the screen shown in Figure 8, which allows the user to 
select specific data variables for retrieval and analysis.
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Figure 7. Screen for selecting saved peer groups

Figure 8. Screen for selecting data variables
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INTDAS provides the following two selection options for variable selection:

Variable selection by list: This option allows the user to enter a keyword, or 1.	
partial keyword, to search for variables that match the keyword. All variables 
that match the keyword are listed in the list box, as shown in Figure 8. 

Variable Selection by NTD form: The second option for variable selection is 2.	
through the emulated NTD forms. To select a variable, the user first selects 
the appropriate NTD form and then clicks on a check box to select a specific 
variable. Figure 9 shows that the users selected the total modal operating 
expenses on Form F-30.

 

Figure 9. Selecting variables from ntd forms
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Once the variables of interest are specified, the data for the selected systems can 
be retrieved and displayed in a Flat Table, Cross Table, or Chart. Figure 10 shows an 
example of a flat table. It can be seen that the tenth column gives the total oper-
ating expenses after they are adjusted for inflation. The adjusted values could be 
quickly calculated in INTDAS by applying the Inflation function and specifying a 
target year to adjust to. 

Figure 10. Retrieved data displayed in a flat table

It can be seen from Figure 10 that the tabulated data with multiple systems and 
multiple years are somewhat difficult to read. As such, INTDAS provides the abil-
ity to generate cross-table view that is cross-classified by two system variables at 
a time. Figure 11 shows such an example. The figure shows six years of average 
speeds for MDT and its five selected peer systems. The five list boxes on top of the 
cross-table screen allow the variables to be selected in different manners. The first 
two list boxes define the row and column variables, respectively, while the third 
and fourth list boxes list all of the possible data items for each of the remaining 
two system variables. The last list box lists all of the data attributes selected for 
analysis. The value for the selected data attribute is displayed on the cross table 
shown under the list box. The cross table is immediately updated as soon as a 
change occurs in any of the list boxes; this allows different data combinations to be 
examined quickly.
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Figure 11. Retrieved data displayed in a cross table

Instead of displaying data in a cross table, the user may also choose to display the 
data graphically, as shown in Figure 12. In this example, the user can quickly exam-
ine 25 years of average speed trends for MDT and compare them with those of the 
peer systems. Similar to the cross table, the plot is also refreshed immediately after 
any of the variables in the list boxes are changed, allowing the user to plot charts of 
all possible variable combinations.

Figure 12. Retrieved data displayed in a chart
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Summary and Further Developments
The National Transit Database (NTD) is an important database for the transit 
industry. These NTD data, however, were not easily accessible. Using three case 
applications, this paper described a web-based system designed to facilitate the 
retrieval and analysis of NTD data. The system is useful for both practitioners and 
researchers who use the NTD data to improve transit performance and services. 
The system provides user-friendly functions that allow multiple years of NTD data 
to be quickly retrieved and analyzed for multiple transit systems. The data retrieval 
functions allow the user to quickly select transit systems and NTD variables of 
interest, retrieve data for the selected systems and variables, and display the data in 
forms, tables, charts, and reports. The system also includes a peer selection process 
that allows one to quickly identify peer systems for peer comparisons.

The development of INTDAS remains an ongoing process. The original NTD data 
and the calculated performance measures will continue to be added to the system 
annually. While the system is quite user-friendly, an online web training system is 
being developed to help the users get started quickly and allow them to use the 
system more effectively. Current planned activities include the addition of rural 
NTD data, where were first collected in 2006, and the research and implementa-
tion of data mining tools to discover patterns and relationships from the vast 
amount of NTD data collected over the years.
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Abstract

Waiting time in bus stops heavily affects traveler attitude towards public transpor-
tation and therefore is an important element for consideration when planning and 
operating a bus system. Furthermore, what passengers perceive as waiting time is 
often quite different from their actual waiting time at a bus stop. In this context, we 
present an empirical investigation of actual and perceived waiting times at bus stops 
for the case of a large bus network, using hazard-based duration models. The analy-
sis is based on a questionnaire survey undertaken at bus stops of the Athens, Greece, 
bus network. Results indicate that age, trip purpose, and trip time period seem to 
have an impact on that perception, with older individuals, work, and education 
trips being factors that increase perceived waiting time and lead to an overestima-
tion of actual waiting, while perceived waiting time decreases during morning time 
periods.

Introduction
Transit is an important element of a city’s transportation system; transit systems 
offer sustainable and equitable transportation services to all travelers at low cost.  
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However, despite advantages of transit usage for societies, its share in ridership is 
often significantly lower compared to that of private vehicles, a fact usually attrib-
uted to the reduced performance and quality of services offered by transit systems. 
Bus systems are the most common among transit systems in cities worldwide 
(Vuchic 2004); however, these systems exhibit considerably lower attraction to 
passengers, which is mostly a result of problematic operations and their interac-
tion with the rest of traffic. Indeed, operational characteristics such as low travel 
speeds, inadequate frequencies, and lack of punctuality and schedule reliability do 
have a negative effect in bus transit ridership.

Waiting times in bus stops are among those elements heavily affecting the attitude 
of passengers towards using bus transit, as well as their opinions on the quality 
of transit services. Riders are expected to wait at stops for buses to arrive, being 
exposed to adverse weather conditions, crowding, and a surrounding environment 
of poor quality, while being stressed by waiting anxiety. As a result, what passengers 
perceive that waiting time is often much larger compared to the actual waiting 
time imposed by bus operations, especially when no information is given to them 
on expected bus arrivals (Mishalani et al. 2006).

In that context, this paper provides an empirical investigation of actual and per-
ceived waiting times at bus stops in the case of a large bus network with the use of 
duration models. The analysis is based on a survey undertaken at over 30 bus stops 
of the Athens bus network, which consists of over 300 lines and serves 1.3 million 
passengers on a daily basis. The remainder of the paper is structured as follows: the 
next section provides a brief background of past work on bus waiting times. Next, 
a description of the dataset and the methodological aspects of the paper are given. 
Empirical findings are then presented and discussed. The paper concludes with 
major insights drawn from the preceding analysis.

Background
The issue of waiting times at bus stops has been a topic of interest for researchers 
for at least three decades, with efforts concentrating both on the actual and per-
ceived waiting times. Jolliffe and Hutchinson (1975) offered a behavioral explana-
tion of the relationship between bus and passenger arrivals at bus stops and their 
impact on waiting times, considering random and not random passenger arrivals. 
Turnquist (1978) identified the effects of service frequency and reliability on wait-
ing times, and Bowman and Turnquist (1981) developed a model based on pas-



111

An Empirical Investigation of Passenger Wait Time Perceptions

senger decision making for analyzing the sensitivity of waiting time against service 
frequency and reliability. Lam and Morral (1982) examined the impact of weather 
on waiting times, and Van Evert (1987) developed a relationship between service 
frequency and waiting time. Zahir et al. (2000) analyzed the bus system of Dhaka 
based upon field surveys and offered observations on actual passenger waiting 
times. Salek and Machemehl (1999) used experimental data from the city of Austin, 
Texas, and developed a model for predicting bus passenger waiting time, and Hall 
(2001) described a survey for collecting passenger waiting time information with 
the support of Automatic Vehicle Location systems for verification. 

Perception of bus waiting time was investigated by Baldwin et al. (2004). Passengers 
were presented with the opportunity to pay for immediate service rather than wait. 
The study indicated that waiting times are overestimated by a factor of two when 
imposed by the transit system. Michalani et al. (2006) investigated passenger wait 
time perception on bus stops and attempted to quantify the relationship between 
perceived and actual wait time with the use of linear regression. Their results indi-
cated an overestimation of waiting time by passengers compared to their actual 
waiting time. Currie and Csikos (2007) focused on the impacts of transit reliability 
on waiting times and drew interesting conclusions on their relationship. Another 
study on passenger perception of waiting time by Iseki and Taylor (2008) indicated 
that passengers mostly want short and predictable waits in a safe environment 
and do not give much notice to the attractiveness of bus infrastructures. Fan and 
Machemehl (2009) investigated different operating characteristics as potential pre-
dictors of passenger waiting time and concluded that a linear model which related 
waiting times to headways was the preferred case. They also reported differences 
between their model and the traditional random model for passenger waiting time 
estimation. 

Overall, the review revealed past work focusing on either prediction of actual wait-
ing time or the analysis of perceived waiting time. In that context, this research con-
tributes to the existing literature by examining the relationship between actual and 
perceived travel time, based on data collected by a combination of observations 
and personal interviews and the use of appropriate statistical methods (hazard-
based duration models) for analyzing the effect of various explanatory factors to 
the passenger perception of waiting time. 
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Dataset and Preliminary Statistical Analysis
The dataset used is based on an extensive field survey, which combined observa-
tions of actual waiting times for passengers at bus stops and personal interviews 
on their perception of waiting time. Passengers arriving at bus stops were randomly 
selected and their arrival time was recorded by interviewers. Shortly after their 
arrival, passengers were asked by the interviewers about their perception of wait-
ing time at the bus stop, along with other information, while the interview starting 
time was recorded. Then, when the passengers boarded a bus, a note of their total 
actual waiting time was made. This way, both the actual and perceived waiting 
times were collected for the time up to the initiation of the interview, as well as the 
overall actual waiting time. The survey took place at 30 bus stops in Athens area, 
from 8 A.M. to 8 P.M. Bus stops with both frequent and infrequent bus arrivals 
were selected as survey locations, and a total of over 1,000 passengers were inter-
viewed. Collected data included actual passenger arriving and interview time, total 
actual waiting time, perceived time, gender, age and trip purpose, while the period 
of the day for each interview (morning, afternoon, evening) was also indicated.

Preliminary statistical analysis of the results revealed a relative balance between 
male and female passengers (47% versus 53%), while most passengers were of age 
between 18 and 65. Further, over 35 percent of the respondents were traveling 
to or from their place of work. Tables 1 and 2 summarize actual and perceived 
average waiting times for different time periods, gender and age groups, and trip 
purposes.

By inspecting Table 1 and 2 results, it can be seen that perceived waiting time is, in 
most cases, increased by at least 50 percent compared to the actual waiting time. 
Furthermore, older age groups and passengers traveling to work or for personal 
affairs tend to overestimate their waiting time, compared to other categories. 
The same applies to passengers interviewed in the morning period. A preliminary 
interpretation of these overestimations by specific passenger groups can be quali-
tatively attributed to factors such as limited patience by older passengers and work 
anxiety affecting passengers traveling to work or for personal affairs. However, a 
detailed, model-supported statistical analysis would reveal the actual effects of the 
aforementioned factors to the actual and perceived waiting times.
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Table 1. Actual and Perceived Average Waiting Times  
for Different Time Periods

	  		  Ratio of Average 	
	 Average Perceived	 Average Actual	 Perceived to Average
Time period	 Waiting Time (min) 	 Waiting Time (min)	 Actual Waiting Time
 
Morning	 6.18	 3.56	 1.74
Afternoon	 6.48	 4.58	 1.41
Evening	 6.25	 3.83	 1.63

Table 2. Actual and Perceived Average Waiting Times  
for Different Sex and Age Groups and Trip Purposes

	  	 	 Ratio of Average 	
	 Average Perceived	 Average Actual	 Perceived to Average
Group	 Waiting Time (min) 	 Waiting Time (min)	 Actual Waiting Time

Age Group	
< 18	 7.65	 5.56	 1.38
18- 30	 5.76	 4.06	 1.42
31-45	 6.30	 3.85	 1.64
46-65	 7.21	 4.19	 1.72
> 65	 6.81	 3.84	 1.77

Gender	

Men	 6.22	 3.87	 1.61
Women	 6.53	 4.30	 1.52

Trip Purpose	

Return Home 	 6.60	 4.72	 1.40
Work	 7.23	 4.73	 1.53
Education	 8.80	 7.73	 1.14
Personal	 8.08	 5.49	 1.47
Entertainment	 6.58	 5.17	 1.27
Shopping	 7.91	 5.86	 1.35
Other	 9.29	 4.57	 2.03

Model
Overview
Duration data refer to time (or duration) until or between occurrence of events 
(Hensher and Mannering  1994). Such data are often encountered in transpor-
tation, with examples such as the duration between traffic accidents or vehicle 
purchases, waiting time in traffic queues, and so on (Hensher and Mannering 1994; 
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Washington et al. 2003). Hazard-based models have been developed especially for 
describing duration data (Hensher and Mannering 1994). In detail, consider an 
episode as the time period until the occurrence of an event (or the time period 
between successive events); a hazard function expresses the probability that this 
episode starting at time t is terminated within a time interval (t, t+Δt) provided 
that the event has not occurred before the beginning of the interval. For example, 
in the particular case investigated in this paper, waiting time refers to the time 
period (episode) until a passenger boards a bus (event). As a result, the probability 
of boarding the bus after waiting for a duration Δt is represented by the hazard 
function.

Hazard-based duration models have been exploited in a field of transportation 
for modeling the duration between traffic accidents, the time up to capacity 
restoration following a traffic incident, the duration of trip decision making activi-
ties, automobile ownership time etc. (Hensher and Mannering 1994; Washington 
et al. 2003). As noted by Hensher and Mannering (1994), duration models “focus 
on the probability of an end-of-duration occurrence, given that the duration has 
lasted to some specified time.” This implies that the terminating event is assumed 
to be related to the duration of an episode. As such, the underlying advantage of 
duration models compared to other approaches) is the fact that they allow the 
occurrence of an event to be formulated in terms of conditional probabilities with 
respect to factors affecting the duration of its preceding episode and therefore 
offer a “tight link between theory and an empirical approach” (Hensher and Man-
nering 1994). Similarly, in the context of this paper, any answer to the question on 
perceived waiting time asked as part of the personal interviews (occurrence of the 
event) is related to those factors affecting the perception of waiting time. There-
fore, we consider duration models to be more appropriate for the problem at hand 
compared to other approaches (e.g., regression).

Theoretical Background
Following Washington et al. (2003), let T be a nonnegative random variable that 
represents (a) the perceived waiting time (duration) and (b) the difference between 
the perceived and actual waiting times. The probability distribution of T can be 
represented in a number of ways, of which the survival and hazard functions are 
the most useful. The survival function is defined as the probability that T is of 
length at least t (i.e. perceived waiting time or the difference between perceived 
and actual waiting time at least t min) and is given by (Washington et al. 2003):

F(t) = P(T ≥ T), 0 < t < ∞	 (1)
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The notation used here suggests that F(t) is a monotone left continuous function 
with F(0) = 1 and . The probability density function (p.d.f.) of T is 

(Washington et al. 2003):

	
(2)

The hazard function specifies the instantaneous failure rate at T = t, conditional 
upon survival to time t, and can be defined as follows (Washington et al. 2003): 

	
(3)

It is important to note that hazard functions are extremely useful in practice. They 
indicate the rate at which perceived waiting time increases after lasting for time t, 
and for this reason is more interesting than the survival or the c.d.f. functions. Also, 
from Eq. (3) it can be seen that l (t) specifies the distribution of T since, 

 
by integrating and setting F(0) = 1

 

 and the p.d.f. of T becomes

	 	
(4)

The literature suggests a wide variety of functional forms for the duration distribu-
tions such as the exponential, the Weibull, the Lognormal, the inverse normal, the 
Loglogistic, and others (Washington et al. 2010). Interestingly, these distributions 
display very different behaviors, and the selection of the functional form to be used 
will have important implications in the practical significance of the results.

Variables
Selected dependent variables are (a) the perceived waiting time by passengers and 
(b) the difference between the perceived and actual waiting times. Explanatory 
variables include sex, age, time period, travel purpose, and actual waiting time 
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(when the dependent variable is the perceived waiting time). Both dependent and 
explanatory variables are shown in Table 3.

Table 3. Dependent and Explanatory Variables

Variable Name	 Description	 Values

Dependent Variables

LOGPER	 Perceived wait time difference	 Any
LOGDIF	 between perceived and actual wait times	 Any

Explanatory Variables

GENDER	 Gender (male, female)	 0 for male, 1 for female
AGE18	 Age	 1 for ages < 18, 0 otherwise
AGE1830		  1 for ages 18-30, 0 otherwise
AGE3045		  1 for ages 18-30, 0 otherwise
AGE4565		  1 for ages 18-30, 0 otherwise
AGE65		  1 for ages < 18, 0 otherwise
HOME	 Trip purpose	 1 for “return home,” 0 otherwise
WORK		  1 for “work,” 0 otherwise
EDUC		  1 for “education,” 0 otherwise
PERS		  1 for “personal affairs,” 0 otherwise
ENTERT		  1 for “entertainment,” 0 otherwise
SHOP		  1 for “shopping,” 0 otherwise
TRAVEL		  1 for “travel,” 0 otherwise
OTHER		  1 for “Other,” 0 otherwise
QUE1	 Time period	 1 for 8:00 to 12:00, 0 otherwise
QUE2		  1 for 12:00 to 17:00, 0 otherwise
QUE3		  1 for 17:00 to 20:00, 0 otherwise
REALTIME	 Actual wait time up to interview initiation	 Any

In particular, five variables correspond to age groups of under 18, 18–30, 31–45, 
46–65, and over 65; eight variables correspond to trip purposes (return home, work, 
education, shopping, entertainment, travel out of town, and other) ; and three vari-
ables are assigned to time periods (8:00–12:00, 12:00–17:00, 17:00–20:00). 

Empirical Findings
Using previously described data and the duration model methodology, Tables 4 and 
5 present model results for two duration distributions, Weibull and Loglogistic. 
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Table 4. Model Results with Perceived Wait Time as Dependent Variable

		  WEIBULL			   LOGLOGISTIC

Explanatory 						      Hazard 
Variables*	 Coefficient	 t-statistic	 Hazard ratio**	 Coefficient	 t-statistic	 ratio**

CONSTANT 	 0.687	 40.19	 1.988	 0.691	 28.27	 1.996
AGE18 				    0.066	 2.40	
AGE3045	 0.037	 2.39	 1.038			   1.000
AGE4565	 0.084	 5.81	 1.088	 0.040	 2.82	 1.041
AGE65	 0.077	 4.12	 1.080			 
HOME 	 0.175	 8.49	 1.191	 0.082	 2.85	 1.085
WORK	 0.241	 12.21	 1.273	 0.091	 3.47	 1.095
EDUC 	 0.361	 10.84	 1.435	 0.164	 4.32	 1.178
PERS 	 0.265	 12.61	 1.303	 0.135	 4.94	 1.145
ENTERT	 0.196	 9.01	 1.217	 0.068	 2.35	 1.070
SHOP	 0.262	 11.64	 1.300	 0.137	 4.56	 1.147
OTHER	 0.367	 8.81	 1.443	 0.164	 3.92	 1.178
QUE1	 -0.041	 -2.18	 0.960			 

*Non-significant variables for both distributions are omitted. 
**Proportional change in hazard given a unit change in explanatory variable (all other variables 
assumed fixed).

Table 5. Model Results with Difference Between Perceived and  
Actual Wait Times as Dependent Variable

		  WEIBULL			   LOGLOGISTIC

Explanatory 						      Hazard 
Variables*	 Coefficient	 t-statistic	 Hazard ratio**	 Coefficient	 t-statistic	 ratio**

CONSTANT  	 0.648	 44.25	 1.912	 0.491	 30.15	 1.634
GENDER 	 0.000	 4.82	 1.000	 0.000	 4.43	 1.000
AGE1830 	 -0.040	 -3.21	 0.961	 -0.030	 -2.17	 0.970
 AGE3045	 -0.051	 -3.22	 0.950	 -0.035	 -2.11	 0.966
HOME  	 0.127	 6.20	 1.135	 0.146	 7.30	 1.157
WORK 	 0.146	 10.03	 1.157	 0.152	 9.12	 1.164
EDUC  	 0.285	 9.48	 1.330	 0.172	 4.60	 1.188
PERS	 0.150	 7.55	 1.162	 0.162	 8.20	 1.176
ENTERT	 0.183	 11.66	 1.201	 0.159	 7.37	 1.172
SHOP	 0.238	 13.21	 1.269	 0.187	 7.40	 1.206
OTHER	 0.185	 3.62	 1.203	 0.184	 4.21	 1.202
QUE1	 -0.060	 -3.92	 0.942			 
QUE2 				    0.054	 3.35	 1.055
QUE3	 -0.030	 -2.47	 0.970	 0.043	 2.47	 1.044
REALTIME	 0.010	 4.38	 1.010	 0.000	 3.42	 1.000	

	*Non-significant variables for both distributions are omitted. 
**Proportional change in hazard given a unit change in explanatory variable (all other variables  
assumed fixed).
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It should be noted here that the hazard functions for the Loglogistic and Weibull 
distributions are given by l p(l t)p-1| 1+(l t)p , l p (l t)p-1 , respectively; for the same 
distributions, the survival functions are 1| 1+(l t)p , e - (l t)p . 

It is evident from Tables 4 and 5 that the different functional forms of the Weibull 
and Lognormal distribution lead to very different qualitative conclusions. For 
example, as can be seen from Figure 1, the Weibull distribution is monotonically 
increasing, indicating a continuously increasing hazard rate over time, while the 
Loglogistic suggests an initial increase and then a decrease in the hazard rate 
(Washington et al. 2010). 

Figure 1. Weibull and Loglogistic hazard functions

The obvious question then becomes, how can the “best” fitting distribution be 
selected? Besides theoretical arguments, the statistical answer to this question 
is not straightforward. In general, for a model to be appropriate for the data, the 
graph for each of the functional forms needs to be a straight line through the origin 
(for the exponential model, for example, it is the graph of the log of the survival 
versus t). However, it is interesting to note that the Weibull and Loglogistic func-
tional forms are all nested within the generalized gamma model, making it a simple 
matter to evaluate them with the likelihood ratio test (Lee and Wang 2003; Cleeves 
et al. 2008). Final likelihood values indicate that the Weibull distribution is more 
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suitable for describing both the perceived waiting time and the difference between 
the perceived and the actual waiting time. 

With respect to the interpretation of results, Table 4 presents those factors affecting 
perceived waiting time. According to Table 4 results (for the Weibull distribution), 
perceived waiting time increases for ages of over 18 years (positive coefficients of 
0.037, 0.084 and 0.077, respectively), while a larger effect on the length of perceived 
waiting time is observed for ages over 45 years. Indeed, for ages between 45 and 
65, a hazard ratio of 1.088 implies that for this age category, perceived waiting time 
increases by 8.8 percent. All trip purposes appear to have a strong positive effect 
on the length of perceived waiting time. In particular, trip purposes directly related 
to certain activities (such as trips made for work, education, and personal affairs) 
tend to have a stronger effect on increased perceived waiting times.  Trips to work, 
for example, lead to an increase in perceived waiting time of 27.3 percen,t while the 
corresponding percentages for education and personal affairs are 43.5 percent and 
30.3 percent, respectively. Interestingly, shopping activities have a similar effect on 
perceived waiting time by 30 percent. On the other hand “return home” and enter-
tainment seem to have a lower (yet positive) impact on the length of perceived 
travel times compared to other purposes (hazard ratios of 1.191 and 1.217). Finally, 
the morning time period seems to have a negative effect on perceived waiting 
times (with a coefficient of -0.041), a fact that can be attributed to more frequent 
bus arrivals at the bus stops. In particular, the hazard ratio value of 0.96 implies that 
perceived waiting time is reduced by 4 percent during morning periods.

Table 5 results refer to the difference between perceived and actual waiting times 
and practically indicate the degree of waiting time overestimation by travelers. 
Results (again for the Weibull distribution) show that younger passengers (up to 
30 years of age) tend to have a better perception of waiting times (coefficients of 
-0.040 and -0.051). Hazard ratios indicate that for these categories, the difference 
between perceived and actual waiting time is 4 percent-5 percent. Trip purpose 
seems to positively affect overestimation of travel time perception, particularly 
for work-related trips, shopping, and entertainment. For example, for work trips, 
passengers tend to overestimate their waiting time by 15.7 percent, while for edu-
cation trips this percentage rises to 33 percent. We also find that at morning and 
afternoon periods, there is a better perception of waiting times. Overall, age, trip 
purpose and the morning and afternoon periods seem to affect perception of wait-
ing time in bus stops.
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Conclusions
Waiting time at bus stops is evidently one of those key factors affecting the 
attractiveness and performance of bus systems. Nevertheless, its perceived value 
practically dictates rider discomfort and preference towards bus services. In this 
context, this paper focused on investigating the effects of various factors on per-
ceived waiting time using appropriate hazard-based duration models. The use of 
duration models was dictated by the nature of the problem at hand, which fits the 
underlying theoretical rationale behind using these models. Results indicated that 
age, trip purpose, and trip time period seem to have an impact on that perception, 
with older individuals, work trips, and education trips being factors that increase 
perceived waiting time and lead to an overestimation of actual waiting, while per-
ceived waiting time decreases during morning time periods.
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Abstract

Structured observation is one way to assess how public transport passengers actu-
ally use their travel time. This study reports on 812 adult passengers in Wellington, 
New Zealand. Researchers recorded passenger characteristics and behavior over a 
4-minute period, on a range of routes and times, using 12 pre-set codes. Most pas-
sengers (65.3%) were “looking ahead/out the window” at some point in the observa-
tion period, more on buses than on trains. About one-fifth of all passengers observed 
were seen reading, more on trains. Other activities included listening on headphones, 
talking, texting, and sleeping/eyes closed. Activities were compared on the basis of 
gender, age group, mode, and time of day. Comparisons are made with recent obser-
vational and survey studies, with discussion of both methods and results.

Introduction 
This article discusses structured observation as a method to assess what people do 
during their public transport travel time and reports on a study of bus and train 
passengers in New Zealand. Particular attention is given to some methodological 
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challenges of data collection on public transport, and methods and results are 
compared with other observational studies. 

The standard way travel time is valued in transport appraisal, through valuation 
of travel time savings (essentially, travel time is treated as wasted time), provides 
the overall context for this research (Wardman 1998; Mackie, Jara-Díaz et al. 2001; 
Wardman 2001; Hensher 2001a; Hensher 2001b; Mokhtarian 2005; Metz 2008). 
The study reported here does not engage with the monetary valuation of travel 
time; it is a social and not an economic study. The lead researcher’s Ph.D. research 
investigates how public transport passengers use and value their travel time and 
its impact on health and well-being. As a preliminary investigation, observations of 
bus and train passengers were undertaken in the Wellington area during Novem-
ber-December 2008. 

Ways of Observing Passengers
There is little in the transport literature about observation of passengers during 
travel as a method. Clifton and Handy (2001) pointed out that participant observa-
tion “has not often been used in travel behaviour research, but it has a rich tradi-
tion in studies of behaviour in urban space” (Clifton and Handy 2001). Observation 
is not appropriate if we seek to know what passengers are thinking or feeling, of 
course; it can be used only to assess manifest behavior. Further, observed behavior 
cannot often be interpreted: for example, a person reading a novel could be doing 
so for leisure or for study, or even for work.

Several useful ethnographic observational studies of passengers have been carried 
out (Nash 1975; Delannay 2001; Fink 2006; Watts 2008; Jain 2009). That method, 
however, would not yield information about the range of activities among large 
numbers of bus and train passengers or show which behaviors were more com-
mon and how they were shared across different population groups and different 
modes.

Naturalistic observation is assumed to “not interfere with the people or activities 
under observation” (Angrosino 2005) and people “are free to vary their individual 
and social responses” (Sackett, Ruppenthal et al. 1978). Still, “people may behave 
quite differently when they know they are being observed versus how they behave 
naturally when they don’t think they are being observed” (Patton 2002). 
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To systematically observe passengers in a completely covert way, a hidden video 
camera might be used. But there are methodological and cost reasons, as well as 
the more compelling ethical arguments, against this approach (Sackett 1978). 

Structured observation is a “way of quantifying behaviour” (Robson 1993) as it 
“focuses on the frequency of … actions” (Gray 2004) and “employs explicitly formu-
lated rules for the observation and recording of behaviour” (Bryman 2008). Unlike 
ethnographic studies, it produces quantitative data. The coding scheme and obser-
vation schedule are central to the method. At the time of the research, the team 
had not seen studies elsewhere using this method with passengers. Three reports 
since came to attention: Ohmori and Harata (2008), Timmermans and Van der 
Waerden (2008), and Thomas (2009). Comments on these studies, below, include 
remarks about methodology and data collection protocols. 

Timmermans and Van der Waerden (2008) discussed the advantages and disad-
vantages of observation as opposed to surveys, diaries, and similar self-reports, 
which are common in time-use research. While self-reports may be useful and 
reliable for most activities and appropriate for questions about how people spend 
their time at home where observation is not feasible, travel activities may be rather 
different. Short-duration or non-routine activities while traveling may be especially 
subject to poor recall. Observation is economical and unobtrusive and yields a lot 
of fairly reliable data in a short time. 

Problems with structured observation as a method may arise when there is more 
than one observer, in the degree of agreement between the observations (inter-
rater reliability); but having more than one observer is desirable as reliability can be 
checked. An observer’s attention may flag (affecting intra-rater reliability), or the 
consistency of observations over time by each observer may change (Martin and 
Bateson 2007). Hence “observer drift” (Robson 1993), “observer fatigue” (Martin 
and Bateson 2007) or “observer decay” (Hollenbeck 1978) are of concern. The eth-
nographer Watts (2008) described the challenge of maintaining the observer’s role 
and location as a researcher. 

Observational and Survey Studies of Passengers
In their study of 161 passengers on San Francisco trains, Timmermans and Van der 
Waerden (2008) found almost all were “doing nothing.” Although this was a pilot 
study (Timmermans and Van der Waerden 2008) and the sample size was too small 
to detect significant effects, the authors reported differences in activities: “doing 
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nothing, sleeping, talking, reading and [listening to] music” by socio-demographic 
and contextual variables: gender, race, age, travel party (alone, couple or group), 
trip duration, and time of day. That almost all of the people observed were “doing 
nothing” “casts doubt on the prevalence of multitasking while travelling on trains, 
at least for this sample, which concerned travelling for relatively short distances” 
(Timmermans and Van der Waerden 2008).

Other activities discussed were sleeping (more common among women and non-
Caucasians and in the morning commute, less common among 18-25 year olds, 
and almost half of the sample) and talking (more common among women and 
Caucasians). 

A Japanese study by Ohmori and Harata (2008) included an observation of 84 and 
a survey of 503 passengers on “normal” and “high grade” trains. The observations 
showed sleeping and reading as the most frequent activities; sleeping was at a high 
rate (67%). But the observation study did not appear to include a “doing nothing” 
category. The ensuing survey evidently did have such a category, however, and 
a quarter to a third of passengers reported “thinking of something” for work or 
leisure. Some activities differed by trip length: the longer the trip, the more likely 
passengers were to be sleeping or reading, especially if they had a seat. Not having 
a seat did not prevent sleeping, though.

Thomas’s recent New Zealand study (2009) included observations of 1,703 pas-
sengers on Wellington buses and trains. Thomas was not examining the range of 
behaviors per se but looked at passenger characteristics, seat selection, movement 
within the vehicle, verbal interaction, and “defensive behaviors,” in which category 
he included listening to music, reading, etc. (Thomas 2009). Results showed that 
about a quarter of passengers had verbal interactions, and a quarter engaged in 
activities, the most common being reading/writing (11% of the total sample) and 
listening to music (9%).

In a large British survey (N=26,221 train passengers) about different activities while 
traveling, reading for leisure (34%), window gazing/people watching (18%), and 
working/studying (13%) were the frequent activities reported by passengers (Watts 
and Urry 2008). For British passengers, unlike those in the U.S. observational study, 
sleeping/snoozing happened more on the “return” journey (Lyons and Chatterjee 
2008). Window-gazing was high on short journeys (Lyons, Jain et al. 2007), and the 
authors suggest there may be “a possible travel duration threshold below which 
there is not a suitable amount of time to do other than window gaze/people 
watch” (Lyons, Jain et al. 2007).
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In Norway, Gripsrud and Hjorthol’s (2009) train survey (N=1196) found well over a 
third of passengers using travel time for work, with nearly a quarter of commuters 
having their travel time paid as work time.

Aim
The aim of this study was to assess the frequency of passenger activities during bus 
and train travel using structured observations of passengers in a purposive sample 
of bus and train routes and times in the Wellington area.

Method
Observing Passengers in Wellington: The Setting 
Car ownership is high in New Zealand (2,306,921 cars in a population of under 
4.2 million in 2009) (New Zealand Transport Agency 2010), but public transport 
also is used. In Wellington, 17 percent of residents used buses, trains, and harbour 
ferries to get to work in 2006, with about twice as many trips by bus as by train 
(Metlink). In New Zealand overall, about 5 percent of all travel time is on a bus or 
train (Ministry of Transport 2008). Wellington, the capital city, is set mostly on hills 
around a harbor. 

There is only one class of carriage on any train route in New Zealand; except for the 
long-distance trains, those in Wellington were old and noisy. The train system was 
neglected and run-down in the 1990s. Replacement rolling stock is expected from 
2011 (Greater Wellington Regional Council 2010). The most comfortable and well-
equipped train observed was on the two-hour commuter trip between Wellington 
and Palmerston North, with power-points for computer connections; tables or 
trays; comfortable, well-padded seats; and food and drink available (the only ser-
vice observed with such facilities). The buses in Wellington include older and newer 
vehicles. They are single-deckers and run either by overhead trolleys or diesel. 

Sample
A purposive sample of bus and train routes and times was selected. Purposive sam-
pling is a type of non-probability sampling that provides for a “strategic” sample 
(Bryman 2008). Bus and train routes selected were short (20-minute) or long (up 
to 2-hour) distances, downtown and suburban routes, encompassing wealthier 
and poorer areas (according to the NZ Index of Deprivation, Salmond, Crampton 
et al. 2007) and included routes where passengers had a clear choice of bus or train 
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mode. Observations also were made opportunistically, e.g., while en route by bus 
to the Wellington railway station to begin collecting train data. 

Both morning (before 9.00 AM) and evening (3.00 PM to 6.30 PM) peak commut-
ing times (New Zealand Transport Agency 2008) were included for observations, 
as were several night and midday times.

Data Collection
Public transport providers were contacted to explain the research, including Go 
Wellington (a bus company owned by Infratil) and KiwiRail (the recently re-nation-
alized provider of local Tranz Metro rail services). The managers of both operations 
generously provided free passes for the two researchers and a covering letter of 
support. The two researchers worked together for safety reasons and avoided late 
night trips. 

Developing a reliable and workable way to gather data was the most challenging 
aspect of this research. Some of the issues are described below and compared with 
methods described in other research reports.

Who and What to Observe:  
Passenger Types and Activity Categories 
The coding scheme for structured observations is very important—exactly what 
and who will be observed? Interestingly, there was considerable accord between 
the categories of train passenger activities used in studies in Japan (using observa-
tion and a self-report survey) (Ohmori and Harata 2008), the U.S. (using observa-
tion only) (Timmermans and Van der Waerden 2008), and New Zealand (Thomas 
2009) and those from two surveys (not observational studies) in Great Britain 
(Lyons, Jain et al. 2007) and Norway (Gripsrud and Hjorthol 2009). Of these, only 
the British study was available the schedule was designed. The activity categories 
were worded with subtle differences, e.g., the activity called “window gazing/peo-
ple watching” in the British study (Lyons, Jain et al. 2007) is called “seeing advertise-
ments, scenery and people” by Ohmori and Harata (2008). In addition, categories 
may reflect different cultural practices (the Japanese study includes “singing” as an 
activity) and varying national regulatory differences (for example, about smoking). 
Table 1 lists the activity categories used by six studies. 

Gender, race and age of passengers were noted by Timmermans and Van der 
Waerden (2008). In the observational part of their study, Ohmori and Harata 
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Table 1. Activity Categories in Studies from Japan, U.S., UK,  
Norway, and New Zealand

Passenger Activity Categories

Ohmori 
& Harata 

(2008)

Timmermans 
& Vander 
Waerden 

(2008)

Lyons 
et al. 

(2007)

Gripsrud 
& 

Hjorthol 
(2009)

Thomas 
(2009)

Russell 
et al. 

(present 
study)

Reading for leisure/ 
newspaper/book/etc. * * * * * *

Talking to other passengers 
socially * * * * * *

Sleeping/snoozing * * * * * *

Listening to music/radio * * * * * *

Window gazing/watching 
people, advertisements, scenery * * * *

Working/studying * *

Talking on phone * * * * * *

Text messaging * * * * * *

Nothing/staring ahead * *

Personal care *

Work computer * * *

Game (various) * *

Romancing *

Eating/drinking * * *

Smoking cigarettes *

Singing songs *

Thinking * * *

Using PC/PDA, playing video 
game, watching video * * *

Care of children * *

Knitting, needlework * *

Writing * *

Handling wallet, equipment, etc. *

Being bored *

Being anxious about the journey *

Planning onward or return 
journey *

Other (describe) * *
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(2008) seem not to have noted passenger characteristics. Thomas (2009) noted 
gender and age group.

In deciding what to observe in the New Zealand study, we used our own and advi-
sors’ local knowledge and noted some of the items from Gray’s list of high-level 
“features of social situations as a basis for observational data sources” (Gray 2004). 
Categories were developed, based on Lyons et al.’s work, but we added the category 
“handling wallet, equipment, etc.” after a pilot study, having observed people rum-
maging in their bag, wallet, or purse apparently rearranging, examining, or stashing 
objects. As the list was plainly not exhaustive, we also added the category “Other 
(describe).”

In the study, only adults were observed. Gender and broad age group were noted 
(young = about 18 to 30-35; middle age = 35 to 60; older = over 60). In New Zealand, 
it is considered inappropriate to guess at people’s ethnicity, which is constructed as 
meaningful only through self-identification (Statistics New Zealand 2005), so race 
or ethnicity were not included. 

How to Observe: Field Work
There are many ways to conduct observations of passengers, as the literature 
shows. It was initially intended that two researchers sit or stand together on the 
public transport vehicle, then, at an agreed time and beginning with the same pas-
senger, separately observe and record (using pen and paper) all the passengers in 
the vehicle. For each passenger, their general age range and their gender would be 
noted, as would whether or not they appeared to be a “single” or a “with” (meaning 
“with other people” [Goffman 1963] ) and what they were doing. This is the general 
method described by Timmermans and Van der Waerden (2008) and similar to 
that used by Thomas (2009). 

During the pilot period, the proposed method was found to be unworkable, even 
after repeated attempts. First, the buses, even when half full, were very busy with 
people getting on or off at stops every few minutes, and researchers’ note-taking 
could not keep up. Second, there was a marked lack of inter-rater agreement on 
a range of points, but particularly about passengers’ age group. An age gap of 32 
years between the two observers probably contributed to this divergence. Third, 
in a crowded vehicle, the researchers could not see all of the passengers or had a 
partial view only. This was even more challenging in long train carriages (seating 
over 70). 
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Observing Passengers Over Time
Aware from the pilot that people varied their activities over time, and on sugges-
tion from advisors, the researchers elected to observe individuals five times over 
a period of four minutes, noting passenger characteristics beforehand, and then, 
once per minute, viewing the passenger and immediately recording what the pas-
senger was doing at that instant. Martin and Bateson (1986) call this approach 
“instantaneous sampling,” “point sampling,” or “fixed interval time point sampling”; 
they also advise on choosing the sample interval. The length of time for observ-
ing each passenger (four minutes) allowed us to record some of the variability in 
behavior and was long enough to obtain a large amount of data. However, it was 
not so long that many passengers were lost to observation in the frequent, busy 
movement of people on and off buses in particular. 

Thomas (2009) appeared to observe all the passengers who boarded the vehicle 
(behavior sampling). Ohmori and Harata’s observer recorded six to eight pas-
sengers’ activities every minute (Ohmori and Harata 2008). Our study showed a 
researcher can comfortably observe two people at a time. More than two passen-
gers at a time would be feasible in our view, but we think eight per minute would 
be demanding. The two-passengers, four-minutes, five-observations protocol was 
appropriate to elicit a large amount of data and gave as broad a sample as possible 
within the time and research resources available.

Each of the observers, taking one side of a vehicle, usually selected the passengers 
nearest to her, but also bore in mind a wish to observe roughly equal numbers of 
men and women, and sometimes individuals were purposefully selected on the 
basis of gender. 

There were still difficulties, as, for example, when passengers boarded and stood 
in the aisle at peak times, completely blocking the researchers’ view of passengers 
already under observation. One of the observers noticed that even if the observer 
could not see the passenger directly, bus and train windows had reflecting glass, 
which, especially at night, was useful in reflecting adequately what passengers were 
doing.

An attempt was made to address observer fatigue by taking breaks and ending a 
session when the researchers were tired. On the basis of this experience, a half-hour 
break after two hours is recommended for this kind of work, as well as doing no 
more than five hours of observations at a time.
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During the four-minute observation period, a passenger might be recorded as car-
rying out only one or more than one activity at a time (multitasking), for example, 
reading a book while wearing headphones or texting while eating. In addition, a 
passenger might undertake several different activities sequentially over the obser-
vation period, for example, reading at Times 1 and 2, talking at Time 3, and texting 
at Times 4 and 5. Or a passenger might have alighted after two minutes. To accom-
modate this diversity, the data analysis refers to the numbers of passengers who 
were “ever observed” doing the activity. A passenger reported as “ever-texting” may 
have been reading at four of the times she was observed and texting only at the 
fifth, or eating while texting.

An effect of the “ever observed” approach may be to inflate some of the data. For 
example, in virtually every journey, a passenger is likely to look ahead or out the 
window at some point, and our method may count this activity more than its dura-
tion in reality would suggest. Results around this, therefore, could be an artefact of 
the method. Another category where a behavior is so integral a part of the journey 
that it may be distorted in the study is the handling of a wallet or purse. This is 
especially the case where passengers have a ticket clipped or pay cash in exchange 
for a paper ticket, thus handling their wallet or purse, removing money, or stowing 
a clipped ticket. Note, however, that many passengers in Wellington on both buses 
and trains show a pre-paid token and do not present cash or require change.

The differences in methods, as well as cultural and other differences in the studies 
from the U.S. and Japan, render the comparison of results unhelpful, but the Wel-
lington study by Thomas is of considerable interest. Thomas did not fully explain 
his method, but it included, for most of his observations, one person observing all 
the passengers boarding a bus or one half of a train carriage, noting any subsequent 
seat changes and departure, gender, age, couple relations, seat location(s) and pat-
terns, as well as activities such as verbal interaction, bag placement, and activities 
(reading, headphones, etc). Without greater detail than is given in his thesis, it is 
difficult to know exactly how this was accomplished but since he observed 1,142 
bus passengers on 38 trips, an average of 30 people observed per trip; on trains, 
the average would be 24 people per trip. Hence, different results between Thomas’s 
and the current study may arise from the different methods used.

Table 2 compares the observational studies reported by Timmermans and Van 
der Waerden (2008), Ohmori and Harata (2008), Thomas (2009), and the current 
study. 
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Analysis
Data were entered into Excel and analyzed in SPSS. Bus and train data were amalgam-
ated to produce a single dataset, and the five time intervals were listed in a single col-
umn for analytical purposes. Computation of descriptive statistics using SPSS was car-
ried out, followed by binary logistic regression analysis for the association of observed 
activity against the covariates (gender, approximate age group, transport mode, and 
peak/off-peak travel time). Odds ratios from the logistic regression are reported to 
examine the relationship between the covariates and each activity. A critical P-value of 
.05 and 95% confidence intervals were included to test for significance.

Results
Age and Gender of Passengers Observed 
Table 3 shows the age-groups and genders of passengers by mode. Although no for-
mal inter-rater reliability check was made, a lack of agreement about passengers’ age 
was noted during informal checking: the reliability of coding in the “middle-age” and 
“older” groups is doubtful. From a cursory view, there seemed much better agreement 
about the “young” assessments (people age about 18 to 30-35) than about the middle-
age group (35 to 60 years) and the older group (over 60). Accordingly, a conservative 
approach was taken in the statistical analysis: the middle-age and older groups were 
combined, providing a comparison between these and younger passengers.

Activities: How Did Passengers Spend Their Travel Time?
Table 4 shows the number and percentage of passengers observed doing different 
activities on buses and trains. The most striking result shown here is that nearly 
two-thirds of the passengers observed spent some of their travel time looking ahead 
or out the window (65.3%), but this was seen more on the bus (76.5% of bus passen-
gers) than on the train, where just over half of train passengers (56.6%) were looking 
ahead or out at some point during the observation. About a fifth of the passengers 
were observed reading (21.7% overall), with more than twice the proportion seen 
reading on the train (28.8%) than on the bus (12.5%). A similar proportion was seen 
with headphones on (20.9% of train passengers and 17% of bus passengers). Slightly 
more people were observed talking to other passengers on the train (16.8%) than on 
the bus (13.6%). Texting was more commonly observed (9.2% of all passengers) than 
talking on a cell phone (1.5%). Activities observed more frequently on trains than on 
buses were reading, using a computer, sleeping/eyes closed, writing, and handling 
wallet, bag, etc. Writing included using a pen or pencil to work on crosswords or 
puzzles as well as writing in notebooks or on printed sheets.
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Table 3. Age Group and Gender of Passengers Observed on  
Buses and Trains (N=812)

Buses Trains Total Passengers

Count % of Total Sample Count % of Total Sample Count % of Total Sample

Women

Young 76 9.4 88 10.8 164 20.2

Middle-Age 72 8.9 126 15.5 198 24.4

Older 23 2.8 17 2.1 40 5.0

Totals 171 21.0 231 28.4 402 49.5

Men

Young 77 9.5 61 7.5 138 17.0

Middle-Age 82 10.0 119 14.7 201 24.8

Older 23 2.8 48 5.9 71 8.7

Totals 182 22.4 228 28.1 410 50.5

Total 353 43.4 459 56.6 812 100

Table 4. Ever-Observed Activities on Bus and Train (N=812)

Activities Bus Train Total

Number

% of 
Total 

Sample Number

% of 
Total 

Sample Number

% of 
Total 

Sample

Looking ahead/out window 270 76.5 260 56.6 530 65.3

Reading 44 12.5 132 28.8 176 21.7

Headphones in 60 17 96 20.9 156 19.2

Talking 48 13.6 77 16.8 125 15.4

Texting 29 8.2 46 10 75 9.2

Sleeping/eyes closed 15 4.2 57 12.4 72 8.9

Handling wallet, etc. 16 4.5 42 9.2 58 7.1

Other 15 4.2 28 6.1 43 5.3

Eating/drinking 13 3.7 25 5.4 38 4.7

Using computer 1 0.3 34 7.4 35 4.3

Writing 4 1.1 22 4.8 26 3.2

On phone 6 1.7 6 1.3 12 1.5
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The observers could not always tell if two people talking together were acquainted 
before getting on the bus or train, although, in some cases, it was clear from 
behavior or overheard conversation that they were a couple, a group of friends, or 
strangers who started chatting en route.

The category “Other” included some rarely seen activities, for example, a group 
of four women, each accompanied by small children, began taking photographs 
of each other. Applying makeup, brushing hair, rocking a baby’s push-chair, nose-
blowing, looking at a watch, buying a ticket from the guard, and drumming with a 
stick were among “other” activities recorded.

Table 5 shows the results of the logistic regression models for each activity, with 
odds ratios for the explanatory variables: gender, age, transport mode, and time of 
day. An odds ratio compares whether the probability of an event is the same for two 
groups; an odds ratio of 1 means that the event is equally likely for each group.

The difficulty about age group in the data collection was described above. Here, 
older adults are contrasted with the “young” group—adults who appeared to be 
up to about 35 years of age (the reference category). The time of day compares off-
peak with peak time (the reference category). 

The results in Table 5 show how activities interacted with the demographic and 
contextual factors of gender, age, mode, and time of day. Women were significantly 
more likely to be talking and less likely to be using a computer than men. Older 
people were significantly less likely to be texting, using headphones, eating/drink-
ing, or looking ahead/out window than younger people but significantly more likely 
to be reading. As noted above, more people were looking ahead/out window on 
buses than on trains, and the odds ratio for this showed a statistically significant 
difference. Train passengers were significantly more likely to be reading, using a 
computer, sleeping/eyes closed, writing, and handling their wallet or belongings 
than bus passengers. Time of day reveals fewer clear-cut differences, with passen-
gers significantly more likely to use a computer at peak travel times and more likely 
to be looking ahead/out window at off-peak times of day.

Of interest is the extent of multitasking by passengers. The observations showed 
some passengers were doing one, two, or three other activities at the same time as 
traveling. As an example, Figure 1 shows data from the Time 1 observations only 
of the numbers of passengers ever-observed undertaking two activities: listening 
on headphones and one other activity. Although this count is for Time 1 only, the 
numbers were not markedly different from the other observation points. 
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Table 5. Odds Ratios (OR) and 95% Confidence Intervals from  
Logistic Regression for Ever-activity according to Gender, Age Group,  

Transport Mode, and Time of Day

Activities
OR Gender: 

Female
OR Age: 

Older
OR Mode:

Bus
Time of day: 

Off-peak

Looking ahead/out window 1.018 
(0.760;1.363)

0.564 
(0.413;0.770)

2.490 
(1.831;3.386)

2.523 
(1.617;3.938)

Reading 1.236 
(0.879;1.738)

2.732 
(1.837;4.063)

0.353 
(0.242;0.513)

0.668 
(0.415;1.074)

Headphones on 0.797 
(0.556;1.143)

0.332 
(0.232;0.476)

0.774 
(0.542;1.107)

1.521 
(0.939;2.464)

Talking 2.070 
(1.391;3.080)

0.812 
(0.549;1.201)

0.781 
(0.528;1.154)

0.774 
(0.436;1.373)

Texting 0.709 
(0.563;1.479)

0.333 
(0.204;0.544)

0.804 
(0.494;1.308)

1.469 
(0.771;2.799)

Sleeping/eyes closed 0.853 
(0.524;1.388)

1.040 
(0.628;1.723)

0.313 
(0.174;0.563)

0.756 
(0.392;1.456)

Handling wallet, etc. 1.596 
(0.924;2.756)

0.926 
(0.535;1.602)

0.471 
(0.260;0.853)

0.811 
(0.386;1.702)

Other 1.909 
(1.001;3.638)

0.631 
(0.340;1.172)

0.683 
(0.359;1.300)

1.271 
(0.559;2.889)

Eating/drinking 1.077 
(0.559;2.076)

0.464 
(0.240;0.896)

0.664 
(0.335;1.317)

1.260 
(0.530;2.998)

Using computer 0.205 
(0.084;0.500)

1.590 
(0.730;3.464)

0.036 
(0.005;0.261)

0.238 
(0.071;0.792)

Writing 1.238 
(0.564;2.717)

1.658 
(0.687;4.000)

0.228 
(0.078;0.667)

0.768 
(0.277;2.128)

On phone 1.033 
(0.329;3.239)

1.190 
(0.354;3.999)

1.305 
(0.417;4.083)

1.327 
(0.240;7.334)

Results significant at p < .05 are indicated in bold.
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Figure 1. Number of bus and train passengers observed carrying out 
multiple activities at time 1 (n=812)

Other Observations
On the suggestion of passengers encountered on the long-distance Wellington-
Palmerston North train, one of the researchers returned to travel part of the trip on 
this train on the last Friday evening before Christmas in 2008. Although many pas-
sengers appeared to undertake usual activities, others were partying around tables 
that, in parts of each carriage, unite four seats in pairs facing each other, sometimes 
with another four across the aisle. Seven or eight groups in different carriages had 
laid out bottles of wine and glasses, Christmas cake, and other party food; others 
added Christmas party hats, paraphernalia, and tinsel draped overhead and across 
the carriage lintel. These were groups of friends or acquaintances who regularly 
traveled and socialized together, usually celebrated on the Friday night train, and 
were making especially merry at Christmas. Evidently, considerable planning had 
gone into the preparations. 

A further insight from the field work expands on Timmermans and Van der 
Waerden’s (2008) reference to a travel time activity they call “romancing.” During 
the observations, we saw couples and others traveling with a loved one and devel-
oped a conception of bus and train travel time as “relationship time” (Russell 2010), 
referring not only to romantic/couple relationships but also to other close rela-
tionships, those relationships that in Granovetter’s terms are “strong ties” rather 
than “weak ties” (Granovetter 1973, 1983). Traveling with a loved one on public 
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transport may be precious and meaningful for the relationship (Russell 2010). 
This extends beyond romantic relationships to traveling with one’s child, parent, 
sibling, or close friend when there may be both physical closeness and significant 
emotional intimacy even in such a public place as a bus or train.

Discussion 
Discussion of Results
The passenger activity data reported here arose from a purposive sample of routes 
and times of day, allowing a comparison between bus and train trips in the Welling-
ton region. The study explored the association of activities performed on public 
transport with demographic variables (gender, age), and transport variables (mode 
of transport and time of day.) 

Observational studies in Japan (Ohmori and Harata 2008) and the U.S. (Timmer-
mans and Van der Waerden 2008), a large British survey (Lyons, Jain et al. 2007), 
and a Norwegian survey (Gripsrud and Hjorthol 2009) were all studies of train 
passengers only. Thomas’s (2009) Wellington study, like ours, included both bus 
and train passengers. The considerable differences in data collection and analysis 
preclude direct comparisons with our findings, but contrasting some of the results 
enables us to better understand the challenges of the method and contributes to 
future work. 

Some findings are in accord with other studies and are not startling, in particular, 
that many people appeared to be “doing nothing,” “thinking,” “window gazing/
people watching,” or, in our terminology, “looking ahead/out the window.” Our 
results for activities differ from Thomas’s for basically the same population; for 
example, he found about a quarter of Wellington passengers engaged in “verbal 
behavior,” reducing to 15 percent if couples were excluded, whereas we observed 
15 percent altogether talking. Thomas observed a quarter of his sample engaged in 
“activities,” whereas we found a quarter on buses but nearly a half on trains doing 
something other than looking ahead/out the window. Our observations of reading 
(22%) and listening on headphones (19%) were much higher than Thomas’s, at 11 
percent and 9 percent, respectively. It is unclear whether these differences relate to 
different times of year (we collected data in summer, Thomas in winter), different 
times of day, or, more likely, methodological differences.

The study found people on the bus were much more likely than train passengers to 
be looking ahead/out the window. Some of the differences between bus and train 
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passenger activities may be owing to the frequency of the service, the nature of 
the vehicle, or the length of the trip, as suggested by Lyons et al. (2007) above. On 
a short journey, one may not bother to get out a book or newspaper. Wellington 
trains run less frequently than many buses. Eating and drinking is formally prohib-
ited on buses and some trains. In Wellington, many of the bus routes are through 
winding, hilly roads, possibly discouraging passengers who are even slightly subject 
to motion sickness from reading or writing. Activities also are constrained by 
whether or not one has a seat; it is difficult to read a newspaper while standing on 
a moving bus. The train offers a smoother ride, and more people were reading on 
the trains. The two-hour commuter train provided power-points and tables/trays, 
facilitating computer use and writing.

Another possible explanation comes from the notions put forward by Jain and her 
colleagues of the “equipped” passenger (Lyons and Urry 2005; Jain and Lyons 2008) 
and by Watts and her colleagues of the “packed” traveler, who comes prepared for 
the journey and unpacks in the vehicle, whose “bags and belongings” (Watts 2008) 
contain objects (book, pen, phone, food) that enable the journey to be spent in 
some way other than “doing nothing.” Gripsrud and Hjorthol trace a link between 
passengers’ enjoyment of travel and their “degree of preparedness, as measured by 
the number of items” they bring (Gripsrud and Hjorthol 2009).

A possible reason for smaller numbers of older passengers being observed is that 
the data collection mostly concentrated on peak-hour travel. Older people would 
be less likely to travel at this time if they are retired or in part-time employment, 
and the SuperGold Card, allowing free travel to New Zealanders 65 years and over, 
may be used only outside peak hours. 

Differences in ticket purchasing on buses and trains may explain the difference in 
the extent of “handling wallet, etc.” On buses, the ticket is shown or bought on 
entry, but on the Wellington trains, passengers' tickets are checked or sold by the 
train manager/conductor while the train is in motion, so some of the rummaging 
we observed may relate to this.

Discussion of Structured Observation as a Method
Using structured observation as a method for travel time use research was chal-
lenging. The vehicles have their set course and time frames, passengers are intent 
on their own lives and needs, and observers must work around these. The U.S. 
study seemed to gloss over some of the difficulties of data collection, stating that 
“because the data collection involves field observations, some mistakes will be 
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made” (Timmermans and Van der Waerden 2008). Our experience on the Welling-
ton buses and trains suggests that the field observation method described by these 
authors would be almost impossible to carry out, particularly at peak time. Ohmori 
and Harata (2008) note more realistically that “it would be difficult to conduct the 
on-board observation in highly congested normal trains where seats are full and 
many passengers are standing” (Ohmori and Harata 2008). Reviewing the methods 
sections of some observational studies, and knowing the practical challenges of 
working in crowded vehicles, we were sometimes puzzled as to how exactly data 
were collected in the time available. 

As ethnographers of travel time have already shown (Nash 1975; Delannay 2001; 
Fink 2006; Watts 2008), actually getting out and about on public transport with 
a researcher’s eye can yield rich information about how people behave and spend 
their time on the bus or train. We developed the new category “Handling wallet, 
etc.” because we saw how frequently passengers were doing this. This shows the 
value of observation, as a passenger who is asked an open question about travel 
time use may be unlikely to spontaneously mention this activity, and even if it is sug-
gested as a category, it may not register as meaningful. This activity, perhaps, relates 
to Watts’ (2008) “packed” traveler in the very act of unpacking or repacking. 

Strengths, Limitations, and Further Research
This study adds to existing knowledge about travel time use. The strengths of the 
study are its size, the comparison of bus and train passengers, the attention to 
method and frankness about methodological challenges, and the inclusion of a 
pilot phase. A limitation of the study is that each passenger was observed by only 
one researcher. Another is that waiting time activities were not observed. Waiting 
is a significant and often overlooked component of travel time. 

An underlying limitation of the study is the nature of the method itself. Recording 
observable behavior cannot reveal people’s intentions, attitudes, or feelings. Hence, 
the main question arising from the research concerns the meaning and value of 
activities. What are the 65 percent of passengers observed looking ahead or out 
the window really doing? From the outside, it appears that these people are “doing 
nothing,” not reading, writing, or listening on headphones, not talking or eating, 
just sitting or standing there. Are they really “doing nothing,” and, if so, how do 
they feel about that time? Are they bored, anxious, or content? Or are they “doing 
something”—thinking, planning, remembering, praying, daydreaming—and, if so, 
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what does that mean for them in their everyday life? Is Thomas (2009) correct in 
identifying reading, wearing headphones, etc., as essentially “defensive” activities? 
How do passengers themselves understand travel time and how it affects their 
well-being? These questions can be answered only by asking passengers themselves. 
Future research will use qualitative methods to answer some of these questions, 
and further quantitative (survey) research will assess any differences between self-
reported travel time use and the observational data reported here. 

Conclusion
Adult passengers on buses and trains in the Wellington region, New Zealand, were 
engaged in a range of activities. While most spent some or all of their time simply 
“looking ahead/out the window,” many were reading, sleeping/eyes closed, talking, 
using a computer, or listening on headphones, among other activities. In some cases, 
passengers appeared to be doing several things at once. There were differences 
between activities on buses and trains, with more people observed simply “looking 
ahead/out the window” on buses than on trains. This may relate to the length of 
trips or to the hilly and winding terrain covered by buses in Wellington, compared 
to trains, or the extent to which passengers come prepared for the journey.

Structured observation is a challenging but rewarding method for researching pas-
sengers’ use of travel time. Greater frankness about methods and more detail about 
data collection protocols would be a welcome contribution in the literature.

The prevailing assumption in transport planning and transport economics that 
travel time is a “disutility to be minimised” (Mokhtarian 2005) is open to chal-
lenge. Passengers are not always “doing nothing” while traveling, and even if they 
are, this inactivity may have value for them. Similarly, the activities many engage 
in while traveling also may have value to them as individuals and in terms of wider 
economic and social wellbeing. Further research is needed to explore and explain 
the meaning and value of public transport travel time use and to develop ways in 
which transport planners and economists can address these realities. 
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Abstract

A state-of-the-art four-point tiedown system, a prototype automatic docking system, 
and a prototype rear-facing wheelchair passenger station (RF-WPS) were installed in 
a large accessible transit vehicle (LATV). A manual wheelchair, powered wheelchair, 
and a three-wheeled scooter were used to test the securement performance of each 
wheelchair securement system during LATV normal driving, hard braking, and rapid 
turning maneuvers. All test wheelchairs were loaded with an ISO 7176 Part 11 com-
pliant loader gage representing the weight of an average male wheelchair occupant. 
A tri-axial accelerometer measured vehicle acceleration during driving maneuvers, 
and a low-tech movement tracking system measured wheelchair movement during 
driving maneuvers. Results show that each wheelchair securement system limited 
wheelchair displacement to less than the 51-mm Americans with Disabilities Act 
(ADA) displacement limitation, and none of the securement systems showed visible 
signs of failure. Accelerations during LATV normal driving, hard braking, and rapid 
turning did not exceed 0.76 g. 

Introduction
Regulations and Standards
With the passage of the 1990 Americans with Disabilities Act (ADA), public trans-
portation is required to be available and accessible to people with disabilities. The 
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U. S. Department of Transportation (DOT) 49 CFR Part 38 requires public buses 
or large accessible transit vehicles (LATVs) to be outfitted with a wheelchair sta-
tion consisting of a wheelchair securement and an occupant restraint system (U.S. 
Department of Transportation 2007). This regulation requires that the wheelchair 
securement system limit the movement of a wheelchair to a maximum of 51 mm 
(2 in.) during normal vehicle operating conditions. Although the ADA does not 
require wheelchairs to be secured, vehicle operators are to be trained to use the 
safety equipment on board public transit vehicles, and transit providers may have 
written policies in place requiring wheelchairs to be secured in the best possible 
way with the available equipment (U.S. Department of Transportation 2007).

Despite the advancement in legislation regarding accessible public transportation 
and the development of standards and compliant wheelchair transportation safety 
technology, vehicle operators and wheelchair users of public transportation sys-
tems have been reporting difficulties (Buning et al. 2007; Frost and Bertocci 2009). 
Lack of use of wheelchair securement systems has been attributed to the fact 
that many wheelchairs are difficult to secure. Buning et al. (2007) surveyed public 
transit wheelchair users and reported that over 50 percent had difficulty securing 
their wheelchairs. Lack of securement use also can be attributed to a lack of bus 
driver training in the proper use of wheelchair securement systems and a lack of 
compatible wheelchair securement hardware and wheelchair securement systems 
(Foreman et al. 2001). Currently, the most common type of wheelchair securement 
system installed in public buses is the four-point, strap-type tiedown system (Wolf 
and van Roosmalen 2007) due to the system’s ability to accommodate a wide range 
of wheelchair types and sizes. A shortcoming of this securement system often cited 
by wheelchair users is that they have to rely on someone else to secure their wheel-
chair, thus not allowing independent use of the system. In addition, the bus driver 
has to secure the tiedown straps in hard-to-reach places on the wheelchair due 
to non-WC-19-compliant wheelchairs, which often impose on the user’s personal 
space, further increasing the likelihood that wheelchair users will refuse the use of 
securement systems (Buning et al. 2007).

Voluntary standards that include design and performance requirements of wheel-
chair tiedowns and occupant restraint systems (WTORS) have been developed to 
improve the safety and ease of use of wheelchair transportation safety technology 
(ANSI/RESNA 2001; International Standards Organization 2001). Standards also 
are being developed for WTORS that will be used only in LATVs, such as the draft 
international standard (ISO-10865-1) on rear-facing wheelchair passenger systems 
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(RF-WPSs) for use in low-g environments (International Standards Organization 
2010). The purpose of ISO-10865-1 (which at the time of this writing is a Draft In 
Standard [DIS]) is to establish design and performance requirements for RF-WPS in 
a low-g environment (<1 g) such as in LATVs. The standard specifies dimensional, 
design, performance, and installation requirements for an RF-WPS and its com-
ponents. In addition, guidelines are provided for use by vehicle and/or WTORS 
manufacturers seeking to design RF-WPS components (International Standards 
Organization 2010). This standard is intended to promote the development and 
implementation of alternative wheelchair transportation safety systems that can 
be used independently by wheelchair-seated passengers of LATVs. 

Development of Alternative Wheelchair Securement
Earlier attempts have been made to increase the usability and independent use of 
wheelchair securement systems. Several alternative securement devices have been 
developed, including an automated docking system created by Oregon State in 
the 1990s and, more recently, an auto-docking system with a Universal Docking 
Interface Geometry (UDIG) developed and tested by the University of Pittsburgh 
(UPITT) and Sure-Lok. The UPITT/Sure-Lok system can be used independently 
by a wheelchair user and incorporates an anti-rotation lock to ensure that once 
the wheelchair is secured, the docking system will not rotate during rapid turning 
(Hobson and van Roosmalen 2007). This system was tested successfully according 
to SAE J2249 test methods with a surrogate wheelchair and a 48 kph/20 g crash 
pulse (Society of Automotive Engineers 1999). User testing of the auto docking 
system resulted in positive responses from wheelchair users and bus drivers on its 
ease of use (Hobson and van Roosmalen 2007).

RF-WPSs also have been developed for independent use by wheelchair-seated 
occupants using LATVs in Europe, Canada, and the U.S. (Rutenberg et al. 2005). RF-
WPSs use a forward excursion barrier (FEB) that prevents the wheelchair and occu-
pant from moving forward in the event of a sudden stop. Although some of these 
rear-facing systems include optional restraint systems that attach to or around the 
wheelchair, it remains unclear what level of containment is needed to protect the 
wheelchair and occupant from moving and/or tipping over during rapid vehicle 
turns and accelerations. 

LATV Accelerations
Several studies have analyzed the accelerations that are experienced on board 
LATVs during various driving maneuvers. Hunter-Zaworski et al. (1992) measured 
in-vehicle accelerations during normal driving operations of LATVs. Their results 
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indicate that during normal driving conditions, maximum accelerations reach 
0.40 g and 0.10 g for forward acceleration and turning, respectively (Zaworski et al. 
2007). Rutenberg (1995) reported that accelerations did not exceed 0.24 g in any 
direction (Rutenberg 1995). Fournier (1997) measured accelerations on LATVs as 
well and concluded that accelerations can be as high as 1.53 g, but it was suggested 
that the high values seen were likely due to vibrations of the vehicle (Fournier 
1997). Finally, Zaworski et al. (2007) recorded normal driving and extreme driving 
accelerations of LATVs and found that during normal driving conditions, accel-
erations averaged 0.20 g and rarely exceeded 0.40 g. During extreme maneuvers, 
vehicle accelerations averaged 0.40 g and sometimes reached as high as 0.80 g dur-
ing hard stops (Zaworski et al. 2007). 

The combination of large vehicle size and relatively low travel speeds leads to a low 
likelihood of LATVs being involved in a collision of significant magnitude (Shaw and 
Gillispie 2003; Shaw 2008). Blower et al. (2005) examined accident reports from LATVs 
in Florida over a two-year period. They estimated that LATVs are involved in a colli-
sion of greater than 5 g every 27 million vehicle-miles traveled and in a 10 g collision 
every 455 million vehicle miles traveled. The likelihood of an LATV being involved in a 
crash event of 5 and 10 g is 16 and 250 times less, respectively, than for private vehicles 
(Blower et al. 2005). Given this low likelihood of a severe crash, the low g environment 
of LATVs, and the large size of LATVs, alternative wheelchair containment methods 
may offer a reasonable level of occupant safety to wheelchair users traveling in LATVs 
while allowing for greater freedom in the design of these systems and for designs that 
promote independent use by wheelchair-seated passengers. 

A 20g/48kph (20g/30mph) frontal impact test with a surrogate wheelchair and 
Hybrid III Anthropomorphic Test Device is commonly used to evaluate wheelchair 
securement system safety. Alternative test methods that evaluate wheelchair 
securement system safety and assess wheelchair movement under lower accelera-
tions commonly seen in LATVs are needed to improve wheelchair-seated passen-
ger safety during normal driving conditions.

Objectives
The primary goal of this study was to determine if a prototype auto-docking sys-
tem and a prototype RF-WPS are compliant with ADA maximum displacement 
requirements of 51 mm (2-in.) when exposed to accelerations associated with 
LATV normal driving, hard braking, and rapid turning. Secondary goals were to 
evaluate wheelchair securement performance by comparing the wheelchair dis-
placement allowed by the two prototype systems with the displacement allowed 
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by a standard four-point tiedown securement and no wheelchair securement. A 
final goal was to document the magnitude of LATV accelerations during normal 
driving, hard braking, and rapid turning conditions. 

A follow-up project to this study includes having wheelchair users and LATV 
operators use and evaluate each wheelchair securement system on an LATV over 
a predetermined route and give feedback as to their likes and dislikes of each sys-
tem. Findings of these wheelchair user and bus operator perceptions on wheelchair 
securement usage are being published separately.

Methods
Three types of wheelchair securement systems were installed in a high-floor LATV. 
Each wheelchair securement system was tested with a manual wheelchair, a pow-
ered wheelchair, and a scooter that were slightly modified to accommodate the 
securement systems tested (modifications of the test wheelchairs are described 
later on in the Methods section). The wheelchair securement systems were evalu-
ated under three driving conditions: normal driving, hard braking, and rapid turn-
ing. The wheelchairs also were tested under each driving condition without any 
form of wheelchair securement. Wheelchair displacement and LATV accelerations 
were recorded during all testing conditions.

Wheelchair Securement Setup

1. Four-Point Tiedown System

The four-point tiedown system that was installed in the LATV consists of four 
straps with self-tensioning retractors (QRT Deluxe Retractor System, Q’Straint, 
Ft. Lauderdale). The straps have securement hook end fittings that each attach to 
four securement points on the wheelchair. The retractors contain a manual ten-
sion mechanism that allows a person to tighten the straps to minimize wheelchair 
movement. Two straps are secured to the rear and two to the front of the wheel-
chair (Figure 1). 
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Figure 1. Retractor-type four-point tiedown system (left); side view of 
manual wheelchair secured by four-point tiedown system (right)

2. Auto Docking System

The prototype forward-facing auto docking system that was installed in the LATV 
was developed by the University of Pittsburgh and Sure-Lok (Sure-Lok, Bethlehem, 
PA). It consists of a pneumatically-powered docking mechanism that engages with 
an UDIG adaptor on the rear frame of each wheelchair (Figure 2). When a wheel-
chair user backs into the auto-docking system, the UDIG provides a means for 
securing the wheelchair to the docking securement device (Figure 3).

 
 

Figure 2. UDIGs attached to manual wheelchair (left),  
powered wheelchair (middle), and scooter (right)
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Figure 3. Auto docking system installed in LATV (left); scooter equipped 
with UDIG adaptor, backed into and secured by auto docking system

3. RF-WPS System

A prototype RF-WPS developed by the University of Pittsburgh and Q’Straint was 
installed in the LATV (Figure 4). This system consists of a vehicle-anchored FEB and 
two pneumatically activated lateral barriers. On the aisle side, the lateral barrier 
consists of a padded arm that rotates from a vertical (downward) stored position to 
an in-use (45-degree) position, while on the wall side the lateral barrier consists of a 
padded movable block. The pneumatic lateral barriers move laterally to accommo-
date different wheelchair positions and widths. These lateral barriers squeeze the 
sides of a wheelchair to provide containment and to prevent lateral and rearward 
movement of the wheelchairs during low g non-crash accelerations of an LATV. The 
RF-WPS system does not require wheelchair-mounted hardware (e.g., UDIG adap-
tor), and the system does not include an occupant restraint system.

Figure 4. Rear-facing wheelchair passenger station (RF-WPS)

Test Wheelchair Setup
Three commonly-used wheeled mobility devices were selected for the purpose 
of examining the effectiveness of the three wheelchair securement systems. Each 
test wheelchair was equipped with four tiedown securement points (to work with 
the four-point tiedown system), a UDIG adaptor (to work with the auto docking 
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system), and a wheelchair-anchored pelvic belt (to restrain the loader gages in 
each wheelchair). Pelvic belt prototypes were provided by BodyPoint (BodyPoint, 
Seattle) and Q’Straint. Each wheelchair was loaded with an ISO 7176-11 (Interna-
tional Standards Organization 1992), 76 kg (168 lbs) loader gage, representing a 
50th percentile male occupant.

The three test wheelchairs included in the study were a manual wheelchair, a pow-
ered wheelchair, and a three-wheeled scooter. An ISO 7176-19 compliant Quickie 
II manual wheelchair (Sunrise Medical, Longmont, CO) had WC19 compliant 
securement points and was modified to include a prototype UDIG adaptor and 
a wheelchair-anchored pelvic restraint (Figure 5a). A WC19 compliant Invacare 
TDX-SP powered wheelchair (Invacare, Cleveland) was modified with a prototype 
UDIG adaptor wheelchair (Figure 5b). An Amigo-RD scooter (Amigo Mobility 
International, Bridgeport, MI) was modified with four tiedown securement points, 
a prototype UDIG adaptor, and a UDIG-mounted pelvic restraint (Figure 5c). The 
securement points on the scooter were designed and placed to allow for easy and 
effective securement by the bus operator with the four-point tiedown system. 
Although the securement point geometry on the scooter complied with WC19 
dimensional requirements, the securement point locations on the scooter were 
not in compliance with the fore-aft and side-side WC19 requirements due to 
restrictions of suitable scooter frame mounting positions (ANSI/RESNA 2001). 

Figure 5. (a) Modified Quickie II manual wheelchair, (b) Invacare TDX-SP 
powered wheelchair, (c) Amigo-RD Scooter with ISO 7176-11 Test Dummy

In-Vehicle Test Setup
The Pittsburgh Port Authority (PAT) provided a 12.2 m (40 ft) transit bus (ORION 
Bus Industries Inc., Oriskany, NY) and a licensed PAT bus driver for testing pur-
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poses. The test vehicle was a high-floor vehicle without internal wheel wells. The 
test vehicle had a front mounted platform lift, and some seats were removed from 
the vehicle to allow for installation of the three wheelchair securement systems 
to be evaluated. The four-point tiedown system was placed in the row behind the 
driver seat and installed according to Q’Straint WTORS installation instructions. 
The prototype automated docking system and prototype RF-WPS were placed 
opposite each other on the right side of the vehicle. Figure 6 shows a diagram of the 
securement system setup in the LATV. 

Figure 6. Layout of securement systems in LATV

Driving Conditions
Each securement system was tested under three driving conditions: normal driv-
ing, hard braking, and rapid turning. An urban course approximately 15 minutes in 
duration was mapped out for use during normal driving conditions. The course con-
sisted of multiple left and right turns, starts, stops, and steep inclines and declines 
with a maximum grade of 17 percent. Hard braking trials are defined by LATV 
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braking at a starting speed of about 32 km/h (20 mph) to an end speed of 0 km/h 
(0 mph) in approximately 3 seconds. Rapid turning trials are defined by a 90 degree 
left or right turn at a starting speed of about 32 km/h (20 mph) along a marked 15 
meter (50 ft.) radius (Mercer and Billing 1990; Hobson and van Roosmalen 2007). 
LATV speeds and actual paths were not documented during the test trials.

Test Protocol
The three test wheelchairs were evaluated in three securement stations during 
three driving trials (normal driving, hard braking/ rapid turning, no securement):

Three trials were conducted for the normal driving condition. Each wheel-•	
chair was tested on this course in each securement system to understand 
securement system performance for each wheelchair type during normal 
driving conditions. 

Eighteen trials of hard braking and rapid turning testing were conducted. •	
Each wheelchair was tested three times in each station for both hard brak-
ing and rapid turning. A hard braking test was performed during the initial 
positioning of the wheelchairs to make sure the setup was appropriate. 
Thus, there were some cases where the systems were tested three times 
and others four. 

Wheelchairs also were tested when unsecured during normal driving, hard •	
braking and rapid turning. Wheelchairs were unsecured with the hand brakes 
on (manual wheelchair) and power off (powered wheelchair and scooter). 
The wheelchairs and loader gages were loosely tethered to the vehicle walls 
by ropes to prevent excessive movement of and damage to the wheelchairs 
and loader gages. 

Data were collected for a total of 28 trials. Throughout the testing, maximum vehicle 
accelerations and maximum wheelchair displacement were recorded for each wheel-
chair. A stationary video camera was used to observe general wheelchair motion.

Data Collection and Analysis
To capture wheelchair displacement, a low-cost, previously-validated test method 
was used (Hobson and van Roosmalen 2007). A target designed to contain a 51 mm 
(2 in.) radius circle, representative of the ADA displacement requirement, was fixed 
to the vehicle floor. The ADA does not specify how or where the displacement of 
a wheelchair should be measured from, so for the purposes of this study a spring-
loaded pen was attached to the front of the wheelchair frame at the centerline of 
each wheelchair and 780 mm (30.7 in.), 830 mm (32.7 in.), and 1110 mm (43.7 in.) 
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forward of the vertical securement bars of the UDIG, for the manual wheelchair, 
powered wheelchair, and scooter respectively. Prior to the start of each trial, the 
pen was positioned at the center of the 51 mm (2 in.) radius target so that any 
movement from the original position would scribe a line that could be measured 
post-test (Figure 7). The displacement magnitude (mm) was measured from each 
of the marked targets located beneath each wheelchair. The furthest deviation 
from the target center was recorded as the maximum displacement. Displacement 
was measured to the nearest mm. If wheelchair displacement exceeded the width/
length of the chart−108 mm (4 in.) in the lateral direction and 140 mm (5.5 in.) in 
the forward/rearward direction−it was labeled as “off the chart,” or if the wheel-
chair tipped over, it was labeled as “tipped over.”

Analysis of Variance (ANOVA) was used to determine statistical differences in dis-
placement values of the test wheelchairs and scooter during various driving condi-
tions when secured by each wheelchair securement system. An alpha level of 0.05 
was used to determine significance. Additionally, maximum values of forward and 
lateral test wheelchair movement were measured and tabulated for the various 
driving conditions for each test wheelchair and each wheelchair securement sce-
nario. Acceleration time histories were recorded for each test trial, and maximum 
LATV accelerations and average LATV accelerations were tabulated for normal 
driving, hard braking, and rapid turning conditions. 

Figure 7. Spring-loaded pens and targets used for recording  
displacements of wheelchairs
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A 2.5 g tri-axial accelerometer (GP1 Sensr, Elkader, IA) was fixed to the floor of the 
bus and positioned so that the axes (x, y, z) of the accelerometer were aligned with 
the longitudinal axis of the vehicle, the lateral horizontal axis of the vehicle, and the 
vertical, respectively. The accelerometer was positioned on the left side (driver side) 
of the bus, directly behind and in line with the center of the four-point tiedown 
station. Acceleration data were recorded for all trials at a frequency of 100 Hz. 

Accelerometer data were processed similar to that of Zaworski et al. (2007). The 
accelerometer data first were averaged to 20 Hz, and voltage offsets were adjusted, 
and the raw voltage signal was converted to units of g in accordance with SAE 
J2181 (Society of Automotive Engineers, 1993). Maximum vehicle accelerations 
were obtained for normal driving, hard braking, and rapid turning maneuvers, and 
all accelerations were reported in units of “g.” Then x, y and resultant accelerations 
were computed and reported for hard braking, rapid-turning, and normal driving 
conditions, respectively.

Results
Wheelchair Displacement during Normal Driving
Table 2 shows the maximum wheelchair displacement values recorded for each 
securement system during normal driving conditions. During the normal driving 
trials, no extraordinary events such as “jumping curbs” took place, and the route 
did not include steep uphill and downhill slopes of more than 17 percent. The 
maximum displacement recorded during normal driving was 18 mm (0.7 in.). This 
displacement was recorded on the target beneath the scooter when it was secured 
by the four-point tiedown system. The average maximum displacement experi-
enced by the three wheelchairs was 12 mm (± 4 mm) (0.47 in. ± 0.16 in.). Displace-
ments measured during normal driving trials were not synchronized with LATV 
accelerations at which maximum wheelchair displacements occurred.

Table 2. Maximum Wheelchair Displacement For All Normal Driving Trials

Wheelchair Type RF-WPS (mm)
Four-Point

Tiedown (mm)
Auto Docking 

(mm)

Manual 13 13 14

Powered 11 6 11

Scooter 13 18 6

Average (SD) 11.67 (1.15) 12.33 (6) 10.33 (4)
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Wheelchair Displacement during Hard Braking
Table 3 shows the wheelchair displacements and accelerations for the three secure-
ment systems during hard braking. The maximum displacement during hard 
braking was 44 mm (1.7 in.). This displacement value was recorded on the target 
beneath the scooter during hard braking when secured by the four-point tiedown 
system.

Table 3. Maximum Wheelchair Displacement And Associated Vehicle 
Acceleration During Hard Braking

RF-WPS Four-Point Tiedown Auto Docking

(mm) (g) (mm) (g) (mm) (g)

Manual Wheelchair

Trial 1 0 0.62 0 0.60 0 0.62

Trial 2 6 0.72 0 0.66 0 0.69

Trial 3 0 0.68 0 0.56 0 0.56

Trial 4 0 0.68 n/a n/a n/a n/a

Powered Wheelchair

Trial 1 19 0.60 13 0.62 0 0.62

Trial 2 13 0.66 13 0.69 0 0.72

Trial 3 13 0.56 13 0.56 0 0.68

Trial 4 n/a n/a n/a n/a 0 0.68

Scooter

Trial 1 13 0.62 44 0.62 0 0.60

Trial 2 13 0.69 24 0.72 0 0.66

Trial 3 6 0.56 24 0.68 0 0.56

Trial 4 n/a n/a 24 0.68 n/a n/a

Average (SD) 8.3(6.8) 0.64(0.1) 12(10) 0.64(0.1) 0(0) 0.64(0.1)

Wheelchair Displacement during Turning
Table 4 shows the wheelchair displacements and accelerations for the three 
securement systems during turning trials. The powered wheelchair secured by the 
four-point tiedown system showed the largest displacement of 41 mm (1.6 in.). 
The four-point tiedown system also allowed 37 mm (1.5 in.) of displacement of the 
manual wheelchair.



Journal of Public Transportation, Vol. 14, No. 3, 2011

160

Table 4. Maximum Wheelchair Displacement And Associated Vehicle  
Acceleration During Rapid Right Turning

RF-WPS Four-Point Tiedown Auto Docking

(mm) (g) (mm) (g) (mm) (g)

Manual Wheelchair

Trial 1 13 0.46 37 0.47 13 0.38

Trial 2 13 0.51 25 0.46 18 0.52

Trial 3 13 0.56 19 0.45 13 0.45

Powered Wheelchair

Trial 1 13 0.47 13 0.38 13 0.46

Trial 2 13 0.46 41 0.52 13 0.51

Trial 3 13 0.45 19 0.45 13 0.56

Scooter

Trial 1 8 0.38 0 0.46 8 0.47

Trial 2 13 0.52 0 0.51 6 0.46

Trial 3 13 0.45 0 0.56 6 0.45

Average (SD) 12 (1.7) 0.47 (0.1) 17 (16) 0.47 (0.1) 11 (4.0) 0.47 (0.1)

Maximum Wheelchair Displacement
Maximum displacement values of the test wheelchairs and scooter during various 
driving conditions (normal driving, hard braking and rapid turning) when secured by 
each wheelchair securement system are displayed in Figure 8. The auto-docking sys-
tem allowed significantly less wheelchair displacement than the four-point tiedown 
system (p=0.0004) over all driving conditions. The displacement allowed by the 
RF-WPS during all driving conditions was not significantly different from that of the 
four-point tiedown system (p=0.1178) and the auto-docking system (p=0.105).

Unsecured Wheelchair Displacement
Table 5 shows the displacement of the three test wheelchairs when they were 
unsecured under normal driving, hard braking, and rapid turning conditions when 
facing forward and rearward. As expected, all wheelchairs experienced increased 
displacement when unsecured. During normal driving, the manual wheelchair 
moved a large enough distance that the excursion indicator was off the chart. This 
movement occurred during vehicle braking on a downhill grade of 17 percent. Dur-
ing a rapid right turn, the manual wheelchair tipped into the aisle until the safety 
rope stopped the movement, and the scooter tipped towards the vehicle wall and 
the dummy impacted and fractured a side window (Figure 9). 
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Figure 8. Maximum wheelchair displacement for four-point tiedown  
system, auto-docking system, and rf-wps for test wheelchairs and scooter

Table 5. Maximum wheelchair displacements for unsecured trials during 
normal driving, hard braking, and rapid turning

Manual Powered Scooter

mm mm mm

Hard Braking

Forward Facing off the chart off the chart off the chart

Rear Facing 0 13 19

Rapid Turning

Forward Facing off the chart off the chart tipped over

Rear Facing tipped over 14 off the chart

Normal Driving

Forward Facing off the chart 19 48

Rear Facing 25 18 20

Note: “Off the chart” indicates that the wheelchair moved sideways or forward outside the 51 mm (2 
in.) target area and out of the wheelchair securement station, resulting in potential bodily injury to 
(wheelchair-seated) passengers. “Tipped over” indicates that the wheelchair or scooter tipped over 
sideways, resulting in potential bodily injury to (wheelchair-seated) passengers.
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Figure 9. Final locations of unsecured wheelchairs during a right turn (left) 
and example of “off the chart” displacement (right)

LATV Accelerations
The maximum LATV accelerations were measured during normal driving, hard 
braking and rapid turning trials with the test wheelchairs and scooter. During 
normal driving conditions, the maximum acceleration measured was 0.60 g. Since 
the normal driving trials were all approximately 15 minutes in length, time history 
curves displayed merely a flat line. The maximum acceleration measured during 
hard braking was 0.75 g. Figure 10 shows the time history curves of all accelerations 
in the longitudinal (x-axis) direction for hard braking. The maximum acceleration 
recorded during rapid turning was 0.56 g. Figure 11 shows the time history curves 
of all accelerations in the lateral (y-axis) direction for rapid turning. 
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Figure 10. Time history acceleration curves in longitudinal (x-axis)  
direction for 13 hard braking trials, and average time history  

acceleration curve (black line)

Figure 11. Time history acceleration curves in lateral (y-axis)  
direction for 12 rapid turning trials, and average time history  

acceleration curve (black line)
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Discussion
Wheelchair Displacement
Maximum wheelchair displacement measured on the test wheelchairs and the 
scooter that were secured by either a four-point tiedown system, a RF-WPS, or an 
auto-docking system were all within the maximum ADA allowed limit of 51 mm (2 
in.). The highest displacement of 44 mm (1.7 in.) occurred with the scooter secured 
in the four-point tiedown system, followed by 19 mm (0.8 in.) with the powered 
wheelchair in the RF-WPS, and 18 mm (0.7 in.) with the manual wheelchair in the 
auto-docking system. Based on the 51 mm (2 in.) displacement criteria, all three 
systems would be ADA compliant. During normal driving, the maximum displace-
ment was 18 mm (0.7 in.), and all systems had similar average displacements of 
12 mm (0.5 in.), 12 mm (0.5 in.), and 10 mm (0.4 in.) for the RF-WPS, four-point 
tiedown system and auto-docking systems, respectively.

The auto-docking system performed best under hard braking conditions, allowing 
0 mm (0 in.) of wheelchair displacement across wheelchair types. It allowed more 
movement during rapid turning conditions (average 11 mm [0.4in.]), but this is to 
be expected, as the UDIG interface to the docking system is located at the rear of 
each wheelchair. This rear anchoring arrangement would allow for the wheelchair’s 
center of mass to rotate more in a turning than in a braking condition. The dock-
ing system allowed a maximum of 18 mm (0.7 in.) of lateral displacement, but this 
maximal displacement was well below the ADA maximum 51 mm (2 in.) displace-
ment limit. Most of the variability in the movement allowed by an auto-docking 
system could possibly be attributed to the differences in pen location with respect 
to the UDIG, which was different for the test wheelchairs and scooter. 

The RF-WPS design also was effective in retaining wheelchairs, as the maximum 
forward (powered) wheelchair displacement was 19 mm (0.8 in.), which occurred 
during hard braking. This is most likely due the fact that the padding on the FEB 
and wheel locks on wheelchairs allow for some movement of the (powered) wheel-
chair even when it is backed up against the FEB. The RF-WPS generally allowed 
more displacement during rapid turning (avg. 12 mm [0.5 in.]) than hard braking 
(avg. 8 mm [0.3 in.]) and there was no significant difference between the displace-
ment allowed by the RF-WPS and the displacement allowed by the four-point 
tiedown system and auto-docking system. Wheelchairs contained by the RF-WPS 
prototype stayed within the ADA displacement limit of 51mm (2 in.), thus the RF-
WPS can be an effective alternative to securing wheelchairs and scooters in a low 
g environment. 
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The four-point tiedown system was effective at securing wheelchairs, but tended to 
allow the most displacement of the three systems and allowed significantly more 
movement than the auto-docking system (avg 12 mm [0.5 in.] for hard braking, 17 
mm [0.7 in.] for rapid turning). This could have been due to the variability in the 
tension of the tiedown straps, which was not controlled for during the study. 

The unsecured wheelchair trials conducted during this study show the importance 
of wheelchair securement or containment systems in LATVs. Even during normal 
driving conditions, an unsecured manual wheelchair experienced an excessive 
amount of displacement and slid forward in the vehicle when braking downhill. 
During hard braking and rapid turning trials, all unsecured test wheelchairs and 
scooters either tipped over or slid across the bus floor. These movements increase 
the risk of injury to wheelchair users and other near-by passengers (Wolf et al. 
2007). This experiment showed that there is a need for wheelchairs to be secured 
or contained appropriately in LATVs during normal driving conditions, not only to 
protect the user but also other passengers traveling on LATVs. The unsecured trials 
also indicate that, as expected, scooters and manual wheelchairs are most likely to 
move, and a heavier power wheelchair is least likely to move under low acceleration 
LATV maneuvering.

LATV Accelerations
LATV accelerations recorded in this study were all less than or equal to 0.75 g. The 
maximum g levels experienced in this study during normal driving conditions aver-
aged 0.46 g. These values approximate those measured in several previous studies 
that reported maximum accelerations near 0.40 g (Rutenberg and Association 
2000; Zaworski et al. 2007). The current study recorded a maximum normal driving 
acceleration of approximately 0.60 g, which is slightly higher than that reported by 
previous studies (Rutenberg and Association 2000; Zaworski et al. 2007). The type 
of vehicle and the course traversed during the normal driving trials may explain the 
difference between accelerations. 

During hard braking and rapid turning, the current study reported maximum 
accelerations of 0.75 g and 0.56 g, respectively. These values are similar to those 
found by Zaworski et al. (2007), who reported a maximum of 0.85 g for braking, 
and a maximum of 0.39 g for turning. The slight differences found in the accelera-
tions between studies are most likely due to the difference in the types of buses 
used (high-floor versus low-floor buses) and the differences in testing procedures. 
Regardless of the slight differences in the maximum accelerations reported in the 
literature, all acceleration values remained below 1 g. 
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Study Limitations
This study did not examine the effect of the vehicle-anchored occupant restraint 
on wheelchair displacement. Vehicle-mounted occupant restraints could provide 
additional securement, further reducing the displacement of wheelchairs during 
all driving conditions. The ISO loader gages in this study were restrained to each of 
the test wheelchairs and could have affected the wheelchair measurements during 
normal driving, hard braking, and rapid turning trials. In this study, the amount of 
tension applied to the four-point tiedowns was not measured. The wheelchairs also 
were secured randomly by various researchers; although this represents real usage 
of tiedowns, it also may have influenced the magnitude of displacement of the test 
wheelchairs and scooter when secured by the four-point tiedown system. The ISO 
loader gages used in this study represent the mass of a 50th percentile male only. 
They are not representative of how an actual wheelchair-seated individual would 
respond in low g conditions and how this may influence wheelchair displacement. 

This study was not conducted to make recommendations on wheelchair types that 
are appropriate and safer for use in LATVs. Additional research is needed to bet-
ter understand how wheelchair type (manual, powered, scooter) and wheelchair 
securement use affects wheelchair displacement and occupant safety in LATVs.

Conclusions
All wheelchair securement systems tested in this study met the ADA displacement 
requirement by limiting wheelchair displacement to less than 51 mm (2 in.) during 
normal driving conditions. In addition, all systems met the ADA requirement for 
wheelchair displacement during hard braking and rapid turning maneuvers. The 
auto-docking system allowed significantly less displacement than the four-point tie-
down system. Accelerations recorded in the LATV remained below 0.76 g, providing 
further justification, in addition to the low frequency of large impacts reported by 
Blower et al. (2005), for wheelchair securement performance requirements of 1 g. 

New standards specifying methods to test wheelchair containment systems for 
use in LATVs are presently under development (ISO 10865). Results also indicate 
that there is a need to secure wheelchairs in LATVs even during normal driving 
conditions to prevent possible injury to the wheelchair occupant and other vehicle 
passengers. A follow-up project to this study includes having wheelchair users and 
LATV operators use and evaluate each wheelchair securement system on an LATV 
over a predetermined route and give feedback as to their likes and dislikes of each 
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system. This feedback will be important for optimizing wheelchair securement sys-
tems for independent use by wheelchair seated passengers riding on LATVs. 
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